
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04694-w
Commun. Math. Phys. 401, 2483–2520 (2023) Communications in

Mathematical
Physics

Moments of the 2D Directed Polymer in the Subcritical
Regime and a Generalisation of the Erdös–Taylor
Theorem

Dimitris Lygkonis, Nikos Zygouras

Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK.
E-mail: dimitris.lygkonis@warwick.ac.uk; n.zygouras@warwick.ac.uk

Received: 12 August 2022 / Accepted: 6 March 2023
Published online: 13 April 2023 – © Crown 2023

Abstract: We compute the limit of the moments of the partition function ZβN
N of the

directed polymer in dimension d = 2 in the subcritical regime, i.e. when the inverse

temperature is scaled as βN ∼ β̂
√

π
log N for β̂ ∈ (0, 1). In particular, we establish that

for every h ∈ R, limN→∞ E
[(
ZβN
N

)h] = ( 1
1−β̂2

) h(h−1)
2 . We also identify the limit of

the moments of the averaged field
√
log N
N

∑
x∈Z2 ϕ( x√

N
)
(
ZβN
N (x)− 1

)
, for ϕ ∈ Cc(R

2),
as those of a gaussian free field. As a byproduct, we identify the limiting probability
distribution of the total pairwise collisions between h independent, two dimensional
random walks starting at the origin. In particular, we derive that

π

log N

∑
1≤i< j≤h

L(i, j)
N

(d)−−−−→
N→∞ �

( h(h−1)
2 , 1

)
,

where L(i, j)
N denotes the collision local time by time N between copies i, j and� denotes

the Gamma distribution. This generalises a classical result of Erdös and Taylor (Acta
Math Acad Sci Hung 11:137–162, 1960).

Contents

1. Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 2484
1.1 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2488
1.2 Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 2490

2. Auxiliary Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2490
2.1 Partition functions and chaos expansion . . . . . . . . . . . . . . . . 2490
2.2 Renewal representation . . . . . . . . . . . . . . . . . . . . . . . . . 2493
2.3 Some useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . 2494

3. Expansion of Moments and Integral Inequalities . . . . . . . . . . . . . . 2494

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04694-w&domain=pdf


2484 D. Lygkonis, N. Zygouras

3.1 Chaos expansion of moments . . . . . . . . . . . . . . . . . . . . . . 2494
3.2 Integral inequalities for the operators Q̂I ;J

N ,0 and ÛI
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1. Introduction and Main Results

Let S = (Sn)n≥0 be a two dimensional simple random walk and
(
ω(n, z)

)
(n,z)∈N×Z2

a space-time field of i.i.d. random variables with E[ω] = 0, E[ω2] = 1 and λ(β) :=
logE[eβω] < ∞ for allβ > 0.Weuse the notationPa,x andEa,x to denote the probability
and the expectation with respect to the distribution of the random walk when the walk
starts from x ∈ Z

2 at time a ∈ N. If either a or x are zero, we will omit them from the
subscripts. We consider the (point-to-point) partition function

Zβ
N (x, y) = Ex

[
e
∑N−1

n=1 βω(n,Sn)−λ(β) 1{SN=y}
]

(1.1)

of the directed polymer, i.e. random walk, in the random environment ω, at inverse
temperature β > 0. We also denote the point-to-line partition function

Zβ
N (x) :=

∑

y∈Z2

Zβ
N (x, y), (1.2)

and simply write Zβ
N if x = 0.

It was observed in [CSZ17b] that, while for any fixed β > 0, Zβ
N −−−−→

N→∞ 0, P− a.s.

[CSY03,C17], an intermediate disorder regime with a phase transition arises when one
scales the inverse temperature like

βN ∼ β̂

√
π

log N
with β̂ > 0. (1.3)

In particular, it was shown in [CSZ17b], that for βN ∼ β̂
√

π
log N with β̂ ∈ (0, 1),

ZβN
N

(d)−−−−→
N→∞ exp(�

β̂
X − 1

2�
2
β̂
) ,

whereX ∼ N (0, 1) and �2
β̂

= log
( 1
1−β̂2

)
, while for ˆβ ≥1, ZβN

N converges in distribution

to 0.
One can guess the emergence of such intermediate scaling as follows. Using gaussian

environment for simplicity one has that

E

[(
Zβ
N

)2] = E⊗2
[
eβ2 L(1,2)

N

]
= E
[
eβ2 LN

]
, (1.4)

where E⊗2 denotes the law of two independent, 2d simple randomwalks starting both at
the origin, L(1,2)

N :=∑N−1
n=1 1{S1n=S2n } denotes their collision local time up to time N − 1

and LN :=∑N−1
n=1 1{S2n=0} denotes the number of returns to zero, up to time N − 1, of
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a single 2d simple random walk starting at 0. The second equality in (1.4) follows since

L1,2N
law= LN . A classical result of Erdös–Taylor [ET60] states that

π

log N
LN

(d)−−−−→
N→∞ Exp(1), (1.5)

where Exp(1) denotes an exponential random variable of parameter 1. Thus, it is not
hard to see that under (1.3), one has supN≥1 E

[
(ZβN

N )2
]

< ∞ if and only if β̂ < 1.
It is an interesting and non-trivial question whether all moments of the point-to-plane

partition function ZβN
N remain uniformly bounded as N → ∞ in the same regime of β̂

where the second moment remains uniformly bounded. Information on moments higher
than two in the subcritical regime has already appeared necessary in a number of situa-
tions, in particular in proving tightness and regularity properties of the approximations
to the solutions of the 2d-KPZ [CD20] or Edwards–Wilkinson universality for the 2d-
KPZ [CSZ20,G20,T22] for the nonlinear SHE. The lack of control on higher moments
was resulting into restrictions to strict subsets of the subcritical regime in [CD20,G20],
while this was circumvented in [CSZ20] by employing hypercontractivity to show, for
any β̂ < 1, the uniform boundedness of moments up to certain order h(β̂) > 2 with
lim

β̂↑1 h(β̂) = 2. The case of the nonlinear SHE in the entire subcritical regime is still
open [T22] and the techniques here could be useful there. Moreover, having bounds on
the moments can be useful in obtaining finer results relating to the rate of convergences
[DG22].

The first result of this work is to show that allmoments of the point-to-plane partition
function ZβN

N are uniformly bounded in the whole subcritical regime β̂ < 1 while,
obviously, no moment higher than one exists in the limit at ˆβ ≥1. Note that this is in
contrast to what happens in the weak disorder regime of d ≥ 3 polymers, where the
moments are gradually reduced to just existence of the first moment as the critical point
is approached [BS10,J22].

Combining this with the distributional convergence (1.3) we can actually compute
the limit of all moments. In particular, our first theorem is stated as:

Theorem 1.1. Consider the point-to-line partition function ZβN
N defined in (1.2) with

an intermediate disorder scaling βN as in (2.1), which is asymptotically equivalent to
(1.3). Then, for every β̂ ∈ (0, 1) and h ≥ 0, it holds that

lim
N→∞E

[(
ZβN
N

)h] =
(

1

1 − β̂2

) h(h−1)
2 =

(
lim

N→∞E

[(
ZβN
N

)2])
h(h−1)

2

. (1.6)

Furthermore, (1.6) is valid also for all h < 0 if we assume that the law of ω satisfies the
following concentration property: There exists γ > 1and constants c1, c2 ∈ (0,∞) such
that for all n ∈ N, (ω1, . . . , ωn) i.i.d. and all convex, 1-Lipschitz functions f : Rn → R,

P

(∣∣ f (ω1, . . . , ωn) − M f
∣∣ ≥ t

)
≤ c1 exp

(
− tγ

c2

)
, (1.7)

where M f is a median of f .

Remark 1.2. We note that (1.7) is satisfied if ω is bounded or has a density of the form
exp(−V + U ) for V,U : R → R, where V is strictly convex and U is bounded, see
[Led01].
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Furthermore, we compute the asymptotics of the moments of the logarithmically
scaled and averaged field

√
log N

N

∑

x∈Z2

ϕ( x√
N

)
(
ZβN
N (x) − 1

)
,

for ϕ ∈ Cc(R
2). In particular, we establish that

Theorem 1.3. Let ϕ ∈ Cc(R
2) and consider the centred and averaged field with respect

to ϕ, that is

�ZβN
N (ϕ, 1) := 1

N

∑

x∈Z2

ϕ( x√
N

)
(
ZβN
N (x) − 1

)
.

Then, for every h ∈ N with h ≥ 2 and β̂ ∈ (0, 1),

lim
N→∞(log N )

h
2 E

[�ZβN
N (ϕ)h

]
=
{

�ϕ(β̂)h · (h − 1)!!, if h is even
0, if h is odd,

where �ϕ(β̂) is defined as

�2
ϕ(β̂) := π β̂2

1 − β̂2

∫ 1

0
dt
∫

(R2)2
dx dy ϕ(x)gt (x − y)ϕ(y),

with gt (x) := 1
2π t e

−|x |2/2t the two-dimensional heat kernel.

Theorem 1.1 in combination with an analogous to (1.4) computation for the h
moment will, almost immediately, lead us to a generalisation of the Erdös–Taylor
theorem (see [ET60,GS09] for a quenched path generalisation). The generalisation
amounts to the quantity of total pairwise collision times of h (instead of just two as in
[ET60,GS09]) independent, two-dimensional simple planar randomwalks.More specif-
ically, let �(a, 1) denote the Gamma distribution, which is the law with density function
1

�(a)
xa−1e−x 1{x>0}, where in the last expression �(a) is the gamma function. Then,

Theorem 1.4. Consider h ∈ N such that h ≥ 2 and for i = 1, . . . , h let S(i) = (S(i)
n
)
n≥0

be independent simple random walks in Z
2 starting all from the origin at time zero.

Moreover, for 1 ≤ i < j ≤ h let

L(i, j)
N :=

N∑
n=1

1{S(i)
n =S( j)

n },

denote the collision local time of S(i) and S( j) until time N. Then

π

log N

∑
1≤i< j≤h

L(i, j)
N

(d)−−−−→
N→∞ �

( h(h−1)
2 , 1

)
.
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More precisely, if YN := π
log N

∑
1≤i< j≤h L

(i, j)
N , Y is a random variable with law

�
( h(h−1)

2 , 1
)
and MYN (t), MY (t) denote the associated moment generating functions,

respectively, we have that

MYN (t) −−−−→
N→∞ MY (t),

for all t ∈ (0, 1) := I , which is the maximum interval I ⊂ (0,∞) where MY (t) <

∞, t ∈ I .

