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Abstract: Three phases of macroscopic domains have been seen for large but finite
periodic dimer models; these are known as the frozen, rough and smooth phases. The
transition region between the frozen and rough region has received a lot of attention for
the last twenty years and recently work has been underway to understand the rough–
smooth transition region in the case of the two-periodic Aztec diamond. We compute
uniform asymptotics for dimer–dimer correlations of the two-periodic Aztec diamond
when the dimers lie in the rough–smooth transition region. These asymptotics rely on a
formula found in Chhita and Johansson (Adv Math 294:37–149, 2016) for the inverse
Kasteleyn matrix, they also apply to the infinite square grid dimer model with a variable
weighting which interpolates between the rough and smooth phase (Kenyon et al. Ann
Math (2) 163(3):1019–1056, 2006). In particular, we find that distant dimers initially
decay exponentially when the magnetic coordinates are very close to the bounded com-
plementary component of the associated amoebae, they then transition to a power law
decay once far enough apart.

1. Introduction

A dimer model on a bipartite planar graph G consists of a probability measure P on the
set of dimer configurations of G. We recall that a dimer configuration of a graph G is a
set of edges in G with the property that each vertex belongs to exactly one edge. We call
an edge in a dimer configuration a dimer. Dimer configurations have a simple bijection
to an associated set of tilings. The bijection is in terms of the dual graph G∗ of G; since
each dimer e crosses two faces of the dual graph, let the tile corresponding to e be the
union of these two faces. In this paper we will focus on a graph G which is the subgraph
of the grid graph of Z2 satisfying |x | + |y| ≤ n. Since Z2 is its own dual graph, this is
the study of domino tilings of the Aztec Diamond introduced in [14].
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One can also define a set of surfaces inR3 called height functions which are in bijection
with the dimer configurations of G. When the graph and probability measure have a
certain double periodicity, [21] find that three classes of limiting Gibbs measures are
possible. The three classes are referred to as frozen (solid), rough (liquid) and smooth
(gas). Each of the three classes has a distinct decay of correlations for distant dimers,
namely fixed (or zero decay), polynomial and exponential decay.

The above classes are also related to the fluctuations and average slope of the asso-
ciated random height functions. As the system size becomes large, the induced measure
on height functions localises on functions with distinct domains. The limiting global
height function in these domains either has a smoothly varying, strictly non-zero curva-
ture or zero curvature and a flat shape - called facets. The rough regions, in which the
height functions curve, are rough in the sense that they have logarithmic fluctuations
around their macroscopic shape. In these regions one expects the height fluctuations to
be given by the Gaussian free field in an appropriate limit. The facets can have either
no fluctuations (frozen) or bounded fluctuations (“smooth” but with small Poisson-like
dislocations). The typical behaviour of the macroscopic height function at a rough to
facet boundary point x0 is expected to be like ∼ (x − x0)3/2, see [7], the Pokrovsky-
Talapov law. This has been proven rigorously by [1] for frozen boundaries in a large
class of dimer models. In [1], there is also proof of the existence of smooth facets in
the rather general setting of dimer models with polygonal boundary, this follows from a
variational formula for the height function originating in [10]. In the context of random
height functions our results relate to the correlations of the microscopic gradients of
the height function at a rough–smooth boundary. We also remark that, aside from the
formulas used here, the only other formulas available for the investigation of this type of
transition are those of the type found in [4,5,13]. These formulas currently only pertain
to the Aztec diamond graph, and there are currently none available for tilings of other
domains with a smooth phase.

This article contains a uniform analysis of the decay of dimer correlations in different
directions in a large two-periodic Aztec Diamond in the transition region between the
rough and smooth phases. We study this decay in the finite model since if we let the
size of the Aztec Diamond go to infinity first we only see a smooth pure phase in the
transition region. Our analysis also applies to an infinite planar model with the same
graph and weights induced to have the right slope of the height function. One result in
this setting is the following theorem.

Theorem 1. Consider dimers in any large enough bounded region of the infinite grid
graph (with vertices given by Z

2). There are Gibbs measures in the rough phase (or
liquid phase) for which these dimers have exponential decay of correlations.

Proof. See Sect. 4.1. ��
This behavior of the correlations appears when the slope of the model is such that we

are very close to a smooth phase. We will see that as we get closer to the smooth phase,
the larger the corresponding region in which the dimers experience exponential decay
of correlations. However for much larger distances we see the decay of correlations
typically associated with the rough phase. Thus, although we are in a rough phase, if we
look locally it seems like we are in a smooth phase and the rough phase only manifests
itself at sufficiently long distances. The behavior at the rough–smooth boundary in the
finite two-periodicAztec diamond is given for dimers separated along the diagonal below
in Theorem 2, and at arbitrary angles in Sect. 3.1.

As a further general background, the interpolationbetween exponential andpower law
decay of correlations has already been observed in a variety of two-dimensional models
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in statistical mechanics [7]. Whilst rigorous results are limited [15], physicists have
used renormalisation group/mean field techniques along with numerical simulations to
analyse the transition region of some of these models. As such, it is expected that a sharp
transition occurs between the two regimes (exponential and power law decay). This is
known as a Kosterlitz-Thouless phase transition, which was originally characterised by
the appearance of "topological defects". For example, in the XY model the transition
is associated with the appearance of vortices. The interpretation is that these vortices
destroy the quasi-long range order present in the lower temperature regime giving rise to
short range order and exponential decay of correlations. We discuss a kind of analogue
of this and Fig. 3 for the infinite dimer model at the end of Sect. 4.1. For models with
a similar transition which have been rigorously investigated more recently, see [6] and
references therein.

