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Abstract: We study emergent oscillatory behavior in networks of diffusively coupled
nonlinear ordinary differential equations. Starting from a situation where each isolated
node possesses a globally attracting equilibrium point, we give, for an arbitrary net-
work configuration, general conditions for the existence of the diffusive coupling of
a homogeneous strength which makes the network dynamics chaotic. The method is
based on the theory of local bifurcations we develop for diffusively coupled networks.
We, in particular, introduce the class of the so-called versatile network configurations
and prove that the Taylor coefficients of the reduction to the center manifold for any
versatile network can take any given value.
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1. Introduction

Coupled dynamical systems play a prominent role in biology [8], chemistry [11], physics
and other fields of science [21]. Understanding the emergent dynamics of such systems
is a challenging problem depending starkly on the underlying interaction structure [9,
12,14,16,19].

In the early fifties, Turing thought of the emergent oscillatory behavior due to dif-
fusive interaction as a model for morphogenesis [23]. We note that weak coupling of
globally stable individual systems cannot alter the stability of the homogeneous regime,
this is the globally attracting state. At the same time, no matter what the individual
dynamics are, the strong diffusive coupling by itself stabilizes the homogeneous regime.
Therefore the idea that the intermediate strength diffusive coupling can create a non-
trivial collective behavior is quite paradoxical. However, in the mid-seventies, Smale
[20] proposed an example of diffusion-driven oscillations. He considered two 4th order
diffusively coupled differential equations which by themselves have globally asymp-
totically stable equilibrium points. Once the diffusive interaction is strong enough, the
coupled system exhibits oscillatory behavior. Smale posed a problem to find conditions
under which diffusively coupled systems would oscillate.

Tomberg and Yakubovich [22] proposed a solution to this problem for diffusive
interaction of two systems with scalar nonlinearity. For networks, Pogromsky, Glad and
Nijmeijer [18] showed that diffusion-driven oscillations can result from an Andronov-
Hopf bifurcation. Moreover, they presented conditions to ensure the emergence of oscil-
lations for general graphs. While this provides a good picture of the instability lead-
ing to periodic oscillations, there is evidence that the diffusive coupling may also lead
to chaotic oscillations. Indeed, Kocarev and Janic [10] provided numerical evidence
that two isolated Chua circuits having globally stable fixed points may exhibit chaotic
behavior when diffusively coupled. Along the same lines, Perlikowski and co-authors
[17] investigated numerically the dynamics of rings of unidirectionally coupled Duffing
oscillators. Starting from the situation where each oscillator has an exponentially stable
equilibrium point, once the oscillators are coupled akin to diffusion the authors found
a great variety of phenomena such as rotating waves, the birth of periodic dynamics, as
well as chaotic dynamics.

Drubi, Ibanez and Rodriguez [4] studied two diffusively coupled Brusselators. Start-
ing from a situation where the isolated systems have a globally stable fixed point, they
proved that the unfolding of the diffusively coupled system can display a homoclinic
loop with an invariant set of positive entropy.

In this paper, we provide general conditions for diffusively coupled identical systems
to exhibit chaotic oscillations. We describe necessary and sufficient conditions (the
so-called skewness condition) on the linearization matrix at an exponentially stable
equilibrium point of the isolated system such that for any network of such systems there
exists a diffusive coupling matrix such that the network has a nilpotent singularity and
thus a nontrivial centermanifold.When the network structure satisfies an extra condition,
whichwe call versatility, we show that Taylor coefficients of the vector field on the center
manifold are in general position. This allows us to employ the theory of bifurcations of
nilpotent singularities due to Arneodo, Coullet, Spiegel and Tresser [2] and Ibanez and
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Rodríguez [7] and to show that when the isolated system is at least four-dimensional,
invariant sets of positive entropy (i.e., chaos) emerge in such networks.

The paper is organized as follows: In Sect. 2, we formulate the main theorem. We
introduce basic concepts about graph theory, and introduce the notion of versatility. In
Sect. 3, we present examples and constructions of ρ-versatile graphs and illustrate some
of the other concepts appearing in the main theorem. In Sect. 4, we show the existence
of a positive-definite coupling matrix D that yields a nilpotent singularity in the network
system. In Sect. 5, we discuss the stability of the center manifold. Finally, in Sect.A, we
prove that chaotic behavior emerges in the coupled system by investigating the dynamics
on the center manifold.

1.1. The model. We consider ordinary differential equations ẋ = f (x) with f ∈
C∞(U,Rn), n ∈ N for some open set U ⊂ R

n . We assume that f has an exponentially
stable fixed point in U ; with no loss of generality we put the origin of coordinates to
this point. We study a network of such systems coupled together according to a given
graph structure by means of a diffusive interaction. Namely, we consider the following
equation:

ẋi = f (xi ) + α

N∑

j=1

wi j D(x j − xi ), i = 1, . . . , N , (1)

where α > 0 is the coupling strength, W = (wi j ) is the adjacency matrix of the graph,
thus, wi j = 1 if nodes i and j are connected and zero otherwise. Moreover, D is a
positive-definite matrix (that is xT Dx > 0 for all non-zero vectors x).

The homogeneous regime x = 0 persists for every value of the coupling strength α.
It keeps its stability for small α and is, typically, stable at sufficiently large α. However,
at intermediate values of the coupling strength, the stability of the homogeneous regime
can be lost. Our goal is to investigate the accompanying bifurcations. The difficulty
is that the structure of system (1) is quite rigid: all network nodes are the same (are
described by the same function f ) and the diffusion coupling αD is the same for any
pair of nodes. Therefore, the genericity arguments, standard for the bifurcation theory,
cannot be readily applied and must be re-examined.

1.2. Informal statement of main results. Our main goal is to give conditions for the
emergence of non-periodic dynamics in system (1). Denote by A = Df (0) the lin-
earization matrix n × n of the individual uncoupled system at zero. Recall that matrix
A is Hurwitz when all its eigenvalues have strictly negative real parts. Our main result
can be stated as follows.

Suppose that for some orthogonal basis the Hurwitz matrix A has m positive
entries on the diagonal. Then, there exists a positive-definite matrix D such that
the linearization of system (1) at the homogeneous equilibrium at zero has a zero
eigenvalue of multiplicity at least m for a certain value of the coupling parameter
α > 0. If the network satisfies a condition we call versatility, for an appropriate
choice of the nonlinearity of f , the corresponding center manifold has dimension
precisely m and the Taylor coefficients of the restriction of the system on the center
manifold can take on any prescribed value.
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The last statement means that the bifurcations of the homogeneous state of a versatile
network follow the same scenarios as general dynamical systems. Applying the results
for triple instability [4,7] we obtain the following result.

For n � 4, for any generic 3-parameter family of nonlinearities f and any
versatile network graph, one can find the positive-definite matrix D such that the
homogeneous state of the coupled system (1) has a triple instability at certain
value of the coupling strength α, leading to chaotic dynamics for a certain region
of parameter values.

The condition on the Jacobian of the isolated dynamics can be understood in a geo-
metric sense as follows. We write ẋ = f (x) = Ax +O(|x |2). We claim that if a nonzero
vector x0 ∈ R

n exists for which 〈x0, Ax0〉 > 0, then there are points arbitrarily close
to the origin, whose forward orbit has its Euclidian distance to the origin increasing
for some time, before coming closer to the (stable) origin again. To see why, consider
‖x(t)‖2 = 〈x(t), x(t)〉, then it follows that d

dt ‖x‖2 = 2〈Ax, x〉+O(|x |3), so 〈Ax, x〉 > 0
implies the growth of this derivative.

The property of versatility holds for graphs with heterogeneous degrees - the sim-
plest example is a star network. In a sense, versatility means that the network is not very
symmetric. Given a graph, one verifies whether the versatility property holds by evalu-
ating the eigenvectors of the graph’s Laplacian matrix, so it is an effectively verifiable
property.

It is possible that a similar theory can be developed for the Andronov-Hopf bifur-
cation in diffusively coupled networks (an analysis of diffusion-driven Andronov-Hopf
bifurcations was undertaken in [18] but the question of genericity of the restriction of
the network system to the central manifold was not addressed there).

We also point out that symmetry is often instrumental in explaining and predicting
anomalous behavior in network dynamical systems [1,14,15].

The network of just two symmetrically coupled systems has the corresponding graph
Laplacian that is not versatile, yet the emergence of chaos via the triple instability has
been established in [4] for the system of two diffusively coupled Brusselators. In general,
we do not know when the genericity of the Taylor coefficients of the center-manifold
reduced vector field would hold if the graph is not versatile or when graph symmetries
would impose conditions on the dynamics that forbid the existence of limiting sets of
positive entropy.

2. Main Results

We start by introducing the basic concepts involved in the set-up of the problem.

2.1. Graphs. AgraphG is an ordered pair (V, E), where V is a non empty set of vertices
and E is a set of edges connecting the vertices. We assume both to be finite and the graph
to be undirected. The order of the graph G is |V | = N , its number of vertices, and the
size is |E |, its number of edges. We will not consider graphs with self-loops. The degree
of a vertex is the number of edges that are connected to it.

ki =
N∑

j=1

wi j , (2)
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for i = 1, . . . , N . We also define K = diag{k1, . . . , kN } to be the diagonal matrix of
vertex degrees.

We only consider undirected graphs G, meaning that a vertex i is connected with
a vertex j if and only if it is vice-versa. Thus, the adjacency matrix W is a symmetric
matrix. In this context there is another important matrix related to the graph G, which
is the well-known Laplacian discrete matrix LG . It is defined by:

LG = K − W,

so that each entry li j of LG can be written as

li j = δi j ki − wi j , i, j = 1, . . . , N , (3)

where δi j is Kronecker’s delta. The matrix LG provides us with important information
about connectivity and synchronization of the network. It follows from Gershgorin disk
theorem [5] that LG is positive semi-definite and thus its eigenvalues can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN ,

and let {v1, . . . , vN } be the corresponding eigenvectors. We assume the network is con-
nected. This implies that the eigenvalue λ1 = 0 is simple.

We are interested in a well-behaved class of graphs G whose structure induces a
special property of the associated Laplacian matrix. This property will be the existence
of an eigenvector where the sum of certain coordinate powers is non-vanishing, which
corresponds to a simple eigenvalue of LG . To this end, we define:

Definition 1 (ρ-versatile graphs). Let G = (V, E) be a graph and ρ ∈ N a positive
integer.We say thatG isρ-versatile for the eigenvalue-eigenvector pair (λ, v)withλ > 0,
if the Laplacian matrix LG has a simple eigenvalue λ with corresponding eigenvector
v = (ν1, . . . , νN ), satisfying

N∑

i=1

ν�
i 	= 0, ∀� = 2, . . . , ρ + 1. (4)

Note that any eigenvector v = (ν1, . . . , νN ) for a non-zero eigenvalue necessarily
satisfies

∑N
i=1 νi = 0. This is because ν is orthogonal to the eigenvector (1, . . . , 1) for

the eigenvalue 0.

2.2. Parametrizations. We show that a system of diffusively coupled stable systems
can display a wide variety of dynamical behavior, including the onset of chaos. As the
coupling strength α increases, a non-trivial center manifold can emerge with no general
restrictions on the Taylor coefficients of the reduced dynamics.

Note that we may alternatively write Equation (1) in terms of the Laplacian:

ẋi = f (xi ) − α

N∑

j=1

li j Dx j , i = 1, . . . , N . (5)

Let X := col(x1, . . . , xN ) denote the vector formed by stacking xi ’s in a single column
vector. In the same way we define F(X) := col( f (x1), . . . , f (xN )). We obtain the
compact form for equations (1) and (5) given by

Ẋ = F(X) − α(LG ⊗ D)X, (6)
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where ⊗ stands for the Kronecker product. In order to analyze systems of the form (1),
we allow f to depend on a parameter ε taking values in some open neighborhood of the
origin 	 ⊆ R

d . For simplicity, we assume the fixed point at the origin persists:

f (0; ε) = 0 ∀ ε ∈ 	. (7)

We assume the origin to be exponentially stable for ε = 0, from which stability follows
for sufficiently small ε as well. Note that the non-linear diagonal map F now depends
on the parameter ε as well.

We start with our working definition of center manifold reduction.

