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Abstract: We prove that poly(t) · n1/D-depth local random quantum circuits with two
qudit nearest-neighbor gates on a D-dimensional lattice with n qudits are approximate
t-designs in various measures. These include the “monomial” measure, meaning that
the monomials of a random circuit from this family have expectation close to the value
that would result from the Haar measure. Previously, the best bound was poly(t) · n
due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for
D = 1. We also improve the “scrambling” and “decoupling” bounds for spatially local
random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits,
2012). One consequence of our result is that assuming the polynomial hierarchy (PH) is
infinite and that certain counting problems are #P-hard “on average”, sampling within
total variation distance from these circuits is hard for classical computers. Previously,
exact sampling from the outputs of even constant-depth quantum circuits was known to
be hard for classical computers under these assumptions. However the standard strategy
for extending this hardness result to approximate sampling requires the quantum circuits
to have a property called “anti-concentration”, meaning roughly that the output has near-
maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our
result improves the required depth for this level of anti-concentration from linear depth
to a sub-linear value, depending on the geometry of the interactions. This is relevant to
a recent experiment by the Google Quantum AI group to perform such a sampling task
with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019;
Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and
confirms their conjecture that O(

√
n) depth suffices for anti-concentration. The proof

is based on a previous construction of t-designs by Brandão et al. (2016), an analysis
of how approximate designs behave under composition, and an extension of the quasi-
orthogonality of permutation operators developed by Brandão et al. (2016). Different
versions of the approximate design condition correspond to different norms, and part
of our contribution is to introduce the norm corresponding to anti-concentration and to
establish equivalence between these various norms for low-depth circuits. For random
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circuits with long-range gates, we use different methods to show that anti-concentration
happens at circuit size O(n ln2 n) corresponding to depth O(ln3 n). We also show a
lower bound of�(n ln n) for the size of such circuit in this case. We also prove that anti-
concentration is possible in depth O(ln n ln ln n) (size O(n ln n ln ln n)) using a different
model.
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1. Introduction

Random unitaries are central resources in quantum information science. They appear in
many applications including algorithms, cryptography, and communication. Moreover,
they are important toy models for random chaotic systems, capturing phenomena like
thermalization or scrambling of quantum information.
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An idealized model of a random unitary is the uniform distribution over the unitary
group, also known as the Haar measure. However, the Haar measure is an unrealistic
model for large systems because the number of random coins and gates needed to gen-
erate an element of the Haar distribution scale exponentially with the size of the system
(i.e. polynomially with dimension, meaning exponentially in the number of qubits or
independent degrees of freedom). To resolve this dilemma, approximate t-designs have
been proposed as physically and computationally realistic alternatives to the Haar mea-
sure. They approximate the behavior of the Haar measure if one only cares about up to
the first t moments.

Several constructions of t-designs have been proposed based on either random
or structured circuits. While structured circuits can in some cases be more efficient
[22,25,48], random quantum circuits have other advantages. They are plausible models
for chaotic random processes in nature, such as scrambling in black holes [17,55], or
the spread of entanglement in condensed matter systems [46,47], growth of quantum
complexity [12], and decoupling [18]. Moreover, they are practical candidates to bench-
mark computational advantage for quantum computation over classical models, since
they seem to capture the power of a generic polynomial-size unitary circuit. Indeed,
the Google quantum AI group has recently run a random unitary circuit on a 53-qubit
superconducting device and has argued that this should be hard to simulate classically
[5,8] (see Fig. 1 for a demonstration of their proposal). Here the random gates are useful
not only for the 2-design property, specifically “anti-concentration”, but also for evading
the sort of structure which would lend itself to easy simulation, such as being made of
Clifford gates.

All previous random circuit based constructions for t-designs required the circuits to
have linear depth. In this paper, we show that certain random circuit models with small
depth are approximate t-designs. We consider two models of random circuits. The first
one is nearest-neighbor local interactions on a D-dimensional lattice. In this model, we
apply random U(d2) gates on neighboring qudits of a D-dimensional lattice in a certain
order.

Depending on the application we want, we can define convergence to the Haar mea-
sure in different ways. For example, for scrambling [17] we measure convergence w.r.t.
the norm EC‖ρS(s)− 1

2|S| ‖21, where ρS(s) is the density matrix ρ(s) reduced to a subset
S of qudits and ρ(s) is the quantum state that results from s steps of the random pro-
cess. But for anti-concentration, which corresponds loosely to a claim that typical circuit
outputs have nearly maximal entropy, we use a norm related to EC

∑
x | 〈x |C |0〉 |4. For

other measures of convergence to the Haar measure see [42] or Sect. 2.4. In general,
these measures are equivalent but moving between them involves factors that are expo-
nentially large in the number of qudits, i.e., if one norm converges to ε the translation
implies that another norm converges to 2O(n)ε. Some of the known size/depth bounds for
designs are of the form O( f (n, t)(n + ln 1/ε)) (e.g. [13]) and in 1-D simple arguments
yield an �(n + ln(1/ε)) lower bound [17]. In this case, replacing ε with 2−O(n)ε will
not change the asymptotic scaling. [13] defined a strong notion of convergence which
implies all the mentioned definitions.

However, in D dimensional lattices the natural lower bound is�(n1/D+ln(1/ε)). Our
main challenge in this work is to show that this depth bound is asymptotically achievable,
and along the way, we need to deal with the fact that we can no longer freely pay norm-
conversion costs of 2O(n). We are able to achieve the desired poly(t)(n1/D + ln(1/ε))
in many operationally relevant norms, but due in part to the difficulty of converting
between norms, we do not establish it in all cases. The asymptotic dependency on t in
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our result for D = 2 is O(t ln t) times the best asymptotic dependency on t for the D = 1
architecture, according to the strong measure defined in [13]. [13] gave a bound of t10.5.
Recently this bound was improved to t5+ot (1) by Haferkamp [31]. The dependency on t
in our result is hence t6+ot (1) ln t .

Approximate unitary designs. We will consider several notions of approximate designs
in this paper. First, we will introduce some notation. A degree-(t, t) monomial in C ∈
U((Cd)⊗n) is degree t in the entries of C and degree t in the entries of C∗. We can
collect all these monomials into a single matrix of dimension d2nt by defining C⊗t,t :=
C⊗t ⊗ C∗⊗t . We say that μ is an exact [unitary] t-design if expectations of all t, t
moments of μ match those of the Haar measure. We can express this succinctly in terms
of the operator

G(t)
μ = E

C∼μ

[
C⊗t ⊗ C∗⊗t ] . (1)

Then μ is an exact t-design iff G(t)
μ = G(t)

Haar. Since G
(t)
Haar is a projector, we sometimes

call G(t)
μ a quasi-projector operator and we will later use the fact that it can sometimes

be shown to be very close to a projector.
Most definitions of approximate designs demand that some norm of G(t)

μ −G(t)
Haar be

small. Three norms that we will consider are based on viewing G(t)
μ as either a vector

of length d4nt , a matrix of dimension d2nt or a quantum operation acting on a space
of dimension dnt . In each case, one can show that the t-design property implies the
t ′-design property for 1 ≤ t ′ ≤ t .

Definition 1 (Monomial definition of t-designs). μ is a monomial-based ε-approximate
t-design if any monomial has expectation within εd−nt of that resulting from the Haar
measure. In other words,

∥
∥
∥vec

[
G(t)

μ

]
− vec

[
G(t)

μ

]∥
∥
∥∞ ≤ ε

dnt
. (2)

vec(A) is a vector consisting of the elements of matrix A (in the computational basis)
and ‖ · ‖∞ refers to the vector �∞ norm.

Themonomial measure is natural when studying anti-concentration, since a sufficient
condition for anti-concentration is that EC | 〈0|C |0〉 |4 is close to the quantity that arises
from the Haar measure, namely 2

2n(2n+1) . This is achieved by [monomial measure] 2-
designs.

If the operator-norm distance between G(t)
μ and G(t)

Haar is small then instead of calling
μ an approximate design we call it a t-tensor product expander [36]. This controls the
rate at which certain nonlinear (i.e. degree-t polynomial) functions of the state converge
to the average value they would have under the Haar measure. We can also measure
the distance between G(t)

μ and G(t)
Haar in the 1-norm (i.e. trace norm) and this notion of

approximate designs has been considered before [4,54], although it does not have direct
operational meaning. We will show poly(t)(n1/D + ln(1/ε))-depth convergence in each
of these measures.

Finally, we can consider G(t)
μ to be a superoperator using the following canonical

map. Define Ch
[∑

i Xi ⊗ Y T
i

]
by Ch

[∑
i Xi ⊗ Y T

i

]
(Z) :=∑

i Xi ZYi . Thus

Ch
[
G(t)

μ

]
(Z) = E

C∼μ

[
C⊗t ZC†⊗t

]
. (3)
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Note that Ch
[
Gμ

]
is completely positive and trace preserving, i.e., a quantum channel.

For superoperators M,N we say that M  N if N − M is a completely positive
(cp) map. Based on this ordering, a strong notion of being an approximate design was
proposed by Andreas Winter and first appeared in [13].

Definition 2 (Strong definition of t-designs). A distribution μ is a strong ε-approximate
t-design if

(1− ε)Ch
[
G(t)

Haar

]
 Ch

[
G(t)

μ

]
 (1 + ε)Ch

[
G(t)

Haar

]
. (4)

Circuit models. The result of [13] constructs t-designs in the strongmeasure (Definition
2) for D = 1 and linear depth, and we generalize this result to construct weak monomial
designs for arbitrary D and O(n1/D) depth. We also show that the same construction
converges to the Haar measure in other norms: diamond, infinity and trace norm. Our
proof techniques do not seem to yield t-designs in the strong measure. We do not even
know whether the construction of “strong” t-designs in sub-linear depth is possible.

The second model we consider is circuits with long-range two-qubit interactions. In
this model, at each step, we pick a pair of qubits uniformly at random and apply a random
U(4) gate on them. This model is the standard one when considering bounded-depth
circuit classes, such as QNC. Physically, it could model chaotic systems with long-
range interactions. Following Oliveira, Dahlsten and Plenio [51] (see also [17,18,34]),
we can map the t = 2 moments of this process onto a simple random walk on the
points {1, 2, . . . , n}. We map this random walk to the classical (and exactly solvable)
Ehrenfest model, meaning a random walk with a linear bias towards the origin. Further
challenges are that this mapping introduces random and heavy-tailed delays and that the
norm used for anti-concentration is exponentially sensitive to some of the probabilities.
However, we are able to show (in Sect. 4) that after O(n ln2 n) rounds of this process
the resulting distribution over the unitary group converges to the Haar measure in the
mentioned norm.

For a distribution p its collision probability is defined as Coll(p) = ∑
x p2x . If

Coll(p) is large (�(1)) then the support of p is concentrated around a constant number
of outcomes, and if it is small (≈ 1/2n) then it is anti-concentrated. The norm that
we consider for anti-concentration is basically the expected collision probability of the
output distribution of a random circuit. The expected collision probability for the Haar
measure is 2

2n+1 and our result shows that a typical circuit of size O(n ln2 n) outputs a

distribution with expected collision probability 2
2n

(
1 + 1

poly(n)

)
. Along with the Paley–

Zygmund anti-concentration inequality this result proves that these circuits have the
following anti-concentration property:

min
x

Pr
C∼μ

[

| 〈x |C |0〉 |2 ≥ 1

2n+1

]

≥ constant. (5)

Here μ is the distribution of random circuits we consider, and x is any n-bit string. This
bound is related to the hardness of classical simulation for random circuits. We further-
more show that sub-logarithmic depth quantum circuits in this model have expected

collision probability 2
2n+1ω(1). The best anti-concentration depth bound we get from

this model is O(ln2 n). However, we are able to construct a natural family of random
circuits with depth O(ln n ln ln n) that are anti-concentrated.
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The organization of this paper. The rest of this introductory section states the basic
results, ideas and implications related to the main results. In particular, in Sect. 1.1 we
explain the connections between our result and the result experiments performed by
groups such as the Google AI group aiming towards demonstrating the superiority of
quantum computing compared with classical computers on specific tasks. In Sect. 1.2,
we describe themodelswe consider in this paper. In Sect. 1.3, we express themain results
of this paper including proof sketches and basic ideas. We then give a brief overview
of the previous works related to this paper in Sect. 1.4 and several open questions in
Sect. 1.5.

The organization of the rest of this paper is as follows. In Sect. 2 we introduce the
preliminary concepts, definitions and tools needed for our proofs. In Sect. 3 we give
detailed proofs about how we get approximate t-designs on D-dimensional lattices. In
Sect. 4 we give detailed proofs related to anti-concentration bounds from circuits with
all-to-all interactions. In Sect. 5 we provide alternative proofs for anti-concentration via
low-depth D-dimensional lattices and in Sect. 6we provide improvements on the existing
scrambling and decoupling bounds. Appendix A gives a proof of Theorem 3 about
the implications of anti-concentration bound we obtain on computational difficulty of
simulating low-depth random quantum circuits. Finally Appendix B gives a background
about the basic properties of Krawtchouk polynomials which we use in Sect. 4.

1.1. Connections with quantum computational supremacy experiments. Outperforming
classical computers, even for an artificial problem such as sampling from the output of
an ideal quantum circuit would be a significant milestone for early quantum comput-
ers which has recently been called “quantum computational supremacy” [35,52]. The
reason to study quantum computational supremacy in its own right (as opposed to gen-
eral quantum algorithms) is that it appears to be a distinctly easier task than full-scale
quantum computing and even various non-universal forms [2,3,8,14,15,29] of quantum
computing can be shown to be hard to simulate classically. For example, the outputs
of constant-depth quantum circuits cannot be simulated exactly by classical computers
unless the PH collapses [56]. In general, families of quantum circuits have this property
if they are universal under postselection, meaning that after measuring all the qubits at
the end of the circuit and producing a string of bits, we condition on the values of some
of these bits and use the other bits for the output.

However, these hardness results are not robust under noise and error in measure-
ments. A central open question in the theory of quantum computational supremacy is
whether simulating these distributions to within constant or 1/ poly(n) variational dis-
tance would still be hard. It is plausible to conjecture that if such a robust hardness
of sampling is true, it would also hold for generic circuits [1,3] (although see [49] for
a counterexample). A standard approach to proving such a robust hardness result for
generic circuits has been to prove that “anti-concentration” holds, and to use this to
relate additive error approximation to average-case relative error approximation; see
e.g. [16]. Here “anti-concentration” means having near-maximal entropy in the output
of a quantum circuit, which implies that any fixed amplitude of a quantum circuit is
likely to be ≥ �(1)

2n . This property implies that the complexity of estimating the ampli-
tudes additively (within ± 1

poly(n)·2n ) is on-average as hard as computing them within
inverse polynomial relative error. This lets us turn an assumption about the average-case
hardness of relative-error approximation of the amplitudes into a hardness result for the
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sampling problems. Approximate t-designs (and even approximate 2-designs) have the
desired “anti-concentration” property.

For experimental verification of quantum computational supremacy we can consider
the following sampling task: let μ be a distribution over random circuits that satisfies

Pr
C∼μ

[

| 〈0|C |0〉 |2 ≥ 1

2n+1

]

≥ 1/8− 1/ poly(n). (6)

(which we call the anti-concentration property). Let Cx be the family of circuits con-
structed by first applying a circuit C ∼ μ and then an X gate to each qubit with
probability 1/2 (and identity with probability 1/2). A similar line of reasoning as in
Bremner-Montanaro-Shepherd (see Theorem 6 and 7 of [16]) implies that

Theorem 3. Fix ε > 0 and 0 < δ < 1/8. Let μ be a 1
poly(n)

-approximate 2-design.
If there exists a BPP machine which takes C ∼ μ as input and for at least 1 − δ

fraction of such inputs outputs a probability distribution that is within ε total variation
distance from the probability distribution px = | 〈x |C |0〉 |2, then there exists anFBPPNP

algorithm that succeeds with probability 1−δ and computes the value | 〈0|C ′|0〉 |2 within
multiplicative error 2(ε+1/poly(n))

δ
for 1/8− 1

poly(n)
fraction of circuits C ′ ∼ Cx .

This theorem is proved in Appendix A. If we further conjecture the PH is infinite
and that amplitudes of the random circuits in Theorem 3 are #P-hard to approximate
on average, then this implies that classical computers cannot efficiently sample from
any distribution close to the ones generated by these circuits. At the moment, it is only
known that nearly exact computation of these amplitudes is hard for #P [10,44,45]. It
is an open question whether average-case hardness for the approximation task remains
#P-hard.

The linear to sub-linear improvement of the depth required for anti-concentration
provided in this paper is likely to be significant for near-term quantum computers that
will be constrained both in terms of the number of qubits (n) and noise rate per gate
(δ). Due to the constraints in the number of qubits (say 50-100), quantum computational
supremacy will only be possible without the overhead of error correction, since even
the most efficient known schemes for fault-tolerant quantum computation reduce the
number of qubits by more than a factor of two [21]. Thus a quantum circuit with S gates
will have an expected Sδ errors. Recent work due to Yung and Gao [57] and the Google
group [9] states that noisy random quantum circuits with O(ln n) random errors output
distributions that are nearly uniform, and thus are trivially classically simulable. Thus
S can be at most ln(n)/δ. In proposed near-term quantum devices [6,8,26,50] we can
expect n ∼ 102 and δ ∼ 10−2. Thus the S = O(n ln2 n) for long-range interactions or
S = O(n

√
n) bound for 2-D lattices from our work is much closer to being practical

than the previous S = O(n2). (This assumes that the constants are reasonable. We have
not made an effort to calculate them rigorously but for the case of long-range interactions
we do present a heuristic that suggests that in fact ≈ 5

6n ln n gates are necessary and
sufficient.)

1.2. Ourmodels. Weconsider twomodels of randomquantumcircuits. Thefirst involves
nearest-neighbor local interactions on a D-dimensional lattice and the second involves
long-range random two-qubit gates. The order of gates in the first model has some
structure but in the second model it is chosen at random. Hence, we can view the second
model as the natural dynamics of an n-qubit system, connected as a complete graph.
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Fig. 1. The architecture proposed by the quantum AI group at Google to demonstrate quantum supremacy
consists of a 2D lattice of superconducting qubits. This figure depicts two illustrative timesteps in this proposal.
At each timestep, 2-qubit gates (blue) are applied across some pairs of neighboring qubits

We first define the following random circuit model for D = 1 which was also
considered in [13]:

Definition 4 (Random circuits on one-dimensional lattices). μlattice,n
1,s is the distribution

over unitary circuits resulting from the following random process.

For j = 1 : s % for t-designs, view s as poly(t)n

• Apply independent random gates from U(d2) on qudits (1, 2), (3, 4), . . . ,
(n − 1, n).
• Apply independent random gates from U(d2) on qudits (2, 3), (4, 5), . . . ,
(n − 2, n − 1).

This definition assumes that n is even but we modify it in the obvious way when n
is odd. Another modification which would not change our results would be to put the
qudits on a ring so that sites n and 1 are connected.

Building on this, we define the following distribution of random circuits on a two-
dimensional lattice.

Definition 5 (Randomcircuits on two-dimensional lattices).Consider a two-dimensional
lattice with n qudits. Let rα,i be the ith row of the lattice in direction α ∈ {1, 2}, for
1 ≤ i ≤ √

n. For each α ∈ {1, 2} let SampleAllRows(α) denote the following proce-
dure (see Fig. 2):

For each i ∈ [√n], sample a random circuit from μ
lattice,

√
n

1,s and apply it to rα,i .

Now define μ
lattice,n
2,c,s to be the distribution over unitary circuits resulting from the

following random process:

• Repeat these steps c times: apply SampleAllRows(1) and then SampleAll-
Rows(2).
• Apply SampleAllRows(1) a final time.

This distribution has depth (2c + 1)2s and is related but not identical to the Google
AI group’s experiment [5,8], see Fig. 1. For our results on t-designs, we will take c to be



Approximate Unitary t-Designs by Short Random Quantum Circuits 1539

poly(t) and s to be poly(t) ·√n. We believe that our result can be extended to any natural
family of circuits with nearest-neighbor interactions. We also assume for convenience
that

√
n is an integer, but believe that this assumption is not fundamentally necessary.

Next, we give a recursive definition for our random circuits model on arbitrary D-
dimensional lattices.We view a D-dimensional lattice as a collection of n1/D sub-lattices
of size n1−1/D , labeled as ξ1, . . . , ξn1−1/D . We label the rows of the lattice in the D-th
direction by r1, . . . , rn1/D .

Definition 6 (Random circuits on D-dimensional lattices). μ
lattice,n
D,c,s is the distribution

resulting from the following random process.

1. Repeat these steps c times.
(a) For each i ∈ [n1/D],

• Sample a random circuit from μ
lattice,n1−1/D

D−1,c,s and apply it to ξi .

(b) For each j ∈ [n1−1/D]
• Sample a random circuit from μ

lattice,n1/D

1,s and apply it to r j .

2. For each i ∈ [n1/D],
(a) Sample a random circuit from μ

lattice,n1−1/D

D−1,c,s and apply it to ξi .

Next, we define the model with long-range interactions on a complete graph.

Definition 7 (Random circuit models on complete graphs). μCG
s is the distribution over

unitary circuits resulting from the following random process.

Repeat this step s times % view s as O(n ln2 n).

• Pick a random pair of qudits (i, j) and apply a random U(d2) gate between
them.

The size of the circuits in this ensemble is s.

1.3. Our results. Our first result is the following.

Theorem 8. Let s, c, n > 0 be positive integers with μ
lattice,n
2,c,s defined as in Definition 5.

1. s= poly(t)
(√

n+ ln 1
δ

)
, c=O

(
t ln t+ ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
2,c,s

− G(t)
Haar

]∥
∥
∥
∥∞

≤ δ
dnt .

2. s= poly(t)
(√

n+ ln 1
δ

)
, c=O

(
t ln t+ ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥Ch

[

G(t)

μ
lattice,n
2,c,s

−G(t)
Haar

]∥
∥
∥
∥�

≤δ.

3. s = poly(t)
(√

n + ln 1
δ

)
, c = O

(
t ln t + ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥
1
≤ δ.

4.

∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥∞

≤ c · √n · e−s/ poly(t) + 1
dO(c

√
n)
.

The three norms in the above theorem refer to the vector �∞ norm, the superoperator
diamond norm ‖ · ‖� (see Sect. 2.1) and the operator S∞ norm, also known simply as the
operator norm.



1540 A. W. Harrow, S. Mehraban

(1) (2)

(3) (4)

Fig. 2. The random circuit model in definition 5. Each black circle is a qudit and each blue link is a random
SU(d2) gate. The model does O(

√
n poly(t)) rounds alternating between applying (1) and (2). Then for

O(
√
n poly(t)) rounds it alternates between (3) and then (4). This entire loop is then repeated O(poly(t))

times

Proof sketch for part 1. We first give a brief overview of the proof in [13] and explain
why their construction requires a circuit to have linear depth. Let Gi,i+1 be the pro-
jector operator for a random two-qudit gate applied to qudits i and i + 1, and let
G = 1

n−1

∑
i Gi,i+1. Therefore Gs = Gs is the quasi-projector corresponding to a

1-D random circuit with size s. [13] observed that G − GHaar corresponds to a certain
local Hamiltonian and ε = 1− ‖G −GHaar‖∞ is its spectral gap. The central technical
result of [13] is the bound ε ≥ 1

n·poly(t) . As a result, ‖Gs − GHaar‖∞ = (1− 1
n·poly(t) )

s .

In general G − GHaar has rank eO(n), and in order to construct a strong approximate
t-design (Definition 2), one needs to apply a sequence of expensive changes of norm that
lose factors polynomial in the overall dimension of G, i.e., eO(nt). Thereby in order to
compensate for such exponentially large factors one needs to choose s = O(n2 ·poly(t)),
meaning depth growing linearly with n. Brown and Fawzi [17] furthermore observed
that if G is the projector corresponding to one step of a random circuit on a 2-D lattice,
the spectral gap still remains 1 − ‖G − GHaar‖∞ = O

( 1
n·poly(t)

)
, and using the same

proof strategy one needs linear depth.
The new ingredient we contribute is to show that if s = O(

√
n) one can replace

G(t)

μ
lattice,n
2,1,s

with a certain quasi-projector G ′, such that

(1) G ′ − GHaar has rank t !O(
√
n) and

(2) ‖G ′ − GHaar‖∞ ≈ 1/e�(
√
n),

(3) G(t)

μ
lattice,n
2,1,s

≈ G ′ in various norms.

We first use (1) to relate the monomials definition of t-designs to the infinity norm
and then use (2) to bound the infinity norm
∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
2,c,s

]

− vec
[
G(t)

Haar

]∥∥
∥
∥∞

≈ t !O(
√
n)
∥
∥
∥G ′c − G(t)

Haar

∥
∥
∥∞ · t !

dnt
≈ t !O(

√
n)

e�(c·√n)
· 1

dnt
.

(7)
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For c = t ln t the error bound is 1/e�(
√
n) 1

dnt . As a result using (3)
∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
2,c,s

]

− vec
[
G(t)

Haar

]∥∥
∥
∥∞

≈
∥
∥
∥vec

[
G ′c]− vec

[
G(t)

Haar

]∥
∥
∥∞ ≈ 1/e�(

√
n) · 1

dnt
.

(8)

This step requires a certain change of norm for which we only have to pay a factor like
eO(

√
n), which we justify by bounding the ranks of the right intermediate operators. The

factor of 1/dnt comes from the fact that theHaarmeasure itself hasmonomial expectation
values on this order (in fact as large as t !/dnt but we suppressing the t-dependence in
this proof sketch.)

We now briefly describe the construction of G ′. Let GR (and GC ) be the projector
operators corresponding to applying a Haar unitary to each row (and column) inde-
pendently. Then G ′ = GRGC . G ′ has rank t !O(

√
n) because GR and GC are each

tensor products of
√
n Haar projectors each with rank t !. Let VR , VC , and VHaar be

respectively the subspaces that GR , GC and GHaar project onto. In order to prove (1) in
Sect. 3.6.1 we first use the fact that our circuits are computationally universal to argue
that VC ∩ VR = VHaar. We then prove that the angle between VR ∩ V⊥

Haar and VC ∩ V⊥
Haar

is very close to π/2, i.e.,≈ π/2± 1
d
√
n . This implies that GCGR = GHaar + P , where P

is a small matrix in the sense that ‖P‖∞ ≈ 1/d
√
n . Choosing c = poly(t)we obtain (1).

To show (2) it is not hard to see that the rank of G ′ −GHaar is indeed eO(
√
n). For (3) we

use the construction of t-designs from [13]. In particular, our random circuits model first
applies an O(

√
n) depth circuit to each row and then an O(

√
n) depth circuit to each

column and repeats this for poly(t) rounds. The result [13] implies that each of these
rounds is effectively the same as applying a strong approximate t-design to the rows or
columns of the lattice. We then analyze how these designs behave under composition in
various norms and prove (3). ��

Our second result generalizes Theorem 8 to arbitrary dimensions.

Theorem 9. There exists a value δ = 1/d�(n1/D) such that for some large enough c
depending on D and t:

1. s > c · n1/D �⇒
∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
D,c,s

− G(t)
Haar

]∥
∥
∥
∥∞

≤ δ
dnt .

2. s > c · n1/D �⇒
∥
∥
∥
∥Ch

[

G(t)

μ
lattice,n
D,c,s

− G(t)
Haar

]∥
∥
∥
∥�

≤ δ.

3. s > c · n1/D �⇒
∥
∥
∥
∥G

(t)

μ
lattice,n
D,c,s

− G(t)
Haar

∥
∥
∥
∥∞

≤ δ.

4. s > c · n1/D �⇒
∥
∥
∥
∥G

(t)

μ
lattice,n
D,c,s

− G(t)
Haar

∥
∥
∥
∥
1
≤ δ.

In order to understand the implication of this result for anti-concentration, let’s first
define

Definition 10 (Anti-concentration). We say a family of circuitsμ satisfy the (α, β) anti-
concentration property if for any x ∈ {0, 1}n

Pr
U∼μ

[
| 〈x |U |0〉 |2 ≥ α

2n

]
≥ β (9)
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As mentioned before, unitary 2-designs imply strong anti-concentration bound. In
particular

Theorem 11. Let μ be a an ε-approximate 2-design in the monomial measure. Then μ

satisfies the (α, β) anti-concentration property for α = δ(1− ε), β = (1−δ)2(1−ε)2

2(1+ε)
and

0 ≤ δ ≤ 1.

Proof. (See Appendix A and also Theorem 5 of [32]). The proof is based on the Paley–
Zigmond anti-concentration inequality: for a non-negative random variable X and δ > 0
we have

Pr [X ≥ δ · EX ] ≥ (1− δ)2
E[X ]2
E[X2] . (10)

��
We remark that based on the result of [24], while sufficient, the 2-design property

is not necessary for anti-concentration. In Sect. 5 we give an alternative proof for anti-

concentration in O(D ·n 1
D ) depth based on different ideas. The method directly implies

anti-concentration and not the approximate 2-design property.
For these spatially local circuits we also improve on some bounds in [17] and [18]

about scrambling and decoupling, removing polylogarithmic factors. Here we give an
informal statement of the result with full details and definitions found in Sect. 6.

Theorem 12 (Informal). Random quantum circuits acting on D-dimensional lattices
composed of n qubits are scramblers and decoupler in the sense of [17] and [18] after
O(D · n1/D) number of steps.

