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Abstract: We prove that the space of intertwining operators associated with certain
admissible modules over vertex operator algebras is isomorphic to a quotient of the
vector space of conformal blocks on a three-pointed rational curve defined by the same
data. This provides a new proof and alternative version of Frenkel and Zhu’s fusion rules
theorem, in terms of the dimension of certain bimodules over Zhu’s algebra, without the
assumption of rationality.

1. Introduction

The space of intertwining operators of vertex operator algebras (see [1,4,5]) and its
dimension, the so-called fusion rule in the physics literature [9–11], plays an essential
role in studying the tensor product of modules over vertex operator algebras. In the
semi-simple case, the fusion rule is the multiplicity of an irreducible module in a tensor
product. For the affine Lie algebras or the associated affine vertex operator algebras [6],
the fusion rules in case ̂sl2(C) were computed in [10], and a general version was stated
in [11] without proof. In [6], Frenkel and Zhu proposed a formula (Theorem 1.5.2 in [6])
to compute the fusion rules for arbitrary vertex operator algebras by using Zhu’s algebra
A(V ) defined in [13] and some of its (bi)modules. Given irreducible modules M1, M2

andM3 over a vertex operator algebra V , Frenkel andZhu’s fusion rules theorem claimed

that the space of intertwining operators I
( M3

M1 M2

)
can be identified with the vector space

(M3(0)∗ ⊗A(V ) A(M1) ⊗A(V ) M2(0))∗, where A(M1) is a bimodule over the Zhu’s
algebra A(V ), and M2(0) and M3(0) are the bottom levels of the V -modules M2 and
M3, which are modules over A(V ), see Section 1 in [6] for more details.

However, it was later realized by Li (see [8]) that some additional conditions are
needed in Frenkel and Zhu’s fusion rules theorem. Li gave a counter-example in [8] in

the case of the universal Virasoro vertex operator algebra that shows that I
( M3

M1 M2

)
is

not isomorphic to (M3(0)∗ ⊗A(V ) A(M1)⊗A(V ) M2(0))∗ in general. Li also proposed in
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[8] that the fusion rules theorem is true when M2 and M3 are the so-called generalized
Verma modules constructed in [2]. In particular, it is true for the rational vertex operator
algebras (see Section 2 in [8] for more detailed discussions and the counter-example).

In this paper, we give an alternative version of the fusion rules theorem for general
vertex operator algebras. It can be stated as follows:

Theorem 1.1. Let V be a CFT-type vertex operator algebra, and let M1, M2, and M3

be V -modules with conformal weights h1, h2, and h3, respectively. Assume M2(0) and
M3(0) are irreducible A(V )-modules, then we have the following isomorphism of vector
spaces:

I

(
M̄(M3(0)∗)′

M1 M̄(M2(0))

)
∼= I

(
M̄3

M1 M̄2

)
∼= (M3(0)∗ ⊗A(V ) Bh(M

1) ⊗A(V ) M
2(0))∗,

where h = h1 + h2 − h3, and M̄2 = M̄/Rad(M̄) and M̄3′ = M̃/RadM̃ are quotient
modules of the generalized Verma modules M̄(M2(0)) and M̄(M3(0)∗), respectively.

In our version of the fusion rules theorem, we replaced the A(V )-bimodule A(M1) by
a newly defined A(V )-bimodule Bh(M1), which is given by Bh(M1) = M1/span{a ◦
u, L(−1)v + (L(0) + h2 − h3)v : a ∈ V, u, v ∈ M1}. We will show that Bh(M1) is
a quotient module of A(M1), and we will give examples to show that the vector spaces
(M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0))∗ and (M3(0)∗ ⊗A(V ) A(M1) ⊗A(V ) M2(0))∗
are not isomorphic in general. We need to mod out the additional terms L(−1)v +
(L(0)v + h2 − h3)v in A(M1) because otherwise, the L(−1)-derivation property of
the intertwining operators cannot be correctly reflected. We will also give sufficient
conditions formodules M̄2 and M̄3 to be irreducible. In particular, for aCFT-type rational
vertex operator algebra V , the modules M̄2 and M̄3 are automatically irreducible, then

the fusion rule dim I
( M3

M1 M2

)
for three irreducible V -modules is equal to the dimension

of (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0))∗.
Our proof of Theorem 1.1 is different than Li’s proof of Theorem 2.11 in [8]. We

prove Theorem 1.1 based on a combination of ideas the ideas from [11] and extensions
made in [12], wherein a system of correlation functions is associated with every vector
in the space of conformal blocks (see Theorem 6.2 in [12]). Based on the properties of

the following prototype system of (n + 3)-point correlation functions on P

1
C
:

(v′
3,YM3(a1, z1) . . . YM3(ak, zk)I (v,w)YM2(ak+1, zk+1) . . . YM2(an, zn)v2), (1.1)

where v′
3 ∈ M3(0)∗, v ∈ M1, v2 ∈ M2, a1, . . . , an ∈ V , and I is an intertwining

operator of type
( M3

M1 M2

)
, we introduce the notion of space of correlation functions

associated with V -modules M1, M2, and M3, denoted by Cor
( M3

M1 M2

)
. It is essentially a

quotient of the vector space of three-point genus zero conformal blocks, the dual space
to a certain quotient of the tensor product of 3 admissible V -modules (see [11,12]). Then

we prove that Cor
( M3

M1 M2

)
is isomorphic to I

( M3

M1 M2

)
.

In order to relate Cor
( M3

M1 M2

)
with the modules over A(V ), we introduce an auxiliary

notion of the space of correlation functions associated with M1, M2(0), and M3(0),

denoted byCor
( M3(0)
M1 M2(0)

)
. This space can be viewed as the space A(V )-conformal blocks

on the 3-pointed rational curve P

1
C
defined from the representations of Zhu’s algebra
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A(V ). The axioms we imposed on this space are based on the restriction of (1.1) onto
the bottom levels M2(0) and M3(0)∗. Then we use certain generating formulas satisfied

by the correlation function (1.1) and prove that Cor
( M3(0)
M1 M2(0)

)
is isomorphic to both

Cor
( M̄3

M1 M̄2

)
and Cor

( M̄(M3(0)∗)′
M1 M̄(M2(0))

)
when M2(0) and M3(0) are irreducible modules over

A(V ). However, unlike building V -modules from A(V )-modules (see Theorem 2.2.1 in
[13]) based on the ordinary correlation functions (v′,Y (a1, z1) . . . Y (an, zn)v), in our
case, due to the appearance of intertwining operator I (v,w) in (1.1), the modules M̄2

and M̄3 constructed by (1.1) are not necessarily irreducible. This issue was first observed
by Li in [8]. The V -modules M̄2 and M̄3 are quotient modules of certain generalized
Verma modules. They can be proved to be irreducible if a technical condition depends
only on the (bi)modules over A(V ) is satisfied.

We then prove that Cor
( M3(0)
M1 M2(0)

)
is isomorphic to (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V )

M2(0))∗. Given a linear function f onM3(0)∗⊗A(V ) Bh(M1)⊗A(V )M2(0), we shall use
the recursive formulas satisfied by (1.1) and reconstruct a system of correlation functions

in Cor
( M3(0)
M1 M2(0)

)
. There is one recursive formula ((2.2.1) in [13]) of the correlation func-

tions S(v′, (a1, z1) . . . (an, zn)v) = (v′,Y (a1, z1) . . . Y (an, zn)v), where v ∈ M(0) and
v′ ∈ M(0)∗, obtained by expanding the left-most term Y (a1, z1). However, in our case,
this formula alone is not enough to rebuild the correlation functions from f . The reason
is again because of the appearance of I (v,w) in the correlation functions, which makes
expanding the left-most term (v,w) in S(v′

3, (v,w)(a1, z1) . . . (an, zn)v2) unreasonable,
as the actionv(n)ai = Reszwn+h I (v,w)ai is not yet defined.We remedy this situation by
introducing an additional recursive formula for the correlation functions (1.1) obtained
by expanding the right-most term Y (an, zn) in (v′

3, I (v,w)Y (a1, z1) . . . Y (an, zn)v2),
where v′

3 ∈ M3(0)∗ and v2 ∈ M2(0), and we use both the recursive formulas to re-
construct the correlation functions from f . Then Theorem 1.1 follows from the isomor-

phisms I
( M̄3

M1 M̄2

) ∼= Cor
( M̄3

M1 M̄2

) ∼= Cor
( M3(0)
M1 M2(0)

) ∼= (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V )

M2(0))∗.
This paper is organized as follows: In Section 2, we define Cor

( M3

M1 M2

)
and prove

that it is isomorphic to I
( M3

M1 M2

)
. In Section 3, we define Cor

( M3(0)
M1 M2(0)

)
for irreducible

A(V )-modules M2(0) and M3(0) and prove that Cor
( M3(0)
M1 M2(0)

)
is isomorphic to both

Cor
( M̄3

M1 M̄2

)
and Cor

( M̄(M3(0)∗)′
M1 M̄(M2(0))

)
. In section 4, we define the A(V )-bimodule Bh(M1)

and prove that Cor
( M3(0)
M1 M2(0)

)
is isomorphic to (M3(0)∗ ⊗A(V ) Bh(M1)⊗A(V ) M2(0))∗,

which finishes the proof of Theorem 1.1. Then we verify this theorem on some particular
examples, one of which shows that the counter-example given by Li in [8] does not
contradict Theorem 1.1.

We expect the readers are familiar with the concept of vertex operator algebras,
modules over vertex operator algebras, and the A(V )-theory, see [1,4,13].

2. The Space of Correlation Functions Associated with M1, M2, and M3

We fix some notations that will be in force throughout this paper. We denote by C, Z,

and N the set of complex numbers, the set of integers, and the set of natural numbers,
including 0. All vector spaces are defined over C.
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Let V = (V,Y, 1, ω) be a vertex operator algebra (VOA) which is of the CFT-
type: V = ⊕∞

n=0 Vn , with V0 = C1. A module M over V is an ordinary V -module:
M = ⊕∞

n=0 Mλ+n , where eachMλ+n is an eigenspace of L(0)with eigenvalue λ+n. Any
V -module M is N-gradable (or admissible): M = ⊕∞

n=0 M(n), with M(n) = Mλ+n for
each n. We write YM (a, z) = ∑

n∈Z a(n)z−n−1, for all a ∈ V , and wewrite YM (ω, z) =∑
n∈Z L(n)z−n−2. One can find more details about the definitions in [2,4,5,13].
When we use the integral sign

∫
C f (z)dz, where C is a simple closed contour of z,

it means 1
2π i

∫
C f (z)dz.

2.1. The (n +3)-Point Correlation Functions. Let M1, M2, and M3 be V -modules with

conformal weights h1, h2, and h3, respectively, and let I ∈ I
( M3

M1 M2

)
be an intertwining

operator. Recall that I (v,w) = ∑
n∈Z v(n)w−n−1 · w−h, where h = h1 + h2 − h3, and

v(n) = Resw I (v,w)wn+h . Moreover, v(n)M2(m) ⊆ M3(deg v − n − 1 + m) for all
n ∈ Z and m ∈ N, see [6] for more details. Consider the power series

〈v′
3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2〉wh (2.1)

in n + 1 complex variables z1, . . . , zn, w with integer powers, where a1, . . . , an ∈ V ,
v ∈ M1, v2 ∈ M2, and v′

3 ∈ M3′
which is the contragredient module of M3 (cf. [4]).

We multiply the term wh to avoid the appearance of the logarithm when computing the
integrations.

Recall that the power series (2.1) converges in the domain

D = {(z1, . . . , zn, w) ∈ C

n+1||z1| > |z2| > · · · > |w| > · · · > |zn| > 0}
to a rational function in z1, ..., zn, w, zi − z j and zk − w, where 1 ≤ i = j ≤ n and
1 ≤ k ≤ n. We denote this rational function by:

(v′
3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2), (2.2)

also recall that the only possible poles of (2.2) are at zi = 0, w = 0, zi = z j and
zk = w, see [4] for more details.

Moreover, it is also essentially proved in [4] that the rational function (2.2) is invariant
under the permutation of the termsY (a1, z1), . . . ,Y (an, zn), and I (v,w). In otherwords,
the power series (2.1) and thepower series 〈v′

3,Y (ai1 , zi1) . . . I (v,w) . . . Y (ain , zin )v2〉wh

have the same limit function (2.2) on their corresponding domain of convergence.
We use the symbol SI as in [13] to denote the limit function (2.2):

SI (v
′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2) :

= (v′
3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2). (2.3)

Then we have a system of linear maps SI = {(SI )nV ...M1...V
}∞n=0:

(SI )
n
V ...M1...V : M3′ × V × . . . × M1 × . . . V × M2 → F(z1, . . . , zn, w),

(v′
3, a1, . . . , v, . . . , an, v2) �→ SI (v

′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2),

(2.4)

whereF(z1, . . . , zn, w) is the space of rational functions in n+1 variables z1, z2, . . . , zn,
w, with only possible poles at zi = 0, w = 0, zi = z j , zk = w. For a fixed
n ∈ N, we have (SI )nM1V ...V

= (SI )nV M1...V
= · · · = (SI )nV ...V M1 , since the terms

(a1, z1), . . . , (an, zn), and (v,w) can be permuted within SI in (2.3).
We introduce the following notion that generalizes Definition 4.1.1 in [13]:
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Definition 2.1. A system of linear maps S = {Sn
V ...M1...V

}∞n=0,

SnV ...M1...V : M3′ × V × . . . × M1 × . . . V × M2 → F(z1, . . . , zn, w),

(v′
3, a1, . . . , v, . . . , an, v2) �→ S(v′

3, (a1, z1) . . . (v, w) . . . (an, zn)v2),

is said to satisfy the genus-zero property associated with M1, M2, and M3 if it satisfies

(1) (The truncation property) For fixed v ∈ M1 and v2 ∈ M2, the Laurent series expan-
sion of S(v′

3, (v,w)v2) around w = 0 has a uniform lower bound for w independent
of v′

3 ∈ M3′
. i.e., S(v′

3, (v,w)v2) = ∑
n≤N anw−n−1 for all v′

3 ∈ M3′
.

(2) (The locality) The terms (a1, z1), . . . , (an, zn), and (v,w) can be permuted arbitrarily
within S. i.e., Sn

M1V ...V
= Sn

V M1...V
= · · · = Sn

V ...V M1 for any fixed n ∈ N.
(3) (The vacuum property)

S(v′
3, (1, z)(a1, z1) . . . (v, w) . . . (an, zn)v2)

= S(v′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2). (2.5)

(4) (The L(−1)-derivation property)

S(v′
3, (L(−1)a1, z1) . . . (an, zn)(v,w)v2)

= d

dz1
S(v′

3, (a1, z1) . . . (an, zn)(v,w)v2),

S(v′
3, (L(−1)v,w)(a1, z1) . . . v2)w

−h

= d

dw

(
S(v′

3, (v,w)(a1, z1) . . . v2)w
−h

)
.

(2.6)

(5) (The associativity)
∫

C
S(v′

3, (a1, z1)(v,w) . . . (an, zn)v2)(z1 − w)kdz1

= S(v′
3, (a1(k)v, w) . . . (an, zn)v2),∫

C
S(v′

3, (a1, z1)(a2, z2) . . . (v, w)v2)(z1 − z2)
kdz1

= S(v′
3, (a1(k)a2, z2) . . . (v, w)v2), (2.7)

where in the first equation of (2.7),C is a contour of z1 surroundingw, with z2, ..., zn
outside of C ; while in the second equation of (2.7), C is a contour of z1 surrounding
z2, with z3, ..., zn, w outside of C .

(6) (The Virasoro relation) Let ω ∈ V be the Virasoro element, and let x, x1, . . . , xm be
complex variables, denote the rational function

S(v′
3, (ω, x1) . . . (ω, xm)(a1, z1) . . . (v, w) . . . (an, zn)v2)

by S for simplicity. Assume that v′
3, v, v2, a1, . . . , an are highest weight vectors for

the Virasoro algebra, then we have:

S(v′
3, (ω, x)(ω, x1) . . . (ω, xm)(a1, z1) . . . (v, w) . . . (an, zn)v2)

=
n∑

k=1

x−1zk
x − zk

d

dzk
S +

n∑

k=1

wtak
(x − zk)2

S +
x−1w

x − w
wh d

dw
(S · w−h)



1242 J. Liu

+
wtv

(x − w)2
S +

wtv2
x2

S +
m∑

k=1

x−1wk

x − xk

d

dxk
S +

m∑

k=1

2

(x − xk)2
S

+
c

2

m∑

k=1

1

(x − xk)4
S(v′

3, (ω, x1) . . .

̂(ω, xk) . . . (ω, xm)(a1, z1) . . . (v, w) . . . (an, zn)v2) (2.8)

(7) (The generating property for M2) For any a ∈ V and m ∈ Z, we have:

S(v′
3, (a1, z1) . . . (v, w) . . . (an, zn)a(m)v2)

=
∫

C
S(v′

3, (a1, z1) . . . (v, w) . . . (an, zn)(a, z)v2)z
mdz,

(2.9)

where C = CR(0) is a contour of z surrounding 0 with z1, . . . , zn, w lying outside.
(8) (The generating property for M3′

) Denote (ez
−1L(1)(−z2)L(0)a, z) by (a, z)′, then

S(a(m)v′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2)

=
∫

C ′
S(v′

3, (a, z)′(a1, z1) . . . (v, w) . . . (an, zn)v2)z
−m−2dz,

(2.10)

where C ′ = Cr (0) is a contour of z surrounding 0 with z1, . . . , zn, w lying inside.

Definition 2.2. The vector space of the system of linear maps S = {Sn
V ...M1...V

}∞n=0

satisfying the genus-zero property associated with M1, M2, and M3 is called the space

of correlation functions associated with M1, M2, and M3. We denote it by Cor
( M3

M1 M2

)
.

Proposition 2.3. The system of functions SI given by (2.3) and (2.4) satisfies the genus-

zero property associatedwith M1, M2, and M3 inDefinition 2.1. Thus SI ∈ Cor
( M3

M1 M2

)
.

Proof. The properties (1) - (6) for SI follow immediately from the axioms satisfied by
the intertwining operator I and the vertex operator Y ; see Section 5.6 in [4] for more
details.

To prove (2.9), we note that the Laurent series expansion of the rational function (2.3)
on thedomain |z| < |zi |, |w| for all i is∑m∈Z(v′

3,Y (a1, z1) . . . I (v,w) . . . a(m)v2)z−m−1.

The coefficient of z−m−1 in the Laurent series is also
∫

C
(v′

3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)Y (a, z)v2)z
mdz,

where C = CR(0) is a contour of z surrounding 0 with z1, . . . , zn and w lying outside.
This proves (2.9). To prove (2.10),we denote the term

∑
j≥0

1
j ! (−1)wta(L(1)a j )(2wta−

m− j −2) by a′(m), then by the definition of contragredient module (see (5.2.4) in [4]),
the series

∑

m∈Z
(a(m)v′

3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)Y (a, z)v2)z
−m−1

=
∑

m∈Z
(v′

3, a
′(m)Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2)z

−m−1
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is the expansionof (v′
3,Y (ezL(1)(−z−2)L(0)a, z−1)Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2)

on the domain |z−1| > |zi |, |w|, or equivalently, |z| < 1/|zi |, 1/|w|, for i = 1, . . . , n.
By comparing the Laurent coefficient of z−m−1, we have:

(a(m)v′
3,Y (a1, z1) . . . I (v,w) . . . Y (an, zn)Y (a, z)v2)

=
∫

CR(0)
(v′

3,Y (ezL(1)(−z−2)L(0)a, z−1)Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2)z
mdz,

(2.11)

where R is small enough such that R < 1/|zi |, 1/|w|, for i = 1, . . . , n. Change the
variable z → 1/z in the integral (2.11).Note that the parametrization of 1/z is (1/R)e−iθ ,
which gives us a clockwise orientation, and d(1/z) = −(1/z2)dz. LetC ′ = Cr (0), with
radius r = 1/R > |zi |, |w| for i = 1, . . . , n, equipped with the counterclockwise
orientation. Then z1, . . . , zn, w are inside of C ′, and

(2.11) = −
∫

C ′
(v′

3,Y (ez
−1L(1)(−z2)L(0)a, z)Y (a1, z1) . . . I (v,w)

. . . Y (an, zn)v2)z
−m(−z−2)dz

=
∫

C ′
(v′

3,Y (ez
−1L(1)(−z2)L(0)a, z)Y (a1, z1) . . . I (v,w) . . . Y (an, zn)v2)z

−m−2dz

=
∫

C ′
SI (v

′
3, (a, z)′(a1, z1) . . . (v, w) . . . (an, zn)v2)z

−m−2dz.