Definition 2. Let

H : Rn × 	 → R
n (8)

be a family of vector fields onRn , parameterized by a variable ε in an open neighborhood
of the origin 	 ⊆ R

d . Assume that H(0; ε) = 0 for all ε ∈ 	, and denote by Ec ⊆
R
n the center subspace of the Jacobian Dx H(0; 0) in the direction of Rn . A (local)

parameterized center manifold of the system (8) is a (local) center manifold of the
unparameterized system H̃ on Rn × 	, given by

H̃(x; ε) = (H(x; ε), 0) ∈ R
n × R

d , (9)

for x ∈ R
n and ε ∈ 	. We say that the parameterized center manifold is of dimension

dim(Ec), and is parameterized by d variables. Under the assumptions on H , the center
subspace of H̃ at the origin is equal to Ec × R

d . We can show that the dynamics on the
center manifold of Equation (9) is conjugate to that of a locally defined system

R̃(xc; ε) = (R(xc; ε), 0) , (10)

on Ec × 	, where the conjugation respects the constant-ε fibers. The map R satisfies
R(0; ε) = 0 for all ε forwhich this local expression is defined, andwehave Dxc R(0; 0) =
Dx H(0; 0)|Ec : Ec → Ec.Wewill refer to R : Ec×	 → Ec as a parameterized reduced
vector field of H.

In the definition above, the constant and linear terms of the parameterized reduced
vector field R are given. Motivated by this, we will write H [2,ρ] for any map H to denote
the non-constant, non-linear terms in the Taylor expansion around the origin of H , up
to terms of order ρ. In other words, we have

H(x) = H(0) + DH(0)x + H [2,ρ](x) +O(||x ||ρ+1).
Given vector spaces W and W ′, we will use P l

2(W ;W ′) to denote the linear space
of polynomial maps from W to W ′ with terms of degree 2 through l. It follows that
H [2,l] ∈ P l

2(W ;W ′) for H : W → W ′.
We are interested in the situation where the domain of H involves some parameter

space 	, in which case H [2,ρ] involves all non-constant, non-linear terms up to order ρ

in both types of variables (parameter and phase space). For instance, if H is a map from
R × 	 to R with 	 ⊆ R, then H [2,3](x; ε) involves the terms

a1x
2, a2xε, a3ε

2, a4x
3, a5x

2ε, a6xε
2 and a7ε

3,

with some constants ai . Note that a condition on H might put restraints on H [2,ρ] as
well. For instance, if H(0; ε) = 0 for all ε ∈ 	, then H [2,3](x; ε) does not involve the
terms ε2 and ε3.
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2.3. Main theorems. We now formulate the main theorem, along with an important
corollary.

Theorem 3 (MainTheorem).For anyα ≥ 0, consider the ε-family of network dynamical
systems given by

Ẋ = F(X; ε) − α(LG ⊗ D)X. (11)

Denote by A = Dx f (0; 0) the Jacobian of the isolated dynamics. If there exist m
mutually orthogonal vectors x1, . . . , xm such that 〈xi , Axi 〉 > 0, then there exists a
positive-definite matrix D together with a number α∗ > 0 such that the system of
Equation (11) has a local parameterized center manifold of dimension at least m for
α = α∗.

Suppose that the graph G is ρ-versatile for the pair (λ, v). After an arbitrarily small
perturbation to A if needed, there exists a positive-definite matrix D and a number
α∗ > 0 such that the following holds:

1. The system of Equation (11) has a local parameterized center manifold of dimension
exactly m for α = α∗.

2. Denote by R : Ec × 	 → Ec the corresponding parameterized reduced vector field,
then R(0; ε) = 0 for all ε ∈ 	 and Dx R(0; 0) : Ec → Ec is nilpotent.

3. The higher order terms R[2,ρ] can take on any value in Pρ
2 (Ec × 	; Ec) (subject to

R[2,ρ](0; ε) = 0) as f [2,ρ] is varied (subject to f [2,ρ](0; ε) = 0).

The above result guarantees the existence of the center manifold and the reduced
vector field. When the dimension of the isolated dynamics is at least 4, the reduced
vector field can exhibit invariant sets of positive entropy as the following result shows.

Corollary 4 (Chaos). Assume the conditions of Theorem 3 to hold for m = 3 and
ρ = 2. Then, in a generic 3-parameter system we have the emergence of chaos through
the formation of a Shilnikov loop on the center manifold. In particular, chaos can form
this way in a system of 4-dimensional nodes coupled diffusively in a network.

In the Appendix, we show that the conditions of Theorem 3 are natural, by construct-
ing multiple classes of networks that are ρ-versatile for any ρ ∈ N, as well as by giving
examples of matrices A that satisfy the conditions of the theorem. In Subsect. A.1, we
present a geometric way of constructing ρ-versatile graphs, by means of the so-called
complement graph. In Subsect. A.2, we then show using direct estimates that star graphs
satisfy ρ-versatility. Finally, in Subsect. A.3, we present examples of matrices that sat-
isfy the conditions of Theorem 3. In particular, we will see that being Hurwitz is no
obstruction.

3. Proof of Main Theorem

In this section we present the proof of Theorem 3. We start by analyzing the linearized
system in Subsect. 3.1, after which we perform center manifold reduction and have a
detailed look at the reduced vector field in Subsect. 3.2.
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3.1. Linearization. In this subsection we investigate the linear part of the system

Ẋ = F(X; ε) − α(LG ⊗ D)X, (12)

from Theorem 3. Writing A ∈ R
n×n for the Jacobian of f at the origin, we see that the

linearization of Equation (12) at the origin is given by

Ẏ = (IdN ⊗A − αLG ⊗ D)Y. (13)

An important observation is the following: if v is an eigenvector of LG with eigen-
vector λ ∈ R, then the linearization above sends a vector v ⊗ x with x ∈ R

n to

(IdN ⊗A − αLG ⊗ D)(v ⊗ x) = v ⊗ Ax − αLGv ⊗ Dx (14)

= v ⊗ (A − αλD)x .

It follows that the space

v ⊗ R
n := {v ⊗ x | x ∈ R

n} ⊆ R
N ⊗ R

n (15)

is kept invariant by the linear map of Equation (13). We claim that v ⊗ R
n is in fact a

linear subspace.
Equation (14) tells us that the linearization (13) restricted to v ⊗ R

n is conjugate to
A − αλD : Rn → R

n .
Recall that eigenvectors vp and vq of LG corresponding to distinct eigenvalues can

be chosen to be orthonormal. Finally, we write

Vp := vp ⊗ R
n (16)

for the corresponding linear subspaces of RN ⊗ R
n . We thus have a direct sum decom-

position

R
N ⊗ R

n =
N⊕

p=1

Vp, (17)

where each component is respected by the linearization (13), with the restriction to Vp
conjugate to A−αλpD : Rn → R

n . We see that the spectrum of the linearization (13) is
given by the union of the spectra of the maps A−αλpD, with a straightforward relation
between the respective algebraic and geometric multiplicities.

This observation motivates the main result of this subsection, Proposition 6 below.
In what follows, we denote byMn(R) the space of n by n matrices over the field R.

We write 〈x, y〉 := xT y for the Euclidean inner product between vectors x, y ∈ R
n .

We state a technical lemma. Suppose we are given a block matrix

M =
(
M11 M12
M21 M22

)
(18)

with blocks M11, . . . , M22. If M22 is invertible then we may form the Schur complement
of M , given by

M/M22 := M11 − M12M
−1
22 M21. (19)

This expression has various useful properties. We are interested in the situation where
M is symmetric, so that MT

12 = M21, MT
11 = M11 and MT

22 = M22. In that case the
matrix M is positive-definite if and only if both M22 and M/M22 are positive-definite.
Using this result, we may prove:
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Lemma 5. Let

D =
(
A11 A12
A21 A22

)
(20)

be a block matrix and assume A22 = c Id for some scalar c ∈ R>0. Suppose furthermore
that A11 is positive-definite. Then, for c sufficiently large the matrix D is positive-definite
as well.

Proof. Clearly D is positive-definite if and only if the symmetric matrix

H := D + DT =
(
A11 + AT

11 A12 + AT
21

A21 + AT
12 2c Id

)
=

(
H11 H12

HT
12 H22

)
(21)

is positive-definite. We set H22 := 2c Id, H12 := A12 + AT
21 and H11 := A11 + AT

11, the
third of which is positive-definite as A11 is. As H22 = 2c Id is invertible with inverse
1/(2c) Id, we may form the Schur complement

H/H22 = H11 − H12H
−1
22 HT

12

= H11 − H12HT
12

2c
. (22)

As H22 is positive-definite, it follows from the above discussion that H is positive-
definite if and only H/H22 is. However, as c → ∞ we have H/H22 → H11, so H/H22
behaves like a small perturbation of H11, then it is positive-definite for c > 0 large
enough. This shows that D is likewise positive-definite for large enough c. �

Proposition 6. Let A ∈ Mn(R) be a matrix. There exist m mutually orthogonal vectors
x1, . . . , xm such that

〈xi , Axi 〉 > 0 for all i = 1, . . . ,m, (23)

if and only if there exists a positive-definite matrix D such that A − D has at least m
zero eigenvalues, counted with algebraic multiplicity.

Figure 1 shows an illustration of Proposition 6.

Remark 7. Note that any Hurwitz matrix A has a negative trace, as this number equals
the sum of its eigenvalues. It follows that Equation (23) can then only hold whenm < n,
where n is the size of A. In this case, if our goal is to find a 3-dimensional center manifold
for the network, we need 3 zero eigenvalues and so we must have at least n = 4.

Remark 8. The number of zero eigenvalues for A − D is directly connected with the
number ofmutually orthogonal vectors for Equation (23).Moreover, the positive-definite
matrix D that we construct is in general not unique. Hence, if we havem such orthogonal
vectors, then for each k ≤ m we might construct a different matrix D such that A − D
has k zero eigenvalues.
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Spec(A D)

x

iy(b)

Spec(A)

x

iy(a)

Fig. 1. An illustration of Proposition 6. Figure a) shows the eigenvalues of a particular matrix A, which might
be the linear part of the isolated dynamics f at the origin. The matrix A has 6 eigenvalues all strictly on the left
half of the complex plane. The existence of m = 3 mutually orthogonal vectors satisfying (23) ensures that a
positive-definite matrix D exists such that A− D has a 3-dimensional generalized kernel. In other words, the
subtraction of D has moved 3 eigenvalues to the origin, see Figure b).

Proof of Proposition 6. Suppose first that we have m mutually orthogonal vectors xi
such that for each i = 1, . . . ,m we have

〈xi , Axi 〉 = xTi Axi > 0. (24)

Note that we then also have

〈xi , (A + AT )xi 〉 = 2〈xi , Axi 〉 > 0 (25)

for all i . We may re-scale the xi by any non-zero factor, so that we will now assume
without loss of generality that ‖xi‖ = 1 for all i . We start by constructing an auxiliary
upper-diagonal (m × m)-matrix P as follows:

P = PA =

⎛

⎜⎜⎝

0 p1,2 · · · p1,m
0 0 · · · p2,m
...

...
. . .

...

0 0 · · · 0

⎞

⎟⎟⎠

m×m

,

where each entry pi, j is defined by the rule:

pi, j = xTi (A + AT )x j , for all i < j;
pi, j = 0, for all i ≥ j.

We construct D by first defining it on the mutually orthogonal vectors x1, . . . , xm as:

Dx1 = Ax1 (26)

Dx2 = Ax2 − p1,2x1
...

Dxm = Axm − p1,mx1 − · · · − pm−1,mxm−1.

Note that (A − D)x1 = 0, whereas (A − D)x2 ∈ span(x1), (A − D)x3 ∈ span(x1, x2)
and so forth. This shows that the restriction of A − D to span(x1, . . . , xm) is nilpotent.
Equation (26) can be rewritten as

(A − D)n×n Xn×m = Xn×m Pm×m, (27)
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with X = (x1 · · · xm) the (n×m)-matrix with columns given by the vectors x1, . . . , xm .
To complete our construction of D, we let ym+1, . . . , yn ∈ R

n bemutually orthogonal
vectors of norm 1 such that yk ⊥ xi for all i = 1, . . . ,m and k = m + 1, . . . , n. We
define D on span(ym+1, . . . , yn) by simply setting Dyk = cyk for all k and some constant
c > 0 that will be determined later.