Our last result concerns the fully connected model. If s = O(n ln2 n) and d = 2 then
μCG
s satisfies the anti-concentration criterion according to Definition 10 for constant α

and β, i.e., (5). We phrase our result in terms of the expected “collision probability” of
the output distribution of C ∼ μCG

s from which a bound similar to the one in theorem
11 will follow using the Paley–Zygmond inequality (10). In particular, ifC is a quantum
circuit on n qubits, starting from |0n〉 the collision probability is

Coll(C) :=
∑

x∈{0,1}n
| 〈x |C |0〉 |4. (11)

For the Haar measure EC∼HaarColl(C) = 2
2n+1 , and for the uniform distribution this

value is 1/2n . In contrast, a depth-1 random circuit has expected collision probability

(

√
2
5 )

n , which is exponentially larger than what we expect from the Haar measure.

Theorem 13. There exists a c such that when s > cn ln2 n,

E
C∼μCG

s

Coll(C) ≤ 29

2n
. (12)

Moreover if t ≤ 1
3c′ n ln n for some large enough c′, then

E
C∼μCG

s

Coll(C) ≥ 1.6n
1−1/c′

2n
. (13)



Approximate Unitary t-Designs by Short Random Quantum Circuits 1543

Proof Sketch. For the upper bound, we translate the convergence time of the expected
collision probability to themixing time of a certain classicalMarkov chain (whichwe call
X0, X1, . . .). This Markov chain has also been considered in previous work [18,34,51].
Part of our contribution is to analyze this Markov chain in a new norm. The Markov
chain has n sites labeled as 1, . . . , n, and at each site x it will move only to x − 1, x
or x + 1. Such chains are known as “birth and death” chains, and in our case it results
from representing the state of the system by a Pauli operator and then taking x to be the
Hamming weight of that Pauli operator. It is known [51] that the probability of moving
to site x + 1 is≈ 6

5
x(n−x)

n2
and the probability of moving to site x − 1 is≈ 2

5
x(x−1)

n2
. The

major difficulty in proving mixing for this Markov chain is that the norm which we have
to prove mixing in is exponentially sensitive to small fluctuations (measured in either
the 1-norm or the 2-norm). Indeed, given starting condition

Pr[X0 = k] =
(n
k

)

2n − 1
. (14)

we would like to show that

E
C
[Coll(C)] ≈

n∑

k=1

Pr [Xt = k]

3k
, (15)

is ≤ O(2−n). We can think of (15) as a weighted 1-norm on probability distributions.
Our proof will compute the distribution of Xt for t = O(n ln2 n) nearly exactly.

One distinctive feature of this chain is that when k/n � 1, the probability of moving is
O(k/n) and the chain is strongly biased to move towards the right. When k/n reaches
O(n), the chain becomes more like the standard discrete Ehrenfest chain, which is a
random walk with a linear bias towards (in this case) k = 3

4n. Thus the small-k region
needs to be handled separately. This is especially true for anti-concentration thanks to
the 1/3k term in (15), so that even a small probability of waiting for a long time in this
region can have a large effect on the collision probability.

The approach of [18,27,34] has been to relate the original Markov chain to an “accel-
erated” chain which is conditioned on moving at each step. The status of the original
chain can be recovered from the accelerated chain by adding a geometrically distributed
“wait time” at each step. Then standard tools from the analysis of Markov chains, such
as comparison theorems and log-Sobolev inequalities, can be used to bound the conver-
gence rate of the accelerated chain. Finally, it can be related back to the original chain
by arguing that the accelerated chain is unlikely to spend too long on small values of
k, allowing us to bound the wait time. For our purposes, this process does not produce
sharp enough bounds, due to the heavy-tailed wait times combined with fairly weak
bounds on how quickly the accelerated chain converges and leaves the small-k region.

We will sharpen this approach by incompletely accelerating; i.e., we will couple the
original chain to a chain thatmoveswith a carefully chosen (but always�(1)) probability.
In particular, wewill introduce a chain where the probabilities of moving from x to x−1,
x or x + 1 are each affine functions of x . In fact our new “accelerated” chain is only
accelerated for x < 5

6n and is actually more likely to stand still for x ≥ 5
6n. This will

allow us to exactly solve for the probability distribution of the accelerated chain after
any number of steps, using a method of Kac to relate this distribution to the solution of
a differential equation. Our solution can be expressed simply in terms of Krawtchouk
polynomials, which have appeared in other exact solutions to random processes on the
hypercube. We relate this back to the original chain with careful estimates of the mean
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and large-deviation properties of the wait time. This ends up showing only that the
collision probability is small for t in some interval [t1, t2], and to show that it is small for
a specific time, we need to prove that the collision probability decreases monotonically
when we start in the state |0n〉. A further subtlety is that (15) technically only applies
when all qubits have been hit by gates and we need to extend this analysis to include the
non-negligible probability that some qubits have never been acted on by a gate.

Because previous work achieved quantitatively less sharp bounds, they could omit
some of these steps. For example, [27,34] used O(n2) gates, which meant that the prob-
ability of most bad events was exponentially small. By contrast, in depth O(n ln2(n)),
there is probability n−O(ln n) of missing at least one qubit and so we cannot afford to
let this be an additive correction to our target collision probability of constant · 2−n .
Likewise, [18] used only O(n ln2(n)) gates but achieved a collision probability of 2εn−n

for small constant ε, which allowed them to use a simpler version of the accelerated
chain whose convergence they bounded using generic tools from the theory of Markov
chains.

For the lower bound we just consider the event that the initial Hamming weight
does not change throughout the process. The initial state with Hamming weight k has

probability mass Pr[X0 = k] = (nk)
2n−1 . Starting with Hamming weight k, the probability

of not moving in each step is e−O(k/n), so if t = cn ln n for c � 1 then we have
Pr[Xt = k|X0 = k] ≥ e−O(kt/n). Hence

E
C∼μt

Coll(C) ≥
n∑

k=1

(n
k

)

2n − 1

Pr[Xt = k|X0 = k]
3k

≥
n∑

k=1

(n
k

)

2n − 1

e−O(kt/n)

3k

≈ 1

2n
(1 + e−3t/n)n ≥ 2n

1−O(1)

2n
(16)

��
Anatural question iswhether there is a common generalization of our Theorems 9 and

13. In physics, the D → ∞ limit is often considered a good proxy for the fully connected
model. This raises the question of whether we needed Theorem 13 to handle the fully
connected case, or whether it would be enough to use Theorem 9 in the large D limit.
However, Theorem 9 works only for D = O(ln n/ ln ln n), and the best depth bound we
can get from this theorem is eO(ln n/ ln ln n), which is far above the O(ln2(n)) achievable
by Theorem 9. However, in Sect. 5 we give an alternative proof for anti-concentration of
outputs via circuits on D-dimensional circuits with t = 2 and D = O(ln n). Using that
approach we can make the depth as small as O(ln n ln ln n). We conjecture that O(ln n)

depth should also possible.
In order to establish rigorous bounds, our results involve some inequalities that are

not always tight. As a result, the upper bound on collision probability in Theorem 13 has
a factor of 29 rather than the 2+o(1) that we would expect and the bound on the number
of gates required may be too high by a factor of ln(n). Since determining the precise
number of gates needed for anti-concentration may have utility in near-term quantum
hardware, we also undertake a heuristic analysis of what depth seems to be required to
achieve anti-concentration.Herewe ignore the possibility of large fluctuations in thewait
time, for example, and simply set it equal to its expected value. We also freely make the
continuum approximation for the biased random walk that ignores wait time, obtaining
the Ornstein–Uhlenbeck process. The resulting analysis (found in Sect. 4.6) suggests
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that 5
6n ln n + o(n ln n) gates are needed to achieve anti-concentration comparable to the

Haar measure.
This result can also be useful for understanding the near-term power of certain vari-

ational quantum algorithms, such as VQE and QAOA. [20,43] show that when a gate
sequence is drawn from a 2-design, the gradients used for optimizing VQE and other
algorithms become exponentially small. This is called the “barren plateau” phenomenon.
Our result would suggest that this occurs in 2-D circuits once the depth is � √

n.

1.4. Previous work. The time evolution of the 2nd moments of random quantum cir-
cuits was first studied by Oliveira, Dahlsten and Plenio [51], who investigated their
entanglement properties. This was extended by [27,34] to show that after linear depth,
arndom circuits on the complete graph yield approximate 2-designs. In [13] Brandão-
Harrow-Horodecki (BHH) extended this result and showed that for a 1D-lattice after
depth t10.5 ·O(n+ln 1

ε
) these random quantum circuits become ε-approximate t-designs.

This result was subsequently improved to t5+ot (1)O(n + ln 1
ε
) by Haferkamp [31]. All of

these results (except [51]) directly imply anti-concentration after the mentioned depths.
The construction of t-designs in [13] is in a stronger measure than the one in HL [34].
The gap of the second-moment operator was calculated exactly for D = 1 and fully
connected circuits by Žnidarič [58] and a heuristic estimate for the t th moment operator
was given by Brown and Viola for fully connected circuits [19].

In [17,18] Brown and Fawzi considered “scrambling” and “decoupling” with random
quantum circuits. In particular, they showed for a D-dimensional lattice scrambling
occurs in depth O(n1/D polylog(n)), and for complete graphs, they showed that after
polylogarithmic depth these circuits demonstrate both decoupling and scrambling. For
the case of D-dimensional lattices they showed that for the Markov chain K , after depth
n1/D polylog(n), a string of Hamming weight 1 gets mapped to a string with linear
Hamming weight with probability 1− 1/ poly(n). While this result is related to ours, it
does not seem to yield the results we need e.g. for anti-concentration, due to the powers
of Hilbert space dimension that are lost when changing norms.

In [46,47] Nahum, Ruhman, Vijay and Haah considered operator spreading for ran-
dom quantum circuits on D-dimensional lattices. They considered the casewhen a single
Pauli operator starts from a certain point on the lattice and they analyze the probability
that after a certain time a non-identity Pauli operator appears at an arbitrary point on the
lattice. For D = 1 they showed that this probability function satisfies a biased diffusion
equation. Their result in this case is exact. For D = 2 they explained, both numeri-
cally and theoretically, that this probability function spreads as an almost circular wave
whose front satisfies the one dimensional Kardar-Parisi-Zhang equation. They moreover
explained: 1) the bulk of the occupied region is in equilibrium, 2) fluctuations appear at
the boundary of this region with ∼ t1/3, and 3) the area of the occupied region grows
like t2, where t is the depth of the circuit. As far as we understand this result does not
directly lead to the construction of t-designs and rigorous bounds on the quality of the
approximations made in that paper are not known.

If we assume that qudits have infinite local dimension (d → ∞) then the evolution
of Pauli strings on a 2-D lattice is closely related to Eden’s model [28]. Here, Eden has
found certain explicit solutions. However, apart from the d → ∞ limit, his model differs
from ours also in that his considers only starting with a single occupied site and running
for a time much less than the graph diameter (or equivalently, considering an infinitely
large 2-D lattice), while we consider the initial distribution obtained by starting in the
|0n〉 state.
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After the first preprint version of this paper was posted online, [24] improved on
our results in several ways. Unlike what we expected, they proved that random quantum
circuits acting on linear chains or complete graphs anti-concentrated after depth�(ln n).
It is left as an important open question whether the same bound holds for D = 2, 3, . . ..
They also proved one of the conjectures of this paper that the constant factor for the
depth bound for the complete graph model is 5/6. The initial presentation of this result
had a mistake in the heuristic reasoning and predicted the constant factor to be 5/3. This
was pointed out and corrected in [24].

1.5. Open questions.

1. Is it possible to construct “strong” t-designs (Definition 2) using sub-linear depth
random circuits? If we can show that the off-diagonal moments (see Definition 36)
of the distribution, which have expectation zero according to the Haar measure,
become smaller than 1/d3nt in sub-linear depth, then our construction of monomial
designs implies the construction of strong designs. On the other hand, we cannot rule
out the possibility that strong designs require linear depth.

2. How large are the constant factors in bounds reported in this paper? Based on a
heuristic argument in Sect. 4.6 for the complete graph architecture we conjecture
that such random circuits of size s = 5

6n(ln n + ε) are O(ε)-approximate 2-designs.
See Conjecture 1 for a precise conjectured bound for obtaining 2-designs. In work
appearing after the first version of our paper, Ref. [24] proved this conjecture for
anti-concentration. Our result had achieved an upper-bound of O(n ln2 n).

3. We believe our dependence on n is essentially optimal. But our depth scales with t
as tα for some α � 5 that is almost certainly not optimal. At the moment the best
lower bound is �(t ln n) depth for any circuit, or �(n1/D) in D dimensions. Indeed,
very recently [37] provided strong analytical evidence that for the one-dimensional
architecture, α = 1 for D = 1. The argument, however, contains uncontrolled
approximations and is not known to extend even to D = 2, although such an extension
seemsplausible. Intriguingly, also for constantn andwith a different gatemodel, some
results are known that are completely independent of t [11].

4. If we pick an arbitrary graph and apply random gates on the edges of this graph, after
what depth do these circuits become t-designs? We conjecture that if the graph has
large expansion and diameter l, then the answer is O(l). However, if the graph has a
tight bottleneck (like a binary tree), then even though the graph has small diameter,
we suspect that certain measures of t-designs (including the monomial measure)
require linear depth. Ideally, the t-design time for any graph could be related to other
properties of the graph such as mixing time, cover time, etc.

5. Can we prove a comparison lemma for random circuits, i.e., can we show that if two
random circuits are close to each other, then they become t-designs after roughly the
same amount of time? Such comparison lemma may imply that other natural fami-
lies of low-depth circuits are approximate t-designs. A related question is whether
deleting random gates from a circuit family can ever speed up convergence to being a
t-design. Such a bound has been called a “censoring” inequality in the Markov-chain
literature.

6. Our results do not say much about the actual constants that appear in the asymptotic
bounds for the required size for anti-concentration. We conjecture the leading term
in the anti-concentration time for random circuits on complete graphs is 5

6n ln n.
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For the D-dimensional case our bounds inherit constant factors from [13]. Simple
numerical simulation and also the analysis of [8,46,47] suggest that the constant
should be ≈ 1.

7. For the case of D-dimensional circuits, our result does not saymuch about the dynam-
ics of the distribution when depth is� n1/D . Such a result may explain the dynamics
of entanglement in random circuits. [46,47] consider this problem for the case when
a single Pauli operator starts at the middle of the lattice; however, their result does
not apply to arbitrary initial operators.

8. The best anti-concentration lower bound we are able to prove is �(ln n) For D-
dimensional lattices one would expect a lower-bound of �(n1/D) based on the fol-
lowing intuition for circuits of depth s < n1/D: For s � n1/D , we expect any two
non-overlapping clusters of sD qubits will be close to Haar random. Hence, a crude
model for such circuits would be n/sD copies of Haar-random unitaries each on sD

qubits. In this case we would expect the collision probability to be ≈ 2n/sD

2n . Very
interestingly, the recent result [24] refutes this intuition for D = 1 and showed an
upper bound of O(ln n) for the depth at which anti-concentration is achieved. It
seems plausible that at D = 2, 3, . . . we would also have anti-concentration in depth
O(ln n) since it holds both for D = 1 and for fully connected circuits.

2. Preliminaries

2.1. Basic definitions. We need the following norms:

Definition 14. For a superoperator E the diamond norm [40] is defined as ‖E‖� :=
supd ‖E⊗idd‖1→1,where for a superoperator A the 1 → 1norm is defined as‖A‖1→1 :=
supX �=0

‖A(X)‖1‖X‖1 .

A matrix is called positive semi-definite (psd) if it is Hermitian and has all non-
negative eigenvalues. A superoperator A is called completely positive (cp) if for any
d ≥ 0, A ⊗ idd maps psd matrices to psd matrices. A superoperator is called trace-
preserving completely positive (tpcp) if it maps if it preserves the trace and is furthermore
cp.

Let S be a set of qudits, then

Definition 15. Haar(S) is the Haar measure on U ((Cd)⊗|S|). We refer to Haar(i, j) as
the two qudit Haar measure on qudits indexed by i and j and also if m is an integer, the
notation Haar(m) means Haar measure on m qudits.

We now define expected monomials, moment superoperators and quasi-projectors
for a distribution μ over the unitary group:

Definition 16. Let n, t > 0 be positive integers and μ be any distribution over n-qudit
unitary group U((Cd)⊗n). Then G(t)

μ := EC∼μ

[
C⊗t,t

]
is the quasi-projector of μ. Here

C⊗t,t = C⊗t ⊗ C∗⊗t . Also G(t)
(i, j) = G(t)

Haar(i, j). Using this Definition we will also use
the following quantities:

1. Let i1, j1, . . . , it , jt , k1, l1, . . . , kt , lt ∈ [d]n be any 2t-tuple of words ∈ [d]n . Then
the i1, . . . , lt monomial is the expected value of a balanced monomial of μ defined
as

E
C∼μ

[
Ci1, j1 . . .Cit , jt C

∗
k1,l1 . . .C∗

kt lt

] = 〈i1, . . . , jt |G(t)
μ |k1, . . . , lt 〉 (17)

Ca,b is the a, b entry of the unitary matrix C .



1548 A. W. Harrow, S. Mehraban

2. Let adX (·) := X (·)X†. Then Ch
[
G(t)

μ

]
:= EC∼μ

[
adC⊗t

]
is the t th moment super-

operator of μ.

Next, we define the building blocks of our t-design constructions.

Definition 17 (Rows of a lattice). For 1 ≤ i ≤ n1−1/D , rα,i is the i-th row of a
D-dimensional lattice in the α-th direction. We will label the qubits in row i by
(α, i, 1), . . . , (α, i, n1/D). Assume for convenience that n1/D is an even integer and
define the sets of pairs Eα,i := {((α, i, 1), (α, i, 2)), . . . , ((α, i, n1/D−1), (α, i, n1/D))}
and Oα,i := {((α, i, 2), (α, i, 3)), . . . , ((α, i, n1/D − 2), (α, i, n1/D − 1))}.
Definition 18 (Elementary random circuits). The elementary quasi-projector in direc-
tion α is

gRows(α,n) :=
∏

1≤l≤n1−1/D

⊗

(i, j)∈Eα,l

G(t)
(i, j) ·

⊗

(i, j)∈Oα,l

G(t)
(i, j) =:

∏

1≤l≤n1−1/D

grα,l . (18)

For the 2-D lattice gR and gC for g1 and g2, respectively.

The following defines the moment superoperator and quasi-projector of the Haar
measure on the rows of a D-dimensional lattice in a specific direction.

Definition 19 (Idealized model with Haar projectors on rows). Let 1 ≤ α ≤ D be one
of the directions of a D-dimensional lattice then

GRows(α,n) :=
∏

1≤i≤n1−1/D

G(t)
Haar(rα,i )

=:
∏

1≤i≤n1−1/D

Grα,i . (19)

For a 2-D lattice we use GR and GC for G1 and G2, respectively.

Next, we define moment operators and projectors corresponding to the Haar measure
on the sub-lattices of a D-dimensional lattice. We view a D-dimensional lattice as a
collection of n1/D smaller lattices each with dimension D − 1, composed of n1−1/D

qudits. We label these sub-lattices with Planes(D) := {p1, . . . , pn1/D }.
Definition 20 (Haar measure on sub-lattices). GPlanes(D) = ⊗

p∈Planes(D) G
(t)
Haar(p) ≡

G(t)⊗n1/D

Haar(n1−1/D)
,.

Definition 21. For d = 2, t = 2 and a superoperator A define

Coll(A) := Tr

⎛

⎝
∑

x∈{0,1}n
|x〉 〈x | ⊗ |x〉 〈x |A(|0n〉 〈0n| ⊗ |0n〉 〈0n|)

⎞

⎠ . (20)

In particular, for a distribution μ over circuits of size s the expected collision proba-
bility is defined as

Colls := Coll
(
Ch
[
G(2)

μ

])
. (21)
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Remark 1. For d = 2, t = 2 and when ν is the Haar measure on U(4), Ch
[
G(2)

(i, j)

]
is the

following map in the Pauli basis:

Ch
[
G(2)

(i, j)

]
(σp ⊗ σq) =

⎧
⎪⎨

⎪⎩

σ0 ⊗ σ0 pq = 00
1
15

∑
s∈{0,1,2,3}2\0 σs ⊗ σs p = q �= 00

0 otherwise
(22)

More generally, if S is a collection of qubits, and p, q ∈ {0, 1, 2, 3}S , then

Ch
[
G(2)

S

]
(σp ⊗ σq) =

⎧
⎪⎨

⎪⎩

σ0 ⊗ σ0 pq = 00
1

4|S|−1

∑
s∈{0,1,2,3}|S|\0 σs ⊗ σs p = q �= 00

0 otherwise

(23)

when p, q ∈ {0, 1, 2, 3}S .
See [34,51] for the proof of these remarks.

2.2. Operator definitions of the models.

Definition 22 (Random circuits on a two-dimensional lattice). The quasi-projector of
μ
lattice,n
2,c,s is G(t)

μ
lattice,n
2,c,s

= gsR(gsCg
s
R)c.

The generalization of this definition to arbitrary D dimensions is according to:

Definition 23 (Recursive definition for random circuits on D-dimensional lattices). The
quasi-projector of μ

lattice,n
D,c,s is specified by the recursive formula:

G(t)

μ
lattice,n
D,c,s

= G(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

(

gsRows(D,n)G
(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

)c

. (24)

It will be useful to our proofs to also define:

1. G̃n,D,c =
(
G̃⊗n1/D

n1−1/D ,D−1,c
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c

)c

2. Ĝn,D,c,s = GRows(D,n)G̃
⊗n1/D

n1−1/D ,D−1,c,s
GRows(D,n)

In particular, G̃n,D,c,s is the same asG
μ
lattice,n
D,c,s

except that we have replaced gsRows(D,n)

with GRows(D,n). Definition 22 is a special case of Definition 23, but we included both
of them for convenience.

Definition 24. G(t)
μCG
s

=
(

1
(n2)

∑
i �= j G

(t)
(i, j)

)s
.
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2.2.1. Summary of the definitions. See below for a summary of the definitions:

Notation Definition Reference
‖ · ‖� superoperator diamond norm Definition 14
‖ · ‖p matrix p-norm for p ∈ [0,∞] Definition 14
Haar the Haar measure Definition 15
Haar(S) Haar measure on subset S of qudits Definition 15
Haar(i, j) Haar measure on qudits i and j Definition 15
U⊗t,t C⊗t ⊗ C∗,⊗t Definition 16

G(t)
μ average of C⊗t,t over C ∼ μ Definition 16

G(t)
Haar Projects onto vectors invariant under C⊗t,t Definition 16

G(t)
i, j Haar projector of order t on qudit i and j Definition 16

〈i, j |G(t)
μ |k, l〉 moment of order t : EC∼μ[Ci1, j1 . . .Cit , jt C

∗
i1, j1

. . .C∗
it , jt

] Definition 16

Ch[G(t)
μ ] moment superoperator, equal to EC∼μ[adC⊗t ] Definition 16

rα,i i-th row in the α direction with i ∈ [n1/D], α ∈ [D] Definition 17
Rows(α, n) the collection of rows of a lattice (with n points) in the α direction Definition 17
gRows(α,n) two-qudit gates applied to even then odd neighbors in each row in the α

direction
Definition 18

gr(α,i) two-qudit gates applied to even then odd neighbors in the i-th row in the α

direction
Definition 18

gR and gC gRows(1,n) and gRows(2,n) when D = 2. Definition 18
GRows(α,n) Haar projector applied to each row in theαth direction Definition 19
GR(GC ) Haar projector applied to each row (column) of a 2D lattice Definition 19
GPlanes(α) Haar projector applied to each plane perpendicular to the direction α Definition 20
Coll(A) collision probability from superoperatorA Definition 21
Colls the expected collision probability of a random circuit after s steps Definition 21
μ
lattice,n
D,c,s the distribution over D-dimensional circuits with n qudits Definition 23

G̃n,D,c same as G(t)

μ
lattice,n
D,c,s

except that we replace gsRows(α,n)
with GRows(α,n) Definition 23

Ĝn,D,c,s one block of G̃n,D,c defined as GRows(D,n)G̃
⊗n1/D

n1−1/D ,D−1,c,s
GRows(D,n) Definition 23

μCG
s the distribution over circuits with s random two-qubit gates Definition 24

�(A, B) cos−1 maxx∈A,y∈B 〈x, y〉 is the angle between two vector spaces A and B Section 3.6.1

2.3. Elementary tools. If A is a matrix and σi are the singular values of A, then for p ∈
[1,∞) the Schatten p-norm of A is defined as ‖A‖p := (

∑
i σ

p
i )1/p. The∞-norm of A

is ‖A‖∞ := max(i)σi . The 1-norm is related to the∞-norm by ‖A‖1 ≤ rank(A)·‖A‖∞.
Moreover, for p ∈ [1,∞] and any two matrices A and B, ‖A ⊗ B‖p = ‖A‖p · ‖B‖p.

If A and B are superoperators, then ‖A⊗ B‖� = ‖A‖� · ‖B‖�.
Ch [·] is the linear map frommatrices to superoperators such that for any two equally

sized matrices A and B, Ch
[
A ⊗ B∗] = A[·]B†. Note that Ch [·] is associative in the

sense that Ch
[
A ⊗ B∗] ◦ Ch

[
C ⊗ D∗] = Ch

[
AC ⊗ B∗C∗], for any equally sized

matrices A, B,C, D.

Consider the Haar measure over U(d). Ch
[
G(t)

Haar

]
(defined in the previous section)

is the projector onto the matrix vector space of permutation operators (permuting length
t words over the alphabet [d]). In particular, for any matrix X ∈ C

dt×dt we can write

Ch
[
G(t)

Haar

]
[X ] =

∑

π∈St
Tr(V (π)X)Wg(π), (25)

where V (π) is the permutation matrix
∑

(i1,...,it )∈[d]t |i1, . . . , it 〉 〈iπ(1), . . . , iπ(t)|, and
Wg(π) is a linear combination of permutations. Specifically
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Wg(π) =
∑

σ∈St
α(π−1σ)V (σ ). (26)

Here the coefficients α(·) are known as Weingarten functions (see [23]). If μ, ν ∈ St
then let dist(μ, ν) denote the number of transpositions needed to generate μ−1ν from
the identity permutation. Then we can define α(·) by the following relation.

∑

μ,ν∈St
α(μ−1ν) |μ〉 〈ν| =

⎛

⎝
∑

μ,ν∈St
dist(μ, ν) |μ〉 〈ν|

⎞

⎠

−1

. (27)

Note that α(π) is always real and |α(λ)| = O(1/dt+dist(λ)). Thus for large d, Wg(π) ≈
V (π)/dt .

Furthermore,

Ch
[
G(t)

Haar

]
[X ] =

∑

π∈St
Tr
M

((V (π)M ⊗ IN )XMN ) ⊗Wg(π)M . (28)

Let A, B be matrices. For the superoperator D ≡ BTr[A·] we use the notation
D = BA∗. We need the following observation:

V (π)V ∗(σ ) = Ch [|ψπ 〉 〈ψσ |] , (29)

where |ψπ 〉 = (I ⊗ V (π)) 1√
dt

∑
i∈[d]t |i〉 |i〉.

We need the following lemma:

Lemma 25. If A is a (possibly rectangular) matrix, then AA† and A†A have the same
spectra.

Lemma 26. If A and B are matrices and ‖ · ‖∗ is a unitarily invariant norm, then
‖AB‖∗ ≤ ‖A‖∗‖B‖∞.

Proof. This lemma can be viewed as a consequence of Russo-Dye theorem, which states
that the extreme points of the unit ball for ‖ · ‖∞ are the unitary matrices. Thus we can
write B = ‖B‖∞∑

i piUi for {pi } a probability distribution and {Ui } a set of unitary
matrices. We use this fact along with the triangle inequality and then unitary invariance
to obtain

‖AB‖∗ = ‖A ·
(

‖B‖∞
∑

i

piUi

)

‖∗ ≤ ‖B‖∞
∑

i

pi‖AUi‖∗ = ‖B‖∞
∑

i

pi‖A‖∗
= ‖A‖∗‖B‖∞. (30)

��
A similar argument applies to superoperators.

Lemma 27. IfA is a superoperator andB is a tpcp superoperator then ‖AB‖� ≤ ‖A‖�.

Proof. Letd be≥ the input dimensions of bothA andB. Then‖A‖� = max‖X‖1≤1 ‖(A⊗
idd)(X)‖1 and ‖AB‖� = max‖X‖1≤1 ‖(A⊗idd)(B⊗idd)(X)‖1. SinceB is a tpcp super-
operator ‖(B⊗idd)(X)‖1 ≤ 1 and so ‖AB‖� ismaximizing over a set which is contained
in the set maximized over by ‖A‖�. ��
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These give rise to the following well-known bound, which often is called “the hybrid
argument.”

Lemma 28. Let ‖ · ‖∗ be a unitarily invariant norm. If A1, . . . , At and B1, . . . , Bt have
∞-norm ≤ 1. Then

‖A1 . . . At − B1 . . . Bt‖∗ ≤
∑

i

‖Ai − Bi‖∗. (31)

This is also true for superoperators and the diamond norm, if each superoperator is a
tpcp map.

We will need a similar bound for tensor products.

Lemma 29. Suppose ‖A − B‖∗ ≤ ε for some norm ‖ · ‖∗ that is multiplicative under
tensor product. Then for any integer M > 0

∥
∥
∥A⊗M − B⊗M

∥
∥
∥∗ ≤ (‖B‖∗ + ε)M − ‖B‖∗. (32)

The same holds for superoperators and the diamond norm. In particular ‖A⊗M −
B⊗M‖∗ ≤ 2M‖B‖M∗ ε for ε ≤ 1

2M .

We need the following definition and lemma:

Definition 30. Let X and Y be two real valued random variables on the same totally
ordered sample space �. Then we say X is stochastically dominated by Y , if for all
x ≤ y ∈ �, Pr[X ≥ x] ≤ Pr[Y ≥ y]. We represent this by X  Y .