This proves (2.10). ��
Remark 2.4. Let S ∈ Cor

( M3

M1 M2

)
. With the notations of Proposition 2.3, we have:

S(a′(m)v′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2)

=
∑

j≥0

1

j ! (−1)wta
∫

C ′
S(v′

3, (e
z−1L(1)(−z2)L(0)(L(1) j a), z)(a1, z1) . . . v2)z

−2wta+m+ j dz

=
∫

C ′
S(v′

3, (e
z−1L(1)(−z2)L(0)ezL(1)(−z−2)L(0)a, z)(a1, z1) . . . v2)z

mdz

=
∫

C ′
S(v′

3, (e
z−1L(1)e−z−1L(1)a, z)(a1, z1) . . . v2)z

mdz

=
∫

C ′
S(v′

3, (a, z)(a1, z1) . . . (v, w) . . . (an, zn)v2)z
mdz.

Hence the generating property for M3′
(8) in Definition 2.1 is equivalent to:

S(a′(m)v′
3, (a1, z1) . . . (v, w) . . . (an, zn)v2)

=
∫

C ′
S(v′

3, (a, z)(a1, z1) . . . (v, w) . . . (an, zn)v2)z
mdz, (2.12)

where a′(m) = ∑
j≥0

1
j ! (−1)wta(L(1) j a)(2wta − m − j − 2) and C ′ = Cr (0) as in

(8).

As a consequence of Proposition 2.3, we have a well-defined linear map:

α : I
(

M3

M1 M2

)
→ Cor

(
M3

M1 M2

)
, I �→ SI , (2.13)

where SI is given by (2.3) and (2.4).
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2.2. The Space of Correlation Functions and the Space of Intertwining Operators. Al-
though the genus-zero property associated with three V -modules in Definition 2.1 seems
long and intrinsic, it is good enough to characterize an intertwining operator. In other
words, we can construct an inverse of the map α in (2.13).

Fix a system of correlation functions S in Cor
( M3

M1 M2

)
, we construct an intertwining

operator IS ∈ I
(

M3

M1 M2

)
in the following way:

Let v ∈ M1, define a linear map v(n) : M2 → M3 by the formula:

〈v′
3, v(n)v2〉 :=

∫

C
S(v′

3, (v,w)v2)w
ndw, (2.14)

where C is a contour of w surrounding 0. Note that an element u ∈ M3 is uniquely
determined by the value 〈v′

3, u〉 for v′
3 ∈ M3′

, so we have a well-defined element v(n)v2

in M3. Define I (v,w) by

IS(v,w) :=
∑

n∈Z
v(n)w−n−1 · w−h, (2.15)

where h = h1 + h2 − h3. Then I (v,w) ∈ Hom(M2, M3){z}.
Theorem 2.5. The series IS(v,w) defined by (2.14) and (2.15) is an intertwining oper-

ator of type
( M3

M1 M2

)
.

Proof. By Definition 2.1, S(v′
3, (v,w)v2) is a rational function in w with the only pos-

sible pole at w = 0, and the term (2.14) is the Laurent coefficient of S(v′
3, (v,w)v2).

Thus the series 〈x ′
3, IS(v,w)x2〉wh is the Laurent series expansion of S(x ′

3, (v,w)x2)
around w = 0 by (2.15). In particular, if we denote the limit of the Laurent series
〈v′

3, I (v,w)v2〉wh by (v′
3, I (v,w)v2), then we have the following equality of rational

functions:
(v′

3, IS(v,w)v2) = S(v′
3, (v,w)v2) (2.16)

Since S satisfies the property (1) in Definition 2.1, for v ∈ M1 and v2 ∈ M2, there ex-
ists N ∈ Z such that 〈v′

3, IS(v,w)v2〉wh = ∑
n≤N

(∫
C S(v′

3, (v,w)v2)w
ndw

)
w−n−1,

for all v′
3 ∈ M3′

. Hence we have v(n)v2 = 0 for n � 0. By the locality of S, together
with (2.15), we have:

〈v′
3, IS(L(−1)v,w)v2〉 = d

dw
(S(v′

3, (v,w)v2)w
−h) = d

dw
〈v′

3, IS(v,w)v2〉.

Hence IS(L(−1)v,w) = d
dw

IS(v,w). Moreover, we claim that the following equation
holds:

∞∑

i=0

(
m

i

)
(a(l + i)v)(m + n − i)v2

=
∞∑

i=0

(−1)i
(
l

i

)
a(m + l − i)v(n + i)v2 −

∞∑

i=0

(−1)l+i
(
l

i

)
v(n + l − i)a(m + i)v2,

(2.17)
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for all m, n, l ∈ Z, a ∈ V , v ∈ M1, and v2 ∈ M2. Note that (2.17) is the component
form of the Jacobi identity for the intertwining operator IS (see (1.2.9) in [13]).

Indeed, by (2.14) and the generating property (2.12) of S, we have:

〈v′
3,

∞∑

i=0

(−1)i
(
l

i

)
a(m + l − i)v(n + i)v2〉

=
∞∑

i=0

(−1)i
(
l

i

) ∫

C ′
1

S(a′(m + l − i)v′
3, (v,w)v2)w

n+i dw

=
∞∑

i=0

(−1)i
(
l

i

) ∫

C ′
1

∫

C ′
2

S(v′
3, (a, z)(v,w)v2)z

m+l−iwn+i dw, (2.18)

where C ′
1 is a contour of w, and C ′

2 is a contour of z which contains C ′
1. On the other

hand, by (2.14) and the generating property (2.9) of S, we have:

〈v′
3,

∞∑

i=0

(−1)l+i
(
l

i

)
v(n + l − i)a(m + i)v2〉

=
∞∑

i=0

(−1)l+i
(
l

i

)∫

C1

S(v′
3, (v,w)a(m + i)v2)w

n+l−i dw

=
∞∑

i=0

(−1)l+i
(
l

i

)∫

C1

∫

C2

S(v′
3, (v,w)(a, z)v2)z

m+iwn+l−i dzdw, (2.19)

where C1 and C2 are contours in w and z, respectively, and C2 is contained in C1.
We adopt the notations in Proposition A.2.8 in [5]. Choose the contours C1,C2,C ′

1,
and C ′

2 in the following way: Let Cz
α be a circle in the variable z centered at 0, with

radius α, and C1
ε (w2) be the circle of w1 centered at w2 with radius ε. We may choose ε

small enough so that |w1 −w2| < |w2| for anyw1 lying on C1
ε (w2). Choose R, r, ρ > 0

so that 1 > R > ρ > r . Let C ′
1 = Cw

ρ , C ′
2 = Cz

R , C1 = Cw
ρ , and C2 = Cz

r . Then by
(2.14), (2.18), and (2.19), together with (2) and (5) in Definition 2.1, we have:

〈v′
3,

∞∑

i=0

(−1)i
(
l

i

)
a(m + l − i)v(n + i)v2 −

∞∑

i=0

(−1)l+i
(
l

i

)
v(n + l − i)a(m + i)v2〉

=
∞∑

i=0

(−1)i
(
l

i

)∫

Cw
ρ

∫

Cz
R

S(v′
3, (a, z)(v,w)v2)z

m+l−iwn+i dwdz

−
∞∑

i=0

(−1)l+i
(
l

i

) ∫

Cw
ρ

∫

Cz
r

S(v′
3, (v,w)(a, z)v2)z

m+iwn+l−i dzdw

=
∫

Cw
ρ

∫

Cz
R

S(v′
3, (a, z)(v,w)v2)ιz,w(z − w)l zmwndwdz

−
∫

Cw
ρ

∫

Cz
r

S(v′
3, (v,w)(a, z)v2)ιw,z(z − w)l zmwndzdw

=
∫

Cw
ρ

∫

Cz
ε (w)

S(v′
3, (a, z)(v,w)v2)(z − w)l zmwndzdw
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=
∫

Cw
ρ

∫

Cz
ε (w)

S(v′
3, (a, z)(v,w)v2)(z − w)l ιw,z−w(w + (z − w))mwndzdw

=
∑

i≥0

(
m

i

) ∫

Cw
ρ

∫

Cz
ε (w)

S(v′
3, (a, z)(v,w)v2)(z − w)l+iwn+m−i dzdw

=
∑

i≥0

(
m

i

) ∫

Cw
ρ

S(v′
3, (a(l + i)v,w)v2)w

m+n−i

=
∑

i≥0

(
m

i

)
〈v′

3, (a(l + i)v)(m + n − i)v2〉. (2.20)

��
The graph of the contours appear in (2.20) can be sketched as follows:

Cw
ρ

ρ

Cz
R

R

Cz
ε (w)

Cz
r

r

Since v′
3 in (2.20) can be choosen arbitraily, the Jacobi identity (2.17) follows, and

so IS given by (2.15) is an intertwining operator of type
( M3

M1 M2

)
. ��

Corollary 2.6. The vector space of intertwining operators I
( M3

M1 M2

)
is isomorphic to

the vector space Cor
( M3

M1 M2

)
in Definition 2.2.

Proof. Theorem 2.5 indicates that there exists a well-defined linear map:

β : Cor
(

M3

M1 M2

)
→ I

(
M3

M1 M2

)
, S �→ IS . (2.21)

By (2.3) and (2.16), it is clear that β is an inverse of the linear map α in (2.13). Hence

I
( M3

M1 M2

) ∼= Cor
( M3

M1 M2

)
as vector spaces. ��

3. Extension of Correlation Functions from the Bottom Levels

Let M2 and M3 be any V -modules with bottom levels M2(0) and M3(0), respectively.
Recall the bottom level M(0) of any N-gradable V -module M = ⊕∞

n=0 M(n) is a
module over the Zhu’s algebra A(V ) defined in [13] or the generalized Zhu’s algebra
An(V ) defined in [3] under the module action:

[a].v = o(a)v = a(wta − 1)v,
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for all [a] ∈ A(V ) or An(V ), and v ∈ M(0) (see Theorem 2.1.2 in [13]).
In this section, we assume that the A(V )-modules M2(0) and M3(0) are irreducible.

3.1. The Space of Correlation Functions Associated with M1, M2(0), and M3(0). Let

S ∈ Cor
( M3

M1 M2

)
, and let I ∈ I

( M3

M1 M2

)
be its corresponding intertwining operator under

the isomorphism β in (2.21). For each n ∈ N, consider the restriction of S onto the
bottom levels M2(0) and M3(0)∗:

S|M3(0)∗×...M1...×M2(0) : M3(0)∗×V ×· · ·×M1 · · ·×V ×M2(0) → F(z1, . . . , zn, w).

(3.1)
To simplify our notation, we use the same symbol S to denote the restricted function
(3.1). Clearly, S in (3.1) satisfies properties (1)-(6) in Definition 2.1, with the elements
v′
3 and v2 in these properties belong to M3(0)∗ and M2(0), respectively. Moreover, since

(v′
3, I (v,w)v2) = S(v′

3, (v,w)v2) by (2.16), and v(n)M2(m) ⊆ M3(m +deg v−n−1)
for all v ∈ M1 homogeneous, n ∈ Z, and m ∈ N (see (1.5.4) in [6]), then we have:

S(v′
3, (v,w)v2) = 〈v′

3, v(deg v − 1)(v2)〉w− deg v. (3.2)

We introduce the following intermediate notion based on the properties satisfied by the
system of restricted correlation functions (3.1).

Definition 3.1. Let M2(0) and M3(0) be irreducible A(V )-modules. A system of linear
maps S = {Sn

V ...M1...V
}∞n=0,

SnV ...M1...V : M3(0)∗ × V × . . . × M1 × . . . V × M2(0) → F(z1, . . . , zn, w),

(v′
3, a1, . . . , v, . . . , an, v2) �→ S(v′

3, (a1, z1) . . . (v, w) . . . (an, zn)v2),

is said to satisfy the genus-zero property associated with M1, M2(0), and M3(0) if it
satisfies the following:

(1) Properties (2)− (6) in Definition 2.1, with the elements v′
3 and v2 in these properties

belong to M3(0)∗ and M2(0), respectively.
(2) There exists a linear functional f : M1 → HomC(M2(0), M3(0)), v �→ fv , such

that

S(v′
3, (v,w)v2) = 〈v′

3, fv(v2)〉w− deg v, (3.3)

for all v2 ∈ M2(0) and v′
3 ∈ M3(0)∗.

(3) (The recursive formula for M3(0)∗) For any v′
3 ∈ M3(0)∗, v ∈ M1, v2 ∈ M2(0),

and a1, . . . , an ∈ V ,

S(v′
3, (a, z)(a1, z1) . . . (an, zn)(v,w)v2) = S(v′

3o(a), (a1, z1) . . . (an, zn)(v,w)v2)z
−wta

+
n∑

k=1

∑

i≥0

Fwta,i (z, zk)S(v′
3, (a1, z1) . . . (a(i)ak , zk) . . . (an, zn)(v,w)v2)

+
∑

i≥0

Fwta,i (z, w)S(v′
3, (a1, z1) . . . (an, zn)(a(i)v,w)v2), (3.4)
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where Fwta,i (z, w) is a rational function in z, w given by:

ιz,w(Fwta,i (z, w)) =
∑

j≥0

(
wta + j

i

)
z−wta− j−1wwta+ j−i ,

Fm,i (z, w) = z−m

i !
(

d

dw

)i
wm

z − w
,

(3.5)

for any m ∈ N, and v′
3o(a) is given by the natural right module action on M3(0)∗.

(4) (The recursive formula for M2(0)) For any v′
3 ∈ M3(0)∗, v ∈ M1, v2 ∈ M2(0), and

a1, . . . , an ∈ V , we have:

S(v′
3, (a1, z1) . . . (an, zn)(v,w)(a, z)v2) = S(v′

3, (a1, z1) . . . (an, zn)(v,w)o(a)v2)z
−wta

+
n∑

k=1

∑

i≥0

Gwta,i (z, w)S(v′
3, (a1, z1) . . . (a(i)ak , zk)...(an, zn)(v,w)v2)

+
∑

i≥0

Gwta,i (z, w)S(v′
3, (a1, z1) . . . (an, zn)(a(i)v,w)(a, z)v2), (3.6)

where Gwta,i (z, w) is a rational function defined by

ιw,z(Gwta,i (z, w)) = −
∑

j≥0

(
wta − 2 − j

i

)
wwta− j−2−i z−wta+1+ j ,

Gm,i (z, w) = z−m+1

i !
(

d

dw

)i(
wm−1

z − w

)
,

(3.7)

for any m ∈ N.

The vector space of the system of functions satisfying the genus-zero property associated

with M1, M2(0), and M3(0) is denoted by Cor
( M3(0)
M1 M2(0)

)
.

We observe that the rational functions F and G given by (3.5) and (3.7) satisfy the
following relation:

Fm,i (z, w) − Gm,i (z, w) = z−m

i !
(

d

dw

)i (
wm

z − w
− zwm−1

z − w

)

= −
(
m − 1

i

)
z−mwm−1−i ,

for all m ∈ N. In particular, we have

Fwta,i (z, w) − Gwta,i (z, w) = −
(
wta − 1

i

)
z−wtawwta−1−i . (3.8)

The equation (3.8) will be used multiple times in Section 4 when we build a system of
correlation functions S from a linear map on a tensor product of A(V )-modules.
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Proposition 3.2. Let S ∈ Cor
( M3

M1 M2

)
. Then the system of restricted functions S in (3.1)

satisfies the genus-zero property associated with M1, M2(0), and M3(0).

Proof. By our discussion in the begining of this subsection, S in (3.1) satisfies (1) and (2)
in Definition 3.1, where the fv in (3.3) is given by fv = v(deg v−1), for all v ∈ M1. The
proof of (3.4) is similar to the proof of Lemma 2.2.1 in [13].We omit the details. To prove
(3.6),we only consider the casewhenn = 0 (the general case follows froma similar argu-
ment.) Note that a(n)v2 = 0 if wta−n−1 < 0, it follows that 〈v′

3, I (v,w)Y (a, z)v2〉 =
〈v′

3, I (v,w)o(a)v2〉z−wta+
∑

wta−n−1>0〈v′
3, I (v,w)a(n)v2〉z−n−1.By the definition of

contragredient modules, we have 〈v′
3, a(n)u〉 = ∑

i≥0
1
i ! (−1)i 〈(L(i)a)(2wta− n− i −

2)v′
3, u〉, for any n ∈ Z. But (L(i)a)(2wta − n − i − 2)v′

3 ∈ M3′
(−wta + n + 1) = 0

when wta − n − 1 > 0. Thus
∑

wta−n−1>0

〈v′
3, I (v,w)a(n)v2〉z−n−1

= −
∑

wta−n−1>0

〈v′
3, [a(n), I (v,w)]v2〉z−n−1

= −
∑

wta−n−1>0

∑

i≥0

(
n

i

)
〈v′

3, I (a(i)v,w)v2〉z−n−1wn−i

= −
∑

j≥0

∑

i≥0

(
wta − j − 2

i

)
z−wta+ j+2−1wwta− j−2−i 〈v′

3, I (a(i)v,w)v2〉

=
∑

i≥0

ιw,z(Gwta,i (z, w))〈v′
3, I (a(i)v,w)v2〉,

where the last equality follows from (3.7). Hence we have:

〈v′
3, I (v,w)Y (a, z)〉 = 〈v′

3, I (v,w)o(a)v2〉z−wta

+
∑

i≥0

ιw,z(Gwta,i (z, w))〈v′
3, I (a(i)v,w)v2〉

as power series. By taking the limit of this series, we obtain (3.6) for n = 0. ��
As a consequence of Proposition 3.2, we have a well-defined restriction map:

ϕ : Cor
(

M3

M1 M2

)
→ Cor

(
M3(0)

M1 M2(0)

)
, S �→ S|M3(0)∗×...M1...×M2(0), (3.9)

where M2 and M3 are any V -modules with bottom levels M2(0) and M3(0),
The following Lemma will be used in the next subsection:

Lemma 3.3. Let S ∈ Cor
( M3(0)
M1 M2(0)

)
, and let f : M1 → HomC(M2(0), M3(0)), v �→

fv be the linear functional in Definition 3.1. Suppose that fv = 0 for all v ∈ M1. Then
S = 0.

Proof. Weuse induction on n to show that S(v′
3, (a1, z1) . . . (an, zn)(v,w)v2) = 0 for all

v′
3 ∈ M3(0)∗, v ∈ M1, v2 ∈ M2(0), and a1, . . . , an ∈ V . When n = 0, by the assump-
tion and (3.3), we have: S(v′

3, (v,w)v2) = 〈v′
3, fv(v2)〉w− deg v = 〈v′

3, 0〉w− degw = 0,



1250 J. Liu

for all v′
3 ∈ M3(0)∗, v ∈ M1, and v2 ∈ M2(0). For n > 0, by the recursive formula

(3.4), we have

S(v′
3, (a1, z1) . . . (an, zn)(v,w)v2) = S(v′

3o(a1), (a2, z2) . . . (an, zn)(v,w))z−wta1

+
n∑

k=2

∑

i≥0

Fwta1,i (z1, zk)S(v′
3, (a2, z2) . . . (a1(i)ak, zk) . . . (an, zn)(v,w)v2)

+
∑

i≥0

Fwta1,i (z1, w)S(v′
3, (a2, z2) . . . (an, zn)(a1(i)v,w)v2).

Since each term on the right-hand side has a smaller length, the right-hand side is equal
to 0 by the induction hypothesis, so we have S(v′

3, (a1, z1) . . . (an, zn)(v,w)v2) = 0. ��

3.2. Extension from the Bottom Levels. In this subsection, we will show that the restric-
tion map ϕ in (3.9) has an inverse for certain V -modules M2 and M3, with (irreducible)
bottom levels M2(0) and M3(0), respectively.

Recall that for any irreducible A(V )-module U , Dong, Li, and Mason constructed a
generalizedVermamodule M̄(U ) in [2].Byconstruction, M̄(U ) = (U (L(V ))⊗U (L(V )≥0)

U )/U (L(V ))W, where

L(V ) = V ⊗ C[t, t−1]/(L(−1) ⊗ 1 + 1 ⊗ d

dt
)(V ⊗ C[t, t−1]) (3.10)

is the Lie algebra associated with the VOA V (cf.[1,2]), and W is the subspace of
U (L(V )) ⊗U (L(V )≥0) U spanned by the coefficients of the weak associativity equality,
see Section 5 in [2] for more details.

M̄(U ) is N-gradable: M̄(U ) = ⊕∞
n=0 M̄(n), with the bottom level M̄(U )(0) = U .

It satisfies a universal property in the sense that any N-gradable V -module with bottom
level U is a quotient module of M̄(U ) (Theorem 6.2 in [2]). Moreover, M̄(U ) admits a
uniquemaximal gradedL(V )-submodule J subject to J∩U = 0, and L(U ) = M̄(U )/J
is an irreducible V -module (Theorem 6.3 in [3]).

In Section 2 of [8], Li gave an alternative definition of the generalized Verma module
F̄(U ) associated with U , namely, F̄(U ) = (U (L(V )) ⊗U (L(V )≥0) U )/J (U ), where
J (U ) is the intersection of ker α, where α runs over all L(V )-homomorphisms from
F̄(U ) to weak V -modules. Clearly, M̄(U ) = F̄(U ) since they satisfy the same universal
property.