To show that c can be chosen such that D is positive-definite, let z ∈ R
n be any

non-zero vector and write

z = Xa + Yb

where Y = (ym+1 · · · yn) is the (n × (m − n))-matrix with columns the vectors yk ,
and where a ∈ R

m, b ∈ R
n−m express the components of z with respect to the basis

{x1, . . . , xm, ym+1, . . . , yn}. Note that we have
XT X = Im×m, Y T Y = I(n−m)×(n−m), (28)

XT Y = 0m×(n−m), Y T X = 0(n−m)×m, DY = cY,

by construction. We calculate

zT Dz = (Xa + Yb)T D(Xa + Yb)

= aT XT DXa + aT XT DYb + bT Y T DXa + bT Y T DYb

= aT XT (AX − X P)a + aT XT DYb + bT Y T (AX − X P)a + bT Y T DYb

= aT (XT AX − XT X P)a + aT XT cYb + bT (Y T AX − Y T X P)a + bT Y T cYb

= aT (XT AX − P)a + bT Y T AXa + cbT b, (29)

where in the third step we have used Equation (27), and where me make use of the
identities in (28). We see that D is positive-definite if the same holds for the matrix

D̃ =
(
XT AX − P 0
Y T AX c Id

)
. (30)

Next, we claim that the (m × m)-matrix XT AX − P is positive-definite. Indeed, by
definition of P we have

(XT AX − P) + (XT AX − P)T = XT (A + AT )X − (P + PT )

= diag(2xT1 Ax1, . . . , 2x
T
m Axm),

which is a diagonal matrix and positive-definite by the hypothesis (23). We may thus
apply Lemma 5 to D̃, so that for c > 0 sufficiently large D̃ and D are indeed positive-
definite.

Conversely, suppose there exists a positive-definite matrix D such that

A − D has m zero eigenvalues.

We will prove that m mutually orthogonal vectors x1, . . . , xm exist satisfying

〈xi , Axi 〉 > 0 for all i = 1, . . . ,m. (31)

By assumption, we may choose m linearly independent vectors y1, . . . , ym such that

(A − D)y1 = 0 and (A − D)yi = ιi yi−1 for i = 2, . . . ,m,
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where ιi ∈ {0, 1} for all i > 1. Next, we apply the Gram-Schmidt orthonormalization
process to the vectors yi . That is, we set

x1 = y1
x2 = y2 − α2,1 · x1
... (32)

xi = yi − αi,1 · x1 − αi,2 · x2 − · · · − αi,i−1 · xi−1,

where each coefficient is given by

αi, j = 〈yi , x j 〉
〈x j , x j 〉 for j < i.

It follows that 〈xi , x j 〉 = 0 whenever i 	= j . Moreover, we see from Equation (32) that
we may write

xi = yi +
∑

j<i

βi, j y j and thus yi = xi +
∑

j<i

β ′
i, j x j (33)

for some coefficients βi, j , β
′
i, j ∈ R. We therefore have (A− D)x1 = 0, and for 2 ≤ i ≤

m we find

(A − D)xi = (A − D)

⎛

⎝yi +
∑

j<i

βi, j y j

⎞

⎠ = (A − D)yi +
∑

j<i

βi, j (A − D)y j (34)

= ιi yi−1 +
∑

1< j<i

βi, j ι j y j−1 =
∑

j<i

γi, j x j ,

for certain γi, j ∈ R. By orthogonality of the xi we get

xT1 (A − D)x1 = 0 and

xTi (A − D)xi =
∑

j<i

γi, j x
T
i x j = 0

for all i = 2, . . . ,m. Finally, it follows that

xTi Axi = xTi Dxi > 0 for all i = 1, . . . ,m,

which completes the proof. �
Corollary 9. The proof of Proposition 6 tells us that the remaining eigenvalues of A−D
may be assumed to have (large) negative real parts.

Proof. If m mutually orthogonal vectors x1, . . . , xm exist such that

〈xi , Axi 〉 > 0 for all i = 1, . . . ,m, (35)

then a positive-definite matrix D is constructed such that the restriction of A − D to
span(x1, . . . , xm) is nilpotent. In particular, A − D maps the space span(x1, . . . , xm)

into itself. It follows that the remaining eigenvalues of A − D are given by those of
the ‘other’ diagonal block PU (A − D)|U : U → U , where U is some complement
to span(x1, . . . , xm) and PU is the projection onto U along span(x1, . . . , xm). If we
choose U = span(ym+1, . . . , yn) as in the proof of Proposition 6, then we see that
PU (A − D)|U = PU A|U − c IdY . Choosing c > 0 large enough then ensures that the
remaining eigenvalues of A − D are stable. �
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Corollary 10. It follows from the proof of Proposition 6 that A − D can generically
be assumed to have a one-dimensional kernel. In other words, whereas the algebraic
multiplicity of the eigenvalue 0 is m, its geometric multiplicity is generically equal to 1.

Proof. To see why, assume c > 0 is large enough so that A−D has a generalized kernel
of dimension precisely m, see Corollary 9. From the proof of Proposition 6 we see that
the restriction of A − D to its generalized kernel is conjugate to P . It follows that the
dimension of the kernel of A − D is equal to 1 if

pi,i+1 = xTi (A + AT )xi+1 	= 0 for all i ∈ {1, . . . ,m − 1}. (36)

This may be assumed to hold after a perturbation of the form

A �→ A + ε1x1x
T
2 + · · · + εm−1xm−1x

T
m , (37)

for some arbitrarily small ε1, . . . , εm−1 > 0, if necessary. As a result, the matrix A− D
has a single Jordan block of size m for the eigenvalue 0. �

Example 1 below shows that the condition (23) imposed on A does not exclude
Hurwitz matrices. This might seem surprising, as for any eigenvector x corresponding
to a real eigenvalue λ < 0 we have xT Ax = λ‖x‖2 < 0. Moreover, it holds that any
positive-definite matrix D has only eigenvalues with positive real part, see Lemma 11
below. This result is well-known, but included here for completeness.

Lemma 11. Let D ∈ Mn(R) be a real positive-definite matrix (though not necessarily
symmetric). That is, assume we have xT Dx > 0 for all non-zero x ∈ R

n. Then, any
eigenvalue of D has positive real part.

Proof. Letλbe an eigenvalueof Dwith corresponding eigenvector x .Wewriteλ = ξ+iζ
and x = u + iv for their decomposition into real and imaginary parts. On the one hand,
we find

x̄ T Dx = x̄ T λx = ‖x‖2λ = ‖x‖2(ξ + iζ ). (38)

On the other, we have

x̄ T Dx = (u − iv)T D(u + iv) = uT Du + vT Dv + i(uT Dv − vT Du). (39)

Comparing the real parts of equations (38) and (39), we conclude that

‖x‖2ξ = uT Du + vT Dv > 0, (40)

where we use that u and v cannot both be zero. Hence, we see that indeed ξ > 0. �

Example 1. Consider the (4 × 4) matrix:

A =
⎛

⎜⎝

1 1 0 0
−1 1 1 0
0 −1 1 16.94
1 −4.24 −4.24 −17.94

⎞

⎟⎠ .
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Thematrix A is Hurwitz andEquation (23) holds form = 3with e1 = (1, 0, 0, 0)T , e2 =
(0, 1, 0, 0)T and e3 = (0, 0, 1, 0)T .Wemay determine the upper-diagonal (3×3)-matrix
P from the proof of Proposition 6 by calculating

p1,2 = eT1 (A + AT )e2

p1,3 = eT1 (A + AT )e3

p2,3 = eT2 (A + AT )e3

where

A + AT =
⎛

⎜⎝

2 0 0 1
0 2 0 −4.24
0 0 2 12.7
1 −4.24 12.7 −35.88

⎞

⎟⎠ .

It follows that p1,2 = p1,3 = p2,3 = 0, which implies we have P = 0. As in the proof
of Proposition 6, we first define D ∈ M4(R) on span(e1, e2, e3) = {x ∈ R

4 | x4 = 0}
by setting:

De1 = Ae1
De2 = Ae2 − p1,2e1 = Ae2
De3 = Ae3 − p1,3e1 − p2,3e2 = Ae3.

Hence, D agrees with A in the first three columns. To complete our construction of D,
we have to choose a non-zero vector u such that u ⊥ ei for i = 1, 2, 3, and set Du = cu
for some c > 0. To this end, we set u = e4, so that D becomes:

D =
⎛

⎜⎝

1 1 0 0
−1 1 1 0
0 −1 1 0
1 −4.24 −4.24 c

⎞

⎟⎠ .

It follows that

A − D =
⎛

⎜⎝

0 0 0 0
0 0 0 0
0 0 0 16.94
0 0 0 −17.94 − c

⎞

⎟⎠

which has a zero eigenvalue with geometric multiplicity 3 and a negative eigenvalue
(−17.94 − c) equal to its trace. Moreover, by the Lemma 5, D is positive-definite for
large enough c > 0. Indeed, in this case, we numerically found that for all c ≥ 9.24 is
enough.

Example 2. The matrix

A =
⎛

⎜⎝

−6 2 1 −3
2 −8 −1 −2
1 −1 −3.4 0

−3 −2 0 −6

⎞

⎟⎠ (41)

is Hurwitz, but symmetric. Thus, there are no vectors x ∈ R
4 such that 〈x, Ax〉 > 0.
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To control a bifurcation in the system (12), we need to rule out additional eigenvalues
laying on the imaginary axis. Recall that the eigenvalues of the linearization (13) are
given by those of A − αλpD with λp ≥ 0 an eigenvalue of LG . Lemma (12) below
shows that generically only one of the matrices A − αλpD is non-hyperbolic. In what
follows we denote by ‖ · ‖ the operator norm induced by the Euclidean norm on Rn .

Lemma 12. Let A, D ∈ Mn(R) be two given matrices with D positive-definite, and
let α∗ ∈ R be a positive scalar. We furthermore assume {λ1, . . . , λK } is a set of real
numbers and consider the matrices A − α∗λi D for i ∈ {1, . . . , K }. Given any ε > 0,
there exist a matrix Ã and a positive-definite matrix D̃ such that ‖A− Ã‖, ‖D− D̃‖ < ε

and Ã−α∗λK D̃ = A−α∗λK D.Moreover, for i ∈ {1, . . . , K−1} the matrix Ã−α∗λi D̃
has a purely hyperbolic spectrum (i.e. no eigenvalues on the imaginary axis).

Remark 13. From ‖A − Ã‖, ‖D − D̃‖ < ε we get

‖(A − α∗λi D) − ( Ã − α∗λi D̃))‖ ≤ ‖A − Ã‖ + α∗|λi |‖D − D̃‖ < ε(1 + α∗|λi |),
so that we may arrange for Ã− α∗λi D̃ to be arbitrarily close to the original A− α∗λi D
for all i . Moreover, if A is hyperbolic then for ε small enough so is Ã, with the same
number of stable and unstable eigenvalues. In particular, Ã may be assumed Hurwitz if
A is.

Proof of Lemma 12. Let δ 	= 0 be given and set

Ãδ := A + δ Id (42)

D̃δ := D +
δ

α∗λK
Id . (43)

Note that the symmetric parts of D̃δ and D differ by δ
α∗λK

Id as well, so that D̃δ remains
positive-definite for |δ| small enough. It is also clear that

lim
δ→0

‖A − Ãδ‖ = lim
δ→0

‖D − D̃δ‖ = 0.

A direct calculation shows that

Ãδ − α∗λi D̃δ = A + δ Id−α∗λi
(
D +

δ

α∗λK
Id

)

= A + δ Id−α∗λi D − δλi

λK
Id

= (A − α∗λi D) +

(
1 − λi

λK

)
δ Id , (44)

for all i ∈ {1, . . . , K }. It follows that we have Ãδ − α∗λK D̃δ = A − α∗λK D. For
i 	= K we see that Ãδ − α∗λi D̃δ differs from A − α∗λi D by a non-zero scalar multiple
of the identity. It follows that for δ 	= 0 small enough all the matrices Ãδ − α∗λi D̃δ

for i ∈ {1, . . . , K − 1} have their eigenvalues away from the imaginary axis. Setting
Ã := Ãδ and D̃ := D̃δ with δ = δ(ε) small enough then finishes the proof. �



2730 E. Nijholt, T. Pereira, F. C. Queiroz, D. Turaev

3.2. Center manifold reduction. Let us now assume A, D and α∗ are given such that
for a particular eigenvalue λ > 0 of LG the matrix A − α∗λD has an m-dimensional
center subspace. We moreover assume λ is simple and, motivated by Lemma 12, that
the matrices A− α∗κD are hyperbolic for any other eigenvalue κ of LG . It follows that
the linearization

IdN ⊗A − α∗LG ⊗ D : RN ⊗ R
n → R

N ⊗ R
n (45)

of (13) has an m-dimensional center subspace as well.
In what follows, we write Îs for the indices of all remaining eigenvalues of LG except

the index s. In other words, writing 0 = λ1 < λ2 ≤ · · · ≤ λN for the eigenvalues of
LG , we have λ = λs for some s ∈ {2, . . . , N } and we set Îs = {1, . . . , N }\{s}. We
will likewise fix an orthonormal set of eigenvectors v1, . . . , vN for LG and simply write
v = vs for the eigenvector corresponding to our fixed eigenvalue λ = λs . Arguably
the most natural situation is given by s = N , corresponding to the situation where α is
increased until the eigenvalues of A − αλN D first hit the imaginary axis for α = α∗.
However, we will not need this assumption here.