Lemma 31 (Coupling). X  Y if and only if there exists a coupling (a joint probability
distribution) between X and Y such that the marginals of this coupling are exactly X
and Y and that with probability 1, X ≤ Y .

2.4. Various measures of convergence to the Haar measure.

Definition 32. Letμ be a distribution over n-qudit gates. Let ε be a positive real number.

1. (Strong designs) μ is a strong ε-approximate t-design if

(1− ε) · Ch
[
G(t)

Haar

]
 Ch

[
G(t)

μ

]
 (1 + ε) · Ch

[
G(t)

Haar

]
, (33)

or equivalently if

(1− ε) ·
(
Ch
[
G(t)

Haar

]
⊗ id

)
�⊗t

dn 
(
Ch
[
G(t)

μ

]
⊗ id

)
φ⊗t
dn

 (1 + ε) ·
(
Ch
[
G(t)

Haar

]
⊗ id

)
�⊗t

dn . (34)

The first  is cp ordering and the second  is psd ordering.
2. (Monomial definition) μ is a monomial based ε-approximate t-design if for any

balanced monomial m(C) of degree at most t
∥
∥
∥vec

[
G(t)

μ

]
− vec

[
G(t)

Haar

]∥
∥
∥∞ ≤ ε

dnt
. (35)

Here for a matrix A, vec(A) is a vector consisting of the entries of A (in the compu-
tational basis).
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3. (Diamond definition) μ is an ε-approximate t-design in the diamond measure if
∥
∥
∥Ch

[
G(t)

μ

]
− Ch

[
G(t)

Haar

]∥
∥
∥� ≤ ε. (36)

4. (Trace definition) μ is an ε-approximate t-design in the trace measure if
∥
∥
∥G(t)

μ − G(t)
Haar

∥
∥
∥
1
≤ ε. (37)

5. (TPE) μ is a (d, ε, t) t-copy tensor product expander (TPE) if
∥
∥
∥G(t)

μ − G(t)
Haar

∥
∥
∥∞ ≤ ε. (38)

6. (Anti-concentration) μ is an ε approximate anti-concentration design if

E
C∼μ

| 〈0|C |0〉 |4 ≤ E
C∼Haar

| 〈0|C |0〉 |4 · (1 + ε). (39)

7. (Approximate scramblers) μ is an ε-approximate scrambler if for any density matrix
ρ and subset S of qubits with |S| ≤ n/3

E
C∼μ

∥
∥
∥
∥ρS(C) − I

2|S|

∥
∥
∥
∥

2

1
≤ ε. (40)

where ρS(C) = Tr\SCρC† and Tr\S is trace over the subset of qubits that is compli-
mentary to S.

8. (Weak approximate decouplers) LetM, M ′, A, A′ be systems composed ofm,m, n−
m and n−m, and let φMM ′ , φAA′ andψA′ be respectively maximally entangled states
along M, M ′, maximally entangled state along AA′ and a pure state along A′. μ is
an (m, α, ε)-approximate weak decoupler if for any subsystem S of M ′A′ with size
≤ α · n, when μ applies to M ′A′,

E
C∼μ

∥
∥
∥
∥ρMS(C) − I

2m
⊗ I

2|S|

∥
∥
∥
∥
1
≤ ε. (41)

We consider two definitions. In the first definition the initial state is φMM ′ ⊗φAA′ and
in the second model it is φMM ′ ⊗ ψA′ . Here ρMS(C) is the reduced density matrix
along MS after the application of C ∼ μ.

3. Approximate t-Designs by Random Circuits with Nearest-Neighbor Gates on
D-Dimensional Lattices

In this section we prove theorems 8 and 9, which state that our random circuit models
defined for D-dimensional lattices (definitions 5) form approximate t-designs in several
measures.

We begin in Sect. 3.1 by outlining some basic utility lemmas. The technical core of
the proof is contained in the lemmas in Sect. 3.2 in which we bound various norms of
products ofHaar projectors onto overlapping sets of qubits. These are proved in Sects. 3.5
and 3.6 respectively. We show how to use these lemmas to prove our main theorems in
Sect. 3.3 (for a 2-D grid) and in Sect. 3.4 (for a lattice in D > 2 dimensions).
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3.1. Basic lemmas. In this section we state some utilities lemmas which are largely
independent of the details of our circuit models.

3.1.1. Comparison lemma for random quantum circuits.

Definition 33. A superoperator C is completely positive (cp) if for any psd matrix X ,
(C ⊗ id)(X) is also psd. For superoperators A and B, A  B if B −A is cp.

Our comparison lemma is simply the following:

Lemma 34 (Comparison). Suppose we have the following cp ordering between super-
operators A1  B1, . . . ,At  Bt . Then At . . .A1  Bt . . .B1.

Corollary 35 (Overlapping designs). If K1, . . . , Kt are respectively the moments super-
operators of ε1, . . . , εt -approximate strong k-designs each on a potentially different
subset of qudits, then

Ch
[
G(t)

Haar(S1)
. . .G(t)

Haar(St )

]
(1− ε1) . . . (1− εt )  K1 . . . Kt

 Ch
[
G(t)

Haar(S1)
. . .G(t)

Haar(St )

]
(1 + ε1) . . . (1 + εt ). (42)

3.1.2. Bound on the value of off-diagonal monomials. We first formally define an off-
diagonal monomial.

Definition 36 (Off-diagonal monomials). A diagonal monomial of balanced degree t of
a unitary matrix C is a balanced monomial that can be written as product of absolute
square of terms, i.e., |Ca1,b1 |2 . . . |Cat ,bt |2. A monomial is off-diagonal if it is balanced
and not diagonal.

We now define the set of diagonal indices as D = {|i, j〉 〈i ′, j ′| : i = i ′, j =
j ′, i, i ′, j, j ′ ∈ [d]nt } and the set of off-diagonal indices as O = {|i, j〉 〈i ′, j ′| : i �=
i ′ or j �= j ′, i, i ′, j, j ′ ∈ [d]nt }. We note that a diagonal monomial can be written as
Tr(C⊗t,t x) for some x ∈ D and similarly, an off-diagonal monomial can be written as
Tr(C⊗t,t x) for some x ∈ O.

We relate the strong definition of designs to the monomial definiton via the following
lemma.

Lemma 37. Let δ > 0. Assume that Ch
[
G(t)

μ

]
and Ch

[
G(t)

ν

]
are two moment superop-

erators that satisfy the following completely positive ordering

(1− δ) · Ch
[
G(t)

ν

]
 Ch

[
G(t)

μ

]
 (1 + δ) · Ch

[
G(t)

ν

]
. (43)

LetO andD be respectively the set of off-diagonal and diagonal indices for monomials.
Then

max
x∈O

|Tr
(
xG(t)

μ

)
| ≤ max

x∈O
|Tr

(
xG(t)

ν

)
|(1 + δ) + 2δ ·max

y∈D
|Tr

(
yG(t)

ν

)
|. (44)
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3.1.3. Bound on the moments of the Haar measure. We need the following bound on
the t-th monomial moment of the Haar measure. Assume we have m qudits.

Lemma 38 (Moments of the Haar measure). Let G(t)
Haar(m) be the quasi-projector oper-

ator for the Haar measure on m qudits. Then

max
y

∥
∥
∥G

(t)
Haar(m)yG

(t)
Haar(m)

∥
∥
∥
1
≤ t O(t)

dmt
. (45)

Here the maximization is taken over matrix elements in the computational basis like
y = |i1, . . . , it , i ′1, . . . , i ′t 〉 〈 j1, . . . , jt , j ′1, . . . , j ′t |. Each label (e.g. i j ) is in [d]m.

3.2. Gap bounds for the product of overlapping Haar projectors. Wewill later need the
following results, with proofs deferred until Sect. 3.6.

Lemma 39. ‖GCGR − G(t)
Haar‖∞ ≤ 1/d�(

√
n).

Lemma 40. Let D = O(ln n/ ln ln n) with small enough constant factor, then
‖GPlanes(D)GRows(D,n) − GHaar‖∞ ≤ 1/d�(n1−1/D).

Lemma 41. Let |x〉 and |y〉 be two computational basis states. For small enough
D = O(ln n/ ln ln n) and large enough c, | 〈x |G̃n,D,c − GHaar|y〉 | ≤ ε

dnt for some

ε = 1/d�(n1/D).

Lemma 42. For large enough c,
∥
∥
∥Ch

[
(GRGCGR)c − G(t)

Haar

]∥
∥
∥� = t O(

√
nt)

d�(c
√
n)
.

Lemma 43. For small enough D = O(ln n/ ln ln n) and large enough c,

∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c − G(t)
Haar

]∥
∥
∥� = t O(tn1−1/D)

d�(cn1−1/D)
. (46)

In these last two lemmas, we see that c will need to grow with t . We believe that
a sharper analysis could reduce this dependence, but since we already have a poly(t)
dependence in s, improving Lemmas 42 and 43 would not make a big difference. In
fact, even in 1-D, [13] found a sharp n dependence but their factor of poly(t) (which we
inherit) is probably not optimal.

3.3. Proof of Theorem 8; t-designs on two-dimensional lattices.

Theorem (Restatement of Theorem 8). Let s, c, n > 0 be positive integers withμ
lattice,n
2,c,s

defined as in Definition 5.

1. s= poly(t)
(√

n + ln 1
δ

)
, c= O

(
t ln t + ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
2,c,s

− G(t)
Haar

]∥
∥
∥
∥∞

≤ δ
dnt .

2. s= poly(t)
(√

n+ ln 1
δ

)
, c=O

(
t ln t+ ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥Ch

[

G(t)

μ
lattice,n
2,c,s

−G(t)
Haar

]∥
∥
∥
∥�

≤δ.

3. s = poly(t)
(√

n + ln 1
δ

)
, c = O

(
t ln t + ln(1/δ)√

n

)
�⇒

∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥
1
≤ δ.
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4.

∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥∞

≤ c · √n · e−s/ poly(t) + 1
dO(c

√
n)
.

Proof. 1. This item corresponds to convergence of the individual moments of the
Haar measure. A balanced moment of a distribution μ can be written as

E
C∼μ

[Ci1, j1 . . .Cit , jt C
∗
i ′1, j ′1

. . .C∗
i ′t , j ′t

] = 〈i, i ′|G(t)
μ | j, j ′〉 = Tr[G(t)

μ · | j, j ′〉 〈i, i ′|]
(47)

where |i〉 := |i1, . . . , it 〉 and so on for |i ′〉 , | j〉 , | j ′〉. The same moment can also
be written as

Tr
(
| j〉 〈 j ′|Ch

[
G(t)

μ

]
(|i〉 〈i ′|)

)
(48)

We will see that the strong design condition established by gives us strong bounds
first for the “diagonal” case (i = i ′, j = j ′) then the off-diagonal case. This is
because when we interpret G(t)

μ as a quantum operation, the diagonal monomials

correspond to TrYG(t)
μ X for psd matrices X,Y , and so the strong design condition

applies directly. For off-diagonal moments we need to do a bit more work.
For each the diagonal and off-diagonal monomials, our strategy will be to first
compare with the entries of GR(GCGR)cGR and then to compare to GHaar.

First observe that sinceCh

[

G(t)

μ
lattice,n
2,c,s

]

= (gsRg
s
C )cgsR and s = poly(t)·(√n+ln(1/δ))

then corollary 6 of [13] implies that each gsi for i ∈ {R,C} is an δ-approximate t-
design. Hence, using corollary 35,

Ch [GR (GCGR])
c GR(1− δ

4t ! )]  Ch

[

G(t)

μ
lattice,n
2,c,s

]

 Ch [GR(GCGR])
cGR(1 +

δ

4t ! ).
(49)

Note that we chose poly(t) large enough so that the error is as small as δ
4t ! . This

choice will be helpful later.
Focusing first on diagonal monomials |i〉 〈i | , | j〉 〈 j | we can bound

(1 +
δ

4t ! )Tr
(| j〉 〈 j |Ch [GR(GCGR])cGR

]
(|i〉 〈i |))− 〈i, j |G(t)

μ
lattice,n
2,c,s

|i, j〉

= Tr (| j〉 〈 j | [Ch [GR(GCGR])
c GR(1 +

δ

4t ! ) − G(t)

μ
lattice,n
2,c,s

]](|i〉 〈i |)) ≥ 0. (50)

In other words, for diagonal monomials

Tr

(

| j〉 〈 j |Ch
[

G(t)

μ
lattice,n
2,c,s

(t)

]

(|i〉 〈i |)
)

≤ (1 +
δ

4t ! )Tr
(| j〉 〈 j |Ch [GR (GCGR])

c GR](|i〉 〈i |)
)

= (1 +
δ

4t ! )Tr
(
GR(GCGR)cGR |i, j〉 〈i, j |) . (51)
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Similarly, using the first inequality in (49)

Tr

(

| j〉 〈 j |Ch
[

G(t)

μ
lattice,n
2,c,s

(t)

]

(|i〉 〈i |)
)

≥ (1− δ

4t ! )Tr
(
GR(GCGR)cGR |i, j〉 〈i, j |) .

(52)

The next step is to bound Tr (yGR(GCGR)cGRx):
∣
∣
∣Tr

(
GR(GCGR)cGRx

)− Tr
(
G(t)

Haarx
)∣
∣
∣ =

∣
∣
∣Tr

(
(GR(GCGR)cGR − G(t)

Haar)x
)∣
∣
∣

=
∣
∣
∣Tr

(
((GCGR)c − G(t)

Haar)GRxGR

)∣
∣
∣

≤
∥
∥
∥((GCGR)c − G(t)

Haar)‖∞ · ‖GRxGR

∥
∥
∥
1

≤
∥
∥
∥GCGR − G(t)

Haar

∥
∥
∥
c

∞ ·
(

max
y∈[d]2√nt

‖Gr1,1 yGr1,1‖1
)√

n

.

(53)

In the third line we have used the Hölder’s inequality. In the last inequality we have
used the fact that G1 is a tensor product of Gr1,i across each column in the first
direction; by symmetry we can just consider Gr1,1 .
Using Lemma 38

max
y∈[d]2√nt

∥
∥Gr1,1 yGr1,1

∥
∥
1 = t O(t)

dt
√
n
. (54)

Furthermore, using Lemma 39

∥
∥
∥GCGR − G(t)

Haar

∥
∥
∥∞ ≤ 1

d�(
√
n)

. (55)

therefore

∥
∥
∥GCGR − G(t)

Haar

∥
∥
∥
c

∞ · ( max
y∈[d]2√nt

‖Gr1,1 yGr1,1‖1)
√
n ≤ 1

dO(c·√n)
· ( t

O(t)

dt
√
n

)√n
. (56)

As a result, for some large enough c = O(t ln t + ln 1/δ√
n

) we conclude

|Tr (GR(GCGR)cGRx
)− M (Haar,t)

x |
≤ ‖GCGR − G(t)

Haar‖c∞ · ( max
y∈[d]2√nt

‖Gr1,1 yGr1,1‖1)
√
n

≤ δ

4dnt
. (57)

As a result, using Lemma 38 any diagonal monomial satisfies

|Tr
(

G(t)

μ
lattice,n
2,c,s

)

− Tr
(
G(t)

Haar

)
| ≤ |Tr (GR(GCGR)cGRx

)− Tr
(
GR(GCGR)cGRx

) |

+
δ

4t ! |Tr
(
GR(GCGR)cGRx

) |
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≤ δ

4dnt
+

δ

4t ! (M
(Haar,t)
x +

δ

4dnt
)

≤ δ

4dnt
+

δ

4t ! (t !/d
nt +

δ

4dnt
)

≤ δ

dnt
. (58)

Next, we bound the expected off-diagonal monomials of the distribution. The value of
the off-diagonal monomials according to the Haar measure is zero. So it is enough to

boundmaxx∈O |Tr
(
G(t)

μ x
)
|, whereO is the set of off-diagonal indices for moments.

In order to do this we use Lemma 37 for μ = μ
lattice,n
2,c,s and ν being a distribution with

moment superoperator Ch[GR](Ch[GR]Ch[GC ])cCh[GR].

max
x∈O

|Tr(G(t)

μ
lattice,n
2,c,s

)x | ≤ max
x∈O

Tr(GR(GCGR)cGRx)(1 +
δ

4t ! )
+δ/t ! ·max

y∈D
Tr(GR(GCGR)cGR y). (59)

Here D is the set of diagonal monomials. Using (57)

max
y∈D

Tr(GR(GCGR)cGR y) ≤ max
y∈D

Tr
(
G(t)

Haary
)
+

δ

4dnt
≤ t !

dnt
+

δ

4dnt
. (60)

In order to bound maxx∈O Tr(GR(GCGR)cGRx), we first make the observation that
since x ∈ O, Tr(G(t)

Haarx) = 0. Therefore

max
x∈O

|Tr(GR(GCGR)cGRx)| = max
x∈O

|Tr((GR(GCGR)cGR − G(t)
Haar)x)|

≤ max
x∈O

|Tr((GRGC )c − G(t)
Haar)GRxGR)|

≤ δ

4dnt
. (61)

therefore using (57), (59) and (61) we conclude

max
x∈O

|Tr(G(t)

μ
lattice,n
2,c,s

x)| ≤ δ

4dnt
(1 + δ/(4t !)) + δ

4t ! ·
( t !
dnt

+
δ

4dnt
)

≤ δ

2dnt
+ 2δ/(4dnt ) ≤ δ

dnt
. (62)

2.
∥
∥
∥
∥Ch

[

G(t)

μ
lattice,n
2,c,s

− G(t)
Haar

]∥
∥
∥
∥�

≤ ∥
∥Ch

[
gsR(gsCg

s
R)c − (GRGCGR

]
)c
∥
∥�

+
∥
∥
∥(Ch [GRGCGR])

c − G(t)
Haar]

∥
∥
∥�

≤ 4c ·
∥
∥
∥
∥Ch

[
gsr1,1

]⊗√
n − [

Gr1,1

]⊗√
n
∥
∥
∥
∥�

+
( t t

dc
)O(

√
n)

≤ 4c · √n ·
∥
∥
∥Ch

[
gsr1,1 − Gr1,1

]∥
∥
∥� +

( t t

dc
)O(

√
n)
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≤ δ/2 + δ/2

≤ δ. (63)

In the first line we have used triangle inequality and the definition K (t)

μ
lattice,n
2,c,s

=
(
∏

α gsRows(α,n))
c. In the second line, for the first term we have used Lemma 28

and that all operators are compositions of moment superoperators. For the second
part we have used Lemma 42. In the third inequality we have used Lemma 29. In
fourth inequality, the first term (δ/2) comes from lemma 3 and corollary 6 of [13] for
s = poly(t) · (√n + ln 1

δ
), and the second δ/2 is by the choice c = O(t ln t + ln(1/δ)√

n
).

3. Let Q0 := Gr1,1 and Q1 := Gr1,1−gsr1,1 , and for x ∈ {0, 1}√n let Qx = Qx1 . . . Qx√n
.

Here, ‖Q0‖1 = t ! and ‖Qx‖1 = t !√n−|x | · ‖Gr1,1 − gsr1,1‖|x |.

‖G(t)

μ
lattice,n
2,c,s

− G(t)
Haar‖1 ≤ ‖(gsCgsR)c − (GCGR)c‖1 + ‖(GCGR)c − G(t)

Haar‖1

≤ 4c · ‖(gsr1,1)⊗
√
n − G⊗√

n
r1,1 ‖1 + t O(t)

√
n‖GCGR − G(t)

Haar‖c∞
(64)

We bound the two terms separately. First

4c‖(gsr1,1)⊗
√
n − G⊗√

n
r1,1 ‖1 ≤ 4c ·

∑

x∈{0,1}√n :x �=0

‖Qx‖1

≤ 4c · [(t ! + ‖gsr1,1 − Gr1,1‖1)
√
n − t !

√
n]

= 4ct !((1 + ‖gsr1,1 − Gr1,1‖1/t !)
√
n − 1)

≤ 4c · 2√n‖gsr1,1 − Gr1,1‖1

The last line needs s to be large enough that
√
n‖gsr1,1 − Gr1,1‖1 ≤ 1/(2

√
n).

≤ 8c
√
n(dt !)

√
n · ‖gsr1,1 − Gr1,1‖∞

≤ 8c
√
n(dt !)

√
n(1− 1/ poly(t))s

≤ δ/2 (65)

Now we bound the second term of (64).

t O(t)
√
n‖GCGR − G(t)

Haar‖c∞ ≤ t O(t)
√
n(d−�(

√
n))c using Lemma 39 (66)

≤ tC1t
√
nd−cC2

√
n for some universal constantsC1,C2 > 0

(67)

= (tC1t/dcC2 )
√
n

≤ δ/2. (68)

In the last step we need to choose the implicit constant in the definition of c based on
C1,C2.
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4.

‖G(t)

μ
lattice,n
2,c,s

− G(t)
Haar‖∞ ≤ ‖(gsCgsR)c − (GCGR)c‖∞ + ‖(GCGR)c − G(t)

Haar‖∞

≤ 4c · ‖(gsr1,1)⊗
√
n − G⊗√

n
r1,1 ‖∞ + ‖GCGR − G(t)

Haar‖c∞
≤ 4c · √n · ‖gsr1,1 − Gr1,1‖∞ +

1

d�(c
√
n)

≤ 4c · √n · e−s/ poly(t) +
1

d�(c
√
n)

. (69)

These steps follow from the proof of part 1. ��

3.4. Proof of Theorem 9; t-designs on D-dimensional lattices. Throughout this section
we treat D and t as constants.

Theorem (Restatement of Theorem 9). There exists a value δ = 1/d�(n1/D) such that
for some large enough c depending on D and t:

1. s > c · n1/D �⇒
∥
∥
∥
∥vec

[

G(t)

μ
lattice,n
D,c,s

− G(t)
Haar

]∥
∥
∥
∥∞

≤ δ
dnt .

2. s > c · n1/D �⇒
∥
∥
∥
∥Ch

[

G(t)

μ
lattice,n
D,c,s

− G(t)
Haar

]∥
∥
∥
∥�

≤ δ.

3. s > c · n1/D �⇒
∥
∥
∥
∥G

(t)

μ
lattice,n
D,c,s

− G(t)
Haar

∥
∥
∥
∥∞

≤ δ.

4. s > c · n1/D �⇒
∥
∥
∥
∥G

(t)

μ
lattice,n
D,c,s

− G(t)
Haar

∥
∥
∥
∥
1
≤ δ.

Proof. 1. Consider the moment superoperator for the D-dimensional random circuit

distribution Ch
[
G

μ
lattice,n
D,c,s

]
, where for 3 ≤ α ≤ D, κRows(α,n) is defined according

to the recursive formula κα = κ⊗n1/α
α−1 ((Ch[gi ])sκ⊗n1/α

α−1 )c.
Using corollary 6 of [13], if s = O(n1/D) then each gsRows(α,n) for 1 ≤ α ≤ D

satisfies a 1/d�(n1/D)-approximate t-design property. Hence, using corollary 35

Ch[G̃n,D,c](1− 1/d�(n1/D))  Ch

[

G(t)

μ
lattice,n
2,c,s

]

 Ch
[
G̃n,D,c

]
(1 + 1/d�(n1/D)).

(70)

Therefore,

(1− 1/d�(n1/D))Tr(G̃n,D,cx) ≤ Tr

(

G(t)

μ
lattice,n
D,c,s

x

)

≤ (1 + 1/d�(n1/D))Tr(G̃n,D,cx).

(71)

Where x is a matrix |i, j〉 〈i ′, j ′| for i, j, i ′, j ′ ∈ [d]nt .
Next, we use Lemma 41. This lemma along with the bound in (71) and Lemma 38
proves the stated bound for diagonal monomials:

|Tr
(

G(t)

μ
lattice,n
D,c,s

x

)

− Tr(G(t)
Haarx)| ≤ |Tr(G̃n,D,cx) − Tr(G(t)

Haarx)| + |Tr(G̃n,D,cx)|1/d�(n1/D)
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≤ 1/d�(n1/D)

dnt
+ (|Tr(G(t)

Haarx)| +
1/d�(n1/D)

dnt
)1/d�(n1/D)

≤ 1/d�(n1/D)

dnt
+ (t !/dnt + 1/d�(n1/D)

dnt
)1/d�(n1/D)

≤ 1/d�(n1/D)

dnt
. (72)

Next, we bound off-diagonal monomials maxx∈O |Tr
(
G(t)

μ x
)
|. Again, we use

Lemma 37 for μ = μ
lattice,n
D,c,s and ν being a distribution with moment superopera-

tor K
μ
lattice,n
D,c,s

(or the quasi-projector G̃n,D,c):

max
x∈O

|Tr
(

G(t)

μ
lattice,n
D,c,s

x

)

| ≤ max
x∈O

Tr(G̃n,D,cx)(1 + 1/d�(n1/D))

+1/d�(n1/D) ·max
y∈D

Tr(G̃n,D,c y). (73)

Using Lemma 41

max
y∈D

Tr(G̃n,D,c y) ≤ max
y∈D

Tr
(
G(t)

Haary
)
+
1/d�(n1/D)

dnt
≤ t !

dnt
+
1/d�(n1/D)

dnt
. (74)

Similar to (61) we can show

max
x∈O

|Tr
(
G̃n,D,cx

)
| = max

x∈O
|Tr

(
(G̃n,D,c − G(t)

Haar)x
)
|

≤ max
x∈O

|Tr
(
(Ĝn,D,c)

c − G(t)
Haar

)
G̃⊗n1/D

n1−1/D,D−1,c
xG̃⊗n1/D

n1−1/D ,D−1,c
)|

≤ 1/d�(n1/D)

dnt
, (75)

therefore using (73), (74) and (75) we conclude that any monomial M
(μ

lattice,n
D,c,s ,t)

x sat-
isfies

max
x∈O

|Tr
(

G(t)

μ
lattice,n
D,c,s

x

)

| ≤ 1/d�(n1/D)

dnt
. (76)

2. Let εD,n :=
∥
∥
∥Ch

[
G

μ
lattice,n
D,c,s

]
− Ch

[
G(t)

Haar

]∥
∥
∥
�
. We use induction to show that εD,n =

1/d�(n1/D) for any integers n and D. This is true for D = 2 by Theorem 8. Assuming
εD−1,n = 1/d�(n1/(D−1)) for any n, we show that εD,n = 1/d�(n1/D).

εD,n :=
∥
∥
∥Ch

[
G

μ
lattice,n
D,c,s

− G(t)
Haar

]∥
∥
∥
�

≤
∥
∥
∥Ch

[
G

μ
lattice,n
D,c,s

− G̃n,D,c

]∥
∥
∥
�
+
∥
∥
∥Ch

[
G̃n,D,c − G(t)

Haar

]∥
∥
∥�

≤ poly(n) ·
∥
∥
∥Ch

[
(gsr1,1)

⊗n1−1/D − G⊗n1−1/D

r1,1

]∥
∥
∥�



1562 A. W. Harrow, S. Mehraban

+
∥
∥
∥Ch

[
G̃n,D,c − G(t)

Haar

]∥
∥
∥�

≤ O(n1−1/D) · ‖Ch
[
gsr1,1 − Gr1,1

]
‖�

+‖Ch
[
(G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
)c − G(t)

Haar

]
‖�

≤ O(n) · 1/d�(n1/D)

+
∥
∥
∥Ch

[
(G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
)c − G(t)

Haar

]∥
∥
∥�

≤ 1/d�(n1/D) +
∥
∥
∥Ch

[
(G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
)c − G(t)

Haar

]∥
∥
∥�
(77)

The third line is by triangle inequality. The fourth inequality is by Lemma 28. The

fifth line is by Lemma 29 and the definition G̃n,D,c = ([G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)

G̃⊗n1/D

n1−1/D,D−1,c,s
])c. The sixth line is by lemma 3 and corollary 6 of [13], which assert

that after linear depth in the number of qudits (n1/D), the random circuit model we
consider is ε-approximate t-design in the diamond measure, and that ε can be made
exponentially small in n1/D .

Next, we bound
∥
∥
∥Ch

[
(G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
)c − G(t)

Haar

]∥
∥
∥�.We

first relate this expression to the superoperator Ch
[
GPlanes(D)

]
. Using triangle

inequality and Lemma 28:
∥
∥
∥Ch

[
(G̃⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
)c − G(t)

Haar

]∥
∥
∥�

≤
∥
∥
∥Ch

[
(GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c,s
GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥�

≤
∥
∥
∥Ch

[
(GRows(D,n)(G̃

⊗n1/D

n1−1/D,D−1,c,s
− GPlanes(D,n))GRows(D,n)

+GRows(D,n)GPlanes(D)GRows(D,n))
c−1 − G(t)

Haar

]∥
∥
∥�

≤ O
(
‖Ch

[
G̃⊗n1/D

n1−1/D ,D−1,c,s
− GPlanes(D)

]
‖�
)

+
∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥�

≤ O(n)

∥
∥
∥Ch

[
G̃n1−1/D,D−1,c,s − GHaar(p1)

]∥
∥
∥�

+
∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥�

≤ O(n)εD−1,n1−1/D +
∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥�

≤ O(n)
1

dn1/D
+
∥
∥
∥(Ch

[
GRows(D,n)GPlanes(D)GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥�

≤ 1

dn1/D
+
∥
∥
∥(Ch

[
GRows(D,n)GPlanes(D)GRows(D,n))

c−1 − G(t)
Haar

]∥
∥
∥� .

The first line is by Lemma 27. The third line is by triangle inequality and Lemma
27. The fourth line is by Lemma 29 and that G̃Planes(D) is a tensor product of Haar
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moment operators. Note in the sixth line we have used the induction hypothesis:

εD−1,n1−1/D = 1/dO
(
n1−1/D
D−1

)

= 1
d�(n1/D )

.

