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Abstract: A recently developed n-particle scattering theory for wedge-local quantum
field theories is applied to a class of models described and constructed by Grosse, Lech-
ner, Buchholz, and Summers. In the BLS-deformation setting we establish explicit ex-
pressions for n-particle wave operators and the S-matrix of ordered asymptotic states,
and we show that ordered asymptotic completeness is stable under the general BLS-
deformation construction. In particular, the (ordered) Grosse–Lechner S-matrices are
non-trivial also beyond two-particle scattering and factorize into 2-particle scattering
processes, which is an unusual feature in space-time dimension d > 1+1. Most notably,
the Grosse–Lechner models provide the first examples of relativistic (wedge-local) QFT
in space-time dimension d > 1 + 1 which are interacting and asymptotically complete.
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1. Introduction

Typical scattering theory has two steps. The first is a construction of two wave operators,
incoming and outgoing, which describe the propagation at large times t → ±∞ in
terms of a simpler asymptotic dynamics. The second step, more difficult, is asymptotic
completeness (AC), which usually means that essentially all states in the Hilbert space
are included in the range of the wave operators. This conceptual question was already
raised early on during the development of the quantum theory of fields [Gre61,Ru62].
But even after many decades of research, mathematical results on AC of interacting
QFT models have remained rather scarce (e.g. [CD82,DG99,IM06,Le08]) and there
are various obstacles of physical and technical nature (cf. [DyG13]). In fact, the first
complete proof of asymptotic completeness of an interacting QFT has been established
rather recently: It was obtained by Lechner [Le06,Le08] for certain two-dimensional
models with factorizing S-matrix, such as the Sinh-Gordon model.

In the present work we provide, to the best of our knowledge, the first full proof
of AC in a class of interacting wedge-local QFT models on Minkowski space-times of
dimension d > 1 + 1. The models in question, found by Grosse, Lechner, Buchholz
and Summers in [GL07,BS08,BLS11], may not be local, but have the weaker property
of wedge locality.1 The constructive procedure developed in [BLS11], which we will
call a BLS-deformation, preserves the general structure of a relativistic wedge-local
theory and in addition introduces interaction. For example, the BLS-deformation of a
free field theory, which we will call a GL-model, has a non-trivial two-particle scattering
matrix [GL07,BS08]. However, collision processes involving n ≥ 3 particles were not
investigated in these works, since n-particle scattering theory was not available in the
wedge-local setting back then. Such a scattering theory has been developedmeanwhile in
[Du18], so that the question of asymptotic completeness can now be posed and positively
answered for these models. More than that, by adapting and generalizing methods from
[BLS11,DT11] we will establish explicit expressions for the general effect of BLS-
deformations on asymptotic states and scattering data. In this manner we also prove
stability of asymptotic completeness under BLS-deformations for general wedge-local
models with massive particles.

To construct n-particle scattering states according to [Du18], we define Haag–Ruelle
operators Bkτ ( fk), τ ∈ R, 1 ≤ k ≤ n, which create the desired one-particle states from
the vacuum � ∈H . Then outgoing and incoming velocity-ordered scattering states are

�± := lim
τ→±∞ B1τ ( f1) . . . Bnτ ( fn)�. (1)

The momentum-space configuration of such scattering states is specified by a family
of regular Klein-Gordon solutions fk . For wedge-ordered velocity configurations (as
defined below in (2)), the wedge-local Haag–Ruelle theorem establishes convergence
in (1) and Fock structure of the resulting asymptotic states [Du18]. This result holds in
general wedge-local theories with massive particle spectrum, given that all Bkτ ( fk) are
constructed from a common localization wedgeW . For the concrete case of the standard
wedge W = WR = {(t, x) ∈ R

d : |t | < x1}, the velocity ordering of outgoing states
(τ → +∞) reads

V fn ≺WR V fn−1 ≺WR . . . ≺WR V f1 . (2)

1 Asymptotically complete fully non-local models have been constructed, e.g. [BW84].
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Here V fk := {(1, vm(p)) ∈ R
d : p ∈ supp f̃k} denote the supports of the Klein-Gordon

wave packets

fk(t, x) :=
∫

dd−1k
(2π)d−1

e−iωm (k)t+ik·x f̃k(k), ωm(k) :=
√

k2 + m2, (3)

with respect to velocity vm(p) := p/ωm(p). Further, the precursor ordering relation
in (2) is defined by V fk ≺WR V fk−1 :⇐⇒ V fk−1 − V fk ⊆ WR and corresponds to the
geometrical requirement that all relative velocities vk−1 − vk ∈ V fk−1 − V fk yield a
positive directed separation of wave packets fk for t → +∞ with respect to the space-
like opening direction of WR, i.e. (vk−1 − vk)1 > 0 for all 2 ≤ k ≤ n. In the present
work we prove, in particular, for GL-models that the velocity-ordered scattering states
constructed according to (1) and (2) for each wedgeW span dense setsH ±

W in the full
Hilbert spaceH of the interacting model. In this case, we will say that a wQFT model
has the property of (ordered) asymptotic completeness.

We now briefly explain the basic ideas of the present analysis of deformed scat-
tering data and asymptotic completeness in non-technical terms. In the deformation
construction from [BS08,BLS11] the new deformed model is generated by observables
constructed as formal spectral integrals

AQ :=
∫

dE(H,P)(p) αQp(A) =
∫

αQp(A) dE(H,P)(p) =: QA. (4)

In the terminology of [BS08,BLS11], the (smooth) wedge-local operators A of the initial
model are ‘warped’ with respect to the spectral measure dE = dE(H,P) of the energy-
momentum operators P = (H, P). Presently, Q ∈ R

d×d denotes a fixed parameter
matrix satisfying certain geometrical properties [GL07]. Later it will be chosen as a
mapping depending on the localization wedge of the operator A, as prescribed by Grosse
and Lechner, to yield wedge-locality and Poincaré covariance (if applicable) of the
deformed model.

Let us now apply the wedge-local n-particle scattering theory from [Du18] and com-
pare the scattering states

�+
0 := lim

τ→∞ B1τ ( f1) . . . Bnτ ( fn)�, (5)

�+
Q := lim

τ→∞ B1Qτ ( f1) . . . BnQτ ( fn)�, (6)

where BkQτ ( fk), 1 ≤ k ≤ n, obtained from (4) are a corresponding family of creation
operators associated to the deformed model. If we proceed on the heuristic level of (4)
and insert these formal definitions of the warped convolution into (6), we see directly
that

�+
Q := lim

τ→±∞

∫
dE(p1)αQp1(B1τ ( f1)) . . .

∫
dE(pn)αQpn (Bnτ ( fn))�. (7)

Provided we can justify exchanging these formal warped-convolution integrations with
operator products and the scattering theoretic limit, we find that �+

Q can be written as a
superposition of scattering states from the undeformed model of the form

�+
0;p1,...,pn := lim

τ→∞αQp1(B1τ ( f1))αQp2(B2τ ( f2)) . . . αQpn (Bnτ ( fn))�, (8)

where operators are additionally modified by space-time translations depending on pa-
rameters p1, . . . , pn ∈ R

d . As the action of space-time translations on the one-particle
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states can bemade explicit, namelyαy(Bτ ( f ))� = Bτ ( f y)�, where f y(x) = f (x−y),
we expect for a general deformed wedge-local model that the corresponding subspaces
of scattering states of the deformed and undeformed model will coincide, that is, for
outgoing scattering states,

H +
Q,≺W =H +

0,≺W ⊆H . (9)

Here H denotes the full Hilbert space of the interacting model, and one has similarly
for incoming states H −

Q,≺W =H −
0,≺W .

These heuristic arguments already suggest our main result, which establishes stabil-
ity of asymptotic completeness of ordered scattering states under BLS-deformations.
Asymptotic completeness of the Grosse–Lechner models then follows from AC of the
free massive scalar field theory with respect to ordered scattering states. Indeed, using
that for local QFTs the space spanned by wedge-ordered scattering states H +

0,≺W co-
incides with the full space of scattering states H +

0 , and exploiting AC of the free field,
H +

0 =H0, we obtain for the GL-model

H ±
Q,≺W =H ±

0,≺W =H . (10)

Hence these wedge-local QFT models are asymptotically complete.
The main results of the present paper make the above heuristic arguments leading

from (7) to (10) mathematically precise. Our analysis is based on oscillatory integral
techniques from [BLS11] and the recentwedge-local n-particle scattering theory [Du18].
We also profit from the previous analysis of a scattering in BLS-deformed massless two-
dimensional models by Dybalski and Tanimoto [DT11]. Let us note that the analysis
of the models treated here is technically more involved compared to [DT11] due to
the presence of dispersion. Without dispersion the problem of AC reduces to two-body
scattering of left- and right-movers, and hence wedge-local scattering theory with n≤2
particles suffices. Two-particle scattering theory has been studied much earlier [BBS01,
Le03,GL07,BS08] via direct application of standard Haag-Ruelle theory. The swapping
method as introduced in [Du18] to establish wedge-local scattering theory for arbitrary
particle numbers is not needed in these simpler cases.2

To conclude this introduction we should remark that physical intuition familiar from
local QFTmakes (10) very plausible on one hand. On the other, such intuitionmay fail in
the much larger class of general wedge-local models. Interesting examples can already
be found among recently constructed free product models [LTU19, Sec. 5]. There it
was shown that ordered two-particle scattering states are not sufficient for two-particle
asymptotic completeness. In contrast to a previouswork on clustering properties [Sol14],
where scattering theory is also mentioned briefly, our results do not assume locality of
the underlying wQFT model and in this regard the results of the present work are much
more widely applicable within the general wedge-local framework.

2. Preliminaries on Wedge-Local QFT and Scattering Theory

2.1. Operator-algebraic framework for wedge-local QFT. Wewill work in an operator-
algebraic setting of wedge-local quantum field theory onMinkowski space-timeR

d , and

2 We note that 1+1-dimensional BLS-deformed massive models are included in our analysis. For those and
similar models, where localization in bounded space-time regions is not established or is likely not available,
swapping is in fact required also in 1+1 dimensions.



Asymptotic Completeness in a Class of Massive Wedge-Local Quantum Field Theories 2359

our results are valid in arbitrary spatial dimension s := d − 1. The family of wedge
regions is defined as the orbit PWR := {λWR = 	WR + x, λ = (x,	) ∈ P} of the
conventional Rindler wedge WR := {(t, x) ∈ R

d : |t | < x1} (also, standard wedge or
right wedge) under the action of the Poincaré group P = R

d
� L.

A wedge-local quantum field theory model is specified by mathematical objects
(A, α,H ,�), where H is the Hilbert space of pure states containing the vacuum as a
distinguished unit vector � ∈ H . The wedge-localization of observables is described
by a family of von Neumann algebras A(W) ⊆ B(H ) associated to wedge regionsW .
Poincaré symmetry acts on the wedge-local algebras A(W) by a given group of isomor-
phisms αλ and we denote by λ = (x,	) ∈ P↑+ = R

d
� L↑+ the elements of the proper

orthochronous Poincaré group. In this paper we are working mostly with space-time
translations of some given operator A ∈ A(W) by x ∈ R

d , also denoted by αx (A).
Guidedbyphysical intuition one asks that these objects satisfywedge-local variants of

the Haag–Kastler postulates, which are concerned with the algebraic and representation-
theoretic properties of A. Firstly, for any choice of wedge regions W,W1,W2 one has

Isotony A(W1) ⊆ A(W2) for W1 ⊆W2, (HK1)

Locality A(W1) ⊆ A(W2)
′ forW1 ⊆W ′

2, (HK2)

Wedge-Duality A(W ′) = A(W)′, (HK2
)

Translation-Covariance αx (A(W)) = A(W + x), x ∈ R
d , (HK3)

Poincaré-Covariance αλ(A(W)) = A(λW), λ ∈ P↑+ . (HK3
)

Here the Minkowski causal complementW ′ = (	WR + x)′ = −	WR + x ofW is also
a wedge region and A(W)′ denotes the commutant of A(W) relative to B(H ).

On the representation-theoretic side it is further assumed that translations are unitarily
implemented on the vacuum Hilbert spaceH by a strongly continuous s+1-parameter
group, αx (A) = U (x)AU (x)∗. The representing unitaries are generated by the energy-
momentum operators via U (x) = U (t, x) = eit H−ix·P , whose joint spectral resolution
in terms of projection-operator-valued measures will be denoted� �−→ E(H,P)(�) and
abbreviated as E(�) for Borel sets � ⊆ R

d . Focusing on the analysis of scattering, we
impose the following standard assumptions concerned with the vacuum representation
and its one-particle spectrum,

Uniqueness of � E({0})H = C�, (HK4)

Cyclicity of � A(W)� =H , (HK5)

Spectral Condition supp E ⊆ V̄ +, (HK6)

Haag–Ruelle Mass Gap Condition Hm ⊆ supp E ⊆ {0} ∪ Hm ∪ conv(HM ),

(HK6
)

for some M > m > 0, where V̄ + := {(ω, p) : |p| ≤ ω} denotes the positive energy
cone, Hm := {(ωm(p), p) : p ∈ R

s}, ωm(p) := √
p2 + m2, is the (positive) hyperboloid

of mass m > 0 and we write conv(HM ) := {(ω, p) : p ∈ R
s, ω ≥ ωM (p)} for the

convex hull of HM .
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Definition 1. A wedge-local quantum field theory is a tuple (A, α,H ,�) as above,
which satisfies the basic assumptions (HK1)–(HK6).