1.1. Definition of the model. Consider the subset of Z2 given by V = W ∪ B, where

W = {(i, j) : i mod 2 = 1, j mod 2 = 0, 1 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2n}
and

B = {(i, j) : i mod 2 = 0, j mod 2 = 1, 1 ≤ i ≤ 2n, 0 ≤ j ≤ 2n − 1}.
We define the vertex set V as the vertex set of the Aztec Diamond graph AD of size n
with corresponding edge set given by all b−w = ±e1,±e2 for all b ∈ B, w ∈ W , where
e1 = (1, 1), e2 = (−1, 1). For an Aztec Diamond of size n = 4m,m ∈ N>0 define
the weight as a function w from the edge set into R>0 such that the edges contained in
the smallest cycle surrounding the point (i, j) where (i + j) mod 4 = 2, have weight
a ∈ (0,∞) and the edges contained in the smallest cycle surrounding the point (i, j)
where (i + j) mod 4 = 0 have weight b ∈ (0,∞). Each of these cycles is the boundary
of a face of AD and we call each of these faces an a face (b face) if the edges on
its boundary each have weight a (b). We divide the white and black vertices into two
different types. For i ∈ {0, 1},

Bi = {(x1, x2) ∈ B : x1 + x2 mod 4 = 2i + 1},
and

Wi = {(x1, x2) ∈ W : x1 + x2 mod 4 = 2i + 1}.
Define a probabilitymeasurePAz on the finite set of all dimer configurationsM(AD)

of AD. For a dimer configuration ω ∈ M(AD),

PAz(ω) = 1

Z

∏

e∈ω

w(e), where Z =
∑

ω∈M(AD)

∏

e∈ω

w(e)

is the partition function and the product is over all edges in ω. We call the probability
space corresponding to PAz andM(AD) the two-periodic Aztec Diamond, and note that
the setup here is the same as in [8].

Fix a ∈ (0, 1) and take, without loss of generality, b = 1. It is convenient to set
c = a/(1 + a2) ∈ (0, 1/2). Our goal is to take a very large n and compute uniform
asymptotics of the correlation of two edges separated by a growing distance but for
distances much smaller than n. We want to investigate the decay of correlations in the
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Fig. 1. The two-periodic Aztec Diamond graph for n = 4 with the a and b faces labelled

transition region between the rough and smooth phases of the model. As in [8] we
only consider dimers in the the bottom left quadrant of AD. Let −1 < ξ < 0 so that
(n(1+ξ), n(1+ξ)) is the coordinate varying over the diagonal of the bottom left quadrant
of the Aztec Diamond. We will use (n(1 + ξ), n(1 + ξ)) as a reference point so we want
it to have integer coordinates, i.e. we assume that

n(1 + ξ) ∈ 2N≥0 ∩ [n(1 − 1

2

√
1 + 2c, n(1 − 1

2

√
1 − 2c)].

The reference point should be close to the asymptotic rough–smooth boundary. Fol-
lowing the notation in [8], let ξc = − 1

2

√
1 − 2c so that ξ = ξc corresponds to the

limiting rough–smooth boundary. We will consider ξ close to ξc.

Example 1. There are many possibilities for the location and orientation of the dimers.
For our discussion of the correlations we will consider the following case. We take
two dimers e1 = (x (1), y(1)) and e2 = (x (2), y(2)) in two separate a faces and both
connecting the vertices of type W0 and B0, so (x (i), y(i)) ∈ W0 × B0 for i = 1, 2. We
place one along the main diagonal. Explicitly

x(1) = (n(1 + ξ) + 1, n(1 + ξ)), y(1) = (n(1 + ξ), n(1 + ξ) + 1), (1)

x(2) = (n(1 + ξ) + 1 + 2r1, n(1 + ξ) + 2r2), y(2) = (n(1 + ξ) + 2r1, n(1 + ξ) + 1 + 2r2) (2)

for r1, r2 ∈ Z such that r1 + r2 is even and 2(|r1| + |r2|) ≤ r .

Define the dimer–dimer correlation corr(e1, e2) of two dimers e1, e2 to be the co-
variance of their indicators 1e1∈ω,1e2∈ω. We have

corr(e1, e2) = EAz[1e1∈ω,e2∈ω] − EAz[1e1∈ω]EAz[1e2∈ω]. (3)

We first formulate a Theorem for the covariance in the setting of Example 1 with the
dimers separated along the diagonal. This is found in Sect. 3.1, where it is restated as
Theorem 7.
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Define |G(i)| = (1− √
1 − 2c)/

√
2c and note that |G(i)| < 1, a function G will be

introduced in general later. This function will come into the exponential decay rates of
the correlations of dimers at arbitrary angles, however here we give a theorem for the
case where dimers are separated along a direction parallel to the main diagonal, that is,
parallel to the vector e1 = (1, 1). Given a small ε > 0, we define �ε to be the set of real
numbers where we stay at least ε away from all nπ , n = 0, i.e.

�ε = {x ∈ R ; |x − nπ | ≥ ε, all n ∈ Z \ {0}}. (4)

We use the convention that sin(bx)/x = b when x = 0. We will use � to say that
two expressions are equal if we neglect subdominant terms. By this we mean that, for
functions F,G, H of n, r, ξ , the equality Fn

r,ξ = Gn
r,ξ + Hn

r,ξ is written Fn
r,ξ � Gn

r,ξ if

lim
n→∞ sup

r,ξ
Hn
r,ξ /G

n
r,ξ = 0, (5)

where H is a subdominant term.