UsingLemma43
∥
∥
∥(Ch[GRows(D,n)]G̃Planes(D)Ch[GRows(D,n)])c−1 − Ch[G(t)

Haar]
∥
∥
∥� =

1
d�(n1/D )

and this completes the proof.

3. Define εD,n :=
∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥
1
. By induction assume εD−1,n = 1/d�(n1/D−1)

for all n. We would like to show that εD,n = 1/d�(n1/D).

εD,n :=
∥
∥
∥
∥G

(t)

μ
lattice,n
D,c,s

− G(t)
Haar

∥
∥
∥
∥
1

=
∥
∥
∥
∥
∥
G(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

(gsRows(D,n)G
(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

)c − G(t)
Haar

∥
∥
∥
∥
∥
1

(78)

Write G(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

= GPlanes(D) + (G(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

− GPlanes(D)) =: Z0 + Z1. Our

strategy is to expand (78) in terms of GPlanes(D):

∥
∥
∥(δ + GPlanes(D))(g

s
Rows(D,n)(δ + GPlanes(D)))

c − G(t)
Haar

∥
∥
∥
1

=
∑

φ∈{0,1}c+1

∥
∥
∥
∥
∥
Zφ0

c∏

i=1

(gsRows(D,n)Zφi ) − G(t)
Haar

∥
∥
∥
∥
∥
1

≤
∑

φ∈{0,1}c+1\0c+1

∥
∥
∥
∥
∥
Zφ0

c∏

i=1

(gsRows(D,n)Zφi )

∥
∥
∥
∥
∥
1

︸ ︷︷ ︸
(1)

+
∥
∥
∥Z0(g

s
Rows(D,n)Z0)

c − G(t)
Haar

∥
∥
∥
1︸ ︷︷ ︸

(2)

(79)

To bound (1), observe that each term contains at least one Z1. Wewould like to bound

‖Z1‖1. Observe that GPlanes = G(t)⊗n1/D

Haar(n1−1/D)
, so

‖Z1‖1 =
∥
∥
∥
∥
∥
G(t)⊗n1/D

μ
lattice,n1−1/D
D−1,c,s

− G(t)⊗n1/D

Haar(n1−1/D)

∥
∥
∥
∥
∥
1

=
∥
∥
∥
∥
∥
∥

n1/D∑

i=1

G(t)⊗i−1

μ
lattice,n1−1/D
D−1,c,s

(G(t)

μ
lattice,n1−1/D
D−1,c,s

− G(t)
Haar(n1−1/D)

)G(t)⊗n1/D−i
Haar(n1−1/D)

∥
∥
∥
∥
∥
∥
1

≤
n1/D∑

i=1

∥
∥
∥
∥
∥
G(t)

μ
lattice,n1−1/D
D−1,c,s

∥
∥
∥
∥
∥

i−1

1

∥
∥
∥
∥
∥
G(t)

μ
lattice,n1−1/D
D−1,c,s

− G(t)
Haar(n1−1/D)

∥
∥
∥
∥
∥
1

∥
∥
∥G

(t)
Haar(n1−1/D)

∥
∥
∥
n1/D−i

1

(80)

≤
n1/D∑

i=1

(t ! + εD−1,n)
i−1εD−1,nt !n1/D−i (81)

≤ n1/D(t ! + εD−1,n)
n1/Dd−�(n1/(D−1)). (82)
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This final expression is≤ d−�(n1/D) for n sufficiently large relative to d, t, D. Equa-
tion (81) uses the induction hypothesis as well as the fact that G(t)

Haar(m) is a projector
of rank ≤ t ! for any m. (In fact this is an equality when m ≥ ln(t).) This last fact is
standard and can be found in Lemma 17 of [13], with the relevant math background
in [30,33].
For (2), we observe that (GPlanes(D)gsRows(D,n))

c − G(t)
Haar has rank t !O(n1/D) so the

cost of moving to the infinity norm is moderate:
∥
∥
∥(GPlanes(D)g

s
Rows(D,n))

c − G(t)
Haar

∥
∥
∥
1
≤ t !O(n1/D)

∥
∥
∥(GPlanes(D)g

s
Rows(D,n))

c − G(t)
Haar

∥
∥
∥∞
(83)

= t !O(n1/D)
∥
∥
∥GPlanes(D)g

s
Rows(D,n) − G(t)

Haar

∥
∥
∥
c

∞
(84)

We now bound
∥
∥
∥GPlanes(D)gsRows(D,n) − G(t)

Haar

∥
∥
∥∞ using a variant of the proof of part

3 of this theorem.
∥
∥
∥GPlanes(D)g

s
Rows(D,n) − G(t)

Haar

∥
∥
∥∞ ≤

∥
∥
∥gsRows(D,n) − G⊗n1−1/D

r1,1

∥
∥
∥∞

+
∥
∥
∥GPlanes(D)G

⊗n1−1/D

r1,1 − G(t)
Haar

∥
∥
∥
c

∞ (85)

Using [13] and Lemma 29

∥
∥
∥gsRows(D,n) − G⊗n1−1/D

r1,1

∥
∥
∥∞ ≤ O(n1−1/D)

∥
∥
∥gsr1,1 − Gr1,1

∥
∥
∥∞ = 1

d�(n1/D)
.

Moreover, using lemma 40
∥
∥
∥GPlanes(D)G⊗n1−1/D

r1,1 − G(t)
Haar

∥
∥
∥
c

∞ = 1
d�(n1/D )

.

This completes the proof by taking the constant in the �(n1/D) in the last exponent
sufficiently larger than the constant in the O(n1/D) exponent in (85). Here we are
ignoring the dependence on d, t, D. Taking this into account properly would yield
a depth that scales polynomially with with t , with the degree of the polynomial
depending on D.

4. Define εD,n :=
∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥∞

. By induction assume εD,n = 1/d�(n1/D) for

any integers n and D. Assuming εD−1,n = 1/d�(n1/D−1) for all n, we show that

εD,n = 1/d�(n1/D).

εD,n :=
∥
∥
∥
∥G

(t)

μ
lattice,n
2,c,s

− G(t)
Haar

∥
∥
∥
∥∞

≤
∥
∥
∥G

μ
lattice,n
D,c,s

− G̃n,D,c

∥
∥
∥
∞

+
∥
∥
∥G̃n,D,c − G(t)

Haar

∥
∥
∥∞

≤ poly(n) ·
∥
∥
∥(gsr1,1)

⊗n1−1/D − G⊗n1−1/D

r1,1

∥
∥
∥∞

+
∥
∥
∥GRows(D,n)G̃

⊗n1/D

n1−1/D,D−1,c
− G(t)

Haar

∥
∥
∥
c

∞
≤ poly(n) ·

∥
∥
∥(gsr1,1)

⊗n1−1/D − G⊗n1−1/D

r1,1

∥
∥
∥∞
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+
∥
∥
∥GRows(D,n)(G̃

⊗n1/D

n1−1/D,D−1,c
− FRows(D,n))

+GRows(D,n)FRows(D,n) − G(t)
Haar

∥
∥
∥
c

∞
≤ O(n)1/d�(n1/D) + O(n)εD−1,n1−1/D + 1/d�(n1−1/D)c

≤ d−�(n1/D) + 1/d�(n1/D) + 1/d�(n1−1/D)c

≤ d−�(n1/D). (86)

These steps follow from the proof of part 2.
��

3.5. Proofs of the basic lemmas stated in Sect.3.1.

3.5.1. Comparison lemma for random quantum circuits.

Lemma (Restatement of Lemma 34). Suppose we have the following cp ordering
between superoperators A1  B1, . . . ,At  Bt . Then At . . .A1  Bt . . .B1.

Proof. We first prove the following claim

Claim. If A  B and C  D are cp maps, then AC  BD.

Proof. The class of cp maps is closed under composition and addition. Therefore BD−
AC = (B −A)D +A(D − C) is cp.

The proof (of Lemma 34) is by induction. We show for all 1 ≤ i ≤ t

Ai . . .A1  Bi . . .B1. (87)

Clearly this is true for i = 1. Suppose also this is true for 1 < k < t . So Ai . . .A1 
Bi . . .B1 and Ai+1  Bi+1, and using the claim Ai+1 . . .A1  Bi+1 . . .B1. ��
Corollary (Restatement of Corollary 35). If K1, . . . , Kt are respectively the moments
superoperators of ε1, . . . , εt -approximate strong k-designs each on a potentially differ-
ent subset of qudits, then

Ch
[
G(t)

Haar(S1)
. . .G(t)

Haar(St )

]
(1− ε1) . . . (1− εt )  K1 . . . Kt

 Ch
[
G(t)

Haar(S1)
. . .G(t)

Haar(St )

]
(1 + ε1) . . . (1 + εt ). (88)

Proof. This is immediate from Lemma 34, Definition 16, and the observation that if
A  B then A ⊗ id  B ⊗ id. ��
3.5.2. Bound on the value of off-diagonal monomials.

Lemma (Restatement of Lemma 37). Let δ > 0. Assume that Ch
[
G(t)

μ

]
and Ch

[
G(t)

ν

]

are two moment superoperators that satisfy the following completely positive ordering

(1− δ) · Ch
[
G(t)

ν

]
 Ch

[
G(t)

μ

]
 (1 + δ) · Ch

[
G(t)

ν

]
. (89)

LetO andD be respectively the set of off-diagonal and diagonal indices for monomials.
Then

max
x∈O

|Tr
(
xG(t)

μ

)
| ≤ max

x∈O
|Tr

(
xG(t)

ν

)
|(1 + δ) + 2δ ·max

y∈D
|Tr

(
yG(t)

ν

)
|. (90)
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Proof. Let φN := |φN 〉 〈φN | for

|φ〉 := 1√
N

∑

x∈[d]n
|x〉 |x〉 (91)

be the n-qudit maximally entangled state, and N = dn .

We use the following standard lemma which we leave without proof (see [13] for
e.g.)

Lemma 44. Let μ and ν be two distributions over the n-qudit unitary group then
Ch[G(t)

μ ]  Ch[G(t)
ν ] if and only if

(
Ch
[
G(t)

ν

]
⊗ id − Ch

[
G(t)

μ

]
⊗ id

)
φ⊗t
N (92)

is a psd matrix.

We now adapt Lemma 37 to Lemma 44. First,

φ⊗t
N = 1

Nt

∑
|i1, . . . , it 〉 〈 j1, . . . , jt | ⊗ |i1, . . . , it 〉 〈 j1, . . . , jt |

≡ 1

Nt

∑
|i〉 〈 j | ⊗ |i〉 〈 j | . (93)

For i, j, k, l ∈ [d]nt , if we define
M (μ,t)

k,i,l, j = 〈k|Ch
[
G(t)

μ

]
(|i〉 〈 j |) |l〉 . (94)

Therefore

(Ch[G(t)
μ ] ⊗ id)φ⊗t

N = 1

Nt

∑
M (μ,t)

a,b,c,d |a〉 〈c| ⊗ |b〉 〈d| , (95)

and

(Ch[G(t)
Haar] ⊗ id)φ⊗t

N = 1

Nt

∑
M (Haar,t)

a,b,c,d |a〉 〈c| ⊗ |b〉 〈d| . (96)

Therefore since Ch
[
G(t)

μ

]
≤ (1 + δ)Ch[G(t)

ν ] the following matrix

A = ((1 + δ)Ch[G(t)
Haar] ⊗ id − Ch

[
G(t)

μ

]
⊗ id)φ⊗t

N

= 1

Nt

∑
((1 + δ)M (Haar,t)

a,b,c,d − M (μ,t)
a,b,c,d) |a〉 |b〉 〈c| 〈d| . (97)

Is psd. We use the following fact about psd matrices which we leave without proof.
Fact— if A is psd then the absolute maximum of off-diagonal terms in A is at most

the absolute maximum diagonal term.
Then using the above fact

max
x∈O

|(1 + δ)Tr
(
G(t)

ν x
)
− Tr

(
G(t)

μ x
)
| ≤ max

y∈D
|(1 + δ)Tr(G(t)

ν y) − Tr
(
G(t)

μ y
)
|.
(98)
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Hence

max
x∈O

|Tr
(
G(t)

μ x
)
| ≤ max

x∈O
|Tr

(
G(t)

ν x
)
|(1 + δ)

+max
y∈D

|(1 + δ)Tr
(
G(t)

ν y
)
− Tr

(
G(t)

μ y
)
|. (99)

Now if y ∈ D

Tr
(
G(t)

ν x
)

(1− δ) ≤ Tr
(
G(t)

μ x
)
≤ Tr

(
G(t)

ν x
)

(1 + δ). (100)

then using this in (99)

max
x∈O

|Tr
(
G(t)

μ x
)
| ≤ max

x∈O
|Tr

(
G(t)

ν x
)
|(1 + δ) + 2δ ·max

y∈D
Tr
(
G(t)

ν y
)

. (101)

��

3.5.3. Bounds on the moments of the Haar measure.

Lemma (Restatement of Lemma 38). Let G(t)
Haar(m) be the quasi-projector operator for

the Haar measure on m qudits. Then

max
y

∥
∥
∥G

(t)
Haar(m)yG

(t)
Haar(m)

∥
∥
∥
1
≤ t O(t)

dmt
. (102)

Here the maximization is taken over matrix elements in the computational basis like
y = |i1, . . . , it , i ′1, . . . , i ′t 〉 〈 j1, . . . , jt , j ′1, . . . , j ′t |. Each label (e.g. i j ) is in [d]m.
Proof. First observe that

max
y

‖G(t)
HaaryG

(t)
Haar‖1 = max

a,b
Tr
√

G(t)
Haar |a〉 〈b|G(t)

HaarG
(t)
Haar |b〉 〈a|G(t)

Haar (103)

= max
a,b

√

〈a|G(t)
Haar|a〉 · 〈b|G(t)

Haar|b〉 (104)

= max
i

〈i |G(t)
Haar|i〉 . (105)

The below lemma concludes the proof.

Lemma 45 (Moments of the Haar measure). The largest t-th monomial moment of the
Haar measure is at most t !

dtm .

Proof. Consider a particular balanced moment of Haar, using Hölder’s inequality

E
C∼Haar

|Ca1,b1 . . .Cat ,bt |2 ≤
∏

i∈[k]
(E|Cai ,bi |2k)1/k ≤ k!/dkm . (106)

If the moment is not balanced the expectation is zero and hence the bound still works.
Here we have used a closed form expression forE|Cai ,bi |2k , see corollary 2.4 and propo-
sition 2.6 of [23] for a reference. ��
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3.6. Proofs of the projector overlap lemmas from section 3.2.

3.6.1. Extended quasi-orthogonality of permutation operators with application to ran-
dom circuits on 2-dimensional lattices. In this section we prove Lemma 39

Lemma (Restatement of Lemma 39). ‖GCGR − G(t)
Haar‖∞ ≤ 1/d�(

√
n).

First, we need a description of the subspaces the projectorsGR,GC andGHaar project
onto. Consider a

√
n × √

n square lattice with n qudits as the collection of points
A := [√n] × [√n]. We use the following interpretation of the Hilbert space a quasi-
projector acts on. This interpretation is also used in [13]. Denote R j (C j ) as the j-th
row (column) of A for j ∈ [√n]. Here we assume each point of A consists of t pairs
of qudits, each with local dimension d. Thereby, the lattice becomes the Hilbert space
H :=⊗

(x,y)∈A Cd2t
(x,y), and has dimension d2tn .

We are interested in a certain subspace of H, and in order to understand it we need
the following notation. For each point (x, y) ∈ A we assign the quantum state |ψπ 〉 :=
(I ⊗ V (π)) |�d,t 〉, for each permutation π ∈ St . |�d,t 〉 is the maximally entangled
state 1√

dt

∑
x∈[d]t |x, x〉, V : St → GL(Cd2t ), is a representation of St with the map

V (π) : |x(1), x2, . . . , xt 〉 �→ |xπ−1(1), xπ−1(2), . . . , xπ−1(t)〉, and St is the symmetric
group over t elements.

Given these definitions define the following basis states inH:

|Rπ1,π2,...,π
√
n
〉 :=

⊗

v1∈R1

|ψπ1〉v1 ⊗
⊗

v2∈R2

|ψπ2〉v2 ⊗ . . . ⊗
⊗

v√n∈R√
n

|ψπ√
n
〉
v√n

, (107)

and,

|Cπ1,π2,...,π
√
n
〉 :=

⊗

v1∈C1

|ψπ1〉v1 ⊗
⊗

v2∈C2

|ψπ2〉v2 ⊗ . . . ⊗
⊗

v√n∈C√
n

|ψπ√
n
〉
v√n

, (108)

for each
√
n tuple of permutations (π1, π2, . . . , π√

n) ∈ S
√
n

t . Here S
√
n

t is the
√
n-fold

Cartesian product St × . . . × St of St with itself. Denote Ht,n as the subset consisting
of tuples of permutations in which not all of the permutations are equal. For example,
elements like (π, π, . . . , π) are not contained in this set. Notice that these basis are not
orthogonal to each other and if t > dn these are not even linearly independent.

Here we define two vector spaces VR, VC ⊆ H, with:

VR := span
C

{
|Rπ1,π2,...,π

√
n
〉 : (π1, π2, . . . , π√

n) ∈ S
√
n

t

}
, (109)

and,

VC := span
C

{
|Cπ1,π2,...,π

√
n
〉 : (π1, π2, . . . , π√

n) ∈ S
√
n

t

}
, (110)

and we call them row and column vector spaces, respectively. Also, denote the intersec-
tion between them by VHaar := VR ∩ VC . Equivalently:

VHaar = span
C

{
⊗

v∈A
|ψπ 〉v : π ∈ St

}

. (111)
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Then define ṼR := VR ∩ V⊥
H and ṼC := VC ∩ V⊥

H . Define the angle between two vector
spaces A and B as

cos�(A, B) := max
x∈A,y∈B 〈x, y〉 . (112)

We need the following definition of a Gram matrix

Definition 46 (Grammatrix). Let v1, . . . , vRows(D,n) be normal vectors that are not nec-
essarily orthogonal to each other. Then the Gram matrix corresponding to this set of
vectors is defined as [Ji j ] = 〈vi |v j 〉.

We also need the following lemma

Lemma 47 (Perron-Frobenius [53]). If A is a (not necessarily symmetric) d-dimensional
matrix, then:

||A||∞ ≤
√

max
i∈[d]

∑

j

|Ai, j | · max
j∈[d]

∑

i

|Ai, j |. (113)

Let GR,GC and GHaar be the quasi-projectors defined in Sect. 2.1. From [13] we
know that GR , GC and GHaar are indeed projectors onto VR, VC and VHaar, respectively.
Define the inner-product matrix between VR and VC with matrix Q with entries:

[Q]g,h := 〈Rg|Ch〉 , g, h ∈ Ht,n . (114)

The goal is to prove ‖GCGR −G(t)
Haar‖∞ ≤ 1/d�(

√
n). This basically means that the

composition of GR and GC is close to GHaar.
Also let cd,n,t = 1

1−
√
nt (t−1)

2d
√
n

be a number very close to 1.

The proof is in three main steps. First we relate ‖GCGR − GHaar‖∞ to �(ṼR, ṼC ):

Proposition 48. ‖GCGR − GHaar‖∞ ≤ cos2 �(ṼR, ṼC ).

Next, we relate �(ṼR, ṼC ) to ||Q||∞
Proposition 49. | cos�(ṼR, ṼC )| ≤ cd,n,t .||Q||∞

Then we bound ||Q||∞:

Proposition 50. ||Q||∞ ≤ ( 1
d + 1

d
√
n−1 +

2t2

d
√
n

)√n
.

Propositions 48, 49 and 50 imply the proof of Lemma 39.

Proof of Proposition 48. We use the following result of Jordan

Proposition 51 (Jordan). if P and Q are two projectors, then the Hilbert space V they
act on can be decomposed, as a direct sum, into one-dimensional or two-dimensional
subspaces, all of which are invariant under the action of both P and Q at the same time.

which implies
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Corollary 52. There are orthonormal basis e1, . . . , eK , f1, . . . , fK , q1, . . . , qT , and
angles 0 ≥ θ1 ≥ θ2 ≥ . . . ≥ θK ≤ π/2 such that:

VR = span
C

{e1, . . . , eK , q1, . . . , qT } , (115)

and

VC = span
C

{cos θ1e1 + sin θ1 f1, . . . , cos θK eK + sin θK fK , q1, . . . , qT }, (116)

and

VHaar = span
C

{q1, . . . , qT }. (117)

In other words, both GR and GC can be decomposed into 2× 2 blocks, each corre-
sponding to one of the angles θi , such that GC on this block looks like

G2×2
C =

(
1 0
0 0

)

, (118)

and GR

G2×2
R =

(
cos2 θi sin θi cos θi

sin θi cos θi sin2 θi

)

. (119)

Hence GCGR looks like

G2×2
C G2×2

R =
(
cos2 θi sin θi cos θi

0 0

)

, (120)

which has largest singular value | cos2 θi |. Propositions 49 and 50 along with this obser-
vation imply that the largest singular value of GCGR − GHaar is 1/dn

O(n1/D )
. ��

Proof of Proposition 49. An arbitrary normal vector in ṼR can be written as |ψx 〉 =∑
π̃∈Ht,n xπ̃ |Rπ̃ 〉

√∑
π̃ ,σ̃∈Ht,n xπ̃ xσ̃ 〈Rπ̃ |Rσ̃ 〉

. Let |x〉 be a vector with entries corresponding to xπ̃1,...,π̃
√
n
.

Similarly, a typical vector inside ṼC canbe represented as |ψy〉 =
∑

π̃∈Ht,n yπ̃ |Rπ̃ 〉
√∑

π̃ ,σ̃∈Ht,n yπ̃ yσ̃ 〈Cπ̃ |Cσ̃ 〉
.

Also represent the corresponding vector |y〉 similarly.
Let J̃ and J̃ ′ be the Gram matrices corresponding to the basis described for ṼR and

ṼC , respectively. Then:

〈ψx |ψy〉 =
∑

π̃ ,σ̃∈Ht,n
xπ̃ 〈Rπ̃ |Rσ̃ 〉 yσ̃

√∑
π̃ ,σ̃∈Ht,n

xπ̃ xσ̃ 〈Rπ̃ |Rσ̃ 〉 ·
√∑

π̃ ,σ̃∈Ht,n
yπ̃ yσ̃ 〈Cπ̃ |Cσ̃ 〉

= 〈x | Q |y〉
√

〈x | J̃ |x〉.
√

〈y| J̃ ′ |y〉
.

(121)
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To see the equality we go through the below calculation.

cosφ = sup
||x ||2=1
||y||2=1

〈x | Q |y〉
√

〈x | J̃ |x〉.
√

〈y| J̃ ′ |y〉
≤ cd,n,t . sup

||x ||2=1
||y||2=1

〈x | Q |y〉

≤ cd,n,t . sup
||x ||2=1
||y||2=1

√
〈x | Q†Q |x〉 . ||y||2

≤ cd,n,t . ||Q||∞. (122)

For the second line we used the following proposition

Proposition 53. If J̃ is the Gram matrix for the basis states, |R·〉 or |C·〉 in (107) and
(108) for ṼR or ṼR, then for any |x〉 with ||x ||2 = 1:

〈x | J̃ |x〉 ≥
(

1−
√
nt (t − 1)

2d
√
n

)

= 1

cd,n,t
. (123)

For the third line we used Cauchy-Schwartz. ��
In order to prove Proposition 50 we need the following tool. If  x(1),  x2, . . . ,  xK are

d-dimensional vectors the multi-product of them is defined to be:

multiprod(  x1,  x2, . . . ,  xK ) :=
d∑

i=1

x1i x2i . . . xKi . (124)

Proposition 54 (Majorization). Let  x1,  x2, . . . ,  xK be d-dimensional, non-negative and
real vectors. If  x↓i is  xi in descending order, then:

multiprod ( x1,  x2, . . . ,  xK ) ≤ multiprod( x↓1 ,  x↓2 , . . . ,  x↓K ). (125)

Proof. The K = 2 version of claim is that 〈 x(1),  x2〉 ≤ 〈 x(1)↓,  x↓2 〉. This is a standard
fact. To prove it, observe that WLOG we can assume  x(1) =  x(1)↓. Then for any out-
of-order pair x2i < x2 j with i < j , we will increase 〈 x(1),  x2〉 by swapping x2i and x2 j .
Applying this repeatedly we end with 〈 x(1)↓,  x↓2 〉.

This same argument works if we replace the inner product with a sum over the first
d ′ ≤ d terms, i.e.

∑d ′
i=1 x1i x2i . Thus the same argument shows that

 x1 ◦  x2   x↓1 ◦  x↓2 . (126)

The proposition now follows by induction on K . ��
We also need the following upper bound:
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Proposition 55. Let e ∈ St be the identity permutation. Define ft : R>1 → R>1 with
the map:

ft (α) =
∑

σ∈St

1

αdist(e,σ )
, (127)

for α > 1. Then as long as 2t2 ≤ α

ft (α) ≤ 1 +
2t2

α
. (128)

For σ1, . . . , σM ∈ St define the function:

h(D, t, σ1, . . . , σM ) :=
∑

π∈St

1

Ddist(π,σ1)+...+dist(π,σM )
. (129)

Proposition 56. Let (σ1, . . . , σM ) ∈ H be permutations that not all of them are equal
to each other then:

h(D, t, σ1, . . . , σM ) ≤ 1

D
+

1

DM−1 +
2t2

DM
. (130)

Proof of Proposition 50. In or to prove this, we show that the sum of terms in each row
is a small number. Then use Lemma 47 to obtain the result. Consider the particular row
(σ1, . . . , σsqrtn) ∈ H , then the sum of terms in each row is:

∑

(π1,...,π
√
n)∈H

〈Rπ1,...,π
√
n
|Cσ1,...,σ

√
n
〉 =

∑

π1,...,π
√
n∈St

〈Rπ1,...,π
√
n
|Cσ1,...,σ

√
n
〉

−
∑

π∈St
〈Rπ,...,π |Cσ1,...,σ

√
n
〉 . (131)

The lower bound:
∑

π∈St
〈Rπ,...,π |Cσ1,...,σ

√
n
〉 ≥ 0, (132)

is good enough. The goal is to find a good upper bound for S := ∑
π1,...,π

√
n∈St〈Rπ1,...,π

√
n
|Cσ1,...,σ

√
n
〉. But S simplifies to:

S =
⎛

⎝
∑

π∈St

1

ddist(π,σ1)+...+dist(π,σ√
n)

⎞

⎠

√
n

= h(d, t, σ1, . . . , σ√
n)

√
n . (133)

Now we use Proposition 56 and find the upper bound:

S ≤
(
1

d
+

1

d
√
n−1

+
2t2

d
√
n

)√
n

. (134)

Which is a global maximum and in turn is a bound on the ∞-norm. ��
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Proof of Proposition 53. We will prove the statement for the row space, and the same
thingworks for the column space. First, for any normal vector |x〉, 〈x | J̃R |x〉 ≥ λmin( J̃R).
Let J (

√
n) be the Grammatrix for the Haar subspace on one row of the grid. The entries

of J (
√
n) are according to:

J (
√
n)π,σ :=

(
1

ddist(π,σ )

)√
n

=
(

1

d
√
n

)dist(π,σ )

. (135)

Let P be the projector that projects out the subspace spanned by {|Rπ,...,π 〉 : π ∈ St }.
Then J̃ = P J (

√
n)⊗

√
n P†. We first need the following proposition

Proposition 57. If J is the Gram matrix of the vector space spanned by {|ψπ 〉⊗m : π ∈
St }., then:

1− t (t − 1)

2dm
≤ λmin(J ) (136)

Using this proposition λmin(J (
√
n)) ≥ 1− t (t−1)

2d
√
n , and therefore λmin(J (

√
n)⊗

√
n) ≥

(1 − t (t−1)
2d

√
n )

√
n ≥ 1 −

√
nt (t−1)
2d

√
n . This implies that J (

√
n)⊗

√
n # I (1 −

√
nt (t−1)
2d

√
n ), and

therefore J̃ # PP†(1 −
√
nt (t−1)
2d

√
n ). This means that restricted to ṼR the minimum

eigenvalue of J̃R is at least (1−
√
nt (t−1)
2d

√
n ).

��
Proof of Proposition 56. Let C = {σ1, . . . , σM }. Then h = h1 + h2, where:

h1 =
∑

π∈C

1

Ddist(π,σ1)+...+dist(π,σM )
, (137)

and,

h2 =
∑

π∈St/C

1

Ddist(π,σ1)+...+dist(π,σM )
. (138)

We then find useful upper bounds for h1 and h2 separately. Suppose that C has distinct
elements {τ1, . . . , τK } with τ1 appearing μ1 times, τ2 appearing μ2 times, etc. Define

S =
{
(μ1, . . . , μK ) ∈ Z

K≥0 : μ1 + . . . + μK = M,max(i)μi < M
}

(139)

P =
{
(μ1, . . . , μK ) ∈ S : ∃i, j, μi = M − 1 & μ j = 1

}
(140)

Now we can bound h1 by

h1 =
∑

π∈C

1

Dμ1dist(π,τ1)+...+μK dist(π,τK )

≤ max
(μ1,...,μK )∈S

Dμ1 + . . . + DμK

DM

≤ max
(μ1,...,μK )∈conv(P)

Dμ1 + . . . + DμK

DM
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≤ DM−1 + D

DM

= 1

D
+

1

DM−1 . (141)

Here conv denotes the convexhull and (141) uses the fact that K ≥ 2 sinceσ1, . . . , σM
are assumes to be not all equal. To justify (141), observe that f (μ) = Dμ1 + . . . + DμK

is a convex function and the maximization is over a convex set whose extreme points
are P . Therefore the maximum is achieved at a point in P .