The main step towards the above theorems is to establish that, in the subcritical
regime, the moments of the two-dimensional point-to-line partition function ZβN

N are
uniformly bounded. To state the corresponding theorem, let us briefly introduce the
averaged partition functions. For test functions ϕ,ψ : R2 → R such that ϕ has compact
support and ψ is bounded, we define the averaged partition function to be

ZβN
N (ϕ, ψ) := 1

N

∑
x,y

ϕ( x√
N

) ZβN
N (x, y) ψ(

y√
N

). (1.8)

Moreover, introduce its centred version as Z̄βN
N (ϕ, ψ) := ZβN

N (ϕ, ψ) − E
[
ZβN
N (ϕ, ψ)

]

and, similarly, the centred version of the point-to-line partition function (1.2) as Z̄βN
N :=

ZβN
N − E[ZβN

N ].
The key estimate of this paper is the following:

Theorem 1.5. Let ϕ,ψ : R2 → R be such that ϕ has compact support andψ is bounded
and consider the centred, averaged field �ZβN

N (ϕ, ψ) with respect to ϕ,ψ , as in (1.8). Let
also w : R2 → R be a weight function such that logw is Lipschitz continuous. Then,
for every h ∈ N with h ≥ 3, β̂ ∈ (0, 1), there exist a∗ = a∗(h, β̂, w) ∈ (0, 1) and
C = C(h, β̂, w) ∈ (0,∞) such that for any p, q ∈ (1,∞) that satisfy 1

p + 1
q = 1 and

p q ≤ a∗ log N, the following inequality holds:

∣∣∣∣E
[�ZβN

N (ϕ, ψ)h
]∣∣∣∣ ≤

(C p q

log N

) h
2 · 1

Nh
·
∥∥∥∥

ϕN

wN

∥∥∥∥
h

�p
‖ψN‖h∞ ‖wN‖h�q , (1.9)

where for x ∈ Z
2 we have ϕN (x) := ϕ(x/

√
N ), ψN (x) := ψ(x/

√
N ) and wN (x) :=

w(x/
√
N ). Moreover, for �ZβN

N being the centred, point-to-line partition function, it holds
that

sup
N∈N

∣∣∣∣E
[(�ZβN

N

)h]∣∣∣∣ < ∞. (1.10)

Let us comment on estimate (1.9) and the significance of the precise dependence of the
constant of the inequality (1.9) in terms of p, q and N as (pq/ log N )h/2N−h (the generic
constant C that appears in the right-hand side of (1.9) does not depend on either p, q or
N ): In the case that ϕ,ψ,w are nice, smooth functions, i.e. the partition function field is
averagedout in an essentially uniformway, then, byRiemann summation, N−h/p‖ ϕN

wN
‖h�p

will converge to ‖ϕ‖hL p and N−h/p‖wN‖h�q will converge to ‖w‖hLq and then the right
hand side of (1.9) will capture the decay of correlations of the partition function field as
(log N )−h/2. In contrast to this scenario, if we want to estimate the moments of a single
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partition function, i.e. if we only restrict to a single starting point, say Zβ
N (0), we would

need to insert in (1.9) a delta-like function ϕN (x) := N1{x=0}. This choice, however,
leads to a blowup in N in the right hand side of (1.9) of the form

(
Cpq/(log N )

)h/2·Nh/q .
The idea in order to neutralise the blow up, is to optimise over the choice of p, q, of
the corresponding �p and �q spaces by choosing q := a log N (for certain parameter
a). This is why the explicit dependence of the constant in the right-hand side in terms
of p, q is crucial and it is remarkable that this concrete dependence leads to a sharp
estimate after a suitable optimisation. The extraction of the precise dependence on p, q
in inequality (1.9) has been one of our main efforts in this work.

1.1. Related literature. Let us explain howourmethods and results fit the various aspects
of the literature as well as outline some prospects.

Moments, Functional inequalities and Schrödinger operators. Inequality (1.9)
controls the moments of the partition function when starting and ending points are
averaged out. A version of (1.9) but for 2d polymer at the critical temperature and
without the important for our purposes dependence on p, q was established in [CSZ21].
Such inequality was used there as an input to prove uniqueness of the scaling limit of
the polymer field at the critical temperature scaling. In the continuum setting of the 2d
stochastic heat equation (again at critical temperature scaling), existence of all moments
of the fields averaged by test functions φ,ψ , which are restricted to only belong to
L2(R2) was proved in [GQT21].

Important input in all the above came from earlier works of Dell’Antonio-Figari-Teta
[DFT94] and Dimock-Rajeev [DR04] on the spectral theory of Schrödinger operators
with point interactions. The objective there was to define, via renormalisation, self-
adjoint extensions of many-body hamiltonians of the form

 +
∑

1≤i< j≤h

δ(xi − x j ), x1, . . . , xh ∈ R
2,

with δ(·) being the delta function onR2 and theLaplacian on (R2)h . This problemhas a
rich history, as outlined in [DFT94]. Of particular significance for our purposes is a func-
tional inequality of Dell’Antonio-Figari-Teta [DFT94], Proposition 3.1 (see also Lemma
5.1 in [GQT21]), which essentially states that the Green’s function of a 2h−dimensional
Brownian motion G(x, y), x = (x1, . . . , xh) ∈ (R2)h, y = (y1, . . . , yh) ∈ (R2)h ,
when restricted to hyperplanes {xi = x j } and {yk = y�} with (i, j) �= (k, �) is bounded
as an operator from L2(R2(h−1)) → L2(R2(h−1)). For our purposes, the relevant oper-
ator, in the discrete setting is defined in (3.6) and (3.12) and the corresponding estimate
that establishes the boundedness of the operator in �q(Z2(h−1)), q > 1, is proved in
Proposition 3.3. To prove this, we follow the approach of [CSZ21], working on the real
space rather than the Fourier space as [DFT94] (the latter is only suitable for L2 esti-
mates) paying particular attention in extracting the precise dependence on the parameters
p, q of the �p, �q spaces. As alreadymentioned after Theorem 1.5, this is crucial in order
to apply the optimisation trick, which allows us to average over a delta-like function and
thus control the moment of the, more singular, single-starting point polymer partition.

Collision local times. Theorem 1.4 led us to conjecture and prove in [LZ22] the
following multivariate extension of the Erdös–Taylor theorem:
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Theorem 1.6 ([LZ22]). For h ≥ 3 the joint law of the normalised pairwise collision

local times
{

πL(i, j)
N

log N

}
1≤i< j≤h

of h independent, two-dimensional simple, symmetric ran-

dom walks converges in distribution to a vector of h(h−1)
2 independent Exp(1) random

variables.

The conjecture emerged from Theorem 1.4 and the fact that a gamma distributed
variable �(a, 1), a ∈ N, may arise as a sum of a independent Exp(1) random variables,
The methods developed around Theorem 1.5 in the present paper played an important
role towards the proof of Theorem 1.6 as they paved the way for a number of necessary
approximations. Still, in order to establish the independence of the collision times, one
had to look carefully at the structure of the collisions: There is an intrinsic logarithmic
scaling, already manifested in a sense in (1.5), which introduces a certain separation
of scales. In turn, this separation of scales leads to the phenomenon (called rewiring in
[LZ22]) in which the random walks forget how they tracked collisions and behave as if
they only followed the pairwise collisions independently. We refer to [LZ22] for further
details.

Let us mention that a reader who has followed the literature might have thought
initially that Theorem 1.6 could simply follow from an extension of the work [CSZ17b]
to joint convergence of partition functions Z

βN ,1
N , . . . , Z

βN ,h
N at multiple temperatures

βN ,i = βi

√
π

log N for i = 1, . . . , h, together with the moment estimates obtained here.

However, this is not sufficient as the computation of E[ZβN ,1
N · · · ZβN ,h

N ] gives rise only
to a functional of the form E⊗h[e π

log N

∑
1≤i< j≤h βiβ jL

(i, j)
N ], while one would need to have(h

2

)
independent parameters βi, j , 1 ≤ i < j ≤ h instead of just βiβ j to identify the joint

distribution.
Theorems 1.4 and 1.6 create some interesting connections with phenomena from

planar Brownian motion. In particular, related to windings of planar Brownian motion
[Y91] and more general, so-called log-scaling laws [PY86,Kn93,Kn94]. A paradigm in
these studies is the following: Let B1, . . . , Bh denote h independent planar Brownian
motions starting from distinct points z1, . . . , zh ∈ R

2 and for each pair 1 ≤ i < j ≤
h, we consider ϑ(i, j)(t) to be the total winding angle of Zi, j

s := Bi
s − B j

s around

0. Yor’s theorem [Y91] asserts that
{ 2
log t ϑ(i, j)(t)

}
1≤i< j≤h

(d)−−−−→
N→∞

{
C (i, j)

}
1≤i< j≤h ,

where
{
C (i, j)

}
1≤i< j≤h are h(h−1)

2 independent Cauchy distributed random variables.
This result generalises to multiple Brownian motions the classical Spitzer’s law [S58]
and bears resemblance to Theorem 1.6. The above works rely crucial on the continuum
methods and the power of stochastic calculus. In this regard, it would be interesting to
investigate the scope of the methods we develop here (as well as in [LZ22]) for wider
applications and beyond continuum aspects.

Statistics of log-correlated fields. Let us denote by hN (x) := √
log N

(
log ZβN

N

(�x√
N�−E log ZβN

N

(�x√N�), for x ∈ R
2. It is known [CSZ20,G20] that, in the subcritical

regime, hN (x) converges to the gaussian free field. This, now, raises interesting questions
[CZ21] about asymptotic statistics of extrema of the field hN (x) as well as whether the
exponential of hN (x), normalised by its mean, converges to a Gaussian Multiplicative
Chaos (GMC). The activity in the field of log-correlated fields and on questions of this
type for various models is very large, so we will only refer to some reviews [B17,BK22,
BP21,DRSV27,RV14] for further guidance.
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Since exp
(√

log N log ZβN
N

)
= (ZβN

N

)√log N , questions like the above appear natu-

rally related to information on the asymptotic of moments of the partition function of
order

√
log N . Progress in this direction, has recently been made in [CZ21] where the

authors showed that there exists a β̂0 < 1 such that for β̂ ≤ β̂0 and for h = hN such that

lim sup
N→∞

3β̂2

1 − β̂2

1

log N

(
h

2

)
< 1,

then E
[
(ZβN

N )h
] ≤ C

( 1
1−β̂2

) h(h−1)
2 (1+εN ), for C = C(β̂) and εN = εN (β̂) → 0 for

N → ∞. Tighter estimates might be needed in order to tackle the above questions on
extrema and approximation to GMC, see discussion [CZ21], Section 4.

Finally, let us remark that in the continuum setting of the stochastic heat equation

∂t uε = 1

2
uε + βε ξ (ε)(t, x)uε,

with ξ (ε)(t, x) := 1
ε

∫
R2 j ( x−y

ε
)ξ(t, x)dx the mollified noise and βε = β̂√

log ε−1
with

β̂ <
√
2π , corresponding to the subcritical regime for the stochastic heat equation, the

recent work [CSZ22] yields that Euhε ≥ (Eu2ε
) h(h−1)

2 , for any positive h, irrespective
the dependence of h in ε (one should think of a correspondence between ε and N as
N = ε−2 ).

1.2. Outline of the paper.

– In Sect. 2 we set up the general framework (including a chaos and a renewal repre-
sentation) and recall some results that will be useful for proving the main theorems.

– In Sect. 3 we present the moment expansion and functional analytic framework. We
also prove the key operator norm estimates in subsection 3.2.

– In Sect. 4 we present the proofs of Theorems 1.1, 1.4, 1.5 and 1.3.
– Last, Appendix 1 contains some technical estimates we make use of in Sect. 3.

2. Auxiliary Tools

In this section we develop all the necessary machinery for the proof of the main results.

2.1. Partition functions and chaos expansion. Let us start by denoting the transition
probability kernel of the underlying, two-dimensional, simple random walk S by qn(x)
for n ∈ N and x ∈ Z

2, that is qn(x) := P(Sn = x). Recall from (1.1) the definition of
the point-to-plane partition function

ZβN
N (x) := Ex

[
e
∑N−1

n=1

(
βN ω(n,Sn)−λ(βN )

)]
,

where βN is chosen so that

σ 2
N ,β := eλ(2βN )−2λ(βN ) − 1 = β̂2

RN
, (2.1)
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where

RN := E⊗2
[ N∑
n=1

1{S(1)
n =S(2)

n }
]

=
N∑

n=1

∑

z∈Z2

qn(z)
2 =

N∑
n=1

q2n(0), (2.2)

denotes the expected collisions until time N of two independent, two-dimensional, sim-
ple random walks, starting from the origin. Note that [ET60]

RN = log N

π
+

α

π
+ o(1),

where α := γ + log 16 − π � 0.208 and γ � 0.577 is the Euler constant. By Taylor

expansion in (2.1), this implies the asymptotic scaling of βN as βN ∼ β̂
√

π
log N for

N → ∞.
We shall also need the definition of thepoint-to-point partition functions. In particular,

for a, b ∈ N with a < b and x, y ∈ Z
2, we define the point-to-point partition function

from the space-time point (a, x) to (b, y) by

ZβN
a,b(x, y) := Ea,x

[
e
∑b−1

n=a+1

(
βN ω(n,Sn)−λ(βN )

)
1{Sb=y}

]
, (2.3)

Note that with these definitions,

ZβN
N (x) =

∑

y∈Z2

ZβN
0,N (x, y).