Theorem 2. Fix a small ε > 0, γ ∈ (1/2, 1]. Let δ∗
n > 0 be any sequence going to zero

with n and take n so large that δ∗
n > 0 is sufficiently small. Let ξc − ξ = δ∗

n be such that

n(ξc − ξ) >> n1/3. Let the distance between the two dimers r =
√
r21 + r22 lie in an

interval (rmin, rn) where rmin > 0 is large but fixed and rn is very large (growing with
n) but less than ϕ

γ−2
c /2. The function ϕc := ϕc(ξ) is proportional to

√
ξc − ξ and is

determined later. Let 2rϕc/
√
1 − 2c ∈ �ε and take the direction pointing from one of

the dimers to the other to be parallel to the main diagonal, that is, parallel to the vector
(1, 1). Then

corr(e1, e2) � −a2
( |G(i)|2r√1 − a√

8πra
√
1 + a2

+
a − |G(i)|−2

(1 − a)2π

sin(2rϕc/
√
1 − 2c)

2r/
√
1 − 2c

)2
. (6)

Looking at the formula in (6), observe how the behaviour of the term

sin(2rϕc/
√
1 − 2c)

2r/
√
1 − 2c

(7)

changes as a function of r . If 2rϕc is small compared to
√
1 − 2c it is close to the

constant ϕc (n is fixed), i.e. the smaller r is compared to the ratio
√
1 − 2c/(2ϕc) the

closer the term (7) is to the constant ϕc. Whereas for 2rϕc >
√
1 − 2c the term starts

to slowly oscillate and decay like 1/r . This leads to three regimes for the correlation
as a function of r . Pick any sequence Mn such that 2Mnϕc/

√
1 − 2c tends to zero, for

example Mn = ϕ−1+ε
c , then for n fixed large enough

Regime I. As r varies from rmin to 1
log |G(i)|−2 log

1
ϕc
,

corr(e1, e2) � − a(1 − a)

8π
√
1 + a2

|G(i)|4r
r

(
=: −c1

e−c2r

r

)
, (8)

which has exponential decay in r .
Regime II. As r varies from 1

log |G(i)|−2 log
1
ϕc

to Mn then

corr(e1, e2) � −
(a(a − |G(i)|−2)

π(1 − a)2

)2
ϕ2
c

(
=: −c3

)
, (9)
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which has no decay, so the correlation is constant.
Regime III. As r varies from Mn to rn ,

corr(e1, e2) � −
( a(a − |G(i)|−2)

2π(1 − a)
√
1 + a2

)2 sin2(2rϕc/
√
1 − 2c)

r2

(
=: −c4

sin2(c5r)

r2

)
,

(10)

which begins to oscillate and has a decay like 1/r2.
The sign of the correlation changes depending on which type of dimers we pick. Here

is some intuition behind the results. Think of the above case when the direction pointing
from one dimer to the other is parallel to the main diagonal. There are two length scales
in the problem. One is the lattice spacing and the other is the typical distance 1/

√
ξc − ξ

between the paths that we see in Fig. 3. These are the long (corridor) paths which connect
sides of the Aztec diamond defined in [3]. As we increase the distance r between the
dimers we first see the smooth phase exponential decay which takes place in the order
of the lattice spacing. After that the correlations in some sense come from the paths,
similar to what should happen at the rough-frozen boundary. In terms of the distance
between the paths the lattice spacing is very short and hence we see constant correlations
proportional to ξc − ξ . At some point when the distance r is of order 1/

√
ξc − ξ , we

start to see the type of decay that we have in a rough phase. Indeed here, if we set

r = d/
√

ξc − ξ the correlations decay like (ξc − ξ)
sin2(d)

d2
(omitting constants).

We can also consider the decay of the covariance in other directions, we summarise
the results of Theorem 8. Take the direction pointing from one dimer to the other to be
parallel to the anti-diagonal, i.e the vector (−1, 1). Let 0 < m < 1 be small and M > 1
large. As r varies from rmin to c3 log( 1√

ξc−ξ
),

corr(e1, e2) is exponentially decaying in r, (11)

then as r varies from log( 1√
ξc−ξ

) to m/(ξc − ξ),

corr(e1, e2) decays like 1/
√
r , (12)

then as r varies from m/(ξc − ξ) to M/(ξc − ξ) we see a transition to

corr(e1, e2) has 1/r decay, (13)

and then as r varies from M/(ξc − ξ) to rn we see a transition to

corr(e1, e2) decays like 1/r
2 (with no oscillations). (14)

For a results on arbitrary directions, see Sect. 3, in particular Theorem 9.

1.2. Kasteleyn’s approach and dimer statistics. The classical approach to analyse the
statistical behaviour of random dimer configurations of large bipartite graphs G is to
follow an idea introduced by Kasteleyn. In this approach, one puts signs +1,−1 (called
a Kasteleyn orientation) into a submatrix of the weighted adjacency matrix indexed by
B ′ × W ′ for the black and white vertices, B ′ and W ′, of G. The resulting matrix K
is called the Kasteleyn matrix and has the property that the partition function of the
dimer model is equal to the absolute value of the determinant of K . The key idea in this
approach is that the signs one introduced to construct the matrix K cause the non-zero
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terms in the sum of the determinant of K to all have the same sign. In general, the
Kasteleyn orientation is not unique, and its values need not be restricted to 1,−1. Here
we introduce the Kasteleyn matrix Ka,1 that we use for the two-periodic Aztec Diamond
model of size n = 4m. Define

Ka,1(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a(1 − j) + j if y = x + e1, x ∈ Bj

i(aj + (1 − j)) if y = x + e2, x ∈ Bj

a j + (1 − j) if y = x − e1, x ∈ Bj

i(a(1 − j) + j) if y = x − e2, x ∈ Bj

0 otherwise

(15)

where i = √−1, j ∈ {0, 1}. For dimers e1, ..., en , define the n-point correlation function

ρn(e1, ..., en) = PAz(ω ∈ M(AD) : e1, ..., en ∈ ω). (16)

One canuse the determinantal expressionof the partition function to show that collections
of dimers form a determinantal point process. Indeed, a theorem from Kenyon [20] (see
also [19]) gives that for ei = (bi , wi ), i = 1, ..., n, the n-point correlation functions are

ρn(e1, ..., en) = det(L(ei , e j ))
n
i, j=1 (17)

with correlation kernel

L(ei , e j ) = Ka,1(bi , wi )K
−1
a,1(w j , bi ). (18)

In the above, K−1
a,1(w j , bi ) is the inverse of the Kasteleyn matrix Ka,1 evaluated at

(w j , bi ). From (3) we can write the covariance between two dimers in terms of Ka,1

and K−1
a,1,

corr(e1, e2) = ρ2(e1, e2) − ρ1(e1)ρ1(e2)

= −Ka,1(b1, w1)Ka,1(b2, w2)K
−1
a,1(w2, b1)K

−1
a,1(w1, b2), (19)

from (17) and (18).