Choose an element

S : M3(0)∗ × V × · · · × M1 × · · · × V × M2(0) → F(z1, ..., zn, w) (3.11)

in Cor
( M3(0)
M1 M2(0)

)
. We will extend the first and the last input vector spaces from M3(0)∗

and M2(0) to some V -modules M̃/RadM̃ and M̄/RadM̄ , which are certain quotient
modules of the generalized Verma modules M̄(M3(0)∗) and M̄(M2(0)), respectively.

We first extend M2(0), and we will proceed like the proof of Theorem 2.2.1 in [13].
In our case, however, the extended V -module is not necessarily irreducible like the
extended module in Theorem 2.2.1 [13] .

Let M̄ := T (L(V )) ⊗C M2(0), where T (L(V )) is the tensor algebra of L(V ). To
simplify our notation, we omit the tensor symbol in an element of M̄ and denote an
element b ⊗ tn in L(V ) by (b, n), then an element in M̄ can be written as:

(b1, i1)(b1, i2) . . . (bm, im)v2 (3.12)
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where bi ∈ V, ik ∈ Z, v2 ∈ M2(0), and (b, i) linear in b. Denote the vector in (3.12)
by x . Extend M2(0) to M̄ by repeatedly using the generating formula (2.9). i.e., we let:

S : M3(0)∗ × V × · · · × M1 × · · · × V × M̄ → F(z1, ..., zn, w),

S(v′
3, (a1, z1) . . . (an, vn)(v,w)x)

:=
∫

C1

. . .

∫

Cm

S(v′
3, (a1, z1) . . . (an, zn)(v,w)(b1, w1)

. . . (bm, wm)v2)w
i1
1 . . . wim

m dw1 . . . dwm, (3.13)

whereCk is a contour ofwk ,Ck containsCk+1 for each k,Cm contains 0, and z1, . . . , zn, w
are lying outside of C1. For the well-definedness of S in (3.13), by (3.10), we just need
to show that S in (3.13) agrees on the elements:

(b1, i1) . . . (L(−1)bk, ik) . . . (bm, im)v2, and

−ik(b1, i1) . . . (bk, ik − 1) . . . (bm, im)v2.

Indeed, by the Definition 3.1, S in (3.11) satisfies (2.6). Thus,

S(v′
3, (a1, z1)...(an, vn)(v,w)(b1, i1)...(L(−1)bk, ik)...(bm, im)v2)

=
∫

C1

...

∫

Cm

d

dwk
S(v′

3, (a1, z1)...(an, zn)(v,w)

...(bk, wk)...v2)w
i1
1 ...w

ik
k ...wim

m dw1...dwm

= −
∫

C1

...

∫

Cm

S(v′
3, (a1, z1)...(an, zn)(v,w)...(bk, wk)

...v2)w
i1
1 ...(ik)w

ik−1
k ...wim

m dw1...dwm

= S(v′
3, (a1, z1)...(an, vn)(v,w)(−ik)(b1, i1)...(bk, ik − 1)...(bm, im)v2).

Introduce a gradation on M̄ by letting

deg((b1, i1)(b1, i2) . . . (bm, im)v2) :=
m∑

k=1

(wtbk − ik − 1), (3.14)

and denote the degree n subspace by M̄(n). Then M̄ = ⊕
n∈Z M̄(n), with M2(0) ⊆

M̄(0).
Similar to (2.2.30) in [13], we define the radical of S on M̄ by

Rad(S) := {x ∈ M̄|S(v′
3, (a1, z1) . . . (an, zn)(v,w)x) = 0,

∀n ≥ 0, a1, . . . an ∈ V, v ∈ M1, v3 ∈ M3(0)∗}, (3.15)

then letRad(M̄) := ⋂
S Rad(S),where the intersection is takenover all S ∈ Cor

( M3(0)
M1 M2(0)

)
.

In fact, we can take the intersection over all nonzero S, since Rad(S) = M̄ if S = 0.
It is clear that the extended S in (3.13) factors through M̄/Rad(M̄). Next,we show that

M̄/Rad(M̄) carries a structure of N-gradable V -module whose bottom level is M2(0).
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Lemma 3.4. Let W be the subspace of M̄ spanned by the following elements:

∞∑

i=0

(
m

i

)
(a(l + i)b,m + n − i)x −

( ∞∑

i=0

(−1)i
(
l

i

)
(a,m + l − i)(b, n + i)x

−
∞∑

i=0

(−1)l+i
(
l

i

)
(b, n + l − i)(a,m + i)x

)
, (3.16)

where a, b ∈ V, m, n, l ∈ Z, and x ∈ M̄. Then we have W ⊂ Rad(M̄).

Proof. By the formula (3.13), it is easy to see that for the following element in M̄ :

x ′ = (b1, i1) . . . (bm, im)x,

where x = (c1, j1) . . . (cn, jn)v2 for some bi , c j ∈ V and ik, jl ∈ Z, we have:

S(v′
3, (a1, z1)...(an, vn)(v,w)x ′)

=
∫

C1

...

∫

Cm

S(v′
3, (a1, z1)...(an, zn)(v,w)(b1, w1)

...(bm, wm)x)wi1
1 ...wim

m dw1...dwm,

(3.17)

where Ck is a contour of wk , Ck+1 is inside of Ck for each k, Cm contains 0, and

z1, . . . , zn, w are lying outside ofC1. Nowwe fix a nonzero element S ∈ Cor
( M3(0)
M1 M2(0)

)
.

Denote the element (3.16) by y. We adopt the notations in Proposition A.2.8 in [5]
again. Let Ci

R be the circle of wi , i = 1, 2, centered at 0 with radius R, and let C1
ε (w2)

be the circle of w1 centered at w2 with radius ε. We may choose ε small enough so that
|w1 − w2| < |w2| for any w1 lying on C1

ε (w2). Choose R, r, ρ > 0 so that R > ρ > r .
By (3.17) and the locality (2) in Definition 2.1 of S, we have:

S(v′
3, (a1, z1)...(an, zn)(v,w)y)

=
∫

C2
ρ

∞∑

i=0

(
m

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(a(l + i)b, w2)x)w
m+n−i
2 dw2

−
∫

C1
R

∫

C2
ρ

∞∑

i=0

(−1)i
(
l

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(a, w1)

(b, w2)x)w
m+l−i
1 wn+i

2 dw1dw2

+
∫

C2
ρ

∫

C1
r

∞∑

i=0

(−1)l+i
(
l

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(b, w2)

(a, w1)x)w
m+i
1 wn+l−i

2 dw1dw2

=
∫

C2
ρ

∞∑

i=0

(
m

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(a(l + i)b, w2)x)w
m+n−i
2 dw2

−
∫

C1
R

∫

C2
ρ

S(v′
3, (a1, z1)...(an, zn)(v,w)(a, w1)(b, w2)x)

· ιw1,w2((w1 − w2)
l)wm

1 wn
2dw1dw2
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+
∫

C2
ρ

∫

C1
r

S(v′
3, (a1, z1)...(an, zn)(v,w)(b, w2)(a, w1)x)

· ιw2,w1((−w2 + w1)
l)wm

1 wn
2dw1dw2

=
∫

C2
ρ

∞∑

i=0

(
m

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(a(l + i)b, w2)x)w
m+n−i
2 dw2

−
∫

C2
ρ

∫

C1
ε (w2)

S(v′
3, (a1, z1)...(an, zn)(v,w)(a, w1)

(b, w2)v2)(w1 − w2)
lwm

1 wn
2dw1dw2.

=
∫

C2
ρ

∞∑

i=0

(
m

i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)(a(l + i)b, w2)x)w
m+n−i
2 dw2

−
∫

C2
ρ

∫

C1
ε (w2)

∞∑

i=1

(
m

i

)
S(v′

3, (a1, z1)...(v, w)(a, w1)(b, w2)v2)

(w1 − w2)
l+iwm+n−i

2 dw1dw2 = 0,

for all v′
3 ∈ M3(0)∗, a1, . . . an ∈ V , and v ∈ M1, where the last equality follows

from the associativity (5) in Definition 2.1. This shows y ∈ Rad(S). But S is chosen
arbitrarily. Hence we have y ∈ Rad(M̄). ��

The following facts are satisfied by Rad(M̄):

Lemma 3.5 (a) If x ∈ Rad(M̄), then (b, i)x ∈ Rad(M̄), for any b ∈ V and i ∈ Z.
(b) M2(0) ∩ Rad(M̄) = 0.
(c) M̄(n) ⊂ Rad(M̄) for all n < 0.

Proof. Since Rad(M̄) = ⋂
S Rad(S), we just need to show that (a), (b), and (c) hold for

Rad(S), where S ∈ Cor
( M3(0)
M1 M2(0)

)
is nonzero.

(a) Let x ∈ Rad(S), by (3.13) and the definition (3.15) of Rad(S), we have

S(v′
3, (a1, z1)...(v, w)(b, i)x) =

∫

C
S(v′

3, (a1, z1)...(v, w)(b, w1)x)w
i
1dw1

=
∫

C
0 · wi

1dw1 = 0,

where C is a contour of w1, with z1, . . . , zn, w lying outside. Thus (b, i)x ∈ Rad(S).
(b) Suppose there exists some v2 = 0 in M2(0) ∩ Rad(S), then by (3.3) and the

recursive formula (3.6), we have

0 = ιw,z(S(v′
3, (a, z)(v,w)v2))

= S(v′
3, (v,w)o(a)v2)z

−wta +
∑

i≥0

ιw,z(Gwta,i (z, w))S(v′
3, (a(i)v,w)v2)

= 〈v′
3, fv(o(a)v2)〉z−wtaw− degw −

∑

i, j≥0

(
wta − 2 − j

i

)
wdeg v− j−1z−wta+1+ j 〈v′

3, fa(i)v(v2)〉,

(3.18)
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for anya ∈ V ,v′
3 ∈ M3(0)∗, andv ∈ M1.Bycomparing the coefficients of z−wtaw− degw

on both sides of (3.18), we have 〈v′
3, fv(o(a)v2)〉 = 0 for all v3 ∈ M3(0)∗, a ∈ V ,

and v ∈ M1. Then fv(M2(0)) = 0, since M2(0) is an irreducible A(V )-module, and
M2(0) = A(V ).v2 = span{o(a)v2|a ∈ V }. It follows that fv = 0 for all v ∈ M1. By
Lemma 3.3, we have S = 0, which is a contradiction.

(c) Let x = (bm, im) . . . (b1, i1)v2, with
∑m

k=1(wtbk − ik −1) < 0.We use induction
on the length m of x to show that x ∈ Rad(S). For the base case, let x = (b, t)v2 with
wtb − t − 1 < 0, then by (3.13) and (3.6), we have

S(v′
3, (a1, z1)...(v, w)x) =

∫

C
S(v′

3, (a1, z1)...(v, w)(b, z)v2)z
tdz

=
∫

C
S(v′

3, (a1, z1)...(an, zn)(v,w)o(b)v2)z
t−wtbdz

+
∫

C

n∑

k=1

∑

i≥0

Gwtb,i (z, zk)S(v′
3, (a1, z1)...(b(i)ak, zk)...(v, w)v2)z

tdz

+
∫

C

∑

i≥0

Gwtb,i (z, w)S(v′
3, (a1, z1)...(b(i)v,w)v2)z

tdz, (3.19)

where C is a contour of z surrounding 0, with all other variables lying outside C . In
particular, we have |z| < |zk | for all k, and |z| < |w|. Then by (3.7),

∫

C
Gwtb,i (z, zk)z

tdz =
∫

C

z−wtb+1+t

i !
(

d

dzk

)i( zwtb−1
k

z − zk

)
dz = 0, (3.20)

since −wtb + 1 + t > 0, and 1/(z − zk) is a sum of nonnegative powers in z for all z
lying on the contour C . We also have

∫
C zt−wtbdz = 0, since t − wtb > −1. It follows

that all the integrals on the right-hand side of (3.19) are equal to 0. This finishes the base
case.

Now let m > 0, and consider x = (bm, im)...(b1, i1)v2 ∈ M̄ . We have:

S(v′
3, (a1, z1)...(v, w)x)

=
∫

Cm

...

∫

C1

S(v′
3, (a1, z1)...(v, w)(bm , wm)...(b1, w1)v2)w

im
m ...w

i1
1 dw1...dwm

=
∫

Cm

...

∫

C1

S(v′
3, (a1, z1)...(v, w)(bm , wm)...o(b1)v2)w

im
m ...w

−wtb1+i1
1 dw1...dwm

(1)

+
∫

Cm

...

∫

C1

n∑

k=1

∑

i≥0

Gwtb1,i (w1, zk)S(v′
3, ...(b1(i)ak , zk)...(v, w)...v2)w

im
m ...w

i1
1 dw1...dwm

(2)

+
∫

Cm

...

∫

C1

∑

i≥0

Gwtb1,i (w1, w)S(v′
3, ...(b1(i)v, w)(bm , wm)...v2)w

im
m ...w

i1
1 dw1...dwm

(3)

+
∫

Cm

...

∫

C1

m∑

l=2

∑

i≥0

Gwtb1,i (w1, wl)S(v′
3, ...(v, w)...(b1(i)bl , wl)...v2)w

im
m ...w

i1
1 dw1...dwm

(4)

= (1) + (2) + (3) + (4),

where C1 is a contour of w1 surrounding 0, with all other variables lying outside. We
need to show that the sum of these integrals equals 0. i.e., (1) + (2) + (3) + (4) = 0.
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Case 1. wtb1 − i1 − 1 < 0.
Similar to (3.20), we have

∫
C1

Gwtb1,i (w1, z)w
i1
1 dw1 = 0, for z = zk , w or wl . Thus

we have (2) = (3) = (4) = 0. We also have (1) = 0 because −wtb1 + i1 > −1.
Case 2. wtb1 − i1 − 1 > 0.
Then −wtb1 + i1 < −1, which implies (1) = 0. Moreover, by (3.7) we have:

∫

C1

Gwtb1,i (w1, z)w
i1
1 dw1

= Resw1=0

(
−

∑

j≥0

(
wtb1 − 2 − j

i

)
zwtb1− j−2−iw

−wtb1+1+ j+i1
1

)

= −
(
i1
i

)
zi1−i . (3.21)

for z = zk , w or wl . Apply (3.21) to (2), (3), and (4), and we have:

(2) = −
∫

Cm

...

∫

C2

n∑

k=1

∑

i≥0

(
i1
i

)
zi1−i
k S(v′

3, ...(b1(i)ak, zk)

...(v, w)(bm, wm)...(b2, w2)v2)

= −
n∑

k=1

∑

i≥0

(
i1
i

)
zi1−i
k S(v′

3, (a1, z1)...(b1(i)ak, zk)...(an, zn)(v,w)y),

where y = (bm, im) . . . (b2, i2)v2. Note that deg y = deg x − (wtb1 − i1 − 1) < 0, and
the length of y is m − 1, then by the induction hypothesis we have (2) = 0. Similarly,
(3) = 0.

(4) =
∫

Cm

...

∫

C1

m∑

l=2

∑

i≥0

(
i1
i

)
w
i1−i
l S(v′

3, ...(v, w)...(b1(i)bl , wl)

...v2)w
im
m ...w

i1
1 dw1...dwm

=
m∑

l=2

∑

i≥0

(
i1
i

)
S(v′

3, (a1, z1)...(an, zn)(v,w)yl),

where yl = (bm, im)...(b1(i)bl , i1 + il − i)...(b2, i2)v2. Note that

deg(b1(i)bl , i1 + il − i) = wtb1 + wtbl − i − 1 − i1 − il + i − 1 = deg(b1, i1) + deg(bl , il ).

Thus, deg yl = ∑m
k=1 wt(bk, ik) = deg x < 0, and the length of yl is m − 1 for each l.

Hence (4) = 0 by the induction hypothesis.
Case 3. wtb1 − i1 − 1 = 0.
In this case, we have:

∫
C1

Gwtb1,i (w1, z)w
i1
1 dw1 = 0 in view of (3.20). Hence (2) =

(3) = (4) = 0. Moreover, since −wtb1 + i1 = −1, we have:

(1) =
∫

Cm

...

∫

C2

S(v′
3, (a1, z1)...(v, w)(bm, wm)...o(b1)v2)w

im
m

...w
i2
2 dw2...dwm = S(v′

3, (a1, z1)...(an, zn)(v,w)y),

where y = (bm, im)...(b2, i2)v2. Since deg y = deg x < 0, and the length of y is m − 1,
we have (1) = 0 by the induction hypothesis. Now the proof of (c) is complete. ��
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We define a vertex operator YM̄2 on the quotient space M̄2 = M̄/Rad(M̄) as follows:

YM̄2(a, z)(b1, i1) . . . (bm, im)v2 :=
∑

n∈Z
(a, n)(b1, i1) . . . (bm, im)v2z

−n−1, (3.22)

where a ∈ V, (b1, i1) . . . (bm, im)v2 ∈ M̄2, and we use the same notation (b1, i1) . . .

(bm, im)v2 for its image in the quotient space M̄2.Wecan express (3.22) in the component
form:

a(n)(b1, i1) . . . (bm, im)v2 = (a, n)(b1, i1) . . . (bm, im)v2, (3.23)

for all a ∈ V, n ∈ Z, and (b1, i1) . . . (bm, im)v2 ∈ M̄ .

Proposition 3.6. M̄2 = M̄/Rad(M̄), together with YM̄2 : V → End(M̄2)[[z, z−1]]
given by (3.22) and (3.23), is a weak V -module.

Proof. By (a) of Lemma 3.5, we have a(n)Rad(M̄) ⊆ Rad(M̄). Hence YM̄2 is well-

defined. Let x = (b1, i1) . . . (bm, im)v2 ∈ M̄2, we claim that 1(−1)x = x and 1(n)x = 0

for any n = −1. Indeed, for any S ∈ Cor
( M3(0)
M1 M2(0)

)
, by the definition formula (3.13),

the recursive formula (3.6), together with the fact that 1( j)a = 0 for all j ≥ 0, a ∈ V ,
and 1( j)v = 0 for all j ≥ 0, v ∈ M1, we have:

S(v′
3, (a1, z1)...(v, w)1(n)x)

=
∫

C0

∫

Cm

...

∫

C1

S(v′
3, (1, w0)(a1, z1)...(v, w)(b1, w1)...v2)w

n
0w

i1
1 ...wim

m dw1...dwmdw0

=
∫

C0

∫

Cm

...

∫

C1

S(v′
3o(1), (a1, z1)...(v, w)(b1, w1)...v2)w

n
0w

i1
1 ...wim

m dw1...dwmdw0

= δn+1,0 · S(v′
3, (a1, z1)...(v, w)x),

where the last equality follows from the fact that
∫
C0

wn
0dw0 = δn+1,0. Thus, (1(n)x −

δn+1,0x) ∈ Rad(M̄), and so 1(n)x = δn+1,0x in M̄2. Moreover, given homogeneous
elements x ∈ M̄ and a ∈ V , by (3.14) and (3.23), deg(a(n).x) = wta−n−1+deg x < 0
when n >> 0. Then by part (c) of Lemma 3.5, we have a(n)x = 0 in M̄2 when n is
large enough. Finally, by Lemma 3.4 and (3.23), (M̄2,YM̄2) satisfies the Jacobi identity.
Hence it is a weak V -module. ��
Proposition 3.7. M̄2 hasagradation M̄2 = ⊕∞

n=0 M̄
2(n), where M̄2(n) is an eigenspace

of L(0) of eigenvalue λ + n for each n ∈ N, and M̄2(0) = M2(0). In particular, M̄2

is an ordinary V -module, and if M2(0) is the bottom level of some ordinary V -module
M2, with conformal weight h2, then λ = h2.

Proof. Let M̄2(n) be the image of M̄(n) under the quotient map M̄ → M̄2. By Lemma
3.5, we have M̄2 = ∑

n≥0 M̄
2(n) and M2(0) ⊆ M̄2(0). We claim that

a(wta − 1)v2 = o(a)v2, (3.24)
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for all v2 ∈ M2(0) and homogeneous a ∈ V . Indeed, we only need to show that

(a,wta − 1)v2 − o(a)v2 ∈ Rad(S), for all S ∈ Cor
( M3(0)
M1 M2(0)

)
. By (3.13) and (3.6),

S(v′
3, (a1, z1)...(an, zn)(v,w)(a,wta − 1)v2)

=
∫

C
S(v′

3, (a1, z1)...(an, zn)(v,w)(a, w1)v2)w
wta−1
1 dw1

=
∫

C
S(v′

3, (a1, z1)...(an, zn)(v,w)o(a)v2)w
−wta
1 wwta−1

1 dw1

+
n∑

k=1

∑

i≥0

∫

C
Gwta,i (w1, zk)S(v′

3, (a1, z1)...(a(i)ak , zk)...(an, zn)(v,w)v2)w
wta−1
1 dw1

+
∑

i≥0

∫

C
Gwta,i (w1, w)S(v′

3, (a1, z1)...(an, zn)(a(i)v,w)v2)w
wta−1
1 dw1,

where C is a contour of w1 surrounding 0, with all other variables lying outside of C .
Since |zk |, |w| > |w1| for all k, where w1 is lying on C , then we have

∫

C
Gwta,i (w1, z)w

wta−1
1 dw1 =

∫

C
wwta−1
1

w−wta+1
1

i !
(

d

dz

)i( zwta−1

w1 − z

)
dw1 = 0,

for z = zk or w. Hence (a,wta − 1)v2 − o(a)v2 ∈ Rad(S). This shows (3.24).
Since L(0) = ω(wtω − 1) on M̄2, it follows from (3.24) that L(0) preserves M2(0).