Next, given a vector u ∈ R
N we denote by φu : RN → R

N the linear map defined
by

φu(w) = 〈u, w〉u. (46)

Note that φu is a projection if ‖u‖ = 1. Finally, we write Ec, Eh ⊆ R
n for the center-

and hyperbolic subspaces of A − α∗λD, respectively. It follows that

R
n = Ec ⊕ Eh, (47)

and we denote the projections onto the first and second component by πc and πh =
Idn −πc, respectively. Likewise, we denote the center- and hyperbolic subspaces of
the map (45) by Ec, Eh ⊆ R

N ⊗ R
n . Their projections are denoted by �c and �h .

The following lemma establishes some important relations between the aforementioned
maps and spaces.

Lemma 14. The spaces Ec and Ec are related by

Ec = v ⊗ Ec, (48)

and we have

Eh = (v ⊗ Eh)
⊕

i∈ Îs
(vi ⊗ R

n). (49)

Moreover, it holds that

�c = φv ⊗ πc. (50)

Proof. The identities (48) and (49) follow directly from the fact that the linear map (45)
sends a vector vi ⊗ x to vi ⊗ (A − α∗λi D)(x) for all i ∈ {1, . . . , N } and x ∈ R

n . To
show that �c is indeed given by φv ⊗ πc, we have to show that the latter vanishes on
Eh and restricts to the identity on Ec. To this end, note that for all i ∈ Îs and x ∈ R

n we
have

(φv ⊗ πc)(vi ⊗ x) = φv(vi ) ⊗ πc(x) = 〈v, vi 〉v ⊗ πc(x) = 0. (51)
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Given xh ∈ Eh and xc ∈ Ec, we find

(φv ⊗ πc)(v ⊗ xh) = φv(v) ⊗ πc(xh) = 0 and

(φv ⊗ πc)(v ⊗ xc) = φv(v) ⊗ πc(xc) = 〈v, v〉v ⊗ xc = v ⊗ xc , (52)

so that indeed (φv ⊗ πc)|Eh = 0 and (φv ⊗ πc)|Ec = IdEc . This completes the proof. �

Next, we investigate the dynamics on a center manifold of the system

Ẋ = F(X; ε) − α∗(LG ⊗ D)X, (53)

which will lead to a proof of Theorem 3.
Recall that center manifold theory predicts a locally defined map � : Ec × 	 →

Eh whose graph Mc is invariant for the system (53) and locally contains all bounded
solutions. The map � satisfies �(0; 0) = 0 and D�(0; 0) = 0. In fact, as we assume
F(0; ε) = 0 for all ε ∈ 	, it follows that (0; ε) ∈ Mc, as these are bounded solutions.
This shows that �(0; ε) = 0 for all ε ∈ 	.

In light of Lemma 14, we may write

�(v ⊗ xc; ε) = v ⊗ ψ(xc; ε) +
∑

i∈ Îs
vi ⊗ ψi (xc; ε) , (54)

for certain maps ψ : Ec × 	 → Eh and ψi : Ec × 	 → R
n . We then likewise have

ψ(0; ε) = 0, Dψ(0; 0) = 0 and ψi (0; ε) = 0, Dψi (0; 0) = 0 for all ε ∈ 	 and i ∈ Îs .
The dynamics on the center manifold Mc is conjugate to that of a vector field on

Ec × 	 given by

R̃(Xc; ε) = �cS(Xc, �(Xc; ε); ε) , (55)

where we write

S(Xc, Xh; ε) = F(Xc + Xh; ε) − α∗(LG ⊗ D)(Xc + Xh) (56)

for the vector field on the right hand side of (53), with Xc ∈ Ec, Xh ∈ Eh and ε ∈ 	.
We further conjugate to a vector field R on Ec × 	 by setting

v ⊗ R(xc; ε) = R̃(v ⊗ xc; ε) . (57)

In order to describe R, we first introduce some useful notation. Given X ∈ R
N ⊗ R

n ,
we may write

X =
N∑

p=1

ep ⊗ xp (58)

with e1, . . . , eN the canonical basis of RN and for some unique vectors xp ∈ R
n . In

general, given p ∈ {1, . . . , N } we will denote by xp ∈ R
n the pth component of X as

in the decomposition (58). Recall that v = (ν1, . . . , νN ) is the eigenvector associated
with λ. Using this notation, we have the following result.
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Proposition 15. Denote by h : Rn ×	 → R
n the non-linear part of f . That is, we have

f (x; ε) = Ax + h(x; ε). The reduced vector field R is given explicitly by

R(xc; ε) = (A − α∗λD)xc +
N∑

p=1

νpπ
ch(νpxc + �(xc ⊗ v; ε)p; ε) , (59)

for xc ∈ Ec and ε ∈ 	.

Proof. We write S(X; ε) = S(Xc, Xh; ε) = J X + H(X; ε) with J = DX S(0; 0) and
where H denotes higher order terms. It follows that

�cS(Xc, �(Xc; ε); ε) = �c J (Xc + �(Xc; ε)) + �cH(Xc, �(Xc; ε); ε). (60)

We start by focusing on the first term. As J sends Ec to Ec and Eh to Eh , we conclude
that �c J = J�c. We therefore find

�c J (Xc + �(Xc; ε)) = J�c(Xc + �(Xc; ε)) = J Xc. (61)

Writing Xc = v ⊗ xc and using Expression (13) for J , we conclude that the linear part
of R̃ is given by

J (v ⊗ xc) = v ⊗ (A − α∗λD)xc. (62)

We next focus on the second term in Equation (60). Note that we have

H(X; ε)p = h(xp; ε) for all p ∈ {1, . . . , N }. (63)

Now, by Lemma 14 it follows that we may write

�c(X) =
N∑

p=1

�c(ep ⊗ xp) =
N∑

p=1

φv(ep) ⊗ πc(xp) =
N∑

p=1

〈v, ep〉v ⊗ πc(xp)

=
N∑

p=1

νp(v ⊗ πc(xp)) (64)

= v ⊗
N∑

p=1

νpπ
c(xp) for all X ∈ R

N ⊗ R
n .

We therefore find

�c(H(Xc, �(Xc; ε); ε)) = v ⊗
N∑

p=1

νpπ
ch([Xc + �(Xc; ε)]p; ε) . (65)

Next, we have (Xc)p = (v ⊗ xc)p = νpxc, so that we find

�c(H(Xc, �(Xc; ε); ε)) = v ⊗
N∑

p=1

νpπ
ch(vpxc + �(Xc; ε)p; ε) . (66)
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Combining equations (62) and (66), we arrive at

R̃(Xc; ε) = �c(S(Xc, �(Xc; ε); ε)) = v ⊗ (A − α∗λD)xc

+ v ⊗
N∑

p=1

νpπ
ch(νpxc + �(Xc; ε)p; ε) . (67)

Finally, from Eq.57 we get

R(xc; ε) = (A − α∗λD)xc +
N∑

p=1

νpπ
ch(νpxc + �(v ⊗ xc; ε)p; ε) , (68)

which completes the proof. �

To further investigate the Taylor expansion of R(xc; ε), we need to know more about
how the coefficients of � : Ec × 	 → Eh depend on those of F .

To this end, let us consider for a moment the general situation where S is some vector
field onRk (in our case k = nN ) satisfying S(X) = J X +H(X) for some H : Rn → R

n

satisfying H(0) = 0, DH(0) = 0. We furthermore let Êc and Êh denote the center-
and hyperbolic subspaces of J , respectively, and write �c,�h for the corresponding
projections. Suppose � : Êc → Êh is a locally defined map whose graph is a center
manifold Mc for the system Ẋ = S(X). Recall that we have �(0) = 0 and D�(0) = 0.
Moreover, asMc is a flow-invariantmanifold,we see that S|Mc takes values in the tangent
bundle of Mc. This can be used to iteratively solve for the higher order coefficients of
an expansion of � around 0.

More precisely, the tangent space at Xc +�(Xc) ∈ Mc is given by all vectors of the
form (Vc, D�(Xc)Vc) ∈ Êc ⊕ Êh , with Vc ∈ Êc. Invariance under the flow of S then
translates to the identity

�h J�(Xc) + �h H(Xc, �(Xc)) = D�(Xc)(�
c J Xc + �cH(Xc, �(Xc))) , (69)

for Xc in some open neighborhood of the origin in Êc. Equation (69) can be used to
show that D�(0) = 0. Equation (69) can also be arranged to

�h J�(Xc) − D�(Xc)�
c J Xc = D�(Xc)�

cH(Xc, �(Xc)) − �hH(Xc, �(Xc)) .

(70)

As � only has terms of degree 2 and higher, the same holds for both sides of Equa-
tion (70), which depend on � and H . More generally, using �ρ to denote the terms of
order ρ ≥ 2 in the Taylor expansion of � around the origin, Equation (70) is readily
seen to imply for each ρ

�h J�ρ(Xc) − D�ρ(Xc)�
c J Xc = Pρ(Xc) , (71)

for some homogeneous polynomial Pρ of order ρ. Moreover, Pρ depends only on
�2(Xc) . . . , �ρ−1(Xc) and on the Taylor expansion of H up to order ρ. It can be
shown that for fixed J and Pρ , Equation (71) has a unique solution �ρ in the form
of a homogeneous polynomial of order ρ, see [24]. As a result, we get the following
important observation:
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Lemma 16. We may iteratively solve for the terms �ρ using expression (71). Moreover,
for fixed linearity J , the terms of order ρ and less of � are fully determined by the terms
of order ρ and less of H.

We return to our main setting where R(xc; ε) is the reduced vector field of the system
(53) as described in Proposition 15. Note that the presence of a parameter ε means that
the center subspace Êc in the observations for general vector fields above is now given
by Ec × 	.

Lemma 17. Let ρ > 1 be given, and suppose the vector v = (ν1, . . . , νN ) ∈ R
N

satisfies

N∑

p=1

ν�
p 	= 0, ∀ � = 2, . . . , ρ + 1. (72)

Then the reduced vector field R(xc; ε) as described in Proposition 15 can have any
Taylor expansion around 0 of order 2 to ρ, subject to R(0; ε) = 0, if no conditions are
put on the nonlinear part of f other than f (0; ε) = 0 and sufficient smoothness.

Proof. From Proposition 15 we know that

R(xc; ε) = (A − α∗λD)xc +
N∑

p=1

νpπ
ch(νpxc + �(v ⊗ xc; ε)p; ε) . (73)

As we have �(0; ε) = 0 and h(0; ε) = 0, we conclude that likewise R(0; ε) = 0 for
all ε ∈ 	. In particular, we see that DεR(0; 0) = 0, whereas Equation (73) tells us that
Dxc R(0; 0) = (A − α∗λD)|Ec .
As a warm-up, we start by investigating the second order terms of R. To this end, we
write

h(x; ε) = Q1,1(x; ε) + Q2,0(x) +O(|(x, ε)|3), (74)

where Q1,1 is linear in both components and Q2,0 is a quadratic form. It follows that

h(νpxc + �(v ⊗ xc; ε)p; ε) = Q1,1(νpxc + �(v ⊗ xc; ε)p; ε) + Q2,0(νpxc

+�(v ⊗ xc; ε)p) +O(|(xc, ε)|3)
= Q1,1(νpxc; ε) + Q2,0(νpxc) +O(|(xc, ε)|3),

where we use that�(v⊗ xc; ε) has no constant or linear terms in (xc; ε). From Equation
(74) we obtain

N∑

p=1

νpπ
ch(vpxc + �(v ⊗ xc; ε)p; ε) = πc

N∑

p=1

νpQ1,1(νpxc; ε) + πc
N∑

p=1

νpQ2,0(νpxc)

+O(|(xc, ε)|3)

= πc
N∑

p=1

ν2pQ1,1(xc; ε) + πc
N∑

p=1

ν3pQ2,0(xc)

+O(|(xc, ε)|3).
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Aswe assume
∑N

p=1 ν3p 	= 0, we see that the second order Taylor coefficients of R(xc; ε)

can be chosen freely (except for the O(|ε|2) term).
Now suppose we are given a polynomial map P : Ec × 	 → Ec of degree ρ

satisfying DP(0) = ((A − α∗λD)|Ec ; 0) and P(0; ε) = 0 for all ε. We will prove by
induction that we may choose the terms in the Taylor expansion of h up to order ρ in
the variables xc and ε such that the Taylor expansion up to order ρ of R agrees with
P . To this end, suppose some choice of h gives agreement between P and the Taylor
expansion of R up to order 2 ≤ k < ρ. By the foregoing, this can be arranged for k = 2.