Given ϕ,ψ : R
2 → R such that ϕ has compact support and ψ is bounded, we can

further define the averaged partition functions by,

ZβN
a,b(ϕ, y) :=

∑

x∈Z2

ϕ( x√
N

) ZβN
a,b(x, y),

ZβN
a,b(x, ψ) :=

∑

y∈Z2

ZβN
a,b(x, y) ψ(

y√
N

)

and

ZβN
a,b(ϕ, ψ) := 1

N

∑
x,y

ϕ( x√
N

) ZβN
a,b(x, y) ψ(

y√
N

). (2.4)

For (a, x), (b, y) ∈ N × Z
2 with a < b, the mean of each of the quantities above is

computed as

E
[
ZβN
a,b(ϕ, y)

] = qN
a,b(ϕ, y) :=

∑

x∈Z2

ϕ( x√
N

) qa,b(x, y) ,

E
[
ZβN
a,b(x, ψ)

] = qN
a,b(x, ψ) :=

∑

y∈Z2

qa,b(x, y) ψ(
y√
N

)
(2.5)

and

E
[
ZβN
a,b(ϕ, ψ)

] = qN
a,b(ϕ, ψ) := 1

N

∑

x,y∈Z2

ϕ( x√
N

) qa,b(x, y)ψ(
y√
N

).
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Next, we derive an expansion for the point-to-point partition function ZβN
a,b(x, y) as a

multilinear polynomial, which goes by the name of chaos expansion. This is the starting
point of our analysis. Recalling (2.3) we have

ZβN
a,b(x, y) = Ea,x

[ ∏
a<n<b

∏

z∈Z2

e
(

βN ω(n,z)−λ(βN )
)
1{Sn=z} 1{Sb=y}

]

and by using the fact that for λ ∈ R, eλ1{Sn=z} = 1 + (eλ − 1)1{Sn=z} we obtain

ZβN
a,b(x, y) = Ea,x

[ ∏
a<n<b

∏

z∈Z2

(
1 + ξ(n, z)1{Sn=z}

)
1{Sb=y}

]
(2.6)

where ξ(n, z) := eβN ω(n,z)−λ(βN ) − 1 are i.i.d. random variables with

E[ξ ] = 0, E[ξ2] = eλ(2βN )−2λ(βN ) − 1

=: σ 2
N ,β̂

N→∞∼ β2
N , E

[|ξ |k] ≤ Ck σ k
N ,β̂

for k ≥ 3, (2.7)

for some constants Ck ∈ (0,∞), k ≥ 3. The asymptotic and the bound in (2.7) follow
by Taylor expansion. Expanding the product in (2.6) yields the following expansion of
ZβN
a,b(x, y) as a multilinear polynomial of the variables ξ(n, z),

ZβN
a,b(x, y) = qa,b(x, y)

+
∑
k≥1

∑
a<n1<···<nk<b

z1,...,zk∈Z2

qa,n1(x, z1) ξ(n1, z1)

{ k∏
j=2

qn j−1,n j (z j−1, z j ) ξ(n j , z j )

}
qnk ,b(zk, y), (2.8)

which also leads to

ZβN
a,b(ϕ, ψ) := qN

a,b(ϕ, ψ)

+
1

N

∑
k≥1

∑
a<n1<···<nk<b

z1,...,zk∈Z2

qN
a,n1(ϕ, z1) ξ(n1, z1)

{ k∏
j=2

qn j−1,n j (z j−1, z j ) ξ(n j , z j )

}
qN
nk ,b(zk, ψ)

for the averaged point-to-point partition function. Using the notation

�ZβN
N (ϕ, ψ) := ZβN

N (ϕ, ψ) − E
[
ZβN
N (ϕ, ψ)

]

for the centred averaged partition function we have that

�ZβN
N (ϕ, ψ) := 1

N

∑
k≥1

∑
z1,z2,...,zk

0<n1<···<nk<N

qN
0,n1(ϕ, z1) ξ(n1, z1)
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{ k∏
j=2

qn j−1,n j (z j−1, z j )ξ(n j , z j )

}
qN
nk ,N (zk, ψ). (2.9)

For simplicity, we will denote ZβN
N (ϕ) := ZβN

N (ϕ, 1) and �ZβN
N (ϕ) := �ZβN

N (ϕ, 1).

2.2. Renewal representation. We will also need certain renewal representations for
the second moment of the point-to-point partition functions. These were introduced
in [CSZ19a] and [CSZ19b] but only mainly studied in the context of the critical directed
polymer therein. Let (a, x), (b, y) ∈ N × Z

2 with a < b. We define

UβN
N

(
(a, x), (b, y)

) := σ 2
N ,β̂

E

[
ZβN
a,b(x, y)

2
]
. (2.10)

By translation invariance

UβN
N

(
(a, x), (b, y)

) = UβN
N (b − a, y − x) := σ 2

N ,β̂
E

[
ZβN
b−a(y − x)2

]
,

therefore it suffices toworkwithUβN
N (n, x).We furthermore defineUβN

N (n, x) := 1{x=0}
if n = 0. Using (2.8) and (2.7) we derive the expansion

UβN
N (n, x) = σ 2

N ,β̂
q2n (x)

+
∑
k≥1

σ
2(k+1)
N ,β̂

∑
0<n1<···<nk<n
z1,z2,...,zk∈Z2

q20,n1(0, z1)
{ k∏

j=2

q2n j−1,n j
(z j−1, z j )

}
q2nk ,n(zk, x) .

(2.11)

Moreover, for 0 ≤ n ≤ N we define

UβN
N (n) :=

∑

x∈Z2

UβN
N (n, x). (2.12)

We will, now, recast UβN
N (n, x) and UβN

N (n) in a renewal theory framework. We define

a family of i.i.d. random vectors (t(N )
i , x(N )

i )i≥1, such that

P
( (

t(N )
1 , x(N )

1

) = (n, x)
)

= q2n (x)

RN
1{n≤N }

and moreover we let τ (N )
k := t(N )

1 + · · ·+ t(N )
k and S(N )

k := x(N )
1 + · · ·+ x(N )

k if k ≥ 1. For
k = 0 we set (τ0, S0) := (0, 0). Using this framework we see by (2.11) and (2.12) that

UβN
N (n, x) =

∑
k≥0

β̂2k P
(
τ

(N )
k = n, S(N )

k = x
)

and

UβN
N (n) =

∑
k≥0

β̂2k P
(
τ

(N )
k = n

)
.

Finally, we remark that

N∑
n=0

UβN
N (n) = E

[
(ZβN

N+1)
2
]
. (2.13)



2494 D. Lygkonis, N. Zygouras

2.3. Some useful results. We will make use of the following results on the limiting
distribution of ZβN

N and the fluctuations of �ZβN
N (ϕ), whichwere established in [CSZ17b].

Theorem 2.1. [CSZ17b]. Fix β̂ ∈ (0, 1) and let �2
β̂

:= log
( 1
1−β̂2

)
. Then,

ZβN
N

(d)−−−−→
N→∞ exp

(
�

β̂
X − 1

2 �2
β̂

)
,

where X has a standard normal distribution N (0, 1).

Theorem 2.2. [CSZ17b]. Fix β̂ ∈ (0, 1) and ϕ ∈ Cc(R
2). Then,

√
log N �ZβN

N (ϕ)
(d)−−−−→

N→∞ N (0, �2
ϕ(β̂)
)
,

where �ZβN
N (ϕ) := �ZβN

N (ϕ, 1) is defined in (2.4),

�2
ϕ(β̂) := π β̂2

1 − β̂2

∫ 1

0
dt
∫

(R2)2
dx dy ϕ(x)gt (x − y)ϕ(y)

and gt (x) := 1
2π t e

−|x |2/2t denotes the two-dimensional heat kernel.

3. Expansion of Moments and Integral Inequalities

We shall hereafter use the notation

Mϕ,ψ
N ,h := E

[�ZβN
N (ϕ, ψ)h

]
,

for the hth centred moments of the averaged field (2.4).

3.1. Chaos expansion of moments. By (2.9) we have

Mϕ,ψ
N ,h = 1

Nh
× E

[(∑
k≥1

∑

z1,z2,...,zk∈Z2

0<n1<···<nk<N

qN
0,n1(ϕ, z1)ξ(n1, z1)

{ k∏
j=2

qn j−1,n j (z j−1, z j )ξ(n j , z j )

}
qN
nk ,N (zk, ψ)

)h]
. (3.1)

When h ∈ N, the power h on the right hand side of (3.1) can be expanded as

∑
k1,...,kh≥1

∑

(n(r)
i ,z(r)i )∈N×Z

2

1≤i≤kr ,1≤r≤h

h∏
r=1

qN
0,n(r)

1
(ϕ, z(r)1 )ξ(n(r)

1 , z(r)1 )

×
{ kr∏

j=2

q
n(r)
j−1,n

(r)
j

(z(r)j−1, z
(r)
j )ξ(n(r)

j , z(r)j )

}
qN
n(r)
k ,N

(z(r)kr
, ψ). (3.2)
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Fig. 1. A diagrammatic representation of the expansion (3.15) for E
[
(�ZβN

N )4
]
. The horizontal direction is the

time direction, while the vertical lines correspond to different time slices, {n} × Z
2, n ∈ N. We use straight

lines to represent free evolution (3.6) and wiggly lines to represent replica evolution, see (3.11). We use filled
dots to represent space-time points where disorder ξ is sampled

Note that every term in that expansion contains a product of disorder variables of the
form

h∏
r=1

kr∏
j=1

ξ(n(r)
j , x (r)

j ). (3.3)

Therefore, after taking the expectation with respect to the environment and taking into
account that the ξ variables havemean zero and are independent if they are indexedbydif-
ferent space timepoints, see (2.7),we see that the non-zero terms of the expansion of (3.1)
will be those such that for every point (n(r)

j , x (r)
j ), 1 ≤ j ≤ kr , 1 ≤ r ≤ h there exists

(at least one) 1 ≤ r ′ ≤ h, 1 ≤ j ≤ kr ′ such that r �= r ′ and (n(r)
j , x (r)

j ) = (n(r ′)
j ′ , x (r ′)

j ′ ),

that is, every disorder variable ξ(n(r)
j , x (r)

j ) should appear at least twice in a product of
disorder variables. Hence, a natural way to parametrise the sum (3.1) is to sum over
the space-time locations of these coincidence points along with all the possible coinci-
dence configurations. We will also use iteratively the Chapman-Kolmogorov equation
qt1,t2(x, y) =∑z∈Z2 qt1,s(x, z) qs,t2(z, y), t1 < s < t2, for the simple random walk, to
break down ’long range jumps’, appearing in (3.2) via their transition probabilities, into
smaller jumps, so that we can track the location of each random walk at each time t , see
Fig. 1. Let us introduce the framework which will allow to formalise the above.

For h ≥ 3, let I � {1, . . . , h} denote a partition I = I1 � I2 � · · · � Im of {1, . . . , h}
into disjoint subsets I1, . . . , Im with cardinality |I | = m. Given I � {1, . . . , h}, we
define the equivalence relation

I∼ such that for k, � ∈ {1, . . . , h}, we have k I∼ � if k and
� belong to the same component of the partition I . For x = (x1, . . . , xh) ∈ (Z2)h and a

partition I we will denote x ∼ I if xk = x� for all k
I∼ �. We shall also use the notation

(Z2)hI := {x ∈ (Z2)h : x ∼ I }.