On the other hand, we have [L(0), a(n)] = (wta − n − 1)a(n) (see (4.2.2) in [4]). Then
by (3.24) again, we have [L(0), o(a)]v2 = [L(0), a(wta−1)]v2 = 0. Since M2(0) is an
irreducible A(V )-module which is of countable dimension, then by the Schur’s Lemma
(Lemma 1.2.1 in [13]), there exists λ ∈ C such that L(0) = λ · Id on M2(0). If M2(0) is
the bottom level of M2, with conformal weight h2, then L(0) = h2 · Id on M2(0), and
so h2 = λ.

Now for any spanning element x = (b1, i1) . . . (bm, im)v2 = b1(i1) . . . bm(im)v2 of
M̄2(n), we have L(0)x = (

∑m
k=1(wtbk − ik − 1) + λ)x = (n + λ)x . Therefore, M̄2(n)

is an eigenspace of L(0) of eigenvalue n + λ for every n ∈ N, and M̄2 = ⊕∞
n=0 M̄

2(n).

Finally, for any spanning element x = b1(i1) . . . bm(im)v2 of M̄2(0), it follows from
(3.24) and an easy induction that x ∈ M2(0), therefore M̄2(0) = M2(0). ��
Remark 3.8. Unlike the construction of V -modules from the correlation functions in
Theorem 2.2.1 in [13], in our case, it is unclear whether M̄2 = M̄/Rad(M̄) is an
irreducible V -module. The reason is the following:

Assume N ≤ M̄2 is a submodule, by Proposition 3.7 we have N = ⊕∞
n=0 N (n),

with N (n) = N ∩ M̄2(n) for each n. If N (0) = 0, then clearly N = M̄2. So to show
M̄2 is irreducible, we need to show that N = 0 when N (0) = 0.

This is true for themodule M̄/Rad(M̄) constructed in Theorem 2.2.1 in [13], wherein
the correlation function S(v′, (a1, z1) . . . (an, zn)N ), with v′ ∈ M2(0), is essentially the
limit function of 〈v′,Y (a1, z1) . . . Y (an, zn)N 〉. It is zero because Y (a, z)N ⊂ N ((z)),
and the bottom level of N is 0. Thus, N ⊆ Rad(S), and so N = 0 in M̄/Rad(M̄). How-
ever, in our case, S(v′

3, (a1, z1) . . . (an, zn)(v,w)N )with v′
3 ∈ M3(0)∗ is essentially the

limit function of 〈v′
3, I (v,w)Y (a1, z1) . . . Y (an, zn)N 〉w−h . Although the components

of Y (a, z) still leave N invariant, the intertwining operator I (v,w) could send some ele-
ment in N to a nonzero element of M3(0). Hence we cannot conclude that N ⊆ Rad(M̄)

in general.
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We give a sufficient condition under which M̄2 is irreducible.

Lemma 3.9. Suppose S ∈ Cor
( M3(0)
M1 M2(0)

)
satisfies:

∑

i≥0

(
n

i

)
〈v′

3, fb(i)v(v2)〉 = 0, (3.25)

for all b ∈ V , n ∈ Z such thatwtb−n−1 > 0, v ∈ M1, v′
3 ∈ M3(0)∗, and v2 ∈ M2(0).

Then S(v′
3, (v,w)y) = 0 for any y ∈ M(m) with m ≥ 1, v′

3 ∈ M3(0)∗, and v ∈ M1.

Proof. It follows from an easy induction that y can be written as a sum of the terms
(bm, nm) . . . (b1, n1)v2 for some m ≥ 1 and v2 ∈ M2(0), with wtb j − n j − 1 > 0 for
all j .

Let y = (bm, nm) . . . (b1, n1)v2.Weuse inductiononm to show that S(v′
3, (v,w)y) =

0. For the base case m = 1 and y = (b, n)v2, with wtb − n − 1 > 0, by (3.13), (3.3),
(3.6), (3.7), and the assumption (3.25), we have:

S(v′
3, (v,w)y) =

∫

C
S(v′

3, (v,w)(b, z)v2)z
ndz

=
∫

C
S(v′

3, (v,w)o(b)v2)z
−wtb+ndz

+
∫

C

∑

i≥0

Gwtb,i (z, w)S(v′
3, (b(i)v,w)v2)z

ndz

= 0 +
∑

i≥0

∫

C
−

∑

j≥0

(
wtb − 2 − j

i

)
wwtb− j−2−i zn−wtb+1+ j

S(v′
3, (b(i)v,w)v2)dz

= −
∑

i≥0

(
n

i

)
〈v′

3, fb(i)vv2〉w−wtb−deg v+1+n = 0.

Now let m > 1. Then by (3.13) and (3.6), we have

S(v′
3, (v,w)y) =

∫

Cm

...

∫

C1

S(v′
3, (v,w)(bm, zm)

...(b1, z1)v2)z
n1
1 ...znmm dz1...dzm

=
∫

Cm

...

∫

C1

S(v′
3, (v,w)(bm, zm)

...(b2, z2)o(b1)v2)z
−wtb1+n1
1 ...znmm dz1...dzm

+
∫

Cm

...

∫

C1

∑

i≥0

Gwtb1,i (z1, w)S(v′
3, (b1(i)v,w)(bm, zm)

...(b2, z2)v2)z
n1
1 ...znmm dz1...dzm

+
∫

Cm

...

∫

C1

m∑

k=2

∑

i≥0

Gwtb1,i (z1, zk)S(v′
3, (v,w)...(b1(i)bk, zk)

...(b2, z2)v2)z
n1
1 ...znmm dz1...dzm
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= 0 +
∫

Cm

...

∫

C2

∑

i≥0

∫

C1

−
∑

j≥0

(
wtb1 − 2 − j

i

)
wwtb1− j−2−i zn1−wtb1+1+ j

1

· S(v′
3, (b1(i)v,w)(bm, zm)...(b2, z2)v2)z

n2
2 ...znmm dz2...dzm

+
∫

Cm

...

∫

C2

m∑

k=2

∑

i≥0

∫

C1

−
∑

j≥0

(
wtb1 − 2 − j

i

)
znk+wtb1− j−2−i
k zn1−wtb1+1+ j

1

· S(v′
3, (v,w)(bm, zm)...(b1(i)bk, zk)...(b2, z2)v2)z

n2
2 ...ẑnkk ...znmm dz2...dzm

= −
∫

Cm

...

∫

C2

∑

i≥0

(
n1
i

)
wn1−i S(v′

3, (b1(i)v,w)(bm, zm)

...(b2, z2)v2)z
n2
2 ...znkk dz2...dzm

−
∫

Cm

...

∫

C2

m∑

k=2

∑

i≥0

(
n1
i

)
S(v′

3, (v,w)

...(b1(i)bk, zk)...v2)z
n2
2 ...zn1+nk−i

k ...znmm dz2...dzm

= −
∑

i≥0

(
n1
i

)
wn1−i S(v′

3, (b1(i)v,w)(bm, nm)...(b2, n2)v2)

−
m∑

k=2

∑

i≥0

(
n1
i

)
S(v′

3, (v,w)(bm, nm)...(b1(i)bk, n1 + nk − i)...(b2, n2)v2) = 0,

where the last equality follows from the induction hypothesis, together with the fact that
deg(b1(i)bk, n1 + nk − i) = wtb1 − n1 − 1 + wtbk − nk − 1 > 0, for any i ≥ 0. ��
Corollary 3.10. For any fixed v ∈ M1 and y ∈ M̄2 = M̄/Rad(M̄), let n ∈ Z be an
integer such that n > deg v + deg y − 1. Then we have

∫

C
S(v′

3, (v,w)y)wndw = 0, (3.26)

for all v′
3 ∈ M3(0), where C is a contour of w surrounding 0. In particular, for fixed

v ∈ M1 and y ∈ M̄2, the power series expansion of S(v′
3, (v,w)y) has a uniform lower

bound for w independent of v′
3 ∈ M3(0)∗.

Proof. It suffices to show (3.26) for y = (bm, nm) . . . (b1, n1)v2, where v2 ∈ M2(0),
m ≥ 0, and wtb j − n j − 1 > 0 for all j . Again, we use induction on m. When m = 0,
we have y = v2 and deg y = 0. Then by (3.3) and − deg v + n > −1, we have:∫
C S(v′

3, (v,w)v2)w
ndw = ∫

C 〈v′
3, fv(v2)〉w− deg v+ndw = 0. Now let m > 0, and let

n ∈ Z be such that n > deg v + deg y − 1. Since −wtb1 + n1 < −1, by the calculations
in Lemma 3.9, we have:
∫

C
S(v′

3, (v,w)y)wndw

= −
∑

i≥0

∫

C

(
n1
i

)
wn+n1−i S(v′

3, (b1(i)v,w)(bm, nm)...(b2, n2)v2)
(1)

dw
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−
m∑

k=2

∑

i≥0

∫

C

(
n1
i

)
wn S(v′

3, (v,w)(bm, nm)...(b1(i)bk, n1 + nk − i)...(b2, n2)v2)
(2)

dw

= (1) + (2).

Since n > deg v+deg y−1, we have n+n1−i > deg(b1(i)v)+
∑m

j=2(wtb j −n j −1)−1

for all i ≥ 0. Then by the induction hypothesis, (1) = 0 for all v′
3 ∈ M3(0)∗. On the

other hand, since deg(b1(i)bk, n1 + nk − i) = wtb1 − n1 − 1 + wtbk − nk − 1 for all
i ≥ 0, we have (2) = 0 for all v′

3 ∈ M3(0)∗. Thus
∫
C S(v′

3, (v,w)y)wndw = 0. ��
Proposition 3.11. Suppose every S ∈ Cor

( M3(0)
M1 M2(0)

)
satisfies the condition (3.25), then

M̄2 = M̄/Rad(M̄) is an irreducible V -module with bottom level M2(0). In particular,
M̄2 is isomorphic to L(M2(0)), the unique irreducible V -module with bottom level is
M2(0).

Proof. Note that for any x ∈ M , S(v′
3, (a1, z1) . . . (an, zn)(v,w)x) is also a rational

function in z1, . . . , zn, w by (3.13) and (3.23), and it has Laurent series expansion:

S(v′
3, (a1, z1)...(an, zn)(v,w)x) = S(v′

3, (v,w)(a1, z1)...(an, zn)x)

=
∑

i1,...,in∈Z

(∫

Cn

...

∫

C1

S(v′
3, (v,w)(an, zn)...(a1, z1)x)z

i1
1 ...zinn dz1...dzn

)
z−i1−1
1

...z−in−1
n

=
∑

i1,...,in∈Z
S(v′

3, (v,w)an(in)...a1(i1)x)z
−i1−1
1 ...z−in−1

n (3.27)

on the domain D = {(z1, . . . , zn, w)||w| > |zn| > · · · > |z1| > 0}. Let N be a
submodule of M̄2 such that N (0) = 0, we need to show that N = 0. Let x ∈ N , we
have y = an(in) . . . a1(i1)x ∈ N , and if y = 0 then deg(y) > 0. By Lemma 3.9, we
have S(v′

3, (v,w)y) = 0. Thus, the rational function S(v′
3, (a1, z1) . . . (an, zn)(v,w)x)

is equal to 0 by (3.27). i.e., x ∈ Rad(S) for all S ∈ Cor
( M3

M1 M2

)
. Thus N = 0. ��

In conclusion, given a S ∈ Cor
( M3(0)
M1 M2(0)

)
, the extended S in (3.13) factors though an

N-gradable V -module M̄2 = M̄/Rad(M̄)whose bottom level is M2(0). It is irreducible
if the condition (3.25) is satisfied. Therefore, by (3.13) and (3.23), we have awell-defined
system of (n + 3)-point correlation functions:

S : M3(0)∗ × V × · · · × M1 × · · · × V × M̄2 → F(z1, . . . , zn, w),

S(v′
3, (a1, z1)...(an, zn)(v,w)b1(i1)...bm(im)v2)

=
∫

C1

...

∫

Cm

S(v′
3, (a1, z1)...(an, zn)(v,w)(b1, w1)

...(bm, wm)v2)w
i1
1 ...wim

m dw1...dwm, (3.28)

for all b1(i1) . . . bm(im)v2 ∈ M̄2, where Ck is a contour of wk , Ck contains Ck+1 for all
k, Cm contains 0, and z1, . . . , zn, w are outside of C1.

In particular, S in (3.28) satisfies the generating formula (2.9) with M2 = M̄2, since
the extended S is defined by this formula. Moreover, by Corollary 3.10 and the fact that
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the orginal S in (3.11) belongs to Cor
( M3(0)
M1 M2(0)

)
, it is easy to see that the S in (3.28) also

satisfies the properties (1) − (6) in Definition 2.1, with v′
3 ∈ M3(0)∗ and v2 ∈ M̄2.

We adopt a similar method to extend the first input component of S in (3.28) from
M3(0)∗ to a V -module by using the other generating formula (2.10). First, we let

M̃ := T (L(V )) ⊗C M3(0)∗.

Then M̃ is spanned by elements of the form: y = (b1, i1) . . . (bm, im)v′
3, where b j ∈ V ,

i j ∈ Z for j = 1, . . . ,m, and v′
3 ∈ M3(0)∗. Next, we extend S in (3.28) by iterating the

generating formula (2.10). i.e., we define:

S : M̃ × V × · · · × M1 × · · · × V × M̄2 → F(z1, . . . , zn, w)

S((b1, i1)...(bm , im)v′
3, (a1, z1)...(an, zn)(v,w)x2)

:=
∫

C1

...

∫

Cm

S(v′
3, (bm , wm)′...(b1, w1)

′(a1, z1)...(v,w)x2)w
−i1−2
1 ...w−im−2

m dwm ...dw1,

(3.29)

where (b, w)′ = (ew−1L(1)(−w2)L(0)b, w), Ck is a contour of wk s.t. Ck contains Ck−1
for each k, and C1 contains all the variables z1, . . . , zn, w. For S in (3.29), we similarly
define

Rad(S) := {y ∈ M̃ : S(y, (a1, z1) . . . (an, zn)(v,w)x) = 0,∀ai ∈ V, v ∈ M1, x ∈ M̄2},

and letRad(M̃) := ⋂
Rad(S),where the intersection is takenover all S ∈ Cor

( M3(0)
M1 M2(0)

)
,

with the extension given by (3.29). Clearly, S factors though M̃/Rad(M̃).

Similar to our previous argument, one can show that M̄3′ = M̃/Rad(M̃) has a

natural N-gradable V -module structure M̄3′ = ⊕∞
n=0 M̄

3′
(n), with M̄3′

(0) = M3(0)∗.
Moreover, M̄3′ = M̃/Rad(M̃) is irreducible if the condition 3.25 is satisfied. Thus we
have a well-defined system of correlation functions S:

S : M̄3′ × V × · · · × M1 × · · · × V × M̄2 → F(z1, . . . , zn, w),

S(b1(i1)...bm(im)v′
3, (a1, z1)...(an, zn)(v,w)x2)

=
∫

C1

...

∫

Cm

S(v′
3, (bm , wm)′...(b1, w1)

′(a1, z1)...(v, w)x2)w
−i1−2
1 ...w−im−2

m dwm ...dw1,

(3.30)

for all b1(i1) . . . bm(im)v′
3 ∈ M̄3′

and x2 ∈ M̄2. Moreover, by Remark 2.4, we also have:

S(b′
1(i1)...b

′
m(im)v′

3, (a1, z1)...(an, zn)(v,w)x2)

=
∫

C1

...

∫

Cm

S(v′
3, (bm, wm)...(b1, w1)(a1, z1)

...(an, zn)(v,w)x2)w
i1
1 ...wim

m dwm ...dw1, (3.31)
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where b′(i) = ∑
j≥0

1
j ! (−1)wtb(L(1) j b)(2wtb− i − j − 2), Ck is a contour of wk such

that Ck contains Ck−1 for each k, and z1, . . . , zn, w are inside of C1. Since (3.30) and
(3.31) are given by iterating the generating formula (2.10), it is clear that S in (3.30)

also satisfies (2.10) with M2 = M̄2 and M3′ = M̄3′
. Denote the contragredient module

of M̄3′
by M̄3.

Theorem 3.12. The systemof extended correlation functions S in (3.30) lies inCor
( M̄3

M1 M̄2

)
.

Hence we have an isomorphism of vector spaces Cor
( M3(0)
M1 M2(0)

) ∼= Cor
( M̄3

M1 M̄2

) ∼=
I
( M̄3

M1 M̄2

)
.

Proof. We have already proven that S satisfies (7) and (8) in Definition 2.1, with M2 =
M̄2 and M3′ = M̄3′

. It remains to show that S in (3.30) satisfies the properties (1)− (6)
in Definition 2.1, with M2 = M̄2 and M3 = M̄3. In fact, by the definition formulas

(3.28) and (3.31), together with the fact that the orginal S in (3.11) lies in Cor
( M3(0)
M1 M2(0)

)
,

the properties (2) − (6) are straightforward.
Toprove (1),weneed an intermediate result first.We introduce the followingnotation:

S(v′
3, b1(n1)...bm(nm)(v,w)x2) :=

∫

Cm

...

∫

C1

S(v′
3, (b1, z1)...(bm, zm)(v,w)x2)

·zn11 ...znmm dz1...dzm, (3.32)

where m ≥ 0, x2 ∈ M̄2, bk ∈ V , nk ∈ Z, Ck is a contour of zk s.t. Ck contains Ck+1 for
all k, and w is inside of Cm . Assume wtb1 − n1 − 1 < 0. We claim that:

S(v′
3, b1(n1)...bm(nm)(v,w)x2)

=
m∑

l=2

∑

i≥0

(
n1
i

)
S(v′

3, b2(n2)...(b1(i)bl)(n1 + nl − i)...bm(nm)(v,w)x2)

+
∑

i≥0

(
n1
i

)
S(v′

3, b2(n2)...bm(nm)(b1(i)v,w)x2)w
n1−i

+ S(v′
3, b2(n2)...bm(nm)(v,w)(b1(n1)x2)). (3.33)

Let x2 = c1(i1) . . . cr (ir )v2, for some c j ∈ V , i j ∈ Z for all j , and v2 ∈ M2(0). Note
that b1(n1)v2 = 0 as wtb1 − n1 − 1 < 0. For |z1| > |w|, by (3.5) we have:

∫

C1

Fwtb1,i (z1, w)zn11 dz1 =
∑

j≥0

∫

C1

(
wtb1 + j

i

)
zn1−wtb1− j−1
1 wwtb1+ j−i+it dz1

=
(
n1
i

)
wn1−i ,

where C1 is a contour of z1, with w lying inside. Then by (3.32), (3.28), the recursive
formula (3.4), together with the fact that −wtb1 + n1 > −1, we have:
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S(v′
3, b1(n1)...bm(nm)(v,w)x2)

=
∫

Cm

...

∫

C1

m∑

l=2

∑

i≥0

Fwtb1,i (z1, zl)S(v′
3, (b2, z2)

...(b1(i)bl , zl)...(v, w)x2)z
n1
1 ...znmm dz1...dzm

+
∫

Cm

...

∫

C1

∑

i≥0

Fwtb1,i (z1, w)S(v′
3, (b2, z2)

...(bm, zm)(b1(i)v,w)x2)z
n1
1 ...znmm dz1...dzm

+
∫

Cm

...

∫

C1

(∫

C ′
1

...

∫

C ′
r

∑

i≥0

Fwtb1,i (z1, wt )S(v′
3, (b2, z2)

...(bm, zm)(v,w)(c1, w1)...

(b1(i)ct , wt )...(cr , wr )v2) · w
i1
1 ...wir

r dwr ...dw1)z
n1
1 ...znmm dz1...dzm

=
∫

Cm

...

∫

C2

m∑

l=2

∑

i≥0

(
n1
i

)
S(v′

3, (b2, z2)...(b1(i)bl , zl)...(bm, zm)(v,w)x2)

· zn22 ...zn1−i+nl
l ...znmm dz2...dzm +

∫

Cm

...

∫

C2

∑

i≥0

(
n1
i

)
S(v′

3,

(b2, z2)...(bm, zm)(b1(i)v,w)x2)w
n1−i zn22 ...znmm dz2...dzm

+
∫

Cm

...

