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Abstract: The black hole rigidity theorem asserts that a rotating stationary black hole
must be axisymmetric. This theorem holds for General Relativity with suitable matter
fields, in four or more dimensions. We show that the theorem can be extended to any
diffeomorphism invariant theory of vacuum gravity, assuming that this is interpreted in
the sense of effective field theory, with coupling constants determined in terms of a “UV
scale”, and that the black hole solution can locally be expanded as a power series in this
scale.

1. Introduction

Consider a stationary black hole spacetime of dimension d ≥ 4. The orbits of the
asymptotically timelike Killing vector field (KVF) ta must leave the horizon invariant
and are either everywhere tangent to the null-generators of the horizon, or not. It is known
in standard Einstein gravity coupled to a wide range of standard matter models that in
the first case, the metric and matter fields are actually static [7,15–17,27,28,45–47]. In
the other case, the black hole horizon is said to be rotating. In such a case, it is known,
again for a fairly general class of standardmatter models but assuming that the spacetime
is real analytic and non-degenerate, that there necessarily exists another KVF χa that
is tangent to the null-generators of the horizon. Furthermore, it is possible to show that
ta = χa+

∑
j � jψ

a
j , where theψa

j are commutingKVFs each ofwhich has closed orbits
with period 2π . Thus, the black hole is necessarily stationary and axi-symmetric. This
theorem is originally due to Hawking [22,23], who considered d = 4 dimensions. Later
improvements include [13,40–42] (partially eliminating the analyticity assumption) as
well as [1] (eliminating the analyticity- but under a smallness assumption). For higher
dimensions d ≥ 4 see [20,21,35].1 These results are often called “rigidity theorem”,
because they imply among other things that the black hole must be rotating rigidly with
respect to infinity with angular velocities � j .

1 See also [25,36,37] for closely related work on Cauchy horizons with closed generators.
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In d = 4, the rigidity theorem is an important stepping stone for the proof of the
uniqueness—or “no hair”—theorems [6,8,9,34,44] for Kerr-Newman black holes. Even
though no uniqueness theorems of comparable strength are known in d > 4, or in
a number of Einstein-matter theories even in d = 4, the rigidity theorem is of major
structural importance not least because it is a prerequisite for the zeroth- and first laws of
black hole mechanics. It is therefore natural to ask whether the rigidity theorem remains
valid for example in the presence of higher-derivative terms in the action as expected
from an effective field theory (EFT) perspective.

In this paper, we will prove an extension of the rigidity theorem in dimensions d ≥
4 for general, local, covariant purely gravitational EFTs extending standard Einstein
general relativity. Our approach is to order the terms in the EFT action/equations of
motion by the numbers of derivatives that they contain and to study, so to speak, the
effects of these terms to increasing accuracy. Each term in the action is multiplied by
a suitable power of some length scale � that one may think of as a cutoff scale for UV
physics if desired. For example, the standard Einstein-Hilbert Lagrangian R has two
derivatives; the next possible terms would be linear combinations of quadratic curvature
invariants with four derivatives, R2, RabRab and Rabcd Rabcd , each multiplied by �2, and
so on. Roughly speaking, the EFT approach is to restrict attention to solutions varying
over a typical length scale L such that �/L � 1, and this means, roughly speaking,
that for such solutions the higher curvature terms are always smaller than the leading
Einstein Hilbert term in the action. More precisely, one may say (see def. 4.1 of [24])
that the EFT condition is valid near the horizon,H, if considering a 1-parameter family
of solutions to the theory with parameter L (in our case thought of roughly as the size
of the black hole), any quantity of dimension n built from coordinate components of
the metric in a suitable class of coordinate systems will remain bounded by Cn/Ln in
absolute value. Then, if � � L , a higher derivative term of dimension D will, intuitively,
locally make a very small correction of order (�/L)D to the solution. Thinking of the
length scale L as fixed and making � small instead, this motivates that we should ask
whether the expansion coefficients in � of a family of solutions gab(�, x) labelled by the
UV length scale � locally satisfy the rigidity theorem order by order. This is what we
shall actually do in this paper.

The result of this analysis in the rotating case is Theorem 3 (and its local version
Theorem 1) and it assumes, just as the rigidity theorem in ordinary Einstein gravity,
that the family of metrics is real analytic in the domain of outer communication and
non-degenerate. Furthermore, it appears that we additionally need to assume a certain
genericity requirement in d > 4 which however does not impose a major restriction
physically. Even though Theorem 3 is an order-by-order statement for the expansion
in �—and thus already a good approximation in view of the EFT hypothesis near any
horizon cross section—if the metric was known to be jointly analytic in � and x , it is
plausible that the rigidity theorem, i.e. existence of the further KVFs χa, ψa

j would
actually hold for finite � sufficiently close to zero.

The proof of Theorems 1 and 3 is inductive, with the induction ascending in the
power of �. For vanishing �, the usual rigidity theorems in standard Einstein gravity of
course apply. To make the induction step, we follow the ideas used in standard Einstein
gravity [20] up to a point. However, we cannot at higher orders in � parallel a key step
employed in [20] which is using the Raychaudhuri equation, because it gives insufficient
information in the presence of higher derivative terms in the action. As is well known,
the Raychaudhuri equation plays a key role in the proof of the area- and singularity—and
also the rigidity—theorems in ordinary Einstein gravity (see e.g. [23,49]). It is useful
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because the stress energy tensor ordinarily comes with a definite sign. By contrast, in
the EFTs that we consider, the higher order derivative terms in the equation of motion
produce terms in the Raychaudhuri equation which are not sign-definite in general.
However, we are able, within our inductive scheme, to replace the arguments normally
based on the Raychaudhuri equation and the horizon area with an argument involving an
entropy current-density in EFTs recently analyzed in [24] (for previous works on such
entropy current-densities see [3–5,29,30,50]); for an example see e.g. (83). Furthermore,
for higher derivative theories, the treatment of the rotational Killing fields seems more
subtle than for Einstein gravity.

A corollary of our proof is that the surface gravity, κ , which can be defined thanks to
the existence of the additional KVF χa tangent and normal to the horizon, is constant,
i.e. that the zeroth law of black hole mechanics holds. It is interesting to note that if one
assumes the existence of χa , the zeroth law can be demonstrated in the EFTs that we
are considering by an independent argument [2,18].

This paper is organized as follows. In Sect. 2 we present in detail our assumptions
and recall Gaussian null coordinates and related constructions required in the proof of
the local rigidity theorem Theorem 1, which is presented in Sect. 3. In Sect. 4 we analyze
for completeness the situation regarding KVFs for non-rotating horizons summarized
in Theorem 2, and in Sect. 5, we present our main result Theorem 3. Some technical
material is relegated to various appendices. Our conventions and notations are the same
as in [49]. Lower case Roman indices a, b, c, . . . are abstract spacetime indices whereas
Greek indicesμ, ν, σ, . . . refer to specific spacetime coordinates clear from the context.
Upper case Roman indices A, B,C, . . . refer to coordinates on the horizon cross section,
C. We work in units such that 16πG = 1. � is a length scale.

2. Setup

2.1. Standing assumptions. We consider a generic covariant parity even2 gravitational
theory describing corrections to Einstein gravity. Such a theory has an action of the form

I [g] =
∫

M
(R + �2L4 + �4L6 + · · · + �2D−2L2D)

√−gdd x (1)

where the L2 j are covariant local functionals of the metric containing 2 j derivatives3.
By the Thomas replacement theorem [29], each term in L2 j is therefore a contraction
of the (inverse) metric with a tensor product of ∇a1 . . . ∇ar Rabcd and in each tensor
product, 2 j is equal to the total number of covariant derivatives plus twice the number of
Riemann tensors. We could add a cosmological constant term L0 = −2
, which would
result in an obvious change in the asymptotic conditions on the metric, but not in a major
change in our proofs. We will briefly comment on this in remark 1) below Theorem 3.

The Euler Lagrange (Einstein-) equations for (1) can be written in the schematic form
as

Gab = �2H4 ab + · · · + �2D−2H2D ab (2)

with local covariant tensors H2 j ab containing 2 j derivatives of the metric. The standing
assumptions on the solutions to (2) considered in this paper are:

2 This assumption is made only for simplicity and there is no difficulty in principle to generalize our proofs
to theories with parity odd terms.

3 If we drop the parity even requirement, we can use the volume element εa1...ad to obtain terms with an
odd number of derivatives in odd d.
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1. We have a 1-parameter family of d-dimensional (d ≥ 4), stationary, asymptotically
Minkowskian solutions (M, gab) to (2) with asymptotically timelike KVF ta with
complete orbits, see defs. 2.1, 2.2 of [10] for the precise asymptotic and causality
conditions. Both ta, gab are functions of the parameter � and (M, gab) contains a
black hole. We require that the manifold structure of M is independent of � and,
as a gauge condition, we require that the location of the (future) horizon,4 H, is
independent of �. We also require that H is smooth.

2. gab(�, x) and ta(�, x) are jointly smooth in (�, x),meaning thatwehave an asymptotic
expansion of the form

gab(�, x) =
2M∑

n=0

�ng(n)
ab (x) + O(�2M+2)(x) (3)

where each g(n)
ab is smooth onM andwhereM can be as large aswe like, and similarly

for ta . We assume w.l.o.g. that only even powers of � appear, the same goes for all
similar expansions below. Here and in the following, O(�n) denotes a term such that
for each coordinate neighborhood U of H with compact closure and each k ≥ 0,
there exists a sufficiently small �0 = �0(U , k) and a constant cn = cn(U , k) such that
|∂μ1 . . . ∂μk O(�n)(x)| ≤ cn�n for all |�| ≤ �0, all x ∈ U .

3. We assume that H has topology H = R × C, where C is compact and that H is
non-degenerate for � = 0 [for the precise definition see below Eq. (15)].

We note that the asymptotic expansion in � postulated in item 2) is not required
to be uniform in x , e.g. we allow that the metric for finite � could deviate from the
� = 0 solution in standard Einstein gravity by an ever increasing amount as time goes
to infinity, no matter how small �. In other words, we allow the corrections from the
higher derivative terms, while locally small, to pile up in an unbounded manner over
asymptotically large times. In a sense, we are therefore allowing secular effects.

While in the case of d = 4 dimensions, the above requirements will be sufficient
for the proof of Theorem 1, our method of analysis appears to necessitate a further
“genericity” assumption in higher dimensions d > 4, unless the horizon is non-rotating.
Since the analysis of both cases is rather different anyhow, we shall distinguish them in
the following:

(I) Rotating Case: ta is not tangent to the null generators of H for sufficiently small
|�|.

(II) Nonrotating Case: ta is tangent to the null generators up to arbitrary order in �.

There is of course also the possibility that ta is tangent to the null generators of H
only up to a finite order in �. The treatment of this case would require a combination of
the methods in cases (I) and (II), depending on the order in � in the induction procedure.
Since it is only case (I) that should be considered generic anyhow, and since the analysis
would be rather repetitive, we will not give it here. In case (II), it could also in principle
happen that ta is not tangent to the null generators for a sequence {�n} tending to zero if
ta, gab and/or the manifold structure ofM is not analytic, in which case the terminology

4 It is defined as the future boundary of the domain of outer communication. More precisely, as in [10],
we assume that M contains an acausal hypersurface 
 with possibly several asymptotic ends 
1, 
2, . . .

each ∼= R
d−1 \ BR . The slice must satisfy either def. 2.2(a,b) of [10], which precludes it from “not reaching

the event horizon”. Then the domain of outer communication D with respect to the end 
1 is defined as the
causal completion of ∪τ∈Rφτ [
1] [see Eq. (63)] where φτ is the flow of ta and the future/past horizon is
defined as H± = ∂D ∩ I±(D).
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‘nonrotating’ is misleading. However, this case will not be relevant for our analysis since
we will only obtain results order by order in � for Theorem 1 or assume analyticity for
Theorem 3. The rotating case is treated in Sect. 3 whereas the non-rotating case is treated
in Sect. 4.