1.3. Dimer locations. We can specify that locations of arbitrary dimers as follows. Let
1aF be an indicator function on the edge set so that 1aF (e) = 1 if the edge e has
weight a and 1aF (e) = 0 otherwise. Take two dimers and label their positions as
follows: For i = 1, 2, let ε

(i)
1 , ε

(i)
2 ∈ {0, 1}, the dimer ei is given by a pair of vertices

(x (i)
ε1 , y(i)

ε2 ) := (x (i)

ε
(i)
1

, y(i)

ε
(i)
2

) ∈ W
ε
(i)
1

× B
ε
(i)
2

where

x(i)
ε1 = (n(1 + ξ) + 2r (i)

1 + 1, n(1 + ξ) + 2r (i)
2 + 2ε(i)

1 (21aF (ei ) − 1)) (20)

y(i)
ε2 = (n(1 + ξ) + 2r (i)

1 + 1 − (1 − 2ε(i)
2 )(21aF (ei ) − 1), n(1 + ξ) + 2r (i)

2 + 21aF (ei ) − 1)
(21)

and (r (i)
1 , r (i)

2 ) ∈ {(r (i)
1 , r (i)

2 ) ∈ Z
2 : r (i)

1 + r (i)
2 ∈ 2Z and |2r (i)

1 | + |2r (i)
2 | ≤ r}.

Note that the sum of r (i)
1 and r (i)

2 is always even and (n(1+ξ)+1, n(1+ξ)) is always a

W0-type vertex. So x
(i)
0 = (n(1+ξ)+2r (i)

1 +1, n(1+ξ)+2r (i)
2 ) generates all possibleW0

vertices within a distance r of (n(1 + ξ) + 1, n(1 + ξ)). In (20) and (21) we have written



1262 K. Johansson, S. Mason

Fig. 2. A drawing of a sample of the two-periodic Aztec Diamond with a = 0.5 and b = 1. The picture
consists of eight different grey-scale colours to emphasize the smooth (gas) region. The dimers with weight a
are coloured lighter grey than those with weight 1

Fig. 3. The rough–smooth transition region in the lower left quadrant

the locations of the vertices x and y corresponding to the edge e = (x, y) ∈ W × B
as the sum of two coordinate vectors, the first corresponds to the W0 vertex in the same
a or b face as e and the second is (0, 2ε(i)

1 (21aF (ei ) − 1)) for the white vertex x or

((−1 + 2ε(i)
2 )(21aF (ei ) − 1), 21aF (ei ) − 1) for the black vertex y.
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1.4. Definitions and uniform asymptotic results. In order to investigate the dimer–dimer
correlation (19) asymptotically we need asymptotic formulas for K−1

a,1. To prove these

asymptotic results we need a good formula for K−1
a,1 as a starting point. A double contour

integral formula for K−1
a,1 was derived in [8] starting from a quadruple integral formula

found in [9]. Other versions of the result, not giving the inverse Kasteleyn matrix but a
related particle kernel, have been derived in [13] and in [5] using a completely different
approach. The rough–smooth boundary has also been investigated in [2] and [3] with the
aim of establishing that right at the boundary we can see the Airy kernel point process.
We will use the formula for K−1

a,1 derived in [8]. Before we can give the formula we first
need to define the objects that come into it. For ε1, ε2 ∈ {0, 1}, we write

h(ε1, ε2) = ε1(1 − ε2) + ε2(1 − ε1). (22)

In many cases the coordinates of the vertices giving the position of the dimers will enter
into formulas via the following expressions. Let (x1, x2) ∈ Wε1 , (y1, y2) ∈ Bε2 and
define

k1 = x2 − y2 − 1

2
+ h(ε1, ε2), �1 = y1 − x1 − 1

2
, (23)

k2 = k1 + 1 − 2h(ε1, ε2), �2 = �1 + 1. (24)

Denote the open punctured unit disc D∗ = D \ {0} ⊂ C. A basic role is played by the
analytic function

G : C \ i[−√
2c,

√
2c] → D

∗; w �→ 1√
2c

(w −
√

w2 + 2c) (25)

with
√

w2 + 2c = i
√

−√
2c − iw

√√
2c − iw where the previous two square roots are

principal branch square roots. Let
√
1/w2 + 2c denote the previous function evaluated

at 1/w. Equivalently,

G(w) = w√
2c

(1 −
√
1 +

2c

w2 ) (26)

where the previous square root is the principal branch square root. We note that G is the
inverse of the analytic bijective map

J : D∗ → C \ i[−√
2c,

√
2c]; u �→

√
c

2
(u − 1/u). (27)

J is related to the Joukovski map and the above claims about J and G follow from
chapter 6 in [22]. From the definition, we have the symmetries

√
w2 + 2c =

√
w2 + 2c, −

√
w2 + 2c =

√
(−w)2 + 2c (28)

which give

G(w) = G(w), − G(w) = G(−w). (29)

We emphasise the fact that for all w in the domain of G we have the bound |G(w)| < 1,
which follows from the definition of G, this fact gives the exponential decay of various
asymptotic formulas.
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Let k, � be non-zero integers. For k, � > 0 define