∫

C2

∑

i≥0

(
n1
i

)
S(v′

3, (b2, z2)

...(v, w) (c1(i1)...(b1(i)ct )(n1 − i + it )...cr (ir )v2))

· zn22 ...znmm dz2...dzm

=
m∑

l=2

∑

i≥0

(
n1
i

)
S(v′

3, b2(n2)...(b1(i)bl)(n1 + nl − i)...bm(nm)(v,w)x2)

+
∑

i≥0

(
n1
i

)
S(v′

3, b2(n2)...bm(nm)(b1(i)v,w)x2)w
n1−i

+ S(v′
3, b2(n2)...bm(nm)(v,w)(b1(n1)x2)).

This proves (3.33). Now let x ′
3 = bm(nm) . . . b1(n1)v′

3 ∈ M̄3′
, with wtbi − ni − 1 > 0

for all i . We use induction on m to show that
∫

C
S(bm(nm)...b1(n1)v

′
3, (v,w)x2)w

ndw = 0, (3.34)

for any fixed v ∈ M1, x2 ∈ M̄2, and n ∈ Z such that n > deg v + deg x2 − 1. The base
case m = 0 follows from the Corollary 3.10. Let m > 0, then by (3.30) and (3.32), we
have:

∫

C
S(bm(nm)...b1(n1)v

′
3, (v,w)x2)w

ndw
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=
∫

C

∫

Cm

...

∫

C1

S(v′
3, (b1, z1)

′...(bm, zm)′(v,w)x2)z
−n1−2
1

...z−nm−2
m wndz1...dzmdw

=
∑

j1≥0,..., jm≥0

(−1)wtb1+...+wtbm

j1!... jm !
∫

C

∫

Cm

...

∫

C1

S(v′
3, (L(1) j1b1, z1)...(L(1) jm bm, zm)(v,w)x2)

· z2wtb1−n1−2− j1
1 ...z2wtbm−nm−2− jm

m wndz1...dzmdw.

=
∑

j1≥0,..., jm≥0

(−1)wtb1+...+wtbm

j1!... jm !
∫

C
S(v′

3, (L(1) j1b1)(2wtb1 − n1 − 2 − j1)...

...(L(1) jm bm)(2wtbm − nm − 2 − jm)(v,w)x2). (3.35)

It suffices to show that each summand in (3.35) is 0. For simplicity, we denote the term
(L(1) ji bi )(2wtbi − ni − 2 − ji ) by ci (ri ) for each i , note that

wtc1(r1) = wt(L(1) j1b1)(2wtb1 − n1 − 2 − j1) = −wtb1 + n1 + 1 < 0.

Then by (3.33), together with the definition formulas (3.32) and (3.31), we have:
∫

C
S(v′

3, c1(r1)...cm(rm)(v,w)x2)w
ndw

=
m∑

l=2

∑

i≥0

(
r1
i

) ∫

C
S(v′

3, c2(r2)...(c1(i)cl)(r1 + rl − i)...cm(rm)(v,w)x2)w
ndw

+
∑

i≥0

(
r1
i

)∫

C
S(v′

3, c2(r2)...cm(rm)(c1(i)v,w)x2)w
n+r1−i dw

+
∫

C
S(v′

3, c2(r2)...cm(rm)(v,w)(c1(r1)x2))w
ndw

=
m∑

l=2

∑

i≥0

(
r1
i

) ∫

C
S(c′

m(rm)...(c1(i)cl)
′(r1 + rl − i)...c′

2(r2)v
′
3, (v,w)x2)

(1)
wndw

+
∑

i≥0

(
r1
i

)∫

C
S(c′

m(rm)...c′
2(r2)v

′
3, (c1(i)v,w)x2)

(2)
wn+r1−i dw

+
∫

C
S(c′

m(rm)...c′
2(r2)v

′
3, (v,w)(c1(r1)x2))

(3)
wndw

= (1) + (2) + (3).

Since wtc1 − r1 − 1 < 0 and n > deg v + deg x2 − 1, we have

deg(c1(i)v) + deg x2 − 1 = deg v + deg x2 − 1 + wtc1 − i − 1 < n + r1 − i,

deg v + deg(c1(r1)x2) − 1 = deg v + deg x2 + wtc1 − r1 − 1 − 1 < n,

for all i ≥ 0. Then by the induction hypothesis, we have (1) = (2) = (3) = 0. This

finishes the proof of (3.34). Hence S in (3.30) belongs to Cor
( M̄3

M1 M̄2

)
. ��
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So far in this subsection, by abuse of notations, we used the same symbol S (3.30) for
the extension of a system of correlation functions S in (3.11). We denote the extended
S in (3.30) by ψ(S) for the rest of this subsection. Then by the Theorem 3.12, we have
a linear map:

ψ : Cor
(

M3(0)

M1 M2(0)

)
→ Cor

(
M̄2

M1 M̄2

)
, S �→ ψ(S), (3.36)

which is an inverse of the restriction map ϕ in (3.9), with M2 = M̄2 and M3 = M̄3.

Corollary 3.13. Let S ∈ Cor
( M3(0)
M1 M2(0)

)
. Then the linear functional f in Definition 3.1

is given by fv = o(v) = v(deg v − 1) = Resz I (z, w)wdeg v−1+h, where I ∈ I
( M̄2

M1 M̄2

)

is the intertwining operator corresponds to ψ(S) in Cor
( M̄2

M1 M̄2

)
.

Proof. By (3.3), we have S(v′
3, (v,w)v2) = 〈v′

3, fv(v2)〉w− deg v , for all v′
3 ∈ M3(0)∗,

v2 ∈ M2(0), and v ∈ M1. On the other hand, by (2.16),

S(v′
3, (v,w)v2) = ψ(S)(v′

3, (v,w)v2) = (v′
3, I (v,w)v2) = 〈v′

3, v(deg v − 1)v2〉w− deg v,

since v(m)M2(0) ⊆ M3(deg v − m − 1) for any m ∈ Z. Thus, fv = v(deg v − 1). ��
We finish this subsection by showing another property of the space of correlation

functions associated with three modules. By (3.28) and (3.30), the ψ(S) in (3.36) satis-
fies:

ψ(S)(c1( j1)...cm( jm)v′
3, (a1, z1)...(ap, z p)(v,w)b1(i1)...bn(in)v2)

=
∫

C ′
1

...

∫

C ′
m

∫

Cn

...

∫

C1

S(v′
3, (cm , wm)′...(c1, w1)

′(a1, z1)...(v, w)(b1, x1)...(bn, xn)v2)

· xi11 ...xinn w
− j1−2
1 ...w

− jm−2
m dx1...dxndwm ...dw1, (3.37)

where v′
3 ∈ M3(0)∗, v2 ∈ M2(0), v ∈ M1, ar , bs, ct ∈ V for all r, s, t , C ′

k is a contour
of wk , Cl is a contour of xl for all k, l, such that C1 ⊂ · · · ⊂ Cn ⊂ C ′

1 ⊂ · · · ⊂ C ′
m (we

use the subset symbol to indicate one contour is inside of the other), and z1, . . . , zn, w
are outside of C ′

1 but inside of Cn .
ByProposition 3.7 andTheorem6.2 in [2],wehave an epimorphismofV -modulesπ :

M̄(M2(0)) → M̄2,where M̄(M2(0)) is the generalizedVermamodulewith bottom level

M2(0). Similarly, there is an epimorphism π : M̄(M3(0)∗) → M̄3′
. More generally,

let N 2 and N 3 be any V -modules that are generated by their corresponding bottom
levels, and assume that N 2(0) = M2(0) and N 3(0) = M3(0). Suppose there exist

epimorphisms π : N 2 → M̄2 and π : N 3′ → M̄3′
.

If we write ReszYN (b, z)z j = b j and ReszYM̄ (b, z)z j = b( j), then we have

π(c1j1 ...c
m
jmv′

3) = c1( j1)...c
m( jm)v′

3, and π(b1i1 ...b
n
inv2) = b1(i1)...b

n(in)v2,

where ck, bl ∈ V , jk, il ∈ Z for all k, l, v′
3 ∈ M3(0)∗, and v2 ∈ M2(0). Thus we have a

linear map: π∗ : Cor( M̄3

M1 M̄2

) → Cor
( N3

M1 N2

)
that is given by:

π∗(S)(c1j1 ...c
m
jmv′

3, (a1, z1)...(an, zn)(v,w)b1i1 ...b
n
inv2)
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= S(c1( j1)...c
m( jm)v′

3, (a1, z1)...(an, zn)(v,w)b1(i1)...b
n(in)v2). (3.38)

Compose ψ and π∗, we have a linear map π∗ψ : Cor( M3(0)
M1 M2(0)

) → Cor
( N3

M1 N2

)
. We

claim that π∗ψ is the inverse of the restriction map ϕ : Cor( N3

M1 N2

) → Cor
( M3(0)
M1 M2(0)

)
.

Indeed, for S ∈ Cor
( M3(0)
M1 M2(0)

)
, by (3.37) and (3.38), we have:

ϕ(π∗ψ)(S)(v′
3, (a1, z1)...(an, zn)(v,w)v2)

= ψ(S)(π(v′
3), (a1, z1)...(an, zn)(v,w)π(v2))

= S(v′
3, (a1, z1)...(an, zn)(v,w)v2),

where v2 ∈ M2(0) and v′
3 ∈ M3(0)∗. Hence ϕ(π∗ψ) = 1. On the other hand, for

S ∈ Cor
( N3

M1 N2

)
, again by (3.37) and (3.38), together with the fact that S satisfies (2.9)

and (2.10), we have for any c1j1 ...c
m
jm

v′
3 ∈ N 3′

, b1i1 ...b
n
in

v2 ∈ N 2, a1, ..., an ∈ V , and

v ∈ M1,

(π∗ψ)ϕ(S)(c1j1 ...c
m
jmv′

3, (a1, z1)...(an, zn)(v,w)b1i1 ...b
n
inv2)

= ψ(ϕ(S))(c1( j1)...c
m( jm)v′

3, (a1, z1)...(an, zn)(v,w)b1(i1)...b
n(in)v2)

=
∫

C ′
1

...

∫

C ′
m

∫

Cn

...

∫

C1

ϕ(S)(v′
3, (c

m, wm)′

...(c1, w1)
′(a1, z1)...(v, w)(b1, x1)...(b

n, xn)v2)

· xi11 ...xinn w
− j1−2
1 ...w

− jm−2
m dx1...dxndwm ...dw1,

=
∫

C ′
1

...

∫

C ′
m

∫

Cn

...

∫

C1

S(v′
3, (c

m, wm)′...(c1, w1)
′(a1, z1)

...(v, w)(b1, x1)...(b
n, xn)v2)

· xi11 ...xinn w
− j1−2
1 ...w

− jm−2
m dx1...dxndwm ...dw1,

= S(c1j1 ...c
m
jmv′

3, (a1, z1)...(an, zn)(v,w)b1i1 ...b
n
inv2).

This shows (π∗ψ)ϕ = 1, and so we have Cor
( N3

M1 N2

) ∼= Cor
( M3(0)
M1 M2(0)

)
. In particular,

choose N 2 = M̄(M2(0)) and N 3 = M̄(M3(0)∗)′, then we have:

Cor

(
M̄(M3(0)∗)′

M1 M̄(M2(0))

)
∼= Cor

(
M3(0)

M1 M2(0)

)
∼= Cor

(
M̄3

M1 M̄2

)
(3.39)

Now by (3.39), Corollary 2.6 and Theorem 3.12, we have the following theorem:

Theorem 3.14. Let M1 be a V -module, and let M2(0) and M3(0) be irreducible A(V )-
modules, then we have the following isomorphism of vector spaces:

I

(
M̄(M3(0)∗)′

M1 M̄(M2(0))

)
∼= Cor

(
M3(0)

M1 M2(0)

)
∼= I

(
M̄3

M1 M̄2

)
. (3.40)
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If the VOA V is rational, then the generalized Verma module M̄(U ) is an irreducible
V -module for any irreducible A(V )-module U . Thus, M̄(M2(0)) = M̄2 = L(M2(0)),
and M̄(M3(0)∗)′ = M̄3 = L(M3(0)). On the other hand, by Theorem 2.2.2 in [13], if
M2 and M3 are irreducible V -module, then M2(0) and M3(0) are irreducible A(V )-
module.

Corollary 3.15. Let V be an rational VOA, and let M1, M2, and M3 be V -modules.

Suppose M2 and M3 are irreducible, then we have Cor
( M3(0)
M1 M2(0)

) ∼= I
( M3

M1 M2

)
.

Remark 3.16. Let W 2 and W 3 be any N-gradable V -module that are generated by their
corresponding bottom levels, and assume that W 2(0) = M2(0) and W 3(0) = M3(0).
Then there exist epimorphisms: π : M̄(M2(0)) → W 2, and π : M̄(M3(0)∗) → W 3′

.

Similar to (3.38),π induces a linearmap:π∗ : Cor( W 3

M1 W 2

)
↪→ Cor

( M̄(M3(0)∗)′
M1 M̄(M2(0))

)
,which

is injective since π are surjective. Then by Corollary 2.6, (3.39), and (3.40), we have the
following estimate for the fusion rule:

dim I

(
W 3

M1 W 2

)
≤ dim Cor

(
M3(0)

M1 M2(0)

)
. (3.41)

4. A(V )-Bimodules and the Correlation Function S

In this section, we again assume that M2(0) and M3(0) are irreducible A(V )-modules.
By Proposition 3.7, L(0) = o(ω) = h2 · Id on M2(0), and L(0) = h3 · Id on M3(0),
for some h2, h3 ∈ C. Moreover, h2 and h3 are the conformal weights of M̄2 and M̄3,
respectively.

Wewill show thatCor
( M3(0)
M1 M2(0)

)
canbe identifiedwith thevector space (M3(0)∗⊗A(V )

Bh(M1) ⊗A(V ) M2(0))∗, where Bh(M1) is an A(V )-bimodule that is similar to the
A(V )-bimodule A0(M1) constructed in [7].

However, there are counter-examples showing that this identification is false if one
replaces Bh(M1) by the A(V )-bimodule A(M1) constructed in Theorem 1.5.1 in [6] or
A0(M1) constructed in Section 4 of [7]. The reason is that the correct L(−1)-derivation
property of the intertwining operators cannot be captured by A(M1) nor A0(M1). We
will see this by the end of this section.

4.1. The A(V )-Bimodule Bλ(W ). Let W be a V -module with conformal weight h′. A
sequence of AN (V )-bimodules AN (W ) are constructed by Huang and Yang in Section
4 of [7]. In particular, the A0(V ) = A(V )-bimodule A0(W ) is defined as follows:

A0(W ) = W/O0(W ), where O0(W ) = span{a ◦ u, L(−1)u + (L(0) − h′)u :
∀a ∈ V, u ∈ W }. It is proved (see Theorem 4.7 in [7]) that A0(W ) is an A(V )-

bimodule under the left and right actions: a ∗0 u = ReszYW (a, z)u (1+z)wta

z and v ∗0 a =
ReszYW

WV (u, z)a (1+z)deg u

z , where YW
WV is defined by the skew-symmetry formula (5.1.5)

in [4]:
YW
WV (u, z)a = ezL(−1)YW (a,−z)u. (4.1)

Now let λ ∈ C be a fixed complex number, we construct another A(V )-bimodule
Bλ(W ) that is similar to A0(W ) in the following way:
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Definition 4.1. For homogeneous elements u ∈ W and a ∈ V , define:

u ◦ W
WV

a := Resz

(
YW
WV (u, z)a

(1 + z)deg u+λ

z2

)
, (4.2)

then extend ◦ bilinearly to ◦ : W × V → W . Let OW
WV (W ) be the vector space spanned

by elements (4.2) for all a ∈ V and u ∈ W , and let Bλ(W ) := W/(O(W ) + OW
WV (W )),

where O(W ) = span{a ◦ u = Resz
(
YW (a, z)u (1+z)wta

z2

)
: ∀a ∈ V, u ∈ W }.

Lemma 4.2. Let u ∈ W and a ∈ V by homogeneous elements, and m ≥ n ≥ 0. Then

ReszY
W
WV (u, z)a

(1 + z)deg u+λ+n

z2+m
∈ OW

WV (W ). (4.3)

Proof. Since YW
WV (L(−1)u, z) = d

dz Y
W
WV (u, z), the proof of (4.3) is almost the same

as the proof of Lemma 2.1.2 in [13], we omit the details. ��
Recall that the module actions of A(V ) on its bimodule A(W ) are given by:

b ∗ v = Resz

(
YW (b, z)v

(1 + z)wtb

z

)
, and v ∗ b = Resz

(
YW (b, z)v

(1 + z)wtb−1

z

)
,

where b ∈ V is homogeneous and v ∈ W (see Definition 1.5.2 in [6]).

Lemma 4.3. b ∗ OW
WV (W ) ⊆ OW

WV (W ) and OW
WV (W ) ∗ b ⊆ OW

WV (W ), for all b ∈ V .

Proof. Let u ∈ W and b ∈ V be homogeneous, and let a ∈ V . By Definition 4.1,
Lemma 4.2, and the Jacobi identity of the intertwining operator YW

WV , we have:

b ∗ (u ◦ W
WV

a) ≡ Resz1YW (b, z1)
(1 + z1)wtb

z1
Resz2Y

W
WV (u, z2)a

(1 + z2)deg u+λ

z22

− Resz2Y
W
WV (u, z2)

(1 + z2)deg u+λ

z22
Resz1YV (u, z1)a

(1 + z1)wtb

z1
(mod OW

WV (W ))

= Resz0Resz2Y
W
WV (YW (b, z0), z2)a

(1 + z2 + z0)wtb

z2 + z0
· (1 + z2)deg u+λ

z22

= Resz0Resz2

wtb∑

i=0

∑

j≥0

YW
WV (YW (b, z0)u, z2)a

(
wtb

i

)
(−1) j zi+ j0

(1 + z2)deg u+λ+wtb−i

z2+ j+12

=
wtb∑

i=0

∑

j≥0

(
wtb

i

)
Resz2Y

W
WV (bi+ j u, z2)a

(1 + z2)deg(bi+ j u)+λ+( j+1)

z2+( j+1)
2

≡ 0 (mod OW
WV (W )),

where the last congruence follows from Lemma 4.2. By a similar computation, we have:

(u ◦ W
WV

a) ∗ b ≡
wtb−1∑

i=0

∑

j≥0

(
wtb − 1

i

)
Resz2Y

W
WV (bi+ j u, z2)a

(1 + z2)deg(bi+ j u)+λ+ j

z2+( j+1)
2

≡ 0 (mod OW
WV (W )).

Hence we have b ∗ OW
WV (W ) ⊆ OW

WV (W ), and OW
WV (W ) ∗ b ⊆ OW

WV (W ). ��
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By Lemma 4.3 and Theorem 1.5.1 in [6], Bλ(W ) = W/(O(W ) + OW
WV (W )) has an

A(V )-bimodule structure with respect to b ∗ v and v ∗ b. Moreover, Bλ(W ) is a quotient
module of A(W ). In particular, we have the following formula holds in Bλ(W ):

a ∗ u − u ∗ a ≡
∑

j≥0

(
wta − 1

j

)
a( j)u (mod OW

WV (W ) + O(W )), (4.4)

where a ∈ V homogeneous, and u ∈ W . Let

Oλ(W ) := span{a ◦ u, L(−1)u + (L(0) − h′ + λ)u : ∀a ∈ V, u ∈ W } ⊂ W. (4.5)

Lemma 4.4. For any u ∈ W, we have L(−1)u + (L(0) − h′ + λ)u ∈ OW
WV (W ).

Proof. Let u ∈ W be homogeneous. Since deg u = (L(0) − h′)u, we have:

u ◦ W
WV

1 = Resze
zL(−1)YW (1,−z)u

(1 + z)deg u+λ

z2

= Resz
∑

j≥0

z j

j ! L(−1) j
deg u+λ∑

i=0

(
deg u + λ

i

)
zi−2

=
(
deg u + λ

0

)
L(−1)u +

(
deg u + λ

1

)
L(−1)0u

= (L(−1) + L(0) − h′ + λ)u.

Hence (L(−1) + (L(0) − h′ + λ))u ∈ OW
WV (W ). ��

Lemma 4.5. Wehave O(W )+OW
WV (W ) = Oλ(W ). In particular, Bλ(W ) = W/Oλ(W ).

Proof. By Lemma 4.4, we only need to show that OW
WV (W ) ⊆ Oλ(W ). Similar to the

proof of Lemma 2.1.3 in [13], for any homogeneous u ∈ W and a ∈ V , we have:

YW
WV (u, z)a ≡ (1 + z)− deg u−λ−wtaYW

(
a, −z

1+z

)
u (mod Oλ(W )). It follows that

u ◦ W
WV

a = ReszY
W
WV (u, z)a

(1 + z)deg u+λ

z2

≡ ReszYW

(
a,

−z

1 + z

)
u

(1 + z)−wta

z2
(mod Oλ(W ))

≡ −ReswYW (a, w)u
(1 + w)wta

w2 (mod Oλ(W )).