This summarizes the axiomatic operator-algebraic formalism for wedge-local QFTs
providing the basis of our present investigations. Our choice of framework serves the pur-
pose of accommodating scattering-theoretic reasoning and capturing the requirements
of the wedge-local Haag–Ruelle theory [Du18]. In the literature also the closely related
concept of a causal Borchers triple (R,U,�), corresponding to R := A(WR) in the
present framework, is often studied. Such a framework is equivalent to the above set-
ting including Poincaré covariance (HK3
). For further historical background and other
aspects of wedge-local Quantum Field Theory, we refer to [BS08,Le15,BLS11,Du18].

Regarding the scattering-theoretic analysis, Poincaré covariance (HK3
) is not es-
sential. The important properties for us are the existence of isolated mass shells (HK6
)
and the well-established wedge duality condition (HK2
), which strengthen (HK6) and
(HK2), respectively. As such, these will be standing assumptions of this work. Whereas
(HK6) merely demands positivity of the Hamiltonian in any Lorentz frame, the Haag–
Ruelle mass gap condition (HK6
) physically amounts to non-triviality of the one-
particle subspace H1 := E(Hm)H . The upper mass gap M > m has the same tech-
nical purpose as in traditional Haag–Ruelle scattering theory: it enables the efficient
separation of one-particle states from the remaining energy-momentum spectrum.

2.2. Warped convolutions and theGrosse–Lechnermodel. Our scattering-theoretic anal-
ysis is concerned with a general class of massive wedge-local QFT models, which are
constructed via the deformation method introduced by Buchholz, Lechner, and Sum-
mers [BLS11]. The Grosse–Lechner models were introduced and studied from a non-
commutative geometry perspective in [GL07]. Here we adopt the operator-algebraic
approach from [BS08,BLS11] and study, in particular, the GL-models as constructed
by applying BLS-deformations to the free scalar field.

The starting point of the BLS-construction is a general wedge-local model
(A0, α,H ,�). With κ ≥ 0 and, in dimension d = 3 + 1 additionally η ∈ R, as pa-
rameters of the deformation, a familyW �−→ QW of warping matrices is now defined
according to [BS08,GL07] by either

QWR :=
⎛
⎜⎝
0 κ 0 0
κ 0 0 0
0 0 0 η

0 0 −η 0

⎞
⎟⎠ , (s = 3), QWR :=

⎛
⎜⎜⎜⎜⎝

0 κ 0 · · · 0
κ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ , (for general s ≥ 1),

(11)

for the warping matrix of the reference wedge WR = {x ∈ R
d : ∣∣x0∣∣ < x1} and its

translates. For generalwedges given byW = 	WR+x , (x,	) ∈ P↑, thewarpingmatrix
is defined by Poincaré-covariance3 as QW := 	QWR	−1. These warping matrices are
antisymmetric with respect to the scalar product defined by the Lorentzian metric g with
signature (+,−, . . . ,−).

3 We write Q as linear map, or (1, 1)-tensor Q = (Qμ
ν)μν , as in [BS08]. In [GL07] and other works,

especially in contexts of non-commutative spacetime, it is also very common to write QWR in (2, 0) or
(0, 2)-tensor notation.
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Let now Q ∈ R
d×d be any warping matrix. The warped convolution of an operator

A as introduced in [BS08] is denoted by

AQ :=
∫

dE(H,P)(p) αQp(A). (12)

Here we will use the mathematically rigorous definition of such a priori formal spectral
integrals given in subsequent work of Buchholz et al. [BLS11] using oscillatory integral
methods. To this end, one starts with operators A on which space-time translations act
smoothly and defines AQ in terms of its action on vectors from the dense domain

D :=
⋃

�⊆Rd

compact

E(H,P)(�)H (13)

of finite energy states. We denote by C∞ the algebra of all regular operators A ∈ B(H ),
defined by the requirement that R

d � x �−→ αx (A) = U (x)AU (x)∗ is arbitrarily often
differentiable with respect to the operator norm topology. By standard mollification
arguments, the regular subalgebra A0r (W) := C∞ ∩ A0(W), for any wedge W , is
weakly dense in the full wedge algebra A0(W) of the initial model.

Definition 2 (Warped convolution of a regular operator [BLS11]). The warped convo-
lution AQ of a bounded regular operator A ∈ C∞ with respect to the spectral measure
dE by a warping matrix Q is defined by its action on finite-energy vectors � ∈ D as
limit of strong integrals of oscillatory type,

AQ� := lim
ε→0

1

(2π)d

∫
ddx ddy η(εx, εy) e−ix ·yU (x)αQy(A)� (14)

with η ∈ S (Rd × R
d), such that η(0, 0) = 1, serving as a regularizing function.

Here the technical assumptions of regularity of A and the consideration of only finite
energy states are needed for the existence of the limit ε → 0. In addition to existence
of this limit, it is shown in [BLS11] that AQ extends to a bounded operator, and is
independent of the choice of η. Let us summarize some helpful properties of warped
convolutions from the literature. For standard results about Bochner integrals we refer
to [Zaa67, Ch. 6 §31].

Lemma 3 [BLS11]. The warped convolution AQ of any regular operator A ∈ C∞ with
respect to any warping matrix Q, as given by (14), is well-defined. In particular it does
not depend on the specific choice of the regularizing function η. The deformed operator
extends to a bounded operator AQ ∈ B(H ), which satisfies

(i) AQ� = A�,
(ii) (AQ)∗ = (A∗)Q,
(iii) A0 = A,
(iv) [AQ, A′−Q] = 0, whenever QV + ⊆ WR, (−Q)V + ⊆ WL, A ∈ A0r (WR), and

A′ ∈ A0r (WL).
(v) Warping commutes with space-time translations,

αx (AQ) = (αx (A))Q .
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(vi) If the underlying model satisfies Poincaré-covariance (HK3
) one has further

αλ(AQ) = (αλ(A))	Q	−1, for λ = (x,	) ∈ P↑+ .

It is important to emphasize that the definition (14) of AQ is onlymathematically rigorous
when working with regular operators A ∈ A0r . To obtain the full warped wedge-local
QFT model in the sense of Sect. 2.1, we additionally pass to the weak closure of the set
of warped regular operators.

Definition 4 (Warped wedge-local model [BS08,BLS11]). Let QW be given by (11) for
W =WR and let QW := 	QWR	−1 for general wedgesW = 	WR+x , (x,	) ∈ P↑.
The warped wedge-local algebras are defined as

AQ(W) := {AQW : A ∈ A0r (W)}′′ ⊂ B(H ), (15)

where the bicommutant is taken with respect to B(H ).

Theorem 5 [BLS11, Thm. 4.2]. (AQ, α,�,H ) defines a wedge-local QFT model sat-
isfying the wedge-local Haag–Kastler postulates (HK1)–(HK6) from the initial model
(A, α,�,H ). Further, the deformed model satisfies the Haag–Ruelle spectral condi-
tion (HK6
), wedge-duality (HK2
), or Poincaré covariance (HK3
), respectively, if and
only if the initial model satisfies the respective conditions.

We further note that [BLS11] study wedge-local quantum field theories in the frame-
work of a (causal) Borchers triple (A(WR), α,�). There one specifies only an observ-
able algebra for the single wedge regionWR. The full family of wedge algebras is then
obtained using Poincaré symmetry (HK3
). This symmetry of the wQFT model is of
course an additional requirement, which is natural from the perspective of physics and
a useful constraint for constructive efforts. In particular, it is a non-trivial feature that
BLS-deformations can be used to construct Poincaré covariant models. However, the
BLS-deformation method also applies to the present framework, where Poincaré co-
variance is optional. The proofs of Lemma 3 and Theorem 5 can be extracted without
significant modifications from the results of [BLS11].

2.3. Scattering states in wedge-local QFT. We briefly review the n-particle Haag–
Ruelle scattering theory for wedge-local QFTs. To construct one-particle states via the
wedge-local Haag–Ruelle method [Du18], one has to first fix a wedge W .4 Then one
chooses operators A ∈ A(W) such that E(Hm)A� �= 0. The existence of such operators
follows from (HK5). Let χ ∈ S (Rd) be a Haag–Ruelle auxiliary function supported
within a sufficiently small neighborhood of the mass shell Hm , disjointly from the re-
maining energy-momentum spectrum. Then the operator

B := A(χ) :=
∫

ddx χ(x) αx (A) (16)

solves the one-particle problem in the sense that B� is in the one-particle spaceH1 :=
E(Hm)H while B still has certain unsharp wedge-localization properties (see below,

4 It may be helpful for guiding intuition to take W = WR on first reading. As we are also interested
in a comparison of the scattering data constructed from different wedges, we use here the coordinate-free
formulation with a general wedge W . Lastly, this is also important for studying non-Poincaré covariant
models and their deformations, as the status of AC then can depend on the choice ofW .
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e.g. (28), (29) or [Du18, Lemma 7]). In terms of the Fourier transform defined in the
relativistic unitary convention by

χ̂ (p) = χ̂ (p0, p) =
∫

ddx

(2π)d/2 eip
0x0−ip·x χ(x0, x), (17)

this follows from the identity B� = (2π)d/2χ̂(H, P)A�, obtained by spectral calculus
and translation-invariance of the vacuum. Hence B� is in the one-particle spaceH1 :=
E(Hm)H , as a consequence of the support of the Haag–Ruelle auxiliary function χ̂

intersecting the energy-momentum spectrum supp E(H,P) of the theory only on subsets
of the mass shell Hm (by construction, and here in particular the mass gap assumption
(HK6
) is used, see e.g. [A, Ch. 5] or [Dyb17, Sec. 2.1]).

Proceeding towards the n-particle problem we define similarly for a family of A j ∈
A(W), 1 ≤ j ≤ n, the operators Bj := A j (χ). Further we consider (positive-energy)
Klein–Gordon solutions

f j (t, x) =
∫

dsk

(2π)s
eik·x−iωm (k)t f̃ j (k), (1 ≤ j ≤ n), (18)

as scattering-theoretic comparison dynamics, with relativistic dispersion ωm(k) :=√
k2 + m2 for mass m > 0, and recall that we abbreviate s := d − 1. For usual tech-

nical reasons, the wave packets are assumed to be regular, that is, f̃ j ∈ C∞c (Rs). By
a stationary phase analysis, these regular Klein–Gordon solutions vanish rapidly in all
space- and time-like directions away from the classical propagation cones

ϒ f j := {(t, x) ∈ R
d : ∃k j ∈ supp f̃ j : t k j = ωm(k j ) x}. (19)

We note that these cones describe the scattering geometry of the single-particle wave
packets. Geometrically, scattering situations are concernedwith phenomena at very large
distances, and it is convenient to introduce the centering ofW = 	WR + x , denoted by
Wc := 	WR.