Ek,� = i−k−�

2(1 + a2)2π i

∫

�1

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

(30)

where �1 ⊂ C is the circle of radius 1 centred at the origin, and then for all k, � define

Ek,� = E|k|,|�|. (31)

For vertices (x1, x2) ∈ Wε1 , (y1, y2) ∈ Bε2 , we define

K
−1
1,1(x1, x2, y1, y2) = −i1+h(ε1,ε2)(aε2Ek1,�1 + a1−ε2Ek2,�2), (32)

where we used (23) and (24). This is the inverse Kasteleyn matrix in an infinite smooth
phase planar model, see Sect. 4. In the asymptotic analysis of the inverse Kasteleyn
matrix K−1

a,1 in [8], the following saddle-point function appears

gξ (w) = logw − ξ logG(w) + ξ logG(w−1). (33)

We recall from [8] that for−√
1 + 2c/2 < ξ < ξc, gξ has four critical points±ωc,±ωc,

ωc = eiθc , θc ∈ [0, π/2], where g′
ξ (±ωc) = g′

ξ (±ωc) = 0. These four points satisfy the
saddle-point equation

−1

ξ
= w√

w2 + 2c
+

1

w
√
1/w2 + 2c

(34)

by (257), and will hence depend on ξ . Define

C̃ωc(k, �) = i−k−�

2(1 + a2)2π i

∫

�ωc

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

, (35)

where the contour �ωc = {eiθ : θ ∈ (θc, π − θc) ∪ (−π + θc,−θc)} has positive
orientation around the origin. For x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 , define

Cωc (x, y) = −i1+h(ε1,ε2)
(
aε2 C̃ωc (k1, �1) + a1−ε2 C̃ωc (k2, �2)

)
. (36)

The elements of the inverse Kasteleyn matrix are given by the following theorem.

Theorem 3. For n = 4m, m ∈ N>0, (x1, x2) ∈ Wε1 , (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1}
then

K−1
a,1((x1, x2), (y1, y2)) = K

−1
1,1((x1, x2), (y1, y2)) − Cωc ((x1, x2), (y1, y2))

+ Rε1,ε2((x1, x2), (y1, y2)) + B∗
ε1,ε2

(a, (x1, x2), (y1, y2)).
(37)

We will not define B∗
ε1,ε2

here. By lemma 3.6 in [8] there are positive constants C1,C2

such that |B∗
ε1,ε2

(a, x1, x2, y1, y2)| ≤ C1e−C2n when the vertices (x1, x2), (y1, y2) are
distance O(

√
n) from the line (n(1+ ξ), n(1+ ξ)), −1 < ξ < 0. This means that for the

purposes of this paper it will be negligible. The theorem follows from the results in [8],
see Sect. 7. The term Rε1,ε2 is an error term in this paper. We have the following bound
for Rε1,ε2 .
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Proposition 1. Let

(x1, x2) = (n(1 + ξ) + 2a1 − 1, n(1 + ξ) + 2a2),

(y1, y2) = (n(1 + ξ) + 2b1, n(1 + ξ) + 2b2 − 1). (38)

If δ∗
n > 0 is a sequence going to zero as n → ∞ then there exists B,C > 0 such that

for any n large enough and 0 < ξc − ξ ≤ δ∗
n

|Rε1,ε2(x1, x2, y1, y2)| ≤ B|G(ωc)|b1−b2+a2−a1 min(
1

n1/3
,

1√
n
√

ξc − ξ
) (39)

uniformly for all |ai |, |bi | ≤ max{n1/3,√n
√

ξc − ξ} with i = 1, 2.

We see that what we need is uniform asymptotics forK−1
1,1 and Cωc . The main results

of this paper is the bound in Proposition 1 and uniform asymptotics for K−1
1,1 and Cωc .

Theorem 4. The asymptotic formulas (49), (50), (51), and (54) below together with (32)
and (36), give uniform asymptotics for K−1

1,1 and Cωc , and hence for K−1
a,1 by (37).

Although these formulas give the asymptotics we need, it is not immediate to see how
the the covariance (19) behaves if we fix n large and study how the covariance between
two dimers in the transition region between the smooth and rough phases behaves as we
increase the distance between them. We will discuss this in the setting of Example 1 in
Sect. 3. Here we give a more informal summary.

2. Asymptotic Results

In this section we formulate the precise asymptotic results for Ek,� and C̃ωc (�, k). The
critical point ωc defined above is a function of ξ and lies on the unit circle so we can
write ωc(ξ) = eiθc(ξ), where θc(ξ) ∈ (0, π/2). It satisfies the Eq. (34). For convenience,
we also define the function

ϕc(ξ) = π/2 − θc(ξ) (40)

since this will be a natural quantity that is small and can be related to ξc−ξ , see Lemma 5.
Note that when ξ = ξc, gξ has a double critical point at both i and −i so θ(ξc) = π/2
and hence ϕ(ξc) = 0.

Weneed to assume that ξc−ξ is small,whichmeans thatwe are close to the asymptotic
rough–smooth boundary.

Assumption 1. We assume throughout the paper that ξ satisfies 0 < ξc − ξ < δ, where
δ < ξc + 1

2

√
1 + 2c is a small number determined by a finite number of conditions below.

We will not discuss the explicit value of δ.

We now relate the critical point ωc and ϕc to the value of ξ near ξc.

Lemma 5. Let ξ be such that Assumption 1 holds and let ωc = eiθc , θc = π/2 − ϕc ∈
[0, π/2] satisfy g′

ξ (ωc) = 0. Then there exists a bounded function R1(ϕc) such that

ξc − ξ = 4c(1 + c)ξ2c
(1 − 2c)5/2

ϕ2
c + R1(ϕc)ϕ

4
c . (41)
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Furthermore, there are bounded functions R2(ξ), R3(ξ) such that

ωc − i =
√

(1 − 2c)5/2

4ξ2c c(1 + c)

√
ξc − ξ + R2(ξ)(ξc − ξ), (42)

and

ϕc =
√

(1 − 2c)5/2

4ξ2c c(1 + c)

√
ξc − ξ + R3(ξ)(ξc − ξ). (43)

The proof of this lemma is given in Sect. 8. Note that Assumption 1 and Lemma 5 imply
that there is a small δ1 > 0 such that 0 < ϕc < δ1 for all of the ξ we consider.