2496 D. Lygkonis, N. Zygouras

For p ∈ (1,∞)wedefine the I -restricted�p spaces �p
(
(Z2)hI

)
via thenorm‖ f ‖�p((Z2)hI )

:= (∑x∈(Z2)hI
| f (x)|p)1/p for functions f : (Z2)hI → R. In shorthand, we will of-

ten write �
p
I or just �p if there is no risk of confusion. For an integral operator T :

�q
(
(Z2)hJ

)→ �q
(
(Z2)hI

)
, we define the pairing

〈 f,Tg〉 :=
∑

x ∈(Z2)hI , y∈(Z2)hJ

f (x)T(x, y)g( y). (3.4)

The operator norm will be given by

‖T‖�q→�q := sup
‖g‖

�
q
J
≤1

‖Tg‖�
q
I

= sup
‖ f ‖

�
p
I
≤1, ‖g‖

�
q
J
≤1

〈 f,Tg〉 (3.5)

for p, q ∈ (1,∞) conjugate exponents, i.e. 1
p + 1

q = 1.

For two partitions I, J � {1, . . . , h} and x, y ∈ (Z2)h with x ∼ I and y ∼ J we
define the free evolution subject to constraints I, J as

QI,J
n (x, y) := 1{x∼I }

h∏
i=1

qn(yi − xi )1{ y∼J }, forn ∈ N. (3.6)

QI,∗
n and Q∗,J

n will denote the particular cases where I and J , respectively, are the
partitions consisting only of singletons, i.e. I = {1} � · · · � {h}. Moreover, if I, J �
{1, . . . , h}, ϕ,ψ : R2 → R and n ∈ N we define

Q∗,J
n (ϕ⊗h, y) :=

h∏
i=1

qN
n (ϕ, yi ) · 1{ y∼J }

QI,∗
n (x, ψ⊗h) := 1{x∼I } ·

h∏
i=1

qN
n (xi , ψ) ,

(3.7)

see also (2.5). The mixed moment subject to a partition I will be denoted by

E[ξ I ] :=
∏

1≤ j≤|I |, |I j |≥2

E[ξ |I j |]. (3.8)

Using this formalism, we can then write

Mϕ,ψ
N ,h = 1

Nh

∑
k≥1

∑
0:=n0<n1<···<nk≤N ,

(I1,...,Ik )∈I,

mi :=|Ii |<h, yi∈(Z2)mi

Q∗,I1
n1 (ϕ⊗h, y1)E

[
ξ I1
]

×
k∏

i=2

QIi−1,Ii
ni−ni−1

( yi−1, yi )E
[
ξ Ii
]

· QIk ,∗
N−nk

( yk, ψ
⊗h), (3.9)

where I is the set of all finite sequences of partitions of {1, . . . , h}, (I1, . . . , Ik), which
satisfy the following condition: For every r ∈ {1, . . . , h} there exists 1 ≤ i ≤ k such
that the block Ii that contains r is non-trivial, i.e. it has cardinality equal or larger than
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2. This restriction comes from the fact that Mϕ,ψ
N ,h are centred moments and therefore

every term in the expansion (3.1) contains the expected value of a product of disorder
variables (3.3), which is non-zero only if the product of disorder variables does not
contain standalone ξ variables, see the discussion below (3.3).

Let B = B(0, r) ⊂ R
2 be a ball containing the support ofψ (allowing the possibility

of r = ∞, in case suppψ = R
2). We then have that

QIk ,∗
N−nk

(
yk, ψ

⊗h) ≤ QIk ,∗
N−nk

(
yk, ‖ψ‖h∞ 1⊗h

B

)

≤ c

N

∑
nk+1∈{N+1,...,2N }

QIk ,∗
nk+1−nk

(
yk, ‖ψ‖h∞ 1⊗h

B

)
,

with the latter inequality following because the probability that a random walk starting
inside the ball B(0,

√
Nr) ⊂ R

2 at time N − nk is inside B(0,
√
Nr) at time nk+1 − nk

with nk+1 ∈ {N + 1, . . . 2N } is uniformly bounded away from zero.
Thus,

∣∣Mϕ,ψ
N ,h

∣∣ ≤ c ‖ψ‖h∞
Nh+1

∑
k≥1

∑
0:=n0<n1<···<nk+1≤2N ,

(I1,...,Ik )∈I,

mi :=|Ii |<h, yi∈(Z2)mi

Q∗,I1
n1 (ϕ⊗h, y1)E

[
|ξ |I1
]

×
k∏

i=2

QIi−1,Ii
ni−ni−1

( yi−1, yi )E
[
|ξ |Ii
]

· QIk ,∗
nk+1−nk ( yk,1

⊗h
B ). (3.10)

We also need to define the replica evolution. For I � {1, . . . , h} of the form I =
{k, �} �⊔ j �=k,�{ j}

UI
n(x, y) := 1{x, y∼I } ·UβN

N (n, yk − xk) ·
∏
i �=k,�

qn(yi − xi ), (3.11)

where UβN
N (n, yk − xk) is defined in (2.10). The replica evolution operator will be used

to contract consecutive appearances of the same partition I , with |I | = h − 1 in the
right-hand side of (3.10). In particular, note that if I � {1, . . . , h}, such that |I | = h−1,
then

UI
n(x, y) =

∑
k≥0

E[ξ2]k
∑

0:=n0<n1<···<nk :=n

∑

yi∈(Z2)hI ,1≤i≤k−1,
y0:=x, yk := y

k∏
i=1

QI ;I
ni−ni−1

( yi−1, yi ).

To be able to estimate the right-hand side of (3.10) we will upper bound it by enlarging
the domain of the temporal sum in the right-hand side of (3.10) from 1 ≤ n1 < · · · <

nk+1 ≤ 2N to ni − ni−1 ∈ {1, . . . , 2N } for all 1 ≤ i ≤ k + 1. This enlargement of the
domain of summation deconvolves the temporal sum in the right-hand side of (3.10).

On this account, we introduce the discrete Laplace transforms of the operatorsQ and
U,

QI,J
N ,λ( y, z) :=

2N∑
n=1

e−λ n
N QI,J

n ( y, z), y, z ∈ (Z2)h, (3.12)
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UI
N ,λ( y, z) :=

2N∑
n=0

e−λ n
N UI

n( y, z), y, z ∈ (Z2)h, (3.13)

for λ ≥ 0.

Remark 3.1. In our case, it will be sufficient to work with λ = 0, however, keeping a non
zero λ and tracking the dependence of the estimate on it (together with a closer tracking
on the order h of the moment) would be necessary in order to extend our method so that
to accommodate h that grows with N .

Let us define

PI ;J
N ,β̂

=
{
QI ;J

N ,0, if |J | < h − 1

QI ;J
N ,0 U

J
N ,0, if |J | = h − 1.

Note that the appearance of the operatorUJ
N ,0 is necessarily preceded by a free evolution

operator QI ;J
N ,0, with |J | = h − 1, see also Fig. 1. In view of (3.10) and the discussion

above we can now write

∣∣Mϕ,ψ
N ,h

∣∣ ≤c ‖ψ‖h∞
Nh+1

∑
k≥1

∑
(I1,...,Ik )∈I

〈
ϕ⊗h
N ,P∗,I1

N ,β̂
PI1,I2
N ,β̂

· · · PIk ,∗
N ,β̂

1⊗h√
N B

〉 k∏
i=1

E

[
|ξ |Ii
]
,

where we recall the definition of the pairing 〈· , ·〉 from (3.4) and note that the sum runs
over partitions I1, . . . , Ik such that I j �= I j+1 if |I j | = |I j+1| = h−1 for 1 ≤ j ≤ k−1.

Because of the assumption of Theorem 1.5 on ψ being merely a bounded function
we will need to introduce weighted versions of the operators UI

N ,λ, Q
I ;J
N ,λ and PI ;J

N ,β̂
. In

particular, if w : R
2 → R is such that logw is Lipschitz continuous with Lipschitz

constant denoted by Cw > 0, and if we denote by wN (x) = w
( x√

N

)
, then we define for

λ ≥ 0,

Q̂I ;J
N ,λ(x, y) := w⊗h

N (x)

w⊗h
N ( y)

QI ;J
N ,λ(x, y),

ÛI
N ,λ(x, y) := w⊗h

N (x)

w⊗h
N ( y)

UI
N ,λ(x, y),

where we recall that w⊗h
N (x) = wN (x1) · · · wN (xh), if x = (x1, . . . , xh). We modify

accordingly the operator PI ;J
N ,β̂

into a new operator P̂I ;J
N ,β̂

,

P̂I ;J
N ,β̂

=
{
Q̂I ;J

N ,0 , if |J | < h − 1

Q̂I ;J
N ,0 Û

J
N ,0 , if |J | = h − 1.

(3.14)

Therefore, we can now write

∣∣Mϕ,ψ
N ,h

∣∣ ≤ c ‖ψ‖h∞
Nh+1

∑
k≥1

∑

(I1,...,Ik )∈I

〈 ϕ⊗h
N

w⊗h
N

, P̂∗,I1
N ,β̂

P̂I1,I2
N ,β̂

· · · P̂Ik ,∗
N ,β̂

1⊗h√
NB

w⊗h
N

〉 k∏
i=1

E

[
|ξ |Ii
]

≤ c ‖ψ‖h∞
Nh+1

∑
k≥1

∑

(I1,...,Ik )∈I

〈 ϕ⊗h
N

w⊗h
N

, P̂∗,I1
N ,β̂

P̂I1,I2
N ,β̂

· · · P̂Ik ,∗
N ,β̂

w⊗h
N

〉 k∏
i=1

E

[
|ξ |Ii
] (3.15)
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where we bounded the indicator function 1⊗h√
N B

by 1 to obtain the second inequality.
Passing to the operator norms (see (3.5)) we estimate

∣∣Mϕ,ψ
N ,h

∣∣ ≤ c ‖ψ‖h∞
Nh+1

∑
k≥1

∑
(I1,...,Ik )∈I

∥∥∥∥∥P̂
∗,I1
N ,β̂

ϕ⊗h
N

w⊗h
N

∥∥∥∥∥
�p

k∏
i=2

∥∥∥P̂Ii−1,Ii
N ,β̂

∥∥∥
�q→�q

∥∥∥P̂Ik ,∗
N ,β̂

w⊗h
N

∥∥∥
�q

k∏
i=1

E

[
|ξ |Ii
]
. (3.16)

This is the key expansion we will use for the Proof of Theorem 1.5.

3.2. Integral inequalities for the operators Q̂I ;J
N ,0 and Û

I
N ,0. At this point, we will prove

the key estimates about the operators Q̂I ;J
N ,0, Û

I
N ,0 that we will need along the way. In

what follows we shall use the letter C to denote constants that may depend only on h, β̂

and w but not on p and q. We will also use the letter c to denote absolute constants, i.e.
constants that do not depend on h, β̂, w or p, q. Their value may change from line to
line.

We start this subsection by stating a lemma on the operator QN ,λ(x, y) := ∑2N
n=1

e−λn
N Qn(x, y) from [CSZ21] which we will need in the sequel.

Lemma 3.2 ([CSZ21]). Let N ≥ 1, h ≥ 2 and x, y ∈ (Z2)h. Then, there exists a
constant C ∈ (0,∞) such that uniformly in N, x, y and λ ≥ 0,

QN ,λ(x, y) ≤

⎧
⎪⎨
⎪⎩

C(
1+|x− y|2

)h−1 for all x, y ∈ (Z2)h,

C
Nh−1 exp

(
−|x− y|2

C N

)
if |x − y| >

√
N .