In order to state the “genericity” assumption in the rotating case, we need to recall—
and will demonstrate again below—that for � = 0, i.e. Einstein gravity, already the
above assumptions (1)–(3) imply that the projection of the flow generated by ta |�=0 to
any cross section C ofH is a Killing vector field, Sa , of the metric gab|�=0 restricted to
C. Let {φ̂τ τ ∈ R} be the flow of Sa on C. It is an abelian subgroup, A, of the isometry
group of the compact Riemannian manifold C (with the metric induced from gab|�=0).
Its closure, G = A, therefore is an abelian compact Lie-group, hence isomorphic to a
torus G = T

N for some N ≥ 1. The N generators of this torus correspond to N KVFs
of C, ψa

1 , . . . , ψa
N , each generating a flow of isometries with period 2π , and we have,

on C,
Sa =

N∑

j=1

� jψ
a
j . (4)

4. (Genericity) We assume that the flow of Sa generates the full isometry group of
the cross sections C of H for the restriction of the metric gab|�=0. In particular, the
isometry group must be the abelian group TN .

Note that the genericity property is trivially fulfilled in d = 4 dimensions since in
that case, the stationary black holes in question are provided by the Kerr-family, which
has only one rotational KVF. The Myers–Perry black holes [38] in d dimensions have
isometry groupR×T

N , where N = �(d−1)/2�, unless some of the spin parameters a j
happen to vanish. The genericity requirement imposes that the orbit of Sa on a horizon
cross section is dense inTN , and this will be the case if the a j are such that all non-trivial
ratios �i/� j are irrational numbers. Thus, 4) amounts to a genericity requirement on
the values of the spin parameters a j which is satisfied for almost all values of these
parameters because the rational numbers have measure zero in the real numbers.

2.2. Gaussian null coordinates (GNCs). We begin by picking an arbitrary compact
cross section C ofH and flow it with the 1-parameter group φτ of isometries generated
by the KVF ta by an amount v and set C(v) := φv[C]. Using the global structure of
spacetime expressed in assumption 1) and prop. 4.1 of [10], wemay assume without loss
of generality that C has been chosen so that each orbit of ta onH intersects C precisely
once, so ta is everywhere transverse to each C(v). On each C(v) we can therefore
decompose

ta = ka + sa (5)

where sa is tangent to each C(v), not identically zero on C(v) for rotating horizons, and
ka is tangent and normal toH and nowhere vanishing, see Fig. 1.

By construction, we have

Lt k
a = Lt s

a = Lks
a = 0, Ltv = 1 (6)

onH, whereL is the Lie derivative. The family of cross section C(v) defines a foliation
of H which we now use to set up an adapted Gaussian null coordinate (GNC) system
in an open neighborhood of H; see Appendix A for further explanations about GNCs.
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Fig. 1. Illustration of ta = ka + sa for a given cut C. If a different cut C̃ is chosen, we get a correspondingly
different k̃a and s̃a

To this end, we consider at each point ofH a second null vector la normalized such that
laka = 1 and such that la is perpendicular to the corresponding cut C(v). We extend la

off of H imposing the geodesic equation la∇alb = 0 and let r be an affine parameter
on each such geodesic such that r = 0 on H. Finally, we may locally pick a coordinate
system (x A) on C, which is transported off of C demanding that Lk x A = Ll x A = 0
where defined. Then, in the coordinates (v, r, x A), the metric takes the Gaussian Null
Form:

g = 2dv(dr − rαdv − rβAdx
A) + γABdx

Adx B (7)

By construction we have

ka =
(

∂

∂v

)a

, la =
(

∂

∂r

)a

, sa = s A
(

∂

∂x A

)a

, (8)

and we set
γab = γAB(dx A)a(dx

B)b, βa = βA(dx A)a (9)

Even though we will of course need more than one coordinate chart (x A) to cover C,
these coordinate charts can be patched together so that the above tensor fields are defined
globally and invariantly in an open neighborhood of H, depending only on the initial
choice of C. By construction, we have

Ltγab = Ltβa = Ltα = Lt r = 0. (10)

In particular, since [k, s]a = 0 on H by (6), it follows that the GNC components of sa

are independent of v on H. Also, by construction, we have

ka∇ak
b = αkb on H. (11)
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We can think of the tensors α, βa, γab as living on the foliation C(v, r) of surfaces
of constant r, v, and it will be useful to define a corresponding intrinsic covariant
derivative operator and projections. For this purpose, we set pab = (∂A)a(dx A)b, and
qab = (γ −1)AB(∂A)a(∂B)b. Then qab is the orthogonal (with respect to gab) projector
onto TC(v, r), and we have γabqbc = pca . pab is another projection onto TC(v, r)
characterized by pablb = 0 = pabkb. Note that pab is not an orthogonal projection
where rβa is non-vanishing and therefore not equal to qab nor to γ a

b at such points. But
onH, i.e. for r = 0, the quantities qab, γ a

b, pab all coincide. By construction, we have

pabβa = βb, pab p
c
dγac = γbd , pabs

b = sa (12)

where these quantities are defined, and onH we could replace pab in these expressions
by qab.

For a covariant tensor field Ta1...ar
b1...bs intrinsic to the foliation C(v, r), i.e. such that

it coincides with its projection by qab for any index and any (v, r), we define

DbTa1...ar
b1...bs := qb

cqc1
b1 · · · qcs bs qa1d1 · · · qar dr ∇cTd1...dr

c1...cs , (13)

and we will denote by R[γ ]abcd the curvature of Dc which is an intrinsically defined
tensor field on each C(v, r). The contractions of Rab into la, ka, pba as expressed in
terms of Da, γab, βa, α etc. are given in Appendix A.

3. Rotating Case

Assume that we are in the rotating case (I) of Sect. 2.1. We will give in this section a
proof that there exists a KVF χa tangent to the null generators ofH in the sense that χa

Lie derives gab modulo terms of order O(�n) where n can be chosen as large as we like,
and modulo terms that vanish to arbitrarily high order in any coordinate transverse to
H. χa is constructed such that it commutes with ta and onH satisfies χa∇aχ

b = κχb,
where κ > 0 is constant on H. If the solution is jointly real analytic in (x, �), we will
argue in the next section that χa has an analytic continuation to the entire domain of
outer communication which Lie-derives gab exactly, i.e. without any error terms.

The basic idea is to define χa := ka where ka is the vector field (VF) tangent to
the horizon generators defined by fixing a cross section C of H in our construction of
GNCs, see (8). The cross section C is arbitrary in our construction of GNCs and different
choices will lead to different ka . We are going to find the right C by demanding that for
the ka defined by that C, we have α = κ = constant on H. A generic C will not do for
this purpose, so we will have to pass to a new C̃, to be determined. The determination
of this C̃ will be made order by order in �. To organize the powers of �, we define the
expansion coefficients in

α(x, �) ∼
∞∑

n=0

�nα(n)(x)

βa(x, �) ∼
∞∑

n=0

�nβ(n)
a (x)

γab(x, �) ∼
∞∑

n=0

�nγ
(n)
ab (x)

(14)
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where “∼” means an asymptotic expansion in the sense described below (3). Similar
expansions are made for other tensor fields onM, and we note that due to the structure
of the action (1), only even powers of � can appear in such expansions. The conditions
Ltγab(�, x) = Ltβa(�, x) = Ltα(�, x) = 0 may then be expanded out in powers of �

to obtain conditions on the expansion coefficients. We define κ to be the average of α

over C,
κ = 1

A[C]
∫

C
α
√

γ dd−2x (15)

where A[C] is the area defined w.r.t. γab. Then we have κ ∼ ∑∞
n=0 �nκ(n), and the

precise form of assumption 3) is that κ(0) so defined is > 0. We now make the following

Inductive hypothesis at order �n : There exists a cross section C with corresponding
GNC system (v, r, x A) such that

L m
l

(
Lkγab

)

r=0
= O(�n+2)

L m
l

(
Lkβa

)

r=0
= O(�n+2)

L m
l

(
Lkα

)

r=0
= O(�n+2)

(16)

for any m ∈ N0. Furthermore, α( j) = κ( j) = constant on H for all j ≤ n in that GNC
system, and the expansion coefficients of sa satisfy

s( j)a are KVFs of γab|�=0 for all j ≤ n on C. (17)

Remarks: (1) By the genericity assumption 4) of Sect. 2.1, the s( j)a, j = 0, . . . , n are
commuting KVFs of the zeroth order in � horizon metric γab|�=0, and we can write, on
C,

sa(�, x) =
N∑

i=1

�i (�)ψ
a
i (x) + O(�n+2). (18)

(2) The facts that ta Lie-derives α, βa, γab for all � together with ta = ka + sa and (16)
give

L m
l

(
Lsγab

)

r=0
= O(�n+2)

L m
l

(
Lsβa

)

r=0
= O(�n+2)

L m
l

(
Lsα

)

r=0
= O(�n+2)

(19)

for any m ∈ N0.

3.1. Induction start n = 0. The argument in this section has been presented in [20] but
we go through some of its steps as a preparation for the induction step to familiarize the
reader with the basic logic of our argument. Let λ be an affine parameter for the null
geodesic generators ofH whose future directed tangent we denote by na . Then we have
the corresponding expansion and shear θ, σab onH, given by

θ = γ ab∇(anb), σab = γa
cγb

d(∇(cnd) − 1
d−2gcd∇en

e). (20)
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We consider the v-derivative of the area (with respect to γab):

d

dv
A[C(v)]v=0 =

∫

C
∂λ

∂v
θ
√

γ dd−2x . (21)

For convenience, we will take λ = 0 on C. We know d
dv A[C(v)] = 0, because the

flow generated by ta is isometric by assumption 1) and because the area A of a cut C
is covariant, i.e. only dependent on the metric structure and on C. The Raychaudhuri
equation gives

∂λθ = −σabσ
ab − 1

d − 2
θ2 − Rabn

anb (22)

and the Einstein equation (2) gives Rabnanb = O(�2). By the same argument as for the
area theorem [23] for the � = 0 solution, we cannot have θ(0) < 0 on H. Combining
this statement with d

dv A[C(v)] = 0 evaluated at order O(�0) therefore gives θ(0) = 0

on H. In view of (22) evaluated at O(�0), we conclude that σ (0)
ab = θ(0) = 0 on H.

Thus, we have the first equation in (16) for n = m = 0. Combining Lkγ
(0)
ab = 0 on

H with ta = ka + sa and the fact that Ltγab = 0, this also shows that Sa = sa |�=0 Lie
derives γ

(0)
ab , i.e. is a KVF. These conclusions hold no matter how we chose the initial

cut C = C(0) to set up our GNC system.
However, the other equations in (16) for n = 0 are in general not satisfied for an

arbitrarily chosen initial cut C.We nowwish to find the appropriate new cut C̃ and thereby
the appropriate decomposition ta = k̃a + s̃a (see fig. 1) and GNC system (ṽ, r̃ , x̃ A) with
associated tensors α̃, β̃a, γ̃ab satisfying (7). For this, we consider the vA-component of
the Ricci tensor on H, see (69). Using that we now know Lkγab = O(�2), this gives

Rbck
b pca = Daα − 1

2
Lkβa + O(�2) on H. (23)

Using the Einstein equation on H, we have Racka pcb = O(�2), so sending � → 0
we find that Daα

(0) − 1
2Lkβ

(0)
a = 0 on H, which implies Daα

(0) + 1
2LSβ

(0)
a = 0

on C, where Sa = sa |�=0. We see from this equation that if we can define a new cut
C̃ with corresponding new α̃, β̃a, γ̃ab in such a way that α̃(0) is constant on H, then
Lk̃ β̃

(0)
a = 0, and we will have all the equations in (16) for n = 0 for m = 0 for the tilde

fields. Additionally, we will have learnt that α̃(0) = κ(0) = constant.
Let us determine the conditions that the new cut C̃ would have to satisfy. It is clear

that k̃a must be proportional to ka , so it must be the case that k̃a = f ka for some
positive function f . Since Lt ka = Lt k̃a = 0, we must have Lt f = 0 and therefore
Lk f = −Ls f . Since onH we know that ka∇akb = αkb and that k̃a∇ak̃b = α̃k̃b. This
means that α and α̃ are related through f by

Lk f + α f = −Ls f + α f = α̃. (24)

Demanding α̃ = κ(0) + O(�2) means in view of the last relation that f should be taken
to be a solution of

−LS f + α(0) f = κ(0) (25)
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using as before the notation Sa = sa |�=0. Equality (25) provides a condition that must
be necessarily be satisfied on C, cf. eq. (23) of [20]. We must additionally haveLt ṽ = 1
onH by (6), and since k̃a = (∂/∂ṽ)a ,

Lk ṽ = 1

f
Lk̃ ṽ = 1

f
. (26)

Using ta = ka + sa and taking � = 0 for all the quantities shows that

1 − LS ṽ = 1

f
. (27)

Therefore ṽ must on C satisfy the equation

LS ṽ = 1 +
1

κ(0)

(

LS log f − α(0)
)

, (28)

cf. Eq. (38) of [20]. It is easy to see that (25) and (28) have a solution on C for d = 4:
In that case, by the horizon topology theorem [23], C ∼= S

2, so by standard results on
isometric actions of spheres, the orbits of Sa must close after a certain period 2π/�.
It is then easy to see from this fact that (25) and (28) have a solution on C. In d > 4,
even though Sa need not have closed orbits on C, (25) and (28) have a solution on C
by Lemmas 1 and 2 of [20] since we are assuming to be in the non-degenerate case,
κ(0) > 0.