The construction of n-particle states is now accomplished by means of wedge-frame
adapted Haag–Ruelle creation-operator approximants

B	
j,τ ( f j ) :=

∫
dsx f j (	(τ, x)) α(	(τ,x))(Bj ), (τ ∈ R). (20)

Here, the boost 	 ∈ L↑+ specifies an auxiliary Lorentz frame used for the construction.
The simplest cases are that the operators A j ∈ A(W) are localized in a wedgeW which
is a rotation or spatial reflection ofWR. Then one can simply take	 = 1, corresponding
to the integration in (20) ranging over equal-time hyperplanes. For general wedges W
it is technically preferable to choose this boost from

L∗(W) := {	 ∈ L↑+ : 	WR =Wc}. (21)

Regarding the causal geometry of wedges, we recall here that in dimension d ≥ 2 + 1
a general wedge region W can be written as W = λWR := 	WR + x in terms of the
standard Rindler wedgeWR and some Poincaré transformation λ = (x,	)with Lorentz
transformation part 	 ∈ L↑+ and translation x ∈ R

d . Our analysis also applies to the
special case of dimension d = 1 + 1. There, the set of all wedges splits into the disjoint
orbits under the proper orthochronous Poincaré group, reducing to space-time translates
of the right wedgeWR and left wedgeWL :=WR

′ = −WR and we can choose 	 = 1.
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The choice of 	 enters in the space-time localization of the operators B	
j,τ ( f j ),

and keeping track of the latter is important for the Haag–Ruelle method. Namely, the
localization depends on τ and the wedge W of localization of A j , translated to

W + τV	
f j ⊆ R

d , V	
f j := ϒ f j ∩	T1, 	 ∈ L↑+ . (22)

Here T1 := {(1, x) : x ∈ R
s} is the standard space-like hyperplane at τ = 1 and V	

f j
is

the velocity support of f j with respect to the Lorentz frame specified by 	. As centered
wedges Wc are convex cones withWc +Wc ⊆Wc, the precursor relation

O1 ≺W O2 :⇐⇒ O2 −O1 ⊆Wc, (23)

defined for non-empty regions O1,O2 ⊆ R
d , is transitive, and Poincaré covariant as a

partial ordering in the sense that O1 ≺W O2 ⇐⇒ λO1 ≺	W λO2, λ = (x,	) ∈ P↑+ .
To construct n-particle scattering states we consider ordered configurations of wave

packet velocities

V	
fn ≺W V	

fn−1 ≺W . . . ≺W V	
f1 , (24)

for the outgoing limit τ → +∞, and the reversed ordering

V	
fn �W V	

fn−1 �W . . . �W V	
f1 , (25)

for the incoming scattering limit τ →−∞, respectively. These conventions provide the
correct, consistent, and coordinate free5 generalization of the familiar velocity-ordering
relations from the 1+1-dimensional form-factor programme to higher space-time dimen-
sions, as argued in [Du18]. In this work the convergence of

�	
n (τ ) := B	

1τ ( f1) . . . B	
nτ ( fn)�, (26)

for τ → ±∞ is proved when all underlying wedge-local operators A j ∈ A(W) are
localizable in a common wedge W with the respective ordering from (24) or (25), and
Fock structure of the limits is established. This approach is distinct from conventional
Haag–Ruelle theory, where convergence and Fock structure proofs use that the com-
mutators [B	

jτ ( f j ), B
	
kτ ( fk)] vanish rapidly in norm for j �= k when τ → ±∞. Such

stronger estimates are obtained from locality of the QFT and disjoint velocity supports
of the Klein-Gordon solutions. Applying this reasoning in a wedge-local context leads to
a more restrictive setup. Firstly we should take A ∈ A(W) and A⊥ ∈ A(W⊥) for an op-
posite wedgeW⊥ :=W ′ + x , x ∈ R

d . Additionally, the Klein–Gordon solutions f, f ⊥
must be chosen such that the velocity supports are not merely disjoint, but satisfy the
stronger geometrical ordering property

V	
f ⊥ ≺W V	

f . (27)

5 In the literature on integrableQFTmodels in 1+1 dimensions such velocity orderings are usually expressed
by rapidities θ j = sinh−1(k1j /m), ordered by θ1 < θ2 < . . . < θn for outgoing states, and θ1 > θ2 > . . . > θn

for incoming states, respectively, and operator localizations are fixed by convention to be in the left wedge, see
e.g. [Le06]. This is feasible for 1+1 dimensions, where there are only two distinct centered wedges given by
the left and right wedge. Although the 1+1-dimensional case is included in our considerations, our main focus
is on the cases of higher dimensions where there are infinitely many distinct centered wedges and similarly
distinct precursor ordering relations≺W . This makes the coordinate-free formulation of (23)–(25) preferable
for the analysis of higher-dimensional wQFT models, especially due to our interest in the behavior of the
scattering data under changing the wedge W .
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Then one obtains by wedge-locality and the decay properties described in (19) and (22)
a rapid decay for large |τ |,

∥∥∥[B	
τ ( f ), B⊥	

τ ( f ⊥)]
∥∥∥ ≤ CN

τ N
, (τ > 0), (28)

∥∥∥[B	
τ ( f ⊥), B⊥	

τ ( f )]
∥∥∥ ≤ CN

(−τ)N
, (τ < 0). (29)

Here it should again be noted that the geometrical configuration depends on whether the
outgoing (τ > 0) or incoming (τ < 0) regime is considered. Pairs of opposite wedge
configurations were used in the previous constructions of two-particle scattering states
in the wedge-local context [GL07,BS08], and also in studies of wedge-local aspects of
local QFTs, such as the foundational work of Borchers et al. [BBS01] on the existence
and properties of polarization-free generators.

In the multi-particle generalization (26) opposite wedges appear only indirectly.
Namely, we work with one-particle states that can be generated from the vacuum within
two opposite wedges W , W⊥ =W ′ + x

� = A� = A⊥�, A ∈ A(W), A⊥ ∈ A(W⊥), (30)

for some x ∈ R
d , depending on�. In this case we call� swappable (with respect to the

wedge W). Swappable vectors with W⊥ = W ′ are dense in the full Hilbert space H
as a consequence of wedge duality (HK2
), see [Du18, App. B]. For us the abbreviation
W⊥ always refers to translates of W ′, which may or may not overlap W .6 Swappable
one-particle states are obtained by projecting swappable vectors onto the one-particle
space H1. In this way we obtain from (16) and (20) an oppositely localized pair of
Haag–Ruelle creation-operator approximants for each one-particle state (1 ≤ k ≤ n)

�k
1 := B	

kτ ( fk)� = B⊥	
kτ ( fk)�, (31)

where both expressions involving Haag–Ruelle operators are τ -independent by con-
struction, so that τ →±∞ limits can be dropped. We note that the scattering states are
defined without explicit use of swapping. However, the swapped operators B⊥	

kτ ( fk) are
the main tool for proving the wedge-local Haag–Ruelle theorem:

Theorem 6. [Du18] Let (A, α,H ,�) be a wedge-local quantum field theory satisfying
wedge duality (HK2
) and the mass gap condition (HK6
). Let 	 ∈ L↑+ and �

j
1 =

E(Hm)A j�with A j ∈ A(W) be swappable one particle states, and define Bk := Ak(χ)

with an auxiliary function χ as in (16).

(i) For regular positive-energy Klein–Gordon solutions f j satisfying

V	
fn ≺W V	

fn−1 ≺W . . . ≺W V	
f1 , (32)

the scattering state approximants�	
n (τ ) := B	

1τ ( f1)B
	
2τ ( f2) . . . B	

nτ ( fn)� converge
rapidly in norm for τ → ∞. More precisely, for any N ∈ N there exists a CN > 0
such that

∥∥�	
n (τ )−�+,	

n

∥∥ ≤ CN

τ N
, (τ > 0). (33)

6 Allowing swapping with wedge overlaps makes swapping trivially realizable in local models and their
deformations (see Lemma 3 (i)). It is also natural from the perspective of scattering theory, where it serves
the additional purpose of making the compatibility to local Haag–Ruelle theory manifest, where applicable,
as mentioned in [Du18]. In the present work admitting such overlapping swapping partners will also become
technically useful (see e.g. Corollary 9).
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(ii) For 	 ∈ L∗(W) scalar products of �
+,	
n := limτ→∞ B	

1τ ( f1) . . . B	
nτ ( fn)�, and

�
′+,	
n′ := limτ→∞ B ′	1τ ( f ′1) . . . B ′	n′τ ( f

′
n′)�, constructed both with respect to the same

wedge W , satisfy

〈
�+,	

n , �
′+,	
n′

〉
= δnn′

n∏
j=1

〈
B	
jτ ( f j )�, B ′	jτ ( f ′j )�

〉
. (34)

Here the right hand side is again τ -independent by construction.

Analogous statements hold for incoming scattering states, assuming opposite ordering.

For the later discussion of the scattering matrix, let us note that all asymptotic data in
wedge-local models, including wave operators, must be defined depending on a local-
ization wedgeW fromwhich the scattering states have been prepared. This is an unusual
feature of wedge-local models. But we note that, of course, the W-dependence can be
trivial. This happens in 1+1 dimensions, where our results apply as well. In this case
there are only two centered wedgesWR andWL, whose associated observables and scat-
tering states can be related by swapping symmetry (see Proposition 26). In general this
certainly does not imply that the models will be local. Presently the status of existence
or non-existence of local observables even in 1+1-dimensional GL-models appears to be
still open. In the present formalism for higher dimensions, the existence of a local QFT
model underlying the wedge-local model under consideration implies a certain trivial
W-dependence of scattering states, which is discussed in Sect. 5.

The possibility of more general wedge-dependences of scattering states is an inter-
esting feature of wedge local quantum field theories in higher dimensions. In particular,
we will use the formalism introduced in [Du18] to describe this wedge dependence in a
more transparent manner for two-particle and n-particle scattering reactions. One of the
main aims of the present paper is to illustrate this wedge dependence in BLS-deformed
wQFT models and in particular for the special case of the Grosse–Lechner models (see
Sects. 3.3 and5).

3. N-Particle Scattering in BLS-Deformed Wedge-Local QFTs

Using the results and notation described in the previous sections, we can now state our
results in precise form. Let (A0, α,H ,�) be a given wedge-local quantum field theory
satisfying wedge duality (HK2
) and the mass gap condition (HK6
), in addition to
(HK1)–(HK6). Let (AQ, α,H ,�) be the model constructed by BLS-deformation with
some fixed warping parameter Q.

Our main aim will be to prove asymptotic completeness of the deformed model.
On the technical side, this will be achieved by establishing a direct relation between a
scattering state

lim
τ→±∞ BQ,	

1,τ ( f1)B
Q,	
2,τ ( f2) . . . BQ,	

n,τ ( fn)� (35)

of the deformed model, and the scattering states of the initial model,

lim
τ→±∞ B	

1,τ ( f1)B
	
2,τ ( f2) . . . B	

n,τ ( fn)�. (36)

Here we write BQ
k = AQ

k (χ) with χ ∈ S (Rd), as before, and AQ
k ∈ AQ(W) for

1 ≤ k ≤ n with some fixed centered wedge W = 	WR. In the following we will
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for simplicity suppress dependencies on the fixed reference frame boost 	 and on the
wedge in our notation, writing for example ≺, V fk and BQ

k,τ ( fk), instead of ≺W , V	
fk

and BQ,	
k,τ ( fk), etc., when these dependencies can be clearly seen from the context.

3.1. Wave operators in BLS-deformed wedge-local QFTs. Our introductory heuristic
considerations (see Eqs. (7) and (8)) suggested that the deformation preserves outgoing
and incoming particle numbers. This makes our approach feasible. As we can in prin-
ciple deform general models, such as P(φ)2, the scope of our result is not restricted to
particularly simple or integrable deformed models. However, we can infer similarly that
the deformed scattering state (35) cannot be directly related to a scattering state in the
undeformed model with the same simple product form (36). This is addressed here by
using the formulation of the scattering data in terms of wave operators W

±
W , as defined

in [Du18, Sec. 5]. To recall the formal construction of the wave operators we start by
introducing the full (unsymmetrized) Fock space by

�u(H1) :=
∞⊕
n=0

H1
⊗n, (37)

over the one particle space H1 := E(H,P)(Hm)H . Here it is convenient to define the
velocity ordering �W also as partial order onH1, by writing

�1 ≺W � ′1 :⇐⇒ V	
�1
≺W V	

� ′1
, (38)

where the velocity support V	
�1

of a one-particle vector�1 is defined analogously to (19)

and (22), replacing the support of f̃ j by the spectral support of the momentum operator
in the state�1. Natural domains for the wave operators in the wedge-local setting are the
velocity-ordered Fock spaces ��(H1) and �≺(H1), which are defined as the closures
of the spans

��0 (H1) := span {�1 ⊗ . . .⊗�n : n ∈ N0, �1, . . . , �n ∈H1, �1 � �2 � . . . � �n}, (39)

�≺0 (H1) := span {�1 ⊗ . . .⊗�n : n ∈ N0, �1, . . . , �n ∈H1, �1 ≺ �2 ≺ . . . ≺ �n}, (40)

of finite linear combinations, for outgoing- and incoming scattering states, respectively.
We define analogous algebraic spans��0 (H ′

1 ) and�≺0 (H ′
1 ) for any dense subsets of one-

particle states H ′
1 ⊂H1, to accommodate the technical requirements from Theorem 6

for the construction of scattering states. To make this more precise let us now recall the
construction of the wave operators W

±
Q,W as given in [Du18] by means of this theorem.

Ourmain technical results concern thewave operatorsW
±
Q,W of the deformedmodel,

and we will now discuss their construction as given in [Du18]. Here we will also include
some additional details which are of particular importance for us. First we recall that the
wave operators are constructed by means of Theorem 6. In particular this means that,
on the technical side, we are in fact working with a smaller subset of one-particle states,
namely all which can be written in the form

�1 = B	
τ ( f )� = B⊥	

τ ( f )�. (41)

We call such �1 swappable (with respect to W) one-particle states of bounded energy,
and we letH W

1c be the (non-closed) linear space spanned by them. Alternatively, using
spectral calculus, one sees that the above generating set7 of �1 ∈ H W

1c can also be

7 A general vector �1 ∈H W
1c is a sum of vectors of the form (41) or (42).
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characterized by the existence of A ∈ A(W), A⊥ ∈ A(W⊥), and f̃ ∈ C∞c (Rs), such
that

�1 = f̃ (P)E(H,P)(Hm)A� = f̃ (P)E(H,P)(Hm)A⊥�. (42)

Proposition 7. In a wQFT satisfying wedge duality (HK2
), the density H W
1c = H1

holds for any wedge W .