Hence u ◦ W
WV

a ≡ −a ◦ u (mod Oλ(W )), and so OW
WV (W ) + O(W ) = Oλ(W ). ��

Now let W = M1, and λ = h = h1 + h2 − h3. Then by (4.5) and Lemma 4.5,
Bh(M1) = M1/Oh(M1), where Oh(M1) = span{a ◦u, L(−1)u + (L(0)+h2 −h3)u :
∀a ∈ V, u ∈ M1}.
Lemma 4.6. Let I ∈ I

( M̄3

M1 M̄2

)
, then the linear map

o : M1 → HomC(M2(0), M3(0)), o(v) = v(deg v − 1) = Resz I (v, z)zdeg v−1+h

factors through Bh(M1) = M1/Oh(M1).



1270 J. Liu

Proof. By Lemma 4.5, we need to show that o(Oh(M1)) = 0. By Lemma 1.5.2 in
[6], we already have o(a ◦ u) = 0 for all a ∈ V and u ∈ M1. Furthermore, by the
L(−1)-derivation property of I , we have:

o(L(−1)v) = Resz I (L(−1)v, z)zdeg v+1−1+h

= Resz

(
d

dz
I (v, z)

)
zdeg v+h

= Resz I (v, z)(− deg v − h)zdeg v+h−1

= −((L(0) − h1 + h)v)(deg v − 1)

= −o((L(0) + h2 − h3)v).

Hence o(Oh(M1)) = 0, and so o factors through Bh(M1). ��
Proposition 4.7. There exists an injective linear map:

ν : Cor
(

M3(0)

M1 M2(0)

)
→ (M3(0)∗ ⊗A(V ) Bh(M

1) ⊗A(V ) M
2(0))∗

S �→ fS, fS(v
′
3 ⊗ v ⊗ v2) := 〈v′

3, fv(v2)〉, (4.6)

where we use the same symbol v for its image in Bh(M1).

Proof. First,wehave fv = o(v)byCorollary 3.13,whereo(v) = Resw I (v,w)wdeg v−1+h ,

and I ∈ I
( M̄3

M1 M̄2

)
is the intertwining operator corresponds to ψ(S) in Cor

( M̄3

M1 M̄2

)
, see

Theorem 3.14. Moreover, it follows from Lemma 4.6 that o(Oh(M1)) = 0. Hence ν is
well-defined. The injectivity of ν follows from Lemma 3.3. ��
Remark 4.8. Althoughour definition for Bh(M1) is similar to the A(V )-bimodule A0(M1)

constructed by Huang and Yang in [7], they are not isomorphic as A(V )-bimodules. We
will give a counter-example in the next subsection.

Our goal next is to construct an inversemap of ν in (4.6). Given a f ∈ (M3(0)∗⊗A(V )

Bh(M1) ⊗A(V ) M2(0))∗, we need to construct a corresponding system of correlation

functions S in Cor
( M3(0)
M1 M2(0)

)
. Our strategy is to use the recursive formulas (3.4) and

(3.6) and construct the system of functions S inductively. The key is to show the locality
((2) in Definition 2.1) in each step, which can be achieved by the properties of the
A(V )-bimodule Bh(M1), together with the formula (3.8).

4.2. The Construction of 4-Point and 5-Point Functions. From now on, we fix a linear
function f on the vector space M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0).

Definition 4.9. Define SM : M3(0)∗ × M1 × M2(0) → F(w) by

SM (v′
3, (v,w)v2) := f (v′

3 ⊗ v ⊗ v2)w
− deg v, (4.7)

where on the right-hand side we use the same symbol v for its image v + O(M1) in
Bh(M1).
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Define SLV M : M3(0)∗ × V × M1 × M2(0) → F(z, w) by

SLV M (v′
3, (a, z)(v,w)v2) := SM (v′

3o(a), (v,w)v2)z
−wta

+
∑

i≥0

Fwta,i (z, w)SM (v′
3, (a(i)v,w)v2).

(4.8)

Finally, define SR
MV : M3(0)∗ × M1 × V × M2(0) → F(z, w) by

SR
MV (v′

3, (v,w)(a, z)v2) := SM (v′
3, (v,w)o(a)v2)z

−wta

+
∑

i≥0

Gwta,i (z, w)SM (v′
3, (a(i)v,w)v2).

(4.9)

The upper index L (resp.R) in the 4-point functions S indicates that we use the expan-
sion formula for the left (resp. right) most term, namely, (3.4) (resp.(3.6)) to construct
the new S from the 3-point function. We will denote the 3-point function SM by S.

Proposition 4.10. As rational functions in F(z, w), we have:

SLV M (v′
3, (a, z)(v,w)v2) = SR

MV (v′
3, (v,w)(a, z)v2).

Proof. ByDefinition 4.9, (3.8), and the property ofM3(0)∗⊗A(V )Bh(M1)⊗A(V )M2(0),

SLV M (v′
3, (a, z)(v,w)v2) − SR

MV (v′
3, (v,w)(a, z)v2)

= f (v′
3o(a) ⊗ v ⊗ v2)w

− deg vz−wta − f (v′
3 ⊗ v ⊗ o(a)v2)w

− deg vz−wta

+
∑

i≥0

(Fwta,i (z, w) − Gwta,i (z, w))SM (v′
3, (a(i)v,w)v2)

= f (v′
3 ⊗ a ∗ v ⊗ v2)w

− deg vz−wta − f (v′
3 ⊗ v ∗ a ⊗ v2)w

− deg vz−wta

−
∑

i≥0

(
wta − 1

i

)
f (v′

3 ⊗ a(i)v ⊗ v2)w
− deg v−wta+i+1z−wtawwta−1−i

= f (v′
3 ⊗ (a ∗ v − v ∗ a) ⊗ v2)w

− deg vz−wta

−
∑

i≥0

(
wta − 1

i

)
f (v′

3 ⊗ a(i)v ⊗ v2)z
−wtaw− deg v.

By (4.4), we also have a ∗ v − v ∗ a = ∑
i≥0

(wta−1
i

)
a(i)v holds in the A(V )-bimodule

Bh(M1). Hence SLV M (v′
3, (a, z)(v,w)v2) − SR

MV (v′
3, (v,w)(a, z)v2) = 0. ��

By Proposition 4.10, the 4-point functions SLV M and SR
MV in definition 4.9 give rise

to one single 4-point function S that satisfies

S(v′
3, (a, z)(v,w)v2) = S(v′

3, (v,w)(a, z)v2), (4.10)

and this function can be defined either by (4.8) or (4.9).
We adopt a similar method to construct 5-point functions. As long as the term (v,w)

does not appear at the left-most place, we use the formula (3.4) to construct S from the
4-point function; if (v,w) appears at the left-most place, we use (3.6) to construct S.
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Definition 4.11. Define the 5-point functions with the upper index L ,

SLV MV (v′
3, (a1, z1)(v,w)(a2, z2)v2), and SLVV M (v′

3, (a1, z1)(a2, z2)(v,w)v2),

by expanding (a1, z1) from the left, which is given by the common formula:

S(v′
3o(a1), (v,w)(a2, z2)v2)z

−wta1
1 +

∑

j≥0

Fwta1, j (z1, w)S(v′
3, (a1( j)v,w)(a2, z2)v2)

+
∑

j≥0

Fwta1, j (z1, z2)S(v′
3, (v,w)(a1( j)a2, z2)v2).

(4.11)
Define the 5-point functions with upper index R,

SR
V MV (v′

3, (a2, z2)(v,w)(a1, z1)v2), and SR
MVV (v′

3, (v,w)(a2, z2)(a1, z1)v2),

by expanding (a1, z1) from the right, which is given by the common formula:

S(v′
3, (a2, z2)(v,w)o(a1)v2)z

−wta1
1

+
∑

j≥0

Gwta1, j (z1, w)S(v′
3, (a2, z2)(a1( j)v,w)v2)

+
∑

j≥0

Gwta1, j (z1, z2)S(v′
3, (a1( j)a2, z2)(v,w)v2).

(4.12)

The function S in (4.11) and (4.12) is the (common) 4-point function inDefinition 4.9.
By (4.10), itmakes sense to define SLV MV and SLV V M by the same formula, same for SR

V MV
and SR

MVV . We will show that all the 5-point functions in Definition 4.11 are the same.
First, we observe that the term SV MV (v′

3, (a1, z1)(v,w)(a2, z2)v2) has the following two
expressions: SLV MV (v′

3, (a1, z1)(v,w)(a2, z2)v2) and SR
V MV (v′

3, (a1, z1)(v,w)(a2, z2)v2).

Proposition 4.12. If (4.11)=(4.12), then we have:

SLV MV (v′
3, (a1, z1)(v,w)(a2, z2)v2) = SR

V MV (v′
3, (a1, z1)(v,w)(a2, z2)v2).

Proof. Note that (4.11) is a generalization of the function (2.2.6) in [13]. By a similar
calculation, it is easy to see that the formula (2.2.11) in [13] also holds for our case. i.e.,
we can swap the terms (a1, z1) and (a2, z2) in SLVV M :

SLVV M (v′
3, (a1, z1)(a2, z2)(v,w)v2) = SLVV M (v′

3, (a2, z2)(a1, z1)(v,w)v2). (4.13)

By the assumption that (4.11)=(4.12), Definition 4.11, and (4.13), we have:

SLV MV (v′
3, (a1, z1)(v,w)(a2, z2)v2)

= SLVV M (v′
3, (a1, z1)(a2, z2)(v,w)v2)

= SLVV M (v′
3, (a2, z2)(a1, z1)(v,w)v2)

= SLV MV (v′
3, (a2, z2)(v,w)(a1, z1)v2)

= SR
V MV (v′

3, (a1, z1)(v,w)(a2, z2)v2),

where the last equality follows from the assumption that (4.11)=(4.12). ��
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Next, we show that (4.11)=(4.12). We use symbols (1), (2), and (3) to denote the
difference of the three summands in the term (4.11)-(4.12):

S(v′
3o(a1), (v,w)(a2, z2)v2)z

−wta1
1 − S(v′

3, (a2, z2)(v,w)o(a1)v2)z
−wta1
1 . (1)

∑

j≥0

(Fwta1, j (z1, w) − Gwta1, j (z1, w))S(v′
3, (a1( j)v,w)(a2, z2)v2). (2)

∑

j≥0

(Fwta1, j (z1, z2) − Gwta1, j (z1, z2))S(v′
3, (v,w)(a1( j)a2, z2)v2). (3)

So we need to show that (1)+(2)+(3)=0.
By (4.10), we may use the formula (4.8) and expand both terms in (1) with respect

to (a2, z2) from the left. Then (1) can be expressed as:

S(v′
3o(a1), (v,w)(a2, z2)v2)z

−wta1
1 − S(v′

3, (a2, z2)(v,w)o(a1)v2)z
−wta1
1

= S(v′
3o(a1)o(a2), (v,w)v2)z

−wta1
1 z−wta2

2

+
∑

i≥0

Fwta2,i (z2, w)S(v′
3o(a1), (a2(i)v,w)v2)z

−wta1
1

− S(v′
3o(a2), (v,w)o(a1)v2)z

−wta1
1 z−wta2

2

+
∑

i≥0

Fwta2,i (z2, w)S(v′
3, (a2(i)v,w)o(a1)v2)z

−wta1
1

= f (v′
3 ⊗ a1 ∗ a2 ∗ v ⊗ v2)w

− deg vz−wta1
1 z−wta2

2
(11)

− f (v′
3 ⊗ a2 ∗ v ∗ a1 ⊗ v2)w

− deg vz−wta1
1 z−wta2

2
(12)

+
∑

i≥0

F
(13)wta2,i

(z2, w) f (v′
3 ⊗ (a1 ∗ (a2(i)v))

− (a2(i)v) ∗ a1) ⊗ v2)w
−wta2−deg v+i+1z−wta1

1

= (11) + (12) + (13).

For the term (2), we use the formula (4.8) agian and expand each summand in (2) with
respect to (a2, z2) from the left. Then by (3.8), (2) can be expressed as:

(2) =
∑

j≥0

Fwta1, j (z1, w)S(v′
3o(a2), (a1( j)v,w)v2)z

−wta2
2

+
∑

j≥0

∑

i≥0

Fwta1, j (z1, w)Fwta2,i (z2, w)S(v′
3, (a2(i)a1( j)v,w)v2)

−
∑

j≥0

Gwta1, j (z1, w)S(v′
3o(a2), (a1( j)v,w)v2)z

−wta2
2

−
∑

j≥0

∑

ı≥0

Gwta1, j (z1, w)Fwta2,i (z2, w)S(v′
3, (a2(i)a1( j)v,w)v2)

=
∑

j≥0

−
(
wta1 − 1

j

)
S(v′

3o(a2), (a1( j)v,w)v2)z
−wta1
1 z−wta2

2 wwta1−1− j

(21)
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+
∑

j≥0

∑

i≥0

−
(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j Fwta2,w(z2, w)S(v′

3, (a2(i)a1( j)v,w)v2)
(22)

= (21) + (22).

Finally, for the term (3), we expand each of its summandwith respect to (a1( j)a2, z2)
from the left, so (3) can be expressed as:

(3) =
∑

j≥0

Fwta1, j (z1, z2)S(v′
3o(a1( j)a2), (v,w)v2)z

−wta1−wta2+ j+1
2

+
∑

j≥0

∑

i≥0

Fwta1, j (z1, z2)Fwta1+wta2− j−1,i (z2, w)S(v′
3, ((a1( j)a2)(i)v,w)v2)

−
∑

j≥0

Gwta1, j (z1, z2)S(v′
3o(a1( j)a2), (v,w)v2)z

−wta1−wta2+ j+1
2

+
∑

j≥0

∑

i≥0

Gwta1, j (z1, z2)Fwta1+wta2− j−1,i (z2, w)S(v′
3, ((a1( j)a2)(i)v,w)v2)

=
∑

j≥0

−
(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

2 S(v′
3o(a1( j)a2), (v,w)v2)z

−wta1−wta2+ j+1
2

(31)

+
∑

j≥0

∑

i≥0

−
(
wta1 − 1

j

)

z−wta1
1 zwta1−1− j

2 Fwta1+wta2− j−1,i (z2, w)S(v′
3, (a1( j)a2)(i)(v,w)v2)

(32)

= (31) + (32).

We need to show that (11) + (12) + (13) + (21) + (22) + (31) + (32) = 0. In fact, since
a ∗ v − v ∗ a = ReszY (a, z)v(1 + z)wta−1 = ∑

j≥0

(wta−1
j

)
a( j)v in Bh(M1), see (4.4),

and a1 ∗ a2 − a2 ∗ a1 = ∑
j≥0

(wta1−1
j

)
a1( j)a2 in A(V ), we can rewrite (21) and (31)

as:

(21) = −
∑

j≥0

(
wta1 − 1

j

)
w−wta1−deg v+ j+1zwta11 zwta22 wwta1− j−1

f (v′
3o(a2) ⊗ a1( j)v ⊗ v2)

= −w− deg vz−wta1
1 zwta22 f (v′

3 ⊗ (a2 ∗ a1 ∗ v − a2 ∗ v ∗ a1) ⊗ v2);
(31) = −

∑

j≥0

(
wta1 − 1

j

)
z−wta1
1 z−wta2

2 w− deg v f (v′
3o(a1( j)a2) ⊗ v ⊗ v2)

= −z−wta1
1 z−wta2

2 w− deg v f (v′
3 ⊗ (a1 ∗ a2 ∗ v − a2 ∗ a1 ∗ v) ⊗ v2).

Then by the bimodule property of Bh(M1), we have:

(11) + (12) + (21) + (31)

= f (v′
3 ⊗ a1 ∗ a2 ∗ v ⊗ v2)w

− deg vz−wta1
1 z−wta2

2

− f (v′
3 ⊗ a2 ∗ v ∗ a1 ⊗ v2)w

− deg vz−wta1
1 z−wta2

2
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− w− deg vz−wta1
1 zwta22 f (v′

3 ⊗ (a2 ∗ a1 ∗ v − a2 ∗ v ∗ a1) ⊗ v2)

− z−wta1
1 z−wta2

2 w− deg v f (v′
3 ⊗ (a1 ∗ a2 ∗ v − a2 ∗ a1 ∗ v) ⊗ v2) = 0.

It remains to show that (13) + (22) + (32) = 0.

Lemma 4.13. Let M be a V module, and let a1, a2 ∈ V , v ∈ M, and n ∈ N. We have:

∑

i, j≥0

(
wta1 − 1

j

)(
wta2 + n

i

)
(a1( j)a2(i)v − a2(i)a1( j)v)

=
∑

i, j≥0

(
wta1 − 1

j

)(
wta1 + wta2 − j − 1 + n

i

)
(a1( j)a2)(i)v

(4.14)

Proof: Choose complex variables z1, z2 in the domain |z1| < 1, |z2| < 1, |z1 − z2| <

|1 + z2|.
By the Jacobi identity in the residue form, the left-hand side of (4.14) can be written as:

Resz1,z2
∑

i, j≥0

(
wta1 − 1

j

)(
wta2 + n

i

)
z j1z

i
2(Y (a1, z1)Y (a2, z2)v − Y (a2, z2)Y (a1, z1)v)

= Resz1,z2(1 + z1)
wta1−1(1 + z2)

wta2+n(Y (a1, z1)Y (a2, z2)v − Y (a2, z2)Y (a1, z1)v)

= Resz2Resz1−z2(1 + z2 + (z1 − z2))
wta1−1(1 + z2)

wta2+nY (Y (a1, z1 − z2)a2, z2)v

= Resz2Resz1−z2

∑

j≥0

(
wta1 − 1

j

)
(1 + z2)

wta1−1− j+wta2+n

(z1 − z2)
j Y (Y (a1, z1 − z2)a2, z2)v

=
∑

i, j≥0

(
wta1 − 1

j

)(
wta1 + wta2 − j − 1 + n

i

)
(a1( j)a2)(i)v,

which is the right-hand side of (4.14). ��
We use the formula (4.4) again and rewrite (13) as:

(13) =
∑

i, j≥0

(
wta1 − 1

j

)
z−wta1
1 w−wta2−deg v+i+1Fwta2,i (z2, w) f (v′

3 ⊗ a1( j)a2(i)v ⊗ v2).

Since the map ιz2,w is injective (see Section 3 in [4]), we only need to show that
ιz2,w((13) + (22) + (32)) = 0. By (3.5), ιz2,w(Fwta2,i (z2, w)) can be written as:

ιz2,w(Fwta2,i (z2, w)) =
∑

n≥0

(
wta2 + n

i

)
wwta2+n−i z−wta2−n−1

2

To simplify our notation, we denote zwta11 w− deg v+n+1z−wta2−n−1
2 by γ . By Lemma 4.13,

ιz2,w(13) + ιz2,w(22)

=
∑

i, j≥0

(
wta1 − 1

j

)
zwta11 w−wta2−deg v+i+1

⎛

⎝
∑

n≥0

(
wta2 + n

i

)
wwta2+n−i z−wta2−n−1

2

⎞

⎠

· ( f (v′
3 ⊗ a1( j)a2(i)v ⊗ v2) − f (v′

3 ⊗ a2(i)a1( j)v ⊗ v2))
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=
∑

i, j,n≥0

(
wta1 − 1

j

)(
wta2 + n

i

)
γ · f (v′

3 ⊗ (a1( j)a2(i)v − a2(i)a1( j)v) ⊗ v2)

=
∑

i, j,n≥0

(
wta1 − 1

j

)(
wta1 + wta2 + n − j − 1

i

)
γ · f (v′

3 ⊗ (a1( j)a2)(i)v ⊗ v2)

= −ιz2,w(32).

Now the proof of (4.11)=(4.12) is complete.
Therefore, the 5 point functions in Definition 4.11 give rise to one single 5-point

function S that satisfies:

S(v′
3, (a1, z1)(a2, z2)(v,w)v2) = S(v′

3, (a2, z2)(a1, z1)(v,w)v2)

= S(v′
3, (a1, z1)(v,w)(a2, z2)v2) = S(v′

3, (a2, z2)(v,w)(a1, z1)v2)

= S(v′
3, (v,w)(a1, z1)(a2, z2)v2) = S(v′

3, (v,w)(a2, z2)(a1, z1)v2). (4.15)

In particular, the 5-point function S satisfies the locality in Definition 2.1, with v′
3 ∈

M3(0)∗ and v2 ∈ M2(0). Moreover, S(v′
3, (a1, z1)(a2, z2)(v,w)v2) also satisfies both

of the recursive formula (3.4) and (3.6) by its definition.