This gives ṽ as a function on C, and thenwe extend it to a function onH by demanding
that Lt ṽ = 1, see (6). Given ṽ, we define a new initial cut C̃ by ṽ = 0, and then we
obtain a new GNC system (ṽ, r̃ , x̃ A) from the foliation C̃(ṽ) with corresponding k̃a, s̃a

etc.
At this point we have shown Lk̃(α̃

(0), β̃
(0)
a , γ̃

(0)
ab ) = 0 on H and α̃(0) = κ(0) on H.

So we have all the equations in (16) for n = 0 and m = 0 for the tilde fields. Now we
wish to show the same for m = 1 then m = 2, and so on. To do this, we perform an
induction in m. First, we consider the ṽ-derivative of the AB Ricci tensor component
(72) which gives, onH

Lk̃(Rcd p
c
a p

d
b) = Lk̃[Lk̃Ll̃ γ̃ab + α̃Ll̃ γ̃ab] + O(�2). (29)

Since the tensors in this equation are Lie-derived by ta = k̃a + s̃a , and since the Ricci
tensor is O(�2) by the Einstein equation, this gives, on C̃,

0 = LS̃[LS̃Ll̃ γ̃
(0)
ab − κ(0) Ll̃ γ̃

(0)
AB] (30)

see Eq. (56) of [20]. “Integrating” this equation along the orbits of S̃a , it can be shown
[20] thatLS̃Ll̃ γ̃

(0)
ab = 0, and thenLl̃(Lk̃ γ̃

(0)
ab )r̃=0 = 0. This is the first equation of (16)

for n = 0 and m = 1.
Let M ≥ 1.We inductively assume that the first equation in (16) is satisfied for n = 0

and all m ≤ M whereas the second and third equations in (16) is satisfied for n = 0 and
all m ≤ M − 1 (we have seen that this is true when M = 1). Now we apply L M−1

l̃
L

k̃
to the ṽr̃ component of the Ricci tensor (68) and evaluate the result at r̃ = 0 = r , i.e.
onH. Using the inductive hypothesis, we find

L M−1
l̃

(
Lñ(Rabl̃

a k̃b)
)

r̃=0
= L M

l̃

(
L

k̃
α̃
)

r̃=0
+ O(�2) (31)
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and then using that the Ricci tensor is itself of order O(�2) by the Einstein equation, we
obtainL M

l̃
(L

k̃
α̃(0))r̃=0 = 0, which is the third equation in (16) for n = 0 and m = M .

Now we apply L M−1
l̃

∂
ṽ
to the Ar̃ component of the Ricci tensor (71) and evaluate the

result at r̃ = 0, i.e. on H. We find

L M−1
l̃

(
Lñ(Rbc p̃

b
al̃

c)
)

r̃=0
= L M

l̃

(
L

k̃
β̃a

)

r̃=0
+ O(�2) (32)

which gives L M
l̃

(Lk̃ β̃
(0)
a )r̃=0 = 0. This is the second equation in (16) for n = 0

and m = M . Thus we see that all equation of (16) are satisfied for n = 0 and all
m ≥ 0 equations for the tilde GNCs. For ease of notation, we finally replace the tilde
cross section C̃ and the tilde tensor fields α̃, β̃a, γ̃ab, k̃a, s̃a, l̃a so obtained by untilde
quantities.

3.2. Induction step n − 2 → n, (n ≥ 2). The induction step follows roughly the same
path as the induction start:

1. We demonstrate that Lkγab = 0 onH up to order O(�n+2),
2. We adjust C → C̃ by an order O(�n) correction in such a way that the new tensor

fields α̃, β̃a, γ̃ab still satisfy 1) and in addition that α̃ is constant, and Lk̃ β̃a = 0 on
H, up to order O(�n+2).

3. We go through an additional induction loop in m ∈ N showing that
L m

l̃
Lk̃{α̃, β̃a, γ̃ab} = 0 on H, up to order O(�n+2).

The details of step 1) are different however from the induction start because the Ray-
chaudhuri equation will have to be replaced by the “modified IWW entropy current-
density” (see Appendix B). The arguments for step 1) will be broken down into Lemmas
1–3. The details of step 2) are likewise different because we need to first bring the vector
field s̃a into a suitable form [see (17)] by applying a gauge transformation that needs
to be found at each induction order n. The arguments for step 2) will be broken down
into Lemmas 4 and 5. Step 3) will then not require essential innovations compared to
the induction start n = 0.
We now go through the details. As mentioned, we would first like to show in parallel
with the induction start thatLkγab = O(�n+2) for r = 0, i.e. onH. A first idea might be
to consider again the v-derivative of the area functional, d

dv A[C(v)] = 0, which vanishes
due to stationarity. Again, let λ be a parameter of affine null geodesics ruling H with
tangent na . In parallel with the induction start, it seems natural that we seek to combine
the Raychaudhuri equation (22) and the Einstein equation (2) as in

∂λθ = −σabσ
ab − 1

d − 2
θ2 − �2H4 abn

anb − · · · − �2D−2H2D abn
anb (33)

in order to gain information on θ(n), σ
(n)
ab at the induction order n. Indeed, the Raychaud-

huri equation is implicitly used in the corresponding argument for the induction start
n = 0 because it is the basis of area theorem used there [23,49]. In the present case, the
induction hypothesis gives θ( j), σ

( j)
ab = 0 for all j ≤ n − 2 on H, so θ, σab = O(�n).

This means that the σabσ
ab, θ2 terms in the Raychaudhuri equation (33) are of order

O(�2n). However, the other terms on the right side of (33) are potentially only of order
O(�n+2)! This is because it is merely known at this stage that each term Hj abnanb is at



2768 S. Hollands, A. Ishibashi, H. S. Reall

least linear in positive boost weight quantities in the sense of [24], but when combined
with Lemma 2, the induction hypothesis, and the explicit � j−2 powers, this still leaves
room for a term only of order O(�n+ j−2) which could e.g. be as bad as O(�n+2) (for
j = 4). So it appears that unlike for n = 0, we cannot get useful sign information on
∂λθ

(n) from the Raychaudhuri equation as the sign-definite term is no longer leading in
� in the case n ≥ 2 considered now. As a consequence, it is not easy to see how we could
conclude θ(n), σ

(n)
ab = 0 [equivalent to the statement that γab is Lie derived by ka up

to order O(�n+2)] on H by some sort of argument along the lines of the Raychaudhuri
equation/area functional. Thus, it appears unclear how to take the first step in closing
the induction.

Below in Lemma 3, we shall circumvent this problem by replacing the Raychaudhuri
equation and cross section area by an equation for an entropy current-density and the
corresponding generalized entropy of the cross section considered in [24]. However,
before we come to this construction, we observe that the Raychaudhuri equation still
gives the following preliminary result.

Lemma 1. Under the inductive hypothesis, we have θ(n) = 0 on C.
Proof. Remember that combining theEinstein equationwith theRaychaudhuri equation,
we get (33). Now we expand Hj abnanb in terms of “primitive monomials” with definite
“boost weight” as described in [24] which is recalled in Appendix B. By the results of
Sect. 2 of that paper, each summand in Hj abnanb is at least linear in a positive boost
weight primitive monomial. By Lemma 2 below, such a term is of order O(�n), and since
each Hj abnanb is accompanied by � j−2 with j − 2 ≥ 2 we see that the corresponding
terms on the right side of the above equation are of order at leastO(�n+2). By the inductive
hypothesis θ, σab are of order O(�n), so since n ≥ 2, the right side Raychaudhuri’s
equation (33) is of order O(�n+2). This shows that ∂λθ

(n) = 0 on H.
Now, since na = (Lkλ)−1ka , and since Lt [(Lkλ)θ ] = 0 because [t, k]a = 0, it

follows that
Lk[(Lkλ

(0))θ (n)] = −LS[(Lkλ
(0))θ (n)] (34)

where Sa = sa |�=0. By the usual relationship between affine- and Killing parameters
at order O(�0), we can say that Lkλ

(0) = eκ(0)v (using the induction hypothesis and
applying a rescaling to the affine parameter if necessary), which is constant on C. Since
we have already seen that Lkθ

(n) = 0, this gives

(LS + κ(0))θ (n) = 0 (35)

on C. Let φ̂τ be the flow of Sa on C. The previous equation can be rewritten as
(

d

dv
+ κ(0)

)

θ(n) ◦ φ̂v = 0 (36)

Integrating this, we see that θ(n) ◦ φ̂v = e−κ(0)vX (n) where X (n) does not depend on v.
However θ(n) ◦ φ̂v is clearly bounded uniformly in v because C is compact, so letting
v → −∞ and using that κ(0) > 0, we see that X (n) = 0. We therefore conclude that
θ(n) = 0 on C. ��

The followingLemma and its proof again refer to the notions of “primitivemonomial”
and “positive boost weight” from [24] which are recalled in Appendix B.
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Lemma 2. Let X be a primitive monomial of positive boost weight. Then we have X =
O(�n) locally near C.
Proof. Let us apply Lemma 2.2 of [24] to X . Then we eliminate any occurrence of
the GNCs (with respect to the affine parameterization of H) of the Ricci tensor or its
covariant derivatives using the Einstein equation (2) and its covariant derivative. The new
terms arising from the substitution process are decomposed into primitive monomials,
and then Lemma 2.2 is applied again, and the Einstein equation is used again etc.,
repeating this process n/2 times. Thereby, X is written as a sum of terms which either
have an explicit pre-factor of at least �n , or terms which are products of the monomials
described in Lemma 2.2 of [24] without the occurrence of the Ricci tensor. The terms
of order O(�n) can be ignored for the purposes of the proof, whereas each of the other
terms contains at least one factor of Dc1 · · · DcrL

N
n σab or Dc1 · · · DcrL

N
n θ for some

N , r . However, on H, we can replace Ln = (Lkλ)−1Lk , so such a term clearly is of
order O(�n) in view of the induction hypothesis. ��
Lemma 3. We have Lkγab = O(�n+2) on H.

Proof. In order to get around the problem described before Lemma 1, we recall that
the area is the black hole entropy for Einstein gravity � = 0, so it is natural to try an
appropriate entropy functional for the higher derivative theory. We chose the “improved
IWWentropy” S[C] defined in5 sec. 3.3 of [24] because its properties are suitable for our
purposes—in particular it is covariant. S[C] is defined in terms of an entropy-current-
density σ a = 
na + J A(∂A)a on H as in

S[C] =
∫

C



√
γ dd−2x (37)

For further explanations regarding the definition and properties of 
 and Ja , see
Appendix B.

By property (1) of 
 in Appendix B, since ta is a KVF, since S[C(v)] is a covariant
functional that does not depend on the arbitrary choice of affine parameter, and since
the flow of ta by an amount v moves C to C(v), we learn that S[C(v)] is independent of
v. Taking the first derivative in v we get

0 = d

dv
S[C(v)]v=0 =

∫

C
∂λ

∂v
∂λ(


√
γ ) dd−2x . (38)

Taking the second derivative in v we get

0 = d2

dv2
S[C(v)]v=0 =

∫

C
Lk

[
∂λ

∂v
∂λ(


√
γ )

]

dd−2x . (39)

We will now use these two identities to prove the Lemma.
First, since ka∇akb = αka , and since ka = (Lkλ)na , we obtain α = Lk logLkλ.