We start by remarking that a change to h that does not influence its Taylor expansion up
to order k does not change the Taylor expansion of� up to order k. This follows directly
from Lemma 16. As a result, such a change does not influence the Taylor expansion of
R up to order k as well. We write

h̃(xc; ε) = h(xc; ε) +
k+1∑

i=1

Qi,k+1−i (xc; ε) (75)

for an order k + 1 change to h, where each component of Qi, j : Rn × 	 → R
n is a

homogeneous polynomial of degree i in xc and degree j in ε. The (k + 1)-order terms
of R in (xc; ε) are given by the (k + 1)-order terms of

N∑

p=1

νpπ
ch̃(νpxc + �(v ⊗ xc; ε)p; ε)

=
N∑

p=1

νpπ
c
(
h(νpxc + �(v ⊗ xc; ε)p; ε) +

k+1∑

i=1

Qi,k+1−i (νpxc + �(v ⊗ xc; ε)p; ε)

)
.

(76)

As both h and � have no constant and linear terms, we see that the (k + 1)-order terms
of R are also given by those of

N∑

p=1

νpπ
c
(
h(νpxc + �k(v ⊗ xc; ε)p; ε) +

k+1∑

i=1

Qi,k+1−i (νpxc; ε)

)
, (77)

where �k denotes the terms of � up to order k. As we have previously argued, �k is
independent of the additional terms Qi,k+1−i . Hence, we may write the order k +1 terms
in Expression (77) as

W (xc; ε) +
N∑

p=1

νpπ
c
k+1∑

i=1

Qi,k+1−i (νpxc; ε) = W (xc; ε) +
N∑

p=1

νpπ
c
k+1∑

i=1

νipQi,k+1−i (xc; ε)

= W (xc; ε) +
k+1∑

i=1

( N∑

p=1

νi+1p

)
πcQi,k+1−i (xc; ε) ,

(78)

where W (xc; ε) denotes the order k + 1 terms of

N∑

p=1

νpπ
ch(νpxc + �k(v ⊗ xc; ε)p; ε).
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As
∑N

p=1 v
j
p 	= 0 for all j ∈ {2, . . . , ρ + 1}, we see that the order k + 1 terms of R

may be freely chosen. In other words, we may arrange for the Taylor expansion up to
order k + 1 of R to agree with that of P up to order k + 1. This completes the proof by
induction. �
Proof of Theorem 3. If there exist m mutually orthogonal vectors x1, . . . , xm such that
〈xi , Axi 〉 > 0, then Proposition 6 guarantees the existence of a positive-definite matrix
D such that A− D has a center subspace of dimension m or higher. Given any non-zero
eigenvalue λ of LG , we may set α∗ = 1/λ and conclude that A − α∗λD has a center
subspace of dimension at least m. As the eigenvalues of the linearization of (11) around
the origin are given by those of the maps A − αλD for λ an eigenvalue of LG , we see
that the system (11) has a local parameterized center manifold of dimension at least m
for some choices of D and α = α∗.

If the graph G is ρ-versatile for the pair (λ, v), then a choice of D as above together
with α∗ = 1/λ guarantees A − D has a center subspace of dimension at least m.
By Corollary 9 we may assume this center subspace to be of dimension precisely m.
Moreover, by Lemma 12 we may assume A− α∗λi D to have a hyperbolic spectrum for
all other eigenvalues λi 	= λ of LG , after an arbitrarily small perturbation to A and D if
necessary. It follows that the system (11) has a local parameterized center manifold of
dimension exactlym. We argue in the proof of Lemma 17 that R(0; ε) = 0 for all ε, and
that DR(0; 0) = ((A − α∗λD)|Ec ; 0). This latter map is nilpotent by the statement of
Proposition 6. Finally, Lemma 17 shows that any Taylor expansion can be realized for
R up to order ρ, subject to the aforementioned restrictions. �

4. Stability of the Center Manifold

In this section we investigate the stability of the center manifold of the full network
system. We know that the spectrum of the linearization of this system is fully under-
stood if we know the spectrum of the matrices A − α∗λi D for λi an eigenvalue of LG .
Proposition 6 gives conditions on A that guarantee the existence of a positive-definite
matrix D such that A − α∗λD has an m-dimensional generalized kernel for some fixed
eigenvalue λ > 0 of LG . Moreover, by Corollary 9 we may assume that the non-zero
eigenvalues of A − α∗λD have negative real parts. Lemma 12 in turn shows that –after
a small perturbation of A and D if necessary– we may assume A − α∗λi D to have a
hyperbolic spectrum for all remaining eigenvalues λi 	= λ of LG . Thus, if the matrices
A − α∗λi D for these remaining eigenvalues are all Hurwitz, then the m-dimensional
center manifold of Theorem 3 may be assumed stable.

This seems most reasonable to expect when λ is the (simple) largest eigenvalue of
LG , as the matrices A−α∗λi D for the remaining eigenvalues of LG then “lie between”
the Hurwitz matrix A and the non-invertible matrix A−α∗λD. More precisely, suppose
D is scaled such that A − D = A − α∗λD. If we let α vary from 0 to α∗ = 1/λ, then
for each eigenvalue λi of LG , the matrix A − αλi D is of the form A − βD for some β

in [0, 1]. Let us therefore denote by β �→ γi (β) for i ∈ {1, . . . , n} a number of curves
through the complex plane capturing the eigenvalues of A − βD. As α varies from 0
to α∗ = 1/λ, the eigenvalues of A − αλD traverse γi , with the “front runners” given
by those of A − αλD. In contrast, for λ1 = 0 the eigenvalues of A − αλ1D of course
remain at γi (0). When α = α∗ is reached, the eigenvalues of A − α∗λi D end up in
different places on the curves γi . Hence, if the situation is as in Fig. 2, where each γi hits
the imaginary axis only for β = 1, or not at all, then we are guaranteed that each of the
matrices A − α∗λi D is Hurwitz for λi 	= λ. Hence, the center manifold is then stable.
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x

iy

Fig. 2. Sketch of a situation where the m-dimensional center manifold of Theorem 3 may be assumed stable.
Depicted are the eigenvalues of A − βD as β is varied. Colored dots denote starting points where β = 0,
the blue and red dashed paths form a conjugate pair of complex eigenvalues and the green and orange dashed
paths are real eigenvalues. The arrows indicate how the eigenvalues evolve as β increases to 1. Three of them
go to the origin, whereas one moves away from it. None of them touches the imaginary axis before β = 1.
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Fig. 3. Numerically computed behavior of three of the four eigenvalues of the family of matrices from
Example 3. As β increases from 0 to 1, three eigenvalues move to the origin, whereas a fourth stays to the
left of the imaginary axis. For some value of β ∈ (0, 1), two complex conjugate eigenvalues already cross the
imaginary axis away from the origin. Likewise, a real eigenvalue crosses the origin for some β ∈ (0, 1). Data
was simulated using Octave

Of course β = 1 may not be the first value for which a curve γi hits the imaginary
axis, see Fig. 3. Note that, if the matrix A−βD indeed has a non-trivial center subspace
for some value β ∈ (0, 1), then a bifurcation is expected to occur as α is increased,
before it hits α∗.

The next example shows that some of the eigenvalues of A − βD might cross the
imaginary axis before a high-dimensional kernel emerges at β = 1, see Fig. 3.

Example 3. Weconsider thematrices A and D constructed inExample 1.Herewe choose
c = 21 in order to guarantee that D is a positive-definite matrix. We therefore have the
family of matrices:

A − βD =
⎛

⎜⎝

1 − β 1 − β 0 0
β − 1 1 − β 1 − β 0
0 β − 1 1 − β 16.94

1 − β 4.24(β − 1) 4.24(β − 1) −21β − 17.94

⎞

⎟⎠ , (79)
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parameterized by the real numberβ ∈ [0, 1].Weare interested in the eigenvalue behavior
as β is varied. We know that for β = 0 we have the Hurwitz matrix A, so that all
eigenvalues have negative real parts. We would like to know if the family A − βD has
all eigenvalues with a negative real part for all β ∈ (0, 1). However, if β = 1

2 we have
3 eigenvalues with positive real part. By continuity of the eigenvalues, it means that
each of these crossed the imaginary axis for some β < 1

2 . Only after this, for β = 1,
do we have the bifurcation studied in the previous chapter, due to the appearance of a
triple zero eigenvalue. Figure3 shows the numerically computed behavior of these three
eigenvalue-branches.

If we are in the situation of Fig. 3, then the center manifold can still be stable. This
occurs when the largest eigenvalue μ of LG is significantly larger than all other eigen-
values. In that case, we have

A − α∗λD = A − λ/μD ≈ A

for all eigenvalues λ of LG unequal to μ. For small enough values of λ/μ the matrix
A−λ/μD is therefore still Hurwitz. As it turns out, this can be achieved in the situation
explored in Subsect. A.2. More precisely, we have the following result.

Proposition 18. Let r < C be positive integers and suppose G is a connected graph
with at least two nodes, consisting of one node of degree C and with all other nodes of
degree at most r . Let μ and κ denote the largest and second-largest eigenvalue of the
Laplacian LG, respectively. Then the value κ/μ goes to zero as C/r goes to infinity,
uniformly in all graphs G satisfying the above conditions.

Proof. See Appendix. �

5. Bifurcations in Diffusely Coupled Stable Systems

Using our results so far, we show what bifurcations to expect in diffusely coupled stable
systems in 1, 2 or 3 bifurcation parameters.Note that Theorem3 tells us that the dynamics
on the center manifold is conjugate to that of a reduced vector field R : Rm ×	 → R

m ,
satisfying R(0; ε) = 0 for all ε ∈ 	. By Corollary 10 we may furthermore assume the
linearization Dx R(0; 0) to be nilpotent with a one-dimensional kernel. Other than that,
no restrictions apply to the Taylor expansion of R.

Assuming that anm-parameter bifurcation cangenerically generate anm-dimensional
generalized kernel, we each time considerm parameter bifurcations for a system onRm .
In Subsect. 5.1 we briefly investigate the cases m = 1 and m = 2. Our main result is
presented in Subsect. 5.2, where we show the emergence of chaos for m = 3. In most
cases, the main difficulty lies in adapting existing results on generic unfoldings to the
setting where R(0, ε) = 0 for all ε ∈ 	.

5.1. One and two parameters. Motivated by our results so far, we describe the genericm
parameter bifurcations for systems R on R

m , where m = 1, 2, subject to the condition
R(0; ε) = 0 for all ε ∈ 	. We each time assume a nilpotent Jacobian with a one-
dimensional kernel. We start with the case m = 1.

Remark 19. (The case m = 1) A map R : R × R → R satisfying R(0; ε) = 0 for all
ε ∈ R and Dx R(0; 0) = 0 has the general form

R(x; ε) = x(ax + bε +O((|x, ε)|2)), for a, b ∈ R.
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Under the generic assumption that a, b 	= 0,we find a transcritical bifurcation. Returning
to the setting of our network system, this corresponds to a loss of stability of the fully
synchronous solution.

Remark 20 (The casem = 2). Consider first a two-parameter vector field R : R2×R
2 →

R
2 satisfying R(0; 0) = 0 and with non-zero nilpotent Jacobian Dx R(0; 0). Such a

system generically displays aBogdanov-Takens bifurcation. However, in this bifurcation
scenario there are parameter values for which there is no fixed point. Hence, if we impose
the additional condition R(0; ε) = 0 for all ε ∈ R

2, then another (generic) bifurcation
scenario has to occur. This latter situation is worked out in [6]. The corresponding
generic bifurcation involves multiple fixed points, heteroclinic as well as homoclinic
connections, andperiodic orbits.One striking feature is the presence of a homoclinic orbit
from the origin,which is approached as a limit of stable periodic solutions. In our network
setting, such a periodic solution means a cyclic time-evolution of the system from full
synchrony to less synchrony and back. The time at which the system is indistinguishably
close to full synchrony can moreover be made arbitrarily long.

5.2. Three parameters: chaotic behavior. In this section we will prove Corollary 4,
which allows us to conclude that chaotic behavior occurs in diffusely coupled stable
systems. To this end, we will apply the theory developed so far. Before this, we will
present a detailed background on how we will achieve chaos.

