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Abstract: We prove that the space of intertwining operators associated with certain
admissible modules over vertex operator algebras is isomorphic to a quotient of the
vector space of conformal blocks on a three-pointed rational curve defined by the same
data. This provides a new proof and alternative version of Frenkel and Zhu’s fusion rules
theorem, in terms of the dimension of certain bimodules over Zhu’s algebra, without the
assumption of rationality.

1. Introduction

The space of intertwining operators of vertex operator algebras (see [1,4,5]) and its
dimension, the so-called fusion rule in the physics literature [9—11], plays an essential
role in studying the tensor product of modules over vertex operator algebras. In the
semi-simple case, the fusion rule is the multiplicity of an irreducible module in a tensor
product. For the affine Lie algebras or the associated affine vertex operator algebras [6],
the fusion rules in case slz/_(E) were computed in [10], and a general version was stated
in [11] without proof. In [6], Frenkel and Zhu proposed a formula (Theorem 1.5.2 in [6])
to compute the fusion rules for arbitrary vertex operator algebras by using Zhu’s algebra
A(V) defined in [13] and some of its (bi)modules. Given irreducible modules M, M2
and M over a vertex operator algebra V, Frenkel and Zhu’s fusion rules theorem claimed
that the space of intertwining operators / ( MIIVIZ,IZ) can be identified with the vector space
(M3(0)* ®aqvy AM") ®@acvy M*(0))*, where A(M') is a bimodule over the Zhu’s
algebra A(V), and M 2(0) and M3(0) are the bottom levels of the V-modules M? and
M3, which are modules over A(V), see Section 1 in [6] for more details.

However, it was later realized by Li (see [8]) that some additional conditions are
needed in Frenkel and Zhu’s fusion rules theorem. Li gave a counter-example in [8] in
the case of the universal Virasoro vertex operator algebra that shows that / ( leui/]z) is
not isomorphic to (M3 (0)* ®aw) AMY) Raw) M?(0))* in general. Li also proposed in
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[8] that the fusion rules theorem is true when M2 and M?3 are the so-called generalized
Verma modules constructed in [2]. In particular, it is true for the rational vertex operator
algebras (see Section 2 in [8] for more detailed discussions and the counter-example).

In this paper, we give an alternative version of the fusion rules theorem for general
vertex operator algebras. It can be stated as follows:

Theorem 1.1. Let V be a CFT-type vertex operator algebra, and let M', M?, and M3
be V-modules with conformal weights hy, h», and h3, respectively. Assume M?*(0) and
M?3(0) are irreducible A(V)-modules, then we have the following isomorphism of vector
spaces:

MOLO ) (M (M*(0)* ®a(vy Ba(M") ®av) M*(0))*
M M(M20)) —  \M' mM2) A(V) Ph A(V) )
where h = hy + hy — h3, and M? = M/Ra_d(l\;l) and m? = M/RadM are quotient
modules of the generalized Verma modules M(M?(0)) and M (M3 (0)*), respectively.

In our version of the fusion rules theorem, we replaced the A(V)-bimodule A(M') by
a newly defined A(V)-bimodule Bj,(M"), which is given by B,(M') = M /span{a o
u, L(=1)v+ (L(O) +hy —h3)v : a € V, u,v € M'}. We will show that B, (M) is
a quotient module of A(M1'), and we will give examples to show that the vector spaces
(M3 (0)* ®av) Bi(M") @acv) M*(0)* and (M3 (0)* ®av) AMM") @acv) M?(0))*
are not isomorphic in general. We need to mod out the additional terms L(—1)v +
(L(O)v + hy — h3)v in A(M!) because otherwise, the L(—1)-derivation property of
the intertwining operators cannot be correctly reflected. We will also give sufficient
conditions formodules M2 and M3 to be irreducible. In particular, for a CFT-type rational
vertex operator algebra V, the modules M2 and M3 are automatically irreducible, then
the fusion rule dim / ( lew ;42) for three irreducible V-modules is equal to the dimension
of (M3(0)* ®a(vy Bi(M") ® vy M%(0))*.

Our proof of Theorem 1.1 is different than Li’s proof of Theorem 2.11 in [8]. We
prove Theorem 1.1 based on a combination of ideas the ideas from [11] and extensions
made in [12], wherein a system of correlation functions is associated with every vector
in the space of conformal blocks (see Theorem 6.2 in [12]). Based on the properties of

the following prototype system of (n + 3)-point correlation functions on IP’(IC:

(3, Yypsar, z1) - . Yy (ar, i) 1 (v, w)Ypp2 (@it 2est) - - - Yape (ans 2)v2),  (1.1)

where vg € M3(O)*, v e M, vy € M2, at,...,ap € V,and [ is an intertwining
3 . . . .
operator of type ( MIIVI MZ)’ we introduce the notion of space of correlation functions

3
associated with V-modules M, M2, and M3, denoted by Cor ( Mﬂ” MZ)' Itis essentially a
quotient of the vector space of three-point genus zero conformal blocks, the dual space
to a certain quotient of the tensor product of 3 admissible V-modules (see [11,12]). Then
3 3

we prove that Cor ( Mjlw M2) is isomorphic to / ( MJIW MZ)'

In order to relate Cor ( M’Y’LZ) with the modules over A(V), we introduce an auxiliary
notion of the space of correlation functions associated with M I M2(0), and M3(0),

3

denoted by Cor ( Mﬂ‘ﬁ;gzo)) . This space can be viewed as the space A (V' )-conformal blocks
on the 3-pointed rational curve ]P’é: defined from the representations of Zhu’s algebra
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A(V). The axioms we imposed on this space are based on the restriction of (1.1) onto

the bottom levels M2 (0) and M 3 (0)*. Then we use certain generating formulas satisfied

M3(0)

by the correlation function (1.1) and prove that Cor( ) is isomorphic to both

M1 M2(0)

3
Cor (1 MZ) and Cor.( MA/II(AA—;( ;?2) (())))) when M2(0) and M3 (0) are irreducible modules over
A(V). However, unlike building V-modules from A(V)-modules (see Theorem 2.2.1 in
[13]) based on the ordinary correlation functions (v/, Y (a1, z1) ... Y (an, z4)v), in our

case, due to the appearance of intertwining operator / (v, w) in (1.1), the modules M 2
and M3 constructed by (1.1) are not necessarily irreducible. This issue was first observed

by Li in [8]. The V-modules M? and M3 are quotient modules of certain generalized
Verma modules. They can be proved to be irreducible if a technical condition depends
only on the (bi)modules over A(V) is satisfied.

3
We then prove that Cor(MIIVIA/;gzo)) is isomorphic to (M3(0)* ®a(v) Bn (MY ®Av)

M?(0))*. Given a linear function f on M>(0)* ®Av)Bn (M1)®A(V) M?2(0), we shall use
the recursive formulas satisfied by (1.1) and reconstruct a system of correlation functions

in Cor ( MJ]VIA;(Z) (0)) There is one recursive formula ((2.2.1) in [13]) of the correlation func-
tions S(v/, (ay, z1) ... (an, z)v) = V', Y (a1, z1) ... Y (an, 2,)v), where v € M(0) and
v’ € M(0)*, obtained by expanding the left-most term Y (aj, z1). However, in our case,
this formula alone is not enough to rebuild the correlation functions from f. The reason
is again because of the appearance of I (v, w) in the correlation functions, which makes
expanding the left-most term (v, w) in S(v5, (v, w)(ar, z1) . . . (an, Z,)v2) unreasonable,
asthe action v(n)a; = Res,w™" I (v, w)a; is not yet defined. We remedy this situation by
introducing an additional recursive formula for the correlation functions (1.1) obtained
by expanding the right-most term Y (ay, z,) in (v5, I (v, w)Y (a1, z1) ... Y (an, 22)v2),
where v € M 3(0)* and vy € M?(0), and we use both the recursive formulas to re-
construct the correlation functions from f. Then Theorem 1.1 follows from the isomor-

phisms I(M1 MZ) = Cor(MﬂW;/;z) = Cor(MIIVI;;gzo)) = (M30)* ®avy Bh(MY) @avy
M?(0))*.

This paper is organized as follows: In Section 2, we define Cor( Mﬂv’;ﬂ) and prove
that it is isomorphic to 7 ( MIIVI;/IZ) In Section 3, we define Cor( M’l‘ﬁ;%)

A(V)-modules M 2 (0) and M 3 (0) and prove that Cor(

M(M3(©0)*Y
and Cor(M1 MM2(0)

and prove that Cor(MﬂW;/;gzo)) is isomorphic to (M3 (0)* ® av) Bn(M") @ a(vy) M?(0))*,
which finishes the proof of Theorem 1.1. Then we verify this theorem on some particular
examples, one of which shows that the counter-example given by Li in [8] does not
contradict Theorem 1.1.

We expect the readers are familiar with the concept of vertex operator algebras,

modules over vertex operator algebras, and the A(V)-theory, see [1,4,13].

) for irreducible

m M(Q)EO)) is isomorphic to both

Cor( ) In section 4, we define the A(V)-bimodule By, (M)

M! Mz)

2. The Space of Correlation Functions Associated with M1, M2, and M3

We fix some notations that will be in force throughout this paper. We denote by C, Z,
and N the set of complex numbers, the set of integers, and the set of natural numbers,
including 0. All vector spaces are defined over C.
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Let V. = (V,Y,1,w) be a vertex operator algebra (VOA) which is of the CFT-
type: V. = @, Va, with Vo = C1. A module M over V is an ordinary V-module:
M = @;’O:O M, 4, where each M) 4, is an eigenspace of L(0) with eigenvalue A+n. Any
V-module M is N-gradable (or admissible): M = @zio M (n), with M (n) = M,,, for
eachn. We write Yy (a,2) = ),z a(n)z7"~ !, foralla € V, and we write Yy (w, z) =
ZnEZ L(n)z_"_z. One can find more details about the definitions in [2,4,5,13].

When we use the integral sign fc f(2)dz, where C is a simple closed contour of z,

it means ﬁfc f(2dz.

2.1. The (n+3)-Point Correlation Functions. Let M, M?, and M3 be V-modules with
conformal weights i1, />, and h3, respectively, and let I € ( MIIMZ/IZ) be an intertwining
operator. Recall that I (v, w) = Znez v(myw 1. w™", where h = hy +hy — h3, and
v(n) = Resy I (v, w)w™". Moreover, v(n)M2(m) C M3(degv —n — 1 +m) for all
n € Z and m € N, see [6] for more details. Consider the power series

W3, Y(a,z1) ... 1(v, w) ... Y(ay, zo)v2)w" 2.1)

in n + 1 complex variables z1, ..., z,, w with integer powers, where aj,...,a, € V,
veM' ve M? and vg € M? which is the contragredient module of M 3 (cf. [4]).
We multiply the term w” to avoid the appearance of the logarithm when computing the
Integrations.

Recall that the power series (2.1) converges in the domain

D={G1, ..., 20, w) € C" 21| > |z2] > -+ > [w] > -+ > |z,] > 0}

to a rational function in z1, ..., z,, w, z; —z;j and zx — w, where 1 <i # j < n and
1 < k < n. We denote this rational function by:

5, Y(ai, z1) ... 1(v, w)...Y(an, 20)v2), 2.2)

also recall that the only possible poles of (2.2) are at z; = 0, w = 0, z; = z; and
Zk = w, see [4] for more details.

Moreover, it is also essentially proved in [4] that the rational function (2.2) is invariant
under the permutation of the terms Y (a1, z1), ..., Y (au, 2n),and I (v, w).In other words,
the power series (2.1) and the power series (v5, Y (a;i;, zi)) ... I (v, w) ... Y (a;,, zi,) v2)w
have the same limit function (2.2) on their corresponding domain of convergence.

We use the symbol S; as in [13] to denote the limit function (2.2):

h

Sr(5, (@i, z1) ... (v, w) ... (an, 2p)V2) :
=5, Y(ai,z1) ... 1(v,w) ... Y(an, 2n)02). (2.3)

Then we have a system of linear maps S; = {(Sl)r‘l/...Ml...V pale

SH” :M3/><V><...><M1><...V><M2—>]-"z,...,z,w,
( 1)/V...Ml...V / ( 1 n ) (24)
(v3,a1,...,0,...,a,,v2) = Sr(v3, (a1, z1) ... (v, w) ... (an, 2n)V2),
where F(z1, ..., Zn, w) is the space of rational functions in n+1 variables z1, 22, . . ., Zn,
w, with only possible poles at z; = 0, w = 0, z; = zj, zx = w. For a fixed
n € N, we have (SI);/I'V‘..V = (SI)I\q/Ml...V == (SI.)"’/WVM,, since the terms
(a1, z1), - -, (an, zn), and (v, w) can be permuted within S; in (2.3).

We introduce the following notion that generalizes Definition 4.1.1 in [13]:



A Proof of the Fusion 1241

Definition 2.1. A system of linear maps S = {SV MLV i

’
"’/ i V:M3 xVx...lex...VxM2—>f(zl,...,z,,,w),

(Uga al, L) U, R anv U2) = S(vgs (al’ Zl) ce (U, w) e (ans Zn)UZ),

is said to satisfy the genus-zero property associated with M', M?, and M? if it satisfies
(1) (The truncation property) For fixed v € M' and v, € M?, the Laurent series expan-
sion of § (vg, (v, w)vy) around w = 0 has a uniform lower bound for w independent

of vy € M. ie., SO}, (v, wv2) =Y, -y apw ™! forall vy € M¥.
(2) (Thelocality) The terms (ay, z1), - - . (an, Zn),and (v, w) can be permuted arbitrarily

g . n " .
within S.ie., S, |, =5, |, = SV v forany fixedn € N.

(3) (The vacuum property)

Sy, (1, 2)(ar, z1) ... (v, w) ... (an, 20)V2)
=S5, (a1, z1) ... (v, w) ... (an, 20)V2). (2.5)
(4) (The L(—1)-derivation property)
S(3, (L(—=Dat, z1) - . . (@n, 20) (v, W)V2)
d
= ES(Uéa (alv Zl) o (anv Zn)(vs w)v2)7
S5, (L(=v, w)(ar, z1) ... v)w ™"

d
= (S(vg, (v, w)(ai, z1) ... vz)w7h> )

(2.6)

(5) (The associativity)

/CS(vé, (a1, 21) (W, w) ... (@n, Z2)V2)(z1 — w)*dz)
= S5, (a1(k)v, w) ... (an, z0)V2),
fc S}, (a1, 21)(a2, 22) - . . (v, WHL2) (21 — 22)*dzy

= S(v3, (a1(k)az, 22) . .. (v, WHv2), 2.7)

where in the first equation of (2.7), C is a contour of z| surrounding w, with z2, ..., Z,
outside of C; while in the second equation of (2.7), C is a contour of z; surrounding
72, with z3, ..., z,, w outside of C.

(6) (The Virasoro relation) Let w € V be the Virasoro element, and let x, x{, ..., x;,; be
complex variables, denote the rational function

S5, (@, x1) ... (0, xp) (a1, z1) ... (U, W) ... (an, Zn)V2)

by S for simplicity. Assume that vg, v, v2,ay, ..., a, are highest weight vectors for
the Virasoro algebra, then we have:

S, (@, x) (@, x1) ... (@, xp)(a1,21) ... (U, W) ... (An, 22)V2)
. 1z d - wtay, x tw
Zx—zkdzk Z(x—zk)2S+x—w

d
whd_(S . U)_h)
k=1 w
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wtv thz Ll d " 2
+ —S
(x — u))2 2; — Xk dxk 2; (x — xp)?

m
c 1 ,
+ EZmS(U3, (C!),X])...

(@, xk) ... (@, xp)(ar, 21) ... (V, W) ... (an;, Zn)V2) (2.8)
(7) (The generating property for M?) For any a € V and m € Z, we have:
S(v3, (a1, z1) - .- (v, ) ... (@n, Zn)a(m)va)

/ . (2.9)
= / S(U3s (ala Zl) ce (Uv w) et (anv Zn)(as Z)UZ)Z 1dZ,
C

where C = Cg(0) is a contour of z surrounding O with z1, ..., z,, w lying outside.
(8) (The generating property for M) Denote (7 'L (=)L Og, 7 by (a, z)’, then

S(a(m)vs, (a1, z1) ... (v, w) ... (an, Zn)v2)

o (2.10)
= / S5, (a,2) (a1, z1) ... (v, w) ... (@n, Z2)v2)z " 2dz,
C/
where C’ = C,(0) is a contour of z surrounding 0 with zy, ..., z,, w lying inside.
Definition 2.2. The vector space of the system of linear maps § = {SV Ml V}Z":O

satisfying the genus-zero property associated with M, M2, and M3 is called the space
3
of correlation functions associated with M 1 M2, and M3. We denote it by Cor( MI.VI M2)'

Proposition 2.3. The system of functions Sy given by (2.3) and (2.4) satisfies the genus-

zero property associated with M', M?, and M? in Definition 2.1. Thus S; € Cor ( M ;,12)

Proof. The properties (1) - (6) for S; follow immediately from the axioms satisfied by
the intertwining operator / and the vertex operator Y; see Section 5.6 in [4] for more
details.