In order to find a bound on h2, for each σ ∈ C we will define the following vector
 Xσ whose entries are labeled by π ∈ St .

 Xσ,π =
{
0 if π ∈ C
D−dist(σ,π) if π �∈ C

(142)

Then h2 = multiprod(  Xσ1 , . . . ,
 XσM ). We can use Proposition 54 to show that

h2 = multiprod(  Xσ1 , . . . ,
 XσM ) ≤ multiprod(  X↓

σ1
, . . . ,  X↓

σM
). (143)

We will also define  Xe (where e denotes the identity element of St ) by

 Xe,π = D−dist(e,π). (144)

Observe that  Xσ can be obtained from  Xe by zeroing out the elements in locations
corresponding to C and reordering the remaining elements. Thus for each σ ∈ C

 X↓
σ   X↓

e . (145)

We use Proposition 54 again to bound

h2 ≤ multiprod(  Xe, . . .  Xe︸ ︷︷ ︸
M times

) = ft (D
−M ) − 1 ≤ 2t2

DM
. (146)

��

3.6.2. Extended quasi-orthogonality of permutation operators with application to ran-
dom circuits on D-dimensional lattices. In this section we prove lemmas 40, 41, 42 and
43. Before getting to the proof we go over some notation and definitions.

Let Rows(D, n) := {r1, . . . , rn1−1/D } be the set of rows in the D-th direction and let
VRows(D,n) be the subspace GRows(D,n) projects onto. Then VRows(D,n) = VHaar(r1) ⊗
. . . ⊗ VHaar(rn1−1/D ). A spanning set for VRows(D,n) is HRows(D,n) := {|Dσ1,...,σn1−1/D 〉 :
σ1, . . . , σn1−1/D ∈ St }. Here VHaar(S) is the Haar subspace (like VHaar) on a subset of
qudits S. |Dσ1,...,σn1/D

〉 is the basis state representing maximally entangled states for
each qudit such that the qudits in the first row are permuted by π1, the qudits in the
second row are permuted by π2, and so on. In other words:

|Dσ1,...,σn1−1/D 〉 =
⊗

ri∈Rows(D,n)

⊗

v∈ri
|ψσi 〉v . (147)
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We view the D dimensional lattice as n1/D D − 1-dimensional sub-lattices, each
composed of n1−1/D qudits. More concretely, the full lattice is the set A = [n1/D]D . For
1 ≤ β ≤ n1/D , denote pβ = {(x(1), . . . , xRows(D,n)) ∈ A : xRows(D,n) = β}. We denote
the set of these lattices by Planes(D) := {p1, . . . , pn1−1/D }. (This terminology is chosen
to match the D = 3 case but the arguments here apply to any D > 2.) These lattices
are connected to each other by the rows in Rows(D, n). VPlanes(D) = VHaar(p1) ⊗ . . . ⊗
VHaar(pn1−1/D ) is the span of HPlanes(D) := {|Fπ1,...,πn1−1/D 〉 : π1, . . . , πn1−1/D ∈ St }.
Here |Fπ1,...,πn1−1/D 〉 is the basis state of maximally entangled states for each qudit, such
that the qudits in p1 are permuted by π1, qudits in p2 are permuted by π2 and so on. In
other words:

|Fπ1,...,πn1/D
〉 =

⊗

pi∈Planes(D)

⊗

v∈pi

|ψπi 〉v . (148)

Then GPlanes(D) is the projector onto VPlanes(D).
Let ṼPlanes(D) := VPlanes(D) ∩ V⊥

Haar and ṼRows(D,n) =: VRows(D,n) ∩ V⊥
Haar be respec-

tively the orthogonal complements of VPlanes(D) and VRows(D,n) with respect to VHaar.
Also define H̃Rows(D,n) and H̃Planes(D) the same as HRows(D,n) and HPlanes(D), exclud-
ing basis marked with permutations that are all equal to each other. For example,
Fπ,...,π /∈ H̃Planes(D). Define the overlap matrix [Q]gh := 〈g|h〉, for g ∈ HPlanes(D)

and h ∈ HRows(D,n). Let J̃Planes(D) and J̃Rows(D,n) be the Gram matrices correspond-
ing to H̃Planes(D) and H̃Rows(D,n), respectively. In other words, [ J̃D]g,h = 〈g|h〉 for
g, h ∈ H̃Rows(D,n) and [ ˜JPlanes(D)]g,h = 〈g|h〉 for g, h ∈ H̃Planes(D).

We first prove Lemma 40, which basically states that the composition of GRows(D,n)

and FRows(D,n) is very close to G(t)
Haar, or equivalently, ṼRows(D,n) and ṼPlanes(D) are

almost orthogonal:

Lemma (Restatement of Lemma 40). Let D = O(ln n/ ln ln n) with small enough
constant factor, then ‖GPlanes(D)GRows(D,n) − GHaar‖∞ ≤ 1/d�(n1−1/D).

Proof. The proof is very similar to the proof of Lemma 39. In particular, we need
generalized versions of propositions 48, 49 and 50. The generalization of proposi-
tion 48 states that cos2(�(ṼPlanes(D), ṼRows(D,n))) equals the largest singular value of
FDGRows(D,n) − GHaar. Proposition 49 generalizes to the statement that the cosine of
this angle is equal to

1
√

λmin( J̃Planes(D))λmin( J̃Rows(D,n))

‖Q‖∞ ≤ cD,d,n,t‖Q‖∞. (149)

Where 1/cD,d,n,t is a lower bound on
√

λmin( J̃Planes(D))λmin( J̃Rows(D,n)).
We first bound ‖Q‖∞. Using Lemma 47

‖Q‖∞ ≤
√

max
h

∑

g

Qgh max
g

∑

h

Qgh =: ω. (150)

Similar to the calculations in Sect. 3.6.1

QFπ1,...,π
n1−1/D ;Dσ1,...,σ

n1/D
= 1

d
∑n1−1/D

i=1
∑n1/D

j=1 dist(πi ,σ j )
. (151)
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Let α (β) be respectively the set of permutations σ1, . . . , σn1/D (π1, . . . , πn1−1/D ) that
are not all equal. We compute

max
π1,...,πn1−1/D∈β

∑

σ1,...,σn1/D

1

d
∑n1−1/D

i=1
∑n1/D

j=1 dist(πi ,σ j )

= max
π1,...,πn1−1/D∈β

(
∑

σ

1

d
∑n1−1/D

i=1 dist(πi ,σ )
)n

1/D
(152)

= max
π1,...,πn1−1/D∈β

h(dn
1/D

, t, π1, . . . , πn1−1/D ) (153)

≤
(
1

d
+

1

dn1−1/D−1
+

2t2

dn1−1/D

)n1/D

(154)

= 1

d�(n1−1/D)
. (155)

and

max
σ1,...,πn1/D∈α

∑

π1,...,πn1−1/D

1

d
∑n1−1/D

i=1
∑n1/D

j=1 dist(πi ,σ j )

= max
σ1,...,σn1/D∈α

(
∑

π

1

d
∑n1/D

j=1 dist(π,σ j )
)n

1/D
(156)

= max
σ1,...,σn1/D∈α

h(dn
1−1/D

, t, σ1, . . . , σn1/D ) (157)

≤ ( 1

d
+

1

dn1/D−1
+

2t2

dn1/D
)n1−1/D

(158)

= 1

d�(n1/D)
. (159)

Hence

ω = 1

d�(n1−1/D)
. (160)

Next, we have to show that cD,d,n,t is not too large. Using exactly the same steps in
the proof of Proposition 53 we can show that

λmin( J̃Planes(D)) ≥ 1− n1/Dt (t − 1)

2dn1−1/D , (161)

and

λmin( J̃Rows(D,n)) ≥ 1− n1−1/Dt (t − 1)

2dn1/D
. (162)

��
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Next, we use this result to prove Lemma 41. Recall the expression G̃n,D,c from
Definition 23

G̃n,D,c = (G̃⊗n1/D

n1−1/D,D−1,c
GRows(D,n)G̃

⊗n1/D

n1−1/D ,D−1,c
)c, (163)

where c is a constant depending on D and t , but independent of n. Note that G̃n,D,c =
G̃†

n,D,c if G̃n1−1/D ,D−1,c = G̃†
n1−1/D,D−1,c

. Also let Ĝn,D,c := GRows(D,n)G̃
⊗n1/D

n1−1/D ,D−1,c

GRows(D,n). Hence G̃n,D,c = G̃⊗n1/D

n1−1/D ,D−1,c
(Ĝn,D,c)

c−1G̃⊗n1/D

n1−1/D ,D−1,c
.

Lemma (Restatement of Lemma 41). Let |x〉 and |y〉 be two computational basis states.
For small enough D = O(ln n/ ln ln n) and large enough c, | 〈x |G̃n,D,c − GHaar|y〉 | ≤
ε
dnt for some ε = 1/d�(n1/D).

Proof. The proof is by induction. The base case D = 2 is by Lemma 39. We assume
that for any large enough m, ‖Ĝm,D−1,c − GHaar‖∞ ≤ 1

dO(m1/D−1)
, and we show that

‖Ĝn,D,c − GHaar‖∞ ≤ 1
d�(n1/D )

.

∥
∥
∥Ĝn,D,c − GHaar

∥
∥
∥∞ ≤

∥
∥
∥
∥GRows(D,n)G̃

⊗n1/D

n1−1/D ,D−1,c
GRows(D,n) − GHaar

∥
∥
∥
∥∞

(164)

≤
∥
∥
∥
∥G̃

⊗n1/D

n1−1/D ,D−1,c
GRows(D,n) − GHaar

∥
∥
∥
∥∞

(165)

=
∥
∥
∥(G̃⊗n1/D

n1−1/D ,D−1,c
− GPlanes(D))GRows(D,n) (166)

+GPlanes(D)GRows(D,n) − GHaar

∥
∥
∥∞ (167)

≤
∥
∥
∥(G̃⊗n1/D

n1−1/D ,D−1,c
− GPlanes(D))GRows(D,n)

∥
∥
∥∞ (168)

+
∥
∥
∥GPlanes(D)GRows(D,n) − GHaar

∥
∥
∥∞ (169)

≤
∥
∥
∥G̃⊗n1/D

n1−1/D ,D−1,c
− GPlanes(D)

∥
∥
∥∞

+
∥
∥
∥GPlanes(D)GRows(D,n) − GHaar

∥
∥
∥∞ (170)

≤ n1/D
∥
∥
∥G̃n1−1/D ,D−1,c − GHaar(p1)

∥
∥
∥∞

+
∥
∥
∥GPlanes(D)GRows(D,n) − GHaar

∥
∥
∥∞ (171)

≤ n1/D
1

dO(n(1−1/D)·1/(D−1))
+ 1/d�(n1−1/D) (172)

≤ n1/D

d�(n1/D)
+ 1/d�(n1−1/D) (173)

≤ 1

d�(n1/D)
. (174)

��
Lemma (Restatement of Lemma 41). Let |x〉 and |y〉 be two computational basis states.
For small enough D = O(ln n/ ln ln n) and large enough c, | 〈x |G̃n,D,c − GHaar|y〉 | ≤
ε
dnt for some ε = 1/d�(n1/D).
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Proof. The proof is by induction. Our induction hypothesis is
maxx | 〈x |(G̃n,D,c − GHaar)

2|x〉 | ≤ ε
dnt . First, we show this bound (for sub-lattices

of dimension D − 1) implies the statement of this theorem:

| 〈x |G̃n,D,c − GHaar|y〉 | = | 〈x |G̃⊗n1/D

n1−1/D ,D−1,c
(G̃ ′c−1

n,D,c − GHaar)G̃
⊗n1/D

n1−1/D ,D−1,c
|y〉 |

≤
∥
∥
∥Ĝn,D,c − GHaar

∥
∥
∥
c−1

∞

∥
∥
∥G̃⊗n1/D

n1−1/D ,D−1,c
|y〉 〈x | G̃⊗n1/D

n1−1/D ,D−1,c

∥
∥
∥
1

≤
∥
∥
∥Ĝn,D,c − GHaar

∥
∥
∥
c−1

∞

× max
x,y∈[d]2tn1−1/D

∥
∥
∥G̃n1−1/D ,D−1,c |y〉 〈x | G̃n1−1/D ,D−1,c

∥
∥
∥
n1/D

1

≤ 1

dO(c·n1/D )
max

x,y∈[d]2tn1−1/D

∥
∥
∥G̃n1−1/D ,D−1,c |y〉 〈x | G̃n1−1/D ,D−1,c

∥
∥
∥
n1/D

1

≤ 1

dO(c·n1/D )
max

x∈[d]2tn1−1/D
| 〈x | G̃2

n1−1/D ,D−1,c |x〉 |n
1/D

≤ 1

dO(c·n1/D )

× max
x∈[d]2tn1−1/D

(〈x |GHaar|x〉 + | 〈x | (G̃n1−1/D ,D−1,c − GH )2 |x〉 |)n1/D

≤ 1

dO(c·n1/D )

⎛

⎝ max
x∈[d]2tn1−1/D

t ! + 1/dn
(1−1/D)· 1

D−1

dn1−1/Dt

⎞

⎠

n1/D

≤ ε

dnt
. (175)

Next, assumming maxx | 〈x |(G̃n1−1/D ,D−1,c − GHaar)
2|x〉 | ≤ ε

dn1−1/Dt
, we show

maxx | 〈x |(G̃n,D,c − GHaar)
2|x〉 | ≤ ε

dnt . The proof is very similar to the above cal-
culation:

| 〈x |(G̃n,D,c − GHaar)
2|y〉 | = 〈x | |G̃⊗n1/D

n1−1/D,D−1,c
(Ĝc−1

n,D,c − GHaar)G̃
⊗n1/D

n1−1/D,D−1,c

×(Ĝc−1
n,D,c − GHaar)G̃

⊗n1/D

n1−1/D,D−1,c
| |y〉

≤
∥
∥
∥(Ĝc−1

n,D,c − GHaar)G̃
⊗n1/D

n1−1/D,D−1,c
(Ĝc−1

n,D,c − GHaar)
∥
∥
∥∞

×
∥
∥
∥G̃⊗n1/D

n1−1/D,D−1,c
|y〉 〈x | G̃⊗n1/D

n1−1/D,D−1,c

∥
∥
∥
1

≤
∥
∥
∥Ĝc−1

n,D,c − GHaar

∥
∥
∥∞

× max
x,y∈[d]2tn1−1/D

∥
∥
∥G̃n1−1/D ,D−1,c |y〉 〈x | G̃n1−1/D,D−1,c

∥
∥
∥
n1/D

1

≤ ε

dnt
. (176)

In the third line we have used Lemma 26. We skip the calculations after the third line
because it is similar to the calculations of (175). ��

Next, we prove Lemma 43. Lemma 42 is a special case of this lemma and we skip
its proof.
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Lemma (Restatement of Lemma 43). For small enough D = O(ln n/ ln ln n) and large
enough c,

∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c − G(t)
Haar

]∥
∥
∥� = t O(tn1−1/D)

d�(cn1−1/D)
. (177)

Proof. As discussed in Sect. 2.3, the superoperator Ch[G(t)
Haar] can be written in the

following canonical form

Ch[G(t)
Haar][X ] =

∑

π∈St
Tr(V (π)X)Wg(π). (178)

Using the notation defined in Sect. 2.3, X [Ch[G(t)
Haar]] = G(t)

Haar and

(
GRows(D,n)GPlanes(D)GRows(D,n)

)c − G(t)
Haar =:

∑

a,b∈S×n1−1/D
t

|Da〉�a,b 〈Db| .(179)

Using the definition of � we can write

Ch
[
(GRows(D,n)GPlanes(D)GRows(D,n))

c − G(t)
Haar

]

= Ch

⎡

⎢
⎣

∑

a,b∈S×n1−1/D
t

|Da〉�a,b 〈Db|
⎤

⎥
⎦ =

∑

a,b∈S×n1−1/D
t

1

dnt
V (a)�a,bV

∗(b).

(180)

Therefore

‖Ch[(GRows(D,n)GPlanes(D)GRows(D,n))
c − G(t)

Haar]‖�
≤

∑

a,b∈S×n1−1/D
t

|�a,b|‖ 1

dnt
V (a)V ∗(b)‖�

≤
∑

a,b∈S×n1−1/D
t

|�a,b| ≤ t O(n1−1/D)‖�‖c∞. (181)

Here we have used ‖ 1
dnt V (a)V ∗(b)‖� ≤ 1. This is because V (a)V ∗(b) is a tensor

product of n1−1/D superoperators, i.e., ⊗i V (ai )V ∗(bi ), and hence ‖V (a)V ∗(b)‖� =∏
i ‖V (ai )V ∗(bi )‖�. It is enough to show that each of ‖V (ai )V ∗(bi )‖� is bounded by

1.

1

dnt
∥
∥V (a1)V (b1)

∗∥∥� = 1

dnt
sup

X :‖X‖1=1

∥
∥
∥
∥TrA

(V (a1)A ⊗ idB XAB) ⊗ VA(b1)

∥
∥
∥
∥
1

= sup
X :‖X‖1=1

∥
∥
∥Tr

A
(V (a1)A ⊗ idB XAB)

∥
∥
∥
1
· 1

dnt

∥
∥
∥VA(b1)

∥
∥
∥
1

≤ sup
X :‖X‖1=1

∥
∥
∥V(a1) ⊗ id XAB

∥
∥
∥
1
· 1

= sup
X :‖X‖1=1

‖XAB‖1
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≤ 1. (182)

It is enough to compute ‖�‖∞. Let |a〉 be an orthonormal basis labeled according to
the indices of �. Define

T :=
∑

a,b

√
�ab |Da〉 〈b| . (183)

T T † = ∑
a,b |Da〉�a,b 〈Db| and T †T = ∑

a,b |a〉 (
√

�J
√

�)ab 〈b|, where [J ]a,b =
〈Da |Db〉. First of all, using Lemma 25 T T † and T †T have the same spectra. Hence

‖
∑

a,b

|Da〉�a,b 〈Db| ‖∞ = ‖T T †‖∞ = ‖T †T ‖∞ = ‖√�J
√

�‖∞ (184)

Therefore

‖�‖∞ ≤
∥
∥
∥
∑

a,b

|Da〉�a,b 〈Db|
∥
∥
∥∞ + ‖√�(J − id)

√
�‖∞

≤
∥
∥
∥
(
GRows(D,n)GPlanes(D)GRows(D,n)

)c − G(t)
Haar

∥
∥
∥∞ + ‖√�‖∞‖J − id ‖∞‖√�‖∞

=
∥
∥
∥
(
GRows(D,n)GPlanes(D)GRows(D,n)

)c − G(t)
Haar

∥
∥
∥∞ + ‖�‖∞‖J − id ‖∞ (185)

As a result

‖�‖∞ ≤
∥
∥
∥(GRows(D,n)GPlanes(D)GRows(D,n))

c − G(t)
Haar

∥
∥
∥∞

1− ‖J − id ‖∞ . (186)

In Lemma 40 we showed that ‖(GRows(D,n)GColumns(D)GRows(D,n))
c − G(t)

Haar‖∞ ≤
‖GColumns(D)GRows(D,n) − G(t)

Haar‖c∞ = 1/dO(cn1−1/D). It is enough to show that ‖J −
id ‖∞ is small. But J is tensor product of n1−1/D Gram matrices J1 such that ‖J1 −
id ‖∞ = O(t2)

dn1/D
(see Lemma 57), hence ‖J − id ‖∞ = n1−1/D O(t2)

dn1/D
which is bounded

by 1/2 for large enough n and constant t and D. As a result, ‖�‖∞ = 1/dO(cn1−1/D).
Combining this with (181) we find that
∥
∥
∥Ch

[
(GRows(D,n)GPlanes(D)GRows(D,n))

c − G(t)
Haar

]∥
∥
∥� ≤ t O(tn1−1/D)1/dO(cn1−1/D).

(187)

��

4. O(n ln2 n)-Size Random Circuits with Long-Range Gates Output
Anti-concentrated Distributions

Recall that for a circuit C , Coll(C) is the collision probability,
∑

x∈{0,1}n
| 〈x |C |0〉 |4, (188)

of C in the computational basis. Also recall that μ
(CG)
t is the distribution over random

circuits obtained from application of t random long-range gates. Unlike the previous
section where we used t to denote the degree of a monomial, here we use t for time, i.e.
the number of time-steps in a random circuit.

The goal of this section is to prove the following theorem:
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Theorem (Restatement of Theorem 13). There exists a c such that when s > cn ln2 n,

E
C∼μCG

s

Coll(C) ≤ 29

2n
. (189)

Moreover if t ≤ 1
3c′ n ln n for some large enough c′, then

E
C∼μCG

s

Coll(C) ≥ 1.6n
1−1/c′

2n
. (190)

Our strategy is to relate the convergence of the expected collision probability to
a classical Markov chain mixing problem. In Sect. 4.1 we go over the notation and
definitions we use in the proof of this theorem. In Sect. 4.2 we prove the theorem. This
proof is based on several lemmas which we will prove in sections 4.3 and 4.5.

4.1. Background: random circuits with long-range gates and Markov chains. Previous
work [17,18,34,51] demonstrates that if we only care about the second moment of
μ

(CG)
t , then the corresponding moment superoperator is related to a certain classical

Markov chain. In particular the application of the moment superoperator on the basis
P2n := {

σp ⊗ σp : p ∈ {0, 1, 2, 3}n} is a classical Markov chain. We now describe this
connection.

We first start with some basic properties of moment superoperators.

Fact 58. Let μ and μ1, . . . , μK be distributions over circuits.

1. If μ is a convex combination of μ1, . . . , μK then Ch
[
G(2)

μ

]
is the same convex

combination of Ch
[
G(2)

μ1

]
, . . . ,Ch

[
G(2)

μK

]
.

2. If μ is the composition of a circuit from μ1 with a circuit with μ2, then Ch
[
G(2)

μ

]
=

Ch
[
G(2)

μ2

]
◦ Ch

[
G(2)

μ1

]
.

Recall that Ch
[
G(2)

i, j

]
denotes Ch

[
G(2)

U(4)

]
applied to qubits i and j . Since μCG

1 is a

convex combination of two-qubit random U(4) gates, the first point above implies that

Ch

[

G(2)
μCG
1

]

= 2

n(n − 1)

∑

i< j

Ch
[
G(2)

i, j

]
(191)

and since μCG
t is t times compositions of μCG

1 with itself, the second item implies that

Ch
[
G(2)

μCG
t

]
=
⎛

⎝ 2

n(n − 1)

∑

i< j

Ch
[
G(2)

i, j

]
⎞

⎠

t

. (192)

The moment superoperator Ch[G(2)
U(4)] has the following simple action on the Pauli

basis:

Ch[G(2)
U(4)](σp ⊗ σq ⊗ σa ⊗ σb)
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=

⎧
⎪⎪⎨

⎪⎪⎩

σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 pq = ab = 00
1
15

∑
c,d∈{0,1,2,3}2

cd �=00

σc ⊗ σd ⊗ σc ⊗ σd pq = ab �= 00

0 otherwise

(193)

In particular the action of Ch[G(2)
U(4)] on the Pauli basis P22 is a stochastic matrix, and

for any pair i �= j the action ofCh[G(2)
U(4)] on qubits i, j can be represented by a stochastic

matrix acting on P2n . Using (192) Ch
[
G(2)

μCG
s

]
on P2n is also a stochastic matrix. We can

describe this stochastic matrix as a Markov chain on state space S = {0, 1, 2, 3}n , with
St ∈ S describing the string at time t .

It turns out that the expected collision probability depends on the subset of qubits that
have been hit by the random circuit. In case a subset of size m of qubits (out of n qubits)
never have a gate applied to them, then the expected collision probability converges to
a value like ≈ 2m

2n and not 1
2n+1 . So we need to separately track which qubits have ever

been hit by a gate throughout this process. Let Ht ∈ 2[n] denote the set of qubits that
have been hit by at least one gate by time t , where 2[n] denotes the power set of [n].

Together (St , Ht ) can be modeled as the following Markov chain.

Definition 59. Let (S0, H0), (S1, H1), (S2, H2), . . . ∈ S×2[n] be the following classical
Markov chain. Initially H0 = ∅ and S0 is a random element of {0, 3}n\0n . At each time
step t we choose a random pair i, j ∈ [n] with i �= j . We let Ht+1 = Ht ∪ {i, j} so
that Ht represents the set of all indices chosen up to time t . We determine St+1 from St
using the transition rule of (193). Specifically if the i, j positions of St are both 0, then
we leave them equal to 00, and otherwise we replace them with a uniformly random
element of {01, 02, . . . , 33}.

Suppose we condition on Ht ⊇ H for some set H with |H | = n − m. Let

P(n−m)
t (k) := Pr [|St (H)| = k|Ht ⊆ H ] . (194)

We can use this notation since the RHS of (194) depends only on |H |, t, n, k and not on
H .

For a function f : [n] → R we define ‖ · ‖∗ to be the following norm

‖ f ‖∗ :=
∑

k∈[n]

| f (k)|
3k

. (195)

4.1.1. Summary of the definitions. See below for a summary of the definitions:
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Notation Definition Reference
Coll(C) The collision probability of circuit C Equation (188)

G(t)
μ Average of C⊗t,t over C ∼ μ Definition 16

G(t)
i, j Haar projector of order t on qudits i and j Definition 16

μCG
t The distribution over circuits with t random two-qubit gates Definition 24

P2
n {σp ⊗ σp : p ∈ {0, 1, 2, 3}n} Section 4.1

S0, S1, . . . Markov chain of Pauli strings Definition 59
Ht Subset of [n] that is covered according to the Markov chain of Pauli strings Definition 59
S′0, S′1, . . . Accelerated Markov chain of binary strings with decoupled coordinates Definition 82
Xt |St | Section 4.5
Yt Steps of the accelerated Markov chain Q Section 4.5

P(n−m)
t (k) Pr [|St (H)| = k|Ht ⊆ H ] for any fixed H with |H | = n − m Equation (194)

Pt (k) Pr [|St (H)| = k]. Also equal to P(n)
t (k) Equation (194)

‖ f ‖∗ ∑n
x=1

| f (x)|
3x Equation (195)

‖ f ‖ ∑n
x=1 | f (x)| 3n

x3x Proposition 74
P Transition matrix of the birth and death Markov chain Equation (229)
Q Transition matrix of the partially accelerated Markov chain Equation (234)
Tleft (right)(Y

s ) Wait time for the steps Y0, . . . , Ys on the left (right) hand side of site
5
6n Section 4.5.2

ν 3/4n Section 4.5.2
ντ Y0 exp(− τ

ν ) + ν(1− exp(− τ
ν )) Section 4.5.2

β 8(4 + c) ln n for constant c fixed in advance Section 4.5.2
x(0) ν/β Section 4.5.2
ρx

∑s
j=1 I {Y j = x} Section 4.5.2

A ∩1≤x≤x(0){Nx ≤ βx} Section 4.5.2
Ms min1≤ j≤s {Y j } Section 4.5.2
ys Short hand for (y0, . . . , ys ) Section 4.5.6
Bin(n, p) Binomial distribution on n elements each occurring with probability p
Geo(α) Geometric distribution with mean 1

α
Pois(τ ) Poisson distribution with mean τ

Unif[a, b] Continuous uniform distribution on the interval [a, b]

4.2. Proof of Theorem 13: bound on the collision probability. Before giving the proof
we state the following three main theorems. The first one relates the expected collision
probability to the ‖ · ‖∗ norm of the probability vector on the state space of the Markov
chain of weights. More concretely

Theorem 60.

E
C∼μCG

t

Coll(C) ≤ 1

2n
+

n∑

m=0

(
n

m

)

e−tm/n‖P(n−m)
t ‖∗ (196)

This result is proved in Sect. 4.3.
The second theorem shows that for t ≈ n ln2 n, ‖P(n)

t ‖∗ ≈ Constant× 1
2n+1 , where

1
2n+1 is the value of this norm at the stationary state.

Theorem 61. There exists a constant c such that if t = cn ln2 n then ‖P(m)
t ‖∗ ≤ 28

2m+1 .

This result is proved in Sect. 4.5.
The third theorem gives an exact expression for the collision probability in terms of

the Markov chain S0, S1, . . .. We use this to compute the lower bound.

Theorem 62. CollμCG
t

= 1
2n

(
1 +

∑
p,q∈{0,3}n\0n Pr[St = p|S0 = q]

)
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The proof of this expression is the same as equation (215) and is derived in section 4.3.

Proof of Theorem 13. We first prove the upper bound. There are two major steps.
Combining Theorems 60 and 61 and choosing t = cn ln2(n) we obtain

E
C∼μCG

t

Coll(C) ≤ 1

2n
+

n∑

m=0

(
n

m

)

e−tm/n 28

2n−m
(197)

≤ 1

2n
(1 + 28(1 + 2e−t/n)n) (198)

≤ 1

2n
(1 + 28(1 +

2

nc ln n
)n) (199)

≤ 29

2n + 1
. (200)

Here we need to assume n is larger than some universal constant. This can be done by
adjusting c to cover the finite set of cases where n is too small.

For the lower bound we use the expression in Theorem 62 and bound it according to

CollμCG
t

≥ 1

2n
∑

p∈{0,3}n
Pr[St = p|S0 = p], (201)

= 1

2n

n∑

k=0

∑

p∈{0,3}n :|p|H=k

Pr[St = p|S0 = p], (202)

≥ 1

2n

n∑

k=0

(
n

k

)

r tk, (203)

where

rk = 14

15
(1− k

n
)(1− k

n − 1
) +

1

15
≥ e−3 k

n , (204)

is the probability that a string of Hamming weight k does not change after one step of
the Markov chain. Assume t ≤ 1

3c′ n ln n then

CollμCG
t

≥ 1

2n

n∑

k=0

(
n

k

)

e−3 kt
n , (205)

= 1

2n
(1 + e−3t/n)n, (206)

≥ 1

2n
exp

( n1−1/c′

1 + n−1/c′
)

(207)

≥ 1

2n
· 1.6n1−1/c′

(208)

��
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4.3. Proof of Theorem 60: relating collision probability to a Markov chain. In this
section we relate the expected collision probability of a random circuit with long-range
gates to the ‖ · ‖∗ norm of the probability vector P(m)

t defined in Sect. 4.1. We will prove
several intermediate results along the way to Theorem 60.