Integrating this equation using α = κ + O(�n) gives Lkλ = aeκv[1 + O(�n)] where
a(x A) may be chosen to be = 1 by a suitable choice of the affine parameter λ, giving

DaLkλ = O(�n) (40)

on C.
5 The difference between the “improved IWW entropy” and its antecedents [4,50] is a specific choice for

the ambiguities in that construction which are designed to render S[C] covariant, see prop. 1 of [24].
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Next, we look at
√

γ −1∂λ(

√

γ ). By property 3) in Appendix B, we know that this
is equal to θ+ terms at least linear in positive boost weight with an explicit prefactor of
at least �2. Combined with Lemmas 1, 2 and the induction hypothesis, we get that

1√
γ

∂λ(

√

γ ) = O(�n+2) (41)

on C.
Finally, we useLk logLkλ = α which is used to write (39) as

0 =
∫

C
α (Lkλ) ∂λ(


√
γ ) dd−2x +

∫

C
(Lkλ)2∂λ

(
1√
γ

∂λ(
√

γ
) + Da J
a
)√

γ dd−2x

+
∫

C
(∂λ J

a)Da(Lkλ)2
√

γ dd−2x +
∫

C
θ(Lkλ)2∂λ(

√
γ
) dd−2x

−
∫

C
Ja(Daθ)(Lkλ)2

√
γ dd−2x

(42)
where we have added and subtracted Da Ja under the integral and performed a partial
integration. The terms on the right side are now treated as follows. On the first term, we
use thatα is, by induction, constant onC up to terms of orderO(�n). The constant does not
contribute in view of (38). The O(�n)-terms combine with (41) to terms order O(�2n+2)

in total. On the second term on the right side we use the analog of the Raychaudhuri
equation (79), see property 2) in Appendix B. On the third term on the right hand side
we use (40) and the fact that Ja is of order O(�n+2): it has an explicit prefactor of �2

and is linear in positive boost weight, see property 3) in Appendix B. By the induction
hypothesis a positive boost weight term is of order O(�n) at least. Thus, the third term
is of order O(�2n+2). The fourth term on the right side is treated using that θ = O(�n+2)

by Lemma 1 which is combined with (41). Thus, the fourth term is of order O(�2n+4).
The last term is estimated using Ja = O(�n+2), θ = O(�n+2) and is therefore of order
O(�2n+4).

Combining these results, we see that (42) implies
∫

C
(Lkλ)2F

√
γ dd−2x = O(�2n+2). (43)

At this stage, property 4) in Appendix B gives together with the induction hypothesis
that

F = −�2nσ
(n)
ab σ

(n)
cd γ (0)acγ (0)bd + O(�2n+2), (44)

and so (43) yields σ
(n)
ab = 0 on C becauseLkλ > 0. Note that we already know θ(n) = 0

by Lemma 1, and that θ( j) = 0 = σ
( j)
ab for j ≤ n − 2 by induction. Then, using the

definitions of θ, σab on H we see that Lkγab = O(�n+2) on C and since LtLkγab = 0
onH it follows that Lkγab = O(�n+2) everywhere on H. ��

Using ta = ka + sa andLtγab = 0, we learn from Lemma 3 thatLsγab = O(�n+2).
We now want to use this result to establish the induction hypothesis (17) at order n, i.e.
that s( j)a are KVFs of the zeroth order metric γab|�=0 for all j ≤ n. This is in question
only for j = n. It does not seem possible to deduce this merely fromLsγab = O(�n+2)

and the fact that s( j)a, j ≤ n − 2 are KVFs of the zeroth order metric. But we will now
show that it can be achieved if we simultaneously redefine t̃ a = φ∗ta, g̃ab = φ∗gab by
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a suitable diffeomorphism φ preserving the horizon cross sections C(v). We will now
construct such a diffeomorphism. The corresponding tensor fields α̃, β̃a, γ̃ab, s̃a, k̃a will
clearly still satisfy Lk̃ γ̃ab = O(�n+2),Lk̃ β̃a = O(�n),Lk̃ α̃ = O(�n). Furthermore,
if φ is the identity up to order O(�2), then the zeroth order metric will be unchanged,
γab|�=0 = γ̃ab|�=0, and if s̃a ≡ φ∗sa = Sa + O(�n) where Sa := ∑n−2

j=0 � j s( j)a , then

s( j)a = s̃( j)a, j ≤ n − 2, so the induction hypothesis (17) will still hold for s̃a up to
order j ≤ n − 2. Finally, if we even have φ∗sa = Sa + ξa + O(�n+2) where ξa is of
order O(�n) and at the same time a KVF of the zeroth order metric γab|�=0, then all of
the previous will still hold and in addition the induction hypothesis (17) will hold for s̃a

up to order j ≤ n.
We are going to construct φ = φ1 as the flow φτ at parameter value τ = 1 of a vector

field ζ a that is to be determined. First of all, the diffeomorphism should preserve the
horizon cross sections C(v), and this will be achieved choosing a ζ a that is tangent to
C and such that Lkζ

a = 0. In fact we will construct ζ a initially on C and then define
it in a neighborhood of H by the condition that Lkζ

a = 0 = Llζ
a . Next, φ should be

the identity up to order O(�2), and we will achieve this by choosing ζ a = O(�2). To
analyze what requirements on ζ a are imposed by the remaining conditions, we consider
the Taylor series for φ∗

τ s
a |τ=1 = s̃a with remainder around τ = 0:

s̃a =
M∑

j=0

1

j !
d j

dτ j
φ∗

τ s
a |τ=0 +

1

M !
∫ 1

0
(1 − τ)M

dM+1

dτM+1φ∗
τ s

a dτ

=
M∑

j=0

1

j !L
j

ζ s
a +

1

M !
∫ 1

0
(1 − τ)Mφ∗

τL
M+1
ζ sa dτ.

(45)

Clearly, since ζ a = O(�2), the integral remainder term in the last line will be of order
O(�2(M+1)), so if we choose 2M ≥ n, then it will be of order O(�n+2). Furthermore, if
we knew that Lζ Sa = O(�n), then it would automatically follow that each term in the
sum for j ≥ 2 would also be of order O(�n+2), whereas the j = 1 term can be written
as −LSζ

a up to order O(�n+2). Thus, we would know that

s̃a = sa − LSζ
a + O(�n+2). (46)

From this equation, we see that we would have �ns̃(n)a = �ns(n)a − LSζ
a + O(�n+2).

Since we would like to satisfy the induction hypothesis (17) at order j ≤ n, we must
achieve that �ns(n)a − LSζ

a is a KVF, called ξa , of order O(�n) of the zeroth order
metric γ

(0)
ab on C, up to an error term of size O(�n+2). That a ζ a with all these properties

exists is established in the following Lemma.

Lemma 4. There exists a smooth vector field ζ a = O(�2)andaKVF ξa = O(�n)ofγ (0)
ab ,

both tangent toC, such that �ns(n)a = ξa+LSζ
a+O(�n+2), where Sa = ∑

k≤n−2 �ks(k)a.

Proof. See Appendix B ��
We relabel the fields and coordinates thus obtained by the untilde ones. Then we

know at this stage that Lkγab = O(�n+2),Lkβa = O(�n),Lkα = O(�n), and we
know that (17) holds up to and including order j = n. We now proceed to the vA-
component of the Einstein equation (2) onH, which using the induction hypothesis (16)
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and Lkγab = O(�n+2) and the expression (69) for the corresponding Ricci-component
reads

Daα − 1

2
Lkβa =

2D∑

j=4

� j−2Hj cbk
b pca + O(�n+2) on H. (47)

By Lemma 2 the right side is of order O(�n+2). Using ta = ka + sa , we therefore find

Daα +
1

2
Lsβa = O(�n+2) (48)

Following the same reasoning as in the induction start, we have to consider next a higher
order version of (24), i.e. −Ls f + α f = α̃, demanding now that α̃ ≡ κ + O(�n+2),
where κ is the average of α over C with respect to the volume element of γab. Since we
inductively know that α = ∑

k≤n−2 �kκ(k) + O(�n), it follows that α − κ = O(�n). By
analogy with the induction start, we next seek to define a smooth function f on C such
that

−Ls f + α f = κ. (49)

Let φ̂τ be the flow of sa on C. We define

f (x) = κ

∫ ∞

0
exp

[

−
∫ σ

0
α ◦ φ̂τ (x)dτ

]

dσ. (50)

Using the relation α = ∑
k≤n−2 �kκ(k)+O(�n) and κ(0) > 0, we see that the dσ integral

converges absolutely for sufficiently small |�|, and furthermore, that f = 1+ O(�n). By
analogy with the induction start, the new coordinate ṽ should now satisfy [see (28)]

Ls ṽ = 1 +
1

κ
(Ls log f − α) + O(�n+2). (51)

a smooth solution for which exists by the following Lemma.

Lemma 5. The equationLsϕ = α−κ+O(�n+2) on C has a smooth solutionϕ = O(�n).

Proof. See Appendix B. ��
Using the solution ϕ given by Lemma 5, we set

ṽ := 1

κ
(−ϕ + log f ) (52)

as a function on C. Then it follows that ṽ = O(�n) on C and thenwe extend ṽ to a function
ṽ = v+O(�n) onH by demanding thatLt ṽ = 1, see (6). Given ṽ, we define a new initial
cut C̃ by ṽ = 0, and then we obtain a new GNC system (ṽ, r̃ , x̃ A) = (v, r, x A) + O(�n)

from the foliation C̃(ṽ) with corresponding k̃a and s̃a . By construction, α̃ is constant on
C̃ modulo O(�n+2), and then Lk̃ β̃a = 0 modulo O(�n+2).

So at this point we have shownLk̃(α̃, β̃a, γ̃ab) = O(�n+2) onH and α̃ = κ+O(�n+2)

on H and we can still assume the induction hypothesis (16) for the tilde tensors up to
and including order n − 2 when m ≥ 1. Furthermore, we have the induction hypothesis
(17) for s̃a on C̃.
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Now we wish to show that we have L m
l̃

(Lk(α̃, β̃a, γ̃ab))r̃=0 = O(�n+2) for all m.
To do this, we again perform an induction in m similar to the induction start. First, we
consider the ṽ-derivative of the AB Ricci tensor component (72) which gives

Lk̃(Rcd p̃
c
a p̃

d
d) = Lk̃[Lk̃Ll̃ γ̃ab + α̃Ll̃ γ̃ab] + O(�n+2) (53)

on H. Since the tensors are Lie-derived by ta = k̃a + s̃a , we can effectively replace
Lk̃ = −Ls̃ and since the Ricci tensor is O(�n+2) by the Einstein equation (2) and the
induction hypothesis (Lk̃ produces at least one primitive monomial (see Appendix B)
appearing on the right side of the Einstein equation resulting in an O(�n) term by Lemma
2, which is multiplied at least by �2), this gives, on C̃,

LS̃[LS̃ L̃ab − κ L̃ab] = O(�n+2) (54)

where S̃a = ∑
j≤n � j s̃( j)a which is a Riemannian isometry of γ̃ab|�=0 by (17), and

where L̃ab := Ll̃ γ̃ab. “Integrating” this equation along the orbits of S̃
a givesLS̃ L̃ab =

O(�n+2) by the same kind of argument as around eq. (56) of [20] but carrying around
now the potential O(�n+2) “error terms”. This results in Ll̃(Lk̃ γ̃ab)r̃=0 = O(�n+2),
where we have replaced again Lk̃ = −Ls̃ , so we get the first equation of (16) for our
induction order n and m = 1.