Proof. Let �1 ∈ H1 and ε > 0. By [Du18] App. B, there exist A ∈ A(W) and
A⊥ ∈ A(W ′), such that � ′ := A� = A⊥� and

∥∥� ′ −�1
∥∥ < ε/2. Let now f ∈

C∞c (Rs) with f̃ (0) = 1. Then for any δ > 0 we have �δ := f̃ (δP)E(Hm)� ′ ∈ H W
1c

by (42). By spectral calculus �δ −→ E(Hm)� ′ when we take δ → 0. In particular
there exists δ′ > 0 s.t. ‖�δ′ − E(Hm)� ′‖ < ε/2. Together we get ‖�δ′ −�1‖ ≤∥∥�δ′ − E(Hm)� ′

∥∥ +
∥∥E(Hm)(� ′ −�1)

∥∥ ≤ ε/2 + ‖E(Hm)‖ ∥∥� ′ −�1
∥∥ ≤ ε. ��

Concerning this technical detail, let us add a brief side remark on the considera-
tions which motivated our specific choice ofH ′

1 by describing in a general manner the
technical properties these dense sets of one-particle states should have.

Remark 8. The main technical subtlety which arises in comparison to the standard con-
struction of bosonic and fermionic Fock spaces is that the resulting Fock space should be
independent of possibly different technically motivated choices ofH ′

1 . Yet, for ordered
Fock spaces in wedge-local models it is not completely trivial to find a suitableH ′

1 , due
to the possible interplay of swapping and smoothness with the ordering conditions. A
suitable choice is, what wemay call amomentum resolving subspaceH ′

1 ⊆H1, namely,
that for any � ∈ H1 there exists a sequence (�n)n∈N ⊂ H ′

1 such that �n → � and
supp E(H,P)�n ⊆ supp E(H,P)�. We note that from Proposition 7 and (42) it follows
by choosing f̃ suitably that the linear spaces H W

1c are momentum resolving.

By construction, the energy-momentum operators of the initial and deformed model
coincide. In particular, the one-particle spaces of the two models are identical. Hence
we can directly compare the scattering data of the two models on the present abstract
level in terms of the respective wave operators, as they are defined on the same ordered
Fock spaces for both the deformed and initial model. For a direct comparison of the two
wave operators, we will make use of a strengthened technical result on the density of
one-particle states. Note that here also our admission of overlaps for opposite wedges
in the swapping relation becomes useful from a technical perspective.

Corollary 9. Any swappable one-particle state �1 ∈H W
1c can be generated by swap-

ping pairs Ã ∈ Ar (W) and Ã⊥ ∈ Ar (W̃⊥) of regular operators, where the opposite
wedge W̃⊥ depends on �1.

Proof. For swappable one-particle states�1 ∈H W
1c there exist by definition an operator

A ∈ A(W), an opposite wedge W⊥ = W ′ + x , a swapping partner A⊥ ∈ A(W⊥) and
a regular wave packet f̃ such that

�1 = f̃ (P)E(H,P)(Hm)A� = f̃ (P)E(H,P)(Hm)A⊥�. (43)

We write

�1 = χ̂(ωm(P), P)−1 f̃ (P)E(H,P)(Hm)χ̂(H, P)A�, (44)
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where χ ∈ C∞c (Rd) is a compactly supported function with χ̂ (ωm(p), p) non-vanishing
for all p ∈ supp f̃ . Then f̃ ′(p) := χ̂(ωm(p), p)−1 f̃ (p) defines a new regular Klein-
Gordon wave packet and χ̂(H, P)A� = (2π)−d/2A(χ)� =: A1� (see eq. (17)) shows
that the vector part is obtained from the vacuum as image of a regular operator A1 ∈
Ar (W1) for some wedge W1 ⊃ W + suppχ . An analogous calculation yields A⊥1 ∈
Ar (W⊥

1 )withW⊥
1 ⊃W⊥ +suppχ . Finally we obtain the desired pair of operators with

Ã ∈ Ar (W) and Ã⊥ ∈ Ar (W̃⊥) by translating the just constructed operator A1 back
toW , and also replacing A⊥1 andW⊥

1 with the respective translates by the same vector.
These translations can be compensated by absorbing the resulting phase in (44) into the
wave packet. ��
Definition 10 (Wave operators of initial and deformed model). Let (A0, α,H ,�) be
a wedge-local quantum field theory. The incoming and outgoing wave operators W

±
0,W

associated to centered wedge regionsW , 	 ∈ L∗(W), in the initial model are the maps
defined by

W
+
0,W :

{
��W (H1) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→∞ B	

1τ ( f1) . . . B	
nτ ( fn)�,

W
−
0,W :

{
�≺W (H1) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→−∞ B	

1τ ( f1) . . . B	
nτ ( fn)�,

(45)

via linear and continuous extension from product states in �
�W/≺W
0 (H W

1c ), where
B	
kτ ( fk)� = �k

1 . Similarly the wave operators of the deformed model (AQ, α,H ,�)

are

W
+
Q,W :

{
��W (H1) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→∞ B	

1Qτ ( f1) . . . B	
nQτ ( fn)�,

W
−
Q,W :

{
�≺W (H1) −→H ,

�1
1 ⊗ . . .⊗�n

1 �−→ lim
τ→−∞ B	

1Qτ ( f1) . . . B	
nQτ ( fn)�.

(46)

Here we already made use of Corollary 9, which allows us to fully analyze the scattering
in the deformed model while restricting to creation-operator approximants B	

kQτ ( fk)

constructed from warpings (Ak)Q of regular swapping pairs Ak , A⊥k , as provided by

Corollary 9, instead of having to admit general AQ
k ∈ AQ(W) as in eq. (35).

For simplicity we will refer to W
±
Q,W as the deformed wave operators. We note that,

strictly speaking, this terminology is justified only in retrospective after the results of the
present paper are established. Namely, our main result shows the wave operatorsW

±
Q,W ,

as defined using the general construction in the deformed model, can be regarded as a
“deformation” of the wave operators W

±
0,W from the underlying “undeformed” model.

Theorem 11. The wave operators of the deformed model (AQ, α,H ,�) can be ex-
pressed in terms of the wave operators of the initial model (A0, α,H ,�) via

W
+
Q,W =W

+
0,W S�W

QW , W
−
Q,W =W

−
0,W S≺W

QW , (47)
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where S�W/≺W
QW are restrictions to ��W/≺W of SQW : �u(H1)→ �u(H1) defined by

SQW�1
1 ⊗ . . .⊗�n

1 :=
∏

1≤i< j≤n
eiPi ·QW Pj �1

1 ⊗ . . .⊗�n
1 (48)

for �1
1 , . . . , �

n
1 ∈H1. Here, for i ∈ N, Pi denotes the self-adjoint operator defined on

�u(H1) in terms of the energy-momentum operator P = (H, P) of the model by

Pi (�
1
1 ⊗ . . .⊗�n

1 ) := �1
1 ⊗ . . .⊗ P� i

1 ⊗ . . .⊗�n
1 (49)

for n ≥ i , �1
1 , . . . , �

n
1 ∈H1 with � i

1 ∈ D(P) and Pi (�1
1 ⊗ . . .⊗�n

1 ) := 0 if n < i .

We note that Pi can be regarded as i-th unordered second quantization of the energy-
momentum operator P . Essential self-adjointness of Pi on the domain of vectors of finite
particle number follows from standard arguments (see e.g. [RS1, Sec. VIII.10]).

3.2. Proof of the wave operator identity. We start with some preparations. First we will
recall how to re-express the warped convolutions as convergent H -valued integrals.
This is done by using standard oscillatory integral methods [BLS11,DT13,LW16].

Lemma 12. Let R
2d � (x, y) �−→ �(x, y) ∈ H be a map with uniformly bounded

derivatives for all multi-indices β ∈ N
2d
0 up to order |β| ≤ 4d.8 Then we have

lim
ε→0

1

(2π)d

∫
ddx ddy η(εx, εy)e−ix ·y�(x, y)

= 1

(2π)d

∫
ddx ddy e−ix ·y Dreg(∂x , ∂y)�(x, y). (50)

Here Dreg(∂x , ∂y) :=∏s
j=0 Dj (∂x j , ∂y j )

2 is a product of auxiliary, mutually commuting
partial differential operators defined by

D j (∂x j , ∂y j )�(x, y) := (1− ∂2x j − ∂2y j )
1

1 + y2j + x2j
�(x, y). (51)

In particular, the limit (50) exists and it is independent of the choice of the regularizing
function η ∈ S (Rd × R

d) with η(0, 0) = 1.

Proof. The operators Dj are constructed such that their formal adjoints satisfy

D∗j e±ix j y j =
1

1 + y2j + x2j
(1− ∂2x j − ∂2y j )e

±ix j y j = e±ix j y j . (52)

Inserting this identity into the oscillatory integral with finite ε > 0 twice for every
1 ≤ j ≤ d, using integration by parts, and writing ηε(x, y) := η(εx, εy), we get

1

(2π)d

∫
ddx ddy e−ix ·yηε(x, y)�(x, y)

8 Our strategy mostly follows [BLS11]. With our choice of Dreg, integrability estimates are split into pairs
(x j , y j ), 1 ≤ j ≤ d, and thereby they become slightly more explicit. On the other hand, our smoothness
requirements are not optimal. For a regularizing differential operator requiring only |β| ≤ d + 1 derivatives of
�(x, y), we refer to [BLS11].
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= 1

(2π)d

∫
ddx ddy e−ix ·y Dreg(∂x , ∂y)ηε(x, y)�(x, y). (53)

In this form the ε → 0 limit can now be carried out: it follows by explicit calculation
and induction that

∥∥Dreg(∂x , ∂y)�(x, y)
∥∥ ≤

d−1∏
j=0

C

(1 + x2j + y2j )
2
‖�‖C 4d (R2d ,H ) , (54)

where the norm is defined by

‖�‖C k (R2d ,H ) :=
∑

α,β∈Nd
0|α|+|β|≤k

sup
x,y∈Rd

∥∥∥∂α
x ∂β

y �(x, y)
∥∥∥
H

. (55)

From (54) we now obtain an integrable majorant for the rewritten integral (53), by
estimating ‖ηε�‖C 4d (R2d ,H ) ≤ C ‖ηε‖C 4d (R2d ) ‖�‖C 4d (R2d ,H ) and, for 0 < ε < 1,
‖ηε‖C 4d (R2d ) ≤ ‖η‖C 4d (R2d ) using the definition of ηε and the chain rule. Hence, by
dominated convergence, it is sufficient to verify pointwise convergence of the integrand.
To this end we write

Dreg(∂x , ∂y)ηε(x, y)�(x, y) = ηε(x, y)Dreg(∂x , ∂y)�(x, y) + Rε(x, y). (56)

In each term of the product rule expansion of the remainder Rε there is at least one
derivative with respect to x or y acting on ηε . Thus this remainder is proportional to ε

and vanishes for ε → 0. The first term converges pointwise to Dreg(∂x , ∂y)�(x, y) and
from this the claim (50) follows. ��

For our scattering theoretic purposes it is useful that this method can be readily
extended to obtain similar integral representations by iterating Lemma 12. In thismanner
we can further strengthen the decay of the integrand for large x, y ∈ R

d .

Lemma 13. Let M ∈ N and let R
2d � (x, y) �−→ �(x, y) ∈ H be a map with

uniformly bounded derivatives for all multi-indices β ∈ N
2d
0 up to order |β| ≤ 4Md.

Then we have

lim
ε→0

1

(2π)d

∫
ddx ddy η(εx, εy)e−ix ·y�(x, y)

= 1

(2π)d

∫
ddx ddy e−ix ·y Dreg(∂x , ∂y)

M�(x, y). (57)

The integrand satisfies the integrable norm bound

∥∥∥Dreg(∂x , ∂y)
M�(x, y)

∥∥∥ ≤
d−1∏
j=0

CM

(1 + x2j + y2j )
2M
‖�‖C 4Md (R2d ,H ) . (58)

Next, we use the convergent integral representation to check that warped convolutions
can be exchanged with the smearing operations used to define the creation-operator
approximants in the deformed model.
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Lemma 14. Let � ∈ D, A ∈ A0r (W), χ ∈ S (Rd), and let f be a regular Klein–
Gordon solution. Then

BQ� := AQW (χ)� = (A(χ))QW�, (59)

and

BQτ ( f )� = (Bτ ( f ))QW�. (60)

Proof. We can apply Lemma 12 to warped convolutions, as the corresponding integrand
�(x, y) = αQx (A)U (y)� is arbitrarily often differentiable for A ∈ C∞ and � ∈ D,

with
∥∥∥∂α

x ∂
β
y �(x, y)

∥∥∥ ≤ Cαβ for suitable constant depending on the multi-indices α, β ∈
N
d
0 . By translation covariance of warped convolutions from Lemma 3 (v) we have

AQW (χ)� =
∫

ddz χ(z)αz(AQW )� =
∫

ddz χ(z)(αz A)QW�

= 1

(2π)d

∫
ddz χ(z)

∫
ddx ddy e−ix ·y Dreg(∂x , ∂y)U (x)αQy+z(A)�.