Theorem 63 (Section 3 of [34]).We can write

Ch
[
G(2)

μCG
t

]
(σq ⊗ σq) =

∑

p∈{0,1,2,3}n
Pr[St = p|S0 = q]σp ⊗ σp. (209)

Proof of Theorem 62. We can write the expected collision probability in terms of the

moment superoperator Ch
[
G(2)

μCG
t

]
. We use the notation CollμCG

t
= EC∼μCG

t
Coll(C):

CollμCG
t

=
∑

z∈{0,1}n
E

C∼μCG
t

|〈z|C |0〉|4

=
∑

z∈{0,1}n
〈z| ⊗ 〈z| E

C∼μCG
t

(
C |0n〉 〈0n|C† ⊗ C |0n〉 〈0n|C†

)
|z〉 ⊗ |z〉

= Tr
∑

z∈{0,1}n
|z〉 〈z| ⊗ |z〉 〈z|Ch

[
G(2)

μCG
t

] (|0n〉 〈0n| ⊗ |0n〉 〈0n|) (210)

It is useful to write |0n〉 〈0n| ⊗ |0n〉 〈0n| and ∑z∈{0,1}n |z〉 〈z| ⊗ |z〉 〈z| in the Pauli
basis:

|0n〉 〈0n| ⊗ |0n〉 〈0n| = 1

4n
∑

p,q∈{0,3}n
σp ⊗ σq . (211)

∑

z∈{0,1}n
|z〉 〈z| ⊗ |z〉 〈z| = 1

2n
∑

p∈{0,3}n
σp ⊗ σp. (212)

Then the collision probability becomes:

Collν = 1

2n
+ (1− 1

2n
)
1

2n
Tr

⎛

⎝
∑

z∈{0,1}n
|z〉 〈z| ⊗ |z〉 〈z|

⎞

⎠Ch
[
G(2)

μCG
t

]

×
⎛

⎝ 1

2n − 1

∑

q∈{0,3}n\0n
σq ⊗ σq

⎞

⎠ (213)

Using Theorem 63

Ch
[
G(2)

μCG
t

]
⎛

⎝ 1

2n − 1

∑

q∈{0,3}n\0n
σq ⊗ σq

⎞

⎠

= 1

2n − 1

∑

p∈{0,1,2,3}n\0n
q∈{0,3}n\0n

Pr[St = p|S0 = q]σp ⊗ σp.

(214)
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As a result

CollμCG
t

= 1

2n

⎛

⎝1 +
∑

p,q∈{0,3}n\0n
Pr[St = p|S0 = q]

⎞

⎠ (215)

��
For a string a ∈ {0, 1, 2, 3}n and a subset A ∈ 2[n] we let a(A) denote the substring

of a restricted to A.

Lemma 64. For H ⊆ [n] and p, q ∈ {0, 1, 2, 3}n

Pr[St = p|S0 = q, Ht = H ] = 1
( |H |
|p(H)|

)
3|p(H)| Pr[|St (H)| = |p(H)|∣∣S0 = q, Ht = H ]

(216)

if q([n]\H) = p([n]\H) and 0 otherwise.

In other words, once we condition on Ht = H , the probability distribution of St (H)

depends only on its Hamming weight.

Proof. Conditioned on Ht = H the sites of [n]\H are not hit, so the event that
q([n]\H) �= p([n]\H) has zero probability. Now since the set H is covered, 1, 2 or 3
have equal probabilities of appearing at any position of the string St (H). As a result for
each non-zero bit of St (H) we get a factor of 1/3. ��

Using Theorem 62 and Lemma 64 we obtain

Corollary 65.

CollμCG
t

= 1

2n
+ (1− 1/2n)

∑

H⊆[n]
Pr[Ht = H ]

∑

1≤k≤|H |

Pr[|St (H)| = k
∣
∣Ht = H ]

3k
.

(217)

Proof. Expanding Theorem 62 we have

Coll
μCG
t

= 1

2n

⎛

⎝1 +
∑

p,q∈{0,3}n\0n
Pr[St = p|S0 = q]

⎞

⎠ (218)

= 1

2n

⎛

⎝1 +
∑

H⊆[n]

∑

p,q∈{0,3}n\0n
Pr[Ht = H |S0 = q] Pr[St = p|S0 = q, Ht = H ]

⎞

⎠

(219)

= 1

2n

⎛

⎝1 +
∑

H⊆[n]

∑

p,q∈{0,3}n\0n
Pr[Ht = H ]Pr[St = p|S0 = q, Ht = H ]

⎞

⎠ . (220)

Using Lemma 64 in the above we have

= 1

2n
+

1

2n
∑

H⊆[n]
Pr[Ht = H ]

∑

p,q∈{0,3}n\0n
Pr[St = p|S0 = q, Ht = H ], (221)
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= 1

2n
+

1

2n
∑

H⊆[n]
Pr[Ht = H ]

∑

p,q∈{0,3}n\0n
p([n]\H)=q([n]\H)

× 1
( |H |
|p(H)|

)
3|p(H)| Pr[|St (H)| = |p(H)|∣∣S0 = q, Ht = H ], (222)

= 1

2n
+

1

2n
∑

H⊆[n]
Pr[Ht = H ]

∑

q∈{0,3}n

∑

1≤k≤|H |

∑

p∈{0,3}n\0n
p([n]\H)=q([n]\H)

|p(H)|=k

× 1
( |H |
|p(H)|

)
3|p(H)| Pr[|St (H)| = |p(H)|∣∣S0 = q, Ht = H ], (223)

= 1

2n
+

1

2n
∑

H⊆[n]
Pr[Ht = H ]

∑

1≤k≤|H |

∑

q∈{0,3}n

∑

p∈{0,3}n\0n
p([n]\H)=q([n]\H)

|p(H)|=k

× 1
(|H |

k

)
3k

Pr[|St (H)| = k
∣
∣S0 = q, Ht = H ], (224)

= 1

2n
+

1

2n
∑

H⊆[n]
Pr[Ht = H ]

∑

1≤k≤|H |

∑

q∈{0,3}n

× 1

3k
Pr[|St (H)| = k

∣
∣S0 = q, Ht = H ], (225)

= 1

2n
+ (1− 1/2n)

∑

H⊆[n]
Pr[Ht = H ]

∑

1≤k≤|H |

Pr[|St (H)| = k
∣
∣Ht = H ]

3k
. (226)

��
The standard coupon-collector bound is

Lemma 66 (coupon collector). Let H ⊆ [n]. Then Pr[Ht ⊆ H ] ≤ e−(n−|H |)t/n.

Proof. Let E (i)
H be the event that at step i of the circuit a random gate lands com-

pletely inside the set H . Then Pr[E (i)
H ] = |H |(|H |−1)

n(n−1) . Now Pr[Ht ⊆ H ] = Pr[E (i)
H ]t =

( |H |(|H |−1)
n(n−1)

)t ≤ ( |H |
n

)t ≤ e−(n−|H |)t/n . ��
We now have all the pieces to prove Theorem 60.

Proof of Theorem 60. Using corollary 65 the total collision probability is

CollμCG
t

= 1

2n
+ (1− 1/2n)

∑

H⊆[n]
Pr[Ht = H ]

n∑

k=1

Pr[|St (H)| = k|Ht = H ]
3k

= 1

2n
+ (1− 1/2n)

∑

H⊆[n]

n∑

k=1

Pr[|St (H)| = k, Ht = H ]
3k

≤ 1

2n
+ (1− 1/2n)

∑

H⊆[n]

n∑

k=1

Pr[|St (H)| = k, Ht ⊆ H ]
3k
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≤ 1

2n
+
∑

H⊆[n]
Pr[Ht ⊆ H ]

n∑

k=1

Pr[|St (H)| = k|Ht ⊆ H ]
3k

≤ 1

2n
+
∑

H⊆[n]
Pr[Ht ⊆ H ]

n∑

k=1

P(|H |)
t (k)

3k

≤ 1

2n
+
∑

H⊆[n]
e−(n−|H |)t/n∑

k

P(|H |)
t (k)/3k Lemma 66

= 1

2n
+

1

(1− ε)

n∑

m=0

(
n

m

)

e−mt/n‖P(n−m)
t ‖∗. setting m = n − |H | (227)

��

4.4. Proof of Proposition 67: collision probability is non-increasing in time. When we
try to recover the original chain from the accelerated chain we find that s steps of the
accelerated chain typically correspond to t = O(s) steps of the original chain, but with
a significant variance. This means that our bounds on the collision probability of the
accelerated chain translate only into bounds for a distribution of times of running the
original chain. This issue can be addressed using the following fact.

Proposition 67. EC∼μCG
t
Coll(C) is a non-increasing function of t .

Proof. Ch[G
μ

(CG)
1

] corresponds to an average of n(n−1)/2 projectors (using theHilbert-

Schmidt inner product). Hence it is a psd matrix with maximum eigenvalue ≤ 1. Let
α =∑

p∈{0,3}n σp ⊗ σp. (210) may be written as

∑

z∈{0,1}n
Tr
(
|z〉 〈z| ⊗ |z〉 〈z|Ch

[
G(2)

μCG
t

] (|0n〉 〈0n| ⊗ |0n〉 〈0n|)
)

= Tr
( α

2n
Ch
[
G(2)

μCG
t

] (|0n〉 〈0n| ⊗ |0n〉 〈0n|)
)

(228)

Using (212), terms of the form σp ⊗ σq for p �= q in the decomposition of |0n〉 〈0n| ⊗
|0n〉 〈0n| do not contribute to the collision probability. Therefore using this observation
and (228), the collision probability after t steps is proportional to Tr(αCh[G

μ
(CG)
1

]tα).

Since Ch[G
μ

(CG)
1

] has all eigenvalues between 0 and 1, we conclude that the collision

probability after t steps cannot increase in t . ��

This argument relied on the starting state being |0n〉. There exist starting states, such
as |+〉⊗n , for which the collision probability increases when random gates are applied.
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4.5. Proof of Theorem 61: the Markov chain analysis. Consider the following birth-
and-death Markov chain on the state space {0, 1, 2, . . . , n}.

P(k, l) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 2k(3n − 2k − 1)

5n(n − 1)
l = k

2k(k − 1)

5n(n − 1)
l = k − 1

6k(n − k)

5n(n − 1)
l = k + 1

0 otherwise

(229)

This Markov chain is reducible in general, however if we restrict the state space to
{0} or {1, 2, . . . , n} it is irreducible. Consider the following initial distribution over the
state space {1, 2, . . . , n}:

P(n)
0 (k) =

(n
k

)

2n − 1
k ∈ {1, 2, . . . , n} (230)

We claim that

Lemma 68.

P(n)
t = Pt P(n)

0 (231)

Proof. The proof follows from the fact that Pr[|St | = l
∣
∣|S0| = k] = Pt (k, l) which was

shown in Lemma 5.2 of [34]. ��
We now prove Theorem 61 which gives a sharp upper bound on ‖P(n)

t ‖∗. Throughout
this section we drop the superscript (n). Moreover we use the notation Xt := |St |.

Proof overview: The philosophy of our analysis is to consider an acceleration of the
chain P: a chain with transition matrix Q which is the same as P but moves faster. As
mentioned in the introduction, previous work [17,34] considered a “fully accelerated”
chain, but we will instead carefully choose the amount of acceleration so that the tran-
sition probabilities are affine functions of x . This will allow an exact solution of the
dynamics of this partially accelerated chain using a method of Kac [39], as we describe
in Sect. 4.5.4. We then analyze how much time should P wait in each step of its walk in
order to simulate steps of Q. In order to do this we need to prove bounds on how many
times each site of the Markov chain has been visited during the accelerated walk and
based on that we count how many steps the original chain should wait. This analysis is
demonstrated in Sect. 4.5.2. Along the way during the wait-time analysis we will further
modify the partially accelerated chain to run in continuous time, so that in time t we
sample t ′ from Pois(t) (the Poisson distribution) and move t ′ steps. This resulting chain
is also exactly solvable, and the solution turns out to be extremely simple, and exem-
plifies the connection of the accelerated walk with the well-known Ornstein–Uhlenbeck
process (see Proposition 76). We need to analyze the error from moving to continuous
time, which turns out to be a straightforward analysis of the Poisson distribution.

Now suppose that the accelerated chain goes through a sequence of transitions
Y0,Y1, . . . ,Ys .
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Let p(x) = P(x, x + 1) and q(x) = P(x, x − 1). We first consider the chain P
conditioned on moving at every single step. This chain at site x has probability of

moving forward and backwards
p(x)

p(x) + q(x)
and

q(x)

p(x) + q(x)
, respectively. We can

compute these probabilities

Qa(x, x) = 0,

Qa(x, x + 1) = 3(n − x)

3n − 2x − 1
,

Qa(x, x − 1) = x − 1

3n − 2x − 1
. (232)

Such a chain is called accelerated. The chain Qa was used in [18,27,34] but we will not
use it in this paper.

Instead of an accelerated chain we now define a partially accelerated chain as:

Qw(x, x) = w(x),

Qw(x, x + 1) = (1− w(x))
3(n − x)

3n − 2x − 1
,

Qw(x, x − 1) = (1− w(x))
x − 1

3n − 2x − 1
. (233)

for arbitrary probability valuew(x). Settingw(x) = 2x
3n−1 the partially accelerated chain

becomes affine:

Q(x, x) = 2x

3n − 1
,

Q(x, x + 1) = 3(n − x)

3n − 1
,

Q(x, x − 1) = x − 1

3n − 1
. (234)

By “affine” we mean that the transition probabilities are degree-1 polynomials in x . Let
X0, X1, . . . be the steps of the Markov chain evolving according to the transition matrix
P and Y0,Y1, . . . be the Markov chain according to Q. We now describe a coupling
between these two.

4.5.1. Coupling between X and Y chains. For x < 5
6n let α(x) = 1 − p(x)+q(x)

1−w(x) =
1 − 2x(3n−1)

5n(n−1) . If 0 < x < 5
6n, 0 < α(x) < 1. So for this range we can view α(x) as a

probability.
For x ≥ 5

6n, let β(x) be the solution to the following equation

p(x) + q(x) = 1− w(x) + β(x)w(x)(p(x) + q(x)). (235)

We can solve for β(x) to find

β(x) = 1

w(x)

−α(x)

1− α(x)
= 2x(3n − 1) − 5n(n − 1)

4x2
. (236)

For x ≥ 5
6nwehaveα(x) < 0, so from the first expression forβ(x)we see thatβ(x) > 0.

From the second expression for β(x)we can calculate the upper bound β(x) ≤ 1/4+ 6
5n .
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Coupling 69. The following describes a coupling between X0, X1, . . . and
Y0,Y1, . . .. It takes as input an arbitrary x ∈ [n]. We write A ← a to mean
that we assign value a to variable A.

• Set X0 ← x and Y0 ← x.
• Sample Y1,Y2, . . . , according to the Markov chain Q.
• Set s ← 0 and t ← 0.
• Repeat the following steps.

– If α(Xt ) > 0 then
In this case, the X chain may move more slowly than the Y chain, so one step of
the Y chain corresponds to one or more steps of the X chain.

1. With probability 1− α(Xt ), set s ← s + 1.
2. Set t ← t + 1.
3. Set Xt ← Ys.

– Else
Otherwise, there is the possibility of advancing the X chain while the Y chain waits.
This is only possible if Ys = Ys+1.

1. If Ys �= Ys+1 then
a. Set s ← s + 1.
b. Set t ← t + 1.
c. Set Xt ← Ys.

2. Else
a. With probability β(Xt ), set s ← s + 1
b. Otherwise (with probability 1− β(Xt ))

i. t ← t + 1
ii. Xt ← Yt

Definition 70. For a tuple L and a number x let L left(x) be the same as L except that we
remove elements which are > x . Similarly define L right(x) to be the tuple resulted from
removing the elements that are < x .

Theorem 71. Assume X0 = Y0 and fix s > 0, and let Y := (Y0,Y1, . . . , Ys). Define

S := {i : Y
right

(
5
6 n
)[i] = Y

right
(
5
6 n
)[i + 1]}. (237)

Let

Tleft(Y) =
∑

y∈Y
left
(
5
6 n
)
Geo(αy) (238)

and

Tright(Y) =
∑

y∈S
Bern(β(y)) (239)

then the process in Coupling 69 satisfies

Ys = Xs+Tleft(Y)−Tright(Y) (240)
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Proof. We prove this by induction on Coupling 69. For the base case we have X0 = Y0.
Now suppose for s > 0, Ys = Xs+Tleft−Tright . Let Ys+1 the s + 1-th step. There are two

possibilities: if Ys < 5
6n, then α(Ys) > 0. In this case, s will be incremented once while

t may be incremented many times. The number of times t will advance is distributed
according to Geo(α(Ys)). Let X ′ = Ys+1, i.e. the location on the chain after one step
of Q. We show that X ′ is distributed according to Xs+Tleft−Tright+Geo(α(Ys)). To see this
note:

Pr[X ′ = x |Xs+Tleft−Tright = x] = α(x) + (1− α(x))w(x)

= 1− p(x) − q(x) = P(x, x)

Pr[X ′ = x + 1|Xs+Tleft−Tright = x] = (1− α(x))(1− w(x))
p(x)

p(x) + q(x)
= p(x)

= P(x, x + 1)

Pr[X ′ = x − 1|Xs+Tleft−Tright = x] = (1− α(x))(1− w(x))
q(x)

p(x) + q(x)
= q(x) = P(x, x − 1). (241)

Now if Ys ≥ 5
6n then if Ys+1 �= Ys , Xs+Tleft−Tright+1 = Ys+1. But if Ys+1 = Ys , then with

probability β(Ys) the X process skips this, ie, Ys = Xs+1+Tleft−Tright−1. Let x ≥ 5
6n. Let

E+ be the event that Xs+Tleft−Tright+1 = x + 1 conditioned on Xs+Tleft−Tright = x . Then

Pr[E+] = (1− w(x))
p(x)

p(x) + q(x)
+ β(x)w(x)Pr[E+] (242)

which implies that Pr[E+] = P(x, x + 1). Similarly if we define E− to be the event that
Xs+Tleft−Tright+1 = x − 1 conditioned on Xs+Tleft−Tright = x , then

Pr[E−] = (1− w(x))
q(x)

p(x) + q(x)
+ β(x)w(x)Pr[E−] (243)

which implies that Pr[E−] = P(x, x − 1). Using this, if E0 is the event that
Xs+Tleft−Tright+1 = x conditioned on Xs+Tleft−Tright = x then Pr[E0] = Pr[(E+ ∪ E−)c] =
P(x, x). ��

We need the following two theorems which basically assert that 1) the wait time
during the accelerated process is not too long and 2) the accelerated chain mixes after
O(n ln2 n) steps in the ‖ · ‖∗ norm.

Theorem 72 (Wait-time bound). Let Y0,Y1, . . . ,Ys be s steps of the acceleratedMarkov
chain defined in (234) for Y0 ∼ Bin(n, 1/2), andWs be the number of stepsMarkov chain
X0, X1, . . . has waited after s steps of the accelerated chain. Then for s = O(n ln n),
and for any constant α > 0 there exists a constant c such that

Pr[Tleft(s) ≥ cn ln2 n] ≤ 2−n · n−α. (244)

Theorem 73 (Accelerated-chain mixing). If s ≥ 3n ln n then

‖Qs‖∗ ≤ 27

2n + 1
(1 +

1

poly(n)
). (245)
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Also, the following theorem combines Theorems 72 and 73 to argue that the original
Markov chain mixes rapidly in the ‖ · ‖∗ norm.

Proposition 74. Let

‖ f ‖ :=
n∑

k=1

| f (k)| 3n
k3k

(246)

For any t0 ≤ t1 ≤ t2:

E
τ
‖Pτ‖∗ ≤ t0

2
· Pr[Tleft(t0) ≥ t1 − t0] + 1

T

∑

t0≤s≤4t2

‖Qs‖ + 6t2
1

1.4t2
(247)

where, T = t2 − t1 + 1.

Proof of Theorem 61. We need to find suitable values for t0, t1, t2. Let t0 = 3n ln n so
that maxs∈[t0,t2] ‖Qs‖ ≤ 27

2n+1 (1+
1

poly(n)
) in Proposition 74. Next, choose c to be large

enough so that (using Theorem 72) if t1 = cn ln2 n

Pr[Tleft(t0) ≥ t1 − t0] ≤ 1

2n + 1

1

n3
. (248)

Finally, let c′ > c be any constant and choose t2 = c′t1. Using Theorem 73 we conclude
that:

1

T

t2∑

τ=t1

‖Pτ‖∗ ≤ 28

2n + 1
. (249)

This implies that there exists a value t1 ≤ t∗ ≤ t2 such that

‖Pt∗‖∗ ≤ 1

T

t2∑

τ=t1

‖Pτ‖∗ ≤ 28

2n + 1
. (250)

Since t∗ is related to n ln2 n by a constant, this implies the proof.
��

It remains to prove Theorems 72 and 73 and Proposition 74. We prove Theorem 72
in Sects. 4.5.2 and 4.5.3, Theorem 73 in Sects. 4.5.4 and 4.5.5, and Proposition 74 in
Sect. 4.5.6.

4.5.2. Wait-time analysis. In this section we prove Theorem 72. Before getting to the
proof we need some preliminaries. Sites with lowHamming weight have the largest wait
times. Hence, intuitively, we want to say that during the accelerated walk, these sites are
not hit so often. More formally, let Nx =∑s

τ=1 I {Yτ ≤ x} and let β > 1.

Proposition 75. Let ν = 3/4n. For x ≤ ν/β, Pr[Nx ≥ βx] ≤ s3/2e · e− β
8 x .
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If we set β = 8(4 + c) ln n then Proposition 75 implies that

Pr[Nx ≥ βx] ≤ 1
(n
x

)
nc

. (251)

Let x(0) denote the corresponding ν/β, i.e.

x(0) := ν

8(4 + c) ln n
. (252)

Proof. We observe that Nx conditioned on Y0 = z ≥ 1 is stochastically dominated by
the same variable conditioned on Y0 = 1. The proof is by just taking the natural coupling
that makes sure the latter walk is always ≤ the former. Hence we can assume that the
walk starts out from Y0 = 1 and we will obtain a valid upper bound.

In [34] (see the proof of lemma A.5) the authors show that

Pr[Nx ≥ βx] ≤
s∑

τ=βx

Pr[Yτ ≤ x]. (253)

To understand these probabilities we will develop an exactly solvable analogue for
Yτ . Although Yτ is a random walk in discrete time and space, we can approximate it
by a process that takes place in continuous time and space. If Yτ were an unbiased
random walk then we could approximate it with Brownian motion. However, it is biased
to always drift towards the point 3

4n. The continuous-time-and-space random process
which diffuses like Brownian motion but is biased to drift towards a fixed point is called
the Ornstein–Uhlenbeck process.We will not prove a formal connection between Yτ and
the Ornstein–Uhlenbeck process, but instead will prove bounds on Yτ that are inspired
by the analogous facts about Ornstein–Uhlenbeck.

Proposition 76 (Connection with the Ornstein–Uhlenbeck process). Define

ντ := ze−
4τ
3n +

3

4
n
(
1− e−

4τ
3n

)
. (254)

Then we can bound

Pr[Yτ ≤ x] ≤ √
τe · e− (ντ −x)2

2ντ (255)

The proof is in Sect. 4.5.3.
This proposition is inspired by the fact that the exact solution to the Ornstein–

Uhlenbeck process is a Gaussian with mean and variance both equal to ντ . We can
see that once τ � n ln n, this is close to a Gaussian centered at 3

4n, i.e. the stationary
distribution.

Note that ντ is an increasing function of τ , and furthermore, for ντ ≥ x , e−
(ντ −x)2

2ντ is
decreasing in ντ , and therefore τ . Hence the sum in (253) can be bounded by

Pr[Nx ≥ βx] ≤ s2e · exp
(

− (ν(1− e−
βx
ν ) − x)2

2ν(1− e−
βx
ν )

)

. (256)
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Using the following inequalities

u

1 + u
≤ 1− e−u ≤ u, for u ≤ 1. (257)

we find that

Pr[Nx ≥ βx] ≤ s3/2e · exp

⎛

⎜
⎜
⎜
⎝
−

(
βx

1+ βx
ν

− x

)2

2βx

⎞

⎟
⎟
⎟
⎠

. (258)

Since βx
ν

< 1 then

Pr[Nx ≥ βx] ≤ s3/2e · e− β
8 x . (259)

��
Now following [18,27,34], define the good event A := ∩1≤x≤x(0){Nx ≤ β · x}.

Recall that β = 8(4 + c) ln n and x(0) = ν/β.

Proposition 77. Pr[Ac|Y0] ≤ 2
( n
Y0

)nc−1 .

To prove Proposition 77, we will need a bound on the minimum site visited during
the accelerated walk. Let Ms := min1≤i≤s{Yi }. Then

Proposition 78. Pr[Ms ≤ a|Y0 = z] ≤ s (na)3
a

(nz)3
z

We need the following lemma which is a standard fact about Markov chains.

Lemma 79. Let Y0, . . . be a Markov chain with stationary distribution π then for any
x, y in the state space and integer s > 0

Pr[Ys = y|Y0 = x] ≤ πy

πx
. (260)

Proof.

Pr[Ys = y|Y0 = x] = 1

πx
πx Pr[Ys = y|Y0 = x] (261)

≤ 1

πx

∑

z

πz Pr[Ys = y|Y0 = z] (262)

≤ πy

πx
(263)

��
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Proof of Proposition 78.

Pr[Ms ≤ a|Y0 = z] ≤ Pr[∪1≤i≤s{Yi = a}|Y0 = z]

≤
s∑

j=1

Pr[Y j = a|Y0 = z]

≤ s · πa

πz
using Lemma 79

= s ·
(n
a

)
3a

(n
z

)
3z

. (264)

��
Now we show that the event A = ∩1≤x≤x(0){Nx ≤ β · x} is very likely.

Proof of Proposition 77. The proof is very similar to the proof of lemma 4.5 in Brown
and Fawzi [18].

Pr[Ac] = Pr[∪x Nx > β · x]
≤
∑

x

Pr[Nx > β · x]

≤
∑

x<Ms

Pr[Nx > β · x] +
∑

Ms≤x<Y0

Pr[Nx > β · x]

+
∑

x(0)≥x≥Y0

Pr[Nx > β · x] (265)

In the last line we have used the fact that Ms ≤ Y0. Now we will handle each term in
(265) separately. When x < Ms , Nx = 0, so

∑
x<Ms

Pr[Nx > β · x] = 0. Next when
x ≥ Y0, we can use Proposition 75 to bound Pr[Nx > βx] ≤ ( n

Y0

)
n−c. Finally, when

Ms ≤ x < Y0, we have

Pr[Nx > β · x] = Pr[Nx > β · x |Ms ≤ x]Pr[Ms ≤ x]
≤ Pr[Nx > β · x |Y0 = 1]Pr[Ms ≤ x]
≤ Pr[Ms ≤ x] · 1

(n
x

)
nc

using Proposition 75 (266)

≤
(n
x

)

( n
Y0

)
3Y0−x

· 1
(n
x

)
nc

using Proposition 78 (267)

We now combine these contributions and sum over x to obtain

Pr[Ac] ≤ s
1

( n
Y0

)
nc

∑

x<Y0

3Y0−x +
∑

x(0)≤x≤Y0

1
( n
Y0

)
nc

(268)

≤ s
1

2
( n
Y0

)
nc

+
1

( n
Y0

)
nc−1

(269)

≤ 2
( n
Y0

)
nc−2

. (270)

��
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Proof of Theorem 72. Recall that the initial position on the chain Y0 is distributed
according to a binomial around n/2. Hence it is enough to show that starting from
position Y0 on the chain the probability that the wait time is larger than the bound stated
in the theorem is bounded by

1
( n
Y0

)
poly(n)

. (271)

If such bound holds than the probability of waiting too long is bounded by

1

2n − 1

n∑

Y0=1

( n
Y0

)

( n
Y0

)
poly(n)

= 1

2n + 1
· 1

poly(n)
. (272)

We achieve this in the following.
Let a be a constant. Consider the following bound on the wait-time random variable

Tleft(s) = Tleft(Y0) + . . . + Tleft(Ys):

Pr[Tleft(s) ≥ a] ≤ Pr[Tleft(s) ≥ a|A] + Pr[Ac]

≤
Y0∑

m=1

Pr[Tleft(s) ≥ a|A, Ms = m]Pr[Ms = m] + Pr[Ac]

≤ 1
( n
Y0

)
3Y0

Y0∑

m=1

Pr[Tleft(s) ≥ a|A, Ms = m]
(
n

m

)

3m +
2

( n
Y0

)
nc−2

,

(273)

using Propositions 78 and 77.
Let ρx = Nx − Nx−1 be the number of times site x has been visited during s rounds

of the accelerated walk. Recall from Sect. 4.5 that

Tleft(s) 
5n/6∑

x=1

ρx ·Geo(
6x

5n
). (274)

Hence we need a concentration bound for sums of geometric random variables.
Fortunately we know the following Chernoff-type tail bounds on the sum of geometric
random variables.