Let M ≥ 1. We inductively assume that the first equation in (16) is satisfied for all
m ≤ M whereas the second and third equations in (16) is satisfied for allm ≤ M−1 (we
have seen that this is true when M = 1). Now we applyL M−1

l̃
L

k̃
to the ṽr̃ component

of the Ricci tensor (68) and evaluate the result at r̃ = 0, i.e. on H. Using the inductive
hypothesis and the Einstein equation, we find

L M−1
l̃

(
Lk̃(Rabl̃

a k̃b)
)

r̃=0
= L M

l̃

(
L

k̃
α̃
)

r̃=0
+ O(�n+2) (55)

and then using that a ṽ-derivative of the Ricci tensor is itself of order O(�n+2) by the
Einstein equation (Lk̃ hits at least one primitive monomial of non-negative boost weight
appearing on the right side of the Einstein equation resulting in an O(�n) term which
is multiplied at least by �2), we obtain L M

l̃
(L

k̃
α̃)r̃=0 = O(�n+2), which is the third

equation in (16) for our induction order n and m = M . Now we applyL M−1
l̃

L
k̃
to the

Ar̃ component of the Ricci tensor (71) and evaluate the result at r̃ = 0, i.e. on H. We
find

L M−1
l̃

(
Lk̃(Rbcl̃

c p̃ba)
)

r̃=0
= L M

l̃

(
L

k̃
β̃a

)

r̃=0
+ O(�n+2) (56)

which similarly gives L M
l̃

(Lk̃ β̃a)r̃=0 = O(�n+2). This is the second equation in (16)
form = M . Thus we see that all equations of (16) are satisfied for allm ≥ 0 for the tilde
GNCs. We relabel the tilde GNCs and corresponding tensors by the untilde (v, r, x A) to
simplify the notation. This closes the induction loop.

Setting χa := ka where ka is the vector field that is defined in a neighborhood of
H by going through n iterations of the induction step as described above, we obtain the
following theorem.

Theorem 1. Suppose that we have a family of spacetimes satisfying the assumptions
(1)–(4) in Sect.2.1 and let n ∈ N0. Then there exists a vector field χa tangent to the
null generators ofH which Lie derives gab modulo terms of order O(�n+2) and modulo
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terms that vanish to arbitrarily high order in any coordinate transverse to H. In other
words, if la is a VF transverse toH (such as la in the GNC above), then

L m
l Lχgab|H = O(�n+2) (57)

for any m ∈ N0. χa commutes with ta and on H satisfies χa∇aχ
b = κχb, where κ is

constant up to terms of order O(�n+2). The vector field sa = ta − χa is tangent to a
foliation of cross sections C(v) of H and onH satisfies

L m
l Lsgab|H = O(�n+2) (58)

for any m ∈ N0.

4. Non-rotating Case

Now we assume that we are in the non-rotating case II) of Sect. 2.1: ta is tangent to the
null generators of H for sufficiently small |�|. We will show order by order in � that
(M, gab) is spherically symmetric.

First, for � = 0 it follows from the staticity theorem [47] in combination with [10]
and the uniqueness theorems for static vacuum black holes in Einstein gravity [7,15–
17,27,28,45,46] that the metric ḡab := gab|�=0 is the Schwarzschild metric i.e. there is
a coordinate system in which

ḡ = − f dt2 + f −1dr2 + r2d�2
d−2, f = 1 −

(r0
r

)d−3
, r0 > 0 (59)

with d�2
d−2 the metric of the round sphere S

d−2. By applying a suitable �-dependent
diffeomorphism to the family gab(�, x) which is the identity to zeroth order in �, we
can ensure that the timelike KVF ta is independent of �. We assume that such a dif-
feomorphism has been applied and continue to call the family of metrics gab(�, x). In
particular, ḡab is still given by the above formula. By assumption ta is null on H.

Let Ya be one of the KVFs of the Schwarzschild metric generating a rotation. We
will now construct a formal series Ya(�, x) = ∑

k≥0 �kY (k)a(x) in � which is tangent
to H±, which is commuting with ta , which Lie-derives gab(�, x) to all orders in �, and
such that Ya(� = 0, x) = Ya(x). For this, we assume inductively that the terms in this
expansion for Ya have been constructed up to and including order O(�n−2) in such a
way that LY gab = O(�n) and Lt Y a = O(�n). If we now take LY of the Einstein
equation, evaluate this at order �n , then we see that hab, defined as the O(�n)-term
in LY gab, satisfies the homogeneous linearized Einstein equation in Schwarzschild.
Furthermore, since the linearized Einstein operator of Schwarzschild commutes with
Lt , since Lt Y a = O(�n) and since Lt gab = 0, we have Lt hab = 0. Thus, hab
is a stationary perturbation of Schwarzschild which is asymptotically flat, i.e. falling
off roughly as |hμν | = O(1/rd−3) as r → ∞ in a suitable asymptotically Cartesian
coordinate system (xμ), and regular on the horizon, see def. 2.1 of [10] for the details
on such asymptotic conditions.

Proposition 1. Let hab be a linearized, smooth, asymptotically flat solution to the lin-
earized Einstein equation off of Schwarzschild spacetime which is regular on H and
Lie-derived by ta. Then

hab = zab +Lξ ḡab (60)

where ξa is a smooth vector field which is an asymptotic symmetry at null infinity and
where zab is a perturbation towards a Myers–Perry black hole [38].
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Proof. This proof is based on the analysis of master variables for gravitational pertur-
bations given in [26,33], see Appendix B for the full argument. ��

We learn from Proposition 1 that

LY gab = �n(zab +Lξ ḡab) + O(�n+2) (61)

where zab is an infinitesimal perturbation to a Myers–Perry black hole and where ξa is a
gauge vector fieldwhich is smooth as r → r0, andwhich is an asymptotic symmetry atI+

and I−, i.e. has one of the asymptotic forms IIa,b,c, III, IV of [20]. FromLt hab = 0 =
Lt zab it also follows that L[t,ξ ]ḡab = 0 so ηa := [t, ξ ]a must be a linear combination
of ta and a rotational KVF of Schwarzschild. By inspection, the only asymptotic forms
for ξa giving rise to a non-trivial asymptotic symmetry ηa are type III, i.e. asymptotic
boosts, in which case ηa is an asymptotic spatial translation. This, however, is not a
KVF of Schwarzschild, so we conclude that [t, ξ ]a = 0, in fact. It follows that ḡabtaξb

is Lie-derived by ta onH, and since the latter vanishes on the bifurcation surface B, we
must have ḡabtaξb = 0 on H meaning that ξa is tangent to H because ta is null with
respect to ḡab.

Now we redefine Ya → Ya + �nξa which is tangent to H. Then still [t,Y ]a = 0,
LY gab = O(�n) but nowLY gab = �nzab +O(�n+2). Furthermore, since by assumption
sc := gabta pbc|H = 0 to all orders in � by the non-rotating assumption, since ta does
not depend on �, and sinceLY ta = 0, we get Nc := zabta pbc = 0 onH, so zab cannot
be an infinitesimal perturbation towards a rotating black hole, for which Nc would be
the perturbed shift vector on H which is not zero. Thus, zab must be a perturbation
towards another Schwarzschild black hole. Consider now the pull-back of the equation
LY gab = �nzab +O(�n+2) to the bifurcation surface B. Since Ya is tangent to B, we get
DaYb + DbYa = �nzab + O(�n+2) on B. Taking a trace of these equation and integrating
over B shows (in our gauge where the location of B is independent of �)

0 = 2
∫

B
DaY

a√γ dd−2x = �n
∫

B
zabγ

ab√γ dd−2x + O(�n+2) (62)

and this implies that zab = 0 because a non-trivial perturbation to another Schwarzschild
black holewill result in a change of the area ofB. This closes the induction loop, showing
the existence of a KVF Ya(�, x) commuting with ta , to all orders in �.

In the above argument we can start with any rotational KVF of Schwarzschild, so
we obtain from the above construction not only one, but in fact 1

2 (d − 2)(d − 1) KVFs
Ya
j (�, x), j = 1, . . . , 1

2 (d−2)(d−1) commuting with ta , to all orders in �. Generalizing
the usual argument, see e.g. [49], Appendix C, that the space of KVFs on a pseudo-
Riemannianmanifold is finite-dimensional to formal series of VFs andmetrics (in �2) we
learn that the Ya

j (�, x) generate a finite dimensional Lie-algebra under the commutator
of VFs. This Lie algebra must be a deformation/extension of the Lie algebra so(d − 1),
and such extensions are classified by the cohomology ring H2(so(d − 1), V ) where V
is a finite-dimensional representation of so(d − 1), see e.g. [48]. As is well-known, that
ring is trivial for any simple Lie-algebra and finite-dimensional representation. Thus the
Ya
j (�, x) generate the Lie-algebra so(d − 1).
We therefore have shown:

Theorem 2. In the non-rotating case, gab(x, � = 0) is a Schwarzschild metric. If Y a(x)
is one of its rotational KVFs, there is a formal series Y a(�, x) = ∑

k≥0 �kY (k)a(x) in �

which is tangent toH±, which is commuting with ta, which Lie-derives gab(�, x) to all
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orders in �, and such that Y a(� = 0, x) = Ya(x). The Killing vector fields Y a(�, x) (in
the sense of formal series) represent the Lie algebra of SO(d −1) under the vector field
commutator.

5. Existence of Global Rotational Killing Field(s)

Consider the rotating case (I) of Sect. 2.1 and assume in addition to (1)–(4) in Sect. 2.1
that themanifoldM is real analytic and themetric gab(�, x) and stationary KVF ta(�, x)
are jointly real analytic in (�, x) for some atlas of analytic coordinate systems (depending
possibly on �). Let us go through the proof of Theorem 1 with an eye towards analyticity
of χa in x at the various orders in �.

First, we may pick the initial cut C to be an analytic submanifold of the analytic man-
ifold H. This means that initial GNCs (v, r, x A) give analytic charts in neighborhoods
ofM coveringH. As we have described, the vector field χa = k̃a = (∂/∂ṽ)a described
in Theorem 1 is constructed as a coordinate vector field for a suitable new GNC system
(ṽ, r̃ , x̃ A), and this coordinate system is analytic as we will now argue. At n-th order
in �n , the function ṽ is defined by (52) in terms of functions f, ϕ. The function f is
defined by (50), and easily checked to be analytic [20]. The function ϕ is defined to be a
solution to an elliptic equation (89) with analytic coefficients on C, hence also analytic
by standard results on elliptic regularity [19]. Thus ṽ is analytic. Likewise, the coordi-
nates x̃ A are constructed using the vector field ζ A in Lemma 4, and this vector field is
analytic because it is also defined as the solution to an elliptic equation with analytic
coefficients. The coordinates (ṽ, x̃ A) are propagated by Lie-transport with the analytic
vector field ta , and so are analytic functions on the respective coordinate patches of H.
Finally, r̃ is defined as a parameter along affine geodesics off of C with analytic initial
condition, hence it is also analytic. Thus, the coordinate systems (ṽ, r̃ , x̃ A) successively
determined at the various orders in � are all analytic. Since χa is a coordinate vector
field in this coordinate system, it is analytic, and we haveLχgab = O(�n+2) identically
in an open neighborhood of H for the given n that we fix, by Theorem 1.

At this stage, we can extend χa globally onto the domain of outer communication

D := I +
(

⋃

τ∈R
φτ [
1]

)

∩ I−
(

⋃

τ∈R
φτ [
1]

)

(63)

ofM (where
1 is the asymptotic region of the acausal surface and φτ the flow of ta , see
[10] def. 2.1 and footnote 4) by the usual method of analytic extension on overlapping
neighborhoods. Because that domain is simply connected π1(D) = 0 by the topological
censorship theorem [12,14] the analytic continuation is single-valued. The vector field
sa := ta − χa is then also globally defined on D and single valued. On H, sa can
be written as (18) where each ψa

j has closed orbits and is independent of �. We Lie-
drag each ψa

j off H using la , which is analytic up to the order O(�n) considered. Then

proceeding precisely in the same way6 as in Sect. 3 of [20], one shows that each ψa
j

can be analytically continued on D to a single valued which Lie derives the metric up
to order O(�n+2). We therefore get:

Theorem 3. Assume (1)–(4) as in Sect.2.1, that M is real analytic and that gab =
gab(�, x), ta = ta(�, x) are jointly real analytic in (�, x) with ta not tangent to the null

6 This part of the argument does not use the Einstein equations, and so is applicable in our context, too.
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generators of H. Then for any fixed n ∈ N0, there exist an analytic VF sa = sa(�, x)
on D tangent to a foliation of H by spacelike cross sections, and a VF χa = χa(�, x)
on D tangent and normal to H, such that sa, χa commute with ta, such that Lsgab =
O(�n+2) = Lχgab and such that we have

ta = χa + sa (64)

The vector field χa has an acceleration (surface gravity) κ on H that is constant up to
order O(�n+2) and sa can be written as

sa =
N∑

j=1

� jψ
a
j , (65)

where ψa
j = ψa

j (�, x) are commuting VFs onD whose orbits are closed with period 2π

such thatLψ j gab = O(�n+2), and where the� j = � j (�) are constants that are defined
up to order O(�n+2).