For the asymptotic analysis of Ek,� we need another saddle-point function. For α ∈
[−1, 1], define the function g̃α : C\ (i(−∞, 1/

√
2c]∪ i[−√

2c,
√
2c]∪ i[√2c,∞)) →

C by

g̃α(w) = logG(w) + α logG(1/w), (44)

where both logarithms have branch cuts on the negative real axis. Taking a derivative
yields

g̃′
α(w) = −1√

w2 + 2c
+

α

w2

1√
1/w2 + 2c

, (45)

and setting this equal to zero gives the equation 2cw4 + (1−α2)w2−2cα2 = 0. Solving
this gives the four critical points

±i

(
1 − α2 +

√
(1 − α2)2 + 16c2α2)

4c

)1/2

, ±
(

−(1 − α2) +
√

(1 − α2)2 + 16c2α2)

4c

)1/2

.

(46)

It is straight forward to see that the four points solve g̃′
α(w) = 0 if 0 < α ≤ 1 (and that

there is no solution for −1 ≤ α ≤ 0) by using (28). Let

wα =
(
1 − α2 +

√
(1 − α2)2 + 16c2α2)

4c

)1/2

∈ [1, 1/√2c) (47)

so that iwα is a critical point of g̃α .
Note that we have the properties

Ek,� = E�,k, C̃ωc(k, �) = C̃ωc (�, k), (48)

seen by the change of variables w → 1/w in the definitions. By (48) we can assume
that |k/�| ≤ 1 without loss of generality. We are now in position to formulate our main
asymptotic results.
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Proposition 2. Let the integers �, k be such that � + k is even and α = |k|/|�| lie in a
compact subset of (0, 1]. As |�| → ∞ there is a positive constant d1 and a bounded
function R4(k, �) such that

Ek,� = (−1)k |G(iwα)||�||G(1/(iwα))||k|
(1 + a2)

√
2π |g̃′′

α(iwα)�|wα

√
w2

α − 2c
√
1/w2

α − 2c
(1 + R4(k, �)/|�|)) . (49)

For fixed k, there is a positive constant d2 and a bounded function R5(k, �) such that

Ek,� =
(−1)k |G( i√

2c
)||�||G(−i

√
2c)||k|(1 − a2)4(1 + a)

(2a(1 + a2)9)1/42
√

π |�|
(
1 + R5(k, �)/|�|3/2)

)
(50)

as |�| → ∞.

Proposition 3. Fix γ ∈ (1/2, 1] and ε > 0 small. Consider non-zero integers �, k such
that �+k is even,α = k/� lies in [−1, 1]andϕ

2−γ
c (|�|+|k|) ≤ 1. Ifϕc�(1−α)/

√
1 − 2c ∈

�ε, then

C̃ωc(k, �) = (−1)k |G(i)|�+k
(1 − a)2π

( sin((� − k)ϕc/
√
1 − 2c)

(� − k)/
√
1 − 2c

(1 + R6(ξ, �, k))
)

(51)

where we have the estimate

|R6(ξ, �, k)| ≤ Cϕ
−1+2γ
c , (52)

for some constant C > 0 that only depends on ε.

Set c′ = c/(1 − 2c)3/2. For θ ∈ R define

F(θ) := argG(ie−iθ ) − π/2 = θ√
1 − 2c

− R7(−θ)θ3. (53)

It follows from (165) that R7 is bounded.

Proposition 4. Fix α̃ in [−1, 1], γ ∈ (1/2, 1] and ε > 0 small. Consider non-zero
integers �, k such that � + k is even, k/� = α̃ + κ� ∈ [−1, 1] and (|�| + |k|)ϕ2−γ

c ≥ 1/2.
Here κ� is an arbitrary sequence indexed by � such that |κ�| < 3/|�|.

Assume that F(ϕc)(� − k) ∈ �ε. Then, when |�| is large enough, there is a bounded
function R8(ξ, �, k) such that

Ek,� − C̃ωc (k, �)

= (−1)k |G(ωc)|�+k
π(1 − a)2

⎧
⎪⎪⎨

⎪⎪⎩

−e(�+k)c′ϕ2
c
∫ ϕc
0 cos

(
(� − k)F(θ)

)
e−(�+k)c′θ2dθ, � + k < −2

−((� − k)/
√
1 − 2c)−1 sin((� − k)F(ϕc)), � + k ∈ {−2, 0, 2}

e(�+k)c′ϕ2
c
∫ ∞
ϕc

cos
(
(� − k)F(θ)

)
e−(�+k)c′θ2dθ, � + k > 2

×
(
1 + R8(ξ, �, k)

)
. (54)

Furthermore, there is a constant C > 0 such that

|R8(ξ, �, k)| ≤ C max(
1√|�| , ϕc). (55)
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We outline the arguments that lead to the above three Propositions. The proof of (49)
in Proposition 2 is a standard steepest descent analysis, which is centred at the critical
point iwα ∈ i[1, 1/√2c) of g̃α . This analysisworks uniformly inα in any compact subset
of (0, 1]. For the regime in (50) (α near/equal to zero), the critical point iwα merges into
the branch cut along i[1/√2c,∞), so we perform a separate steepest descent analysis
for this regime. This analysis/formula is independent of ϕc.