The next proposition contains the central estimate. It is on the operator norm of
operator Q̂I ;J

N ,0, as an operator from an �q → �q , containing the explicit dependence on
the parameters p, q.

Proposition 3.3. Let p, q ∈ (1,∞) such that 1
p + 1

q = 1. There exists a constant
C = C(h, w) ∈ (0,∞), independent of p and q, such that for all I, J � {1, . . . , h}
with 1 ≤ |I |, |J | ≤ h − 1 and I �= J when |I | = |J | = h − 1,

∥∥∥Q̂I ;J
N ,0

∥∥∥
�q→�q

≤ C p q. (3.17)

Proof. Let I, J � {1, . . . , h} with 1 ≤ |I |, |J | ≤ h − 1 and I �= J when |I | = |J | =
h − 1 and consider f ∈ �p

(
(Z2)hI

)
, g ∈ �q

(
(Z2)hJ

)
. In view of (3.5), in order to prove

(3.17), we need to prove that there exists a constant C ∈ (0,∞) such that

∑

x∈(Z2)hI , y∈(Z2)hJ

f (x)QI ;J
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤ C p q ‖ f ‖�p ‖g‖�q . (3.18)

Let

EN :=
{
(x, y) ∈ (Z2)hI × (Z2)hJ : |x − y| ≤ C0

√
N
}
. (3.19)
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for some C0 > 0 to be determined. By the second inequality in Lemma 3.2 and the
Lipschitz condition on logw, we can chooseC0 large enough so that for all (x, y) ∈ Ec

N
we have

QI ;J
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

≤ C

Nh−1 exp
(− |x− y|√

N

)
.

Therefore, on Ec
N we have that

∑
(x, y)∈Ec

N

f (x)QI ;J
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤ C

Nh−1

∑
(x, y)∈Ec

N

f (x) exp
(− |x− y|√

N

)
g( y)

and by Hölder’s inequality,

1

Nh−1

∑
(x, y)∈Ec

N

f (x) exp
(− |x− y|√

N

)
g( y)

≤ 1

Nh−1

( ∑

x∈(Z2)hI , y∈(Z2)hJ

| f (x)|p exp
(

− |x− y|√
N

)) 1
p

( ∑

x∈(Z2)hI , y∈(Z2)hJ

|g( y)|q exp
(

− |x− y|√
N

)) 1
q

≤ C N
|J |
p + |I |

q − (h − 1) ‖ f ‖�p ‖g‖�q

≤ C ‖ f ‖�p ‖g‖�q , (3.20)

where the inequality in the last line of (3.20) follows by the assumption |I |, |J | ≤ h−1.
Thus,

∑
(x, y)∈Ec

N

f (x)QI ;J
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤ C ‖ f ‖�p ‖g‖�q ,

for a constant C ∈ (0,∞).
Let us now estimate the sum over (x, y) ∈ EN . Recalling that logw is Lipschitz with

Lipschitz constant Cw and (3.19), we get that

∑
(x, y)∈EN

f (x)QI ;J
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤ eCw C0
∑

(x, y)∈EN

f (x)QI ;J
N ,0(x, y)g( y).

Therefore, using the first inequality of Lemma 3.2, the key step is to show that there
exists a constant C ∈ (0,∞) that may depend on h and w but not on p and q, such that

∑

x∈(Z2)hI , y∈(Z2)hJ

f (x)g( y)(
1 +
∑h

i=1 |xi − yi |2
)h−1 ≤ C p q ‖ f ‖�p ‖g‖�q . (3.21)
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By assumption there exist 1 ≤ k, � ≤ h such that k
I∼ � and 1 ≤ m, n ≤ h such that

m
J∼ n. Since we have assumed that I �= J when |I | = |J | = h − 1, we may assume

without loss of generality that m �= k, �. Let a ∈ (0,min{p−1, q−1}) to be determined

later. By multiplying and dividing by 1+|xm−xn |2a
1+|yk−y�|2a and using Hölder’s inequality, the

left-hand side of (3.21) is upper bounded by

( ∑

x∈(Z2)hI , y∈(Z2)hJ

| f (x)|p(
1 +
∑h

i=1 |xi − yi |2
)h−1 ·

(
1 + |xm − xn|2a

)p
(
1 + |yk − y�|2a

)p
) 1

p

×
( ∑

x∈(Z2)hI , y∈(Z2)hJ

|g( y)|q(
1 +
∑h

i=1 |xi − yi |2
)h−1 ·

(
1 + |yk − y�|2a

)q
(
1 + |xm − xn|2a

)q
) 1

q

. (3.22)

By symmetry, it is enough to bound one of the two factors in (3.22). By triangle inequality

and the fact that m
J∼ n, which means that ym = yn , we have

|xm − ym |2 + |xn − yn|2 ≥ |xm − xn|2 + |xn − yn|2
4

.

Therefore,

( ∑

x∈(Z2)hI , y∈(Z2)hJ

| f (x)|p(
1 +
∑h

i=1 |xi − y j |2
)h−1 ·

(
1 + |xm − xn|2a

)p
(
1 + |yk − y�|2a

)p
) 1

p

≤ 4
h−1
p

( ∑

x∈(Z2)hI

| f (x)|p (1 + |xm − xn|2a)p

×
∑

y∈(Z2)hJ

1(
1 + |xm − xn|2 +∑i �=m |xi − yi |2

)h−1(
1 + |yk − y�|2a

)p
) 1

p

. (3.23)

By using (A.1) of Lemma A.1 and summing successively the yi variables for i �= k, �
we obtain that
∑

y∈(Z2)hJ

1(
1 + |xm − xn|2 +∑i �=m |xi − yi |2

)h−1
(1 + |yk − y�|2a)p

≤ c|J |−2
∑

yk , y�∈Z2

1(
1 + |xm − xn|2 + |yk − xk |2 + |y� − x�|2

)h+1−|J |(
1 + |yk − y�|2a

)p .

We make a change of variables w1 = yk − y� and w2 = yk + y� − 2xk and observe that
w2
1+w2

2
2 = |yk − xk |2 + |y� − x�|2, where we used that k I∼ � thus xk = x�. Therefore, we

have

c|J |−2
∑

yk , y�∈Z2

1(
1 + |xm − xn|2 + |yk − xk |2 + |y� − x�|2

)h+1−|J |(
1 + |yk − y�|2a

)p
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≤ 2h+1−|J | c|J |−2
∑

w1, w2∈Z2

1(
1 + |xm − xn|2 + |w1|2 + |w2|2

)h+1−|J |(
1 + |w1|2a

)p .

By summing w2 and using (A.1) of Lemma A.1 we have,

2h+1−|J | c|J |−2
∑

w1, w2∈Z2

1(
1 + |xm − xn|2 + |w1|2 + |w2|2

)h+1−|J |(
1 + |w1|2a

)p

≤ 2h+1−|J | c|J |−1
∑

w1∈Z2

1(
1 + |xm − xn|2 + |w1|2

)h−|J |(
1 + |w1|2a

)p

By (A.2) of Lemma A.1 we have that

2h+1−|J | c|J |−1
∑

w1∈Z2

1(
1 + |xm − xn|2 + |w1|2

)h−|J |(
1 + |w1|2a

)p

≤ 2h+1−|J | c|J | 1

ap(1 − ap)

1(
1 + |xm − xn|2

)ap+h−1−|J |

≤ 2h+1−|J | c|J | 1

ap(1 − ap)

1(
1 + |xm − xn|2

)ap ,

where in the last inequality we used that |J | ≤ h − 1 by assumption. Therefore, the
right-hand side of (3.23) is bounded by

(
4h−1 2h+1

( c
2

)|J | 1

ap(1 − ap)

) 1
p ·
( ∑

x∈(Z2)hI

| f (x)|p (1 + |xm − xn|2a)p(
1 + |xm − xn|2

)ap
) 1

p

=
(
23h−1

( c
2

)|J | 1

ap(1 − ap)

) 1
p ·
( ∑

x∈(Z2)hI

| f (x)|p (1 + |xm − xn|2a)p(
1 + |xm − xn|2

)ap
) 1

p

. (3.24)

Note furthermore, that

(
1 + |xm − xn|2a

)p
(
1 + |xm − xn|2

)ap ≤ 2p max
{
1, |xm − xn|

}2ap
(
1 + |xm − xn|2

)ap ≤ 2p,

therefore,

( ∑

x∈(Z2)hI

| f (x)|p (1 + |xm − xn|2a)p(
1 + |xm − xn|2

)ap
) 1

p

≤ 2

( ∑

x∈(Z2)hI

| f (x)|p
) 1

p

= 2 ‖ f ‖�p .

Hence, setting

C J
p,h := 2 ·

(
23h−1

( c
2

)|J | 1

ap(1 − ap)

) 1
p
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and recalling (3.23), (3.24) we get that

( ∑

x∈(Z2)hI , y∈(Z2)hJ

| f (x)|p(
1 +
∑h

i=1 |xi − yi |2
)h−1 ·

(
1 + |xm − xn|2a

)p
(
1 + |yk − y�|2a

)p
) 1

p

≤ C J
p,h ‖ f ‖�p .

(3.25)

By symmetry we also obtain that

( ∑

x∈(Z2)hI , y∈(Z2)hJ

|g( y)|q(
1 +
∑h

i=1 |xi − yi |2
)h−1 ·

(
1 + |yk − y�|2a

)q
(
1 + |xm − xn|2a

)q
) 1

q

≤ C I
q,h ‖g‖�q ,

(3.26)

with

C I
q,h := 2 ·

(
23h−1

( c
2

)|I | 1

aq(1 − aq)

) 1
q

.

Consequently, recalling (3.21) and using (3.25), (3.26) we deduce that

∑

x∈(Z2)hI , y∈(Z2)hJ

f (x)g( y)(
1 +
∑h

i=1 |xi − yi |2
)h−1 ≤ C J

p,h C
I
q,h ‖ f ‖�p ‖g‖�q .

We optimise by choosing a = (p q)−1 so as to obtain

C J
p,h = 2 ·

(
23h−1

( c
2

)|J |
p q

) 1
p

and C I
q,h = 2 ·

(
23h−1

( c
2

)|I |
p q

) 1
q

,

which implies that

C J
p,h C

I
q,h = 23h+1

( c
2

) |J |
p + |I |

q
p q.

Noting that
( c
2

) |J |
p + |I |

q ≤ max
{
1,
( c
2

)h−1
}
, we deduce that there exists C = C(h, w) ∈

(0,∞) such that

∑

x∈(Z2)hI , y∈(Z2)hJ

f (x)g( y)(
1 +
∑h

i=1 |xi − yi |2
)h−1 ≤ C p q ‖ f ‖�p ‖g‖�q ,

which together with (3.20) imply (3.18). ��
The next proposition is the analogue of Proposition 3.3 for the boundary operators.

Proposition 3.4. Let p, q ∈ (1,∞) such that 1
p + 1

q = 1. There exists a constant
C = C(h, w) ∈ (0,∞), independent of p and q, such that for all I � {1, . . . , h} with
|I | ≤ h − 1 and g ∈ �q(Z2),

∥∥∥Q̂I ;∗
N ,0 g

⊗h
∥∥∥

�q
≤ C p N

1
p ‖g‖h�q .
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Proof. Let I � {1, . . . , h} with |I | ≤ h − 1. In order to prove Proposition 3.4, we need
to show that

∑

x∈(Z2)hI , y∈(Z2)h

f (x)QI ;∗
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g⊗h( y) ≤ C p N
1
p ‖ f ‖�p ‖g‖h�q .

for any f ∈ �p
(
(Z2)|I |

)
. The proof of this Proposition is a modification of the proof of

Proposition 3.3. Let

EN :=
{
(x, y) ∈ (Z2)hI × (Z2)h : |x − y| ≤ C0

√
N
}
.

