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Correction to: Commun. Math. Phys. 378, 1931–1976 (2020)
https://doi.org/10.1007/s00220-020-03832-y

We correct an error in Sect. 2.1 of [DGG20]. Just before Proposition 4, it is claimed that
one can choose a matrix T = T (ω) ∈ SL(3,Z) whose real eigenvalue λ = λ(ω) > 1
is minimal or, equivalently, the norm |T | is minimal, and this matrix T is called “the
principal Koch’s matrix for ω ” (we denote |·| = |·|2 the matrix norm subordinate to the
Euclidean norm for vectors). This equivalence is not true, and the matrix T (ω) should
be defined simply as the one whose real eigenvalue λ = λ(ω) > 1 is minimal.

The following example shows that the principal Koch’s matrix is not necessarily
the Koch’s matrix whose norm is minimal. Let us consider the frequency vector ω =
(1,�,�2) where � is the cubic golden number: the real root of �3 = 1 − � (see

Sect. 2.3). The principal Koch matrix for this vector is T (ω) =
⎛
⎝
1 0 1
1 0 0
0 1 0

⎞
⎠ with the real

eigenvalue λ = 1 + �2 = 1/� (see (68)). Now consider the vector ω̃ = (1, �2, −1 +

�+�2).We have the relation ω̃ = Sω, where thematrix S =
⎛
⎝

1 0 0
0 0 1

−1 1 1

⎞
⎠ is unimodular.

It is clear that the principal Koch’s matrix for this new vector is T (ω̃) = S T (ω) S−1 =⎛
⎝
1 1 0
1 −1 1
1 −2 1

⎞
⎠, with the same eigenvalue λ(ω̃) = λ(ω). But its norm |T (ω̃)| ≈ 2.978400 is

not the minimal one, since T (ω̃)2 is also a Koch’s matrix, with smaller norm
∣∣T (ω̃)2

∣∣ ≈
2.457837 .

Hence, the paragraph previous to Proposition 4 should be rewritten as follows:

The original article can be found online at https://doi.org/10.1007/s00220-020-03832-y.
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Using this lemma, we next show the “uniqueness” of the matrix T satisfying
Koch’s result. More precisely, we can choose T = T (ω) ∈ SL(3,Z) whose real
eigenvalue λ = λ(ω) > 1 is minimal, and we call this matrix “the principal
Koch’s matrix for ω ”. This matrix T is not necessarily the one of minimal norm
among the Koch’s matrices for ω.

Although the validity of the results of the paper is not affected by this mistake, the
algorithm for determining the principal Koch’s matrix in a concrete case, described
between Lemma 5 and Remark 6, is no longer valid since it relies in finding the Koch’s
matrix of minimal norm |T |. Alternatively, to find the Koch’s matrix with minimal real
eigenvalue λ, we should reformulate this algorithm in the following way:

Now, in order to determine the principal Koch’s matrix for ω we can carry out
the following simple exploration. We consider the (integer) entries of the first row
T(1) as successive data, say with increasing norm

∣∣T(1)
∣∣, until the whole matrix

T determined from Lemma 5 belongs to SL(3,Z) (i.e. it has integer entries and
determinant 1) and has an eigenvalue λ > 1 in (30). By Koch’s result, we know
that such a matrix exists and will be reached after a finite exploration. It remains
to check whether the matrix T ∗, with eigenvalue λ∗, obtained in this way is the
principal Koch’s matrix for ω since, in principle, there could exist another Koch’s

matrix T with
∣∣T(1)

∣∣ ≥
∣∣∣T ∗

(1)

∣∣∣ but with eigenvalue λ < λ∗. If this happens, such
a new matrix T would satisfy

∣∣T(1)
∣∣ < |T | ≤ κλ < κλ∗, where κ = κ(ω) is

the condition number introduced in (33), and the inequality |T | ≤ κλ appears in
the proof of Lemma 3. Hence, after obtaining a first matrix T ∗, it is enough to
continue the exploration with increasing norms

∣∣T(1)
∣∣ up to the value κλ∗ and, if

a new Koch’s matrix T is obtained, check if its real eigenvalue λ is lower than λ∗,
which would imply that the matrix T has to replace T ∗ as the principal one.
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