Theorem 80 (Janson [38]). Let G = ∑n
i=1Geo(pi ) be the sum of independent geo-

metric random variables with parameters p1, . . . , pn, and let p∗ = mini pi and
φ :=∑n

i=1
1
pi

= EG, then for any λ ≥ 1

Pr[G ≥ λφ] ≤ 1

λ
(1− p∗)(λ−1−ln λ)φ, (275)

The bound we need for our results is:
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Corollary 81. Let G be sum of s geometric random variables with parameters p∗ =
p1 ≤ . . . ≤ ps, and EG = φ. If T > 3c ln(c)φ, then

Pr[G > T ] ≤ 1

3c ln c
(1− p∗)T (1−1/c). (276)

In particular, we can say that if T > EW, then for any constant c there exists a constant
c′ such that

Pr[G > c′T ] ≤ (1− p∗)cT . (277)

Proof. It is enough to show that if λ > 3c ln c then λ − 1 − ln λ > λ(1 − 1/c). Let
f (λ) := λ

c − ln(eλ) for c > 1, we observe that f is an increasing function for λ > c.
We need to find a point λ∗ such that f (λ∗) > 0, and one can check that λ∗ = 3c ln c
works. ��

In order to employ Corollary 81 in the context of wait time (specifically (273)) we
just need to find an upper bound on the expected wait time. Now we condition on A.
Hence for x ≤ x(0), Nx ≤ βx . Among all possibilities given by event A, the wait time
is maximized when the minimum visited site (Ms) is visited as often as possible (see
Brown-Fawzi [18] for a discussion). So it will suffice to bound the wait time for the
situation when x ≤ x(0), ρx = β and for x = x(0), ρx = s − βx(0). In this case, the
expected wait time (conditioned on any starting point) is bounded by

E[Tleft(s)|A] ≤ β
∑

1≤x≤x(0)

5n

2x
+ (s − βx(0))

5n

2x(0)
(278)

Assuming the parameters in Proposition 75 we find that E[Tleft(s)|A] = O(n ln2 n +
s ln n), and in particular if s = O(n ln n) then E[Tleft(s)|A] = O(n ln2 n).

Therefore using Lemma 80 for any C > 0 there exists a large enough constant C ′
such that

Pr[Tleft(s) ≥ C ′n ln2 n|H, Ms = m] ≤ e−C ·mn ·n ln2 n . (279)

Combining this with (273) and choosing C large enough yields

Pr[Tleft(s) ≥ C ′n ln2 n] ≤ 1
( n
Y0

)
3Y0

Y0∑

m=1

e−C ·mn ·n ln2 n
(
n

m

)

3m +
2

( n
Y0

)
nc−2

≤ 3
( n
Y0

) · nc−2
. (280)

and this completes the proof. ��
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4.5.3. Proof of Proposition 76: Connection with the Ornstein–Uhlenbeck process. We
first define a new Markov chain S′0, S′1, S′2, . . . which is easier to analyze and gives us
useful bounds for the Markov chain S0, S1, S2, . . ..

Definition 82. S′0, S′1, S′2, . . . is the following Markov chain. The state space is {0, 1}n .
The initial string S′0 is sampled uniformly at random from {0, 1}n\0n . At each step t , S′t+1
results from S′t by picking a random position of S′t . If it was a zero we flip it, otherwise
if it was a 1 with probability 1/3 we flip it and with probability 2/3 it doesn’t change.

TheHammingweight of these strings corresponds to the position on a birth-and-death
chain on the state space {0, 1, 2, . . . , n}. Given a string S′ ∈ {0, 1}n the probability that
the Hamming weight of S′ increases by 1 is 1− x/n and the probability that it decreases
is x

3n . Let Q
′ be the transition matrix describing the Hamming weight.

We now claim that:

Proposition 83. Starting from a string ofHammingweight≥ 1, at any time t, Yt stochas-
tically dominates Y ′

t , meaning that

Pr[Y ′
t ≥ k] ≤ Pr[Yt ≥ k] (281)

Proof. It is enough to observe that for 0 ≤ x ≤ n, the probability of moving forward
for Q is larger than the probability of moving forward for Q′, and also the probability of
moving backwards for Q is smaller than the probability of moving backwards for Q′. ��

Now suppose that we simulate Q′ for T steps. First, instead of considering T steps
we consider this number to be a Poisson random variable T ∼ Pois(τ ), where τ is
some positive real number. Let fl be the number of times that site l is hit after T steps.
Then ( f1, . . . , fn) ∼ Multi(T, 1

n , . . . , 1
n ) is the number of times each position in [n] is

hit after T steps. Here Multi(T, 1
n , . . . , 1

n ) is the multinomial distribution over n items
summing up to T , each happening with probability 1/n.

We can then consider T in turn to be a random variable distributed according to
T ∼ Pois(τ ). It turns out that defining T in this way will make f1, . . . , fn independent.
Moreover, for any l ∈ {1, . . . , n},

fl ∼ Pois(τ/n). (282)

In other words, the number of times each site is hit is independently distributed according
to a Poisson distribution. This technique is sometimes called Poissonization.

Now suppose the l’th bit of S′0 starts out from 0 and that fl = k. We find that the
probability of ending up with a 1 in this case is

pk = 3

4

(

1−
(−1

3

)k
)

, (283)

and the probability of reaching a 0 is

1− pk = 1

4
+
3

4

(−1

3

)k

. (284)
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Using these two probabilities and taking the expectation over the Poisson measure we
can compute

Pr[S′T [l] = 1|S′0[l] = 0] =
∞∑

k=0

e−τ/n

k! (τ/n)k
(
3

4
− 3

4
(−1/3)k

)

= 3

4

(
1− e−

4τ
3n

)

=: ατ . (285)

Note that the T on the LHS is still a random variable distributed according to Pois(τ ).
For the case when the l’th bit starts out equal to 1 and fl = k, we find the probabilities

in a similar way. The probability of ending up in bit 1 is

pk = 3

4
+
1

4

(−1

3

)k

, (286)

and the probability of ending up in 0 is

1− pk = 1

4
− 1

4

(−1

3

)k

. (287)

We then compute

Pr[S′T [l] = 1|S′0[l] �= 0] =
∞∑

k=0

e−τ/n

k! (τ/n)k
(
3

4
+
1

4
(−1/3)k

)

= 3

4
+
1

4
e−

4τ
3n

=: βτ . (288)

As a result conditioned on |S′0| = z,

Y ′
T ∼ Y ′

Pois(τ ) ∼ Bin(n − z, ατ ) + Bin(z, βτ ). (289)

This has expectation equal to

E
[
Y ′
T |Y ′

0 = z
] = ze−

4τ
3n +

3

4
n
(
1− e−

4τ
3n

)
, (290)

which is simply equal to ντ , which was first introduced in (254). Next, using a simple
Chernoff bound for sum of binomial random variables we can show that for all x < ν j

Pr[Y ′
Pois(τ ) ≤ x] ≤ e−ντ

(1−x/ντ )2

2 = e−
(ντ −x)2

2ντ . (291)

This bound is exactly the one that we expect from an Ornstein–Uhlenbeck process.
Fix a number x ∈ [n]. Let B (the bad event) be {|S′T | ≤ k}. Then

Pr[B] =
∞∑

s=0

Pr[T = s]Pr[B|T = s] (292)

≥ Pr[T = τ ]Pr[B|T = τ ] (293)
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≥ Pr[T = τ ]Pr[|S′τ | ≤ x] (294)

We can evaluate Pr[T = τ ] = τ τ

τ ! e
−τ ≥ 1√

τe
, where we have use Stirling’s formula

(from wikipedia) which states that τ !
(τ/e)τ ≤ e

√
τ . Together with the bound in (294) we

find that

Pr[Y ′
τ ≤ x] ≤ √

τe · Pr[B] (295)

Combining this inequality with (291) we conclude that

Pr[Y ′
τ ≤ x] ≤ √

τe · e− (ντ −x)2
2ντ (296)

Using Proposition 83

Pr[Yτ ≤ x] ≤ √
τe · e− (ντ −x)2

2ντ (297)

If τ ≥ 3
4n ln n then 3

4n ≥ ντ ≥ 3
4n − 1. Therefore

Pr[Yτ ≤ x] ≤
√
3

4
n ln ne · e−

2
(
3
4 n−x−1

)2

3n (298)

4.5.4. Proof of Theorem 73: exact solution to the Markov chain Q. In this section we
give an exact solution to the Markov chain Q defined in Sect. 4.5. Here, by giving an
exact solution we mean we can find the eigenvalues and eigenvectors of the transition
matrix explicitly and evaluate the norm ‖Qt‖∗. The construction follows nearly directly
from a result of Kac [39].

Recall the transition probabilities ofMarkov chain Q according to Equation (234). In
(234),Q is definedover the state space [n].Without loss of generality and for convenience
we can relabel the state space to {0, 1, 2, . . . , n − 1} and redefine the transition matrix
according to:

pi := Q(i, i + 1) = 3(n − i − 1)

3n − 1
,

qi := Q(i, i − 1) = i

3n − 1
,

ri := Q(i, i) = 2(i + 1)

3n − 1
. (299)

for i ∈ {0, 1, 2, 3, . . . , n − 1}.
Now we consider the eigenvalue problem

x (λ)Q = λx (λ), (300)

where x (λ) is a row vector with entries x (λ)(i), is the left eigenvector corresponding to
the eigenvalue λ. For now we drop the superscript λ in x (λ). Expanding this equation we
have

pi−1x(i − 1) + ri x(i) + qi+1x(i + 1) = λx(i). (301)
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Notice that q0 = pn−1 = 0. Define the generating function

gλ(z) =
∞∑

i=0

x(i)zi , (302)

where for i ≥ n, we set x(i) = 0. It suffices to solve (301) subject to the boundary
conditions x−1 = xn = 0. For i > 0 we can write

pi−1x(i − 1)zi + ri x(i)z
i + qi+1x(i + 1)zi = λx(i)zi , (303)

assuming x−1 = 0. Using the coefficients of (299) we get

3(n − i)

3n − 1
x(i − 1)zi +

2(i + 1)

3n − 1
x(i)zi +

i + 1

3n − 1
x(i + 1)zi = λx(i)zi . (304)

For i = 0 the equation is

x1 = ((3n − 1)λ − 2)x(0). (305)

Summing (
∑∞

i=0) over the first term in the left-hand side of (304) we obtain

3(n − 1)

3n − 1
z · gλ(z) −

( 3

3n − 1

)
z2

d

dz
gλ(z). (306)

Similarly for the second term we get

2

3n − 1
gλ(z) +

( 2

3n − 1

)
z
d

dz
gλ(z), (307)

and for the third term

( 1

3n − 1

) d

dz
gλ(z), (308)

and for the term on the right-hand side

λgλ(z) (309)

Let λ′ = λ 3n−1
3(n−1) − 2

3(n−1) . Putting all of these together we obtain the following first
order differential equation

1

gλ(z)

d

dz
gλ(z) = (n − 1)

3λ′ − 3z

−3z2 + 2z + 1
, (310)

with the boundary conditions

gλ(0) = x(0), (311)
dn

dzn
g(0) = 0. (312)

Assume n − 1 is divisible by 4. Solving this differential equation and applying the
first boundary condition (gλ(0) = x(0)) we get

gλ(z) = x (λ)(0)(1 + 3z)
n−1
4 (1+3λ′)(1− z)

n−1
4 (3−3λ′). (313)
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The second boundary condition basically says that gλ(z) should be a polynomial of
degree at most n − 1. This implies that 3λ′(n − 1)/4 should be an integer. Since the
exponents of both the (1 + 3z) and the (1 − z) terms should be nonnegative, we can
further constrain 3λ′(n − 1)/4 to lie in the interval [− n−1

4 , 3 n−1
4 ]. These constraints

are enough to determine the n eigenvalues λ0, . . . , λn−1. They must (up to an irrelevant
choice of ordering) satisfy

3λ′
m
n − 1

4
= 3

n − 1

4
− m. (314)

Rearranging and solving for λm we have

λm = 1− 4m

3n − 1
. (315)

The eigenvalue gap is exactly
4

3n − 1
. Note for m = 0 we get λ0 = 1 and

g1(z) = x (1)(0)(1 + 3z)n−1 = x (1)(0)
n−1∑

i=0

(
n − 1

i

)

3i zi =
∑

i

π(i)zi . (316)

In the last equation we have introduced π(i), which is the stationary distribution. This
is a binomial centered around 3

4 (n − 1) and shifted by 1. Its mean 3
4n + 1

4 differs from
that of the non-accelerated chain by an offset of ≈ 1

4 . We might expect a shift like this
because the accelerated chain spends less time on lower values of x .

Since the stationary distribution has unit 1-norm we can evaluate

x (1) = 1

4n−1 (317)

The eigenvectors for each eigenvalue λ can be indirectly read from the generat-
ing function gλ(z). We use the notation x (λ) for the eigenvector corresponding to
eigenvalue λ. Also we denote the i-th component of these vectors by x (λ)(i), for
i ∈ {0, 1, 2, 3, . . . , n − 1}.

4.5.5. Exact solution to the Markov chain Q implies a good upper bound on ‖Qt‖�.
We want to use the above exact solution to derive a bound on ‖Qt‖�. We begin by
stating some facts.

1. λm = 1− 4m
3n−1 ≤ e−

4m
3n−1 for m ∈ [0, n − 1].

2. gm(z) = x (m)(0)(1 + 3z)n−m−1(1− z)m =∑n−1
i=0 x (m)(i)zi for m ∈ [0, n − 1].

3. x (m)Q = λmx (m) = (1− 4m

3n − 1
)x (m) for m ∈ [0, n − 1].

4. Q is a reversible Markov chain on {0, . . . , n− 1} with stationary distribution π(i) =(n−1
i

)
3i/4n−1.

Since x (m)’s are the left eigenvectors of Q, they can be used to find the right eigen-
vectors y(n):

y(m)(i) = x (m)(i)

π(i)
. (318)
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Left and right eigenvectors are orthonormal with respect to each other, i.e., for any
l,m ∈ [n − 1]

n−1∑

i=0

x (m)(i)y(l)(i) =
n−1∑

i=0

x (m)(i)x (l)(i)

π(i)
= δm,l . (319)

We define the following inner product between functions

( f, g) :=
∑

i

1

π(i)
f (i)g(i), (320)

according to which {x (m) : m ∈ [n − 1]} forms an orthonormal basis, i.e.,

(x (i), x ( j)) := δi, j . (321)

We denote the initial distribution by Q0(i) = 1

2n − 1

( n
i+1

)
. Also we denote the

eigenvector corresponding to eigenvalue 1 with x (1) = π , which is the same as the
stationary distribution. We write this initial vector as a combination of eigenvectors of
the chain

Q0 =
n−1∑

i=0

αi x
(i) with αi = (x (i), Q0). (322)

Therefore after t steps

Qt =
n−1∑

m=0

αmλtmx
(m) =

n−1∑

m=0

(x (m), Q0)λ
t
mx

(m),

=
n−1∑

m=0

(x (m), Q0)λ
t
mx

(m). (323)

We are interested in

‖Qt‖ := (1− 1/2n)
12

2n
(Q0, Qt ) ≤ 12

2n
(Q0, Qt ) (324)

Using Equation (323) this can be evaluated as

‖Qt‖ ≤ 12

2n
(

n−1∑

m=0

(x (m), Q0)λ
t
mx

(m), Q0) (325)

= 12

2n

n−1∑

m=0

(x (m), Q0)
2λtm (326)

= 12

2n

n−1∑

m=0

α2
mλtm (327)
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As a result the problem reduces to evaluating the overlaps αm = (x (m), Q0).

αm = (x (m), Q0)

=
n−1∑

i=0

x (m)(i)
( n
i+1)

2n−1

(n−1
i )

4n−1 3i
(328)

= 3 · 4n−1

2n − 1

n−1∑

i=0

x (m)(i)
n

(i + 1) · 3i+1 (329)

= 3n · 4n−1

2n − 1

∫ 1/3

z=0
gm(z)dz (330)

Now we evaluate the integral
∫ 1/3
z=0 gm(z)dz. We consider two cases, one for m = 0 and

one for m > 0:

1. m = 0:
In this case g0(z) = (1 + 3z)n−1. Therefore

∫ 1/3

z=0
g0(z)dz = x (0)(0)

∫ 1/3

z=0
(1 + 3z)n−1dz (331)

= x (0)(0)
2n

3 · n (332)

= 4

2n · 3n using Equation (317) (333)

2. m > 0:
In this case we give an upper bound on the integral

∫ 1/3

z=0
gm(z)dz = x (m)(0)

∫ 1/3

z=0
(1 + 3z)n−m−1(1− z)mdz (334)

≤ x (m)(0)2n−1
∫ 1/3

z=0

( 1− z

1 + 3z

)m
dz (335)

≤ x (m)(0)2n−1
∫ 1/3

z=0
(1− z)mdz (336)

≤ x (m)(0)
2n−1

m + 1
(337)

As a result we conclude that

αm ≤
{
1 + 1

2n−1 m = 0
x (m)(0)4n 3n

4(m+1) m > 0
(338)

The last step is to evaluate x (m)(0). In order to do this we need some insight from a
well studied class of polynomials known as the Krawtchouk polynomials. It turns out the
Krawtchouk polynomial naturally appears in the expansion of (1 + 3z)n−m−1(1 − z)m

as the coefficients of z monomials. The degree-t Krawtchouk polynomial is defined as:

K (t)(x) :=
t∑

i=0

(
x

i

)(
n − x − 1

t − i

)

3t−i (−1)i . (339)
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(Elsewhere in the literature the Krawtchouk polynomials have been defined with the 3
above replaced by either 1 or some other number.) Now we evaluate the coordinates in
each x (m) vector.

(1 + 3z)n−m−1(1− z)m =
n−m−1∑

i=0

(
n − m − 1

i

)

3i zi
m∑

j=0

(
m

j

)

(−1) j z j ,

=
n−m−1∑

i=0

m∑

j=0

(
n − m − 1

i

)(
m

j

)

3i (−1) j zi+ j

=
n−1∑

t=0

zt
t∑

i=0

(
m

i

)(
n − m − 1

t − i

)

3t−i (−1)i ,

=:
n−1∑

t=0

zt K (t)(m). (340)

Hence these Krawtchouk polynomials define the eigenstates, up to overall normal-
ization, according to

x (m)(i) = x (m)(0)K (i)(m). (341)

Moreover using the orthogonality of the x (m)’s, we have

(4n − 1)x (m)(0)
2
n−1∑

t=0

K (t)(m)
2

(n
t

)
3t

= 1. (342)

In order to compute x (m)(0) we prove the following proposition.

Proposition 84.
∑n−1

t=0
K (t)(m)

2

(n−1
t

)
3t

= 4n
(n−1

m

)
3m

.

Proving this will require two lemmas that establish symmetry and orthogonality
properties of Krawtchouk polynomials.

Lemma 85 (Orthogonality). If we define

k(t)(x) :=
t∑

i=0

(
x

i

)(
N − x

t − i

)

pt−i (−q)i , (343)

for p, q ∈ [0, 1] and p+q = 1. Then theseKrawtchouk polynomials satisfy the following
orthogonality relationship

n∑

x=0

(
N

x

)

pxqN−x k(t)(x)k(s)(x) =
(
N

t

)

(pq)tδt,s . (344)
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Lemma 86 (Symmetry). The Krawtchouk polynomials obey the following symmetry
relation.

(n−1
x

)

3t
K (t)(x) =

(n−1
t

)

3x
K (x)(t). (345)

These two lemma are proved in appendix B.

Proof of Proposition 84. UsingLemma85, setting p = 3/4 andq = 1/4, and N = n−1
and t = s, we have

4t k(t)(x) =
t∑

i=0

(
x

i

)(
n − x − 1

t − i

)

3t−i (−1)i = K (t)(x), (346)

Therefore we obtain the relation
n∑

x=0

(
n − 1

x

)

3x K (t)(x)
2 =

(
n − 1

t

)

3t4n−1. (347)

We now use the symmetry from Lemma 86 to obtain

K (t)(x) = 3t

3x

(n−1
t

)

(n−1
x

)K (x)(t). (348)

As a result

n∑

x=0

K (x)(t)
2

3x
(n−1

x

) = 4n−1

(n−1
t

)
3t

. (349)

This concludes the proof. ��
A corollary of Proposition 84 is that

x (m)(0) = 1

(4n − 1)

√(
n − 1

m

)

3m . (350)

Plugging this into Equation (338) we get

αm ≤
{
2 m = 0√(n−1

m

)
3m 3n

2(m+1) m > 0
(351)

Now we are ready to prove Theorem 73.

Proof of Theorem 73. Using Equations (327) and (351)

‖Qt‖ ≤ 12

2n

n−1∑

m=0

α2
mλtm (352)

≤ 24

2n
+
12

2n

n−1∑

m=1

α2
mλtm (353)
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≤ 24

2n
+
12

2n

n−1∑

m=1

(√(
n − 1

m

)

3m
3n

2(m + 1)

)2

λtm (354)

≤ 24

2n
+
27n2

2n

n−1∑

m=1

(
n − 1

m

)

3mλtm (355)

≤ 24

2n
+
27n2

2n

n−1∑

m=1

(
n − 1

m

)
⎛

⎜
⎝3e

− 4t

3n − 1

⎞

⎟
⎠

m

(356)

≤ 24

2n
+
27n2

2n

n−1∑

m=1

(
n − 1

m

)(
3e−4n ln n

)m
(357)

≤ 24

2n
(
1 + O

(1

n

))
(358)

��

4.5.6. Proof of Proposition 74: Combining wait-time analysis with the analysis of the
accelerated chain.

Proposition (Restatement of Proposition 74). Let

‖ f ‖ :=
n∑

k=1

| f (k)| 3n
k3k

(359)

For any t0 ≤ t1 ≤ t2:

E
τ
‖Pτ‖∗ ≤ t0

2
· Pr[Tleft(t0) ≥ t1 − t0] + 1

T

∑

t0≤s≤4t2

‖Qs‖ + 6t2
1

1.4t2
(360)

where, T = t2 − t1 + 1.

Proof of Proposition 74. Let τ ∼ Unif(t1, t2). Then

1

T

t2∑

s=t1

‖Ps‖∗ = E
τ
‖Pτ‖∗ (361)

We use the notation ys = (y1, . . . , ys), for y j running over [n]. Consider the event
{Xτ = k}. This event is equivalent to the disjoint union ∪s≥0 ∪ys∈[n]s :ys=k {Y s =
ys} ∩ {Ws−1 < τ ≤ Ws}. Here y0 ∼ Bin(n, 1/2), conditioned on y0 �= 0. Therefore

Pr[Xτ = k] =
∑

s≥0

∑

ys :ys=k

Pr[Y s = ys]Pr[Ws−1 < τ ≤ Ws]

=
∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[Ws−1 < τ ≤ Ws]

+
∑

t0≤s

∑

ys :ys=k

Pr[Y s = ys]Pr[Ws−1 < τ ≤ Ws]. (362)
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We first argue about the time average of the first term.

E
τ

∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[Ws−1 < τ ≤ Ws]

≤ E
τ

∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[Ws ≥ τ ]

= E
τ

∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[s + Tleft(ys ) − Tright(ys ) ≥ τ ]

≤ E
τ

∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[Tleft(ys ) ≥ τ − s]

≤
∑

0≤s<t0

∑

ys :ys=k

Pr[Y s = ys]Pr[Tleft(ys ) ≥ t1 − t0]

≤ t0 · Pr[Tleft(t0) ≥ t1 − t0]. (363)

In the last step we have used the fact that Tleft(ys ) is a nondecreasing function of s. To
bound the contribution to the ‖ · ‖∗ norm, observe that ‖(1, 1, . . . , 1)‖∗ = 1/3 + 1/32 +
. . . ≤ 1/2. Thus the contribution from the first term is ≤ t0

2 · Pr[Tleft(yt0 ) ≥ t1 − t0].
Next we argue about the time average of the second term in (362).

∑

s≥t0
ys :ys=k

Pr[Y s = ys]E
τ
Pr[Ws−1 < τ ≤ Ws]

≤
∑

0≤s≤4t2
ys :ys=k

Pr[Y s = ys]E
τ
Pr[Ws−1 < τ ≤ Ws]. (part i) (364)

+
∑

s>4t2

max
ys :ys=k

E
τ
Pr[Ws−1 < τ ≤ Ws]. (part ii) (365)

We now analyze each part independently

(part i) Write

E
τ
Pr[Ws−1 < τ ≤ Ws] = E

W
E
τ
I [Ws−1 < τ ≤ Ws]. (366)

Here EW is the expectation value over wait times Wy1, . . . ,Wys , and
I [Ws−1 < τ ≤ Ws] is the indicator of the event Ws−1 < τ ≤ Ws .

We first bound EWEτ I [Ws−1 < τ ≤ Ws]. Fix ys such that ys = k, and for
a ≤ b integers, let [a, b] denote the set {a, a + 1, . . . , b}. Then

E
W
E
τ
I [Ws−1 < τ ≤ Ws], = E

W

|[t1, t2] ∩ [Ws−1,Ws]|
T

,

≤ E
W

|[Ws−1,Ws]|
T

. (367)

There are two possibilities for the random variable |[Ws−1,Ws]| = Ws −Ws−1;
one for k < 5

6n and one for k ≥ 5
6n:

Ws − Ws−1 ∼
{
Geo(1− α(k)) k < 5

6n
Bern(βk) k ≥ 5

6n
(368)
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Therefore

E
W
[Ws − Ws−1] ≤ Geo(1− α(k)) + Bern(βk)

≤ 5n(n − 1)

2k(3n − 1)
+ 1/2

≤ 3n

k
. (369)

Using this in (367) and (364) we find the bound
∑

0≤s≤4t2
ys :ys=k

Pr[Y s = ys]E
τ
Pr[Ws−1 < τ ≤ Ws]

≤
∑

0≤s≤4t2
ys :ys=k

Pr[Y s = ys] 3n
kT

≤
∑

t0≤s≤4t2

Pr[Ys = k] 3n
kT

(370)

(part ii) For the second part we use
∑

s>4t2

max
ys :ys=k

E
τ
Pr[Ws−1 < τ ≤ Ws]

≤
∑

s>4t2

max
ys :ys=k

E
τ
Pr[Ws−1 < τ ]

≤
∑

s>4t2

max
ys :ys=k

max
t1≤τ≤t2

Pr[Ws−1 < τ ]

≤
∑

s>4t2

max
ys :ys=k

max
t1≤τ≤t2

Pr[s − 1 + Tleft(ys ) < τ + Tright(ys )]

≤
∑

s>4t2

max
ys :ys=k

max
t1≤τ≤t2

Pr[s − 1− τ < Tright(ys )]

≤
∑

s>4t2

max
ys :ys=k

Pr[s − 1− t2 < Tright(ys )] (371)

Now recall fromEquation (239) we know that Tright(ys ) is statistically dominated
by Bin(s, 1/2). So the RHS of (371) gets bounded by:

≤
∑

s>4t2

Pr[s − t2 ≤ Bin(s, 1/2)]

≤
∑

s>4t2

s∑

k=s−t2

(s
k

)

2s

≤
∑

s>4t2

t2

( s
t2

)

2s
(using s > 4t2)

≤
∑

s>4t2

t2

( s
s/4

)

2s
(using s > 4t2)
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≤
∑

s>4t2

t2
(4e)s/4

2s

≤ t2 ·
∑

s>4t2

1

1.09s

≤ 12t2
1

1.4t2
(372)

Using (370), (372), (363) and (362)

E
τ
Pr[Xτ = k] ≤ t0 · Pr[Tleft(t0) ≥ t1 − t0] +

∑

t0≤s≤4t2

Pr[Ys = k] 3n
kT

+ 12t2
1

1.4t2

(373)

Therefore

E
τ
‖Pτ‖∗ ≤ t0

2
· Pr[Tleft(t0) ≥ t1 − t0] + 1

T

∑

t0≤s≤4t2

‖Qs‖ + 6t2
1

1.4t2
. (374)

��

4.6. Towards exact constants. Here we discuss what constant factors we may expect
from the bound in Theorem 13. We do not consider the case of D-dimensional graphs
here.

What is the right time scale in order to get anti-concentration? Since Pauli strings
of weight k have contribution 1/3k as well as expected wait-time of ≈ n/k, it seems
reasonable to guess that lower values of k contribute more to the anti-concentration
probability. On the other hand, the initial distribution of k is centered around n/2. Still,
enough probability mass survives at low values of k to yield a non-trivial lower bound
in Theorem 13.

Thus, let us focus initially on walks starting with weight k = 1. Here the expected
“escape time” from the low-k sector (say to k = n/2) is≈ 5

6n ln n, and, simultaneously,
it takes ≈ 5

6n ln n time to hit 3
4n − o(n). This is the basis for the following conjecture.

A special case of this conjecture for anti-concentration was recently resolved in [24].

Conjecture 1. If t = 5
6n ln n + o(n ln n) then Pr

C∼μ
(CG)
t

[| 〈x |C |0〉 |2 ≥ α
2n ] = �(1).