To prove (2.9), we note that the Laurent series expansion of the rational function (2.3)
onthedomain |z| < |z;|, [w|foralliis ), ., (v5, Y(ar, z1) ... I(v, w). am)vy)z~m L
The coefficient of z ! in the Laurent series is also

/ (vg, Y(ai,z1) ... I(v,w)...Y(a,, z,)Y (a, 2)v2)z"dz,
C

where C = Cg(0) is a contour of z surrounding 0 with zy, ..., z, and w lying outside.
This proves (2.9). To prove (2.10), we denote the term ijo % (=™ (L(1)a!)(2wta—

m — j —2) by a’(m), then by the definition of contragredient module (see (5.2.4) in [4]),
the series

> (amyvy. Y(ar.z1) ... I, w) ... Y (@n. z0)Y (@, 2)v2)z """

mez

= Z(vé, am)Y(ar,z1)... 1w, w)...Y(an, z))v2)z "}

meZ
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is the expansion of (v}, ¥ (eLM (=270, 27 Y (a1, z1) ... T(v, w) ... Y (an, 20)v2)
on the domain |z7'| > |z;|, |w|, or equivalently, |z| < 1/|z;|, 1/|w|, fori =1,...,n.
By comparing the Laurent coefficient of z7"~", we have:

(a(m)vy, Y(ar,z1) ... I(v,w)...Y(an, z0)Y (a, 2)v2)
= f W5, Y (W (=200 27Oy (ar, z1) ... T, w) ... Y (an. 20)v2)"dz,
Cr(0)

@2.11)

where R is small enough such that R < 1/|z|, 1/|w], fori = 1, ..., n. Change t_he
variable z — 1/zintheintegral (2.11). Note that the parametrization of 1 /zis (1/R)e "¢,

which gives us a clockwise orientation, and d(1/z) = —(1 /zz)dz. Let C' = C,(0), with
radius r = 1/R > |z;|,|w| fori = 1,...,n, equipped with the counterclockwise
orientation. Then z1, ..., z,, w are inside of C’, and
—1
Q2.11) = —/ W5, Y& (=)0, Y (ar, z1) ... T (v, w)
C/
Y (@n, 2)v2)z (=27 D)z

-1
= / W5, Y (& ED(—LOq, )Y (a1, z1) ... I (v, w) ... Y (an, z0)v2)z " 2dz
C/

zf S1(vy, (@, 2) (@1, 21) ... (U, w) ... (@, 22)v2)z " 2dz.
C/

This proves (2.10). |

3
Remark 2.4. Let S € Cor( Mﬂ” 1s2)- With the notations of Proposition 2.3, we have:

S(a/(m)vé, (ar,z1)...(v,w)...(a,, z,)v2)

1 _ ) '
= E F(—l)wta/ S(vé, C ]L(l)(—zz)L(O)(L(l)Ja), 21, z1) ... UZ)Z72wta+m+de

- ! c
Jj=0

771 —
=/ S(vs, (€ LM (2O 2L (=L O g A(ay, 71) ... v2)Z"dz
C/
= f S(h, (@ PV Mg, (g, 21) .. v2)2"dz
C/

= / S(s, (@, 2)(ar, z1) ... (v, w) ... (an, zn)v2)z"dz.
C/

Hence the generating property for M 3 (8) in Definition 2.1 is equivalent to:

S(a' (myvs, (ai, z1) ... (v, w) ... (an, 2n)v2)

=/ S(v3, (a, 2)(a1, z21) - .. (v, ) ... (an, zn)v2)2"dz, (2.12)
C/
where a’'(m) = ijo %(—I)Wt“(L(l)ja)(Zwta —m— j—2)and C' = C,(0) as in
().

As a consequence of Proposition 2.3, we have a well-defined linear map:

M3 M3
ol Ml M2 — Cor Mo ) ISy, (2.13)

where Sy is given by (2.3) and (2.4).
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2.2. The Space of Correlation Functions and the Space of Intertwining Operators. Al-
though the genus-zero property associated with three V-modules in Definition 2.1 seems
long and intrinsic, it is good enough to characterize an intertwining operator. In other
words, we can construct an inverse of the map « in (2.13).

3
Fix a system of correlation functions S in Cor( Mllw Mz), we construct an intertwining
operator Ig € ( M’I"’;ﬂ) in the following way:
Let v € M!, define a linear map v(n) : M> — M? by the formula:

(v3, v(n)v2) :=/ Sy, (v, w)n)w"dw, (2.14)
c

where C is a contour of w surrounding 0. Note that an element u € M? is uniquely
determined by the value (v5, u) for vj € M ¥, 50 we have a well-defined element v(n)vy
in M3. Define I (v, w) by

Is,w) := Y vmw " w™, (2.15)

nez
where h = hy + ho — h3. Then I (v, w) € Hom(M?2, M>){z}.

Theorem 2.5. The series Is(v, w) defined by (2.14) and (2.15) is an intertwining oper-
3

ator of type (MZIWMZ).
Proof. By Definition 2.1, § (vg, (v, w)vy) is a rational function in w with the only pos-
sible pole at w = 0, and the term (2.14) is the Laurent coefficient of S(vg, (v, w)vy).
Thus the series (xé, Is(v, w)x2>wh is the Laurent series expansion of S(xg, (v, w)x3)
around w = 0 by (2.15). In particular, if we denote the limit of the Laurent series
(vg, I (v, w)vy)wh by (vg, I (v, w)vy), then we have the following equality of rational
functions:

(3, Is(v, w)v2) = S(v3, (v, W)v2) (2.16)

Since S satisfies the property (1) in Definition 2.1, forv € M' and v, € M?, there ex-
ists N € Z such that (v}, Is(v, w)vy)w! = Don<N (fC S5, (v, w)vz)w"dw) wL

for all v € M 3 Hence we have v(n)vy = 0 for n > 0. By the locality of S, together
with (2.15), we have:

(v3, Is(L(=Dv, w)va) = %(S(vé, (v, wvr)w ") = %(vé, Is(v, w)va).

Hence Is(L(—1)v, w) = %I_g(v, w). Moreover, we claim that the following equation
holds:

o0

Z <m> (ad+iv)y(m+n—i)v
i

i=0

= Z(—l)i <l,)a(m +1— v +i)vy — Z(—l)l” ({)v(n +1—ia(m+i)v,
i=0 ! i=0 !
(2.17)
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forallm,n,l € Z,a € V,v € M', and vy € M?. Note that (2.17) is the component
form of the Jacobi identity for the intertwining operator Ig (see (1.2.9) in [13]).
Indeed, by (2.14) and the generating property (2.12) of S, we have:

v;,Z( 1)'<)a(m+l—t)v(n+t)v2)
= Z( 1) <)/ S(d (m +1 — i)vy, (v, wyv)w" dw
= Z(—l)’(l.)/ / S}, (@, 2) (v, wv) 2™ w™ dw, (2.18)
i=0 t Ci Cé

where C] is a contour of w, and C} is a contour of z which contains C|. On the other

hand, by (2.14) and the generating property (2.9) of S, we have:

(v5, Z( l)l”( )v(n +1—Dam+i)v)
i=0

Z 1)l+l<>/c S5, (v, wya(m + Hv)w" " dw
1

=Z(_1)l+f<l.> / / S5, (v, w)(@, )" W™ dzdw,  (2.19)
i=0 sl

where C1 and C, are contours in w and z, respectively, and C» is contained in Cj.

We adopt the notations in Proposition A.2.8 in [5]. Choose the contours C1, C», C i
and C} in the following way: Let C;, be a circle in the variable z centered at 0, with
radius «, and C, 61 (w7) be the circle of w; centered at wy with radius €. We may choose €
small enough so that [w; — w3| < |ws| for any wy lying on CE1 (w3).Choose R, r, p >0
sothat 1 > R > p > r.LetC] = cy, C,=Cy C = Cy, and C2 = C}. Then by
(2.14), (2.18), and (2.19), together with (2) and (5) in Definition 2.1, we have:

v3, Z( 1’ < )a(m +Il—ivn+i)vy — Z( 1)“’( )v(n+l —Da(m +1i)vy)

i=0

i . .
=Z(—1)’(.> [ [ 505 @ 20wz dud
i=0 1/ Jep Jcy
oo
(1 . )
—Z(—l)”’(.) f f S5, (v, w)(a, v w" T dzdw
i=0 ey e
=/ / S5, (@, ), W2tz w(z — w)' " w'dwdz
5 Jci
—/ f S5, (v, W) (@, 2DVt (z — w)' " w"dzdw
plci

2/ / S}, (@, 2) (v, W) (z — w) 2" w"dzdw
v JCE(w)
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- / / S, (@, 2) (0, )02 & — W)ty (W + (2 — W) w'dzdw
w JCE(w)

= Z (m) / / S}, (@, 2) (v, w)vp) (z — w) W™ dzdw
i) Jew Jciw)

i>0
m .
= Z ( ) ) / S5, (al +i)v, w)vp)w™ ™!
i>0 ! C/?
= Z (’?><vg, (a(l +)v)(m +n —i)vy). (2.20)
i>0

The graph of the contours appear in (2.20) can be sketched as follows:

SN
()

Since v} in (2.20) can be choosen arbitraily, the Jacobi identity (2.17) follows, and
so I given by (2.15) is an intertwining operator of type ( MZI‘/I;/IZ)‘ O

3
Corollary 2.6. The vector space of intertwining operators | ( MZIWMZ) is isomorphic to
3
the vector space Cor( MI.W MZ) in Definition 2.2.

Proof. Theorem 2.5 indicates that there exists a well-defined linear map:

M3 M3
B: Cor(M1 M2) — I(M1 Mz)’ S+ Is. 2.21)

By (2.3) and (2.16), it is clear that 8 is an inverse of the linear map « in (2.13). Hence
3 3
I(MllWM ) = Cor(M]]WMz) as vector spaces. ]

3. Extension of Correlation Functions from the Bottom Levels

Let M2 and M3 be any V-modules with bottom levels M 2(0) and M3(0), respectively.

Recall the bottom level M (0) of any N-gradable V-module M = @2020 M(n) is a
module over the Zhu’s algebra A(V) defined in [13] or the generalized Zhu’s algebra
A, (V) defined in [3] under the module action:

[a]l.v = o(a)v = a(wta — 1)v,



A Proof of the Fusion 1247

forall [a] € A(V) or A, (V), and v € M(0) (see Theorem 2.1.2 in [13]).
In this section, we assume that the A(V)-modules M2 (0) and M3(0) are irreducible.

3.1. The Space of Correlation Functions Associated with M, M? (0), and M3 (0). Let

S € Cor( levl;/ﬂ)’ andlet/ € I( Mllwiﬂ) be its corresponding intertwining operator under
the isomorphism B in (2.21). For each n € N, consider the restriction of S onto the
bottom levels M2(0) and M3(0)*:

S|m3 0y x.. M1 .. x M2(0) M3O0)* xVx-oox ML x Vx M2(0) = F(z1, ..., 20, w).

3.1
To simplify our notation, we use the same symbol S to denote the restricted function
(3.1). Clearly, S in (3.1) satisfies properties (1)-(6) in Definition 2.1, with the elements
vg and v, in these properties belong to M 3(0)* and M2(0), respectively. Moreover, since

5, 1 (v, w)v2) = SV}, (v, w)v2) by (2.16), and v(n) M*(m) € M>(m+degv—n—1)
forall v € M! homogeneous, n € Z, and m € N (see (1.5.4) in [6]), then we have:

S(v}, (v, wyvy) = (vh, v(degv — 1) (vp))w™ %8, (3.2)

We introduce the following intermediate notion based on the properties satisfied by the
system of restricted correlation functions (3.1).

Definition 3.1. Let M2(0) and M3 (0) be irreducible A(V)-modules. A system of linear

maps S = {Sr\l/...M'...v}ZiO’
oy MO XV x L x M x LV x MP(0) > Fzi. .z w),
V3, a1, ...y V.., an,v2) > SO, (@1, 21) ... (v, W) ... (an, 20)V2),

is said to satisfy the genus-zero property associated with M', M?(0), and M3(0) if it
satisfies the following:

(1) Properties (2) — (6) in Definition 2.1, with the elements v} and v; in these properties
belong to M 3(0)* and M?(0), respectively.

(2) There exists a linear functional f : M' — Homc (M2(0), M3(0)), v — f,, such
that

S5, (v, w)va) = (v, fu(va))w™ 98, (3.3)

for all v, € M2(0) and v € M3(0)*.
(3) (The recursive formula for M3(0)*) For any vg e M3(0)*, v e ML, vy € M%(0),
anday,...,a, €V,

S5, (@, 2)(ar, z1) - .. (@n, 20) (v, WYv2) = SW50(a), (a1, 21) ... (@n, 20) (v, WV2)Z ™
+D 0 Faai (@ 2SO, (a1, 21) - (@@ ag, 7)) - - (A, 2) (v, w)v2)
k=1i>0
+ Y Futai (@ w)S@, (@1, 21) - .. (@n, 20)@(@)v, wyva), (34

i=0
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where Fy4,i (2, w) is a rational function in z, w given by:

ta + j . -
tz.w(Fwta,i (2, w)) = Z (W a. ])Z_wta—j—lwwtaﬂ—l’
l
j=0
o g\ 3.5)
Fin,i(z, w) = —< >

il \dw/ z—w’

for any m € N, and vgo(a) is given by the natural right module action on M 3(0)*.
(4) (The recursive formula for M2(0)) For any vy € M 3000, v e MY, vy € M%(0), and
ai,...,a, € V, we have:

S5, (@1, 21) ... (@n, 20) (v, w)(a, 2)v2) = S5, (a1, 21) - ... (an, 20) (v, W)o(@)va)z ™

+3 D Gutai (@, WSS, (a1, 21) - (@(@)ag, 24)..(an, 20) (v, W)v2)

k=1i>0

+ " Guia,i (2 w)SO5, (a1, 21) - - (@n, 20 (@(i)v, w)(a, Dva), (3.6)

i>0

where Gywiq,i (2, w) is a rational function defined by

wta —2 —j il 1+7
Lw,Z(tha,i(Zy w)) = — Z < . )wwta J 'z wia+ +],

- I
Jj=0

Z7m+1 d i wh—1
i) ==\ ) T=w )

for any m € N.

(3.7)

The vector space of the system of functions satisfying the genus-zero property associated

: 1 a2 3000 M3(0)
with M, M?(0), and M>(0) is denoted by Cor(,,, MZ(O))'

We observe that the rational functions F and G given by (3.5) and (3.7) satisfy the
following relation:

77 d i w™ Zwmfl
F,i(z,w) — Gp iz, w) = —— -

—w Z—w

|
|
—
3
-~ |
_
~—
N\
3
S
3
N
|

for all m € N. In particular, we have
wta — 1 —wta ,, wta—1—i
Futa,i(z, w) — Gwia,i(z, w) = — ; Z w . (3.8)

The equation (3.8) will be used multiple times in Section 4 when we build a system of
correlation functions S from a linear map on a tensor product of A(V)-modules.
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3
Proposition 3.2. Let S € Cor( levl M2)' Then the system of restricted functions S in (3.1)
satisfies the genus-zero property associated with M', M?(0), and M?(0).

Proof. By our discussion in the begining of this subsection, S in (3.1) satisfies (1) and (2)
in Definition 3.1, where the f; in (3.3) is given by f, = v(degv—1),forallv € M!. The
proof of (3.4) is similar to the proof of Lemma 2.2.1 in [13]. We omit the details. To prove
(3.6), we only consider the case whenn = 0 (the general case follows from a similar argu-
ment.) Note that a(n)vy, = Oif wta—n—1 < 0, it follows that (vg, I(v,w)Y(a, z2)vy) =
(W5, I (v, w)o(@v2) 2 "+ iaen_120V5, I (v, w)a(n)vy)z "~ !. By the definition of
contragredient modules, we have (v, a(m)u) =) ;- %(—l)i ((L()a)2wta —n —i —

2)v5, u), for any n € Z. But (L(i)a)2wta —n —i —2)vj € M3 (—wta+n+1) =0
when wta — n — 1 > 0. Thus

Z (v}, I (v, wya(n)vy)z " !

wta—n—1>0

=— Y hlam), [, w)lv)z !

wta—n—1>0

n .
- Z Z<i)(v§»I(a(l')v,w)vz)z_"_lw”_’

wta—n—1>0i>0
wta — j — 2\ _ i il .
Z_ZZ< ) )Z wta+j+2 lwwta j—2 l(vé,](a(l)v, w)vz)
1
j=0i>0

= 1w (Gutai (2, w) (5, I (@(@)v, wyva),

i>0
where the last equality follows from (3.7). Hence we have:
(v3, 1(v,w)Y(a,2)) = (v3, 1 (v, w)o(a)v2)z~ ™

+ 3 10,2 (Gtai (2 W) (V5. I (@(i)v, w)va)
i>0
as power series. By taking the limit of this series, we obtain (3.6) for n = 0. O

As a consequence of Proposition 3.2, we have a well-defined restriction map:

M3 M3(0)
(/3N Cor Ml M2 — Cor Ml MZ(O) . S — S|M3(0)*><...M1...><M2(0)’ (39)

where M2 and M?3 are any V-modules with bottom levels M 2 (0) and M 3 0),
The following Lemma will be used in the next subsection:

L M3(0) Lol 2 3
emma 3.3. Let S € Cor(Ml M2(O))’ and let f : M' — Homc(M~(0), M>(0)),v

fu be the linear functional in Definition 3.1. Suppose that f, = 0 for all v € M'. Then
S=0.

Proof. Weuse induction on 7 to show that S(v5, (a1, z1) . . . (@, 2n) (v, w)v2) = Oforall
vé IS M3(O)*, ve ML v, e M2(0), and ay, ...,a, € V. When n = 0, by the assump-
tion and (3.3), we have: S(v5, (v, w)v2) = (v}, f,(v2))w™ 48V = (v}, O)w~ ¥ =0,
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for all vg e M3 O)* v e M! and v, € MZ(O). For n > 0, by the recursive formula
(3.4), we have

S(Ugs (a17 Zl) e (al‘h Zn)(vs U))UZ) = S(U:/)’O(al), (a21 ZZ) e (am Zﬂ)(vv w))sztm

+ ) Futar.iz1, 2S5, (@2, 22) - (@1 (@ag, 2x) - . (@, 20) (v, w)2)

k=2 i>0

+ Y Futari @1, w)SO5, (@2, 22) .. (an, 20) (@1 (v, w)v2).

i>0

Since each term on the right-hand side has a smaller length, the right-hand side is equal
to 0 by the induction hypothesis, so we have S(vé, (ai,z1)...(@u, zn)(v, w)vy) = 0.0

3.2. Extension from the Bottom Levels. In this subsection, we will show that the restric-
tion map ¢ in (3.9) has an inverse for certain V-modules M 2 and M3, with (irreducible)
bottom levels M2(0) and M>(0), respectively.