We expect to find chaos in the network through the existence of a Shilnikov homo-
clinic orbit on a three-dimensional center manifold.

The Shilnikov configuration can be seen as a combination of linear and nonlinear
behavior involving a saddle fixed point. A two-dimensional stable manifold attracts tra-
jectories exponentially fast to the fixed point, where the eigenvalues of the linearization
are λ1,2 = −α±iβ with α > 0 and β 	= 0. Transversal to this there is a one-dimensional
unstable manifold repelling away trajectories with real eigenvalue γ > 0. The Shilnikov
homoclinic orbit emerges from the re-injection of the one-dimensional unstable man-
ifold into the two-dimensional stable manifold, see Fig. 4. Of course this re-injection
is a consequence of nonlinear terms. L. P. Shilnikov proved that if γ > α, there are
countably many saddle periodic orbits in a neighborhood of the homoclinic orbit. The
proof consists of showing topological equivalence between a Poincaré map and the shift
map of two symbols. The existence of chaotic behavior is in the sense that Robert L.
Devaney defined for deterministic systems, with strongly sensitive dependence on initial
conditions, topological transitivity and dense periodic points.

Wenext give a brief summary of results contained in the paper [7]. The authors studied
the three parameter unfolding of nonlinear vector fields onR3 with linear part conjugate
to a nilpotent singularity of codimension three. Aftermaking several coordinate changes,
the following normal form is presented:

y
∂

∂x
+ z

∂

∂y
+ (λ − y + νz − x2

2
+O(κ))

∂

∂z
(80)

where the parameters are given by τ = (λ, ν, κ). The parameter κ is introduced by
means of a blow-up technique, and the term

y
∂

∂x
+ z

∂

∂y
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Fig. 4. Shilnikov’s homoclinic orbit

denotes the nilpotent singularity of codimension three on R
3. Equation (80) has two

hyperbolic fixed points for λ > 0 and ν = 0, namely p1 = (−√
2λ, 0, 0) with local

behavior given by a two-dimensional stable and one-dimensional unstable manifold and
p2 = (+

√
2λ, 0, 0) with local behavior given by a two-dimensional unstable and one-

dimensional stable manifold. Knowing there is a solution x(t) for a specific positive
parameter λ = λ∗ such that x(t) → p1 as t → −∞ and x(t) → p2 as t → +∞,
the authors proved analytically the existence of another solution, also for the parameter
λ∗, connecting both two-dimensional stable and unstable manifolds and thus forming
another heteroclinic orbit. Theorem 4.1 of [7] states that in any neighborhood of the
parameter τ0 = (λ0, ν0, κ0) = (λ∗, 0, 0), where the heteroclinic orbits exist, there
are parameters τ = (λ, ν, κ) such that the heteroclinic orbit breaks and a Shilnikov
homoclinic orbit appears.

For completeness, we state Theorem 4.1 below in a slightly altered form.

Theorem 21 (Theorem 4.1 [7].). In every neighborhood of the parameter τ0 =
(λ0, ν0, κ0) = (λ∗, 0, 0) there exist parameter values τ = (λ, ν, κ) such that the equa-
tion

y
∂

∂x
+ z

∂

∂y
+

(
λ − y + νz − x2

2
+O(κ)

)
∂

∂z

has a homoclinic orbit given by the intersection of the two-dimensional stable and one-
dimensional unstable invariant manifolds at the hyperbolic fixed point p1.

As was the case for m = 2, we cannot immediately use this existing result, as
the parameter dependent systems on the center manifold of our network ODE satisfy
R(0, ε) = 0 for all ε ∈ R

3. It remains to show that with this existing restriction, we may
still reduce our system to the family given by Equation (80). This then proves Corollary 4
as a consequence of Theorem 3.

We therefore start with a parameterized vector field R : R3 × R
3 → R

3 satisfying
R(0, ε) = 0 for all ε ∈ R

3. After a linear coordinate change, we may assume the
Jacobian Dx R(0; 0) to be given by

J =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ .
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We thus get the system

ẋ1 = x2 + h1(x; ε)

ẋ2 = x3 + h2(x; ε)

ẋ3 = h3(x; ε)
, (81)

with x = (x1, x2, x3), and where h1, h2, h3 are the higher order (nonlinear) terms
of R(x; ε). Note that we have h1(0; ε) = h2(0; ε) = h3(0; ε) = 0 for all ε ∈ 	, and
Dh1(0; 0) = Dh2(0; 0) = Dh3(0; 0) = 0.

To bring our system in the form (80), wewill proceed as in the paper [7]. The first step
is to get rid of the nonlinear terms h1 and h2 by means of a coordinate transformation.

To eliminate h1 we consider the following change of coordinates

y1 = x1
y2 = x2 + h1(x; ε) (82)

y3 = x3.

Applying it to (81), we get

ẏ1 = ẋ1 = x2 + h1(x; ε) = y2
ẏ2 = ẋ2 + Dxh1(x; ε)ẋ

= x3 + h2(x; ε) + Dx1h1(x; ε)(x2 + h1(x; ε)) + Dx2h1(x; ε)(x3 + h2(x; ε))

+Dx3h1(x; ε)h3(x; ε)

= y3 + h2(x; ε) + Dx1h1(x; ε)(x2 + h1(x; ε)) + Dx2h1(x; ε)(x3 + h2(x; ε))

+Dx3h1(x; ε)h3(x; ε)

ẏ3 = ẋ3 = h3(x; ε)

We therefore get the new system

ẏ1 = y2

ẏ2 = y3 + h̃2(y; ε) (83)

ẏ3 = h̃3(y; ε),

with y = (y1, y2, y3), and where h̃2 and h̃3 are uniquely defined by the relations

h̃2(y; ε) = h2(x; ε) + Dx1h1(x; ε)(x2 + h1(x; ε)) + Dx2h1(x; ε)(x3 + h2(x; ε))

+ Dx3h1(x; ε)h3(x; ε) (84)

h̃3(y; ε) = h3(x; ε) .

Note that h̃2 and h̃3 again have vanishing linear terms, and moreover satisfy h̃2(0; ε) =
h̃3(0; ε) = 0 for all ε.

To eliminate h̃2 we consider the change of coordinates

z1 = y1
z2 = y2 (85)

z3 = y3 + h̃2(y; ε).
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Applying it to (83), we obtain

ż1 = ẏ1 = y2 = z2

ż2 = ẏ2 = y3 + h̃2(y; ε) = z3 (86)

ż3 = ẏ3 + Dyh̃2(y; ε)ẏ

= h̃3(y; ε) + Dy1 h̃2(y; ε)y2 + Dy2 h̃2(y; ε)(y3 + h̃2(y; ε)) + Dy3 h̃2(y; ε)h̃3(y; ε).

We thus get the new system

ż1 = z2
ż2 = z3 (87)

ż3 = ĥ3(z; ε)

with z = (z1, z2, z3), and where ĥ3(z; ε) is locally defined by

ĥ3(z; ε) = h̃3(y; ε) + Dy1 h̃2(y; ε)y2 + Dy2 h̃2(y; ε)(y3 + h̃2(y; ε))

+Dy3 h̃2(y; ε)h̃3(y; ε). (88)

Note that ĥ3 again has no linear terms and satisfies ĥ3(0; ε) = 0 for all ε. Moreover, in
case of h1 = h2 = 0 we would find x = y = z and h3 = ĥ3, which shows that no other
restrictions apply to ĥ3. Writing

ĥ3(z; ε) = E1(ε)z1 + E2(ε)z2 + E3(ε)z3 +O(‖z‖2) (89)

for some locally defined Ei : R3 → R, we therefore see that generically wemay redefine
ε = (ε1, ε2, ε3) so that

ĥ3(z; ε) = ε1z1 + ε2z2 + ε3z3 +O(‖z‖2). (90)

It follows that we may write

ż1 = z2
ż2 = z3 (91)

ż3 = ε1z1 + ε2z2 + ε3z3 + a1z
2
1 + a2z

2
2 + a3z

2
3

+a4z1z2 + a5z1z3 + a6z2z3 +O(‖z‖3 + ‖ε‖‖z‖2),
for some coefficients a1, . . . , a6 ∈ R. We will assume that a1 	= 0, so that the system
(91) locally has two branches of steady states: z(ε) = (0, 0, 0) and z(ε) = (z̃1(ε), 0, 0).

A straightforward calculation shows that

z̃1(ε) = − ε1

a1
+O(‖ε‖2). (92)

Motivated by this, we perform the change of coordinates:

w1 = z1 +
ε1

2a1
w2 = z2 (93)

w3 = z3
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Applying this to (91), we get

ẇ1 = ż1 = z2 = w2 (94)

ẇ2 = ż2 = z3 = w3

ẇ3 = ż3 = ε1(w1 − ε1

2a1
) + ε2w2 + ε3w3 + a1(w1 − ε1

2a1
)2 + a2w

2
2 + a3w

2
3

+a4(w1 − ε1

2a1
)w2 + a5(w1 − ε1

2a1
)w3 + a6w2w3 +O(|z|3 + |ε||z|2)

= − ε21

4a1
+ ε2w2 + ε3w3 + a1w

2
1 + a2w

2
2 + a3w

2
3

+a4w1w2 − a4ε1w2

2a1
+ a5w1w3 − a5ε1w3

2a1
+ a6w2w3 +O(|z|3 + |ε||z|2).

We have left the remainder term O(|z|3 + |ε||z|2) as is, which will benefit us later.
Rearranging terms, we get the new system

ẇ1 = w2

ẇ2 = w3

ẇ3 = − ε21

4a1
+ (ε2 − a4ε1

2a1
)w2 + (ε3 − a5ε1

2a1
)w3 + a1w

2
1 + a2w

2
2 + a3w

2
3

+a4w1w2 + a5w1w3 + a6w2w3 +O(|z|3 + |ε||z|2). (95)

Similar to the paper [7], we now introduce a blow-up parameter κ ∈ R and write

w1 = κ3u1 ε1 = κ3γ1 (96)

w2 = κ4u2 ε2 = κ2γ2 t̄ = κt

w3 = κ5u3 ε3 = κγ3.

Note that we get

z1 = w1 − ε1

2a1
= κ3

(
u1 − γ1

2a1

)
(97)

z2 = w2 = κ4u2

z3 = w3 = κ5u3 ,

so that we may write ‖z‖ = O(κ3). Applying it to Equation (95), we get

du1
dt̄

= 1

κ3

dw1

dt̄
= 1

κ3

dw1

κdt
= 1

κ4

dw1

dt
= 1

κ4w2 = u2

du2
dt̄

= 1

κ4

dw2

dt̄
= 1

κ4

dw2

κdt
= 1

κ5

dw2

dt
= 1

κ5
w3 = u3

du3
dt̄

= 1

κ5

dw3

dt̄
= 1

κ5

dw3

κdt
= 1

κ6

dw3

dt
,

where furthermore

dw3

dt
= ẇ3 = κ6

(
− γ 2

1

4a1
+ γ2u2 + γ3u3 + a1u

2
1

)
+O(κ7).
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Summarizing, we find

du1
dt̄

= u2

du2
dt̄

= u3 (98)

du3
dt̄

= − γ 2
1

4a1
+ γ2u2 + γ3u3 + a1u

2
1 +O(κ).

We next focus on the parameter γ2.We assume from here on out that γ2 < 0 and perform
the following change of coordinates

v1 = −2r3u1 v2 = −2r4u2 (99)

v3 = −2r5u3 τ = r−1 t̄,

where

r =
(

− 1

γ2

) 1
2

> 0. (100)

Applying it to (98), we get

dv1

dτ
= (−2r3)

du1
dτ

= (−2r4)
du1
dt̄

= −2r4u2 = v2

dv2

dτ
= (−2r4)

du2
dτ

= (−2r5)
du2
dt̄

= −2r5u3 = v3

dv3

dτ
= (−2r5)

du3
dτ

= (−2r6)
du3
dt̄

= (−2r6)

(
− γ 2

1

4a1
+ γ2u2 + γ3u3 + a1u

2
1 +O(κ)

)

= (−2r6)

(
− γ 2

1

4a1
+ γ2

(
v2

−2r4

)
+ γ3

(
v3

−2r5

)
+ a1

(
v1

−2r3

)2

+O(κ)

)

= γ 2
1 r

6

2a1
+ γ2v2r

2 + γ3v3r − a1
v21

2
+O(κ)

= γ 2
1 r

6

2a1
− v2 + γ3v3r − a1

v21

2
+O(κ). (101)

We thus get the new system

v′
1 := dv1

dτ
= v2

v′
2 := dv2

dτ
= v3

v′
3 := dv3

dτ
= γ 2

1 r
6

2a1
− v2 + γ3v3r − a1

v21

2
+O(κ). (102)
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Finally, we make the following change of coordinates:

x = a1v1
y = a1v2
z = a1v3. (103)

This gives

x′ = a1v
′
1 = a1v2 = y

y′ = a1v
′
2 = a1v3 = z

z′ = a1v
′
3 = γ 2

1 r
6

2
− a1v2 + γ3a1v3r − a21

v21

2
+O(κ)

= γ 2
1 r

6

2
− y + γ3rz − x2

2
+O(κ). (104)

Setting λ := γ 2
1 r

6

2 and ν := γ3r , we arrive at the vector field

= y
∂

∂x
+ z

∂

∂y
+

(
λ − y + νz − x2

2
+O(κ)

)
∂

∂z
(105)

from Theorem 21. Note that λ = γ 2
1 r

6

2 is necessarily non-negative. However, this may
be assumed in the setting of Theorem 21, as λ∗ > 0. This theorem thus predicts chaos
in the setting of our coupled cell system, provided m = 3 and the network in question
is at least 2-versatile.
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A. Appendix: Examples

A.1. Versatile graphs by means of the complement graph. We next introduce a method
for generating ρ-versatile graphs, for any ρ ∈ N. Our construction involves the definition
of the complement graph, given below.