4.3. Construction of (n + 3)-Point Functions. We construct the general (n + 3)-point
function S using induction on n. We have finished the base cases n = 1, 2 in the previous
subsection. Now assume the (n + 2)-point function:

S : M3(0)∗ × V × · · · × M1 × · · · × V × M2(0) → F(z1, . . . , zn−1, w)

exist and satisfy the following two properties: Let {(b1, w1), (b2, w2), . . . , (bn, wn)} be
the same set as {(a1, z1), . . . , (an−1, zn−1), (v,w)}. The first property is the locality:

S(v′
3, (a1, z1)(a2, z2)...(an−1, zn−1)(v,w)v2) = S(v′

3, (b1, w1)(b2, w2)...(bn, wn)v2),

(I)

that is, the terms (a1, z1),(a2, z2), . . . , (an−1, zn−1), and (v,w) can be permutated ar-
bitrarily within S. Denote by SL (resp. SR) the expansion of the (n + 1)-point function
S with respect to the left (resp. right)-most term using (3.4) (resp. (3.6)). The second
property is that

S(v′
3, (b1, w1)(b2, w2)...(bn, wn)v2) = SL(v′

3, (b1, w1)(b2, w2)...(bn, wn)v2) (II)

= SR(v′
3, (b1, w1)(b2, w2)...(bn, wn)v2),

where (b1, w1) in SL is not (v,w), and (bn, wn) in SR is not (v,w).
Note that properties (I) and (II) are satisfied by the 4-point and 5-point functions (see

(4.10) and (4.15).) We construct (n + 3)-point functions as follows:

Definition 4.14. Assume the number of V in the sub-indices of SL
VV ...M1...V

and

SR
V ...M1...VV

are both equal to n, the sub-index M1 in SL is not at the first place, and the

sub-index M1 in SR is not at the last place. We define SL
VV ...M1...V

by

SLVV ...M1...V (v′
3, (a1, z1)...(v, w)...v2) := S(v′

3o(a1), (a2, z2)...(an, zn)(v,w)v2)z
−wta1
1
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+
n∑

k=2

∑

j≥0

Fwta1, j (z1, zk)S(v′
3, (a2, z2)...(a1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

Fwta1, j (z1, w)S(v′
3, (a2, z2)...(an, zn)(a1( j)v,w)v2), (4.16)

and define SR
V ...M1...VV

by

SR
V ...M1...VV (v′

3, ...(v, w)...(a1, z1)v2) := S(v′
3, (a2, z2)...(an, zn)(v,w)o(a1)v2)z

−wta1
1

+
n∑

k=2

∑

j≥0

Gwta1, j (z1, zk)S(v′
3, (a2, z2)...(a1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

Gwta1, j (z1, w)S(v′
3, (a2, z2)...(an, zn)(a1( j)v,w)v2), (4.17)

where the S on right-hand sides of (4.16) and (4.17) is the (n + 2)-point function.

The definition above indicates that SLV MV ...V = SLVV M...V = · · · = SLVV ...V M , which
is reasonable because the (n+2)-point function S on the right-hand side of (4.16) satisfies
the locality property (I). For a similar reason, we can also expect that SR

MV ...VV =
SR
V M...VV = · · · = SR

V ...V MV . We need to show that

SLV ...M...V (v′
3, (a1, z1)...(v, w)...(a2, z2)v2)

= SR
V ...M...V (v′

3, (a1, z1)...(v, w)...(a2, z2)v2),
(4.18)

for all SLVV ...M...V and SR
V ...M...V V .

Indeed, as we mentioned in Proposition 4.10, since (4.16) is the generalization of
(2.2.6) in [13], by a similar argument as the proof of (2.2.11) in [13], we have:

SLVV ...M...V (v′
3, (a1, z1)(a2, z2)...(v, w)...v2)

= SLVV ...M...V (v′
3, (a2, z2)(a1, z1)...(v, w)...v2).

(4.19)

Proposition 4.15. If SLV V ...M...V (v′
3, (a1, z1)...v2) = SR

V ...M...V V (v′
3, ...(a1, z1)v2), i.e. if

the right-hand side of (4.16) is equal to the right-hand side of (4.17), then (4.18) holds.

Proof: The proof is similar to the proof of Proposition 4.12. By (4.19) and the assump-
tion,

SLV ...M...V (v′
3, (a1, z1)...(v, w)...(a2, z2)v2)

= SLVV ...M...V (v′
3, (a1, z1)(a2, z2)...(v, w)...v2)

= SLVV ...M...V (v′
3, (a2, z2)(a1, z1)...(v, w)...v2)

= SR
V ...M...V V (v′

3, (a1, z1)...(v, w)...(a2, z2)v2)

as asserted. ��
Now we are left to show that:

SLVV ...M...V (v′
3, (a1, z1)...(v, w)...v2) = SR

V ...M...VV (v′
3, ...(v, w)...(a1, z1)v2). (4.20)
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Similar to the previous subsection, we use the symbols (1), (2), (3), and (4) to denote
the following summands on the right-hand side of (4.16)-(4.17):

S(v′
3o(a1), (a2, z2)...(v, w)v2)z

−wta1 − S(v′
3, (a2, z2)...(v, w)o(a1)v2)z

−wta1 . (1)
∑

j≥0

(Fwta1, j (z1, z2) − Gwta1, j (z1, z2))S(v′
3, (a1( j)a2, z2)...(an, zn)(v,w)v2). (2)

n∑

k=3

∑

j≥0

(Fwta1, j (z1, zk) − Gwta1, j (z1, zk))S(v′
3, (a2, z2)...(a1( j)ak, zk)...(v, w)v2).

(3)
∑

j≥0

((Fwta1, j (z1, w) − Gwta1, j (z1, w))S(v′
3, (a2, z2)...(an, zn)(a1( j)v,w)v2). (4)

Then we need to show that (1)+(2)+(3)+(4)=0.
Our strategy is to apply the expansion formula (3.4) and expand each summand of

(1)-(4) with respect to the left-most term. Then we add them all up and show that the sum
equals 0. (Since we are using the recursive formula (3.4) twice and the 3-point function
cannot be expanded, the construction of the 5-point function in the previous subsection
is necessary for our induction process.)

Start with (1), note that S(v′
3o(a1), (a2, z2)...(an, zn)(v,w)v2)z−wta1 can be written

as:

S(v′
3o(a1)o(a2), (a3, z3)...(an, zn)(v,w)v2)z

−wta1
1 z−wta2

2 (∗)

+
n∑

t=3

∑

i≥0

Fwta2,i (z2, zt )S(v′
3o(a1), (a3, z3)...(a2(i)at , zt )...(an, zn)(v,w)v2)z

−wta1
1

+
∑

i≥0

Fwta2,i (z2, w)S(v′
3o(a1), (a3, z3)...(an, zn)(a2(i)v,w)v2)z

−wta1
1 ,

and S(v′
3, (a2, z2)...(an, zn)(v,w)o(a1)v2)z

−wta1
1 can be written as

S(v′
3o(a2), (a3, z3)...(an, zn)(v,w)o(a1)v2)z

−wta1
1 z−wta2

2 (∗∗)

+
n∑

t=3

∑

i≥0

Fwta2,i (z2, zt )S(v′
3, (a3, z3)

...(a2(i)at , zt )...(an, zn)(v,w)o(a1)v2)z
−wta1
1

+
∑

i≥0

Fwta2,i (z2, w)S(v′
3, (a3, z3)...(an, zn)(a2(i)v,w)o(a1)v2)z

−wta1
1 .

We denote the first, second, and third corresponding terms in (∗)-(∗∗) by (11), (12), and
(13), respectively. In particular, (11) is

S(v′
3o(a1)o(a2), (a3, z3)...(an, zn)(v,w)v2)z

−wta1
1 z−wta2

2 (11)

− S(v′
3o(a2), (a3, z3)...(an, zn)(v,w)o(a1)v2)z

−wta1
1 z−wta2

2 .
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Lemma 4.16. As (n + 1)-point function, we have:

S(v′
3o(a1), (a3, z3)...(an, zn)(v,w)v2) − S(v′

3, (a3, z3)...(an, zn)(v,w)o(a1)v2)

=
n∑

k=3

∑

j≥0

(
wta1 − 1

j

)
zwta1− j−1
k S(v′

3, (a3, z3)...(a1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

∑

j≥0

(
wta1 − 1

j

)
wwta1− j−1S(v′

3, (a3, z3)...(an, zn)(a1( j)v,w)v2) (4.21)

Proof: By the induction hypothesis for the (n + 2)-point functions and (3.8), we have:

0 = S(v′
3, (a1, z1)(a3, z3)...(an, zn)(v,w)v2)

− S(v′
3, (a3, z3)...(an, zn)(a1, z1)(v,w)v2)

= S(v′
3o(a1)(a3, z3)...(an, zn)(v,w)v2)z

−wta1
1

− S(v′
3(a3, z3)...(an, zn)(v,w)o(a1)v2)z

−wta1
1

+
n∑

k=3

∑

j≥0

(Fwta1, j (z1, zk) − Gwta1, j (z1, zk))S(v′
3, (a3, z3)

...(a1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

(Fwta1, j (z1, w) − Gwta1, j (z1, w))S(v′
3, (a3, z3)...(an, zn)(a1( j)v,w)v2)

= S(v′
3o(a1)(a3, z3)...(an, zn)(v,w)v2)z

−wta1
1

− S(v′
3(a3, z3)...(an, zn)(v,w)o(a1)v2)z

−wta1
1

+
n∑

k=3

∑

j≥0

−
(
wta1 − 1

j

)
zwta1− j−1
k S(v′

3, (a3, z3)...(a1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

−
(
wta1 − 1

j

)
wwta1− j−1S(v′

3, (a3, z3)...(an, zn)(a1( j)v,w)v2).

This proves (4.21). ��
It follows from the Lemma 4.16 that (12) and (13) can be written as:

(12) =
n∑

t=3

n∑

k=3,k =t

∑

i, j≥0

Fwta2,i (z2, zt )

(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k

· S(v′
3, (a3, z3)...(a1( j)ak, zk)...(a2(i)at , zt )...(an, zn)(v,w)v2)

(121)

+
n∑

t=3

∑

i, j≥0

Fwta2,i (z2, zt )

(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

t

· S(v′
3, (a3, z3)...(a1( j)a2(i)at , zt )...(an, zn)(v,w)v2)

(122)

+
n∑

t=3

∑

i, j≥0

Fwta2,i (z2, w)

(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j
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· S(v′
3, (a3, z3)...(a2(i)at , zt )...(an, zn)(a1( j)v,w)v2)

(123)

= (121) + (122) + (123),

(13) =
n∑

k=3

∑

i, j≥0

Fwta2,i (z2, zk)

(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k

· S(v′
3, (a3, z3)...(a1( j)ak, zk)...(an, zn)(a2(i)v,w)v2)

(131)

+
∑

i, j≥0

Fwta2,i (z2, w)

(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j

· S(v′
3, (a3, z3)...(an, zn)(a1( j)a2(i)v,w)v2)

(132)

= (131) + (132).

Then (1)=(11)+(121)+(122)+(123)+(131)+(132).
Now we expand (2), (3), and (4) with respect to their corresponding left-most terms.

By (3.8), they can be expressed as follows:

(2) =
∑

j≥0

−
(
wta1 − 1

j

)
z−wta1
1 z−wta2

2 S(v′
3o(a1( j)a2), (a3, z3)...(an, zn)(v,w)v2)

(21)

+
n∑

k=3

∑

i, j≥0

−
(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

2 Fwta1+wta2− j−1,i (z2, zk)

· S(v′
3, (a3, z3)...((a1( j)a2)(i)ak, zk)...(an, zn)(v,w)v2)

(22)

+
∑

i, j≥0

−
(
wta1 − 1

j

)
z−wta1
1 z−wta1−1− j

2 Fwta1+wta2− j−1,i (z2, w)

· S(v′
3, (a3, z3)...(an, zn)((a1( j)a2)(i)v,w)v2)

(23)

= (21) + (22) + (23).(3) =
n∑

k=3

∑

j≥0

−
(

wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k S(v′
3o(a2), (a3, z3)...(a1( j)ak, zk)...v2)z

−wta2
2

(31)

+
n∑

k=3

∑

j,i≥0

−
(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k Fwta2,i (z2, w)

· S(v′
3, (a3, z3)...(a1( j)ak, zk)...(an, zn)(a2(i)v,w)v2)

(32)

+
n∑

k=3

n∑

t=3,t =k

∑

j,i≥0

−
(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k Fwta2,i (z2, zt )

· S(v′
3, (a3, z3)...(a2(i)at , zt )...(a1( j)ak, zk)...(an, zn)(v,w)v2)

(33)
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+
n∑

k=3

∑

j,i≥0

−
(
wta1 − 1

j

)
z−wta1
1 zwta1−1− j

k Fwta2,i (z2, zk)

· S(v′
3, (a3, z3)...(a2(i)a1( j)ak, zk)...(an, zn)(v,w)v2)

(34)

= (31) + (32) + (33) + (34).(4) =
∑

j≥0

−
(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j S(v′

3o(a2), (a3, z3)...(an, zn)(a1( j)v,w)v2)z
−wta2
2

(41)

+
n∑

t=3

∑

j,i≥0

−
(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j Fwta2,i (z2, zk)

· S(v′
3, (a3, z3)...(a2(i)ak, zk)...(an, zn)(a1( j)v,w)v2)

(42)

+
∑

j,i≥0

−
(
wta1 − 1

j

)
z−wta1
1 wwta1−1− j Fwta2,i (z2, w)

· S(v′
3, (a3, z3)...(an, zn)(a2(i)a1( j)v,w)v2)

(43)

= (41) + (42) + (43).

By Lemma 4.13 and the formula (3.5) of ιz2,zt Fn,i (z2, zt ), we have:

∑

i, j≥0

(
wta1 − 1

j

)
Fwta2,i (z2, zt )a1( j)a2(i)at

+
∑

i, j≥0

−
(
wta1 − 1

j

)
Fwta2,i (z2, zt )a1( j)a2(i)at

+
∑

i, j≥0

−
(
wta1 − 1

j

)
Fwta1+wta2− j−1,i (z2, zt )(a1( j)a2)(i)at = 0, (4.22)

and the same equation holds if we replace zt with w and ai with v. Using (4.22), we
have the cancelations (122) + (22) + (34) = 0, and (132) + (23) + (43) = 0. Moreover,
it follows directly from the expressions of the terms (123), (42), (121), (33), (131), and
(32) that

(123) + (42) = 0, (121) + (33) = 0, and (131) + (32) = 0.

Now it remains to show 11+(21)+(31)+(41)=0, or equivalently,

S(v′
3o(a1)o(a2), (a3, z3)...(an, zn)(v,w)v2)

− S(v′
3o(a2), (a3, z3)...(an, zn)(v,w)o(a1)v2)

=
∑

j≥0

(
wta1 − 1

j

)
S(v′

3o(a1( j)a2), (a3, z3)...(an, zn)(v,w)v2)

+
n∑

k=3

∑

j≥0

(
wta1 − 1

j

)
zwta1−1− j
k S(v′

3o(a2), (a3, z3)...(a1( j)ak, zk)...(v, w)v2)
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+
∑

j≥0

(
wta1 − 1

j

)
wwta1−1− j S(v′

3o(a2), (a3, z3)...(an, zn)(a1( j)v,w)v2), (4.23)

but this is a consequence of Lemma 4.16. In fact,

L .H.S. of (4.23)

= S(v′
3o(a1)o(a2), (a3, z3)...(an, zn)(v,w)v2)

− S(v′
3o(a2)o(a1), (a3, z3)...(an, zn)(v,w)v2)

+ S(v′
3o(a2)o(a1), (a3, z3)...(an, zn)(v,w)v2)

− S(v′
3o(a2), (a3, z3)...(an, zn)(v,w)o(a1)v2).

Since S is linear in the place M3(0)∗, we have

S(v′
3o(a1)o(a2), (a3, z3)...(an, zn)(v,w)v2)

− S(v′
3o(a2)o(a1), (a3, z3)...(an, zn)(v,w)v2)

= S(v′
3[o(a1), o(a2)], (a3, z3)...(an, zn)(v,w)v2)

=
∑

j≥0

(
wta1 − 1

j

)
S(v′

3o(a1( j)a2), (a3, z3)...(an, zn)(v,w)v2),

which is the first term on the right-hand side of (4.23). Moreover, by Lemma 4.16,

S(v′
3o(a2)o(a1), (a3, z3)...(an, zn)(v,w)v2)

− S(v′
3o(a2), (a3, z3)...(an, zn)(v,w)o(a1)v2)

=
n∑

k=3

∑

j≥0

(
wta1 − 1

j

)
zwta1−1− j
k S(v′

3o(a2), (a3, z3)...(a1( j)ak, zk)...(v, w)v2)

+
∑

j≥0

(
wta1 − 1

j

)
wwta1−1− j S(v′

3o(a2), (a3, z3)...(an, zn)(a1( j)v,w)v2),

which gives us the last two summands on the right-hand side of (4.23). This proves
(4.23). Hence 1+2+3+4= 0, and so (4.20) holds.

Then by Proposition 4.15, all the (n + 3)-point functions SLVV ...M...V and SR
V ...M...V V

defined by (4.16) and (4.17) give rise to one single (n + 3)-point function:

S : M3(0)∗ × V × · · · × M1 × · · · × V × M2(0) → F(z1, . . . , zn, w), (4.24)

where M1 can be placed anywhere in between the first and the last place of V . Moreover,
by Definition 4.14 and (4.18), S in (4.24) satisfies the locality (I) and the expansion
property (II), with n replaced by n + 1. Therefore, the induction step is complete.

Theorem 4.17. The system of (n + 3)-point functions S we constructed by Definitions

4.9, 4.11, and 4.14 in this subsection lies in Cor
( M3(0)
M1 M2(0)

)
.

Proof. Since S is constructed inductively by the recursive formulas (3.4) and (3.6) in
view of Defintions 4.9, 4.11, and 4.14, it obviously satisfies (3.4) and (3.6). By (4.7),
we have S(v′

3, (v,w)v2) = f (v′
3 ⊗ v ⊗ v2)w

− deg v ,for any v′
3 ∈ M3(0)∗, v ∈ M1,

and v2 ∈ M2(0). By the Hom-tensor duality, we have a well-defined element fv ∈
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HomC(M2(0), M3(0)) such that 〈v′
3, fv(v2)〉 = f (v′

3 ⊗ v ⊗ v2) for each v ∈ M1.
Hence S satisfies (3.3).

In view of Definition 3.1, it remains to show that S satisfies (2)−(6) in Definition 2.1
for v2 ∈ M2(0) and v′

3 ∈ M3(0)∗. Indeed, the locality follows from (I), and by (4.16),

S(v′
3, (1, z)(a1, z1)...(an, zn)(v,w)v2)

= S(v′
3o(1), (a1, z1)...(an, zn)(v,w)v2)z

−wt1

+
n∑

k=1

∑

j≥0

Fwt1, j (z, z j )S(v′
3, (a1, z1)...(1( j)ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

Fwt1, j (z, w)S(v′
3, (a1, z1)...(an, zn)(1( j)v,w)v2)

= S(v′
3, (a1, z1)...(an, zn)(v,w)v2),

since 1( j)ak = 1( j)v = 0 when j ≥ 0, and o(1) = Id.
Againbecause S in (4.24) satisfies (4.16), it is easy toverify the following associativity

formulas by a similar argument to the proof of (2.2.9) in [13]:
∫

C
S(v′

3, (a1, z1)(v,w)...(an, zn)v2)(z1 − w)ndz1

= S(v′
3, (a1(k)v,w)...(an, zn)v2),∫

C
S(v′

3, (a1, z1)(a2, z2)...(v, w)v2)(z1 − z2)
ndz1

= S(v′
3, (a1(k)a2, z2)...(v, w)v2),

(4.25)

where in the first equation of (4.25), C is a contour of z1 surrounding w with z2, ..., zn
outside of C ; while in the second equation of (4.25), C is a contour of z1 surrounding
z2 with z3, ..., zn, w outside of C . We also have:

S(v′
3, (L(−1)a1, z1)...(an, zn)(v,w)v2)

= d

dz1
S(v′

3, (a1, z1)...(an, zn)(v,w)v2),

S(v′
3, (L(−1)v,w)(a1, z1)...(an, zn)v2)w

−h

= d

dw
(S(v′

3, (v,w)(a1, z1)...v2)w
−h).