For (x, y) ∈ Ec
N , following (3.20) we have

∑
(x, y)∈Ec

N

f (x)
w⊗h

N (x)

w⊗h
N ( y)

QI ;∗
N ,0(x, y)g⊗h( y) ≤C N

h
p + |I |

q − (h − 1) ‖ f ‖�p ‖g‖h�q

≤C N
1
p ‖ f ‖�p ‖g‖h�q ,

since |I | ≤ h − 1. Therefore, in light of the first inequality of Lemma 3.2, it remains to
show that

∑
(x, y)∈EN

f (x)g⊗h( y)(
1 +
∑h

i=1 |xi − y j |2
)h−1 ≤ C p N

1
p ‖ f ‖�p ‖g‖h�q . (3.27)

We can assume without loss of generality that 1
I∼ 2, that is x1 = x2. We multiply and

divide by the factor
(
log
(
1 +

C2
0N

1+|y1−y2|2
)) 1

q
in (3.27) and apply Hölder’s inequality,

namely

∑
(x, y)∈EN

f (x)g⊗h( y)(
1 +
∑h

i=1 |xi − yi |2
)h−1

≤
( ∑

(x, y)∈EN

| f (x)|p
(
log
(
1 +

C2
0N

1+|y1−y2|2
)) p

q

(
1 +
∑h

i=1 |xi − yi |2
)h−1

) 1
p

×
( ∑

(x, y)∈EN

|g⊗h( y)|q(
1 +
∑h

i=1 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)
) 1

q

. (3.28)

By triangle inequality and using that x1 = x2 we have that

|x1 − y1|2 + |x2 − y2|2 ≥ |y1 − y2|2 + |x2 − y2|2
4

,

therefore
( ∑

(x, y)∈EN

|g⊗h( y)|q(
1 +
∑h

i=1 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)
) 1

q



Moments of the 2D Directed Polymer 2505

≤ 4
h−1
q

( ∑
(x, y)∈EN

|g⊗h( y)|q(
1 + |y1 − y2|2 +∑h

i=2 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)
) 1

q

.

(3.29)

We sum the xi variables for i > 2 successively, so that by inequality (A.1) of Lemma
A.1,

∑

x∈(Z2)hI : (x, y)∈EN

1(
1 + |y1 − y2|2 +∑h

i=2 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)

≤ c|I |−1 1

log
(
1 +

C2
0N

1+|y1−y2|2
)

∑

x2∈Z2

|x2−y2|≤C0
√
N

1(
1 + |y1 − y2|2 + |x2 − y2|2

)h−|I | .

(3.30)

We also note that since |I | ≤ h − 1,

∑

x2∈Z2

|x2−y2|≤C0
√
N

1(
1 + |y1 − y2|2 + |x2 − y2|2

)h−|I |

≤
∑

x2∈Z2

|x2−y2|≤C0
√
N

1

1 + |y1 − y2|2 + |x2 − y2|2

≤ c log

(
1 +

C2
0N

1 + |y1 − y2|2
)

, (3.31)

where the last inequality in (3.31) follows from inequality (A.10) of Lemma A.2. Thus,
taking into account (3.30) and (3.31) we deduce that

∑

x∈(Z2)hI : (x, y)∈EN

1(
1 + |y1 − y2|2 +∑h

i=2 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)

≤ c|I | ≤ ch−1,

since |I | ≤ h − 1. By (3.29) we obtain that

( ∑
(x, y)∈EN

|g⊗h( y)|q(
1 +
∑h

i=1 |xi − yi |2
)h−1

log
(
1 +

C2
0N

1+|y1−y2|2
)
) 1

q

≤ (4c)
h−1
q

( ∑

y∈(Z2)h

|g⊗h( y)|q
) 1

q

= (4c)
h−1
q ‖g‖h�q . (3.32)
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On the other hand, for the first term in (3.28), using that x1 = x2, by (A.1) of Lemma
A.1, we have that

∑

y∈(Z2)h

(
log
(
1 +

C2
0N

1+|y1−y2|2
)) p

q

(
1 +
∑h

i=1 |xi − yi |2
)h−1

≤ ch−2
∑

y1,y2∈Z2

|y1−x1|,|y2−x1|≤C0
√
N

(
log
(
1 +

C2
0N

1+|y1−y2|2
)) p

q

(
1 + |x1 − y1|2 + |x1 − y2|2

) . (3.33)

We make the change of variables w1 := y1 − y2 and w2 := y1 + y2 − 2x1, so that
|w1|, |w2| ≤ 2C0

√
N and |w1|2 + |w2|2 = 2|y1 − x1|2 + 2|y2 − x1|2. Note that then,

ch−2
∑

y1,y2∈Z2

|y1−x1|,|y2−x1|≤C0
√
N

(
log
(
1 +

C2
0N

1+|y1−y2|2
)) p

q

(
1 + |x1 − y1|2 + |x1 − y2|2

)

≤ 2ch−2
∑

w1,w2∈Z2

|w1|,|w2|≤2C0
√
N

(
log
(
1 +

C2
0N

1+|w1|2
)) p

q

1 + |w1|2 + |w2|2 .

Next, we sum over w2 and use inequality (A.10) of Lemma A.2 to obtain

2ch−2
∑

w1,w2∈Z2

|w1|,|w2|≤2C0
√
N

(
log
(
1 +

C2
0N

1+|w1|2
)) p

q

1 + |w1|2 + |w2|2

≤ 2ch−1
∑

w1∈Z2

|w1|≤2C0
√
N

(
log
(
1 +

C2
0N

1 + |w1|2
)) p

q +1
. (3.34)

By (A.12) of Lemma A.2 and noting that p
q + 1 = p we have

∑

w1∈Z2

|w1|≤2C0
√
N

(
log
(
1 +

C2
0N

1 + |w1|2
))p ≤ c C2

0 N pp . (3.35)

Therefore, by (3.33), (3.34) and (3.35) we have that

( ∑
(x, y)∈EN

| f (x)|p
(
log
(
1 +

C2
0N

1+|y1−y2|2
)) p

q

(
1 +
∑h

i=1 |xi − yi |2
)h−1

) 1
p

≤
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(
2 ch C2

0

) 1
p
N

1
p p

( ∑

x∈(Z2)hI

| f (x)|p
) 1

p

≤
(
2 ch C2

0

) 1
p
N

1
p p ‖ f ‖�p . (3.36)

Taking into account (3.32), (3.36) and (3.28) we obtain that there exists C = C(h, w) ∈
(0,∞) such that

∑
(x, y)∈EN

f (x)g⊗h( y)(
1 +
∑h

i=1 |xi − y j |2
)h−1 ≤ C p N

1
p ‖ f ‖�p ‖g‖h�q ,

which concludes the proof of (3.27) and thus, the proof of Proposition 3.4. ��
Proposition 3.5. Let p, q ∈ (1,∞) such that 1

p + 1
q = 1. There exists a constant

C = C(h, β̂, w) ∈ (0,∞), independent of p and q, such that for all I � {1, . . . , h}
with |I | = h − 1,

∥∥∥ÛI
N ,0

∥∥∥
�q→�q

≤ C.

Proof. Using (3.5) it suffices to prove that if f ∈ �p
(
(Z2)hI

)
, g ∈ �q

(
(Z2)hI

)
, then we

have

∑

x, y∈(Z2)hI

f (x)UI
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤ C ‖ f ‖�p ‖g‖�q .

By the Lipschitz condition on logw we first have

∑

x, y∈(Z2)hI

f (x)UI
N ,0(x, y)

w⊗h
N (x)

w⊗h
N ( y)

g( y) ≤
∑

x, y∈(Z2)hI

f (x)UI
N ,0(x, y)e

Cw
|x− y|√

N g( y),

which by Hölder’s inequality is bounded by

( ∑

x, y∈(Z2)hI

| f (x)|p UI
N ,0(x, y)e

Cw
|x− y|√

N

) 1
p

·
( ∑

x, y∈(Z2)hI

|g( y)|q UI
N ,0(x, y)e

Cw
|x− y|√

N

) 1
q

.

Therefore, in order to conclude the proof of 3.5 it suffices to prove that there exists a
constant C such that uniformly in x ∈ (Z2)hI ,

∑

y∈(Z2)hI

UI
N ,0(x, y)e

Cw
|x− y|√

N ≤ C. (3.37)

Recall from (3.11) that if I is of the form I = {k, �}�⊔ j �=k,�{ j} then for x, y ∈ (Z2)hI
the operator UI

N ,0(x, y) is defined as

UI
N ,0(x, y) =

2N∑
n=0

UI
n(x, y) = 1{x, y∼I } ·

2N∑
n=0

UβN
N (n, yk − xk) ·

∏
i �=k,�

qn(yi − xi ).
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Therefore, in view of (3.37), we shall prove that uniformly in 0 ≤ n ≤ 2N ,

∑

z∈Z2

UβN
N (n, z)e

Cw
|z|√
N ≤ C UβN

N (n) (3.38)

and

∑

z∈Z2

qn(z)e
Cw

|z|√
N ≤ C qn(z). (3.39)

Inequality (3.39) follows easily by the localCLT, see [LL10] andGaussian concentration.
For the sake of the presentation, we will prove (3.38) for 0 ≤ n ≤ N , that is,

∑

z∈Z2

UβN
N (n, z)e

Cw
|z|√
N ≤ C UβN

N (n), ∀ 0 ≤ n ≤ N . (3.40)

Note that, by (2.13) we have,

N∑
n=0

UβN
N (n) ≤ E

[
(ZβN

N+1)
2
]

≤ C

1 − β̂2
. (3.41)

Moreover, following the renewal framework we introduced in Sect. 2, we have

∑

z∈Z2

UβN
N (n, z)e

Cw
|z|√
N

=
∑
k≥0

β̂2k E

[
e
Cw

|S(N )
k |√
N ; τ

(N )
k = n

]

=
∑
k≥0

β̂2k
∑

n1+···+nk=n

E

[
e
Cw

|S(N )
k |√
N

∣∣∣ t(N )
i = ni , 1 ≤ i ≤ k

]

×
k∏

i=1

P
(
t(N )
i = ni

)
. (3.42)

Therefore, in order to establish (3.40) it suffices to prove that there exists C ∈ (0,∞),
such that for all k ≥ 1,

E

[
e
Cw

|S(N )
k |√
N

∣∣∣ t(N )
i = ni , 1 ≤ i ≤ k

]
≤ C. (3.43)

We note that when we condition on the times
(
t(N )
i

)
1≤i≤k , the space increments(

x(N )
i

)
1≤i≤k are independent with distribution

P
(
x(N )
1 = x

∣∣ t(N )
1 = n1

) = q2n1(x)

q2n1(0)
1{n1≤N }.
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Let λ ≥ 0 and (ξi )1≤i≤k independent random variables such that ξi
law= x(N )

i

∣∣ t(N )
i = ni .

We will show that

E
[
eλ|∑k

i=1 ξi |
]

≤ 2e4cλ
2n,

for some c > 0. Therefore, taking λ = Cw√
N

will lead to (3.43). To this end, for each

1 ≤ i ≤ k, let ξi,1, ξi,2 ∈ Z be the two components of ξi ∈ Z
2.Then we can find c > 0

such that

E
[
e± λ ξi, j

] ≤ ecλ
2ni

for j = 1, 2, since by the local CLT we have

P(ξi = x) = q2ni (x)

q2ni (0)
≤
( supx∈Z2 qni (x)

q2ni (0)

)
qni (x) ≤ C ′qni (x)

and qni (x) = 2(gni/2(x) + o(1)), thus qni has Gaussian tail decay. By Cauchy-Schwarz
we

E
[
eλ|∑k

i=1 ξi |
]

≤ E
[
e2λ|∑k

i=1 ξi,1|
] 1
2
[
e2λ|∑k

i=1 ξi,2|
] 1
2
.