Recall that for any irreducible A(V)-module U, Dong, Li, and Mason constructed a
generalized Verma module M(U)in[2]. By construction, MU) = U (LVNBU (V)=o)
U)/U(L(V))W, where

LV)=VRClt,r /L) R1+1® %)(V ®C[t,t7 ') (3.10)

is the Lie algebra associated with the VOA V (cf.[1,2]), and W is the subspace of

U(L(V)) ®u(L(v)-q) U spanned by the coefficients of the weak associativity equality,

see Section 5 in [2] for more details. B B

M (U) is N-gradable: M(U) = @20:0 M (n), with the bottom level M(U)(0) = U.
It satisfies a universal property in the sense that any N-gradable V-module with bottom
level U is a quotient module of M (U) (Theorem 6.2 in [2]). Moreover, M (U) admits a
unique maximal graded £(V')-submodule J subjectto JNAU = 0,and L(U) = M(U)/J
is an irreducible V-module (Theorem 6.3 in [3]).

_ In Section 2 of [8], Li gave an alternative definition of the generalized Verma module
F(U) associated with U, namely, F(U) = (U(L(V)) QuL(v)-q) U)/J(U), where
J(U) is the intersection of ker o, where o runs over all £(V)-homomorphisms from
F(U) to weak V-modules. Clearly, M(U) = F(U) since they satisfy the same universal
property.

Choose an element
S MO XV x-ox M x - x V x M*0) = F(z1, o, 2n, W) (3.11)

. M3
in Cor(Ml A/EZZO)
and M2(0) to some V-modules M /RadM and M /RadM, which are certain quotient
modules of the generalized Verma modules M (M 3(0)*) and M(M?3(0)), respectively.

We first extend M2 (0), and we will proceed like the proof of Theorem 2.2.1 in [13].
In our case, however, the extended V-module is not necessarily irreducible like the
extended module in Theorem 2.2.1 [13] .

Let M := T(L(V)) @c M?(0), where T (L(V)) is the tensor algebra of £(V). To
simplify our notation, we omit the tensor symbol in an element of M and denote an
element b ® " in L(V) by (b, n), then an element in M can be written as:

(b1, i)(D1,12) - - . (b, m) V2 (3.12)

). We will extend the first and the last input vector spaces from M3 (0)*
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where b; € V, iy € Z, vy € M?2(0), and (b, i) linear in b. Denote the vector in (3.12)
by x. Extend M?(0) to M by repeatedly using the generating formula (2.9). i.e., we let:

S MO XV X XM X oo x VXM= Fzi1, o 20, W),
S(Ué,(a], Zl)~-~(an’vn)(v’w)x)
= [ [ s @z Gz @G
Cl m
o by wo) V)W L wimdwy . dw,, (3.13)

where Cy is a contour of wy, C, contains Cy, foreachk, C,, contains 0,and zq, ..., z,, w
are lying outside of C;. For the well-definedness of S in (3.13), by (3.10), we just need
to show that S in (3.13) agrees on the elements:

(br,i1) ... (L(=Dbg,ig) ... (b, im)v2, and
—ig(b1,i1) .. ks i — 1) .. (b, i) V2.

Indeed, by the Definition 3.1, S in (3.11) satisfies (2.6). Thus,
S5, (a1, z1)-.(an, va) (V, WY (b1, i1)...(L(= Dby, ig)...(bm, i) V2)

d /
:/Cl /C S @121, 20) (0, )

(g, wp) .. v)w! ...w,’c"...w;’;’dwl...dwm

= —/ / S5, (a1, z1)---(an, 20) (v, w)...(bx, wi)
Ci Cnm

~u)w! ...(ik)w,l{k_l...w;wal...dwm

= S(v3, (a1, z1)--(@n, va) (W, W) (=i (b1, 1) By ik = 1) (b i) 02).

Introduce a gradation on M by letting

m

deg((b1,i1)(b1,i2) ... (D, in)v2) 1= Z(wtbk —ix— 1), (3.14)
k=1

and denote the degree n subspace by M(n). Then M = P
M(0). ,
Similar to (2.2.30) in [13], we define the radical of S on M by

M (n), with M2(0) C

nez

Rad(S) :={x € MlS(vé, (a1,z1)...(an, Zn) (v, w)x) =0,

| 3 (3.15)
Yn>0,ai,...a, €V, veM', vy e M 0)*},
thenletRad(M) := (s Rad(S), where the intersection is taken overall § € Cor(Mll\/I;;gzO)).

In fact, we can take the intersection over all nonzero S, since Rad(S) = Mif S =0.
_ Itis clear that the extended S in (3.13) factors through M /Rad (M). Next, we show that
M /Rad(M) carries a structure of N-gradable V-module whose bottom level is M2 (0).
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Lemma 3.4. Let W be the subspace of M spanned by the following elements:

= (m . . s (1 . .
Z(_)(a(l+l)b,m+n—l)x— (Z(-l)'(,)(a,mn—l)(b,n+l)x
i=0 ' i=0 !
=Y (=pH (i)(b,n+l —i)(a,m+i)x>, (3.16)
i=0

wherea,b eV, m,n,l € Z, and x € M. Then we have W C Rad(M).
Proof. By the formula (3.13), it is easy to see that for the following element in M
'x/ = (blﬂ ll) e (bma lm)x’

where x = (c1, j1) ... (¢q, ja)v2 for some b;, c; € V and iy, j; € Z, we have:
S(véa (a17 Zl)'“(ana vﬂ)(va U))X/)

=fc / S, (@1, 21).r(n, 20) (0, w) (b1, w1) 3.17)

(b, u)m))c)wll1 ...wf;’l"dwl...dwm,

where Cj is a contour of wy, Cyy; is inside of Cy for each k, C,, contains 0, and
21, ..., Zn, w are lying outside of C;. Now we fix a nonzero element S € Cor( Mﬂ‘ﬁ}‘;zo)).

Denote the element (3.16) by y. We adopt the notations in Proposition A.2.8 in [5]
again. Let C;e be the circle of w;, i =1, 2, centered at 0 with radius R, and let Ce1 (wy)
be the circle of wi centered at wy with radius €. We may choose € small enough so that
|wy — wz| < |wy]| for any w; lying on Cel(wz). Choose R,r,p > 0sothat R > p > r.
By (3.17) and the locality (2) in Definition 2.1 of S, we have:

S(Ué, (a1, 21)...(an, zn) (v, W)y)

= fc > (’?)S(vg, (@1, 21)--(an. ) (V. w) (@l + )b, wy)xX)wy ™+~ dw,
P i=0
> (1
—/ / Z(—l)l<.>5(v§,(a17Z1)---(an,Zn)(v, w)(a, wy)
Cx /€0 !

(b, wy)x) w'l'”l_i wit dwdwy

- (1
+ /;/2) /;rl ;(—1)”[ <i>S(v§, (at, z1)...(an, 7)) (v, W) (b, W)

a, wpx)w e widwy
( ) ) lin+l ;l+l ld d

= /;2 Z (’?)S(vg, (@1, 21)--(@n, 22) (W, w) (@l + )b, w2) X)W dw,

pi=0

_/ f S(véa(alazl)-“(ana Zn)(U,LU)(a,LU])(b, w2)x)
VG

l
*bwy,w, (W1 — w2) )quwgdwldun
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+/ / S(Wh, (@1, 21) (s 20) (0, w) (B, w2) (@, W1)X)
c2 Jey
“lwy, wl((_w2 + wl)l)quwgdwldwz

/CQZ( )S(v3,(a1 21)-.(an, z0) (v, w)(@(l + )b, wr)x)wh ™"~ i dws

_/ / S(Ué,(al, Zl)“'(anv ZI‘[)(U’ w)(a’ wl)
C2 JCl(wn)

(b, w2)v2) (wi — w)' wi'widwidws.

m m+n—i
:/CZZ(I>S(U3,((11 21)-(an, z0) (v, wY(a( +i)b, wo)x)wh™*" ' dwy

/ f (”.’)S(vg,(al,m)...(v,wxa,wl)(b, w)v)
C2 C (wz) l

(wy — wz)l”wg”” idwidw, = 0,

for all vg e M 3(0)*, ai,...a, € V,andv e M 1 where the last equality follows
from the associativity (5) in Definition 2.1. This shows y € Rad(S). But S is chosen
arbitrarily. Hence we have y € Rad(M). m|

The following facts are satisfied by Rad(M):

Lemma 3.5(a) If x € Rad(M), then (b, i)x € Rad(M), foranyb € V and i € Z.

(b) M?(0) NRad(M) = 0.

(c) M(n) C Rad(M) foralln < Q.

Proof. Since Rad(M) = (s Rad(S), we just need to show that (a), (b), and (c) hold for

3
Rad(S), where S € Cor( MZIWA/;(Z)EO)) is nonzero.

(a) Let x € Rad(S), by (3.13) and the definition (3.15) of Rad(S), we have

S5, (a1, z1)...(v, w)(b, i)x) = /CS(vg, (a1, z1)...(v, w) (b, w)x)widw,

=/Owlldw1=0,
C

where C is a contour of wi, with z1, ..., z,, w lying outside. Thus (b, i)x € Rad(S).
(b) Suppose there exists some vy 7# 0 in M20) N Rad(S), then by (3.3) and the
recursive formula (3.6), we have

0 =1y, (S(v3, (@, 2) (v, Wv2))
= S5, (0, w)o(@V2)z ™ + Dty o (Gtai (2, W) SO, (@(i)v, w)v2)

i>0

(V4. folo(@)vp))z™ " w ™t — " <

i,j=0

wta —2 — j i - i
i >wdeg” I Wt T (L faiw (02)),

(3.18)
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foranya € V,v} € M?3(0)*,andv € M'. By comparing the coefficients of z ~V@yy~degw
on both sides of (3.18), we have (v}, fy(o(a)v2)) = O for all v3 € M3(0)*,a €V,
and v € M'. Then f,(M?(0)) = 0, since M2(0) is an irreducible A(V)-module, and
M?(0) = A(V).va = spanfo(a)va]a € V}. It follows that f, = 0 forall v € M!. By
Lemma 3.3, we have S = 0, which is a contradiction.

(c)Letx = (b, i) ... (b1,1i1)v2, with Zle(wtbk —ir—1) < 0. We use induction
on the length m of x to show that x € Rad(S). For the base case, let x = (b, t)vy with
wtb —t — 1 < 0, then by (3.13) and (3.6), we have

S(vs, (a1, z1)...(v, w)x) = /C S5, (a1, z1)...(v, w) (b, 2)v2)7'dz

= / S(vs, (a1, z1)-..(an, zn) (v, wYo(b)v2)z' ~VPd;
c

n
+ [ D) Guwi(z, 2SO, (a1, 21)...(b()ax, 2)...(v, wv2)z'dz
€ k=120

# [ 3 o S5 a1 20 b0, w2 (3.19)
C

i>0

where C is a contour of z surrounding 0, with all other variables lying outside C. In
particular, we have |z| < |zx| for all k, and |z| < |w]|. Then by (3.7),

Z—wtb+l+t d i katbfl
/ Gwi.i(z, 2k)7'dz =/ —(—) < )dz =0, (3.20)
c C i! dzi Z—Zk

since —wtb+ 1+t > 0, and 1/(z — z) is a sum of nonnegative powers in z for all z
lying on the contour C. We also have [ z'"?dz = 0, since t — wtb > —1. It follows
that all the integrals on the right-hand side of (3.19) are equal to 0. This finishes the base
case.

Now let m > 0, and consider x = (by;, iyp)...(b1, 1)V € M. We have:

S5, (ai, z1)...(v, w)x)
= / / S(vg, (ar, z1)...(v, W) (b, wy)...(b1, wl)vz)wi,’;’...w’i'dwl...dwm
Cn Ci

:/ f S5, (@, 20) (v, W) (s W0 (b V2IWE w1 dwy . w,
m Cy [€9]

n
+/ e | D0 Gy i (wr, 2 S W, (b1 (Dag, 2)-.. (v, w).v)wi w dw...dwy,
m o JC =1 >0 @

+/ f ZGW[b,,i(wl,w)S(vé,...(bl(i)v, w)(bm,wm)...vz)wi,’;’...w’i'dwl...dwm
Cnm Ci i>0 (3)

m
+/ e [ D0 Gy (i, w) S, (v, W) (b1 by, wr).v2) Wiy dw ..dwyy
m Cy 1=2 i>0 4)

=M+ +G)+@),

where C is a contour of w; surrounding 0, with all other variables lying outside. We
need to show that the sum of these integrals equals 0. i.e., (1) + (2) + 3) + (4) = 0.
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Case 1. wth; —i; — 1 <O. '

Similar to (3.20), we have fCl Gwipy,i (Wi, z)wllldwl =0, for z = zx, w or w;. Thus
we have (2) = (3) = (4) = 0. We also have (1) = 0 because —wtb| +i; > —1.

Case 2. wthy —i; — 1 > 0.

Then —wtb; +i; < —1, which implies (1) = 0. Moreover, by (3.7) we have:

i
/ Gwip,,i (w1, D)w) dw;
Cy

wthy —2 —j : . i
— Reswl:()( _ Z < i J Zwtbl_j_z_lwl Wth+1+j+i)

Jj=0

_ _<ii‘>zil—i, 3.21)

for z = zx, w or w;. Apply (3.21) to (2), (3), and (4), and we have:

<2)=—/ /C ZZ(“) S W 1 (Dar 20)

2 k=1i>0
., w) (b, Wiy)...(b2, W2)V2)
= —ZZ(Z) LTS, (ar, 20)- (01 (Dak, 2k) - (an, 20) (v, w)Y),
k=1i>0

where y = (b, ip) ... (b2, i2)vy. Note that deg y = degx — (wtb; —i; — 1) < 0, and
the length of y is m — 1, then by the induction hypothesis we have (2) = 0. Similarly,
3) =0.

@ = f /CZZ<ll>w§1"'S<vé,-~-(v,w)...<b1<i)bl,w,)

1'1=2i>0

vz)w”" . w]1 dwi...dw,,

=y (’;)swg, (@1, 20 (an. 20) (0, W),

=2 i>0
where y; = (b, i)...(b1(0)by, i1 +i; —i)...(ba, i2)vy. Note that

deg(b1(i)by, i1 +i; — i) =wthy +wthy —i — 1 — iy —ij+i — 1 = deg(by, i1) + deg(by, ij).

Thus, deg y; = > ;- Wt(bg, ix) = degx < 0, and the length of y; is m — 1 for each .
Hence (4) = 0 by the induction hypothesis.

Case 3. wth1 —i; — 1 = 0. '

In this case, we have: ]Cl Gwib, i (w1, 2)w|'dwi = 0in view of (3.20). Hence (2) =
(3) = (4) = 0. Moreover, since —wtb| +i; = —1, we have:

(1):/ /C S(vg,(al,zl)...(v, w)(bm,wm)...o(bl)vz)w,i’l"
m 2

wézdwz...dwm = S5, (ai, 21)...(an, z2) (v, W)Y),

where y = (by,, ip)...(b2, i2)vs. Since deg y = degx < 0, and the length of y ism — 1,
we have (1) = 0 by the induction hypothesis. Now the proof of (c¢) is complete. O
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We define a vertex operator Y7, on the quotient space M2=M /Rad(M) as follows:

Yy2(a, (b1, i1) .. (b im)va 1= Y (@, n)(b1, i) ... (b, im)v2z ™", (3.22)

nez

where a € V, (b1,i1)... (b, im)v2 € MZ,_and we use the same notation (by, i) ...

(b, im)v7 forits image in the quotient space M2. We can express (3.22) in the component
form:

a(n)(blv ll) .. (bI’H9 lm)UZ = (a’ n)(blv ll) ... (bnu im)UZ’ (323)
foralla € V, n € Z,and (by, i1) ... (b, im)v2 € M.

Proposition 3.6. M2 = M /Rad(M), together with Y,;, : V — End(M?)[[z.z~']]
given by (3.22) and (3.23), is a weak V -module.

Proof. By (a) of Lemma 3.5, we have a(n)Rad(M) C Rad(M). Hence YM2 is well-
defined. Letx = (by,i1) ... (b, im)v2 € Mz,we claimthat1(—1)x = xand1(n)x =0
for any n # —1. Indeed, for any S € Cor( M?”Z}gzo)), by the definition formula (3.13),
the recursive formula (3.6), together with the fact that 1(j)a =0 forall j > 0,a € V,
and 1(j)v=0forall j >0,v € M!, we have:

S5, (a1, z1)...(v, w)1()x)

=/ / / S(vé,(l,wo)(al,zl)...(v,w)(bl,wl)...vz)w(’;wi‘...wi;t”dwl..‘dwmdwo
CO m Cl

:/ / / S(véo(l),(al,zl)...(v,w)(bl,wl)...vz)wgwil...w;;l”dwl...dwmdwo
Co m Ci

= 8u+1,0 - S(V5, (a1, 21)...(v, Wx),

where the last equality follows from the fact that f Co wydwo = 8,41,0. Thus, (1(n)x —
8n+1,0X) € Ragl(]fl), and so 1(n)x = &,41,0X in M2, Moreover, given homogeneous
elements x € M anda € V,by (3.14) and (3.23), deg(a(n).x) = wta—n—1+degx <0
when n >> 0. Then by part (c) of Lemma 3.5, we have a(n)x = 0 in M? when n is

large enough. Finally, by Lemma 3.4 and (3.23), (M 2, Y,;2) satisfies the Jacobi identity.
Hence it is a weak V-module. ]

Proposition 3.7. M2 has a gradation M2 = (4 o M2(n), where M2(n) is an eigenspace
of L(0) of eigenvalue A + n for each n € N, and M?(0) = M>(0). In particular, M?
is an ordinary V-module, and if M*(0) is the bottom level of some ordinary V -module
M2, with conformal weight h, then . = h;.