(61)

Using the decay of χ ∈ S (Rd) and estimate (54), the above integrand has integrable
norm with respect to the product Lebesgue measure d3d(x, y, z). Hence the order of
integrations can be exchanged by Fubini’s theorem. Taking the x- and y-dependent
translation operators outside the inner strong integral, we obtain (59). The proof of (60)
is analogous. ��
Definition 15. For �,� ′ ∈ �u(H1) and Q ∈ C

d×d let

� ⊗Q � ′ := eiP1·QP2� ⊗� ′. (62)

Here, P1 = P ⊗ 1 is the energy-momentum operator acting on the first argument only,
and similarly P2 = 1⊗ P acts on the second argument.

Before we continue, let us remark that this deformed tensor product preserves the or-
dered subspaces in the sense that if�,� ′ ∈ ��(H1), with� � � ′, then also�⊗Q� ′ ∈
��(H1). Further, the deformed tensor product is clearly linear in its arguments and asso-
ciative. Its noncommutative structure strongly resembles the Zamolodchikov-Faddeev
relations from integrable QFT models (see e.g. [Le03]), in contrast to the canonical
commutation relations and the corresponding commutative symmetrized tensor prod-
uct structure underlying the usual free scalar QFT. Let us note cautiously that ⊗Q is
in general not mixed-associative in combination with ordinary tensor products, that is,
�1 ⊗Q (�2 ⊗�3) �= (�1 ⊗Q �2)⊗�3. We also note that the definition is consistent
with the fact that on Fock spaces � ⊗� = � = �⊗� are identified for any �.

We can nowestablish themain technical lemma for proving thewave operator identity
from Theorem 11.

Lemma 16. Let �k
1 = Bkτ ( fk)� = B⊥kτ ( fk)�, 1 ≤ k ≤ n, be swappable one-particle

states, s.t. Ak ∈ A0r (W), A⊥k ∈ A0r (W⊥) are regular (1 ≤ k ≤ n), and Bk = Ak(χ)

whereχ ∈ S (Rd) is an admissibleHaag–Ruelle auxiliary function. For ordered velocity
supports V1 � . . . � Vn we have

lim
τ→∞ B1Qτ ( f1)B2Qτ ( f2) . . . BnQτ ( fn)� =W

+
0,W�1

1 ⊗QW . . .⊗QW �n
1 . (63)
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With incoming ordering V1 ≺ . . . ≺ Vn we have analogously for the incoming limit
τ →−∞

lim
τ→−∞ B1Qτ ( f1)B2Qτ ( f2) . . . BnQτ ( fn)� =W

−
0,W�1

1 ⊗QW . . .⊗QW �n
1 . (64)

Proof. We consider only the case τ → ∞. We first note that �kτ := BkQτ ( fk) . . .

BnQτ ( fn)� ∈ D for 1 ≤ k ≤ n, due to the compact energy-momentum transfer of the
BjQτ ( f j ), 1 ≤ j ≤ n (see [Du18] Lemma 7). Thus Lemmas 14 and 12 apply and we
obtain

�τ := �1τ = B1τ ( f1)QW B2τ ( f2)QW . . . Bnτ ( fn)QW�

=
∫

ddx1 ddy1 . . . ddxn ddyn
(2π)nd

n∏
j=1

(e−ix j ·y j Dreg(∂x j , ∂y j )
M )

U (x1)αQy1(B1τ ( f1)) . . .U (xn)αQyn (Bnτ ( fn))�, (65)

where the constant M ∈ N will be chosen below. We rewrite the vector part of the
integrand using that U (x1)αQy1(B1τ ( f1)) = αQy1+x1(B1τ ( f1))U (x1) as

�x,y,τ := U (x1)αQy1(B1τ ( f1)) . . .U (xn)αQyn (Bnτ ( fn))�

= αQy1+x1(B1τ ( f1))αQy2+x1+x2(B2τ ( f2)) . . . αQyn+x1+...+xn (Bnτ ( fn))�, (66)

with x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
nd , and we abbreviate Q := QW .

Now we split the integration in (65) into an integral over the region

R↑ρτ := {(x1, . . . , xn, y1, . . . , yn) ∈ R
2nd : |x0k | + |xk | ≤ ρτ, |y0k | + |yk | ≤ ρτ } (67)

and its complement, where the constant ρ > 0 is for now fixed but arbitrary, and will be
specified later. The vector resulting from the integral over R↑ρτ will be denoted �

↑
1τ . By

means of applying (58) iteratively for all pairs (xk, yk), 1 ≤ k ≤ n, we verify that with
an appropriately strong power M ∈ N of the regularizing operator Dreg, the remainder

integral over the complement R↓ρτ := R
2nd\R↑ρτ becomes small for large τ . That is,

∥∥∥�↓τ
∥∥∥ :=

∥∥∥�τ −�↑τ
∥∥∥

≤
∫
R↓ρτ

dndx dndy

(2π)nd

∥∥∥∥∥
(

n∏
k=1

Dreg(∂xk , ∂yk )
M

)
�x,y,τ

∥∥∥∥∥ (68)

≤
∫
R↓ρτ

dndx dndy

(2π)nd

⎛
⎝ n∏

k=1

d−1∏
j=0

1

(1 + x2k, j + y2k, j )
2M

⎞
⎠C(1 + |τ |ns/2). (69)

In the last step we estimated
∥∥∥Dreg(∂x1, ∂y1)

M · · · Dreg(∂xn , ∂yn )
M�x,y,τ

∥∥∥

≤ C
n∏

k=1

d−1∏
j=0

1

(1 + x2k, j + y2k, j )
2M

∥∥∥�x,y,τ

∥∥∥
C 4Mnd (R2nd ,H )

. (70)
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The derivative norm of the vector part was then bounded by expanding it into indi-

vidual differentiated terms ∂
α
x ∂

β

y �x,y,τ , which in turn can be expanded by the product
rule into terms with differential operators acting on the translated creation-operator ap-
proximants Bkτ ( fk). Due to the assumed norm differentiability of Ak , the differentiated
Bkτ ( fk) can be rewritten as creation operator approximants constructed using the dif-
ferentiated Ak . These will be denoted here by B̃kτ ( fk) and Ãk , respectively. Using this
rewriting, the terms from the expanded differentiated vector parts from (68) can each
be bounded using the standard estimate ‖B̃kτ ( fk)‖ ≤ Cχ, fk‖ Ãk‖(1 + |τ |s/2) to obtain
‖αz1(B̃1τ ( f1)) . . . αzn (B̃nτ ( fn))�‖ ≤ ∏n

k=1 ‖B̃kτ ( fk)‖ ≤ C(1 + |τ |ns/2). Taking all
these terms together we obtain the last step from (69), where the new constant C de-
pends on M , on all wave packages and on the norms of derivatives of the Ak operators
up to order 4Mnd. To obtain the decay estimate for sufficiently large τ we proceed to
estimate

∥∥∥�↓τ
∥∥∥ ≤ C |τ |ns/2

⎛
⎝ sup

(x,y)∈R↓ρτ

n∏
k=1

d−1∏
j=0

1

(1 + x2k, j + y2k, j )
2M−2

⎞
⎠ n∏

k=1

d−1∏
j=0

∫

R2

dxk, jdyk, j
(1 + x2k, j + y2k, j )

2
.

(71)

Here constant factors such as the convergent integrals can be absorbed into the constant
C . To bound the supremum we note that by definition of R↑ρτ we have for any point

(x, y) in the complement R
2nd\R↑ρτ at least one vector with |x0k∗ | + |xk∗ | > ρτ or

|y0k∗ | + |yk∗ | > ρτ . This in turn implies that at least one coordinate |xk∗, j∗ | or |yk∗, j∗ |,
respectively, is larger than ρτ/

√
4 s. As all other factors in the supremum are bounded

from above by one, we obtain
∥∥∥�↓τ

∥∥∥ ≤ C |τ |ns/2+4−4M . (72)

Choosing M ∈ N large enough, this contribution becomes arbitrarily small for large
τ > 0.

In particular, for establishing (63) it is sufficient to consider the limit of�↑τ . To address
this convergence, let ρ̃>0 denote the minimum over all such constants from Lemma 17

for the families of (B̃ jτ ( f j ))1≤ j≤n , where B̃ jτ ( f j ) = ∂
β j
x j αx j (Bjτ ( f j ))

∣∣
x j=0 stand for

all possible combinations of derivatives of these operators up to order |β j | ≤ 4Mnd,

β j ∈ N
d
0 . It is used here that ∂

β j
x j αx j (Bjτ ( f j ))� = ∂

β j
x j αx j (B

⊥
jτ ( f j ))� for all multi-

indices β j ∈ N
d
0 , which shows by setting x j = 0 that all such B̃ jτ ( f j )� are swappable,

as needed to apply Lemma 17 to these differentiated families. Further the derivatives
with respect to yk can also be written as multiples of such differentiated operators by
using the chain rule. Thus we set ρ := ρ̃ · (1 + ‖Q‖)−1/(n + 1) <∞. With this choice
we have for any 1 ≤ k ≤ n and (x, y) ∈ R↑ρτ that the vectors zk := Qyk + x1 + . . . + xk
are contained in the double cone of radius kρ |τ | + ‖Q‖ρτ ≤ ρ̃ |τ | for 1 ≤ k ≤ n.
Considering the asymptotically dominant part

�↑τ :=
∫
R↑ρτ

dndx dndy

(2π)nd

⎛
⎝ n∏

j=1
e−ix j ·y j Dreg(∂x j , ∂y j )

M

⎞
⎠ �x,y,τ , (73)
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we can obtain a τ -uniform integrable bound by applying (70) and noting that instead of
the coarse bound (72) we can now estimate

1
R↑ρτ

(x, y)
∥∥∥�x,y,τ

∥∥∥
C 4Mnd (R2nd ,H )

≤ C. (74)

Here we make use of Lemma 17, noting that this uniform bound applies to each of the
terms resulting from the expansion

∥∥∥�x,y,τ

∥∥∥
C 4Mnd (R2nd ,H )

=
∑

α,β∈Nnd
0 ,

|α|+∣∣∣β
∣∣∣≤4Mnd

‖∂α
x ∂

β

y �x,y,τ‖ (75)

by our choice of ρ. Due to the restriction to R↑ρτ we can estimate the differentiable
vector norm by means of Lemma 17, after expanding it into individual terms with fixed
derivatives acting on the creation-operators B̃kτ ( fk). As before these can be written
as Haag–Ruelle-type operators in terms of the differentiated Ak , so that Lemma 17
applies. To summarize we note that the proof strategy here is in fact analogous to the
above method used for the outside region R↓ρτ . However in R↑ρτ the use of the clustering
bound of Lemma 17 is geometrically permitted and yields the much stronger τ -uniform
estimate on the vector part.

By dominated convergence we obtain

lim
τ→∞�τ

(72)= lim
τ→∞�↑τ =

∫ dndx dndy

(2π)nd
lim

τ→∞

n∏
j=1

(e−ix j ·y j Dreg(∂x j , ∂y j )
M )�x,y,τ ,

(76)

where we already used that the characteristic function 1
R↑ρτ

(x, y) → 1 pointwise for

τ →∞. Here the Haag–Ruelle limit can be exchanged with the regularizing differential
operators by explicit computation: we expand everything into differentiated translated
Haag–Ruelle operators, for which the right hand side of (76) converges to the scattering
state generated by the differentiated and translated operators, which are again Haag–
Ruelle type creation-operator approximants. Collecting the Haag–Ruelle limits again
after performing them, we have by linearity of the wave operator

lim
τ→∞

⎛
⎝ n∏

j=1
Dreg(∂x j , ∂y j )

M

⎞
⎠ �x,y,τ (77)

=W
+
0,W

⎛
⎝ n∏

j=1
Dreg(∂x j , ∂y j )

M

⎞
⎠ (U (Qy1 + x1)�

1
1 )⊗ (U (Qy2 + x1 + x2)�

2
1 )⊗ . . .

⊗ (U (Qyn + x1 + . . . + xn)�
n
1 )

=W
+
0,W

⎛
⎝ n∏

j=1
Dreg(∂x j , ∂y j )

M

⎞
⎠U (x1)

{
(U (Qy1)�

1
1 )⊗U (x2)

{
(U (Qy2)�

2
1 )⊗ . . .

⊗U (xn)
{
(U (Qyn)�

n
1 )

}
. . .

} }
. (78)
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In the last equality we have written the one-particle state translations again in groups
using the second quantized translations on the unordered Fock space. In this formwe can
now apply the warped-convolution-type integral representation of the deformed tensor
product (Proposition 20). For this purpose we note that the wave operator is bounded on
the range of the integrand and can therefore be taken outside the strong integral. Thus
the introduction of the regularizing differential operators can be undone by iterative
application of Lemma 13 and we obtain

lim
τ→∞�τ =W

+
0,W

⎛
⎝ lim

ε1,...,εn→0

∫ dx dy

(2π)nd

⎛
⎝ n∏

j=1
η(ε j x j , ε j y j )e

−ix j ·y j
⎞
⎠

U (x1)

{
(U (Qy1)�

1
1 )⊗U (x2)

{
(U (Qy2)�

2
1 )⊗ . . .⊗U (xn)

{
(U (Qyn)�

n
1 )

}
· · ·

}}⎞
⎠ .