Remarks. (1) A similar argument will work with a cosmological constant 
 < 0,
because the asymptotic structure is used in our proofs only to show that the domain of
outer communication is simply connected and to show that ta does not vanish on H.
Both will work if (M, gab) is asymptotically AdS. In the case 
 > 0, one has to make
suitable assumptions on how ta behaves on I− because this is spacelike now. To stay
within the realm of effective field theory, the cosmological constant should in either
case be so small that |
L2| � 1, where L is the typical scale over which the solution is
varying, as explained in [24], def. 2.1.
(2) Note that the VFs in the theorem sa, ψa

j , χ
a in principle depend on the order n in �

up to which the Killing vector field property holds. It should also be possible to establish
the existence of sa, ψa

j , χ
a with the properties stated in this theorem up to arbitrary order

in �. This would be tantamount to showing that the successive changes of coordinates
to (ṽ, r̃ , x̃ A) defined order by order in � can be summed within a non-zero radius of
convergence |�| < �0. We expect that this should be possible, but it would be a rather
tedious bookkeeping exercise. We will not carry this out here because in the effective
field theory spirit, the action I [g] is only valid up to a finite order in � anyhow.
(3) It is natural to ask to what extent the (approximate) KVFs ta, χa, ψa

j can be made
independent of � by applying a diffeomorphism to all quantities, i.e. by “changing the
gauge”. First we consider the rotational KVFs ψa

j . By (18) each ψa
j is independent of �

on H. But since ψa
j is obtained off of H by Lie-dragging it along the vector field la =

la(�, x), it is in general �-dependent off ofH. Consider a point x0 ∈ H and a sufficiently
small r > 0. Let x0(r, �) be the point inD obtained by flowing x0 along the VF la(�, x).
Then for sufficiently small r > 0, the map x0(r, �) �→ x0(r, � = 0) is a diffeomorphism
φ which is the identity onH, and by construction we have φ∗la(�, x) = la(� = 0, x), so
la becomes independent of �. Consequently, by applying φ to gab, χa, ta, ψa

j , we have
achieved that allψa

j (�, x) are actually independent of �. This of course holds only locally
where the diffeomorphism φ has been defined and it would require extra non-trivial
work to show that a global diffeomorphism exists satisfying φ∗la(�, x) = la(� = 0, x)
throughout D. If so, each ψa

j would be independent globally on D in this gauge.
On the other hand, even if this were true, we cannot expect that the KVFs ta, χa

can be made independent of � by a change of gauge even locally. This is because the
projection of the orbits of ta to a cross section C of H will depend on � in view of (64)
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and (65), and in fact their global nature will depend sensitively on the angular velocities
� j (�): If some ratios � j (�)/�i (�), i �= j are rational, then the orbits of sa(�, x) will
not be dense in C, and otherwise they will. Obviously, this may change if we vary �

even arbitrarily close to � = 0. Whether the orbits are dense or not is a gauge invariant
statement, so we cannot expect to make ta independent of � by changing the gauge. A
similar argument applies to χa , now replacing the cut C on the horizon by a cut at future
null infinity.

Consider next the non-rotating case (II). By Theorem 2, we have a set of KVFs in
the sense of formal power series generating the Lie algebra of SO(d − 1) under the
commutator of VFs. These KVFs are constructed order by order in �2, and if we could
show that the series converges, then it would follow that we have actual KVFs and not
just formal series. Again, for such an argument to proceed we should at least know that
the manifold M is real analytic and that the metric gab(�, x) is jointly real analytic in
(�, x) for an analytic atlas of coordinate systems depending analytically on �. Again,
one would have to go through the detailed steps of the inductive constructions, order by
order in �2.

6. Conclusions

For simplicity, we have considered in this paper (parity even) purely gravitational the-
ories. However, we expect our proofs to be robust and to apply to any local covariant
Einstein-gravity-matter model such that the rigidity theorem holds for the corresponding
standard Einstein-gravity-matter model when � = 0. The latter applies to a broad class
of models including abelian vectors coupled to scalars [20,21].

A more difficult question is whether one can remove the analyticity, non-degenerate,
and genericity assumptions in our main theorem (Theorem 3). Since it is unknown how
to remove non-degeneracy and analyticity even for Einstein gravity, we expect this to
be highly non-trivial. Actually, in the case of higher derivative theories as considered in
this paper, it is not totally clear what viewpoint to take on this problem, for the following
reason. We have treated solutions in the EFT setting as (locally) small corrections to the
corresponding solutions in Einstein gravity. In doing so, we are assuming in effect that
the solutions are “low frequency’ (relative to the EFT length scale �). If we were to try to
drop the analyticity assumption, it seems plausible that we would have to study the EFT
equations as an initial value problem of some sort as in [1], which requires the study of
solutions of arbitrary frequency. However, for a general higher derivative theory, there
is at this point no general understanding when it will possess a well-posed initial value
problem, although this has been established for certain special theories [31,32,39].

Let us assume that we have a higher derivative theory with a well-posed initial
value problem, say one of the theories with second order equations of motion studied
in [31,32]. If we take such a theory seriously even for arbitrarily short wavelengths, it
is not natural to consider the lightcone as defined by the metric gab—as we have done
in this paper—but instead one wants to study an intrinsically defined propagation cone
defined by the highest derivative part in the Einstein equation. This leads in general to
a propagation cone different from the lightcone and correspondingly a different notion
of event horizon of a black hole [43]. One might ask in such special theories whether
the rigidity theorem still holds for the new notion of event horizon, and whether, in the
case of stationary solutions, the different notions of event horizons may actually even
coincide. We leave this interesting issue for future work.
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A Ricci Tensor in GNCs [20]

In this Appendix, we provide expressions for the Ricci tensor in our GNC system for
the convenience of the reader [20]. As in the main text, the horizon, H, corresponds
to the surface r = 0. Associated with the foliation C(v, r) by (d − 2)-dimensional
compact cross sections there are two natural projectors. The orthogonal projector qab,
as well as the non-orthogonal projector pab characterized by pabkb = pablb = 0.When
rβa �= 0, these do not coincide. In terms of the Gaussian null coordinate components of
γab, we have qab = (γ −1)AB(∂x A)a(∂/∂x B)b, whereas pab = (∂/∂x A)a(dx A)b. The
relationship between pab and γ a

b is given by

pab = −rlaβb + γ a
b . (66)

Since in terms of Gaussian null coordinates, we have pab = (∂A)a(dx A)b and la =
(∂r )

a, ka = (∂v)
a , and since coordinate vector fields commute, it follows thatLk pab =

0 = Ll pab. It also is easily seen that qacγcb = pab and that pabqbc = qac. We finally
recall that a definition Da of an intrinsic derivative operator associated with qab was
given in (13), and we denote the Riemann and Ricci tensors associated with qab as
R[γ ]abcd and R[γ ]ab. Then we have:

kakbRab = −1

2
qabLkLkγab +

1

4
qcaqdb(Lkγab)Lkγcd +

1

2
α qabLkγab

+
r

2
·
[

4αLlLlα + 8αLlα + (Llα)qabLkγab

+qabLlγab ·
{

− Lkα − rqcdβcLkβd

+(rqcdβcβd + 2α)Ll(rα) + rqcdβcDdα
}

+2qabDa {βbLl(rα) + Dbα − Lkβb}
+qbcLl(rβc) ·

{
(rqe f βeβ f + 2α)Ll(rβb)

http://creativecommons.org/licenses/by/4.0/
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−4Dbα + 2Lkβb + 4rqaeβeD[aβb]
}

+2(Llα)Ll(r
2qabβaβb) + 4rqabβaβbLlα + 2rqabβaβbLlLlα

+2qabβaLl(rβb) ·
{

2Ll(rα) − 1

2
rqcdβcLl(rβd)

}

+2r−1Ll

{
r2qabβa(Dbα − Lkβb)

}
+ 2r−1αLl(r

2qabβaβb)

]

,

(67)

kalb Rab = −2Llα +
1

4
qcaqdb(Lkγcd)Llγab − 1

2
qabLlLkγab

−1

2
α qabLlγab − 1

2
qabβaβb

+
r

2
·
[

− 2LlLlα − 1

2
qabLlγab ·

{
2Llα + qcdβcLl(rβd)

}

−qabβaLlβb − Ll{qabβaLl(rβb)} − qabDa(Llβb)

]

, (68)

kb pca Rbc = −pbaDbα +
1

2
Lkβa +

1

4
βaq

bcLkγbc − pd [a peb]Dd(q
bcLkγce)

+
r

2
·
[
1

2
(qbcLkγbc)Llβa +LkLlβa + 2αLlβa

+Ll(rβa) ·
{
r−1Ll(r

2qbcβbβc) + 2Llα
}

−2pbaDb(Llα) +Ll(q
bcβbLkγca) − 2r−1Ll

(
r2qcdβc p

b
aD[bβd]

)

−1

2
qbcLlγbc ·

{
− (rqe f βeβ f + 2α)Ll(rβa)

+2pdaDdα − qbcβbLkγca + 2rqe f βe p
d
aD[dβ f ]

}

−2Ll(αβa) − 2r(Llα)Llβa + pdaDb

{
qbcβcLl(rβd)

}

−2pbaq
cd Dd D[bβc] − qbc(Llβb)Lkγca

−qbcLl(rβb) ·
{
(rqe f βeβ f + 2α)Llγca + pdaDcβd

+βcLl(rβa) − rqe f βcβ fLlγea

}

+qbc(Llγca) ·
{
2βbLl(rα) + 2Dbα − Lkβb + 2rqdeβeD[bβd]

} ]

,

(69)

lalb Rab = −1

2
qabLlLlγab +

1

4
qcaqdb(Llγab)Llγcd , (70)

lb pca Rbc = −1

4
βaq

bcLlγbc − Llβa +
1

2
qbcβcLlγab − pd [a peb]Dd

(
qbcLlγce

)
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+
r

2
·
[

− LlLlβa +Ll

(
qbcβcLlγab

)

+
1

2
(qcdLlγcd)

(
−Llβa + qbeβeLlγab

) ]

, (71)

pca p
d
bRcd = −LlLkγab − αLlγab + pca p

d
bR[γ ]cd − pc(a p

d
b)Dcβd − 1

2
βaβb

+ qcd
(
Llγd(a

)
Lkγb)c − 1

4

{
(qcdLkγcd)Llγab + (qcdLlγcd)Lkγab

}

+
r

2
·
[

− 2αLlLlγab − pea p
f
bDc(q

cdβdLlγe f )

−1

2
(qcdLlγcd)

{
(rqe f βeβ f + 2α)Llγab + 2pe(a p

f
b)Deβ f

}

−2(Llα)Llγab − r−1{Ll(r
2qef βeβ f )}Llγab

−rqe f βeβ fLlLlγab − 2Ll{pc(a pdb)Dcβd}
−2β(aLlβb) − r(Llβa)Llβb − rqceqd f βcβd(Llγae)Llγb f

+2qcdβd
{
Ll(rβ(a)

}
Llγb)c + 2pe(a p

f
b)q

cd (Ddβe)Llγ f c

+qcd(rqe f βeβ f + 2α)(Llγca)Llγdb

]

. (72)

B Improved IWW Entropy Current-Density [24]

In order to define the “improved IWW” entropy current-density, one sets up a GNC
system on H adapted to some choice of affine parameter, λ, along the null geodesic
generators ofH. In such a GNC system, the metric takes the form

2dλ(dρ − 1

2
ρ2 f dλ − ρωAdx

A) + hABdx
Adx B . (73)

The definition of this coordinate system involves a choice of cross section, C and is
quite similar to (7). In particular, ρ is a parameter along affine ingoing null geodesics.
However, the construction differs in that (7) was based on the Killing parameter, v, along
the null geodesic generators ofH, whereas (73) is based on an affine parameter, λ. The
usual ambiguities in the choice of the affine parameter λ may be partially fixed e.g. by
imposing that λ = 0 on the given cross section C. This still leaves the possibility to
rescale λ by an arbitrary positive smooth function a on C, but the “improved IWW”
entropy current-density is shown to be independent of such a change.