Definition 22. Given an undirected graph G, we define the complement graph G◦ as the
graph obtained from G by leaving out all existing edges and adding all edges between
distinct vertices that were not there in G.

http://creativecommons.org/licenses/by/4.0/


2746 E. Nijholt, T. Pereira, F. C. Queiroz, D. Turaev

Since our graphs don’t have self-loop, we have that G◦◦ = G.

Theorem 23. Let G be a graph consisting of precisely two disconnected components of
different order. Then G◦ is a connected graph whose Laplacian has a simple, largest
eigenvalue whose eigenvector v satisfies

∑|G◦|
i=1 ν�

i 	= 0 for all � > 1. Moreover, suppose
the two disconnected components of G have number of vertices s and t. Then the largest
eigenvalue of the Laplacian of G◦ is equal to s + t and a corresponding eigenvector is
given by

(t, t, . . . , t︸ ︷︷ ︸
s times

,−s,−s, . . . ,−s︸ ︷︷ ︸
t times

).

Here the entries are ordered so that the vertices of the first component of G (which has
s vertices) are enumerated first, after which those of the second component of G (which
has t vertices) are listed.

Proof. The proof uses a result that relates the eigenvalues and eigenvectors of the Lapla-
cian of a graph to those of the Laplacian of its complement graph. This result is known,
but incorporated here for completeness. Suppose the two components of G have s 	= 0
and t 	= 0 vertices, where s 	= t and |G| = t + s = N .
Recall that the dimensionof the kernel of LG equals the number of connected components
of G, we see that λ2 = λ1 = 0. Thus,

span(v1, v2) = {(ν1, . . . , νN ) ∈ R
N | ν1 = · · · = νs, νs+1 = · · · = νt }, (106)

where we grouped the entries according to the connected components, we see that may
choose

v1 = (1, . . . , 1) and v2 = (t, t, . . . , t︸ ︷︷ ︸
s times

,−s,−s, . . . ,−s︸ ︷︷ ︸
t times

) (107)

which we assume from here on out. Note that indeed v1 ⊥ v2. Let LG◦ be the Laplacian
matrix associated to the complement graph G◦. We note that we have the identity

LG + LG◦ = N · Id−E, (108)

where E is a matrix where every element equals 1. As we have v1 ⊥ vi for all i =
2, . . . , N , it follows that Evi = 0 for all i = 2, . . . , N . From Equation (108) we get

LG◦ = −LG + N · Id−E (109)

and evaluating at the eigenvectors vi for i = 2, . . . , N gives

LG◦vi = −LGvi + N · Id vi − Evi

= (N − λi )vi . (110)

Thus, for each i = 2, . . . , N we find that (N − λi ) is an eigenvalue of LG◦ , with a
corresponding eigenvector given by vi . As we also have LG◦v1 = 0, we see that the
spectrum of LG◦ is given by

N − λ2 ≥ N − λ3 ≥ · · · ≥ N − λN ≥ λ1 = 0 (111)
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The largest eigenvalue of LG◦ is therefore equal to N − 0 = N = s + t , with an
eigenvector given by

v = v2 = (s, s, . . . , s,−t,−t, . . . ,−t). (112)

Since λ3 > 0, so that the eigenvalue N is simple. Using that st 	= 0 and s 	= t , we find
for all � > 1

N∑

i=1

ν�
i =

t∑

i=1

s� ±
s∑

i=1

t� = t (s�) ± s(t�) = st (s�−1 ± t�−1) 	= 0. (113)

Finally, we argue that G◦ is a connected graph. Indeed, if x, y ∈ G are in different
connected components, then they share an edge in G◦ by definition of this latter graph.
If on the other hand x and y are in the same component of G, then in G◦ they both share
an edge with some node z from the other component of G. This completes the proof. �
Example 4. Let G = (V, E) be the undirected graph with V = {1, 2, 3} and two dis-
connected components of a different order s = 1 and t = 2, shown in Fig. 5. Then G◦
is a connected, non-regular graph with

LG◦ =
⎛

⎝
1 0 −1
0 1 −1

−1 −1 2

⎞

⎠

3×3

.

We have Spec(LG◦) = {3, 1, 0} with simple and largest eigenvalue λ = s + t = 3
whose corresponding eigenvector v = (1, 1,−2) satisfies

∑3
i=1 ν�

i 	= 0 for all � > 1.

Example 5. Let G = (V, E) be the undirected graph with V = {1, 2, 3, 4, 5} and two
disconnected components of a different order s = 2 and t = 3, shown in Fig. 6. Then
G◦ is a connected graph with

LG◦ =

⎛

⎜⎜⎜⎝

3 0 −1 −1 −1
0 2 0 −1 −1

−1 0 3 −1 −1
−1 −1 −1 3 0
−1 −1 −1 0 3

⎞

⎟⎟⎟⎠

5×5

.

Here Spec(LG◦) = {5, 4, 3, 2, 0} with simple and largest eigenvalue λ = s + t = 5. Its
corresponding eigenvector v = (2, 2, 2,−3,−3) satisfies

∑5
i=1 ν�

i 	= 0 for all � > 1.

Example 6 below shows that the standard star graphs are ρ-versatile for any ρ > 0.
These graphs consist of a single hub-node connected to all other nodes, which in turn
have degree 1, shown in Fig. 7. We will explore the ρ-versatility of more general star
graphs in Subsect. A.2.

Example 6 (Star graphs). LetG = (V, E) be the undirected graphwithV = {1, . . . , N+
1} and two disconnected components of order s = 1 and t = N , shown in Fig. 7. If
the largest component of G is complete, then G◦ is a connected graph with Laplacian
matrix given by

LG◦ =

⎛

⎜⎜⎝

N + 1 −1 · · · −1
−1 1 · · · 0
...

...
. . .

...

−1 0 · · · 1

⎞

⎟⎟⎠

N+1×N+1

.
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G G◦

Fig. 5. G consists of precisely two disconnected components of order 1 and 2. The complement G◦ is a
connected and non-regular graph

G◦G

Fig. 6. G consists of precisely two disconnected components of order 2 and 3 and its complement G◦ is
connected

G

2

3

4
5

6

7

N

1

G◦

2

3

4
5

6

7

N

1

Fig. 7. G consists of precisely two disconnected components of different sizes N and 1. The complement G◦
is a connected graph

The spectrum Spec(LG◦) = {N +1, 1, . . . , 1, 0} has one simple and largest eigenvalue
λ = s + t = N +1. The corresponding eigenvector is given by v = (N +1,−1, . . . ,−1)
which satisfies the property

∑N
i=1 ν�

i 	= 0 for all powers � > 1. We can generate more
examples of graphsG◦ with the same simple largest eigenvalueλ andwith corresponding
eigenvector v = (N + 1,−1, . . . ,−1), by allowing the largest component of G to be
merely connected, instead of complete.

In what follows we turn to negative examples. The first of them shows us the importance
of starting with connected components of different order, whereas the second one shows
us what goes wrong if we start with more than 2 components.
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G G◦

Fig. 8. G consists of two disconnected components both of the same order 2 and the complement G◦ is
connected. The Laplacian matrix LG◦ has a simple and largest eigenvalue. However there are no eigenvectors
giving the ρ-versatility condition for ρ > 1, except for multiples of 1

Example 7. Let G = (V, E) be the undirected graph with V = {1, 2, 3, 4} and two
disconnected components, this time of the same order s = t = 2, shown in Fig. 8. Then
G◦ is a connected graph with

LG◦ =
⎛

⎜⎝

2 0 −1 −1
0 2 −1 −1

−1 −1 2 0
−1 −1 0 2

⎞

⎟⎠ .

Here Spec(LG◦) = {4, 2, 2, 0} with simple and largest eigenvalue λ = 4. However,
there are no eigenvectors satisfying

∑4
i=1 ν�

i 	= 0 for all � > 1, except multiples

of 1 = (1, 1, 1, 1). The eigenvectors for the other eigenvalues satisfy
∑4

i=1 ν�
i = 0

whenever � is odd. This example indicates that symmetry can be an obstruction for
ρ-versatility.

Example 8. Let G = (V, E) be the undirected graph with V = {1, 2, 3, 4, 5, 6} and
three disconnected components of order s = 1, t = 2 and r = 3, shown in Fig. 9. Then
G◦ is a connected graph with

LG◦ =

⎛

⎜⎜⎜⎜⎜⎝

4 0 −1 −1 −1 −1
0 3 0 −1 −1 −1

−1 0 4 −1 −1 −1
−1 −1 −1 4 0 −1
−1 −1 −1 0 4 −1
−1 −1 −1 −1 −1 5

⎞

⎟⎟⎟⎟⎟⎠

6×6

.

We have Spec(LG◦) = {6, 6, 5, 4, 3, 0}with non-simple and largest eigenvalue λ1,2 =
6. Nevertheless, two corresponding eigenvectors are given by {(−1,−1,−1, 0, 0, 3) and
(−2,−2,−2, 3, 3, 0)}, which both satisfy

∑6
i=1 ν�

i 	= 0 for all powers � > 1.

A.2. Versatile graphs by means of the degree distribution. We next investigate another
pathway to ρ-versatility, namely by looking at the degree distribution of the nodes in
the network. To this end, we will prove:

Proposition 24. Let r < C be two positive integers and suppose G = (V, E) is a graph
consisting of one node of degree C and N nodes of degree at most r , where N ≥ 1. If

C + 1

r
>

3
√
N + 1, (114)
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G◦G

Fig. 9. G consists of three disconnected components, each of a different order. The complement G◦ is con-
nected, but the largest eigenvalue of its Laplacian is non-simple

then the largest eigenvalue of LG is simple and every corresponding eigenvector v

satisfies

N∑

i=0

ν�
i 	= 0, for all � > 1. (115)

The proof of Proposition 24 uses the well-known result that for any graphG with at least
one edge, the largest eigenvalue μ of LG satisfies λ ≥ d + 1, with d the largest degree
of any node in G. In the setting of Proposition 24 we therefore have λ ≥ C + 1.

Proof of Proposition 24. Let λ be the largest eigenvalue of LG and write v ∈ R
N+1

for a corresponding eigenvector. By re-scaling v, we may assume that |νi | ≤ 1 for all
i ∈ {0, . . . , n}. The condition that (λ, v) is an eigenvalue-eigenvector pair for LG gives

N∑

j=0

(LG)i, jν j = λνi for all i ∈ {0, . . . , n} . (116)

We therefore find

N∑

j=0
j 	=i

(LG)i, jν j = (λ − ki )νi , (117)

where ki denotes the degree of node i . From our observation that λ ≥ C + 1 we see that
(λ − ki ) is always positive. For i 	= 0 we therefore get from Equation (117)

(C + 1 − r)|νi | ≤ (λ − ki )|νi | =
∣∣∣∣

N∑

j=0
j 	=i

(LG)i, jν j

∣∣∣∣ ≤
N∑

j=0
j 	=i

|(LG)i, j ||ν j | ≤ ki ≤ r .