In Proposition 3, the condition |�|+ |k| ≤ ϕ
γ−2
c means we are considering the integral

in (35) over a very small contour �ωc , but where the asymptotic parameters |�|, |k| still
sit in a regime which is relatively small. We prove that an integration by parts argument
suffices to obtain a uniformly small remainder in this "smaller" regime.

In Proposition 4 the regime is instead restricted to |�|+ |k| ≥ ϕ
γ−2
c /2, which overlaps

with the previous regime, but also consists of a range of larger |�| + |k|. In this regime,
integration by parts no long suffices in all regions of (�, k). The regime requires amixture
of integration by parts and methods in the spirit of the method of steepest descent to
deal with the asymptotics. We also have to consider Ek,� − Cωc(k, �) here, as in one
region, the leading order terms of Ek,� and Cωc are actually equal, and so they cancel
if we compute the asymptotics of the integrals separately. Indeed, this is why we define
Dωc(k, �) = Ek,� − Cωc (k, �) (defined in (195)) in a certain region of (k, �).

3. Results on Dimer–Dimer Correlations

In this section we discuss the decay of the covariance between pairs of dimers in the
transition region between the rough and smooth phases in the setting of Example 1.
Recall the definitions (23), (24). For i = 1, 2 label the evaluation of ki , �i at (x (1), y(2))

as k1,2i , �
1,2
i and label their evaluation at (x (2), y(1)) as k2,1i , �

2,1
i . We have

k1,21 = −r2 − 1, �
1,2
1 = r1 − 1, k1,22 = −r2, �

1,2
2 = r1 (56)

and

k2,11 = r2 − 1, �
2,1
1 = −r1 − 1, k2,12 = r2, �

2,1
2 = −r1. (57)

This motivates us to think of

(�, k) = r(−σ1, σ2) (58)

(where σ 2
1 + σ 2

2 = 1) in the sense that r ∼
√
r21 + r22 gives the distance between two

dimers and ±(σ1, σ2) gives the direction.
Consider sequences δn, δ

∗
n , rn > 0 such that δn ≤ δ∗

n ,

δn, δ
∗
n → 0, rn → ∞ (59)

and

rn = o(
√
n
√

δn), δnn
2/3 → ∞, (60)
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as n → ∞. We assume that rmin ≤
√
r21 + r22 ≤ rn and δn ≤ ξc −ξ ≤ δ∗

n , where rmin is a

positive number that will be taken large enough. For example we could take δn = n−1/2

and δ∗
n = 1/ log(log(n)). Note that (60) implies

1

rn
>>

1√
n
√

ξc − ξ
= o(n−1/3). (61)

Recall Lemma 5, in particular (43) which gives a positive constant d3 such that

ϕc = d3
√

ξc − ξ + R3(ξ)(ξc − ξ). (62)

We see there are constants c1,C1 > 0

c1
√

ξc − ξ ≤ ϕc ≤ C1
√

ξc − ξ . (63)

The dimer–dimer correlation is given by formula (19), which in the setting of Example 1
becomes

corr(e1, e2) = a2K−1
a,1(x

(2), y(1))K−1
a,1(x

(1), y(2)). (64)

Let (i, j) = (1, 2) or (2, 1). By Theorem 3

K−1
a,1(x

(i), y( j)) = K
−1
1,1(x

(i), y( j)) − Cωc (x
(i), y( j)) + R0,0(a, x (i), y( j)) + O(e−Cn).

(65)

Putting the coordinates in Example 1 into (38) yields Proposition 1 as

|R0,0(a, x (i), y( j))| ≤ B ′|G(ωc)|ri−r j 1√
n
√

ξc − ξ

≤ B ′eCrnϕ2
c |G(i)|ri−r j 1√

n
√

ξc − ξ
. (66)

In the second inequality in 66 we used the following approximation; Set α = 0 in (155)
to get R[ψ(θc)] = log |G(ωc)|, and then use (167) to obtain

|G(ωc)|ri−r j = e(ri−r j )O(ϕ2
c )|G(i)|ri−r j . (67)

Now we use (32) and (36) to write

K
−1
1,1(x

(i), y( j)) − Cωc (x
(i), y( j)) = −√−1

(
E
ki, j1 ,li, j1

− C̃ωc (k
i, j
1 , li, j1 )

+ a(E
ki, j2 ,li, j2

− C̃ωc (k
i, j
2 , li, j2 ))

)
(68)

where we recall l1,21 , k1,21 ... as given in (56), (57).
Now we give a short lemma that we use to extract the leading order terms of K−1

1,1
from Proposition 2.

Lemma 6. For 0 < α, α′ ≤ 1,

g̃α(iwα) = g̃α′(iwα′) + log(G(1/(iwα′))(α − α′) + O(α − α′)2. (69)

Proof. Since α → g̃α(iwα) is smooth, we use Taylor’s theorem and note that

d

dα

∣∣∣∣
α′
g̃α(iwα) = log(G(1/(iwα′))) + i

dwα′

dα

d

dw

∣∣∣∣
iwα′

g̃α′(w)

by the chain rule. The lemma follows since iwα′ is a critical point of g̃α′ . ��
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3.1. Dimer–dimer correlations parallel to e1. We look at dimers separated along the
diagonal, that is, we let r1 = r2 = r > 0. This implies k2,11 = l1,21 = r − 1, k1,21 =
l2,11 = −r − 1 and k1,22 = l2,12 = −r , k2,12 = l1,22 = r . We obtain the formula

K−1
a,1(x

(i), y( j)) = −√−1
(
Er−1,−r−1 + aE−r,r − C̃ωc(r − 1,−r − 1) − aC̃ωc (−r, r)

)

+ R0,0(a, x (i), y( j)), (70)

where we used (48). Take rmin so large that we can neglect remainders in Proposition 2.
Note that |G(i)| = (1 − √

1 − 2c)/
√
2c < 1. Although other length scales can be

analysed, for simplicity take δn = ξc − ξ = δ∗
n .