Proof. Let M 2_(n) be the image of M (n) under the quotient map M — M2 By Lemma
3.5, wehave M2 =Y, . M?(n) and M?(0) € M?(0). We claim that

a(wta — 1)vy, = o(a)v,, (3.24)
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for all v» € M?(0) and homogeneous a € V. Indeed, we only need to show that

(a, wta — 1)vy — o(a)vy € Rad(S), forall S € cOr(MVZ;EEO)). By (3.13) and (3.6),

S(Ué, (a17 Zl)'“(a}’h ZH)(U! w)(a7 wta — 1)”2)

= [ S(Ué, (ar, z1)...(an, zn) (v, w)(a, w])UZ)wYta_ldwl
C

=/ S}, (at, z1)--(@n, z0) (v, wyo(@)v2)wy Y w)"“Tdw;
C

+ZZ/Cwa,i(w1,Zk)S(v§7 (ai, z1)..-(a(@)ag, zx)..-(an, 2n) (v, w)UZ)w‘lmaildwl

k=1i>0

+ Z/ Gwia,i (w1, w)SW5, (a1, 20)--(an, z0) (@(@)v, wyv)w}" dwy,

i=0 7€
where C is a contour of w; surrounding O, with all other variables lying outside of C.
Since |zx|, lw| > |wy] for all k, where w is lying on C, then we have

—wta+1 i wta—1
_ qw d z
/tha,i(wl,z)w}”‘“ Ydw, =/ e dw; =0,
c c i! dz wy —z2

for z = z; or w. Hence (a, wta — 1)vy — o(a)v2 € Rad(S). This shows (3.24).

Since L(0) = w(wtw — 1) on M2, it follows from (3.24) that L(0) preserves M2(0).
On the other hand, we have [L(0), a(n)] = (wta —n — 1)a(n) (see (4.2.2) in [4]). Then
by (3.24) again, we have [L(0), o(a)]v2 = [L(0), a(wta — 1)]va = 0. Since M?(0) is an
irreducible A(V)-module which is of countable dimension, then by the Schur’s Lemma
(Lemma 1.2.1 in [13]), there exists A € C such that L(0) = A -Id on M2(0). If M?(0) is
the bottom level of M2, with conformal weight Ay, then L(0) = hy - Id on M 2(0), and
SO0 hy = A.

Now for any spanning element x = (by,i1) ... by, im)va = b1(i1) ... by (Iy)v2 of
M?(n), we have L(0)x = (3 j_; (Wtbx — ix — 1) + A)x = (n + A)x. Therefore, M?(n)
is an eigenspace of L(0) of eigenvalue n + A for every n € N, and M? = @@,>, M?(n).

Finally, for any spanning element x = b (i1) ... by, (im)v2 of M 2(0), it follows from
(3.24) and an easy induction that x € M 2(0), therefore M2(0) = M2(0). O

Remark 3.8. Unlike the construction of V-modules from the correlation functions in
Theorem 2.2.1 in [13], in our case, it is unclear whether M2 = M /Rad(M) is an
irreducible V-module. The reason is the following:

Assume N < M? is a submodule, by Proposition 3.7 we have N = @Zio N(n),
with N(n) = N N M?(n) for each n. If N(0) # 0, then clearly N = M2. So to show
M? is irreducible, we need to show that N = 0 when N (0) = 0.

This is true for the module M /Rad(M) constructed in Theorem 2.2.1 in [13], wherein
the correlation function S(v', (a1, z1) . . . (an, 2,)N), with v’ € M>(0), is essentially the
limit function of (v/, Y (ay, z1) ... Y (a,, z,)N). It is zero because Y(a,z)N C N((2)),
and the bottom level of N is 0. Thus, N € Rad(S),and so N = 0 in M /Rad(M). How-
ever, in our case, S(v5, (a1, 21) . . . (an, 2,) (v, W)N) with v} € M3(0)* is essentially the
limit function of (vg, I(v,w)Y(ai, z1)...Y(ay, zn)N)w_h. Although the components
of Y (a, z) still leave N invariant, the intertwining operator / (v, w) could send some ele-
ment in N to a nonzero element of M>(0). Hence we cannot conclude that N € Rad(M)
in general.
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We give a sufficient condition under which M? is irreducible.
3
Lemma 3.9. Suppose S € Cor( M?lﬁ/;gzo)) satisfies:
n /
2 )5 o) =0, (3.25)

i>0
forallb € V,n € Zsuchthatwtb—n—1> 0,v € M', vy € M3(0)*, and vo € M*(0).
Then S(v5, (v, w)y) = 0 forany y € M(m) withm > 1, v§ € M3(0)*, and v € M.
Proof. 1t follows from an easy induction that y can be written as a sum of the terms
(b, ny) ... (b1, n1)vy forsomem > 1 and vy € M2(0), with wth; —n; —1 > 0 for
all j.

Lety = (b, nm) - .. (b],nl)vz.WeuseinductiononmtoshowthatS(vg, (v, w)y) =

0. For the base case m = 1 and y = (b, n)vy, with wtb —n — 1 > 0, by (3.13), (3.3),
(3.6), (3.7), and the assumption (3.25), we have:

S(vs, (v, w)y) = / S(v3, (v, w)(b, 2)v2)7"dz
C
=/ S5, (v, wyo(b)vy)z "+ dz
C

# [ 3 G )35 (v, w:"d:

i>0
Wth — 2 — j\  ip_iio i .
_ _ —j—2—i _n—wtb+1+j
—0e 3 [ (M e
i>0 Jj=0

S5, (b(i)v, w)v)dz
- _ Z <n> (Ué, fb(i)vvz)w7Wtb7deg vtl+n _ 0.
1

i>0

Now let m > 1. Then by (3.13) and (3.6), we have

S5, (v, w)y) :/ /C S5, (v, w) (b, 2m)
m 1

b1,z Lz d

:/ / S(Ug,(U, w) (b, Zm)
Cn Cy

...(by, Zz)o(bl)vz)zl_wwﬁn] ...an’" dzy..dzy,
+/ f Zthbl,i(Zlaw)S(Ué,(bl(i)v, W) (b, Zm)
m Cl i>0

(b2, 22)v2) 22 md 7y Az,
1 m

+/ e | Y0 Guinyi(zr, 2S5, (v, w)... (b1 Dbk, 20)

Cl =220
(b2, zg)vz)z’fl Zprdzy .. dzy
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=0+/ / / Z <Wtb1 _‘2_])wwtbl—j—2—izr1l|—wtb1+l+j
m G Ci !

Jj=0
- 8(vs, (b1(i)v w) (b, Zm)-.-(b2, Zz)vz)zn2...z"’”dzz--.dzm

Wtbl -2- nk+Wtb| Jj—2—i _nj—wtb+1+j
+ Z )
m C C

jz0

- S5, (0, W) By Zm) - (b1 Dbk, 28).. (b2, 22)v2)25 ""...z’,;{”dm...dzm

/ f (>w"1—"s<v§,(bl(i)v,wxbm,zm)
Cn C

(b2, 22)v2)25? ...z,fdzz...dzm

LR
Cripizo M

i>0

2k 21>0

i>0

(1 (Db, Z8) - 02) 3 T d 7y d
=-> ( )w”l"S(vg, (b1()v, W) (B, 1 ). (b2, 12)V2)
i>0

-2 (T)Swé, 0, w) (b, nn).. (D1 (D bie, ny +nie — 0)....(b2, n2)v2) =0,

k=21i>0

where the last equality follows from the induction hypothesis, together with the fact that
deg(b1(i)by,ny +ng —i) =wthy —ny — 1 +wtby —nx — 1 > 0, forany i > 0. O

Corollary 3.10. For any fixed v € M' and y € M2 = M /Rad(M), let n € 7 be an
integer such that n > degv +degy — 1. Then we have

/ S5, (v, w)y)w"dw = 0, (3.26)
C

forall vy € M?3(0), where C is a contour of w surrounding 0. In particular, for fixed

veM'andy € M2, the power series expansion of S(v, (v, w)y) has a uniform lower
bound for w independent of vy € M 30)*.

Proof. Tt suffices to show (3.26) for y = (b, nim) . .. (b1, n1)va, where vo € M2(0),
m > 0,and wtb; —n; — 1 > O for all j. Again, we use induction on m. When m = 0,
we have y = v and degy = 0. Then by (3.3) and —degv + n > —1, we have:
Jo S, (v, wyv)wdw = [ (v}, fo(va))w™ 984y = 0. Now let m > 0, and let
n € Z be such that n > degv +degy — 1. Since —wtb| + n; < —1, by the calculations
in Lemma 3.9, we have:

/ S, (v, w)y)w"dw
c

= _Z/ ( )wnml_is(vév b1, w) (b, np)...(b2, n2)v2)dw

i>0 1
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—~ ZZ/ < )w”S(vg, W, W) By 1) (b1 (D bie, 1 + 11 — 1) (b2, n2) v2)dw

k=2 i20 @)
= 1)+ Q).

Sincen > degv+degy—1,wehaven+n;—i > deg(b1(i)v)+2;'-1=2(wtbj—nj—1)—1
for all i > 0. Then by the induction hypothesis, (1) = 0 for all v € M 3(0)*. On the
other hand, since deg(b|(i)by, n1 + ny —i) = wtb; — n; — 1 + wthy — ny — 1 for all
i >0, we have (2) =0 forall vj € M3(0)*. Thus /c S5, (v, w)y)w"dw = 0. O

3
Mjll/lﬂ/;(z)zo)) satisfies the condition (3.25), then

M2 =M /Rad(M) is an irreducible V -module with bottom level M*(0). In particular;

M2 is isomorphic to L(M2 (0)), the unique irreducible V-module with bottom level is
MZ2(0).

Proposition 3.11. Suppose every S € Cor(

Proof. Note that for any x € M, S(vé, (a1, z1) ... (an, zy)(v, w)x) is also a rational
function in z1, ..., zn, w by (3.13) and (3.23), and it has Laurent series expansion:

S(vé,(al,m) (an, zn) (v, w)x) = S5, (v, w)(ar, 21)...(an, Zn)X)

= </ f S(v3 (v, w)(ay, zn).. (a1,Z1)x)Zl fd21...dzn> Zl_il_l
n Cl

i1y in€l
gy
= Y Sk 0 wan(in)..ar(ipx)z; g ! (3.27)
Q1yeens in€l
on the domain D = {(zy,..., zs, W|lw| > |z4| > <+ > [z1] > 0}. Let N be a

submodule of M2 such that N(0) = 0, we need to show that N = 0. Let x € N, we
have y = a,(iy)...a1(i;)x € N, and if y # O then deg(y) > 0. By Lemma 3.9, we
have S(v5, (v, w)y) = 0. Thus, the rational function S(v5, (a1, 21) . .. (an, 2u) (v, W)x)

is equal to 0 by (3.27). i.e., x € Rad(S) forall S € Cor(MZIVIZ/,z). Thus N = 0. O

3
lew N}‘on)), the extended S in (3.13) factors though an

N-gradable V-module M2=M /Rad(M) whose bottom level is M2 (0). It is irreducible
if the condition (3.25) is satisfied. Therefore, by (3.13) and (3.23), we have a well-defined
system of (n + 3)-point correlation functions:

In conclusion, givena S € Cor(

S:MO)*xVx-xM x--x VxMzef(zl,...,zn,w),
S5, (at, z1)--.(an, 20) (U, WYb1(i1)...by (im)V2)

=/ / S(v5, (ar, z1)-..(an, zn) (v, W) (b1, wy)
Cl Cm
oo By W))W windwy ... dwy, (3.28)

for all b1(i1) ... b (im)v2 € M2, where Cy, is a contour of wy, Cy contains Cy, for all
k, C,, contains 0, and z1, ..., z,, w are outside of Cj.

In particular, S in (3.28) satlsﬁes the generating formula (2.9) with M 2= M 2, since
the extended S is defined by this formula. Moreover, by Corollary 3.10 and the fact that
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MI:/[Z/[((;ZO)), it is easy to see that the S in (3.28) also

satisfies the properties (1) — (6) in Definition 2.1, with vj € M 3(0)*and vy € M2,
We adopt a similar method to extend the first input component of S in (3.28) from

M?3(0)* to a V-module by using the other generating formula (2.10). First, we let

the orginal S in (3.11) belongs to Cor(

M = T(L(V)) ®@c M>(0)*.

Then M is spanned by elements of the form: y = (by, 1) ... (b, im)vg, whereb; € V,
ij€Zforj=1,...,m,and vg € M3(0)*. Next, we extend S in (3.28) by iterating the
generating formula (2.10). i.e., we define:

S MxXVx--xM x- - xVxM2—> FQ@l, ..., 20 w)
S((b1, 1) (b, i)V, (@1, 21)...(@n, 20) (v, W)x2)

::/ / S5, (b, i) ...(b1, w1) (a1, z1)...(v, w)xz)w;il72...w,;"”’_2dwm...dw1,
Cy m

(3.29)
where (b, w)' = (% LMD (—w?)LOp ), Cy is a contour of wy s.t. Cx contains Cy_1
for each k, and C contains all the variables zy, ..., z,, w. For S in (3.29), we similarly
define

Rad(S) :={y € M : S(y, (a1, 21) ... (an, 22) (v, w)x) =0,Va; € V,v € M', x € M?},

and let Rad(l\7[ ) := [ Rad(S), where the intersection is taken overall S € Cor ( lelz/l(gzo)),
with the extension given by (3.29). Clearly, S factors though M /Rad (M).

Similar to our previous argument, one can show that MY =M /Rad(M) has a
natural N-gradable V-module structure M 3 = Do, M 3/(n), with M 3/(0) = M3(0)*.

Moreover, M 3 = M /Rad(M ) is irreducible if the condition 3.25 is satisfied. Thus we
have a well-defined system of correlation functions S:

S M XV x M x o x Vxﬂzef(zl,...,zn,w),
Sb1(i1)--bm (im)V5, (@1, 21)-..(an, 20) (V, W)X2)

=/ / S5, By W) (b1, w1) (@1, 21)-. (v, WD W 2w 2 dwy . dwy,
Cl m

(3.30)

forall b1 (i1) ... by, (im)vg € ]\/}3/ and xp € M2, Moreover, by Remark 2.4, we also have:
S} (1)), (im)v3, (@1, 21)-..(an, 20) (V, W)X2)
2/ / S5, (b, wy)...(b1, wi)(ai, z1)
Cl m

s 20) (W, WYX W W dwyy .. dwi, (3.31)
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where b'(i) = Y- %(—I)Wtb(L(l)/b) (@wtbh —i — j —2), Cy is a contour of wy, such
that Cj contains Cy_, for each k, and z1, ..., z,, w are inside of C;. Since (3.30) and
(3.31) are given by iterating the generating formula (2.10), it is clear that S in (3.30)

also satlsﬁes (2.10) with M2 = M2 and M YoM 3,. Denote the contragredient module
of M¥ by M3.

Theorem 3.12. The system of extended correlation functions S in (3.30) lies in Cor ( Mjlwi,lz)

Henc_e we have an isomorphism of vector spaces Cor( Ml 1‘;220)) Cor( M MZ) =
M3

1 ( Ml Mz)'

Proof. We have already proven that S satisfies (7) and (8) in Definition 2.1, with M? =
- , ~

M? and M* = M3 . It remains to show that § in (3.30) satisfies the properties (1) — (6)

in Definition 2.1, with M?> = M2 and M> = M3. In fact, by the definition formulas

(3.28) and (3.31), together with the fact that the orginal S in (3.11) lies in Cor( M ),

M1 M2(0)
the properties (2) — (6) are straightforward.
To prove (1), we need an intermediate result first. We introduce the following notation:

Sy, b1(n1)...bym (ny) (v, w)x2) :=/ /C S, (b1, 21).- (b 7m) (v, w)x2)
ZTI...Z:lnmd21...dZ;n» (332)

wherem > 0, xp € 1\/_12, by € V,ny € Z, Cy is a contour of z; s.t. Cy contains Cy for
all k, and w is inside of C,,. Assume wtb; — n; — 1 < 0. We claim that:

S5, b1(n1)...bm (npm) (v, w)x2)

—ZZ( >S<v3,bz<nz) (br(Db1) (1 + 1y = ). (M) (v, W)x2)

=2 i>0
+Z< )S(vg,bz(nz) b (1) (D11 v, w)x)w" ™
i>0
+ 83, b2(12)...by () (v, W) (b1 (n1)x2)). (3.33)

Let x; = ¢1(i1) ... ¢ (iy)vz, forsome c; € V,i; € Zforall j, and v, € MZ(O). Note
that b1 (n1)vy = 0 as wtby —n; — 1 < 0. For |z1| > |w], by (3.5) we have:

Wtb1 +j —wthi—i—1 o
/ Fow,,i(z1, w)ledzl Z/ ( '1" Wibr=y =Ly wibi+j—itit g,
C1

Jj=0

ni _:
= . wnl la
1

where C is a contour of z1, with w lying inside. Then by (3.32), (3.28), the recursive
formula (3.4), together with the fact that —wtb; + n; > —1, we have:
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S5, bi(n1)...bym () (v, w)x2)

Z/ f ZZFWtbl i(z1, Z[)S(U3, (by, 22)
Cm C

1]=2i>0
1Dy, 21) . (v, w2z d

+/ / ZFwtbl,i(Zlaw)S(Ué»(bZ»ZZ)
Cm Cq

i=0

(b zZm) (b1 (Dv, w)x2)Z) oz dzy.d 2,

FW i ’ s , b ,
+/c,,, /c1 (/c/ /, > Futby i (21, w) S5, (b, 22)

r >0
ce(Oms zm) (v, w)(er, wi)...

(b1(Gi)ey, w,)...(cr, W) - Wi wirdw,..dw)Z} .2 dzy Az,

/ / (n.l)S(Ué, (b2, 22)...(b1 (D1, 21) .. (b, Zm) (V, W)X2)
mo SO 50 N

ny
z'zu... m=idn zmdzy..dz, + / / (.)S(Ué,
m €2 i>0 !