One sets

na =
(

∂

∂λ

)a

, n̄a =
(

∂

∂ρ

)a

, (74)

which are tangent to ingoing (ρ) respectively outgoing (λ) affine null geodesics. The
corresponding extrinsic curvatures in the directions of na respectively n̄a are denoted by
Kab respectively K̄ab. The corresponding expansions and shears are denoted by θ, σab
respectively θ̄ , σ̄ab, where

θ = gabKab, θ̄ = gab K̄ab, (75)
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and where σab, σ̄ab are the trace free parts of Kab, K̄ab. On C, the expansion and shear
may be written in a form analogous to (20),

θ̄ = γ ab∇(an̄b), σ̄ab = γa
cγb

d(∇(cn̄d) − 1
d−2gcd∇en̄

e). (76)

where we note that hab = γab on C.
A useful principle to classify the terms that arise when making a decomposition

in GNCs (73) of a covariant derivative ∇e1 . . . ∇er Rabcd of the Riemann tensor is the
concept of “boost weight”. To define this, one first argues that on H, each term in such
a decomposition must be a tensor product of factors of na, n̄a and the following factors
called “primitive monomials”:

(Ln)
k(Ln̄)

k̄ Dc1 · · · Dci { f, ωa, hab}, De1 . . . Dej R[h]abcd (77)

where f, ωa = ωA(dx A)a, hab = hAB(dx A)a(dx B)b are as in (73) and where R[h]abcd
is the Riemann tensor of hab. The “boost weight” of each factor is then defined to be
k̄ − k plus the number of n̄a factors minus the number of na factors.

Extending previous works by [3–5,29,30,50], reference [24] constructed the so-
called “improved IWW” entropy current-density,

σ a = 
na + Ja . (78)

It consists of an entropy density, 
, an entropy current, Ja = J A(∂A)a (referring to the
GNC system (73)), and is characterized by the following properties, see prop. 1 of [24].

1. 
 is a scalar local functional of boost weight 0 that for any cross section C is a
contraction of the factors in the following list:
• D(a1 · · ·Da jσa)b, D(a1 · · ·Da j )θ, D(a1 · · ·Da j σ̄a)b, D(a1 · · ·Da j )θ̄

where Da = Da + 1
2bωa is a suitable covariantized derivative defined using the

Hajicek 1-form ωa (73) and the boost weight b it is acting on,
• Rc

a1a2d or ∇(a1 · · · ∇a j R
c
a j+1a j+2)b where j > 0,

• na , n̄a or gab.
It follows that S[C] (37) is independent of the remaining freedom to choose the affine
parameterλ, and hence a fully covariant functional ofC and themetric gab, in the sense
that S[ψ−1(C), ψ∗g] = S[C, g] for any time-orientation preserving diffeomorphism
ψ preserving H.

2. The analog of the Raychaudhuri equation which uses the Einstein equation (2):

(
Ln∇aσ

a ≡)
∂λ

(
1√
γ

∂λ(
√

γ
) + Da J
a
)

= F (79)

on H, where F is at least quadratic in positive boost weight quantities, and where
Ja = JA(dx A)a is an entropy current. [The quantity in parenthesis is just ∇aσ

a .]
3. Ja , which is a boost weight 1 quantity, contains an explicit power �2 and is at least

linear in positive boost weight terms. 
 = 1+ zero boost weight terms containing an
explicit power �2.

4. F = −σabσ
ab − 1

d−2θ
2+ terms depending explicitly on �2.
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Example 1. Consider the theory described by the action

I [g] =
∫

M
(R + c1�

2RabR
ab + c2�

2R2)
√−gdd x . (80)

In this case, the improved IWW entropy density is [3,4]


 = 1 + c1�
2(Rabn

an̄b − θ θ̄) + 2c2�
2R. (81)

Note that the first term “1” corresponds to the area contribution to S[C] so S[C] = A[C]+
O(�2). Note that up to a cosmological constant term (which does not contribute to the
entropy current-density), I [g] is the most general local covariant action including up to a
total number of four derivatives in four dimensions because the term Rabcd Rab

e f ε
cde f is

topological and the term Rabcd Rabcd can be expressed in terms of those already present
and another topological term.

Example 2. In d = 4 dimensions, let

I [g] =
∫

M
(R + c�4Rabcd R

cd
e f R

abe f )
√−gd4x . (82)

In this case, the improved IWW entropy density is [11]


 = 1 + c�4Rabcd Ref gh(−6nan̄bnen̄ f hcgheh − 24n̄anbn̄cn f n̄enghdh

+ 12nan̄bncn̄dnen̄ f ngn̄h) + c�4(−24Rabcd K
b
e K̄

den̄anc

+ 12KabK cd K̄ac K̄e f − 36KabKa
c K̄b

d K̄cd),

(83)

where hab = gab − 2n(an̄b). Modulo the freedom to add a cosmological constant term
(which would not change 
), this action can be shown to be the most general parity
even action up to and including a total number of six derivatives in the action and up to
perturbative field redefinitions.

C Proof of Lemma 4

In this proof, quantities obtained by setting � = 0 are denoted by an overbar such as in
γ̄ab = γ

(0)
ab etc. Consider the equation

D̄a D̄(aζb) = −1

2
D̄aγab, (84)

where indices have been raised/lowered with the Riemannian metric γ̄ab on C. The
right side is L2-orthogonal to the KVFs of γ̄ab, and since γab = γ̄ab + O(�2), it is
clearly of order O(�2). Now consider the usual weak formulation of this equation for
ζa in the Sobolev space W 1,2(C, T ∗C) obtained by contracting the equation into φa ∈
C∞(C, TC), integrating over C, and formally performing an integration by parts to move
one derivative onto φa . Then the bilinear form so obtained from the left side of (84) has
a coercivity property expressed by the Poincaré type inequality

‖D̄(a Xb)‖L2 ≥ const.‖Xa − P̄ Xa‖L2 (85)

where P̄ is the L2-projector onto the span of the KVFs of γ̄ab. By standard arguments,
there is hence a weak, and a forteriori smooth, solution ζ a which is unique modulo the
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addition of a KVF of γ̄ab. In particular, since the source in the equation for ζ a is of order
O(�2), we can choose ζ a = O(�2) itself. Using (84), we get

D̄a D̄(a(LSζb) − �ns(n)
b) ) = −1

2
D̄aLsγab + O(�n+2) = O(�n+2), (86)

using that [D̄a,LS] = 0 (since Sa is a KVF of γ̄ab by the inductive assumption), and the
fact that sa = s(0)a+�2 s(2)a+. . . �ns(n)a+O(�n+2). The Poincaré inequality implies that
the kernel of the operator D̄a D̄(a Xb) consists precisely of the KVFs of γ̄ab. It follows

that γ̄ ab(LSζb − �ns(n)
b ) is a KVF, which we call ξa , of γ̄ab modulo O(�n+2). Thus,

�ns(n)a = ξa +LSζ
a + O(�n+2), as desired.

We would finally like to show that ξa = O(�n). Let φ̂τ be the flow of Sa on C. Since
Sa is a KVF of γ̄ab, this flow is isometric and in particular area preserving. Therefore,
by basic theorems in ergodic theory (see e.g. [51]), if Ta1...ar is a smooth tensor field on
C, then the limit (orbit average)

〈Ta1...ar (x)〉 := lim
T→∞

1

T

∫ T

0
φ̂∗

τ Ta1...ar (x) dτ (87)

will exist in the sense of L p(C) for any p ≥ 1 and any component in an orthonormal
tetrad. Since φ̂τ is isometric, so the same will hold for D̄a-derivatives of Ta1...ar , so
convergence even occurs in any Sobolev space W p,q(C), q ≥ 0, hence in the topology
of any Cα(C) for any α ≥ 0, by an appropriate Sobolev embedding theorem. As a con-
sequence, if Ta1...ar = O(�M ) for some M , then also 〈Ta1...ar 〉 = O(�M ). Furthermore,
we have

〈LSTa1...ar (x)〉 = lim
T→∞

1

T

∫ T

0
φ̂∗

τLSTa1...ar (x) dτ

= lim
T→∞

1

T

∫ T

0

d

dτ
φ̂∗

τ Ta1...ar (x) dτ

= lim
T→∞

1

T
φ̂∗

τ Ta1...ar (x)

∣
∣
∣
∣

T

0
= 0,

(88)

where the limit exists pointwise and uniformly, together with that of all of its derivatives.
Nowwe take the orbit average of the equation �ns(n)a = ξa+LSζ

a+O(�n+2) and obtain
〈ξa〉 = O(�n). Since ξa is already known to be a KVF of γ̄ab and since, by our genericity
assumption 4) all such KVFs commute, it follows that φ̂∗

τ ξa = ξa so 〈ξa〉 = ξa , and
this gives ξa = O(�n). ��

D Proof of Lemma 5

In this proof, quantities obtained by setting � = 0 are denoted by an overbar such as in
γ̄ab = γab|�=0 etc. We take ϕ as the unique solution to

D̄a D̄aϕ = −1

2
D̄aβa (89)

that is L2-orthogonal to the constant functions on C which exists because the right side is
L2-orthogonal to the constant functions. By the usual elliptic regularity results, it follows
that ϕ(x, �) is jointly smooth in (x, �). Let Sa := ∑

j≤n � j s( j)a . By (17), known at this
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stage up to and including order n, we have [D̄a,LS] = 0 = LS γ̄ab, from which it
follows that

D̄a D̄a(LSϕ − α) = LS D̄
a D̄aϕ − D̄a D̄aα

= − 1

2
LS D̄

aβa − D̄a D̄aα

= − 1

2
D̄aLSβa − D̄a D̄aα

= O(�n+2).

(90)

In the last line we used Daα+ 1
2Lsβa = O(�n+2) and that sa = Sa +O(�n+2). It follows

thatLsϕ −α is equal to a constant function on C plus a function of order O(�n+2). Since
sa is a KVF of γab modulo O(�n+2), it follows that

Lsϕ − α = O(�n+2) +
1

A[C]
∫

C
(Lsϕ − α)

√
γ dd−2x

= O(�n+2) − 1

A[C]
∫

C
α
√

γ dd−2x = O(�n+2) − κ,

(91)

as desired. From the induction hypothesis, we know α − κ = O(�n), soLsϕ = O(�n).
Using this and LS γ̄ab = 0 and sa = Sa + O(�n+2) we now show that we modify ϕ if
necessary so that ϕ = O(�n) by analyzing the consequences of the relations

s(0)aDaϕ
( j) + · · · + s( j)aDaϕ

(0) = 0 (92)

for ascending j from 0 to n−2: We first get s(0)aDaϕ
(0) = 0. Since s(0)a is an irrational

linear combination KVFs ψa
1 , . . . , ψa

N generating the 2π -periodic flows of isometries
of γ̄ab, it follows that ψa

i Daϕ
(0) = 0 for all i = 1, . . . , N . As a consequence of

the genericity assumption s( j)a is also a linear combination KVFs ψa
1 , . . . , ψa

N and
therefore s( j)aDaϕ

(0) = 0 for j ≤ n. Then we move on to j = 2 and so on in (92) and
continue in a similar way establishing that ψa

i Daϕ
( j) = 0 for j ≤ n − 2. Therefore,

ϕ − ∑
j≤n−2 � jϕ( j) = O(�n) still fulfills (91). ��

E Proof of Proposition 1

In this proof, we write the Schwarzschild metric in terms of coordinates (x A) on the (d−
2)-dimensional symmetry round spheres and coordinates (x j ) = (t, r) parameterizing
the directions orthogonal to these round spheres. We write (xμ) = (x j , x A) and hab =
hμν(dxμ)a(dxν)b. The Schwarzschild metric is written as

ḡ = − f (r)dt2 + f (r)−1dr2 + r2d�2
d−2 ≡ ḡi jdx

idx j + r2�ABdx
Adx B . (93)

ḡi jdxidx j is the metric of the space of SO(d−1)-orbits, with derivative Di , and is used
to raise and lower indices i, j, k, . . . . Following [33], metric perturbations are classified
into scalar-, vector- and tensor type as follows.