Also, by the inequality e|x | ≤ ex + e−x and independence, we obtain for j = 1, 2

E
[
e2λ|∑k

i=1 ξi, j |
] 1
2 ≤
( k∏

i=1

E[e2λξi, j ] +
k∏

i=1

E[e−2λξi, j ]
) 1

2

≤
(
2e4cλ

2n
) 1

2
,

therefore,

E
[
eλ|∑k

i=1 ξi |
]

≤ 2e4cλ
2n .

Given the inequality above and choosing λ = Cw√
N
we get that

E

[
e
Cw

|S(N )
k |√
N

∣∣∣ t(N )
i = ni , 1 ≤ i ≤ k

]
≤ 2e4c C

2
w ,

since 1 ≤ n ≤ N . Therefore, recalling (3.41) and (3.42),we have

∑

z∈Z2,
0≤n≤N

UβN
N (n, z)e

Cw
|z|√
N ≤ 2e4c C

2
w

N∑
n=0

UβN
N (n) ≤ 2e4c C

2
w E

[
(ZβN

N+1)
2
]

≤ C,

for a constant C = C(h, β̂, w) ∈ (0,∞). ��
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4. Proofs of Theorems 1.1, 1.4, 1.5 and 1.3

We are now in a position to prove the main results. We begin with Theorem 1.5.

Proof of Theorem 1.5. We first prove (1.9). Recall from (3.16) that

∣∣Mϕ,ψ
N ,h

∣∣ ≤ c ‖ψ‖h∞
Nh+1

∑
k≥1

∑
(I1,...,Ik )∈I

∥∥∥∥∥Q̂
∗;I1
N ,0

ϕ⊗h
N

w⊗h
N

∥∥∥∥∥
�p

k∏
i=2

∥∥∥P̂Ii−1;Ii
N ,β̂

∥∥∥
�q→�q

∥∥∥Q̂Ik ;∗
N ,0w

⊗h
N

∥∥∥
�q

k∏
i=1

E

[
|ξ |Ii
]
. (4.1)

By Proposition 3.4, we have the following bounds on the boundary operator norms
∥∥∥∥∥Q̂

∗;I1
N ,0

ϕ⊗h
N

w⊗h
N

∥∥∥∥∥
�p

≤ C q N
1
q

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
and

∥∥∥Q̂Ik ;∗
N ,0w

⊗h
N

∥∥∥
�q

≤ C p N
1
p ‖wN‖h�q ,

(4.2)

for a constant C = C(h, w) ∈ (0,∞). By Propositions 3.3 and 3.5 we also have that
for all 2 ≤ i ≤ k, there exists a constant C = C(h, β̂, w) ∈ (0,∞), such that

∥∥∥P̂Ii−1;Ii
N ,β̂

∥∥∥
�q→�q

≤ C p q . (4.3)

By inserting the bounds (4.2) and (4.3) in (4.1) we obtain that

∣∣Mϕ,ψ
N ,h

∣∣ ≤ ‖ψ‖h∞
Nh

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
‖wN‖h�q

∑
k≥1

(C p q)k
∑

(I1,...,Ik )∈I

k∏
i=1

E

[
|ξ |Ii
]
. (4.4)

We now distinguish two cases depending on the range of k.
(Case 1). If k > � h

2 � we use the bound
k∏

i=1

E
[|ξ |Ii ] ≤ ( C

log N

)k
,

which is a consequence of the fact that E
[|ξ |Ii ] ≤ C σ 2

N ,β̂
= O(1/ log N ), see (3.8) and

(2.7). Therefore, in this case

∑

k>� h
2 �

(C p q)k
∑

(I1,...,Ik )∈I

k∏
i=1

E

[
|ξ |Ii
]

≤
∑

k>� h
2 �

( C̃ p q

log N

)k
, (4.5)

for a constant C̃ = C̃(h, β̂, w) ∈ (0,∞), which also incorporates the fact that the
number of possible choices for a sequence of partitions (I1, . . . , Ik) is bounded by Ck

where C = C(h) is some positive constant.
(Case 2). The second case is when 1 ≤ k ≤ � h

2 �, for which we claim that there exists a

constant C = C(h, β̂) ∈ (0,∞) such that

k∏
i=1

E
[|ξ |Ii ] ≤ Ck (log N )−

h
2 .



Moments of the 2D Directed Polymer 2511

To see this fix 1 ≤ k ≤ � h
2 � and (I1, . . . , Ik) ∈ I, and let Ii = ⊔1≤ j≤|Ii | Ii, j . By (3.8)

and (2.7), we have that

k∏
i=1

E
[|ξ |Ii ] ≤ Ck (σN ,β̂

)

∑
1≤i≤k

∑
1≤ j≤|Ii |;|Ii, j |≥2 |Ii, j |

.

From the definition of I (see below (3.9)), we have that
∑

1≤i≤k

∑
1≤ j≤|Ii |;|Ii, j |≥2

|Ii, j | ≥ h ,

since every r ∈ {1, . . . , h} necessarily belongs to a non-trivial block of some partition
Ii , 1 ≤ i ≤ k, see the discussion below (3.9). Therefore, as in the derivation of (4.5),
we have that there exists a constant C̃ = C̃(h, β̂, w) ∈ (0,∞) such that

∑

1≤k≤� h
2 �

(C p q)k
∑

(I1,...,Ik )∈I

k∏
i=1

E

[
|ξ |Ii
]

≤ (log N )−
h
2
∑

1≤k≤� h
2 �

(C̃ p q)k . (4.6)

Combining estimates (4.5) and (4.6) we deduce from (4.4) that

∣∣Mϕ,ψ
N ,h

∣∣ ≤ C
‖ψ‖h∞
Nh

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
‖wN‖h�q

( ∑

k>� h
2 �

( C̃ p q

log N

)k
+ (log N )−

h
2
∑

1≤k≤� h
2 �

(C̃ p q)k
)

.

(4.7)

Let p, q > 1, conjugate exponents, that satisfy the growth condition

C̃ p q

log N
<

1

2
. (4.8)

In particular, p q ≤ a∗ log N with a∗ = a∗(h, β̂, w) ∈ (0, 1) defined as a∗ := (2C̃)−1.
We then have that

∑

k>� h
2 �

( C̃ p q

log N

)k ≤ 2
( C̃ p q

log N

)� h
2 �+1

(4.9)

by summing the tail of the geometric series, which is possible due to the growth condition
(4.8) imposed on p, q. On the other hand, we have that

(log N )−
h
2
∑

1≤k≤� h
2 �

(C̃ p q)k ≤ (log N )−
h
2 · (C̃ p q)� h

2 �+1 − C̃ p q

C̃ p q − 1

≤ (log N )−
h
2 · (C̃ p q)� h

2 �+1

C̃ p q − 1

≤ 2(log N )−
h
2 (C̃ p q)�

h
2 �, (4.10)
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since C̃ p q − 1 > (C̃ p q)/2, (pq ≥ 4 because 1
p + 1

q = 1 and we can choose C̃ > 1).
Combining estimates (4.9) and (4.10) we obtain that

( ∑

k>� h
2 �

( C̃ p q

log N

)k
+ (log N )−

h
2
∑

1≤k≤� h
2 �

(C̃ p q)k
)

≤ 2
( C̃ p q

log N

)� h
2 �+1

+ 2(log N )−
h
2 (C̃ p q)�

h
2 �

≤ 4
( C̃ p q

log N

) h
2
,

by using that C̃ p q
log N ≤ 1

2 and � h
2 � ≤ h

2 < � h
2 � + 1. Inserting this bound to (4.7) we finally

obtain that

∣∣Mϕ,ψ
N ,h

∣∣ ≤
(C p q

log N

) h
2 1

Nh

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
‖ψ‖h∞ ‖wN‖h�q , (4.11)

for a constant C = C(h, β̂, w) > C̃ , which establishes (1.9).
Let us now prove (1.10). By choosing ϕ := δ

(N )

0 := N 1{x=0}, ψ ≡ 1 and w(x) =
e−|x |, we deduce from (1.9) that

∣∣∣E[(�ZβN
N )h
]∣∣∣ ≤

(C p q

log N

) h
2 ‖wN‖h�q =

(C p q

log N

) h
2 · N h

q · 1

N
h
q

‖wN‖h�q . (4.12)

Since w(x) = e−|x | is decreasing in the radial direction we have

1

N
h
q

‖wN‖h�q ≤
(
1

N
+

1

N

∫

R2
e
−q |x |√

N dx

) h
q

=
(
1

N
+
∫

R2
e−q|x | dx

) h
q =
(
1

N
+
2π

q2

) h
q

≤ e(2πh)/q3 . (4.13)

We choose q = qN := a log N with a = a(h, β̂, w) ∈ (0, 1) small enough such that
C p q
log N < 1

2 (and therefore (4.8) is satisfied). For this choice of q we have by (4.13) that

1

N
h
q

‖wN‖h�q ≤ eO
(
(log N )−3

)
≤ C. (4.14)

Furthermore, again with q = qN = a log N and thus p = pN = 1 + o(1), since
1
p + 1

q = 1, we get

(C p q

log N

) h
2 · N h

q ≤ 2− h
2 exp

( h
a

)
< ∞, (4.15)

since C p q
log N < 1

2 . We note that the parameter a = a(h, β̂, w) on the right-hand side of
(4.15) depends non-trivially on h, and therefore the order of the bound in (4.15) is not
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just exponential in h. However, we also note that the dependence on h deduced from
(4.15) does not capture the true growth of the moments, which is as in (1.6). Finally, by
(4.12), (4.14) and (4.15), we obtain that

sup
N∈N

E
[
(�ZβN

N )h
]

< ∞.

��
Proof of Theorem 1.1. By binomial expansion, for h ∈ N we have that

E
[
(ZβN

N )h
] =

h∑
k=0

(
h

k

)
E
[
(�ZβN

N )k
] ≤

h∑
k=0

(
h

k

)∣∣∣E[(�ZβN
N )k
]∣∣∣.

Therefore, by estimate (1.10) of Theorem 1.5, for every h ≥ 3 we obtain that supN∈N E[
(ZβN

N )h
]

< ∞. Hence, for every h ≥ 0 the sequence
{
(ZβN

N )h
}
N≥1

is uniformly

integrable and therefore, by Theorem 2.1 for every h ≥ 0,

lim
N→∞E

[
(ZβN

N )h
] = E

[
exp
(
�

β̂
h X − 1

2�
2
β̂
h
)] = exp

(
h(h−1)

2 �2
β̂

)
=
(

1

1 − β̂2

) h(h−1)
2

.

As can be seen in [CSZ20], section 3, (1.7) implies that for all h > 0,

sup
N∈N

E
[
(ZβN

N )−h] < ∞,

which in combination with Theorem 2.1 implies the convergence of negative moments.
��
Proof of Theorem 1.4. We note that if we choose the law of the environment ω to be
Gaussian, i.e. ω ∼ N (0, 1), then for h ∈ N

E
[
(ZβN

N )h
] = E⊗h

[
exp
(
β2
N

∑
1≤i< j≤h

L(i, j)
N

)]

= E⊗h
[
exp
( β̂2 π

log N

(
1 + o(1)

) ∑
1≤i< j≤h

L(i, j)
N

)]
.