(118)

We thus find

|νi | ≤ r

C + 1 − r
= 1

(C + 1)/r − 1
<

1
3
√
N

≤ 1 . (119)

Summarizing, we see that the condition |νi | ≤ 1 for all i ∈ {0, . . . , n} yields |νi | < 1
for all i ∈ {1, . . . , n}. This is only possible if ν0 	= 0, which therefore has to hold for
any eigenvector v of λ.
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Now suppose v and v′ are two eigenvectors for λ. By the foregoing, there exists a nonzero
scalar s such that the vector sv − v′ has vanishing zeroth component. As nevertheless
LG(sv − v′) = λ(sv − v′), we conclude that sv − v′ = 0 and so v′ = sv. This shows
that the eigenvalue λ is simple.
To prove the ρ-versatility claim, we re-scale the eigenvector v such that |νi | ≤ 1 for
all i ∈ {0, . . . , n}, with ν j = 1 for at least one j . By the forgoing, this means that
necessarily ν0 = 1, with the other νi satisfying Equation (119). We conclude that for all
ρ ≥ 3 we have

∣∣∣∣
N∑

i=0

ν
ρ
i

∣∣∣∣ =
∣∣∣∣1 +

N∑

i=1

ν
ρ
i

∣∣∣∣ ≥ 1 −
N∑

i=1

|νi |ρ > 1 − N

(
3
√
N )ρ

= 1 − N 1−ρ/3 ≥ 1 − N 0 = 0 .

(120)

We therefore find
∑N

i=0 ν
ρ
i 	= 0 for all ρ ≥ 3. As we clearly have

∑N
i=0 ν2i > 0, the

result follows. �

Example 9. Examples of connected networks satisfying the conditions of Proposition 24
can easily be constructed. Let r, N > 0 be given numbers such that

r ≤ N
3
√
N + 1

. (121)

Wefirst construct a graphG ′ consisting of N nodes, all ofwhich have degree atmost r−1.
The graphG is then obtained fromG ′ by adding a node n0, together withC ≥ (

3
√
N +1)r

edges between n0 and different nodes of G ′. Note that condition (121) guarantees that
(

3
√
N + 1)r ≤ N , so that we are not demanding that n0 is connected to more nodes than

G ′ contains. It follows that all nodes in G apart from n0 have degree at most r . Finally,
the degree C of n0 satisfies

C + 1 > C ≥ (
3
√
N + 1)r , (122)

so that

C + 1

r
>

3
√
N + 1 . (123)

The graph G is connected if an edge was added from n0 to at least one node from every
connected component of G ′.

The proof of Proposition 18 uses a result about the effects of adding an edge to the
graph on the spectrum of the Laplacian. Given a graph G, we denote by G + e the graph
obtained from G by adding some edge e that was not there before. If G and G + e
have M nodes, then we denote by 0 = λG

1 ≤ · · · ≤ λG
M the eigenvalues of LG and by

0 = λG+e
1 ≤ · · · ≤ λG+e

M the eigenvalues of LG+e. It can then be shown that

0 = λG
1 = λG+e

1 ≤ λG
2 ≤ λG+e

2 ≤ · · · ≤ λG
M ≤ λG+e

M . (124)

This result is sometimes referred to as an interlacing theorem for graphs, see [13]. In
the proof of Proposition 18, we are interested only in the inequality λG

M−1 ≤ λG+e
M−1

corresponding to the second-largest eigenvalues. Repeated use of this latter result gives
λG
M−1 ≤ λG ′

M−1, where G
′ is obtained from G by adding any number of edges.
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Proof of Proposition 18. Let us say that G has N + 1 nodes, and write n0 for the unique
node of degree C . We denote the eigenvalues of LG by 0 = λG

1 ≤ · · · ≤ λG
N+1, so

that μ = λG
N+1 and κ = λG

N . If we have N = 1 then κ = 0, so that there is nothing
left to prove. Hence, we assume from here on out that N > 1. Just as in the proof of
Proposition 24, we have

μ = λN+1 ≥ C + 1. (125)

Next, let G ′ denote the graph obtained from G by adding edges between n0 and other
nodes until n0 is connected to every other node. By the observation above we have
κ = λG

N ≤ λG ′
N , where the eigenvalues of LG ′ are given by 0 = λG ′

1 ≤ · · · ≤ λG ′
N+1. Let

us consider the graph G ′ instead. Because n0 is connected to every other node, we see
that the complement graph G ′◦ consists of two components: {n0} and the remaining part
H , where we do not claim H itself is connected. We denote by 0 = λH

2 ≤ . . . λH
N+1 the

eigenvalues of LH , so that those of LG ′◦ are given by

0 = λG ′◦
1 = λH

2 ≤ . . . λH
N+1.

By the techniques used in the proof of Theorem 23, we conclude that λH
3 = N +1−λG ′

N .
Next, consider the complement H◦ of H . Again by the techniques used in the proof of
Theorem 23, we see that an eigenvalue of LH◦ is given by N−λH

3 = N−(N+1−λG ′
N ) =

λG ′
N − 1. Moreover, by construction of H and H◦, we see that this latter graph can be

obtained from G ′ (or from G), by deleting n0 and every edge connected to this node. In
particular, we conclude that every node in H◦ has degree at most r . A straightforward
application of the Gershgorin disk theorem [5] now tells us that all eigenvalues of LH◦
are bounded from above by 2r . In particular, we find λG ′

N − 1 ≤ 2r and so

κ ≤ λG ′
N ≤ 2r + 1. (126)

Combining equations (125) and (126), we see that

κ

μ
≤ 2r + 1

C + 1
≤ 3r

C
, (127)

from which the result follows. �
To conclude our discussion on ρ-versatile graphs, we fix values n, ρ ∈ Nwith n > 2 and
define Sρ

n as the set of all symmetric (n × n) matrices with a simple largest eigenvalue,
whose corresponding eigenvector ν satisfies

n∑

i=1

ν�
i 	= 0 for all � ∈ {2, . . . ρ + 1}. (128)

It follows that Sρ
n is an open subset of the space of symmetric matrices. Heuristically

speaking, if G is a graph such that LG ∈ Sρ
n , then we therefore expect LG ′ ∈ Sρ

n for
any graph G ′ obtained from G by a small perturbation.
In fact, asmatrices generically have simple eigenvalues, and as Equation (128) is likewise
valid for generic (eigen)vectors, we expect LG ∈ Sρ

n for “most” graphs G. Of course
these statements will have to be made precise, which we do not attempt here.
One common obstruction to LG ∈ Sρ

n seems to be symmetry in the graphG. An explana-
tion for this is that symmetry often forces eigenvalues with high multiplicity. Moreover,
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if an eigenvalue λ of LG is simple, then the span of a corresponding eigenvector v forms
a 1-dimensional representation of the symmetry in question. For any finite group sym-
metry, a one-dimensional real representation is either trivial, or generated by v �→ −v.
In the latter case, the graph symmetry contains a transformation α such that for any node
n of G, the corresponding coefficients νn and να(n) of v are related by νn = −να(n). This
means that for any value c ∈ R there is an equal number of nodes n such that νn = c as
there are nodes m such that νm = −c. As a consequence, we then necessarily have

n∑

i=1

ν�
i = 0 for all odd � > 0. (129)

This is a common observation; imposing additional structure on a graph (such as for
instance symmetry) induces high dimensional center subspaces and restrictions to the
Taylor-coefficients of reduced vector fields in the associated dynamical systems. This
generally leads to more elaborate bifurcation scenarios.

A.3. Hurwitzness. In this subsection we give examples of Hurwitz matrices A such that
there exist m > 0 mutually orthogonal vectors x1, . . . , xm satisfying

〈xi , Axi 〉 > 0 for all i = 1, . . . ,m. (130)

Note that any Hurwitz matrix A has a negative trace, as this number equals the sum of
its eigenvalues. It follows that Equation (130) can then only hold when m < n, where n
is the size of A. We start by looking at the case n = 2.

Example 10. A general 2 by 2 matrix A is of the form

A =
(
a b
c d

)
, (131)

with a, b, c, d ∈ R. A is Hurwitz if and only if a + d < 0 and ad − bc > 0. This can
easily be arranged if in addition a > 0, by first choosing d < 0 such that a + d < 0, and
then choosing b and c such that ad − bc > 0. We can construct examples of Hurwitz
matrices A such that Equation (130) holds with m = 1 and x1 = (1, 0)T . The set of
all such matrices forms a non-empty open subset of the space of all 2 by 2 matrices. A
similar observation of course holds when d > 0.

Example 11. Consider the 3 by 3 matrix

A =
⎛

⎝
a + b + c e d

c a + e b + d
c b + e a + d

⎞

⎠ , (132)

for a, b, c, d, e ∈ R. Using the theory of network multipliers, it is shown in [3] that the
eigenvalues of A are given by a + b + c + d + e, a − b and a + b. It is therefore clear that
for certain choices of a through e we can arrange for A to be Hurwitz. Moreover, these
eigenvalues do not change if we apply the transformation

c �→ c − 2δ (133)

d �→ d + δ

e �→ e + δ
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for any δ ∈ R, while keeping a and b the same. Hence, if A as given by Equation (132)
is Hurwitz, then so is the matrix

Aδ =
⎛

⎝
a + b + c − 2δ e + δ d + δ

c − 2δ a + e + δ b + d + δ

c − 2δ b + e + δ a + d + δ

⎞

⎠ (134)

for any δ ∈ R. Choosing δ large enough, we see that Equation (130) holds for m = 2
and x1 = (0, 1, 0)T , x2 = (0, 0, 1)T .

Finally, we show:

Proposition 25. Let X = {x1, . . . , xn−1} be a set of n − 1 mutually orthogonal vectors
in Rn, where n > 1. Denote byHn

X the set of all (n × n) Hurwitz matrices A such that

〈xi , Axi 〉 > 0 for all i = 1, . . . , n − 1. (135)

Then, Hn
X forms a non-empty open subset of the space of all (n × n) matrices.

Proof. As the set of all Hurwitz matrices is open, and because the same holds for the
set of all matrices A for which Equation (135) holds, we see that Hn

X is likewise open.
It remains to show that Hn

X is non-empty.
We will first show this when X consists of the first n − 1 standard vectors e1 =
(1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T and so forth, up to en−1 = (0, . . . , 1, 0)T . Given
numbers b1, . . . , bn ∈ R, we define the (n × n) matrix

Ab1,...,bn =

⎛

⎜⎜⎝

b1 b2 . . . bn
b1 b2 . . . bn
...

...
...

...

b1 b2 . . . bn

⎞

⎟⎟⎠ .

As Ab1,...,bn has rank 1, we see that it has an (n − 1)-dimensional kernel. The remain-
ing eigenvalue is given by b1 + · · · + bn with eigenvector (1, . . . , 1)T . Let us choose
b1, . . . , bn−1 > 0 and bn < −(b1 + · · · + bn−1). We also choose a ∈ R such that

0 < a < min(b1, . . . , bn−1).

As a result, we see that the matrix

Ab1,...,bn − a Idn =

⎛

⎜⎜⎝

b1 − a b2 . . . bn
b1 b2 − a . . . bn
...

...
...

...

b1 b2 . . . bn − a

⎞

⎟⎟⎠

has eigenvalues b1 + · · ·+bn −a < 0 and −a < 0. Moreover, because bi −a > 0 for all
i ∈ {1, . . . , n−1}, we conclude that Ab1,...,bn −a Idn ∈ Hn

E where E = {e1, . . . , en−1}.
To show thatHn

X is non-empty for general X , we pick X = {x1, . . . , xn−1} and extend it
to an orthogonal basis {x1, . . . , xn−1, xn}. LetU be the matrix such thatUei = xi for all
i ∈ {1, . . . , n}. It follows that UTU equals a diagonal matrix D with positive diagonal
entries given by 〈xi , xi 〉 = ‖xi‖2. In particular, we have UT = DU−1. Now suppose



Chaotic Behavior in Diffusively Coupled Systems 2755

we pick an element A ∈ Hn
E . It follows that U AU−1 is Hurwitz as well. Moreover, for

all i ∈ {1, . . . , n − 1} we find
〈xi ,U AU−1xi 〉 = 〈UT xi , AU

−1xi 〉 = 〈DU−1xi , AU
−1xi 〉

= 〈Dei , Aei 〉 = ‖xi‖2〈ei , Aei 〉 > 0 . (136)

This shows that Hn
X is likewise non-empty, which concludes the proof. �

Note that we have A ∈ Hn
X �⇒ cA ∈ Hn

X for all c ∈ R>0. Taking the union over all
the setsHn

X , we arrive at:

Corollary 26. Given n > 1, the set of all (n × n) Hurwitz matrices A for which some
orthogonal vectors x1, . . . , xn−1 exist satisfying

〈xi , Axi 〉 > 0 for all i = 1, . . . , n − 1, (137)

is open and non-empty.
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