(4.26)

The first equation in (4.26) is similar to (2.2.8) in [13]. We omit the details of the proof.
To show the second equation in (4.26), we use induction on n. When n = 0, by (4.5) and
Lemma 4.5, we have: L(−1)v + (L(0) + h2 − h3)v ≡ 0 mod Oh(M1) for all v ∈ M1.
Then

S(v′
3, (L(−1)v,w)v2)w

−h = f (v′
3 ⊗ L(−1)v ⊗ v2)w

− deg v−1−h

= − f (v′
3 ⊗ (L(0) + h2 − h3)v ⊗ v2)w

− deg v−1−h

= f (v′
3 ⊗ v ⊗ v2)

d

dw
(w− deg v−h)

= d

dw
(S(v′

3, (v,w)v2)w
−h). (4.27)
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Now assume the second equation of (4.26) holds for the (n + 2)-point function, then by
the properties (I) and (II) of S, we have:

S(v′
3, (L(−1)v,w)(a1, z1)...(an, zn)v2)w

−h

= SL(v′
3, (a1, z1)...(an, zn)(L(−1)v,w)v2)w

−h

= S(v′
3o(a1), (a2, z2)...(an, zn)(L(−1)v,w)v2)z

−wta1
1 w−h

+
n∑

k=2

∑

j≥0

Fwta1, j (z1, zk)S(v′
3, (a2, z2)...(a1( j)ak, zk)...(an, zn)(L(−1)v,w)v2)w

−h

+
∑

j≥0

Fwta1, j (z1, w)S(v′
3, (a2, z2)...(an, zn)(a1( j)L(−1)v,w)v2)w

−h . (4.28)

Note thatwe can apply the induction hypothesis to the first two terms of (4.28).Moreover,
by the L(−1)-bracket formula (4.2.1) in [4], we have:

a1( j)L(−1)v2 = L(−1)a1( j)v2 − [L(−1), a1( j)]v2 = L(−1)a1( j)v2 + ja1( j − 1)v2.

It follows from the induction hypothesis and (3.5) that
∑

j≥0

Fwta1, j (z1, w)S(v′
3, (a2, z2)...(an, zn)(a1( j)L(−1)v,w)v2)w

−h

=
∑

j≥0

Fwta1, j (z1, w)
d

dw
(S(v′

3, (a2, z2)...(an, zn)(a1( j)v,w)v2)w
−h)

+
∑

j≥1

z−wta1
1

( j − 1)!
(

d

dw

) j(
wwta1

z1 − w

)
S(v′

3, (a2, z2)...(an, zn)(a1( j − 1)v,w)v2)w
−h

= d

dw

∑

j≥0

Fwta1, j (z1, w)S(v′
3, (a2, z2)...(an, zn)(a1( j)v,w)v2)w

−h .

This proves (4.26). Finally, let v′
3 ∈ M3(0)∗, v ∈ M1, v2 ∈ M2(0), and a1, . . . , an ∈ V

be highest weight vectors of the Virasoro algebra. By property (I) and (4.26) of S, we
have:

S(v′
3, (ω, x)(ω, x1)...(ω, xm)(a1, z1)...(an, zn)(v,w)v2)

= S(v3′ , (ω, x1)...(an, zn)(v,w)o(ω)v2)x
−2

+
m∑

k=1

∑

j≥0

G2, j (x, xk)S(v′
3, (ω, x1)...(ω jω, xk)...(an, zn)(v,w)v2)

+
n∑

k=1

∑

j≥0

G2, j (x, zk)S(v′
3, (ω, x1)...(ω j ak, zk)...(an, zn)(v,w)v2)

+
∑

j≥0

G2, j (x, w)S(v′
3, (ω, x1)...(an, zn)(ω jv,w)v2).

By the definition formula (3.7), it is easy to verify that:

G2,0(x, z) = x−1z

x − z
, G2,1(x, z) = 1

(x − z)2
,
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G2,3(x, z) = 1

(x − z)4
.

Then by using the properties of the Virasoro element ω (see Section 2.3 in [4]), we have:

S(v′
3, (ω, x)(ω, x1)...(ω, xm)(a1, z1)...(v, w)...(an, zn)v2)

=
n∑

k=1

x−1zk
x − zk

d

dzk
S +

n∑

k=1

wtak
(x − zk)2

S +
x−1w

x − w
wh d

dw
(S · w−h) +

wtv

(x − w)2
S

+
h2
x2

S +
m∑

k=1

x−1wxk
x − xk

d

dxk
S +

m∑

k=1

2

(x − xk)2
S

+
c

2

m∑

k=1

1

(x − xk)4
S(v′

3, (ω, x1)... ̂(ω, xk)...(ω, xm)(a1, z1)...(v, w)...(an, zn)v2),

where S = S(v′
3, (ω, x1)...(ω, xm)(a1, z1)...(an, zn)(v,w)v2). This shows that the S

in (3.24) also satisfies (2.8), with v′
3 ∈ M3(0)∗ and v2 ∈ M2(0). Therefore, S ∈

Cor
( M3(0)
M1 M2(0)

)
. ��

Remark 4.18. Byequation (4.27),we see that it is necessary to have the equality L(−1)v+
(L(0) + h2 − h3)v = 0 hold in the bimodule Bh(M1) to show the L(−1)-derivation
property (4.26) of S. However, in general, such equality does not hold in the bimodule

A(M1) in [6] by its construction. This is the reason why I
( M3

M1 M2

)
is not isomorphic to

(M3(0)∗ ⊗A(V ) A(M1) ⊗A(V ) M2(0))∗ in general.

Theorem 4.17 indicates that we have a well-defined linear map:

μ : (M3(0)∗⊗A(V ) Bh(M
1)⊗A(V ) M

2(0))∗ → Cor

(
M3(0)

M1 M2(0)

)
, f �→ S f , (4.29)

where S f is the S we constructed in this subsection by Defintions 4.9, 4.11, and 4.14.
Since we have S f (v

′
3, (v,w)v2) = f (v′

3⊗v⊗v2)w
− deg v by (4.7), and fS f (v

′
3⊗v⊗

v2)w
− deg v = S f (v

′
3, (v,w)v2) by (4.6) and Definition 3.1, then fS f = f . i.e., νμ = 1.

On the other hand, for S ∈ Cor
( M3(0)
M1 M2(0)

)
, again by (4.7) and (4.6), we have:

S fS (v
′
3, (v,w)v2) = fS(v

′
3 ⊗ v ⊗ v2)w

− deg v = S(v′
3, (v,w)v2).

Moreover, S fS and S satisfy the same recursive formulas by (4.16), (4.17), (3.4), and
(3.6), then it follows from an easy induction that S fS = S. i.e., μν = 1, and so μ is an
isomorphism. Now we have our main result:

Theorem 4.19. Let M1, M2, and M3 be V -modules, with conformal weight h1, h2, and
h3, respectively. Assume M2(0) and M3(0) are irreducible A(V )-modules. Then we
have the following isomorphism of vector spaces:

I

(
M̄(M3(0)∗)′

M1 M̄(M2(0))

)
∼= I

(
M̄3

M1 M̄2

)
∼= (M3(0)∗ ⊗A(V ) Bh(M

1) ⊗A(V ) M
2(0))∗,

I �→ f I , f I (v
′
3 ⊗ v ⊗ v2) = 〈v′

3, o(v)v2〉,
(4.30)
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for all v′
3 ∈ M3(0)∗, v ∈ M1, and v2 ∈ M2(0), where h = h1 + h2 − h3, and

M2 = M̄/Rad(M̄) and M3 = (M̃/RadM̃)′ are quotient modules of the generalized
Verma module M̄(M2(0)) and M̄(M3(0)), respectively.

Proof. This is a direct consequence of Corollary 2.6, Theorem 3.14, and Theorem 4.17,

together ofwhichgiveus the isomorphism: I
( M̄(M3(0)∗)′
M1 M̄(M2(0))

) ∼= I
( M̄3

M1 M̄2

) ∼= Cor
( M3(0)
M1 M2(0)

)

∼= (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0))∗, such that I �→ f I as in (4.30). ��
Recall that V -modules M̄2 and M̄3′

are irreducible if condition (3.25) is satisfied
(see Proposition 3.11). By the isomorphism (4.29), condition (3.25) translates to the
following:

For any f ∈ (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0))∗, one has:

∑

i≥0

(
n

i

)
f (v′

3 ⊗ b(i)v ⊗ v2) = 0, (4.31)

for all b ∈ V , n ∈ Z such that wtb−n−1 > 0, v ∈ M1, v′
3 ∈ M3(0)∗, and v2 ∈ M2(0).

Corollary 4.20. Let M1, M2, and M3 be V -modules, with conformal weight h1, h2, and
h3, respectively. Suppose M2 and M3 are irreducible, and condition (4.31) is satisfied,

then we have an isomorphism: I
( M3

M1 M2

) ∼= (M3(0)∗ ⊗A(V ) Bh(M1) ⊗A(V ) M2(0))∗.

Suppose M2 and M3 are V -modules (not necessarily irreducible) that are generated
by their corresponding bottom levels M2(0) and M3(0), which are irreducible A(V )-
modules. Then by (3.41) and (4.30), we have the following estimate of the fusion rule:

dim I

(
M3

M1 M2

)
≤ dim(M3(0)∗ ⊗A(V ) Bh(M

1) ⊗A(V ) M
2(0))∗. (4.32)

Finally, when V is rational, by Theorem 4.19 and Corollary 3.15, we have:

Corollary 4.21. Let V be a rational VOA, and let M1, M2, and M3 be V modules, with
conformal weight h1, h2, and h3, respectively. Suppose M2 and M3 are irreducible, then

I

(
M3

M1 M2

)
∼= (M3(0)∗ ⊗A(V ) Bh(M

1) ⊗A(V ) M
2(0))∗. (4.33)

4.4. Examples. In this subsection, we will use (4.30) and the estimating formula (4.32)
and compute the fusion rules for certain modules over the Virasoro VOAs and the
Heisenberg VOAs.

Example 4.22. A counter-example that shows I
( M3

M1 M2

)
is not isomorphic to (M3(0)∗

⊗A(V ) A(M1)⊗A(V ) M2(0))∗ was presented in Section 2 in [8]. It was given as follows:
Recall that the (universal) Virasoro VOA Mc = M(c, 0)/〈L(−1)vc,0〉 defined in [6]

has Zhu’s algebra A(Mc) ∼= C[t], with [ω]n �→ tn . Let M(c, h) be the Verma module
of highest weight h and central charge c over the Virasoro algebra, then M(c, h) is a
module over Mc, and we have the following equalities held in A(M(c, h)):

[b] ∗ [ω]n = [(L(−2) + L(−1))nb], [ω]n ∗ [b] = [(L(−2) + 2L(−1) + L(0))nb],
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for all b ∈ M(c, h) and n ∈ N. Hence there is an identification of C[t] ∼= A(Mc)-
bimodules:

C[t1, t2] ∼= A(M(c, h))

f (t1, t2) �→ f (L(−2) + 2L(−1) + L(0), L(−2) + L(−1))vc,h,
(4.34)

where C[t1, t2] is a bimodule over C[t] on which the actions are given by:

tn . f (t1, t2) = tn1 f (t1, t2), f (t1, t2).t
n = tn2 f (t1, t2).

For h1, h2 ∈ C such that M(c, h1) and M(c, h2) are irreducible, it is proved (see (2.37)
in [8]) that I

( M(c,h2)
M(c,h1) Mc

) = 0, while dim(M(c, h2)(0)∗ ⊗A(Mc) A(M(c, h1)) ⊗A(Mc)

Mc(0))∗ = 1.
Although M2 = Mc is neither a generalized Verma module nor irreducible, we

can still use (4.30) and (4.32) to obtain the correct fusion rules. Indeed, since Mc and
M(c, h2) are both generalized by their bottom levels, by (4.32), we have:

dim I

(
M(c, h2)

M(c, h1) Mc

)
≤ dim(M(c, h2)(0)

∗ ⊗A(Mc) Bh(M(c, h1)) ⊗A(Mc) Mc(0))
∗.

(4.35)
Moreover, since h = h1 + 0 − h2, it follows from Lemma 4.4 and Lemma 4.5 that

Bh(M(c, h1)) = A(M(c, h1))/span{(L(−1) + L(0) − h2)[b] : b ∈ M(c, h1)}.
Then [L(−1)b] = −[(deg b + h1 − h2)b] in Bh(M(c, h1)). It follows from (4.34) that

Bh(M(c, h1)) ∼= C[t0], with [(L(−2) − L(0) + h2)
nvc,h1] �→ tn0 ,

and C[t0] is a C[t](∼= A(Mc))-bimodule on which the actions are given by:

f (t0).t
n = tn0 f (t0), and t. f (t0) = (t0 + h2)

n f (t0).

Hence we have Bh(M(c, h1)) ⊗A(Mc) Mc(0) ∼= C[t0] ⊗C[t] Mc(0) ∼= Mc(0), and so

(M(c, h2)(0)
∗ ⊗A(Mc) Bh(M(c, h1)) ⊗A(Mc) Mc(0))

∗
∼= HomA(Mc)(Mc(0), M(c, h2)(0)) = 0,

since o(ω)vc,0 = 0, o(ω)vc,h2 = h2vc,h2 and h2 = 0. Thus, I
( M(c,h2)
M(c,h1) Mc

) = 0 by (4.35).

We give another example that shows that the bimodule Bh(M1) in (4.30) cannot be
replaced by the A(V )-bimodule A0(M1) defined in [7] either.

Example 4.23. Let V = Mĥ(1, 0) be the Heisenberg VOA of level 1 associated to a
one-dimensional vector space h = Cα with (α|α) = 1. By Theorem 3.1.1 in [6], one
has A(Mĥ(1, 0)) ∼= C[x], with [α(−i1 − 1)...α(−in − 1)1] �→ (−1)i1+...+in xn .

Let λ ∈ h, we have a V -module Mĥ(1, λ) = Mĥ(1, 0) ⊗C Ceλ, with conformal

weight h = (λ|λ)
2 . Note that Mĥ(1, λ) is the Verma module over the Heisenberg Lie

algebra ĥ. Since Mĥ(1, λ) is irreducible, it is automatically a generalized Verma module

associated with its bottom level Ceλ. By Theorem 3.2.1 in [6], we have:
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A(Mĥ(1, λ)) ∼= Ceλ ⊗C C[x], with

[α(−i1 − 1)...α(−in − 1)eλ] �→ (−1)i1+...+in eλ ⊗ xn,

where the bimodule actions are given by x .(eλ ⊗ xn) = eλ ⊗ xn+1 + (λ|α)eλ ⊗ xn, and
(eλ ⊗ xn).x = eλ ⊗ xn+1 for all n ∈ N. By definition in Section 4 of [7],

A0(Mĥ(1, λ)) = A(Mĥ(1, λ))/span{[(L(−1) + L(0) − (λ|λ)/2)b] : b ∈ Mĥ(1, λ)}.

Choose λ ∈ h such that (λ|α) = 0. Recall that ω = 1
2α(−1)21, and so

L(−1)eλ = ReszYW (ω, z)eλ =
∑

i≥0

α(−1 − i)α(i)eλ = (λ|α)α(−1)eλ.

Then we have [(λ|α)α(−1)eλ] = [L(−1)eλ] = −[(L(0) − (λ|λ)/2)eλ] = 0 in A0(Mĥ

(1, λ)), and [α(−1)eλ] = 0 in A0(Mĥ(1, λ)). For any spanning element [α(−i1 −
1)...α(−in − 1)eλ] of A0(Mĥ(1, λ)), we then have [α(−i1 − 1)...α(−in − 1)eλ] =
(−1)i1+...+in [α(−1)neλ] = 0 for n > 0. Thus, A0(Mĥ(1, λ)) ∼= C[eλ], with the module
actions given by:

x .[eλ] = (λ|α)[eλ], and [eλ].x = 0. (4.36)

Now choose μ ∈ h such that (μ|α) = 0, it is well-known that dim I
( Mĥ(1,λ+μ)

Mĥ(1,λ) Mĥ(1,μ)

) =
1. But

A0(Mĥ(1, λ)) ⊗A(Mĥ(1,0)) Mĥ(1, μ)(0) ∼= C[eλ] ⊗C[x] Ceμ = 0,

since it follows from (4.36) that [eλ]⊗ eμ = 1
(μ|α)

[eλ]⊗ o(α(−1)1)eμ = 1
(μ|α)

[eλ].x ⊗
eμ = 0 in the tensor product above. Then we have:

dim(Mĥ(1, λ + μ)(0)∗ ⊗A(Mĥ(1,0)) A0(Mĥ(1, λ)) ⊗A(Mĥ(1,0)) Mĥ(1, μ)(0))∗ = 0 = 1.

This shows that the isomorphism (4.30) is not true if one replaces Bh(M1)with A0(M1).
Now we verify (4.30) in this case. Indeed, since h = Cα, then (λ|α) = 0 and

(μ|α) = 0 imply that λ = mα and μ = nα, with m = 0 and n = 0. Hence

h = (λ|λ)

2
+

(μ|μ)

2
− (λ + μ|λ + μ)

2
= −(λ|μ) = −mn = 0.

By definition 4.1, we have the following equality holds in Bh(Mĥ(1, λ)):

[(λ|α)α(−1)eλ] = [L(−1)eλ] = −[(L(0) − (λ|λ)

2
+ h)eλ] = −(λ|μ)[eλ]

Then for any spanning element [α(−i1−1)...α(−in −1)eλ] of Bh(Mĥ(1, λ)), we have:

[α(−i1 − 1)...α(−in − 1)eλ] = (−1)i1+...+in [α(−1)neλ]
= (−1)i1+...+in

(−(λ|μ)

(λ|α)

)n

[eλ].
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Thus Bh(Mĥ(1, λ)) = C[eλ], with the module actions given by

[eλ].x = −(λ|μ)

(λ|α)
[eλ]( = 0), and x .[eλ] = −(λ|μ)

(λ|α)
[eλ] + (λ|α)[eλ]. (4.37)

Then by (4.37), we have Bh(Mĥ(1, λ)) ⊗A(Mĥ(1,0)) Mĥ(1, μ)(0) ∼= C[eλ] ⊗C[x] Ceμ is

a one-dimensional vector space, with x .[eλ] ⊗ eμ = [eλ].x ⊗ eμ + (λ|α)[eλ] ⊗ eμ =
(λ + μ|α)[eλ] ⊗ eμ. On the other hand, x .eλ+μ = (λ + μ|α)eλ+μ. Thus we have:

dimHomA(Mĥ(1,0))(Bh(Mĥ(1, λ)) ⊗A(Mĥ(1,0)) Mĥ(1, μ)(0), Mĥ(1, λ + μ)(0)) = 1.

This shows (4.30) is true forM1 = Mĥ(1, λ),M2 = Mĥ(1, μ), andM3 = Mĥ(1, λ+μ).
Furthermore, the argument above also shows that Bh(Mĥ(1, λ))⊗A(Mĥ(1,0))Mĥ(1, μ)

(0) is a one-dimensional vector space spanned by an eigenvector of h of eigenfunction
(λ + μ|·). Hence we have:

HomA(Mĥ(1,0))(Bh(Mĥ(1, λ)) ⊗A(Mĥ(1,0)) Mĥ(1, μ)(0), Mĥ(1, γ )(0)) = 0,

if γ = λ+μ. On the other hand, for γ = λ+μ, it is well-known that I
( Mĥ(1,γ )

Mĥ(1,λ) Mĥ(1,μ)

) =
0. Thus, the rank one Heisenberg VOA verifies (4.30).

Although the bimodule Bh(M1) by its construction is a quotient module of A(M1),
the vectors spacesM3(0)∗⊗A(V )Bh(M1)⊗A(V )M2(0), andM3(0)∗⊗A(V )A(M1)⊗A(V )

M2(0) might be isomorphic to each other, it is easy to see that the case of the rank one
Heisenberg VOA in Example 4.23 above is such an example.

Remark 4.24. Note that in A(M1) we have: [ω] ∗ [u]− [u] ∗ [ω] = ReszYM1(ω, z)u(1+
z)wtω−1 = [L(−1)u + L(0)u], for all u ∈ M1. Hence [(L(−1) + L(0) + h2 − h3)u] =
[ω] ∗ [u]− [u] ∗ [ω]+ (h2 − h3)[u], and by Lemma 4.5, we have Bh(M1) = A(M1)/J ,
where

J = span{[ω] ∗ [u] − [u] ∗ [ω] + (h2 − h3)[u] : u ∈ M1}.
We have M3(0)∗ ⊗ J ⊗ M2(0) = 0 in M3(0)∗ ⊗A(V ) A(M1) ⊗A(V ) M2(0). Indeed, for
any v′

3 ∈ M3(0)∗ and v2 ∈ M2(0),

v′
3 ⊗ ([ω] ∗ [u] − [u] ∗ [ω] + (h2 − h3)[u]) ⊗ v2

= v′
3(o(ω) − h3) ⊗ [u] ⊗ v2 − v′

3 ⊗ [u] ⊗ (o(ω) − h2)v2

= v′
3(L(0) − h3) ⊗ [u] ⊗ v2 − v′

3 ⊗ [u] ⊗ (L(0) − h2)v2
= 0.

However, in general we do not haveM3(0)∗⊗A(V ) (A(M1)/J )⊗A(V )M2(0) isomorphic
to M3(0)∗ ⊗A(V ) A(M1) ⊗A(V ) M2(0)/(M3(0)∗ ⊗ J ⊗ M2(0)), see Example 4.22.
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