(79)

Regrouping the convergent integrals, using Fubini and continuity of the tensor product,
and applying Proposition 20 iteratively, we obtain deformed tensor products, as claimed
in (63). We note that after replacing all tensor products by Q-deformed tensor products
the right-associative grouping from (79) becomes inessential and can be dropped. The
proof of the statement for the incoming limit τ →−∞ is analogous. ��

We used the following auxiliary result concerning the norm of scattering-state ap-
proximants involving certain restricted translations of each operator.

Lemma 17. For any family of swappable operators Bkτ ( fk), 1 ≤ k ≤ n, with regular
Klein-Gordon wave packets satisfying the outgoing ordering V1 � . . . � Vn there exists
a constant ρ > 0 such that for all τ ≥ 0 and x1, . . . , xn ∈ Cρ|τ |

∥∥αx1(B1τ ( f1)) . . . αxn (Bnτ ( fn))�
∥∥ ≤ C, (80)

where Cr := {x = (x0, x) ∈ R
d : |x |c :=

∣∣x0∣∣ + |x| < r} = rC1 denotes the double
cone of radius r > 0. With opposite ordering V1 ≺ . . . ≺ Vn an analogous bound holds
for incoming times τ < 0.

Before proving this lemma let us recall the following useful technical result from
[Du18], which concerns the approximation of Haag–Ruelle creation-operator approxi-
mants by wedge-local operators.

Lemma 18 [Du18, Lemma 9]. Let A ∈ A(W). For any τ ∈ R and δ > 0 the corre-
sponding Bτ := Bτ ( f ) can be approximated by B(δ)

τ ∈ A(τV f + Cδ|τ | +W), (δ > 0),
such that for any N ∈ N

∥∥∥B(δ)
τ − Bτ

∥∥∥ ≤ Cδ
N

1 + |τ |N , (81)

where the constants Cδ
N depend on f , A and χ .

For the proof of Lemma 17 we use a corresponding version of the commutator
estimate, which will be formulated as a separate lemma to be proven first. For this
estimate certain translations of oppositely localized pairs are admitted, similarly to the
corresponding translations appearing in Lemma 17.
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Lemma 19. Let B = A(χ), B⊥ = A⊥(χ) with A ∈ A(W), A⊥ ∈ A(W⊥), for a
pair of opposite wedges W,W⊥, χ ∈ S (Rd), and let f, f ⊥ be regular Klein-Gordon
solutions ordered by V f ⊥ ≺W V f . Then there exists a constant ρ > 0 and for any
N ∈ N a constant CN > 0 such that for any τ > 0 and x, y ∈ Cρτ ,

∥∥∥
[
αy(B

⊥
τ ( f ⊥)), αx (Bτ ( f ))

]∥∥∥ ≤ CN

1 + |τ |N . (82)

This rapid decay extends to the case that either or both operators are replaced by their
adjoint. Further these estimates also hold for τ < 0 given the opposite orderingV f ⊥ �W
V f .

In the proof presented here we will focus on the arguments needed to generalize the cor-
responding commutator estimate of Corollary 10 from [Du18] to the present statement.
More details can be found in Appendix A of [Du18].

Proof. We only consider the outgoing case τ > 0 and note that it is sufficient to prove
(82) for all τ ≥ τ0 with some fixed τ0 > 0. Let us begin by assuming for simplicity that
y = 0. For δ > 0 we obtain families of wedge-local approximants B(δ)

τ , B⊥(δ)
τ to the

respective Haag–Ruelle operators via Lemma 18. These satisfy B(δ)
τ ∈ A(τV f +Cδ|τ | +

W), with ‖B(δ)
τ −Bτ ( f )‖ ≤ Cδ

M/(1+ |τ |M ), and analogously B⊥(δ)
τ ∈ A(τV f ⊥ +Cδ|τ |+

W⊥), with ‖B⊥(δ)
τ −B⊥τ ( f ⊥)‖ ≤ C ′δM/(1+ |τ |M )with constantsCδ

M ,C ′δM > 0, provided
for all M ∈ N by Lemma 18.

Proceeding towards (82) we obtain from translation covariance that ‖αx (B
(δ)
τ ) −

αx (Bτ ( f ))‖ ≤ C ′δM/(1 + |τ |M ) and αx (B
(δ)
τ ) ∈ A(τV f +Cδ|τ | +W + x). To obtain (82)

by means of the wedge-locality of these two approximating operators we have to choose
δ > 0 and subsequently ρ > 0 sufficiently small so that the localization regions are
space-like separated. These causality considerations can be simplified for large enough
τ by absorbing any finite translations into the growing double cones and rewriting as a
region involving a single growing double cone: Cδτ + x ⊆ Cδτ +Cρτ ⊆ C(δ+ρ)τ . Further
we can write W = Wc + xW , W⊥ = W ′

c + xW⊥ for some xW , xW⊥ ∈ R
d . Choosing

for simplicity ρ = δ and assuming τ > τ0 := (|xW |c +
∣∣xW⊥

∣∣
c)/δ we obtain

Mτ
1 := τV f + Cδτ +W + x ⊆ τV f + C3δτ +Wc, and

Mτ
2 := τV f ⊥ + Cδτ +W⊥ ⊆ τV f ⊥ + C3δτ +W ′

c. (83)

By the ordering assumption we have that V f − V f ⊥ is a compact subset of the open
set Wc. In particular there exists an ε > 0 with V f − V f ⊥ + Cε ⊆Wc. Then for τ > 0
also τV f −τV f ⊥ +Cετ ⊆Wc. Thus we can choose ρ = δ := ε/6 and it then follows that
the two sets Mτ

1 and Mτ
2 are space-like separated for τ > τ0, because for any x1 ∈ Mτ

1 ,
x2 ∈ Mτ

2 we have

x1 − x2 ∈ τ(V f − V f ⊥) + C6δτ +Wc −W ′
c ⊆Wc,

where we used that −W ′
c =Wc and Wc +Wc =Wc contains only space-like vectors.

Wenowobtain from locality that for all τ ≥ τ0 and x ∈ Cρτ wehave [B⊥(δ)
τ , αx (B

(δ)
τ )]

= 0, which implies the uniform commutator estimate by expanding
∥∥∥[B⊥τ ( f ⊥), αx (Bτ ( f ))]

∥∥∥ =
∥∥∥[B⊥τ ( f ⊥)− B⊥(δ)

τ + B⊥(δ)
τ , αx (Bτ ( f )− B(δ)

τ + B(δ)
τ )]

∥∥∥
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≤
∥∥∥[B⊥τ ( f ⊥)− B⊥(δ)

τ , αx (Bτ ( f )− B(δ)
τ + B(δ)

τ )]
∥∥∥

+
∥∥∥[B⊥(δ)

τ , αx (Bτ ( f )− B(δ)
τ )]

∥∥∥ +
∥∥∥[B⊥(δ)

τ , αx (B
(δ)
τ )]

∥∥∥ , (84)

where ‖[B⊥τ ( f ⊥)− B⊥(δ)
τ , αx (Bτ ( f ))]‖ ≤ 2Cδ

N ′C/(1 + |τ |N ′) · (1 + |τ |)s/2 ≤ C ′N τ−N
by estimating the commutator via the two operator norms, using Lemma 18 for its first
and the standard polynomially growing norm estimate for its second argument, and
analogously for the other non-vanishing commutator.

Finally, if y �= 0 we can write by translation-covariance of the operator norm that∥∥∥
[
αy(B

⊥
τ ( f ⊥)), αx (Bτ ( f ))

]∥∥∥ =
∥∥∥
[
B⊥τ ( f ⊥), αx−y(Bτ ( f ))

]∥∥∥ ≤ CN/(1 + |τ |N ),

(85)

for all x − y ∈ Cρτ . We can thus set ρ̃ := ρ/2 to obtain (85) for all x, y ∈ Cρ̃τ , using
that then x − y ∈ Cρτ/2 − Cρτ/2 ⊆ Cρτ . This establishes (82).

Concerning the extensions to adjoints and τ < 0 we note that the commutator es-
timates involving adjoints follow using the same approximation argument, noting that
Lemma 18 also directly yields wedge-local approximants of adjoint operators by the
C∗-property of the operator norm. For τ < 0 the geometric situation in (83) is inverted,
but the same arguments work if the opposite ordering V f ⊥ �W V f holds. ��
Proof of Lemma 17. For the outgoing case, let ρ = ρn > 0 be the minimum over the
constants ρk, j from Lemma 19 for the pairs Bkτ ( fk) and B⊥jτ ( f j ), 1 ≤ k < j ≤ n.

Forn = 1, estimate (80) followsdirectly from the fact that
∥∥�

x1
1

∥∥ := ∥∥αx1(Bτ ( f ))�
∥∥ =

‖U (x1)Bτ ( f )�‖ does not depend on the translation vector x1 due to translation invari-
ance of the norm and the vacuum, neither on τ by construction of the Haag–Ruelle
operators.

For the case n ≥ 2, let �
xn
n (τ ) := αx1(B1τ ( f1)) . . . αxn (Bnτ ( fn))� with xn :=

(x1, . . . , xn) ∈ R
nd . To simplify the notation we will drop the obvious wave packet

dependences and write Bxk
kτ := αxk (Bkτ ( fk)), so that �

xn
n (τ ) = Bx1

1τ . . . Bxn
nτ� and for

later use B⊥xkkτ := αxk (B
⊥
kτ ( fk)). To give an inductive argument we can write using the

swapping property
∥∥∥�

xn
n (τ )

∥∥∥2 = 〈
�, Bxn∗

nτ . . . Bx1∗
1τ Bx1

1τ . . . Bxn
nτ�

〉

=
〈
�, Bxn∗

nτ . . . Bx1∗
1τ Bx1

1τ . . . Bxn−1
n−1,τ B

⊥xn
nτ �

〉

=
〈
�, Bxn∗

nτ B⊥xnnτ Bxn−1∗
n−1,τ . . . Bx1∗

1τ Bx1
1τ . . . Bxn−1

n−1,τ�
〉

+
〈
�, Bxn∗

nτ

[
Bxn−1∗
n−1,τ . . . Bx1∗

1τ Bx1
1τ . . . Bxn−1

n−1,τ , B
⊥xn
nτ

]
�

〉
. (86)

The first term can be bounded using the clustering property of the Haag–Ruelle operators
[Du18, Prop. 8 (vi)], which yields

〈
�, Bxn∗

nτ B⊥xnnτ Bxn−1∗
n−1,τ . . . Bx1∗

1τ Bx1
1τ . . . Bxn−1

n−1,τ�
〉

=
〈
�, Bxn∗

nτ B⊥xnnτ �
〉 〈

�, Bxn−1∗
n−1,τ . . . Bx1∗

1τ Bx1
1τ . . . Bxn−1

n−1,τ�
〉

= ∥∥Bxn
nτ�

∥∥2 ‖�xn−1
n−1 (τ )‖2 ≤ C. (87)
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Here the estimate is obtained uniformly for all x1, . . . , xn ∈ Cρnτ by using that x1, . . . ,
xn−1 ∈ Cρnτ ⊆ Cρn−1τ due to the induction hypothesis, and bounding the first factor as
for n = 1. Note that here we use ρn ≤ ρn−1, which follows directly by the definition

ρn = min
1≤k< j≤n ρk, j ≤ min

1≤k< j≤n−1 ρk, j = ρn−1, (88)

where ρk, j denote the constants from Lemma 19 for the pairs Bkτ ( fk) and B⊥jτ ( f j ),
1 ≤ k < j ≤ n.

Finally, the commutator term from (86) is also seen to be bounded in τ (in fact, rapidly
decreasing), uniformly for x1, . . . , xn ∈ Cρnτ , by means of Lemma 19: we expand the
big commutator in (86) into a sum of terms of vacuum expectation values of operators
of the form

Bxn∗
nτ . . . Bx1∗

1τ Bx1
1τ . . .

[
Bxk
kτ , B

⊥xn
nτ

]
. . . Bxn−1

n−1,τ , or

Bxn∗
nτ . . .

[
Bxk∗
kτ , B⊥xnnτ

]
. . . Bx1∗

1τ Bx1
1τ . . . Bxn−1

n−1,τ . (89)

Each of those terms is now estimated using that
∥∥∥
[
Bxk∗
kτ , B⊥xnnτ

]∥∥∥ and
∥∥∥
[
Bxk
kτ , B

⊥xn
nτ

]∥∥∥
can for 1 ≤ k < n and xk, xn ∈ Cρnτ by definition of ρn be bounded by CM (1 + τ)−M .
Choosing M ∈ N sufficiently large we absorb the growth of the simple norm estimates
‖Bx j∗

jτ ‖ = ‖B
x j
jτ‖ ≤ C j (1 + |τ |s/2) used for the remaining operators with 1 ≤ j ≤ n

in the respective terms of the expansion. Together the desired uniform bound on (86) is
obtained. ��
Proposition 20. Let �1, �2 ∈ �u(H1) be vectors of bounded energy-momentum. Then
for any warping matrix Q ∈ R

d×d their Q-deformed tensor product has the oscillatory
integral representation

�1 ⊗Q �2 = lim
ε→0

∫
ddx ddy

(2π)d
η(εx, εy)e−ix ·yU (x){(U (Qy)�1)⊗�2}, (90)

where η ∈ S (Rd × R
d) such that η(0, 0) = 1.