(b2, 22) - (b, ) (b1 (D), W)xDW™ T 252 .2 d 7.z

/ / ( . )S(vé, (b2, 22)
m Ca i>0 l

(v, w) (1 (). (b1()e) (ny — i +ip)...cr (i)v2))
25rdzy..dz,

I

= Z (”;)s(vé, by(n2)...(b1 ()b (ny + 1y — i)...by (ny) (v, w)x2)

=2 i>0

+ (’;‘)S(vg,bz(nz)...bm<nm)<b1<i)v,w)xz)wnl—"
i>0
+ S5, by (12)...by (1) (v, W) (b1 (11)X2)).

This proves (3.33). Now let x§ = by, (1) ... b1(n1)vy € M3/, with wth; —n; — 1> 0
for all i. We use induction on m to show that

/ S(bm(ny)...b1(n1)V5, (v, wWx2)w"dw = 0, (3.34)
C

for any fixed v € M x; € M2, and n € Z such that n > degv + degx, — 1. The base
case m = 0 follows from the Corollary 3.10. Let m > 0, then by (3.30) and (3.32), we
have:

/ S(bm(nm)...b1 (v, (v, wx2)w"dw
c
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:// / S5, (b1, z21) . by zm) (v, w)xz)zl_"l_2
C m CI

...zn:"”’_zw"dzl Adzpdw

Z ( l)wtb1+ Awtb,, //
- . . >0 m

J1=0,..., JmZ

/ S5, (LB, 21).. (L) by, 2) (v, w)x2)
Ci
. Z%W[bl —n1—2—jj .“Z2Wtbm*”m —2—jm

- ¥

jIZO ~~~~~ ijO
(LY by) Wby — 1y — 2 — i) (v, w)x2). (3.35)

w'dzy...dzpdw.
(_1)Wtb1+...+wtbm

P /CS(vg,(L(l)jlbl)thb] —np—2—=ji)..
L...jm!

It suffices to show that each summand in (3.35) is 0. For simplicity, we denote the term
(L(1)b;)(2wtb; — n; — 2 — j;) by ¢;(r;) for each i, note that

wtep (r1) = wt(L(D)7'b))Qwtby —ny —2 — Jj1)=—wth1+n1+1 < 0.
Then by (3.33), together with the definition formulas (3.32) and (3.31), we have:

/ Sy, €1(r1).ccm (rm) (v, wx2)w"dw
c

ZZ < > LS(US, c2(r2)..(cit(e)(ry +11 — i) ecom(rm) (v, wWx)wW"dw

=2 i>0

+

1

(r})/ SV, €2(r2)...cm (rm) (1 (D v, w)x2)w™ M~ dw
i>0 c
/S(vycz(rz) L () (0, W) (c1 (r)x2) W dw

C
_ Z(:}) /C S(C,y (r) (1)) (P + 11 — i)y (r2) Vs (v, W))W dw

=2 i>0 0
' )
+ E ( 1)/ S(C;n(rm)-..clz(l?)vg, (c1G)v, w)x2)wn+r1_’dw
iz0 N /e @

+/ S(cp, (rm)...c5(r2)v5, (v, w)(c1(r1)x2))w"dw
C 3)

=M+ +0O).
Since wtc; —r; — 1 <O and n > degv + degx, — 1, we have
deg(ci1(i)v) +degx, — 1 =degv+degxy — l+wtcy —i — 1 <n+r; —1i,
degv +deg(ci(r1)x2) — 1 =degv+degxy +wtc;y —r; — 1 —1 < n,
for all i > 0. Then by the induction hypothesis, we have (1) = (2) = (3) = 0. This

finishes the proof of (3.34). Hence S in (3.30) belongs to Cor( :

M}IWMZ)' O
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So far in this subsection, by abuse of notations, we used the same symbol S (3.30) for
the extension of a system of correlation functions S in (3.11). We denote the extended
S in (3.30) by ¢ (S) for the rest of this subsection. Then by the Theorem 3.12, we have

a linear map:
. M3(0) M2
v Cor(M1 M2(O)> — Cor(M1 1\/_[2) S = (), (3.36)

which is an inverse of the restriction map ¢ in (3.9), with M 2 = M2 and M3 = M3.

3
Corollary 3.13. Let S € Cor( MIIVI,V;(Z)EO)). Then the linear functional f in Definition 3.1
is given by f, = o(v) = v(degv — 1) = Res_ I (z, w)we?~1*" where I € I(Mllep)

2
is the intertwining operator corresponds to W (S) in Cor( Mjlw MZ)'

Proof. By (3.3), we have S(v}, (v, w)v2) = (v}, fo(v2))w™ 48, for all v} € M3(0)*,
vy € M?(0), and v € M. On the other hand, by (2.16),

S5, (v, wHv2) = Y(S)(V5, (v, WIvy) = V5, (v, w)v) = (v}, v(degv — Dvy)w ™ *E7,
since v(m)M?2(0) C M3(degv —m — 1) forany m € Z. Thus, f, = v(degv —1). O

We finish this subsection by showing another property of the space of correlation
functions associated with three modules. By (3.28) and (3.30), the ¥ (S) in (3.36) satis-
fies:

YV (S)(c1(j1)--Cm Gm) V5, (@1, 21)..(@p, 2p) (v, b1 (i1)...by (in)V2)
= // /C/ / /C S(vé, (Cm, W) ...(c1, w1) (a1, 21)...(v, W) (b1, x1)...(by, Xp)V2)
1 m n 1

~xi‘ ...x,’;”wl_j‘_z...w,;j”’_zdxl‘..dx,,dwm...dwl, (3.37)
where v} € M3(0)*, vo € M%(0), v € MY, a,, bs,c; € V forallr, s, 1, C,, is a contour
of w, Cy is a contour of x; forall k, [, such that C;y C --- C C, C C} C --- C C,, (we
use the subset symbol to indicate one contour is inside of the other), and z1, ..., z,, w
are outside of C i but inside of C,,.

By Proposition 3.7 and Theorem 6.2 in [2], we have an epimorphism of V-modules 77 :
M(M?2(0)) — M2, where M(M?(0))is the generalized Verma module with bottom level

— =5/
M?(0). Similarly, there is an epimorphism 7w : M (M 3(0)*) — M3 . More generally,
let N2 and N3 be any V-modules that are generated by their corresponding bottom
levels, and assume that N2(0) = MZ2(0) and N3(0) = M?3(0). Suppose there exist
- / 2

epimorphisms 7 : N> > M2 and 7 : N¥ — M3 _

If we write Res, Yy (b, 2)z/ = bj and Res, Y ; (b, 2)z/ = b(j), then we have

(e v3) = (1) )y, and 7 (b}, ..b v2) = b (i1)...b" (i) 2,
where ¢k, bl € V, Jk, i1 € Zfor all k, [, vg € M3(0)*, and v; € MZ(O). Thus we have a
M3

) = Cor(Mjlvj\,z) that is given by:

1 . k.
linear map: 77* : Cor(,,1 7

T (S) (¢, wrf V3, (@1, 20).wean Z) (v, Wb, -..bY, v2)
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= S(c" (1) o™ Gm) VS, (@1, 21) - (@ns 20) (0, WD (i1)..b" (i) 02). (3.38)

3
Compose v and 7*, we have a linear map 7*y : cOr(MmSZO)) — Cor(M| Nz) We
3
claim that 7%/ is the inverse of the restriction map ¢ : Cor ( lev v2) = Cor( M’]”Af;go)).

Indeed, for S € cOr(M’V;;SzO)), by (3.37) and (3.38), we have:

@@ Y)(S) (5, (ai, 21)-..(an, zn) (v, W)V2)
=Y (S)(@(3), (a1, z1)...(an, zn) (v, W) (v2))
= S5, (ar, z1)-..(an, 70) (v, W)V2),

where vo € M?(0) and vy € M?3(0)*. Hence ¢(r*y) = 1. On the other hand, for
S e Cor( M N2) again by (3.37) and (3.38), together with the fact that S satisfies (2.9)
and (2.10), we have for any c}l...c’j’r’n vy € N¥, b}l...bf;vz e N2 a,...,a, € V,and
v E Ml,

T Y)P(S)(c], ] V5, (@1, 1) (an, 2) (U, WD}, ..bT V)
= Y (@SN (1)ee €™ GV (@1, 21)-- () 20) (0, Wb (i1)...b" (i) 2)

=/ / / / P(S) (W5, (¢, wy)'
o Je, e, Ja

(e w) (@, z21) e (v, w) (BT x1) . (D" X0)2)

2
” xl"w D=2 w2 a4y dxpdw,y...dwy,

/ // /S(v3,(c W) (e wi) (ar, 21)
C/ Cp C

(U, WY (B, x1). (D", xp)02)

J1—2

. o
cxyxw ML dxy . dxpdwy,...dwy,

1 1
= S(cj, . v3, (a1, 21).-(an, 20) (v, w)b;, ...b} Vo).

This shows (7*y)¢ = 1, and so we have Cor(Mllvjvz) Cor(Ml 114(2(0)) In particular,

choose N2 = M(M?(0)) and N3 = M (M3(0)*)’, then we have:

cor MOTPOY N\ L (MO L (M 339
Or(Ml M(M2(0))>_ °r<M‘ M2<0)>_ Or(Ml M2> 339

Now by (3.39), Corollary 2.6 and Theorem 3.12, we have the following theorem:

Theorem 3.14. Let M be a V-module, and let M*(0) and M?>(0) be irreducible A(V)-
modules, then we have the following isomorphism of vector spaces:

J( MOPOY N L MO L, M3 340
(M‘ M(M2<0>)>_ °r<M‘ M2(0)>‘ (M‘ Mz)' G40
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If the VOA V is rational, then the generalized Verma module MU )_is an irreducible
V-module for any irreducible A(V)-module U. Thus, M(M?(0)) = M? = L(M?*(0)),
and M(M3(0)*) = M3 = L(M?(0)). On the other hand, by Theorem 2.2.2 in [13], if
M? and M? are irreducible V-module, then M2(0) and M?>(0) are irreducible A(V)-
module.

Corollary 3.15. Let V be an rational VOA, and let M', M?, and M? be V-modules.

3
Suppose M* and M3 are irreducible, then we have Cor( M%V;gzo)) =17 ( Mllel/lz)‘
Remark 3.16. Let W? and W3 be any N-gradable V-module that are generated by their
corresponding bottom levels, and assume that W2(0) = M?(0) and W3(0) = M3(0).
Then there exist epimorphisms: 7 : M(M2(0)) — W2, and 7 : M(M3(0)*) — W7

.. . . . M(M3(0)*) .
Similar to (3.38), 7z induces a linear map: 7 * Cor(M. W2) S Cor(M1 M(MZ(O)))’ which
is injective since 7 are surjective. Then by Corollary 2.6, (3.39), and (3.40), we have the

following estimate for the fusion rule:

. w3 , M3 (0)
d1m1<M] W2> < dim Cor(M] M2(O)>' (341

4. A(V)-Bimodules and the Correlation Function S

In this section, we again assume that M 2(0) and M3(0) are irreducible A(V)-modules.
By Proposition 3.7, L(0) = o(w) = h - Id on M?(0), and L(0) = h3 - Id on M3(0),
for some Ky, h3 € C. Moreover, h, and h3 are the conformal weights of M2 and M3,
respectively.

We will show that Cor ( M A4((2)20)) can be identified with the vector space (M 30004 V)

Bn(M") ®aw) M2(O))*, where Bj,(M") is an A(V)-bimodule that is similar to the
A(V)-bimodule Aq(M") constructed in [7].

However, there are counter-examples showing that this identification is false if one
replaces Bj,(M") by the A(V)-bimodule A(M 1Y constructed in Theorem 1.5.1 in [6] or
Ao(M"Y) constructed in Section 4 of [7]. The reason is that the correct L(—1)-derivation
property of the intertwining operators cannot be captured by A(M 1 nor Ag(M1). We
will see this by the end of this section.

4.1. The A(V)-Bimodule By (W). Let W be a V-module with conformal weight 4’. A
sequence of Ay (V)-bimodules Ay (W) are constructed by Huang and Yang in Section
4 of [7]. In particular, the Ag(V) = A(V)-bimodule Ag(W) is defined as follows:
Ag(W) = W/O0g(W), where Og(W) = spani{a o u, L(—Du + (L(0) — h)u :
VYa € V,u € W} It is proved (see Theorem 4.7 in [7]) that AO(W) is an A(V)-

(1+z)

bimodule under the left and right actions: a o u = Res,Yw (a, z)u~—>— " and v *0d =

Resz V@, z)aM

in [4]:

where YV, w is defined by the skew-symmetry formula (5.1.5)

Yoy (u, 2)a = LV Yy (a, —2)u. 4.1

Now let A € C be a fixed complex number, we construct another A(V)-bimodule
B, (W) that is similar to Ag(W) in the following way:
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Definition 4.1. For homogeneous elements u € W and a € V, define:

degu+r
_ w (1+2)
uo w a:=Res; (YWV(M, z)a—2 s
wv <

4.2)

then extend o bilinearlytoo : W x V.— W. Let OVV:,/ v (W) be the vector space spanned
by elements (4.2) foralla € V andu € W, and let B, (W) := W/(O(W) + OVV“,/V(W)),

where O (W) = span{a o u = Res;, (Yw(a z)u(HZ) ) :VYaeV,ue W}

Lemma 4.2. Let u € W and a € V by homogeneous elements, and m > n > 0. Then

1+ Z)deg u+A+n

Res, Yy (4, 2)a € Oy (W), 4.3)

Z2+m
Proof. Since Yy, (L(—Du, z) = %vavvv (u, z), the proof of (4.3) is almost the same
as the proof of Lemma 2.1.2 in [13], we omit the details. O

Recall that the module actions of A(V) on its bimodule A(W) are given by:
(1 + Z)Wtb) (1 + Z)Wtbl)
< 4

’

b x v = Res;, (YW(b, Z)v , and v*b = Res;, (Yw(b, 2)v

where b € V is homogeneous and v € W (see Definition 1.5.2 in [6]).
Lemma4.3. b x 0}, (W) C O) (W) and O} ,,(W) xb S O, (W), forallb € V.

Proof. Letu € W and b € V be homogeneous, and let a € V. By Definition 4.1,
Lemma 4.2, and the Jacobi identity of the intertwining operator Y, v‘;’ v» we have:

1+z2 wtb 1+z deg u+r
bxWmo w a)=Res; Yw(b, zl)ﬁReSZZYWWV(u, zz)a%
wvV 21 75
(1 +Z2)degu+k (1 +Z1)wtb
— ReszzYJ{yV(u, zg)z—2ResZ1YV(u, Zl)aT (mod OVV“,/V(W))

2
(I+ 22+ 200" (1 + zp)deeu+?

= Res, Res,, Yiry (Yw (b, 20), 22)a

22+ 20 z%
wtb deg u+A+wtb—i
w i+j (1+22)
= ResgRes;, ) ) Vyy (Yw (b, zo)u, zz)a< )( 1)z e
i=0 j>0 22

wth (1 + Zz)deg(b[+ju)+)u+(j+1)

wtb ,
_ZZ< ; )ReSZZ Yyy (bivju, 22)a 24(j+1)
2

i=0 j>0

=0 (mod O}, (W)),
where the last congruence follows from Lemma 4.2. By a similar computation, we have:

wth—1 (1 +Z2)deg(b,-+ju)+)»+j

wth —
wow a)yxb=Y_ Z( , )ResZZYvVVVV(iju, 2)a gy
2

wv i=0 j>0

=0 (mod O}, (W)).
Hence we have b x Oy, (W) € Oy, (W), and O, (W) xb € O, (W). O
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By Lemma 4.3 and Theorem 1.5.1 in [6], By(W) = W/(O (W) + O‘YVVV(W)) has an
A(V)-bimodule structure with respect to b % v and v * b. Moreover, B (W) is a quotient
module of A(W). In particular, we have the following formula holds in B, (W):

wta — 1 . W
axu—uxa=y_ _)aGhu  (mod O, (W) + O(W)), (4.4)
FEA
where a € V homogeneous, and u € W. Let
0, (W) :=spanfaou, L(—Du+(LO)—h +Xu:YaecV,uec Wy CW. 4.5)
Lemma 4.4. For any u € W, we have L(—Du + (L(0) — h' + M)u € OVV“,/V(W).
Proof. Letu € W be homogeneous. Since degu = (L(0) — h')u, we have:

1+ degu+x
uo w 1=Res e VyyQ, —z)uL

4% 72
= Res, Z Z%/;L(—l)j de%frx (degl.d + A)Zi—Z
j=>0 J: i=0 !
_ (degg * )‘)L(—nu + <deg”1‘ * A)L(—l)ou
= (L(=1)+ L(0) — h" + Mu.
Hence (L(—1) + (L(0) — h' + A))u € Oy, (W). O

Lemma 4.5. We have O(W)+OVV:,/V(W) = 0, (W).Inparticular, B, (W) = W/O,(W).

Proof. By Lemma 4.4, we only need to show that OXV/V(W) C O, (W). Similar to the
proof of Lemma 2.1.3 in [13], for any homogeneous u € W and a € V, we have:

Yy 2)a = (14 )~ 2Meyy (g, 52 ) (mod 0,,(W)). Tt follows that

(1+ Z)deg u+i

uow a =ResZY‘X,VV(u,z)a 3
z

wv

—z (1 + Z)—Wta
= Res, Yy | a, u (mod 0, (W))
1+z 72

(1 + w)wta
= —Res, Yw(a, w)u—2 (mod O, (W)).
w
Henceuo w a = —aou (mod O, (W)), and so O%VV(W) + O(W) = O (W). |

wv

Nowlet W = MY, and A = h = hy + hp — h3. Then by (4.5) and Lemma 4.5,

By(MY)y = M'/0,(M"), where Op,(M") = spanfaou, L(—Du+(L(0)+hy —h3)u :
YaeV,ueM'.