Here is the reasoning behind this conjecture. Recall that the transition matrix P is a
birth-death chain, with probability of moving forward, backwards, and staying put being
pl , ql and rl , respectively. Let π be the stationary distribution. Let Tl = min{t : Xt ≥ l}
be the time of hitting the chain site l starting from the first site. For any birth-death chain,
starting at site l − 1 [41], the expected time of moving one step forward is

E
l−1

[Tl ] = 1

ql

l−1∑

i=1

π(i)

π(l)
. (375)
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In our chain

E
l−1

[Tl ] = 5

2

l−1∑

i=1

(n
i

)

(n−2
l−2

)
3l−i

. (376)

In order to bound this we use the inequalities (proven in [7])

(
n − 2

l − 2

)

≤
(
n − 2

i − 1

)(
n − i − 1

i

)l−i−1

, (377)

and

(
n

i

)

≤
(

n

l − 1

)(
l − 1

n − l + 2

)l−i−1

. (378)

Therefore

E
l−1

[Tl ] ≤ 5

6

l−1∑

i=1

( n
l−1

)

(n−2
l−2

)

(
l − 1

3(n − l + 2)

)l−i−1

, (379)

≤ 5

6
n

(
1

l − 1
+

1

3n/4− l + 7/4

)

(1 + O(1/n)) . (380)

The last line holds for l < 3
4n. The transition from (379) to (380) is directly inspired by

Equation (2) of [the arXiv version of] [7].
Tobound the timeof reaching 3

4n−δ for some δ ≥ 0we sum(380) over 1 ≤ l ≤ 3
4n−δ

and neglect the 1 + O(1/n) corrections.

E
1
[T3

4 n−δ] ≤
5

6
n

⎛

⎜
⎝

3
4 n−δ∑

l=1

1

�
+

1

3n/4− l + 11/4

⎞

⎟
⎠ (381)

≈ 5

6
n

(

ln

(
3
4n − δ

1

)

+ ln

(
3n/4 + 7/4

δ + 11/4

))

(382)

= 5

6
n

(

ln
n2

δ + 1
+ O(1)

)

. (383)

Using this bound, for a < b we can also compute Ea[Tb] as E1[Tb] − E1[Ta]. We
wish to estimate Ea[Tb] in two main regimes. Recall that our starting distribution is
Bin(n, 1/2) and the stationary distribution is Bin(n, 3/4). Thus we need to know the
time for most of the probability mass to reach ≈ 3/4n, and for the left tail of the initial
distribution to reach the left tail of the final distribution. (The right tail is less demanding
and less important, because it does not have the long wait times and it is suppressed
by the 1/3k factors.) For the bulk of the probability distribution we use the estimate
En/2[T3/4n−O(1)] � 5

6n ln n. For the left tail, we use the bound E1[T0.74n] � 5
6n ln n. In

each case the time required is 5
6n log n + O(n).
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5. Alternative Proof for Anti-concentration of the Outputs of Random Circuits
with Nearest-Neighbor Gates on D-Dimensional Lattices

5.1. The D = 2 case. In this section we consider a simplified version ofμlattice,n
2,c,s , where

c = 1 and that K (t)

μ
lattice,n
2,1,s

= ksRk
s
C . We prove the following:

Theorem 87. If s = O(
√
n + ln(1/ε)) then μ

lattice,n
2,1,s satisfies

E

C∼μ
lattice,n
2,s

Coll(C) ≤ 2

2n + 1
(1 + ε). (384)

This result is already established in Theorem 8, we give an alternative proof based
on a reduction to a classical probabilistic process. This alternative approach may help
with the analysis of random circuits on arbitrary graphs.

We use the following two statements

Lemma 88 (Brandão-Harrow-Horodecki‘13 [13]). Let t = O(
√
n + ln 1

ε
) then

Ch[gtRows] 
⊗

i∈Rows
Ch[Gi ] · (1 + ε). (385)

the same holds for Ch[gtColumns].
Proof. This result is proved by Brandão-Harrow-Horodecki in [13]. ��
Proposition 89. Let Ki an ε approximate 2-designs on row or column i ∈ {R,C}, in
the sense that

Ki  (1 + ε)Ch[Gi ] (386)

then for any sequence of rows or columns i1, . . . , it

Coll(Kit . . . Ki1) ≤ (1 + ε)tColl(Ch[Git ] . . .Ch[Gi1]). (387)

Proof. This proposition is proved in Sect. 3.5.1. ��
Putting these together

Coll(μlattice,n
2,1,s ) ≤ (1 + ε)2Coll(Ch[GRGC ]). (388)

Therefore our objective is to show that

Proposition 90.

Coll(Ch[GRGC ]) ≤ 2

2n + 1

(

1 +
1

poly(n)

)

. (389)



1614 A. W. Harrow, S. Mehraban

Proof. Using theMarkov chain interpretation discussed in Sect. 4, the initial distribution
on the chain is

V0 := 1

2n
(σ0 ⊗ σ0 +

∑

p∈{0,3}n
p �=0

σp ⊗ σp), (390)

and after the application a large enough random quantum circuit the distribution con-
verges to

V ∗ := 1

2n
σ0 ⊗ σ0 + (1− 1

2n
) · 1

4n − 1

∑

p∈{0,1,2,3}n
p �=0

σp ⊗ σp, (391)

and we want to see how fast this convergence happens.
For clarity, throughout this proof we represent distributions along the full lattice by

capital letters (such as V ) and for individual rows or columns with small letters (such
as vi for distribution v on row or column i). Also, for simplicity we write 0 instead of
σ0 ⊗ σ0, and σ i

0 for all zeros across row or column i .
V0 is separable across any subset of nodes. So the initial distribution along each row

or column is exactly

1

2
√
n
(σ0 +

∑

p∈{0,3}
√
n

p �=0

σp ⊗ σp) =: v0. (392)

After one application of Ch[GR] each such distributions become

v∗ := 1

2
√
n
σ0 ⊗ σ0 + (1− 1

2
√
n
)

1

4
√
n − 1

∑

p∈{0,1,2,3}
√
n

p �=0

σp ⊗ σp

=: 1

2
√
n
σ0 + (1− 1

2
√
n
)v. (393)

Here we have defined

v := 1

4
√
n − 1

∑

p∈{0,1,2,3}
√
n

p �=0

σp ⊗ σp. (394)

therefore the distribution along the full chain is V1 := ( 1
2
√
n σ0 + (1 − 1

2
√
n )v)⊗

√
n . We

also use the notation vyσ
\y
0 := ⊗i :yi=1v ⊗⊗

i :yi=0 σ0, for y ∈ {0, 1}√n .
Before getting to the analysis, we should first understand the main reason why

Coll(Ch[GR]) is large.
After we apply Ch[GR] the collision probability across each row is exactly 2

2
√
n+1

.

So the collision probability across the whole lattice is ≈ 2
√
n

2n ; which is much larger (by

a factor of 2
√
n) than what we want. The crucial observation here is that if in (393) we

project out all the σ0 terms across each row, then the bound becomes ≈ 1
2n . So what

really slows this process are the zero σ0 terms. The issue is that, after an application of
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Ch[GR], all zeros states get projected to themselves. However, if one applies Ch[GC ]
they get partially mixwith other rows. So the objective is to show that after application of
Ch[GC ]Ch[GR] for constant number of times, these zeros disappear with large enough
probability.

Let Vs be the distribution along the full chain after we apply (Ch[GC ]Ch[GR])s .
Eventually we want to compute

Coll(Ch[Gs]) = 1

2n
Tr
(
v
⊗√

n
0 Vs

)
=: κ(Vs). (395)

Here we have defined the map

κ : A �→ 1

2n
Tr(V0A). (396)

As a result

V1 = ⊗r∈Rows
1

2
√
n
σ r
0 + (1− 1

2
√
n
)vr =

∑

y∈{0,1}√n

1

2
√
n(

√
n−|y|) (1− 1

2
√
n
)|y|vyσ

\y
0 .

(397)

An important observation here is that

κi

(
1

2
√
n
σ i
0

)

= 1

2
√
n
, κ

(

(1− 1

2
√
n
)vi
)

=
(1− 1

2
√
n )

2
√
n + 1

<
1

2
√
n
. (398)

the relevant information here is that when κ is applied to the summation in (397), it
amounts to

κ(V1) <
1

2n
∑

y∈{0,1}√n

1 = 2
√
n

2n
. (399)

In other words, each σ0 term contributes to the number 1 in the above summation. That
means if we had started with the distribution

V ′ =
⊗

r∈Rows
o(1/

√
n)

1

2
√
n
σ r
0 +

(

1− o(1/
√
n)

1

2
√
n

)

vr , (400)

then we would have obtained

κ(V ′) = 2

2n + 1

(

1 +
1

poly(n)

)

, (401)

which is exactly what we want. The last relevant piece of information is that if v′′
j is

a distribution over row j that with probability 1 contains a nonzero item, then when
Ch[G j ] is applied to it, it will instantly get mapped to v j . This phenomenon is related
to strong stationarity in Markov chain theory.

We claim that after the first application of Ch[GC ], the expected collision probability
is according to the bound claimed in this theorem. In order to see this, we consider the
distribution V1 ((397)), this time along each column. Note that the distribution along
columns. For any set of columns j1, . . . , jk let E j1,..., jk be the event that these columns
are all zeros, and the rest of the columns have at least one non-zero element in them. Here
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we use the notation E j1,..., jk ≡ Ey for y ∈ {0, 1}√n such that the j1, . . . , jk locations
of y are ones and the rest of its bits are zeros.

Therefore

Coll(Ch[GC ]V1) =
∑

y∈{0,1}√n

Pr[Ey]κ
(
σ
y
0 V

\y)

= 1

2n
+

∑

y∈{0,1}√n\
Pr[Ey]

(
1

2
√
n+1

)√
n−|y|

.

Let p0 := 1
2
√
n + 1

4 (1− 1
2
√
n ). The main observation is that for each such y,

Pr[Ey] ≤ p
√
n|y|

0

(
1− p

√
n

0

)√n−|y|
. (402)

Therefore

Coll(Ch[GC ]V1) ≤ 1

2n
+

∑

y∈{0,1}√n\0
p
√
n|y|

0

(
1− p

√
n

0

)√n−|y| ( 1

2
√
n+1

)√
n−|y|

= 1

2n
+

(

p
√
n

0 +
(
1− p

√
n

0

) 1

2
√
n+1

)√
n

= 1

2n
+
1− 1

2n

2n + 1

(

1 +
1

poly(n)

)

= 2

2n + 1

(

1 +
1

poly(n)

)

, (403)

and this completes the proof. ��

5.2. Generalization to arbitrary D-dimensional case. See Sect. 2.1 for definitions in this
section. In particular, we need definitions for Ch[gi ], Ki and Ch[Gi ] for each coordinate
i of the lattice, and Kt = (

∏
i ki )

t .
In this section we prove that

Theorem 91. D-dimensional O
(
Dn1/D + D ln

( D
ε

))
-depth random circuits on n qubits

have expected collision probability 2
2n+1

(
1 + 1

poly(n)

)
.

Proof. The proof is basically a generalization of the proof for Theorem 87. Here we
sketch an outline and avoid repeating details. In particular, we need generalizations of
Lemma 88 and Proposition 89

The generalization of Lemma 88 is simply that kti for t = O(n1/D + ln D
ε
) is an

ε
d -approximate 2-design. Proposition 89 naturally generalizes to: if for each coordinate
Ki is an ε

D -approximate 2-design then

Coll

(
∏

i

Ki

)

≤
(
1 +

ε

D

)D · Coll
(
∏

i

Ch[Gi ]
)

. (404)
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Our objective is then to show

Coll

(
∏

i

Ch[Gi ]
)

= 2

2n + 1

(

1 +
1

poly(n)

)

. (405)

This last step may be the most non-trivial part in this proof.
Here we just outline the proof. For detailed discussions see the proof of Proposition

90. We first separate the all zeros state of the chain which contributes as 1/2n to the
expected collision probability. After the application of G1 on the first coordinate, each
row in this coordinate, will be all zeros vector with probability 1/2n

1/D
and V with

probability 1− 1/2n
1/D

. After the application of G2 each plane in the direction 1, 2 will
be all zeros with probability≈ 1/22n

1/D
and V with probability≈ 1−1/22n

1/D
. After the

application of G3 each plane in 1, 2, 3 direction is all zeros with probability≈ 1/23n
1/D

and V otherwise, and so on. Eventually after the application of Gd the distribution
along the chain is all zeros with probability ≈ 1/2Dn1/D and V otherwise. At this point
the distribution along each individual row in each coordinate is ≈ 1/2Dn1/D0 + (1 −
1/2Dn1/D )V . So the collision probability across each such row is

≈ 1

2Dn1/D
+

1

2n1/D
. (406)

Therefore the collision probability across the full chain is

≈ 1

2n
+

(
1

2Dn1/D
+

1

2n1/D

)n1−1/D

≈ 1

2n
+

1

2n
exp

(
1

2dn1/D
n1−1/D

)

. (407)

��
Corollary 92. O(ln n ln ln n)-depth randomcircuitswith long-rangegates have expected

collision probability 2
2n+1

(
1 + 1

poly(n)

)
.

Proof. Set D = ln n in Theorem 91. ��

6. Scrambling and Decoupling with Random Quantum Circuits

In this section we reconstruct some of the results of Brown and Fawzi [17,18]. The paper
[17] proves random circuit depth bounds required for scrambling and someweak notions
of decoupling. We are able to use our proof technique to reconstruct and improve on the
results of this paper. [18] on the other hand introduces a stronger notion of decoupling
with random circuits. Unfortunately our method does not seem to yield any results about
this model.

We first define an approximate scrambler based on [17].

Definition 93 (Scramblers). μ is an ε-approximate scrambler if for any density matrix
ρ and subset S of qubits with |S| ≤ n/3

E
C∼μ

‖ρS(C) − I

2|S|
‖21 ≤ ε. (408)

where ρS(C) = Tr\SCρC† and Tr\S is trace over the subset of qubits that is compli-
mentary to S.
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We show that small depth circuits from μ
lattice,n
D,c,s are good scramblers.

Theorem 94. If s = O(D · n1/D + ln D) and c = 1 then μ
lattice,n
D,c,s is a 1

poly(n)
-

approximate scrambler. In particular, for D = O(ln n) this corresponds to an ensemble
of O(ln n ln ln n) depth circuits that are 1

poly(n)
-approximate scramblers.

Brown and Fawzi show a circuit depth bound of O(ln2 n) for random circuits with
long-range interactions. Our result improves this to O(ln n ln ln n) depth.We believe that
the right bound should be O(ln n). Moreover, no bound for the case of D-dimensional
lattices was mentioned in their result.

Proof. We first rewrite EC∼μ‖ρS(C) − I
2|S| ‖21 ≤ 2|S|EC∼μTr(ρ2

S(C)) − 1 (to see why
this is true see [17]). Next, consider an arbitrary density matrix

ρ =
∑

i, j

ρi, j |i〉 〈 j | . (409)

We first find an expression for Tr\S(CρC†)

Tr\S(CρC†) =
∑

i, j

ρi, jTr\S(C |i〉 〈 j |C†)

=
∑

i, j

ρi, jTr\S
∑

g,h

CigC
∗
jh |g〉 〈h|

=
∑

i, j

ρi, j
∑

g̃,h̃

∑

p

Ci,g̃;pC∗
j,h̃;p |g̃〉 〈h̃| . (410)

Therefore

E

C∼μ
lattice,n
D,c,s

Tr
S

(
Tr\S

(
CρC†

))2 = E

C∼μ
lattice,n
D,c,s

Tr
S

⎛

⎜
⎝
∑

i, j

ρi, j
∑

g̃,h̃

∑

p
Ci,g̃;pC∗

j,h̃;p |g̃〉 〈h̃|
⎞

⎟
⎠

2

= E

C∼μ
lattice,n
D,c,s

∑

i, j

∑

k,l

∑

g̃1,h̃1

∑

g̃2,h̃2

∑

p,q

ρi, jρklCi,g̃1;pC
∗
j,h̃1;pCi,g̃2;qC

∗
j,h̃2;qδh̃1=g̃2

δh̃2=g̃1

= E

C∼μ
lattice,n
D,c,s

∑

i j,k,l

∑

a,b,c,d

ρi, jρklCi,a;bC∗
j,c;bCi,c;dC∗

j,a;d

= Tr

⎛

⎝ρ ⊗ ρCh

[

G(2)

μ
lattice,n
D,c,s

]
⎛

⎝
∑

a,b,c,d

|ab〉 〈cb| ⊗ |cd〉 〈ad|
⎞

⎠

⎞

⎠

= Tr

(

ρ ⊗ ρCh

[

G(2)
μ
lattice,n
D,c,s

]

(A)

)

. (411)

both ρ ⊗ ρ and A are psd therefore using Lemma 34

Tr
(
ρ ⊗ ρCh[G(2)

μ ](A)
)
≤ (1 + ε)D · Tr

⎛

⎝ρ ⊗ ρ
∏

1≤i≤D

Ch[Gi ](A)

⎞

⎠ . (412)
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Next, usingEquation3of [17]we reduce computationofTr(ρ⊗ρ
∏

1≤i≤D Ch[Gi ](A))

to the following probabilistic process: starting from a uniform distribution over
{0, 3}n\I n show that the probability that after the application

∏
1≤i≤D Ch[Gi ] the string

on Markov chain K defined in Sect. 4 has weight ≤ n/3 is poly(n)/2n and this recon-
structs theorem A.1 of [17].

The initial state on the chain is 1
2n
∑

p∈{0,3}n\00 σp⊗σp we add the term 1
2n σ0⊗σ0 this

can only slower the process. With this modification each site is initially independently
Z ⊗ Z or I ⊗ I , each with probability 1/2.

From using the proof of Theorem 91 after the application
∏

i Ch[Gi ] the distribution
along the each row is≈ 1/2Dn1/Dσ0 ⊗ σ0 + (1− 1/2Dn1/D )V . Therefore the probability
that each site is zero is at most 1/4 + 1/2Dn1/D =: 1/4 + δ =: p0. Hence the probability
of having at most n/3 is at most

n/3∑

k=1

(n
k

)

4n − 1
pn−k
0 (1− p0)

k =
n/3∑

k=1

(n
k

)

4n − 1
(1/4 + δ)n−k (3/4− δ)k

≤ e4·2/3n·δ
n/3∑

k=1

(n
k

)

4n − 1
1/4n−k(3/4)k (413)

which is within 1 + O
(
n/2Dn1/D

)
of what we would expect from the Haar measure.

Also when D = O(ln n) with a proper constant, this value is 1 + 1/ poly(n). ��
Next, we consider the following notion of decoupling defined in [17]. Consider a

maximally entangled state �MM ′ along equally sized systems M and M ′ each with m
qubits, and a pair of equally sized systems A and A′. Similar to [17] we consider two
models for AA′: 1) a pure state |0〉A 〈0| along system A with n − m qubits and 2) a
maximally entangled state φAA′ . We then apply a random circuit to systems M ′A and
we want that for a small subsystem S of M the final state ρMS(t) be decoupled in the
sense that ρMS(t) ≈ I/2m+s .

Definition 95 (Weak decouplers). A distributionμ over U(2n) is an ε-approximate weak
decoupler if ‖ρMS(t) − IM

2|M| ⊗ IS
2|S| ‖1 ≤ ε.

Theorem 96. Let D be a constant integer. If s = O(D · n1/D) and c = 1 then there
exists a constant c′ < 1 such that if m < c′n1/D then μ

lattice,n
D,c,s is a 1

poly(n)
-approximate

weak decoupler.

The depth bound Brown and Fawzi find in [17] for this problem is n1/D · O(ln n)

depth for m = poly(n).

Proof. We first show that the bound we want to calculate for the 1-norm in this theorem

can be written as Tr
(
ECh

[
G

μ
lattice,n
D,c,s

]
F
)
where E and F are psd matrices. Hence using

Lemma 34 we can use the overlapping projectors
∏

i Ch[Gi ] instead Ch[G
μ
lattice,n
D,c,s

] as
the second-moment operator.

We first start with the case when ψA is the pure state |0〉A 〈0|. The initial state is the
(pure) density matrix

ρinit = 1

2m
∑

i, j

|i〉 〈 j | ⊗ |i0〉 〈 j0| (414)
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where |i〉 runs through the computational basis of M and 0 is the initial state of A. After
the application of a circuit C

ρinit �→ ρC = 1

2m
∑

i, j,k,l

|i〉 〈 j | ⊗ |k〉 〈l|Ci0;kC∗
j0;l . (415)

where Ca;b is the ab entry of C . The density matrix corresponding to subsystem MS
becomes

1

2m
∑

i, j,k′,l ′,q ′
|i〉 〈 j | ⊗ |k′〉 〈l ′|Ci0;k′q ′C∗

j0;l ′q ′ . (416)

We use the bound (also used in [17])

‖ρMS(C) − IM
2|M| ⊗

IS
2|S|

‖1 ≤ 2m+sTr(ρ2
MS(C)) − 1. (417)

Next, using theproof ofTheorem94EC∼μTr(ρ2
MS(C)) canbewritten asTr(CCh[G(2)

μ ]D)

whereC and D are psd, henceTr(CCh[G(2)

μ
lattice,n
D,c,s

]D) ≤ Tr(C
∏

i Ch[Gi ]D)(1+ε). Hence

we can just use
∏

i Ch[Gi ] to bound the expectationEC∼μ
lattice,n
D,c,s

‖ρMS(C)− IM
2|M| ⊗ IS

2|S| ‖1.
Next, we do the same calculation for the case when ψAA′ is the maximally entangled

state 1
2n−m

∑
i, j |i〉 〈 j | ⊗ |i〉 〈 j |. Therefore the initial density matrix is

ρinit = 1

2n
∑

i, j,k,l

|i〉M 〈 j | ⊗ |i〉M ′ 〈 j | ⊗ |k〉A 〈l| ⊗ |k〉A′ 〈l|

= 1

2n
∑

i, j,k,l

|i〉M 〈 j | ⊗ |ik〉M ′A′ 〈 jl| ⊗ |k〉A′ . 〈l| (418)

After the application of the random circuit this gets mapped to

ρinit �→ ρ(C) = 1

2n
∑

i, j,k,l

|i〉M 〈 j | ⊗ |z〉M ′A′ 〈w| ⊗ |k〉A′ 〈l|Cik,zC
∗
jl,w. (419)

Again we can use a bound similar to (417) and similar to the proof of Theorem 94 we
can show that tracing out a subsystem, the trace of the resulting density matrix squared

can be written as Tr
(
CCh[G(2)

μ ]D
)
for C and D psd.

As proved in theorem 3.5 of [17], the task is to show that starting with uniform
distribution over all strings with weight≤ m = O(n1/D), prove that the probability that
after the application of the random circuit the weight of the string on the chain is≥ n/2 is
at least 1−1/4m . It is enough to show that this is true for the initial state with Hamming
weight 1. Without loss of generality assume the nonzero digit in this string is in the
first row of the first direction. After the application of G1 the first row in this direction
becomes V . Using Chernoff bound for independent Bernoulli trials, with probability
at least 1 − e−�(n1/D) there are at most 1/4 · n1/D · 21/D zeros on this row. After the
application of G2 with probability at least 1 − e−�(n1/D) there are 1/4 · n2/D · 22/D ,
and so on. Hence after the completion of

∏
i Gi with probability at least 1− e−�(n1/D)

there are at most 1/4 · nD/D · 2D/D = n/2 zeros on the chain. For constant D the failure
probability is at most e−�(n1/D) and we can choose the constant c′ small enough so that
if m < c′n1/D the probability of failure is at most 1/4m . ��
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A. Proof of Theorem 3

In this sectionweproveTheorem3.Theproof is directly inspired by thework ofBremner,
Montanaro and Shepherd (see Theorem 6 and 7 of [16]). A similar theorem was also
proved in [32].

Definition 97. Let μ be a 1
poly(n)

-approximate 2-design over the n-qubit unitary group.
Cx is the family of unitaries constructed by first applying a circuit C ∼ μ and then
sampling an n-bit string x uniformly at random, and then applying an X gate to qubit j
whenever x j = 1.

Proof of Theorem 3. Let C be a random quantum circuit ∼ μ, and define px =
| 〈x |C |0〉 |2. Denote this output distribution with pC . Suppose there exists a BPP algo-
rithm that samples from a distribution qx that is within total variation distance ε of px .
Therefore

1

2

∑

x

|px − qx | ≤ ε (420)

Stockmeyer showed that given a BPP machine, there exists an FBPPNP algorithm that
computes its output probabilities within (inverse polynomial) 1

poly(n)
multiplicative error.

As a result, there is an FBPPNP algorithm that for each string x computes a number q̂x
that satisfies

|qx − q̂x | = qx · 1

poly(n)
. (421)

http://creativecommons.org/licenses/by/4.0/
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Therefore using triangle inequality

∑

x

|px − q̂x | ≤
∑

x

|px − qx | +
∑

x

|qx − q̂x | ≤ 2ε + 1/ poly(n). (422)

Let 0 < δ < 1. Using Markov’s inequality, for at least 1 − δ fraction of n-bit strings
(such as y),

|py − q̂y | ≤ 2ε + 1/ poly(n)

2nδ
. (423)

Using the definition of Cx with probability at least 1−δ over a circuitC ′ from the family
Cx , p′0 = | 〈0|C ′|0〉 |2 satisfies (423). Furthermore, we will show below that given a

1
poly(n)

-approximate 2-design μ, for any output string y ∈ {0, 1}n , there exist a constant
fraction ≥ 1/8 − 1

poly(n)
of unitaries C ∼ μ, such that py ≥ 1/2n+1. Therefore w.p. at

least 1− δ the FBPPNP algorithm computes q̂ ′
0 that satisfies

|q̂ ′
0 − p′0| ≤

2ε + 1
poly(n)

2nδ
≤

2(ε + 1
poly(n)

)

δ
p′0. (424)

for 1/8− 1
poly(n)

fraction of random unitaries C ′ from the ensemble Cx . In the last line,
we have used (427) (which we are going to prove next).
Now we show that for any output string y ∈ {0, 1}n , there exist a constant fraction
≥ 1/8 − 1

poly(n)
of unitaries C ∼ μ, such that py ≥ 1/2n+1. To see this first recall the

following known moments of the Haar measure

E
C∼Haar

| 〈x |C |0〉 |2 = 1

2n
, E

C∼Haar
| 〈x |C |0〉 |4 = 2

2n(2n + 1)
. (425)

Since μ is a 1
poly(n)

-approximate 2-design

E
C∼μ

| 〈x |C |0〉 |2 =
1 + 1

poly(n)

2n
, E

C∼μ
| 〈x |C |0〉 |4 = 2

2n(2n + 1)

(

1 +
1

poly(n)

)

.

(426)

Using the Paley–Zygmund inequality and the moments of a 2-design above

Pr
C∼μ

[

| 〈x |C |0〉 |2 ≥ 1

2n+1

]

≥ 1/4

(

E
C∼μ

| 〈x |C |0〉 |2
)2

( E
C∼μ

| 〈x |C |0〉 |4) = 1/4

1+ 1
poly(n)

4n

2
(
1+ 1

poly(n)

)

2n ·(2n+1)

= 1/8− 1

poly(n)
. (427)

��
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B. Basic Properties of the Krawtchouk Polynomials

Theorem. (Restatement of Lemma 86)TheKrawtchouk polynomials obey the following
symmetry relation.

(n−1
x

)

3t
K (t)(x) =

(n−1
t

)

3x
K (x)(t). (428)

Proof. This is implied by the observation that for all i ∈ [t]
(
n − 1

x

)(
x

i

)(
n − x − 1

t − i

)

= (n − 1)!
(x − i)!(t − i)!i !(n − x − t + i − 1)! (429)

is symmetric in x and t . As a result
(n−1

x

)

3t
K (t)(x) =

t∑

i=0

(
n − 1

x

)(
x

i

)(
n − x − 1

t − i

)

3−i (−1)i . (430)

is also symmetric in x and t . ��
The second lemma we use here is the orthogonality of the Krawtchouk polynomials

Lemma. (Restatement of Lemma 85) If we define

k(t)(x) :=
t∑

i=0

(
x

i

)(
N − x

t − i

)

pt−i (−q)i , (431)

for p, q ∈ [0, 1] and p+q = 1. Then theseKrawtchouk polynomials satisfy the following
orthogonality relationship

n∑

x=0

(
N

x

)

pxqN−x k(t)(x)k(s)(x) =
(
N

t

)

(pq)tδt,s . (432)

Proof. Consider the generating function

gp,x (z) = (1 + pz)N−x (1− qz)x

=
n−x∑

i=0

(
N − x

i

)

pi zi
x∑

j=0

(
x

i

)

(−q) j z j

=
N∑

t=0

zt
t∑

i=0

(
N − x

t − i

)(
x

i

)

pt−i (−q)i

=
N∑

t=0

zt k(t)(x). (433)

Define the binomial norm (·, ·) : F×F → R, whereF is the set of functions : [N ] → R.

f, g �→ ( f, g) := E
X∼Bin(N ,P)

[ f (X)g(X)] =
N∑

x=0

(
N

x

)

pxqN−x f (x)g(x). (434)
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Now for all real values y and z consider the overlap (gp(y), gp(z)). On the one hand

(gp(y), gp(z)) =
N∑

x=0

(
N

x

)

pxqN−x gp,x (y)gp,x (z),

=
N∑

t,s=0

zt+s
N∑

x=0

(
N

x

)

pxqN−x k(t)(x)k(s)(x),

=
N∑

t,s=0

zt+s(k(t), k(s)). (435)

On the other hand

(gp(y), gp(z)) =
N∑

x=0

(
N

x

)

pxqN−x gp,x (y)gp,x (z),

=
N∑

x=0

(
N

x

)

pxqN−x (1 + py)N−x (1− qy)x (1 + pz)N−x (1− qz)x ,

=
N∑

x=0

(
N

x

)

(q(1 + pz)(1 + py))N−x (p(1− qy)(1− qz))x ,

= (q(1 + pz)(1 + py) + p(1− qy)(1− qz))N ,

= (1 + qpyz)N ,

=
N∑

t=0

(
N

t

)

(pq)t yt zt . (436)

Equating these two for all y and z we obtain

(k(t), k(s)) =
n∑

x=0

(
N

x

)

pxqN−x k(t)(x)k(s)(x) = δt,s

(
N

t

)

(pq)t . (437)

��
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