Proof. First we can infer from Lemma 12 that the limit in (90) exists and is independent
of η within the specified restrictions. We rewrite the expression under the limit on the
right-hand side via the spectral calculus of the energy-momentum operators as

∫
ddx ddy

(2π)d
η(εx, εy)e−ix ·y

∫
dE(p) eip·x

((∫
dE(q) eiq·Qy�1

)
⊗ �2

)

=
∫

dEP (p)dEP1(q)

(
�1 ⊗�2 ·

∫
ddx ddy

(2π)d
η(εx, εy)e−ix ·y+ip·x+iq·Qy

)
.

(91)

Here the Fubini theorem for exchanging the order of integrations applies, where integra-
bility with respect to the product measure follows from the bounded energy-momentum
of �1, �2 and the rapid decay of η. Here P denote the energy-momentum operators on
the full Fock space and P1(�1⊗�2) := (P�1)⊗�2 acts only on the first component.
Let us denote the inner scalar integral from (91) by Iε(p, q). By the uniqueness result
of Lemma 12 we can proceed to concretely choose η(x, y) := e−|x |2e−|y|2e , where |·|e



2380 M. Duell, W. Dybalski

denote the Euclidean norm. Then an elementary calculation (see Proposition 21) shows
that Iε(p, q) −→ e−ip·Qq pointwise for ε → 0, and in addition Iε(p, q) is bounded
uniformly in p, q for small ε > 0. By dominated convergence we obtain that (91) yields
for ε → 0∫

dEP (p) dEP1(q) �1 ⊗�2 · e−ip·Qq = e−iP·QP1�1 ⊗�2 = e−iP2·QP1�1 ⊗�2

= eiP1·QP2�1 ⊗�2 = �1 ⊗Q �2, (92)

where we used that P = P1 + P2 and P1 · QP1 = 0. ��
Proposition 21. For any p, q ∈ R

d and any warping matrix Q ∈ R
d×d we have

lim
ε→0

∫
ddx ddy

(2π)d
e−|εx |2e−|εy|2e e−ix ·y+ip·x+iq·Qy = e−ip·Qq . (93)

Proof. We let ε := ε2 and use anti-symmetry of Q with respect to the Minkowski scalar
product to write
∫

ddx ddy

(2π)d
e−ε|x |2e−ε|y|2e e−ix ·y+ip·x+iq·Qy =

∫
ddx ddy

(2π)d
e−ε|x |2e−ε|y|2e e−ix ·y+ip·x−i(Qq)·y

=: Jdε (p, Qq). (94)

Let us express the Minkowski products in terms of ordinary scalar products involving
the Minkowski metric g. Then we can calculate component-wise by Fubini,

Jdε (p, p′) =
∫

ddx ddy

(2π)d
e−ε|x |2e−ε|y|2e e−ixT gy+ipT gx−ip′T gy =

d−1∏
μ=0

J 1ε (pμ, p′μ), (95)

with

J 1ε (p, p′) :=
∫

dx dy

2π
e−εx2−εy2e−i(xy+px−p′y). (96)

Here we have substituted x = x ′μ := gμνxν . By elementary calculation one obtains

J 1ε (p, p′) = 1√
1 + 4ε2

e
−ipp′−ε(p2+p′2)

1+4ε2
ε↘0→ e−ipp′ (97)

from which the claim follows. ��
Proof of Theorem 11. We consider the outgoing case for a fixedwedgeW . By definition
the linear combinations of ordered product states

�n = �1
1 ⊗ . . .⊗�n

1 , �1
1 �W . . . �W �n

1 , (n ∈ N) (98)

are dense in ��W (H1). Further by Proposition 9 such states can be approximated with
arbitrarily small error by vectors

�̃n = �̃1
1 ⊗ . . .⊗ �̃n

1 = B1τ ( f1)�⊗ . . .⊗ Bnτ ( fn)�

= B1Qτ ( f1)�⊗ . . .⊗ BnQτ ( fn)�, V f1 �W . . . �W V fn ,

(99)
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generated by swappable Haag–Ruelle approximants Bkτ ( fk)� = B⊥kτ ( fk)� = �̃k
1 ∈

H W
1c , which are constructed from regular Ak ∈ A0r (W), A⊥k ∈ A0r (W⊥). Here the

further restriction from swappable states to swappable states generated by regular oper-
ators is used to assure that the warped convolutions are well defined and we have just
seen that the linear combinations of the vectors (99) are also dense in ��W (H1) even
with this additional smoothness requirement. By Lemma 3 (i) it is clear that they yield
the same one-particle vectors BkQτ ( fk)� = B⊥kQτ ( fk)� = �̃k

1 for all 1 ≤ k ≤ n. For
simplicity of notation we will be dropping the tilde for the remainder of the proof.

By definition of the wave operator we now obtain

W
+
Q,W�n = lim

τ→∞ B1Qτ ( f1) . . . BnQτ ( fn)� =W
+
0,W�1

1 ⊗Q . . .⊗Q �n
1 , (100)

where the last equality follows from Lemma 16. By induction we obtain that

�1
1 ⊗Q . . .⊗Q �n

1 = �1
1 ⊗Q (�2

1 ⊗Q . . .⊗Q �n
1 ) = �1

1 ⊗Q SQW (�2
1 ⊗ . . .⊗�n

1 )

= eiP1·QW (P2+...+Pn)�1
1 ⊗ SQW (�2

1 ⊗ . . .⊗�n
1 )

= SQW (�1
1 ⊗�2

1 ⊗ . . .⊗�n
1 ). (101)

Hence the claimed identity holds on a dense subspace and thus by continuity of the wave
operators and SQ on the full domain ��W (H1) of W

+
Q,W . The argument for W

−
Q,W is

analogous. ��

3.3. Scattering data and wedge-transition matrix elements. The two-particle S-matrix
of higher-dimensional deformed or GL-type models was worked out in [GL07,BS08]
for any fixed wedge W . Even if the initial and thus also the deformed model were
Poincaré covariant, these authors observed that the two-particle S-matrix is in fact not
fully Lorentz covariant in higher dimensions d > 1 + 1. In [Du18] it was proposed to
make this observation more precise by specifying the dependence of wave operators and
all related asymptotic data on the localization wedge W of the Haag–Ruelle operators
explicitly. Due to translation covariance of the S-matrix this reduces to a dependence on
a wedge modulo translations, or equivalently, a dependence on a centered wedge.

Definition 22. LetWf ,Wi be centered wedges. Following [Du18] we define S-matrices
of the initial and deformed wQFT model, respectively, as maps between the incoming
ordered Fock space �≺Wi (H1) and the outgoing space ��Wf (H1) by

SWfWi
0,f i := (W+

0,Wf
)∗W−0,Wi

, SWfWi
Q,f i := (W+

Q,Wf
)∗W−Q,Wi

. (102)

Similarly we define wedge-transition maps between two final or two initial states, re-
spectively, as

SW2W1
0,f f := (W+

0,W2
)∗W+

0,W1
, SW2W1

Q,f f := (W+
Q,W2

)∗W+
Q,W1

,

SW2W1
0,i i := (W−0,W2

)∗W−0,W1
, SW2W1

Q,i i := (W−Q,W2
)∗W−Q,W1

, (103)

for any two centered wedges W1,W2.

As a direct consequence of Theorem 11 we obtain similar expressions for the S-
matrices and wedge-transition matrix elements in deformed wedge-local models.
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Corollary 23. LetWf ,Wi,W1,W2 be arbitrary centered wedges. The S-matrices and
wave operators of a BLS-deformed wQFT model can be expressed in terms of the cor-
responding objects of the undeformed model:

(i) SWfWi
Q,f i = (S

�Wf
QWf

)∗SWfWi
0,f i S

≺Wi
QWi

,

(ii) SW2W1
Q,f f = (S

�W2
QW2

)∗SW2W1
0,f f S

�W1
QW1

, and SW2W1
Q,i i = (S

≺W2
QW2

)∗SW2W1
0,i i S

≺W1
QW1

.

Proof. We obtain the expression for the S-matrix (i) from the short computation

S
W f Wi
Q,f i = (W+

Q,Wf
)∗W−Q,Wi

= (W+
0,Wf

S
≺Wf
Q )∗(W−0,Wi

S
�Wi
Q )

= (S
≺Wf
Q )∗(W+

0,Wf
)∗W−0,Wi

S
�Wi
Q

= (S
≺Wf
Q )∗SWfWi

0,f i S
�Wi
Q . (104)

The calculations for the wedge-transition formulas (ii) are analogous. ��
Remark 24. Expressions (i) and (ii) here simplify further by noting that it follows im-
mediately from the definition of SQW and its restrictions S≺W/�W

QW that

(S�W
QW )∗ = S�W−QW = S�W

QW ′ , (105)

where in the last equality the definition of QW was used. This further implies that these
deformation maps are unitary, by writing

(S�W
QW )∗S�W

QW = S�W−QW S�W
QW = S�W−QW+QW = 1, (106)

and analogously S�W
QW (S�W

QW )∗ = 1.

Let us note that we can further identify the scattering data for opposite wedges by
making use of the swapping property. For this consideration it is immaterial whether we
are in the deformed or undeformed model, so we will drop the corresponding indices
from the wave operators. We start with an outgoing scattering state given by

�+
n = lim

τ→∞ B1τ ( f1) . . . Bnτ ( fn)�

=W
+
W (B1τ ( f1)�)⊗ . . .⊗ (Bnτ ( fn)�) ∈W

+
W��W (H1). (107)

By an analogous argument as in (86) and (89) we write

B1τ ( f1) . . . Bnτ ( fn)� = B1τ ( f1) . . . Bn−1τ ( fn−1)B⊥nτ ( fn)�

= B⊥nτ ( fn)B1τ ( f1) . . . Bn−1τ ( fn−1)� + (commutators), (108)

where the commutator terms are rapidly decreasing faster than any polynomial in τ > 0.
Iterating this swapping argument we obtain

�+
n = lim

τ→∞ B⊥nτ ( fn) . . . B⊥1τ ( f1)�

=W
+
W ′(Bnτ ( fn)�)⊗ . . .⊗ (B1τ ( f1)�) ∈W

+
W ′��W ′ (H1). (109)

In the last equality we already used that by swapping B⊥kτ ( fk)� = Bkτ ( fk)� and that

V f1 �W V f2 �W . . . �W V fn ⇐⇒ V fn �W ′ V fn−1 �W ′ . . . �W ′ V f1 (110)
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by the definition of the precursor relation and from the fact that W ′ = −W for any
centered wedge W . Let us therefore define Z : �u(H1) → �u(H1) by its action on
n-particle states,

Z�1
1 ⊗ . . .⊗�n

1 := �n
1 ⊗ . . .⊗�1

1 , (111)

for any n ∈ N and �1
1 , . . . , �

n
1 ∈ H1 and we note that Z is a unitary and self-adjoint

involution. Summarizing these considerations we obtain:

Proposition 25. For any centered wedge W we have as subspaces of �u(H1),

(i) ��W ′ (H1) = �≺W (H1),
(ii) Z��W (H1) = ��W ′ (H1), and analogously Z�≺W (H1) = ��W (H1).

Proposition 26. For any centered wedge W the wave operators associated to comple-
mentary wedges can be identified by

W
+
W =W

+
W ′ Z , W

−
W =W

−
W ′ Z . (112)

This identification appears to take us somewhat away from the localization properties
appearing in the Haag–Ruelle construction. Yet it shows that the scattering matrices
for the two simplest choices Wf = Wi and Wf = W ′

i contain the same scattering
theoretic data. These choices correspond to ones made in [GL07,BS08] for the analysis
of two-particle scattering. In these works asymptotic two-particle states are constructed
following more closely the methods of Haag–Ruelle theory from local QFT. Hence a
mixed localization is used, where

�+
2 = lim

τ→∞ B⊥1τ ( f1)B2τ ( f2)� = lim
τ→∞ B2τ ( f2)B

⊥
1τ ( f1)�, V f2 �W V f1 . (113)

The independence of the operator order is reminiscent of Haag–Ruelle scattering the-
ory for bosonic local QFT. In the general wedge-local scattering theory it is a special
feature appearing for the case of two particles. It was already remarked in [Du18] that
this definition of two-particle scattering states captures the same information as our
analysis restricted to the level of two-particle states. This can be seen by swapping the
corresponding sides,

�+
2 = lim

τ→∞ B⊥1τ ( f1)B⊥2τ ( f2)� = lim
τ→∞ B2τ ( f2)B1τ ( f1)�. (114)

Thereby we have not only illustrated the symmetry of Proposition 26 at the two-
particle level. We also see that the compatibility of our analysis with earlier calcula-
tions from [GL07,BS08] is in fact a corollary of an intermediate step of the proof of
Proposition 26.