• Scalar perturbations are of the formhi j = fi jS, hi A = r fiSA, hAB = 2r2(HL�ABS+
HTSAB), where S denotes a scalar spherical harmonic with eigenvalue −k2S , where
SA,SAB are defined as in [33], and where fi , fi j , HL , HT do not depend on x A.
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• Vector perturbations are of the form hi j = 0, hi A = r fiVA, hAB

= −2r2k−1
V HT D̂(AVB), where VA denotes a vector spherical harmonic with eigen-

value −k2V .
• Tensor perturbations are of the form hi j = 0, hi A = 0, hAB = 2r2HTTAB , where
TAB . denotes a tensor spherical harmonic with eigenvalue −k2T .

The eigenvalues of the spherical harmonics are labelled by l ∈ N0, where l ≥ 0 for
scalar-, l ≥ 1 for vector-, and l ≥ 2 for tensor harmonics.

For Proposition 1,we consider static, asymptoticallyflat perturbations, i.e. ∂t hμν = 0,
with the usual fall-off conditions for |hμν | as r → ∞, see def. 2.1 of [10] for details.
The perturbation is additionally required to be regular at the horizon, r = r0. [26,33]
have constructed gauge invariant master variables for the scalar-, vector- and tensor-type
perturbations built from fi , fi j , HT , HL and the eigenvalues for each spherical harmonic
mode number l. In order for static solutions hab of the described type to exist, one has
to find a solution to the appropriate master equation with appropriately regular behavior
as r → r0 and r → ∞. In fact, [26] have obtained explicit solutions to these equations
for the static case for scalar type perturbations in terms of hypergeometric functions
of a variable directly related to r . They have shown using known asymptotic formulas
for hypergeometric functions that no non-zero solution with the prerequisite regularity
as r → r0 and r → ∞ exists, except for a 1-parameter family of perturbations of
Schwarzschild corresponding to an infinitesimal change in the Schwarzschild radius r0.
By a similar method, one can show that there are no regular, asymptotically flat vector-
or tensor type perturbations except for perturbations corresponding to an infinitesimal
set of rotation parameters in the d-dimensional Myers–Perry family of solutions. We
now go through these arguments in detail. Throughout this appendix, it is convenient to
define

n := d − 2, x :=
(r0
r

)n−1
. (94)

Note that n is not to be confused with the induction order as used in the main text.

E.1 Tensor perturbations. For tensor perturbations, the gauge invariant master variable
� is defined by HT = r−n/2�. For static perturbations � = �(x) and the master
equation is [33]

(n − 1)2x2(1 − x) �′′(x) + (n − 1)(n + (1 − 2n)x)x �′(x)

−
(

(l − 1)(l + n) +
n(n + 2)(1 − x)

4
+
n(n + 1)

2x

)

�(x) = 0
(95)
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The general solution is given in terms of Legendre- and hypergeometric functions by

�(x) = C1x
− n

2(n−1) P

(−l − n + 1

n − 1
,
x − 2

x

)

+ C2x
− n

2(n−1) Q

(−l − n + 1

n − 1
,
x − 2

x

)

= C3x
− n

2(n−1) F

(

− l

n − 1
,
l + n − 1

n − 1
; 1, 1

x

)

+

C4x
− n

2(n−1)

(
x − 2

x

) l
n−1 2

l
n−1

√
π�(− l

n−1 )

�( n−1−2l
2n−2 )

× F

(

− l

2n − 2
,
n − 1 − l

2n − 2
; n − 1 − 2l

2n − 2
,

x2

(x − 2)2

)

(96)
For asymptotic flatness, we need hAB = O(r) as r → ∞ at a minimum which implies
that we should have �(x) = O(x−(n−2)/2(n−1)) when x → 0. Due to the overall factor,
the second term clearly does not satisfy this so we must have C4 = 0. When l

(n−1)
is not a positive integer, we may apply a standard linear transformation formula for
hypergeometric functions to the first term, resulting in

�(x) = C3x
− n

2(n−1)
1

�(− l
n−1 )�( l+n−1

n−1 )

∞∑

k=0

(
− l

n−1

)

k

(
l+n−1
n−1

)

k

(k!)2

×
[

2ψ(k + 1) − ψ

(

− l

n − 1
+ k

)

− ψ

(

− l + n − 1

n − 1
+ k

)

− log

(
x − 1

x

)] (
1 − x

x

)k

(97)
This is singular at the horizon x = 1 and so is hAB . Therefore, we must have C3 = 0
and thus �(x) = 0. When l

(n−1) = m is a positive integer, the hypergeometric function
multiplied byC3 above becomes a polynomial in 1/x of degree at mostm. Then even for
the best possible casem = 1,� is singular at the horizon and so is hAB . Thus,�(x) = 0
in all cases and we conclude that there cannot exist static, regular, asymptotically flat
tensor perturbations.

E.2 Vector perturbations. For vector perturbations, the gauge invariant master variable
� is defined in terms of the tensor Fj (eq. 5.10 of [33]) by Fi = rn−1εi j D j (rn/2�),
except for the l = 1 mode. In that case we should instead consider the variable � =
2r ε̄i j Di (r−1 f j ) as the basic gauge invariant potential (eq. 5.16 of [33]). For static
perturbations, � = �(x) in either case.
l > 1: The master equation for a static vector perturbation is

(n − 1)2x2(1 − x) �′′(x) + (n − 1)(n + (1 − 2n)x)x �′(x)−
−

(

(l − 1)(l + n) +
n(n + 2)

4
− 3n2x

4

)

�(x) = 0
(98)

The general solution is

�(x) = C1x
− 2l+n

2(n−1) F

(−n − l

n − 1
,
n − l

n − 1
;− 2l

n − 1
, x

)

+

C2x
2l+n−2
2(n−1) F

(
l − 1

n − 1
,
l + 2n − 1

n − 1
; 2l + 2n − 2

n − 1
, x

) (99)
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At large distances, x → 0, the terms behave as ∼ C1x
− 2 l+n

2(n−1) respectively as ∼
C2x

2 l+n−2
2(n−1) . One sees from this that for the perturbation to be asymptotically flat we

must require C1 = 0. By applying a linear transformation formula for hypergeometric
functions to the second linearly independent solution multiplied by C2, we see that

�(x) = C2x
2l+n−2
2(n−1)

�( 2l+2n−2
n−1 )

�( l−1
n−1 )�( l+2n−1

n−1 )

∞∑

k=0

(
l−1
n−1

)

k

(
l+2n−1
n−1

)

k

(k!)2

×
[

2ψ(k + 1) − ψ

(
l − 1

n − 1
+ k

)

− ψ

(
l + 2n − 1

n − 1
+ k

)

− log (1 − x)

]

(1 − x)k

(100)
This has a logarithmic divergence for x → 1, i.e. at the horizon.
l = 1 : For static perturbations, the linearized Einstein equation yields �(r) = L/rn+1

for some real constant L , from which we learn that the only nonzero component of hμν

is hAt = r ftVA = L
(n+1)rn−1VA, where V

A is a Killing vector field of the n-sphere.
Such a perturbation corresponds to turning on an infinitesimal rotation parameter in the
Myers–Perry solution [38].

To summarize, the only static, regular, asymptotically flat vector perturbations cor-
respond to adding perturbatively a rotation to the Schwarzschild black hole towards a
Myers–Perry black hole.

E.3 Scalar perturbations. For scalar perturbations,we take as our gauge invariantmaster
variable, Y , the combination7 Y = rn−2( f −1Fi j (Dir)Djr − 2F), where Fi j , F are
defined in eqs. 2.7a,b of [33]. For static scalar perturbations, Y = Y (x), which is a
solution to the master equation

(n − 1)2x2(1 − x) Y ′′(x) − 2(n − 1)(1 + (n − 2)x)x Y ′(x)+

+

(

(n − 2)x − (l − 1)(n + l)

)

Y (x) = 0
(101)

The general solution is

Y (x) = C1x
− l−1

n−1 F

(
n − l − 1

n − 1
,− l

n − 1
;− 2l

n − 1
, x

)

+

C2x
l+n
n−1 F

(
n + l − 1

n − 1
,
2(n − 1) + l

n − 1
; 2(l + n − 1)

n − 1
, x

) (102)

To see which of these solutions correspond to a regular, asymptotically flat pertrubation,
we apply a gauge transformation to the perturbation to bring it into Regge-Wheeler
gauge in which fi = HT = 0. The transformed perturbation is still static, regular, and
asymptotically flat and takes the form

hμνdx
μdxν = −Ft

t f S dt2 + f −1Fr
r S dr2 + 2Fr2S �ABdx

Adx B (103)

7 Its relation to the master variable Ỹ obeying the Schrödinger-type equation 3.6 of [26] is Ỹ =
√

f
r

r
f ′ Y .
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where in the coordinate x the metric function f (x) = 1− x and the horizon is at x = 1.
The components of the gauge invariant variables F j

i , F are given by the master variable
Y and X = Y + 2 f Y ′/ f ′ through the relations

Ft
t = (n − 1)X − Y

nrn−2 , Fr
r = −X + (n − 1)Y

nrn−2 , Fr
t = 0, F = − X + Y

2nrn−2 , (104)

noting that Z = 0, see eqs. 4.2 of [26].
l > 0 : Using this together with the asymptotic forms of the hypergeometric functions,
we see that the first solution multiplied by C1 would give rise to Ft

t , F
r
r , F diverging

as rl for r → ∞. Therefore, asymptotic flatness requires C1 = 0. By applying an
appropriate linear transformation formula to the hypergeometric function multiplied by
C2, we obtain

Y (x) = C2x
n+l
n−1

[
�(γ2)

�(α2)�(β2)
(1 − x)−1+

+
�(γ2)

�(α2 − 1)�(β2 − 1)

∞∑

k=0

(α2)k (β2)k

k!(k + 1)! {log(1 − x) − ψ(k + 1) − ψ(k + 2)+

ψ(α2 + k) + ψ(β2 + k)}(1 − x)k
]

(105)
where α2 = n+l−1

n−1 , β2 = 2(n−1)+l
n−1 , γ2 = α2 + β2 − 1. Note that α2 > 1, β2 > 1. Near

the horizon we therefore find that for x → 1 we have the asymptotic behavior

X ∼ −Y ∼ −C2
�(γ2)

�(α2)�(β2)
(1 − x)−1 (106)

and therefore Ft
t and Fr

r both diverge as f (r)−1 at the horizon r → r0. Thus, there are
no static, regular, asymptotically flat scalar type perturbations when l > 0.
l = 0 : In this case, we have a spherically symmetric, static perturbation. It can be shown
by analyzing the perturbation equations that these correspond up to gauge precisely to
a perturbative change in the Schwarzschild radius, r0, hence to a perturbation towards
another Schwarzschild black hole.

Combining the results for scalar-, vector- and tensor perturbations and taking into
account the gauge transformations implicitly considered in the above arguments,we have
shown that hμν = zμν+Lξ ḡμν , where zμν corresponds to an infinitesimal variation of the
parameters in theMyers–Perry solution [38]. By assumption the coordinate components
hμν in an asymptotically Cartesian coordinate system built from (t, r, x A) fulfill the fall-
off conditions detailed in [10], def. 2.1, for r → ∞. Since furthermore ∂t hμν = 0 =
Lt zμν , it follows thatLξ ḡμν is asymptotically flat at I±, as we can see e.g. by analyzing
its behavior in the coordinates (t ± r, r, x A). Thus, ξa is an asymptotic symmetry at I±.

��
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