M3

Y ), then the linear map

Lemma 4.6. Let I € I(
0: M" — Homc(M*(0), M3(0)), o(v) = v(degv — 1) = Res. I (v, z)z =1+

factors through By(M') = M'/0,(M").
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Proof. By Lemma 4.5, we need to show that o0, (MY)) = 0. By Lemma 1.5.2 in
[6], we already have o(a ou) = O foralla € Vandu €¢ M I Furthermore, by the
L(—1)-derivation property of I, we have:

o(L(—1)v) =Res I(L(—1)v, Z)Zdegv+1_1+h
d
= Res; <—I(v, Z)) Zdegv+h
dz

= Res, I (v, z)(— deg v — h)zdcev+h—1
= —((L(0) = h1 + h)v)(degv — 1)
= —0o((L(0) + hy — h3)v).
Hence o(O,(M")) = 0, and so o factors through By, (Ml). |

Proposition 4.7. There exists an injective linear map:

vocor( O N L 450y @ Bu(M) ®av, MO
N Ml MZ(O) A(V) A(V)

St fs. fs(W3@v@ ) == (v3, fu(v2)), (4.6)

where we use the same symbol v for its image in By(M").

Proof. First,wehave f, = o(v) by Corollary 3.13, where 0(v) = Res,, I (v, w)weev=1+h,
and I € 1 ( MZIM;;Z) is the intertwining operator corresponds to ¥ (S) in Cor ( MIIW;/}Z), see

Theorem 3.14. Moreover, it follows from Lemma 4.6 that o(O,(M"')) = 0. Hence v is
well-defined. The injectivity of v follows from Lemma 3.3. O

Remark 4.8. Although our definition for B, (M 1) is similarto the A(V)-bimodule Ag(M1)
constructed by Huang and Yang in [7], they are not isomorphic as A(V)-bimodules. We
will give a counter-example in the next subsection.

Our goal next is to construct an inverse map of v in (4.6). Givena f € (M 30*® A(V)
By(MYH ® Ay M 2(0))*, we need to construct a corresponding system of correlation
3
functions § in Cor( MIIVIA/;(Z)EO))' Our strategy is to use the recursive formulas (3.4) and

(3.6) and construct the system of functions S inductively. The key is to show the locality
((2) in Definition 2.1) in each step, which can be achieved by the properties of the
A(V)-bimodule B, (M), together with the formula (3.8).

4.2. The Construction of 4-Point and 5-Point Functions. From now on, we fix a linear
function f on the vector space M3 0)* @a(v) B (M"Y ®Av) MZ(O).
Definition 4.9. Define Sy : M3(0)* x M! x M*(0) — F(w) by

Su (5, (v, wHv2) == f (V5 ® v @ v)w ™ *EY, 4.7)

where on the right-hand side we use the same symbol v for its image v + O(M") in
Bp(MM).
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Define S§,, : M3(0)* x V x M! x M?(0) — F(z, w) by

SE s, (@, 2) (v, w)va) == Sy (vyo(a), (v, w)vy)z ™

+ 3 Futai (2. w) Sy (5, (@(i)v, wyva). (4.8)
i>0

Finally, define SX|, : M3(0)* x M! x V x M*(0) - F(z, w) by

SRV s, (v, w)(a, 2)v2) = Sy (v}, (v, wyo(a)va)z ™

+ 3" Guta,i (2. w) Sy (W5, (a(i)v, w)va). (4.9)

i>0

The upper index L (resp.R) in the 4-point functions S indicates that we use the expan-
sion formula for the left (resp. right) most term, namely, (3.4) (resp.(3.6)) to construct
the new S from the 3-point function. We will denote the 3-point function Sys by S.

Proposition 4.10. As rational functions in F(z, w), we have:
Sy (V5. (@, 2) (v, wyva) = Sy (W5, (v, w)(a, 2)v2).

Proof. By Definition4.9, (3.8), and the property of M>(0)*® vy By (M) ®a(vy M?(0),

Sy (W5, (@, ) (v, whva) = Sgy (V5. (v, w)(a, 2)v2)

= f(vy0(a) ®v ® vy)w~degv W f;®ve o(a)vy)w ™ degv,—wa

+ D (Funai (@ w) = Gwia,i (2, w)) Sy (v, (@(i)v, wyva)

i>0

=f(Vy®@a*xv® vy)w ™~ degv W fWyQ@v*a® vy)w~ degv W
B Z (Wta.— 1>f(vé ®Qali)v® vz)w—degv—wta+i+lz—wtawwta—l—i

i>0 !
=f(V3@(a*xv—v*a)® vy)w " degv—wa

ta — 1
-3 (W ‘ )f(vg ® ali)y ® vz Mw™ e,
1

i>0

By (4.4), we also havea x v —v*a = ;. (Wt“._l)a(i)v holds in the A(V)-bimodule

l
By (M"). Hence S5, (v}, (a, 2) (v, w)va) — SR |, (v}, (v, w)(a, 2)v2) = 0. O

By Proposition 4.10, the 4-point functions S \L, yand § /15”, in definition 4.9 give rise
to one single 4-point function S that satisfies

S5, (a, 2) (v, w)v) = S5, (v, w)(a, 2)v2), (4.10)

and this function can be defined either by (4.8) or (4.9).

We adopt a similar method to construct 5-point functions. As long as the term (v, w)
does not appear at the left-most place, we use the formula (3.4) to construct S from the
4-point function; if (v, w) appears at the left-most place, we use (3.6) to construct S.
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Definition 4.11. Define the 5-point functions with the upper index L,

Syay (V3. (@1, 2D (v, w)(a2, 22)v2), - and - Spy V5, (a1, 21) (@2, 22) (v, w)v2),
by expanding (ai, z1) from the left, which is given by the common formula:
S(io(ar), (v, w)(az. 22)v2)z; ™+ Y Futay j (21, w)S 5, (@1(j)v, w)(az, 22)v2)
Jj=0
+ > Futay.j (21, 22)SO5, (v, w)(@1(j)az, 22)v2).
j=0
4.11)
Define the 5-point functions with upper index R,
Syay V5, (@2, 22) (v, w)(ar, zDv2), and Sy (V3 (v, w)(az, 22) (@i, 21)v2),
by expanding (aj, z1) from the right, which is given by the common formula:

S}, (@2, 22) (v, wo(a))va)z; *

+ > Gutay.j (21, w)SW}, (a2, 22)(@1(j)v, w)v2)
j=0 4.12)

+ Z Gwiay,j(z1, 22)S(v3, (a1(j)az, z2) (v, w)v2).
>0

The function S in (4.11) and (4.12) is the (common) 4-point function in Definition 4.9.
By (4.10), it makes sense to define S‘L,MV and Sé v u Dy the same formula, same for S‘I;MV

and S /ﬁvv. We will show that all the 5-point functions in Definition 4.11 are the same.
First, we observe that the term Sy v (v5, (a1, 1) (v, w) (a2, z2)v2) has the following two

expressions: ¥ ., (v}, (a1, 21) (v, w)(a2, 22)v2) and ST, (v}, (a1, 21) (v, w) (a2, 22)v2).

Proposition 4.12. If (4.11)=(4.12), then we have:

SE v @5, (a1, 21) (v, w)(az, 22)v2) = SR, (W5, (a1, 21) (v, w)(az, 22)v2).

Proof. Note that (4.11) is a generalization of the function (2.2.6) in [13]. By a similar
calculation, it is easy to see that the formula (2.2.11) in [13] also holds for our case. i.e.,
we can swap the terms (ap, z1) and (az, z2) in S‘I;VM:

SEy (W5, (a1, 21) (a2, 22) (v, WYv2) = SEy, (W5, (a2, 22) (a1, 1) (v, wHva).  (4.13)

By the assumption that (4.11)=(4.12), Definition 4.11, and (4.13), we have:

Sty (V3 (a1, 21) (v, w) (a2, 22)v2)
= Sty u (Vs (a1, z0)(az, 22) (v, w)v)
= Sty (Vs (a2, 22)(ar, 21) (v, w)v)
=S¥y (V3. (a2, 22) (v, w)(ar, 21)v2)
= Py (5. (a1, 21) (v, w) (a2, 22)2),

where the last equality follows from the assumption that (4.11)=(4.12). O
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Next, we show that (4.11)=(4.12). We use symbols (1), (2), and (3) to denote the
difference of the three summands in the term (4.11)-(4.12):

Sho(ar), (v, w)(az, 22)v2)z] " — S5, (a2, 22) (v, wyola)va)z; V. (1)
> (Futarj (@1, w) = Gutay.j (@1, ) S5, (a1(j)v, w)(az, 22)v2). 2)
Jj=0
Z(Fwtal,j(zl, 22) = Gwiay, (21, 22)) S5, (v, w)(a1(j)az, 22)v2). (3)
Jj=0

So we need to show that (1)+(2)+(3)=0.
By (4.10), we may use the formula (4.8) and expand both terms in (1) with respect
to (az, z2) from the left. Then (1) can be expressed as:

Sho(ar), (v, w)(az, 22)v2)z] " — S5, (a2, 22) (v, wo(ay)va)z] !

—wt —wt
= S3o(an)o(a), (v, wyva)z; "z

+ Y Futar,i (22, w)S(Wso(ar), (az(i)v, wyvy)z; ™

i>0

—wtaj _—wt
— S(W30(a2), (v, wolanv)z; "z

+ Z Fwtaz,i(ZZ, w)S(Ué, (ar(i)v, w)O(al)Uz)Z]_wml
i>0

— —wta| _—wta
deg v, 1 z5 2

= f(VyQ®ar xay v @ v2)w :

an

—degv_—Wta) —wtaz
2

— f(Vy®@az *v*a; ® v))w z;
(12)

+ Z(g) (22, w) f (V3 ® (ay * (a2(i)v))
i>0 wta,i
_ (az(i)v) % (11) ® vz)w—wtaz—degv+i+1zl—wta1
= (11) + (12) + (13).

For the term (2), we use the formula (4.8) agian and expand each summand in (2) with
respect to (az, z2) from the left. Then by (3.8), (2) can be expressed as:

2) =) Futay.j @1, w)SWs0(a2), (a1 (j)v, wyvy)z; ™™
=0

+ Z Z Fwtal,j(Zl, U))Fwtaz,i(Zz, U))S(Ug, (ax(Da1(Hv, w)vy)
j=0i>0

_ Z tha],j(zl s U))S('UéO(az)7 (a] (j)v7 w)vz)zz—wtaz
Jjz0

=3 Gutar.j (21, W) Futay.i (22, w) SO}, (a2(i)a1 (j)v, w)v))

j=01>0

wta; — 1 _ B .
=2 _< y >S(v§0(az), (@1(j)v, wyvp)z; M zy MRV
j=0 J @n
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Wta1 -1\ _ i . .
S ( )lemlwwml ) Py (22, ) S0, (@D (), w)va)

]>O i>0 (22)
— 21) +(22).

Finally, for the term (3), we expand each of its summand with respect to (a1 (j)az, z2)
from the left, so (3) can be expressed as:

3) = Fuay.j (@1, 22)SWho(ar (az), (v, wyvg)zy "7

j=0
+ Z Z Fwtalyj(Zl , ZZ)Fwta1+wta27j—l,i(Zz, w)S(vé, ((a1(Haz)@v, w)vy)
Jj=0i=0
_ Z Guwiay,j (21, 22)S(W50(a1(j)az), (v, w)vz)zz—wta1—wta2+j+l
Jj=0
£ Gutar,j (@1, 22) Futarswtar 1.1 (22, w) S(v%, (@1 (@) ()v, w)va)
j>0i>0
wta _ _
= Z < 1= >21 wtalZ;vtal 1- ]S(ng(a] (az), (v, w)vz)Z2 wta] —wtay+j+1
jz0 31
Wtal
(")
j>0i>0
— 17 ; ) )
2 wtalZ\Z’Vttll /Fwtal+wta2*j*1,i(Z2’ w)S(Ué, (a1(j)a2) (@) (v, w)va)
(32)
= (31) + (32).

We need to show that (11) + (12) + (13) + (21) + (22) + (31) + (32) = 0. In fact, since

a%v—v*a=Res,Y(a,)v(l+z)V ! = >0 (wmj_l)a(j)v in B, (M), see (4.4),

andaj xay —ar xa1 =) ;> (Wta;_l)a1(j)a2 in A(V), we can rewrite (21) and (31)
as:

(21) — Z (Wta] - 1) w—Wtal—deg v+j+lZTVtalZ;Vtazwwtal—j—l
7=0 J
fso(az) ® a1(j)v ® v)

= —w 4BV WAL £l @ (ay ka) kv — ax kv % A1) ® 12);

ta; — 1\ _ _
Gh=-" <W ‘“j >z1 MWy =Y £ (0l o(ay (f)az) @ v @ v2)
Jj=0

= g MU M2y TIEY f ()L @ (a1 % ap ¥ v — @y x @) ¥ V) ® v2).

Then by the bimodule property of B, (M), we have:

(1) + (12) + 21) + (31)
— f(v§ Qajxar v ® vz)wfdegvzlfwtalzsztaz
deg vsztal —wtap
1

—fy®@ar*v*a; ® v)w” z,
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— w7 eV VNN £l @ (ap kag kv —az ¥ vk a)) ® v2)

— Zl_wmlzz_wmzw_deg”f(vg Q@ *xarxv—azxa; *xv) @ vy) =0.
It remains to show that (13) + (22) + (32) = 0.
Lemma 4.13. Let M be a V module, and let aj,a> € V, v € M, and n € N. We have:
3 (Wt‘”. B 1) (Wt“j ¥ ”) (@1 (Daz(i)v — ax(i)ar (j)v)

i,j=>0 J

_ Z <Wt(11.— 1) <Wm1 +Wta2i_ j-1 +n)(a1(j)02)(i)v

i,j=0 J

(4.14)

Proof: Choose complex variables z1, zo in the domain |z1]| < 1, |z2| < 1, |21 — 22| <
1+ z2].
By the Jacobi identity in the residue form, the left-hand side of (4.14) can be written as:

wtay — 1\ (wtap +n\ ; ;
Res;, s . ) (Y (a1, )Y (@2, 22)v — Y (a2, 2)Y (ar, 21)v)
i,j>0 J !
= Res;, o, (1 + )M 71+ 2)™M 2 (Y (a1, 21)Y (a2, 22)v — Y (a2, 22)Y (a1, 21)V)
= Res;,Res;, 5, (1 + 22 + (21 — 22)™ 7 (1 + )M 2™ Y (Y (a1, 21 — 22)a2, 22)v
wta; — 1 .
_ ReszzReSZ|712 Z ( (11. >(1 + 22)wtal—l—J+wtaz+n
720 J
(z1 —22)/ Y (Y (a1, 21 — 22)a2, 22)v
wta; — 1\ (wta; +wtap — j — 1 +n . .
=> ( . )( l. (a1(j)az)(i)v,
i,j>0 J

which is the right-hand side of (4.14). ]
We use the formula (4.4) again and rewrite (13) as:

wta; — 1\ _ Wi — i . .
=3 ( 1] )zlwmlw Ml (2, w) f (0 ® a1 ()a()y © va).
i,j=0

Since the map 4, ,, is injective (see Section 3 in [4]), we only need to show that
tzo.w((13) + (22) + (32)) = 0. By (3.5), tz,,w(Fwtay.i (22, w)) can be written as:

wtapy +n tar+n—i  —wtar—n—1
Lzz,w(Fwtaz,i(ZZs w)) = Z < . >ww an lZz 2

l
n>0
To simplify our notation, we denote z|" 1w~ degvn+1,> wtaz—n—1
Loy w(13) + 145, (22)

_ wtar — 1\ wiay  —wiar—deg v+i+1 Wtaz + 1\ - wiay4n—i —wtay—n—1
= . Zl w ; w Z2
J

i,j>0 n>0

by y.By Lemma4.13,

(fy®ai(Hazi)v @ v2) — f (v @ ax(idai(j)v @ v2))
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wta; — 1\ (wtax +n , . . . .
> ( i )( ; )y-f(v3®(a1(])a2(1)v—az(l)al(])v)®v2)

i,j,n>0

wta; — 1\ (wta; +wtaz +n — j — 1 , . .
> ( . )( . )V - f (3 ® (a1(j)az)(i)v @ v2)

i,j,n>0 J !
= —i7, w(32).

Now the proof of (4.11)=(4.12) is complete.
Therefore, the 5 point functions in Definition 4.11 give rise to one single 5-point
function S that satisfies:

S(v3, (a1, z1) (a2, 22) (v, w)v2) = S(v3, (a2, z2) (a1, 21) (v, W)v2)
= S(v3, (a1, z1) (v, w)(az, 22)v2) = S(v3, (a2, 22) (v, w)(ai, 21)v2)
= S(v3, (v, w)(a1, z1)(a2, 22)v2) = S(v3, (v, w)(a2, z2) (a1, 21)v2). (4.15)

In particular, the 5-point function § satisfies the locality in Definition 2.1, with v} €

M?3(0)* and v» € M?(0). Moreover, S5, (a1, z1)(az, 22) (v, w)vy) also satisfies both
of the recursive formula (3.4) and (3.6) by its definition.

4.3. Construction of (n + 3)-Point Functions. We construct the general (n + 3)-point
function S using induction on n. We have finished the base cases n = 1, 2 in the previous
subsection. Now assume the (n + 2)-point function:

S:MNO)* XV x---x M x - xVx M*0) = F(zi,...,2n—1, W)

exist and satisfy the following two properties: Let {(b1, w1), (b2, w2), ..., (by, w,)} be
the same set as {(a1, z1), ..., (@n—1, Zn—1), (v, w)}. The first property is the locality:

S(v3, (ar, 21)(@2, 22)-.-(an—1, Zn—1) (v, W)v2) = S(V3, (b, w1) (b2, W2)...(by, Wy)V2),

@

that is, the terms (a1, z1),(a2, 22), . . ., (@n—1, Zn—1), and (v, w) can be permutated ar-
bitrarily within S. Denote by S* (resp. S¥) the expansion of the (n + 1)-point function
S with respect to the left (resp. right)-most term using (3.4) (resp. (3.6)). The second
property is that

S5, (b1, wi) (b2, w2)...(by, wp)v2) = SE (W, (b1, w1) (b2, w2)...(by, wy)v2)  (II)
= SR}, (b1, w1) (b2, w2)...(by, wy)V2),
where (b;, wy) in ST is not (v, w), and (b, wy,) in S¥ is not (v, w).