Therefore, by Theorem 1.1 we have that

E⊗h
[
exp
( β̂2 π

log N

∑
1≤i< j≤h

L(i, j)
N

)]
N→∞−−−−→

(
1

1 − β̂2

) h(h−1)
2

, (4.16)

for all β̂ ∈ [0, 1). The right-hand side of (4.16) is equal to MY (β̂2), where MY (t) :=
E[etY ] denotes the moment generating function of a random variable Y with law
�
( h(h−1)

2 , 1
)
. By exercise 9, chapter 4 in [K97], (4.16) implies the convergence of

π
log N

∑
1≤i< j≤h L

(i, j)
N in law, to a �

( h(h−1)
2 , 1

)
distribution. ��
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Proof of Theorem 1.3. We are going to show that for all h ∈ N with h ≥ 3 we have that

sup
N∈N

(log N )
h
2 |Mϕ,ψ

N ,h | < ∞. (4.17)

In that case we obtain uniform integrability of (log N )
h
2 · (�ZβN

N (ϕ, ψ)
)h for all h ∈ N

and the convergence of moments in Theorem 1.3 follows by Theorem 2.2. But, (4.17)
is an immediate consequence of (1.9) of Theorem 1.5. Indeed, let us fix p, q ∈ (1,∞)

such that 1
p + 1

q = 1. By (1.9) of Theorem 1.5 we have that

(log N )
h
2
∣∣Mϕ,ψ

N ,h

∣∣ ≤ (C p q)
h
2

1

Nh

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
‖wN‖h�q ‖ψN‖h∞ . (4.18)

Furthermore, by Riemann approximation we have that

1

Nh

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p
‖wN‖h�q ‖ψN‖h∞ = 1

N
h
p

∥∥∥∥
ϕN

wN

∥∥∥∥
h

�p

1

N
h
q

‖wN‖h�q ‖ψN‖h∞

≤ C
∥∥∥ ϕ

w

∥∥∥
h

L p
‖w‖hLq ‖ψ‖h∞ . (4.19)

Therefore, by (4.18) and (4.19) we obtain that

sup
N∈N

(log N )
h
2 |Mϕ,ψ

N ,h | < ∞,

which concludes the proof. ��
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Appendix A. Some Technical Estimates

We state here the integral estimates we used for proving Propositions 3.3 and 3.4.

Lemma A.1. Let λ ≥ 1, p > 1, a < 1
p . Then,

∑

y∈Z2

1(
λ + |y|2)r ≤ c

λr−1 if r ≥ 2, (A.1)

∑

y∈Z2

1(
λ + |y|2)r (1 + |y|2a)p ≤ c

ap (1 − ap)λr−1+ap if r ≥ 1, (A.2)

for a constant c ∈ (0,∞), that does not depend on λ, p, a or r .

Proof. We note that since y �→ 1(
λ + |y|2)r and y �→ 1(

λ + |y|2)r (1 + |y|2a)p are de-

creasing in the radial direction we have that

∑

y∈Z2

1(
λ + |y|2)r ≤ 1

λr
+
∫

R2

1(
λ + |y|2)r dy (A.3)

and
∑

y∈Z2

1(
λ + |y|2)r (1 + |y|2a)p ≤ 1

λr
+
∫

R2

1(
λ + |y|2)r |y|2ap dy. (A.4)

In order to prove (A.1), we switch to polar coordinates in (A.3), so that
∫

R2

1(
λ + |y|2)r dy = 2π

∫ ∞

0

�

(λ + �2)r
d� = π · (λ + �2)1−r

1 − r

∣∣∣∣
�=∞

�=0
= π

r − 1

1

λr−1 .

(A.5)

Therefore, by (A.3) and (A.5) we get that

∑

y∈Z2

1(
λ + |y|2)r ≤ 1

λr
+

π

r − 1

1

λr−1 = 1

λr−1

(
1

λ
+

π

r − 1

)
.

Thus, since r ≥ 2 and λ ≥ 1 we conclude (A.1) with c = π + 1.
For (A.2) we split the integral in (A.4) into two regions,

∫

R2

1(
λ + |y|2)r |y|2ap dy

=
∫

|y|≤√
λ

1(
λ + |y|2)r |y|2ap dy

︸ ︷︷ ︸
:=I1

+
∫

|y|>√
λ

1(
λ + |y|2)r |y|2ap dy

︸ ︷︷ ︸
:=I2

.

First,

I1 ≤ 1

λr

∫

|y|≤√
λ

1

|y|2ap dy = 2π

λr

∫ √
λ

0

1

�2ap−1 d� = π

λr

λ1−ap

1 − ap
= π

1 − ap

1

λr−1+ap .
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Similarly,

I2 ≤
∫

|y|>√
λ

1

|y|2r+2ap dy = 2π
∫ ∞

√
λ

1

�2r+2ap−1 d� = π

r − 1 + ap

−1

�2r+2ap−2

∣∣∣∣
�=∞

�=√
λ

= π

r − 1 + ap

1

λr−1+ap .

Therefore,
∫

R2

1(
λ + |y|2)r |y|2ap dy = I1 + I2

≤ π

1 − ap

1

λr−1+ap +
π

r − 1 + ap

1

λr−1+ap

= π r

(1 − ap)(r − 1 + ap)

1

λr−1+ap . (A.6)

By (A.4) and (A.6) we thus obtain

∑

y∈Z2

1(
λ + |y|2)r (1 + |y|2a)p ≤ 1

λr
+
∫

R2

1(
λ + |y|2)r |y|2ap dy

≤ 1

λr
+

π r

(1 − ap)(r − 1 + ap)

1

λr−1+ap . (A.7)

Note that

π r

(1 − ap)(r − 1 + ap)
≤ π

(1 − ap)ap
,

since that inequality is equivalent to (r − 1)(ap − 1) ≤ 0, which is valid since we have
assumed that a p < 1 and r ≥ 2. Therefore,

1

λr
+

π r

(1 − ap)(r − 1 + ap)

1

λr−1+ap ≤ 1

λr
+

π

(1 − ap)ap

1

λr−1+ap

= 1

λr−1+ap

(
1

λ1−ap
+

π

(1 − ap)ap

)

≤ 1

λr−1+ap

(
1 +

π

(1 − ap)ap

)
, (A.8)

since λ ≥ 1 and 1 − ap > 0, by assumption. Last, we have that

1 +
π

(1 − ap)ap
= π + ap(1 − ap)

ap(1 − ap)
≤ 1 + π

ap(1 − ap)
. (A.9)

Hence, by (A.7), (A.8) and (A.9),

∑

y∈Z2

1(
λ + |y|2)r (1 + |y|2a)p ≤ c

(1 − ap) ap λr−1+ap ,

with c = 1 + π , thus concluding the proof of (A.2). ��
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Lemma A.2. There exists a constant c ∈ (0,∞) such that uniformly in A, λ, p ≥ 1,

∑

y∈Z2

|y|≤√
A

1

λ + |y|2 ≤ c log
(
1 +

A

λ

)
, (A.10)

(∫ A

1

(
log
( A
x

))p dx
) 1

p ≤ p A
1
p , (A.11)

and
∑

y∈Z2

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p ≤ c A pp. (A.12)

Proof. For (A.10), using the same reasoning as in the proof of Lemma A.1 we have

∑

y∈Z2

|y|≤√
A

1

λ + |y|2 ≤ 1

λ
+
∫

|y|≤√
A

1

λ + |y|2 dy. (A.13)

Switching to polar coordinates in (A.13) we have

∫

|y|≤√
A

1

λ + |y|2 dy = 2π
∫ √

A

0

�

λ + �2 d� = π log(λ + �2)

∣∣∣
�=√

A

�=0
= π log

(
1 +

A

λ

)
.

(A.14)

A simple computation shows that when λ ≥ 1, one has that 1
λ

≤ 2 log
(
1 + 1

λ

)
≤

2 log
(
1 + A

λ

)
, the latter following since A ≥ 1, by assumption. Therefore, by (A.13)

and (A.14) we have that

∑

y∈Z2

|y|≤√
A

1

λ + |y|2 ≤ 1

λ
+
∫

|y|≤√
A

1

λ + |y|2 dy ≤ (2 + π) log
(
1 +

A

λ

)
,

which implies (A.10) with c = 2 + π .
Let us now prove (A.11) and (A.12). First, we prove (A.11). We have

1

A

∫ A

1

(
log
( A
x

))p dx x=A e−u==
∫ log A

0
e−u u p du ≤ �(p + 1) ≤ pp, (A.15)

since �(p + 1) ≤ pp for p ≥ 1. After raising both sides of (A.15) to the 1
p we get

(A.11).
To prove (A.12) we first note that

∑

y∈Z2

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p ≤ (log(1 + A))p +

∫

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p

dy.

(A.16)
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Using polar coordinates in (A.16) we compute

∫

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p

dy = 2π
∫ 2

√
A

0
�
(
log
(
1 +

A

1 + �2

))p
d�

u=1+�2= π

∫ 1+4A

1

(
log
(
1 +

A

u

))p
du.

Furthermore,

π

∫ 1+4A

1

(
log
(
1 +

A

u

))p
du ≤ π

∫ 1+4A

1

(
log
(1 + 5A

u

))p
du

≤ π

∫ 1+5A

1

(
log
(1 + 5A

u

))p
du.

Note that by (A.11), we further have that

π

∫ 1+5A

1

(
log
(1 + 5A

u

))p
du ≤ (1 + 5A) π pp ≤ 6 A π pp,

since A ≥ 1. Combining this inequality with (A.16) we get that

∑

y∈Z2

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p ≤ log(1 + A)p + 6 A π pp. (A.17)

We are going to prove that for all A ≥ 1,

(log(1 + A))p ≤ 1√
e − 1

A pp,

thus deducing inequality (A.12), via (A.17), with c = 1√
e−1

+ 6π . To this end, consider

kp(x) := (log(1+x))p

x for x ≥ 0 and p ≥ 1. We have that

k′
p(x) := (log(1 + x))p−1

x

( p

1 + x
− log(1 + x)

x

)
,

therefore, kp is increasing in [0, xp] and decreasing in [xp,∞), where xp ≥ 0 is the
solution to the equation k′

p(xp) = 0, or equivalently

p = (1 + xp) log(1 + xp)

xp
. (A.18)

By working with g(x) := (1+x) log(1+x)
x , one can see that equation (A.18) has a unique

solution xp ≥ 0 for every p ≥ 1, since g′(x) > 0 for all x > 0, limx↓0 g(x) = 1 and
limx→∞ g(x) = ∞. We distinguish two cases:
Suppose first that xp ≥ 1. Then

log(1 + xp) ≤ p ≤ 2 log(1 + xp), (A.19)
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by (A.18) and since xp ≥ 1. Therefore, in this case, for all x ≥ 1,

(log(1 + x))p

x
= kp(x) ≤ kp(xp) = (log(1 + xp))p

xp
≤ pp

xp
≤ pp

e
p
2 − 1

,

where the last two inequalities follow by the first and second inequality in (A.19),
respectively. Since, p ≥ 1 we have that e

p
2 − 1 ≥ √

e − 1, thus we conclude that in the
case where xp ≥ 1 we have for all x ≥ 1,

kp(x) = (log(1 + x))p

x
≤ 1√

e − 1
pp. (A.20)

Moving to the second case, i.e. 0 ≤ xp < 1, we have that since kp is decreasing in
[1,∞) ⊂ [xp,∞), we have that for all x ≥ 1,

kp(x) = (log(1 + x))p

x
≤ kp(1) = (log(2))p < 1, (A.21)

since p ≥ 1 and log 2 < 1. Therefore, by (A.20), (A.21) and since p ≥ 1, for all x ≥ 1
and p ≥ 1 we have that

kp(x) ≤ max
{
1,

1√
e − 1

}
pp = 1√

e − 1
pp. (A.22)

Recalling that kp(x) = (log(1+x))p

x and applying (A.22) to (A.17) for x = A ≥ 1 we get
that

∑

y∈Z2

|y|≤2
√
A

(
log
(
1 +

A

1 + |y|2
))p ≤ (log(1 + A))p + 6 A π pp

≤ 1√
e − 1

A pp + 6 A π pp = c A pp,

with c = 1√
e−1

+ 6π , thus concluding the proof of (A.12). ��
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