4. Asymptotic Completeness of BLS-Deformed Wedge-Local QFT

Given a wedge-local model (A0, α,H ,�), we can now proceed to our second main
objective and study the completeness of asymptotic states

H ±
0,W :=W

±
0,W��W/≺W ,

H ±
Q,W :=W

±
Q,W��W/≺W (115)

in the common Hilbert space H of the initial and BLS-deformed wQFT model. We
will use a notion of asymptotic completeness for wQFT which directly generalizes the
corresponding standard definition from local QFT.
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Definition 27. We say that a wave operator W
±
W of a wQFT model for a centered lo-

calization wedge W is asymptotically complete iff the subspace of velocity-ordered
scattering states

H +
W :=W

+
W��W (H1), or, H −

W :=W
−
W�≺W (H1), (116)

respectively, is equal to the fullHilbert spaceH of thewQFT.We say that awQFTmodel
satisfies the property of ordered asymptotic completeness (more precisely, asymptotic
completeness with respect to velocity-ordered scattering states) iff both W

+
W and W

−
W

are asymptotically complete for any wedge W .

The results of Sect. 3 give an explicit representation of the deformed wave operators
W
±
Q,W in terms of the undeformed wave operators W

±
0,W . This directly yields a general

result regarding the stability of asymptotic completeness of wedge-local theories under
BLS-deformations.

Theorem 28. A wave operator of a deformed wQFT model W
±
Q,W is asymptotically

complete if and only if the wave operator of the underlying “undeformed” model W±0,W
is asymptotically complete.

Proof. By Theorem 11, we have W
+
Q,W = W

+
0,W S�W

QW , and S�W
QW��W (H1) =

��W (H1) by unitarity of S�W
QW (see Remark 24). Hence

W
+
Q,W��W (H1) =W

+
0,W S�W

QW��W (H1) =W
+
0,W��W (H1) (117)

yields the equivalence of ordered asymptotic completeness of deformed and initialmodel
for outgoing states. The argument for the incoming case is analogous. ��

In the following final section we will discuss the application of our results to GL-
type models, which are constructed by applying BLS-deformations to a free field. For
the scattering theoretic analysis of these models we have to work with only wedge-
ordered states, as stated explicitly in (116) and dictated by the scope of the wedge-local
scattering theory. In GL-type models we will see this restriction to wedge-ordered states
is inessential for the particle interpretation and still yields a dense set of scattering states.
Thismay of course be expected on grounds of the bosonic statistics of the underlying free
theory. Let us also note that there are wedge-local models, which do not satisfy ordered
asymptotic completeness at the two-particle level. Examples of such models have been
obtained by applying a von Neumann operator-algebraic free product construction to
the free field [LTU19].

5. Application to Grosse–Lechner Models

In the work of Grosse and Lechner [GL07] an interesting class of wedge-local models
in any space-time dimension d ≥ 1 + 1 is constructed in a wedge-local variant of the
Wightman framework. A closely related class of models is obtained in the operator-
algebraic framework by applying the BLS-deformation construction to the standard
scalar free field [BS08,BLS11]. The scalar field has a canonical wedge-local description
given by the von Neumann algebras

A0(W) := {W ( f ) : f ∈ S (Rd , R), supp f ⊆W}′′ (118)
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generated by the Weyl operators W ( f ) = eiφ( f ), where φ( f ) is the standard free scalar
Wightman field (see e.g. [Dyb17,Dim,IZ]). Local algebras A0(O) are defined analo-
gously, requiring that supp f ⊆ O for bounded open regions O in Minkowski space-
time. The algebras A(W) and A(O) act on the bosonic Fock spaceH = �b(H1) over
the scalar one-particle spaceH1 = L2(Rs), andwewrite�F ∈H for the Fock vacuum.
The net is covariant with respect to the standard second quantized scalar representation
of the proper orthochronous Poincaré group. For any non-vanishing warping matrix
Q ∈ R

d×d of the form (11) we will call the BLS-deformed theory (AQ, α,H ,�F )

a Grosse–Lechner model. Let us now apply our general results from Sects. 3 and 4 to
evaluate the scattering theoretic content of these models and establish their ordered
asymptotic completeness.

It is a well-known fact that in the case of the free field also the conventional local
Haag–Ruelle scattering theory applies (see e.g. [A,Dyb17]). It yields wave operators
W
± : �b(H1)→ H , defined on the bosonic Fock space. For the free model we have

H = �b(H1) and the wave operators are trivial in the sense that W
+ = W

− = 1.9

This also directly implies asymptotic completeness of the free theory in the conventional
sense with respect to the standard Haag–Ruelle scattering theory. That is,W±�b(H1) =
H and in these cases we will say similarly that W

±, respectively, are asymptotically
complete.

For the free field, the present velocity-ordered wedge-local formalism for scattering
theory applies as well. The wedge-local wave operators W

±
0,W can be efficiently deter-

mined from their local counterparts in cases for which the latter exist. For this purpose
we define the embeddings

I�W/≺W :
{

��W/≺W (H1) −→ �b(H1),

�1
1 ⊗ . . .⊗�n

1 �−→ a∗(�1
1 ) . . . a∗(�n

1 )�F =
√
n! ·�1

1 ⊗s . . .⊗s �n
1 ,

(119)

which map wedge-ordered n-particle vectors to the corresponding bosonic symmetrized
tensor product. In terms of the norm on �b(H1) we get

∥∥∥√n! ·�1
1 ⊗s . . .⊗s �n

1

∥∥∥2 = ∑
π∈Sn

n∏
k=1
〈�k

1 , �
π(k)
1 〉 =

n∏
k=1

∥∥∥�k
1

∥∥∥2 . (120)

In the second equality it is used that the one-particle states �k
1 ∈H1 (1 ≤ k ≤ n) with

ordered velocity supports are pairwise orthogonal, so that only the identity permutation
yields a nonzero contribution. Thus I�W/≺W are well defined by linear continuous
extension from (119) and yield isometries on ��W/≺W (H1).

Theorem 29. The wedge-local wave operators of a local quantum field theory with
isolated mass shell are well-defined and can be expressed using local Haag–Ruelle
wave operators W

± : �b(H1)→H as

W
+
W =W

+ I�W , W
−
W =W

− I≺W . (121)

Further, the S-matrix and wedge-transition maps in the case of a local quantum field
theory are given by

SW1W2
f i = (I�W1 )∗Sf i I≺W2 , and, (122)

9 The argument for the two-dimensional case can be extracted from [Le06] Lemma 6.1.1, applied for the
(trivial) special case S = 1.
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SW1W2
f f = (I�W1 )∗ I�W2 , SW1W2

i i = (I≺W1 )∗ I≺W2 , (123)

where Sf i = (W+)∗W− denotes the usual scattering matrix from local Haag–Ruelle
theory.

Proof. It is sufficient to establish (121), from which the other statements follow. The
wedge-transition matrix identities (123) then follow from the Fock structure identities
(W+)∗W+ = 1 = (W−)∗W− of scattering states of the local Haag–Ruelle theory.

We consider the case of the outgoing wave operator. We may restrict to one-particle
vectors of the form �k = Bkτ ( fk)� defined in terms of local operators Ak ∈ A(O)

and regular Klein-Gordon solutions fk for 1 ≤ k ≤ n. In a local QFT model such
vectors yield a dense subset of the one-particle space by standard arguments. We further
assume that the one-particle states (and similarly the wave packets) are velocity ordered
�1 �W �2 �W . . . �W �n . Lastly, these states trivially satisfy the swapping property
with A⊥k := Ak for some overlapping wedge-regionsW ⊃ O,W⊥ ⊃ O. Thus, we have
on one hand by definition of the wedge-local wave operators that

lim
τ→∞ B1τ ( f1) . . . Bnτ ( fn)� =W

+
W�1 ⊗�2 ⊗ . . .⊗�n . (124)

On the other hand, we obtain from standard local Haag–Ruelle theory that

lim
τ→∞ B1τ ( f1) . . . Bnτ ( fn)� =W

+a∗(�1) . . . a∗(�n)�F =W
+ I�W �1 ⊗�2 ⊗ . . .⊗�n .

(125)

Equating we obtain (121) on a total subset and thus by continuity on ��W (H1). The
argument for the incoming case is analogous. ��

Using that the spectrum of the momentum operators is Lebesgue absolutely contin-
uous on the one-particle space, I�W/≺W are in fact surjective. Such continuity clearly
holds in the free example (118). In a general context it is known to follow from locality
and the spectrum condition [BF82, Prop. 2.2], or, from Poincaré covariance [Mai68].

Proposition 30. For a local QFT model the following statements are equivalent:

(i) W
+ is asymptotically complete,

(ii) W
+
W is asymptotically complete for one wedge W ,

(iii) W
+
W are asymptotically complete for all wedges W ,

and analogously for the completeness of incoming wave operators.

Proof. The equivalence of (i) and (ii) for any wedgeW follows from I�W/≺W being a
surjective isometry and (121). AsW was arbitrary, this implies (iii). ��
Corollary 31. The wedge-local wave operators of the free scalar field are given by

W
+
0,W = I�W , W

−
0,W = I≺W , (126)

In particular, the free scalar field satisfies the property of ordered asymptotic complete-
ness.

Theorem 32. The Grosse–Lechner models are asymptotically complete with respect to
velocity-ordered scattering states for any warping matrix Q (as defined in (11)).
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Proof. We consider a GL-model for any fixed warping matrix Q. Theorem 29 shows
that the wedge-local wave operators W

±
0,W of the scalar free field are asymptotically

complete for any wedgeW . By Theorem 28 we obtain ordered asymptotic completeness
of the wave operator W

±
Q,W for any W and, thereby, ordered asymptotic completeness

of the considered GL-model. ��
To conclude these investigations, let us note the explicit n-particle scattering matrix

for the case of the Grosse–Lechner models. We will focus on the two cases of equal or
opposite initial and final wedges, which correspond to the earlier investigations from
[GL07,BS08]. The case Wf = W ′

i can perhaps be regarded as slightly more natural
due to the coincidence of �≺W (H1) = ��W ′ (H1) as subspaces of �u(H1), which is a
consequence of the equivalence of the ordering relations �W ′ and ≺W .

Proposition 33. Let W be a fixed initial wedge. Then for the case of Wf := W ′ we
obtain the Grosse–Lechner S-matrix as unitary operator on �≺W (H1) given by

SW ′W
Q,f i = (S

�W ′
QW ′ )

∗S≺W
QW = (S≺W

QW )2 = S≺W
2QW . (127)

Further we have for any ordered n-particle state �n = �1
1 ⊗ . . . ⊗ �n

1 ∈ �≺W (H1)

that

S≺W
2QW�n =

∏
1≤i< j≤n

e2iPi ·QW Pj �n . (128)

In particular, the Grosse–Lechner S-matrix is non-trivial and factorizing.

This follows directly from Corollary 23 and Theorem 29, together with the triviality
of the scattering matrix of the free field. Further we also used that �W ′ and ≺W are
equivalent, giving (S

�W ′
QW ′ )

∗ = S≺W−QW ′ = S≺W
QW by Remark 24 and the definition of QW .

For the case of equal initial and final wedges we obtain similarly

SWW
Q,f i = (S�W

QW )∗(I�W )∗ I≺W S≺W
QW = S�W−QW ZS≺W

QW = Z(S≺W
QW )2 = ZS≺W

2QW . (129)

We note that the same result is obtained when using Proposition 26 and (127).

6. Conclusions

In this paper we showed stability of ordered asymptotic completeness under BLS-
deformations in wedge-local QFT. We concluded that the Grosse–Lechner model is
interacting and asymptotically complete in any spacetime dimension. We also showed
that this model has a factorizing S-matrix, which is an unusual feature in higher dimen-
sions.

Although we focused onmodels obtained by BLS deformations, our approach should
also apply to wedge-local factorizing models in two dimensions. Even in the cases in
which strict locality is still open, such as the non-linear sigma models [AL17] and
for models with fermions [BC21], our strategy may give asymptotic completeness and
factorization of the S-matrix. We leave detailed analysis of these problems to future
investigations.

Another natural direction is a generalization of our results to theories of massless par-
ticles. TheBLS-deformations remain valid for such theories, but so far neither interaction
nor asymptotic completeness have been studied for d > 1 + 1. Such an investigation
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would require a massless variant of wedge-local scattering theory from [Du18]. It may
be difficult to develop such a theory at the same level of generality as its local coun-
terpart [Bu77], since the decay of correlations in massless wedge-local models may be
very slow. Also the energy bounds [Bu90], which simplify more recent constructions
of massless scattering states [DH15,AD17], are not available for wedge-local theories.
But under some natural assumptions on the decay of correlations massless wedge-local
scattering theory appears to be within reach. It should apply, in particular, to themassless
Grosse–Lechner model.

We mention as an aside, that such a scattering theory could also help to understand
recent computations of infraparticle scattering amplitudes in four-dimensional string-
local models [GRT21]. An apparent breakdown of unitarity of scattering amplitudes
was found in this reference after adapting a formula from a two-dimensional context
[DM21]. This problem may have its roots in our limited understanding of collisions of
massless Wigner particles in string- and wedge-local theories.
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