Note that properties (I) and (II) are satisfied by the 4-point and 5-point functions (see
(4.10) and (4.15).) We construct (n + 3)-point functions as follows:

Definition 4.14. Assume the number of V in the sub-indices of S‘L/V a1y and
S‘I; w1 _yy are both equal to n, the sub-index M Uin ST is not at the first place, and the
sub-index M in S® is not at the last place. We define S‘L/V iy by

—wtay

Sévalmv(vév (alv Zl)-"(vv w)Uz) = S(Uéo(al)v (a29 Z2)-"(ana Zn)(vs w)UZ)Zl
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+ 3 Futarj @1, 2 S W5, (@2, 22)..(@1 (1)@, 28)---@n, 20) (v, W)V2)

k=2 j>0

+ > Futay.j (1, w) S5, (@2, 22)...(@n, 20) (@1 (j)v, w)v2), (4.16)
j=0

and define S% by

V.M'..VV
sk . vy Whe (U w).(ar, 20)02) = SV, (@2, 22)...(an. 20) (0, w)oan)v)zy ™

+ Z Y Gty j (21, 20) SO, (@2, 22)..(@1 (Datk, 24)---(@n, 20) (v, W)v2)

k=2 j>0
+ Z Gutay,j (21, w)S(3, (@2, 22)...(an, 20) (@1 (j)v, W)V2), 4.17)
j=0
where the S on right-hand sides of (4.16) and (4.17) is the (n + 2)-point function.

The definition above indicates that S‘L,MV V= S M.V = = va v e Which
is reasonable because the (n+2)-point function S on the right- hand s1de of (4. 16) satisfies
the locality property (I). For a similar reason, we can also expect that S wv.vY =

R _ GR
Sym.vv = =Sy _ymy- We need to show that

SE (5, (a1, 21)... (v, w)...(a2, 22)v2) (4.18)

= SR (s, @@, 21)..(v, w)...(a2, 22)V2),

for all va .y and S V-
Indeed, as we mentloned in Proposition 4.10, since (4.16) is the generalization of
(2.2.6) in [13], by a similar argument as the proof of (2.2.11) in [13], we have:

SL, v (s, @@, 21) (@2, 22).. (v, w)...v2) .19)

= SLy y v, (a2, 22) (a1, z1)...(v, w)...v).

Proposition 4.15. IfSL V(v3, (a1, z1)...v2) = S (v3,. (a1, z1)vy), e if
the right-hand side of (4 16) is equal to the right- hand stde of (4.17), then (4.18) holds.

Proof: The proof is similar to the proof of Proposition 4.12. By (4.19) and the assump-
tion,
8.ty Wss (@1, 20 (v, W)... (@2, 22)v2)
=Sty .y (@5, (@, 202, 22)... (v, w)...v2)
= SEy v (S, (a2, 22)(a1, 21) .. (v, w)...v2)
= S8 vy @5, (@1, 20 (0, w)... (a2, 22)v2)

as asserted. O
Now we are left to show that:

SEy v @1, z1) (v, w)ev) = SK U@, (v, W) (ar, 21)v2). (4.20)
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Similar to the previous subsection, we use the symbols (1), (2), (3), and (4) to denote
the following summands on the right-hand side of (4.16)-(4.17):

S(io(an), (a2, z2)...(v, wHv2)z ™™ = S(v3, (a2, 22)...(v, wo(aDv2)z" ™. (1)

Z(mel,j(m, 22) — Gwiay,j (21, 22)) S5, (@1(j)az, 22)...(an, z0) (v, WIV2).  (2)
j=0

DY (Futarj (@1, %) — Gty (21, 20)) S5, (@2, 22)-(@1 () ak, 2. (v, w)va).
k=3 j>0

3)

Z((mel,j(m, W) — Gwiay, j (21, w)S(V3, (@2, 22)...(an, 20) (@1 (v, Wv2).  (4)
j=0

Then we need to show that (1)+(2)+(3)+(4)=0.

Our strategy is to apply the expansion formula (3.4) and expand each summand of
(1)-(4) with respect to the left-most term. Then we add them all up and show that the sum
equals 0. (Since we are using the recursive formula (3.4) twice and the 3-point function
cannot be expanded, the construction of the 5-point function in the previous subsection
is necessary for our induction process.)

Start with (1), note that S(vgo(al), (a2, 22)...(an, zn) (v, W)v2)z~ V1 can be written
as:

Sio(ap)o(az), (a3, z3)...(an, 2) (v, wv2)zy V2 M4 ()

n
+ D) Futai(z2, 20)SW50(a1), (a3, 23)...(a2(0)ar, 21)...(an, 2) (v, w)va)z;
t=3 i>0

+ Z Futar,i (22, w)S(W30(ar), (a3, 23)...(an, zn) (@2 (i), wiva)zy ',
i>0

and S (v}, (a2, 22)...(an, 2n) (v, w)o(ar)va)z; ' can be written as

S(Ws0(a2), (@3, 23)...(an, z0) (v, wo(ap)v)zy V475 W' (%)

n
/
+ 3 Futar.i(z2, 20) S}, (@3, 23)
=3 i>0

w@(D)ag, 2¢).(an, ) (v, w)o(ar)va)zy

+ Y Futar,i (22, w) S}, (@3, 23)...(an, 20) (@2(i)v, who(an)va)zy ™.

i~0

We denote the first, second, and third corresponding terms in (x)-(:x) by (11), (12), and
(13), respectively. In particular, (11) is

S(o(ar)o(@r), (as, z23)-..(an, 20) (v, wIvp)zy V75 W (11)

— S(W30(a2), (a3, 23)...(@n, 20) (v, Wo(apva)zy "z 2.
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Lemma 4.16. As (n + 1)-point function, we have:

S(vio(ar), (a3, z3)...(an, 20) (v, W)V2) — S(V3, (@3, 23)...(dn, 2n) (v, W)o(a)v2)

_ ZZ(WMI > VIS (), (a3, 23)- (@1 (ks 26 (an, 20) (0, w)D2)

k=3 j>0
wta ;

+ZZ( L )Wt‘”f‘S(vg,(as,m..(an,zn>(a1<j)v,w)vz) 4.21)

jz0j=0

Proof: By the induction hypothesis for the (n + 2)-point functions and (3.8), we have:

0 = S(v3, (a1, 21)(a3, 23)...(an, 2n) (v, W)V2)
— S(v5, (a3, 23)...(an, zn) (a1, z1) (v, W)v2)
wtai

= S(v30(a1)(a3, 23)--.(an, 20) (V, WV2)Z}

—S(v3(a3 23)-.-(an. 20) (v, W)o(a)v)z !

+ Z D (Futarj (@1, 26) = Gtayj (21, 20) S5, (a3, 23)
k=3 j>0
ar(Jak, zk)...(an, 2n) (v, W)V2)
+ Z(Fwtal,j(zlv U)) - thal,j(zlv w))S(vév (Cl3, Z3)"~(anv Zl’l)(al(j)vs w)UZ)
Jj=0
= S(o(ar)(as, z3)..(an, z0) (v, WYv2)z] "
wta

—S(v3(a3 23)...(an, zp) (v, w)o(a)va)z,

t wta]—j— / j
+ZZ (Wal >zk” IS5, (a3, 23).(@1 (ks 20) - (@n, 20) (0, w)D2)

k=3 j>0
wta :

+Z( L )wW“”J‘S(vg,(as,m)...(an,z,,)<a1<j>v,w)vz).

jz0

This proves (4.21). O
It follows from the Lemma 4.16 that (12) and (13) can be written as:

n n
wta; — 1\ _ 11—
a=> > > me,i(m,z,)< j )zl g =iy

1=3 k=3,k#t i,j>0

- S(v3, (@3, 23)...(a1(Jag, zp)-..(a2(D)ay, 2¢)-..(an, 20) (V, W)V2)
(121)

n
wtag — 1\ _wia wta—1—j
+§ § mez,i(ZLZz)( : )zl "7
1=3i,j=0 J

- $(v5, (a3, 23)...(a1(JDaz(Dar, 21)...(an, 2n) (v, W)V2)
(122)

n
wta; — 1\ _wt -
+ Z Z Fwtaz,i(ZZa w)< ] )Zl wtaj wwtal J

1=3i,j>0
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- S(v3, (a3, 23)...(a2()ar, 21)...(an, zn) (@1 (j)v, w)v2)

(123)
= (121) + (122) + (123),
n
wta; — 1\ _ L
(13) = Z Z FWtaz,i(ZZ,Zk)< al, )Z] wlekWtal 1—j
k=31i,j>0 J
- S5, (@3, 23)...(a1(j)ak, zk)-.-(@n, zn)(@2(i)v, w)v2)
(131)
wta 1\ _ )
+ Z Fytay.i (22, w)( 1= )Zl wtai, wtaj—1—j
i,j>0 ]
- S(v5, (a3, 23)...(an, zn) (a1 (j)az (i)v, w)va)
(132)
= (131) + (132).

Then (1)=(11)+(121)+(122)+(123)+(131)+(132).

J. Liu

Now we expand (2), (3), and (4) with respect to their corresponding left-most terms.

By (3.8), they can be expressed as follows:

-1 —wta| _—wta / .
(2)=Z—<W“"j >z1 2, S (Wh0(ar(j)az), (a3, 23).-(@n, 0) (v, w)V2)

,->o @1

Wtal —wta; _wtaj—1—j
+ZZ ( )zl 'z, Futay+wtar—j—1,i (22, 2k)

k=31i,j>0

- S(v3, (a3, z3)...((a1(ja2) (Dag, zi)...(an, zn) (v, W)V2)
(22)

wta1 _ — J
+ Z ( )Zl WtalZz wia JFwta1+wta2—j—l,i(ZZv w)
i,j=0
- 8(v3, (a3, 23)-.-(an, zn) ((@1(j)az) (v, w)v2)
(23)

=21 +(22) +(23).(3) = ZZ

k=3 j>0

wta; — 1\ _
—< ’ )zlwm‘z,‘ftal S (ho(ar), (a3, 23)..(a1 (f)ax, 2x)--v2) 2y

J (€1))

Wta] —wtaj _wtaj—1—j
+ Z Z < )zl % Futay,i(z2, w)
k=3 j,i>0

- S(v3, (a3, 23)...(a1(j)ak, zx)...(an, 20) (@2 (D)v, w)vy)
(32)

Wtal_l —wta; _wtaj—1—j

J
+Z Z Z ( )Zl 'z Futay,i (22, 21)
k=3 t=3,t#k j,i>0

- S(v3, (a3, 23).(@2(Day, z0)...(@1(ak, zk)--(@n, 20) (V, W)V2)
(33)
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Wtal —wta; _wtaj—1—j
+Z Z < )Z] lzk Fytay,i(z2, 2k)

k=3 j,i>0
- S(V5, (a3, z3)...(aa(D)a1 (j)ak, zk)---(an, 2n) (v, W)V2)
(34)
=(GD+(G)+(3)+GH.4) =)
Jz0
tap — 1\ _ i >
_ (W alj )Zl Mty =1=i S (vho(az), (a3, 23)...(an, 2n) (@1 (j)v, w)v2)z; ™
41)
. - ,
+ Z Z (W o )Zl wiarywtar=1=j Futayi (22, 2k)
t=3 j,i>0
- 8(v3, (a3, 23)...(@2 (D) ax, zk)-.-(an, za) (@1 (j)v, w)va)
“2)
. B .
+ Z (W v )Z1 MW =1d B (22, w)
J,i=0
- S(v5, (a3, 23)...(an, zn) (a2(i)a;1 (j)v, w)va)
(43)
= (41) + (42) + (43).

By Lemma 4.13 and the formula (3.5) of ¢, ;, Fy,.i (22, 2;), we have:

—1
5 <Wtalj >mez,i<zz,z,)alu)az(i)ar

wta; — 1 . .
+ Y —( i >Fwta2,i(Z2,Zz)al(J)a2(l)az

-1
+ Z _(Wtal. )me1+wm2—j—1,i(zz,Zz)(a1(j)a2)(i)at =0, (4.22)

and the same equation holds if we replace z; with w and a; with v. Using (4.22), we
have the cancelations (122) + (22) + (34) = 0, and (132) + (23) + (43) = 0. Moreover,
it follows directly from the expressions of the terms (123), (42), (121), (33), (131), and
(32) that

(123)+(42) =0, (121)+@(33) =0, and (131)+(32) =0.
Now it remains to show 11+(21)+(31)+(41)=0, or equivalently,
S(vio(ar)o(ar), (a3, z3)...(an, 21) (v, W)V2)

— S(W30(a2), (a3, 23).-(an, 2n) (v, W)0(ar)v2)

=> (Wtal )S(véo(al(j)az), (@3, 23)...(an, 2n) (v, W)V2)

Jz0

+ZE<W“’1 > YA S (vho(ar), (a3, 23).. (@1 (ag, 2e)- (v, w)va)

k=3 j>0
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Y (Wt‘“j_ 1>wW‘“1—1—f S(Ws0(@2). (a3, 23)---(an, za) (@1 (j)v, wyva), (423)
Jj=0

but this is a consequence of Lemma 4.16. In fact,
L.H.S. of (4.23)
= S(v3o(ar)o(az), (az, z3)...(an, zn) (v, W)V2)
— S(o(ax)o(ar), (a3, z3)...(an, zn) (V, W)V2)
+ S(vzo(a)o(ar), (a3, z3)...(an, 2n) (v, W)V2)
— S(v30(a2), (a3, 23)-..(an, 20) (v, w)o(a)va).
Since § is linear in the place M 3(0)*, we have
S(so(ar)o(az), (a3, z3)...(an, 2n) (v, W)V2)
— S(vzo(az)o(ar), (a3, z3)...(an, 2n) (v, W)V2)

= S(v3lo(an), 0(a)], (a3, 23).--(an, zn) (v, W)V2)

—1
= Z (Wtalj )S(véo(al(j)az), (a3, 23)...(an, zn) (v, W)V2),

Jj=0
which is the first term on the right-hand side of (4.23). Moreover, by Lemma 4.16,

S(vio(az)o(ar), (az, z3)...(an, 22) (v, W)V2)
— S(vs0(a2), (a3, 23)...(an, 2n) (v, w)o(a)v2)

n _ 1 L
=ZZ(W’I. )z,“!‘“‘ IS Who(@r). (a3, 23)-..(a1 (g 20)..-(v, w)v)

k=3 j>0 J
wta; — 1 :
+y ( 1, )wW‘“l”S(vgo(az), (@3, 23)..-(an, 20) (@1 (j)v, w)v2),
Jj=0

which gives us the last two summands on the right-hand side of (4.23). This proves
(4.23). Hence 1+2+3+4= 0, and so (4.20) holds.

Then by Proposition 4.15, all the (n + 3)-point functions S‘L,V._M_“V and S‘I;.AM...VV
defined by (4.16) and (4.17) give rise to one single (n + 3)-point function:

S:MO* XV x-oox M x-ox Vx M*0) > F(z1, ... znsw),  (4.24)

where M can be placed anywhere in between the first and the last place of V. Moreover,
by Definition 4.14 and (4.18), S in (4.24) satisfies the locality (I) and the expansion
property (II), with n replaced by n + 1. Therefore, the induction step is complete.

Theorem 4.17. The system of (n + 3)-point functions S we constructed by Definitions

3
4.9, 4.11, and 4.14 in this subsection lies in COF(MIIWA,;QEO))

Proof. Since S is constructed inductively by the recursive formulas (3.4) and (3.6) in
view of Defintions 4.9, 4.11, and 4.14, it obviously satisfies (3.4) and (3.6). By (4.7),
we have S(vj, (v, W) = f(V; OV vy)w~ 98 for any vy € M30)*,v e ML,
and v» € M?(0). By the Hom-tensor duality, we have a well-defined element f, €
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Homc(M?(0), M3(0)) such that (v}, f,(v2)) = f(v; ® v ® v2) for each v € M!.
Hence S satisfies (3.3).
In view of Definition 3.1, it remains to show that § satisfies (2) — (6) in Definition 2.1
for vy € M2(0) and v; € M3(0)*. Indeed, the locality follows from (I), and by (4.16),
S(vé, (17 Z)(al7 Zl)"'(anv Zl’l)(v7 w)vz)

= S(Wo(1), (ar, z1)--(an, 20) (v, WYv2)z ™1

+ DY Fanj (2, 2S5, (@1, 20)-- (1) ak, 7). (@, 20) (v, w)v2)

k=1j>0

+ Z Fuut,j(z, w)S(v3, (a1, 21)...(an, 22) A(j)v, w)v)
j=0

= S(v3, (a1, 21)...(an, zn) (v, WIV2),

since 1(j)ay = 1(j)v = 0 when j > 0, and o(1) = Id.
Againbecause S'in (4.24) satisfies (4.16), itis easy to verify the following associativity
formulas by a similar argument to the proof of (2.2.9) in [13]:

/CS(vg, (@1, 21) (0, W) (s 202 (21 — w)'dzy
= S(Ué’ (al(k)vv w)"-(ans Zn)UZ)v
/;S(Ué’ (Cll, Zl)(ClZ, Z2)...(U, U))U2)(Z] - Z2)ndzl

= S(v3, (@1 (K)az, 22)...(v, w)v2),

where in the first equation of (4.25), C is a contour of z; surrounding w with z2, ..., z,
outside of C; while in the second equation of (4.25), C is a contour of z; surrounding
zp with z3, ..., z,,, w outside of C. We also have:

S5, (L(=Dai, 21)--(an, 2n) (v, w)v2)

(4.25)

d
= d—S(vé, (a1, z1)...(an, z20) (v, WIV2),
21

4.26
S(Ué, (L(—I)U,U))(al, Zl)"'(anv Zn)vz)w_h ( )

= %(S(Ug, (U, w)(al, Zl)“.vz)w—h).

The first equation in (4.26) is similar to (2.2.8) in [13]. We omit the details of the proof.
To show the second equation in (4.26), we use induction on n. When n = 0, by (4.5) and
Lemma 4.5, we have: L(—1)v + (L(0)+hy —h3)v =0 mod O, (M") forallv e M.
Then

S5, (L(=D, w)v)w™ = f(v; @ L(=Dv @ vp)w™ e~

= —f (0 ® (L(0) + hy — h3)v ® vp)w ™~ deev=1=h
d
= f(vy @ v ® vp)— (w~Ieev)
dw

= i(S(v;, (v, wyv)w™. (4.27)
dw -
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Now assume the second equation of (4.26) holds for the (n + 2)-point function, then by
the properties (I) and (II) of S, we have:

S5, (L(=D)v, w)(ar, 21)-..(@n, zo)v2)w ™"
= ST}, (a1, 21)--(@n, 22) (L(= v, wyv)w™"

= S(ho(ar), (@2, 22).-.(an, z2) (L(—1)v, w)v2)z; wh

+ " Fatar.j @1, 2S5, (@2, 22).(@1 (1)@, 20 (@, 2a) (L(—=Dv, w)vg)w ™
k=2 j>0

+ Y Futay.j @1, w)SO5, (a2, 22)...an, za) (@1 () L(—=Dv, wv)w ™. (4.28)
j=0

Note that we can apply the induction hypothesis to the first two terms of (4.28). Moreover,
by the L(—1)-bracket formula (4.2.1) in [4], we have:

ai(J)L(=Dvz = L(=Dai(jva — [L(=1), a1(j)]v2 = L(=Dai(jv2 + jai (j — Dva.
It follows from the induction hypothesis and (3.5) that

D Futar, j (1, w) S5, (@2, 22)...(a@n, 20) (@1 ()L (=1, wyvp)w ™
=0

d
=D Fatay @1, )= (SWS, (@2, 22)-..(an, za) (@1 (j)v, wyva)w ™)

j=0
—wtay J wtaj
Z] d w ’ . —h
+,§>1 G- <%> (m — w>S(v3, (a2, 22)...(an, zn)(a1(j — D, w)v)w

d . _
= > Futayj (@1, w)S@5, (a2, 22)...(an, 2) (@1 (j)v, wyvy)w ™",
Jj=0

This proves (4.26). Finally, let v} € M>(0)*,v € M', v, € M*(0),and ay, ..., a, € V
be highest weight vectors of the Virasoro algebra. By property (I) and (4.26) of S, we
have:

S(vga ((,(), x)(a), .X])...((,(), xm)(al’ Zl)"'(an’ Zn)(va w)UZ)

= S(vy, (@, X1).--(an, 22) (v, W)O(W)V2)x >

+) D Ga (xS, (@, x1). (@@, Xp)...(an 20) (v, W)V2)

k=1 j>0

n
+D Y G j(x, 2SO, (@, x1)..(@jk, 7). (A, 20) (0, W)V2)
k=1 j>0
+ Y Gaj(x, w)S Wy, (@, X1, 2) (@), WV).
jz0
By the definition formula (3.7), it is easy to verify that:

—1

x7'z
Grolx,2) = ——, Goi(x,2) = —,
x—z (x—2)
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_r
(x — )%

Then by using the properties of the Virasoro element w (see Section 2.3 in [4]), we have:

Gr3(x,2) =

S5, (@, x) (@, x1)...(@, Xp) (a1, 21)...(V, W)...(An, 20)V2)
-1 n -1
Zk d wtay, xw o, d _n wtv
= S+ w'— (S w )+
Z X — Zk de Z ( )

—S
x—z)2 x—w dw (x —w)?
“lwx; d - 2
2+ s+~ g
2:: X — xp dxg I;(x—xk)z

c 1 , —
+ 5 kZ::l —(x )P S(v3, (W, x1)...(w, xi)...(0, xp) (a1, 21)...(V, W)...(An, Zn)V2),

where § = S(vg, (w, x1)...(w, xm)(ay, 21)...(an, Zu) (v, w)v2). This shows that the S
in (3.24) also satisfies (2.8), with v} € M3(0)* and v, € M?*(0). Therefore, S €

Cor(MZ]‘/I;/I((Z)EO))' o

Remark 4.18. By equation (4.27), we see that it is necessary to have the equality L (—1)v+
(L(0) + ha — h3)v = 0 hold in the bimodule B, (M) to show the L(—1)-derivation
property (4.26) of S. However, in general, such equality does not hold in the bimodule

A(M") in [6] by its construction. This is the reason why / ( levljwz) is not isomorphic to
(M3(0)* ®a(vy AMMY) ® a(vy M?(0))* in general.

Theorem 4.17 indicates that we have a well-defined linear map:

M>(0)

s (PO @) Bi (M) @) M2(0)" — C0r<M1 M2(0)

), f= 87 (429

where S is the S we constructed in this subsection by Defintions 4.9, 4.11, and 4.14.
Since we have S¢(v5, (v, w)v2) = fFV;@VR V)W~ degv by (4.7), and fs,(V;®@v®

v)w” Y = S (v], (v, w)va) by (4 6) and Definition 3.1, then fs, = f.i.e.,vu = 1.

On the other hand, for S € Cor( o M2 (0)) again by (4.7) and (4.6), we have:

S £ (W, (0, WD) = fs(Vy ® v @ v)w™ LY = SV}, (v, W)vy).

Moreover, S, and S satisfy the same recursive formulas by (4.16), (4.17), (3.4), and
(3.6), then it follows from an easy induction that Sy, = §.1i.e.,, uv = 1, and so u is an
isomorphism. Now we have our main result:

Theorem 4.19. Let M', M?, and M? be V -modules, with conformal weight hy, ha, and
h3, respectively. Assume M?(0) and M3(0) are irreducible A(V)-modules. Then we
have the following isomorphism of vector spaces:

MO \ (M3 O\ s, \
1<M1 M(M2(O))> = I(Ml M2> = (M3(0)* ®@a(v) Bi(M") @acvy M?(0))*,

I f1. f1(v3®v®v2) = (v3, 0(V)2),
(4.30)
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for all v € M3(0)*, v € M!, and v, € M*(0), where h = hy + hy — h3, and
M? = M/Rad(_]l_l) and M? =_(M/RadM)/ are quotient modules of the generalized
Verma module M (M?(0)) and M (M3(0)), respectively.

Proof. This is a direct consequence of Corollary 2.6, Theorem 3.14, and Theorem 4.17,
Y 3 s/ . 3
together of which give us the isomorphism: / ( MA/{(IZ\‘/I!( 13)2) (())))) =I( MIIVI;EZ) = Cor( MVM(QEO))

= (M3(0)* ®a(v) Bu(M") @acvy M?(0))*, such that I +> f; as in (4.30). O

Recall that V-modules M2 and M 3’ are irreducible if condition (3.25) is satisfied
(see Proposition 3.11). By the isomorphism (4.29), condition (3.25) translates to the
following:

Forany f € (M3(0)* ®a(v) Bi(M") ®a4(vy M?(0))*, one has:

> <?>f(v§ ® b @ v2) =0, (4.31)

i>0
forallb € V,n € Zsuchthatwtb—n—1> 0,v € M, v} € M3(0)*, and v, € M*(0).

Corollary 4.20. Let M', M?, and M3 be V -modules, with conformal weight h1, h», and
hs, respectively. Suppose M* and M?> are irreducible, and condition (4.31) is satisfied,

then we have an isomorphism: I(MJ}/I;IZ) >~ (M3(0)* ®Av) B (M"Y ®AW) MZ2(0)*.

Suppose M? and M?> are V-modules (not necessarily irreducible) that are generated
by their corresponding bottom levels M 2(O) and M3 (0), which are irreducible A(V)-
modules. Then by (3.41) and (4.30), we have the following estimate of the fusion rule:

3
diml( M )5dim<M3(0)* ®av) Bi(M") ®av) M*(0))*. (4.32)

Finally, when V is rational, by Theorem 4.19 and Corollary 3.15, we have:

Corollary 4.21. Let V be a rational VOA, and let M U M2, and M3 be V modules, with
conformal weight hy, ha, and h3, respectively. Suppose M* and M? are irreducible, then

M3 ~ 3 * 1 2 *
I a2 ) = MO ®aw) Bi(M) ®acv) M7(O0))*. (4.33)

4.4. Examples. In this subsection, we will use (4.30) and the estimating formula (4.32)
and compute the fusion rules for certain modules over the Virasoro VOAs and the
Heisenberg VOAs.

Example 4.22. A counter-example that shows / ( M].V[;ﬂ) is not isomorphic to (M 30)*
®Aw) AMY ®Aw) MZ2(0))* was presented in Section 2 in [8]. It was given as follows:

Recall that the (universal) Virasoro VOA M, = M (c, 0)/(L(—1)v. o) defined in [6]
has Zhu’s algebra A(M,) = C[t], with [w]" — t". Let M(c, h) be the Verma module
of highest weight & and central charge c over the Virasoro algebra, then M (c, k) is a
module over M., and we have the following equalities held in A(M (c, h)):

[b]* [w]" = [(L(=2) + L(=1))"b],  [@]" *[b] = [(L(=2) + 2L(—1) + L(0))"],
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for all b € M(c, h) and n € N. Hence there is an identification of C[t] = A(M,)-
bimodules:
Cln, ]l = A(M(c, h))

4.34
Flt. 1) = F(L(=2)+2L(=1) + LO0), L(=2) + L(=1))vern, (434

where C[t1, 1] is a bimodule over C[¢] on which the actions are given by:

" f(tn) =t ft,n),  f,n)t" =t f(t,n).

For hy, hy € C such that M(c, hy) and M(c, h) are irreducible, it is proved (see (2.37)

in [8]) that I(M%SZ’S%) = 0, while dim(M (¢, h2)(0)* @am,) AM(c, h1)) a,)

M:(0)* = 1.

Although M? = M, is neither a generalized Verma module nor irreducible, we
can still use (4.30) and (4.32) to obtain the correct fusion rules. Indeed, since M, and
M (c, hy) are both generalized by their bottom levels, by (4.32), we have:

. M (c, hy) . . N
d1m1< > < dim(M(c, h2)(0)* ®am.) Brn(M(c, h1)) @am,) M:(0))*.

(4.35)
Moreover, since h = hy + 0 — h, it follows from Lemma 4.4 and Lemma 4.5 that

By (M(c, h1)) = A(M(c, hy))/span{(L(=1) + L(0) — h2)[b] : b € M(c, h1)}.
Then [L(—1)b] = —[(degb + h| — hp)b] in By (M (c, h1)). It follows from (4.34) that
Bp(M(c, h1)) = Cltol, with [(L(=2) — L(0) +h2)"ven 1 = 1,

and C[tp] is a C[t](=Z A(M,))-bimodule on which the actions are given by:

fo).t" =15 f(to), and t.f(to) = (to +h2)" f (to).
Hence we have By, (M(c, h1)) ®am,) M:(0) = Clto] ®cjs) Mc(0) = M(0), and so

(M(c, h2)(0)* @) Br(M(c, h1)) ®am.) Mc(0))*
= HomA(MC) (M:(0), M(c, h2)(0)) =0,

since 0(w)ve.0 = 0,0(w)ve.ny = have.n, and hy # 0. Thus, 1(, 162}, ) = 0by (4.35).

We give another example that shows that the bimodule B;, (M) in (4.30) cannot be
replaced by the A(V)-bimodule Ag(M l) defined in [7] either.

Example 4.23. Let V = Mg(l, 0) be the Heisenberg VOA of level 1 associated to a
one-dimensional vector space ) = Co with (a]a) = 1. By Theorem 3.1.1 in [6], one
has A(Mﬁ(l, 0)) = C[x], with [a(—=i1 — 1)...a(—i, — D1] > (=1)"1F-Fnxh,

Let 2 € b, we have a V-module Mg (1, 14) = My(1,0) Qc Ce*, with conformal
weight h = % Note that Mg(l, A) is the Verma module over the Heisenberg Lie
algebra b. Since Mg(l, A) is irreducible, it is automatically a generalized Verma module
associated with its bottom level Ce*. By Theorem 3.2.1 in [6], we have:
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AMg(1, 1)) = Ce* ®c Clx], with
[a(=i] — 1).a(—iy — D] > (=) gk @ x",

where the bimodule actions are given by x.(e* ® x") = ¢* @ x"*! + (A|a)e* ® x™, and
(¢* ® x™).x = e* ® x"*! for all n € N. By definition in Section 4 of [7],

AO(ME(I, A) = A(ME(I, A)/span{[(L(=1) + L(0) — (A|1)/2)b] : b € Mg(l, M}
Choose A €  such that (A]a) # 0. Recall that w = %a(—l)zl, and so

L(—1)e* = Res, Yy (w, 2)e* = Za(—l —DaG)e’ = (A|a)a(=1)e*.

i=z0

Then we have [(A|a)a(—1)e*] = [L(—1)e*] = —[(L(0) — (A|1)/2)e*] = 0in Ao(M;
(1, 1)), and [e(=1)e*] = 0 in Ao(Ma(l, A)). For any spanning element [o(—i; —
D...a(—ip — De*] of Ao(Mg(1, 1)), we then have [a(—i1 — 1)...a(=in — De*] =
(=1D)it++in[(—1)"e*] = 0 for n > 0. Thus, Ao(Mz(1,0)) = C[e*], with the module
actions given by:

x.[e’] = (Ma)[e*], and [e*].x = 0. (4.36)

Ma(l JAHL) ) _

Now choose i € b such that (u|a) # 0, it is well-known that dim I(MA(1 2 Mo (1)
phA) Mpld,

1. But

Ao(M5 (1, 3)) ®aqmz 1,0 M(1, w)(0) = Cle*] ®cpy) Ce =0,

since it follows from (4.36) that [¢*] ® e* = (;,Llla) [e" 1@ o(a(—D)et = (le[e’\].x ®

e" = 0 in the tensor product above. Then we have:
dim (Mg (1, A + 1) (0)" ®am51.0) Ao(Mg (1, 1) ®aaz 1.0y M1, w)(0)" =0 # 1.

This shows that the isomorphism (4.30) is not true if one replaces By, (M l) with Ag(M 1).
Now we verify (4.30) in this case. Indeed, since ) = Ce, then (Ala) # 0 and
(u|e) # 0 imply that A = mo and = no, with m # 0 and n # 0. Hence

Al At plr
hz(;)+(“;“)—( +u«£ +M)=_(A|M):_mn#0.

By definition 4.1, we have the following equality holds in B, (Ma(l, A):

AlA
[(AMe)a(—1)e*] = [L(=1)e*] = —[(L(0) — (—;) +h)e*] = —(Awlet]

Then for any spanning element [o(—i] — 1)...0c(—i,, — e’ of Bh(Mg(l, 2)), we have:

[a(=i; — D..a(—ip — Der] = (=) [g(=1)"e*)

NPl — I\
= (—D" <—(A|a) ) [e*].
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Thus Bh(ME(l, A)) = C[e*], with the module actions given by

=G

[e*].x = [e*1(#£0), and x.[¢*] = )

A py

Then by (437), we have Bh (M’h‘(l, )\.)) ®A(ME(1’O)) M’h‘(l, ,u) (O) = (C[E)L] ®(C[x] Cet is

a one-dimensional vector space, with X[ ® et = [eM].x ® e* + (Ma)[e*] ® et =
(A + o) [e*] ® e*. On the other hand, x.e*** = (A + u|o)e***. Thus we have:

dim HOIIlA(ME(l’()))(Bh (M’b‘(l, A)) ®A(Ma(l,())) M/’J\(l’ w)(0), M’b‘(l, A+u)(0) =1.

This shows (4.30) is true for M! = Mg(1, ), M? = M5(1, p), and M3 = M5 (1, A+ ).
Furthermore, the argument above also shows that By, (ME(l, A))R®ac M;(1,0) ME(I’ w)

(0) is a one-dimensional vector space spanned by an eigenvector of h of eigenfunction
(A + w|-). Hence we have:

Hom aazg1,0)) (Br (Mg (1, 1)) @Az 1.0 My (1, )(0), My (1, v)(0)) =0,

Mz(1,y) ) _

if y # A+u.Onthe other hand, for y # A+, itis well-known that I(MA(1 0 Me(lpt)
hro hro

0. Thus, the rank one Heisenberg VOA verifies (4.30).

Although the bimodule B, (M ) by its construction is a quotient module of A(M by,
the vectors spaces M>(0)*® vy Bn (M) ® a(vyM?(0), and M>(0)*® o(v) AMH®a(v)
M?(0) might be isomorphic to each other, it is easy to see that the case of the rank one
Heisenberg VOA in Example 4.23 above is such an example.

Remark 4.24. Note that in A(Ml) we have: [@] * [u] — [u] * [w] = Res; Y1 (@, 2)u(l +
V@~ = [L(=1)u + L(0)u], for all u € M'. Hence [(L(—1) + L(0) + ha — h3)u] =
[w] % [u] — [u] * [@] + (hy — h3)[u], and by Lemma 4.5, we have B, (M) = A(M ")/ J,
where

J = span{lw] * [u] — [u] * [w] + (hy — h3)[u] :u € Ml}.

We have M3(0)* ® J ® M?(0) = 0in M3(0)* ®a(v) AM") ® a(v) M?(0). Indeed, for
any v € M?3(0)* and v, € M?(0),

vy @ ([w] * [u] — [u] * [@] + (hy — h3)[u]) @ v2
= vé(a(a)) —3) Q@ u]l® vy — vg ® [u] ® (o(w) — hy)vy
= v5(L(0) — h3) @ [u] @ v2 — v ® [u] ® (L(0) — h2)va
=0.

However, in general we do not have M3(0)* QAw) (A(Ml)/J) ®Aw) M?(0) isomorphic
to M3(0)* @ vy AM) @4y M*(0)/(M3(0)* ® J ® M*(0)), see Example 4.22.
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