Theorem 7. Take a very large n, a small ε > 0 and fix γ ∈ (1/2, 1]. Take ξc − ξ = δn,
which gives ϕc ∼ d

√
δn with an explicit constant d. Assume that rmin < r < rn,

2rnϕ
2−γ
c ≤ 1, (71)

and 2rϕc/
√
1 − 2c ∈ �ε, where �ε is defined by (4). Then

corr(e1, e2) � −a2
( |G(i)|2r√1 − a√

8πra
√
1 + a2

+
a − |G(i)|−2

(1 − a)2π

sin(2rϕc/
√
1 − 2c)

2r/
√
1 − 2c

)2
(72)

Proof. It follows from our assumptions that rnϕ2
c = o(1), together with (66) and (61)

we have the estimate

R0,0(a, x (i), y( j)) = o(n−1/3).

An evaluation using (129) gives

E−r,r = Er,r � (−1)r |G(i)|2r√
8πc r(1 − 2c)1/2(1 + a2)

. (73)

We use lemma 6 with α = (r − 1)/(r + 1), α′ = 1 to get R[g̃α(iwα)] = R[g̃1(i)] −
2 log |G(i)|/r + O(1/r2). We can use this in Proposition 2, to get

Er−1,−r−1 = Er−1,r+1 � − (−1)r |G(i)|2r√
8πcr(1 − 2c)1/2(1 + a2)

. (74)

We now apply Proposition 3 to the C̃ωc appearing in (70). By (63), the remainder R6 in
(51) is very small compared to 1 and sowe neglect this term. It follows fromProposition 3
that we can write

C̃ωc (r − 1,−r − 1) + aC̃ωc (−r, r) � (−1)r
(a − |G(i)|−2)

(1 + a2)π

sin(2rϕc/
√
1 − 2c)

2r
√
1 − 2c

(75)

where a − |G(i)|−2 < 0. Now from (172) we obtain

|C̃ωc(r − 1,−r − 1) + aC̃ωc (−r, r)| ≥ C min(
ϕc

1 − 2c
,
1

2r
). (76)

Combining this with (61) we see that the error term o(n−1/3) can be neglected. A
computation using (70) now gives (72). ��
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3.2. Dimer–dimer correlations parallel to e2. Now we look at dimers separated along
the anti-diagonal. So we instead take r1 = −r2 = r > 0 for which we have k1,21 =
�
1,2
1 = r − 1, k2,11 = �

2,1
1 = −r − 1, k2,12 = l2,12 = −r , k1,22 = l1,22 = r . So we obtain

K−1
a,1(x

(i), y( j)) = − √−1
(
E(−1) j r−1,(−1) j r−1 + aE(−1) j r,(−1) j r

− C̃ωc ((−1) j r − 1, (−1) j r − 1) − aC̃ωc ((−1) j r, (−1) j r)
)

+ R0,0(a, x (i), y( j)) + O(e−Cn). (77)

Theorem 8. Take a very large n, a small ε > 0 and fix γ ∈ (1/2, 1]. Take ξc − ξ = δn,
which gives ϕc ∼ d

√
δn with an explicit constant d. If rmin < r < ϕ

γ−2
c /2 then

corr(e1, e2) � a(1 − a)

8π
√
1 + a2

|G(i)|4r
r

+
a3/2(a − |G(i)|−2)2√
8π3(1 − a)5

√
1 + a2

ϕc√
r
. (78)

If instead ϕ
γ−2
c /2 ≤ r < rn then

corr(e1, e2) � a2(a − |G(ωc)|−2)2

2π2ra(1 − a)
√
1 + a2

∫ ∞
√
2rc′ϕc

∫ √
2rc′ϕc

0
et

2
1−t22 dt1dt2 (79)

where c′ = a
√
1 + a2/(1 − a)2.

Proof. We can use (73)

E(−1) j r−1,(−1) j r−1 + aE(−1) j r,(−1) j r

= (−1)r |G(i)|2r√
8πr c(1 − 2c)1/2(1 + a2)

(
a − |G(i)|−2(−1) j + O(1/r)

)
(80)

where the remainder O(1/r) comes from estimating the difference between
E(−1) j r−1,(−1) j r−1 and E(−1) j r,(−1) j r . Clearly (80) decays exponentially. Take rmin large
enough that the remainders in Proposition 3 are small. We can use Proposition 3 to write
that for r ≤ 1/(2ϕ2−γ

c ),

C̃ωc ((−1) j r − 1, (−1) j r − 1) + aC̃ωc ((−1) j r, (−1) j r)

� (−1)r |G(i)|(−1) j2r (a − |G(i)|−2)ϕc

π(1 − a)2
. (81)

Observe that there are no oscillations. By (60) and (66) we see the remainder in (77) is
small compared to (81) for n large. So

corr(e1, e2) � − a2
( |G(i)|2r (a − |G(i)|−2)√

8πc r(1 − 2c)1/2(1 + a2)
− |G(i)|2r (a − |G(i)|−2)ϕc

π(1 − a)2

)

×
( |G(i)|2r (a − |G(i)|2)√

8πc r(1 − 2c)1/2(1 + a2)
− |G(i)|−2r (a − |G(i)|−2)ϕc

π(1 − a)2

)
,
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now (78) follows by using (114) with θ = −π/4 which gives

(a − |G(i)|−2)(|G(i)|2 − a) = (1 − a)2 (82)

and since 1/
√
r >> ϕc in this regime.

If 1/(2ϕ2−γ
c ) ≤ r ≤ rn , by substitution in Proposition 4 we obtain

Er,r − C̃ωc (r, r) � (−1)r |G(ωc)|2r
π(1 − a)2

D−(
√
2rc′ϕc)√
2rc′ (83)

E−r,−r − C̃ωc (−r,−r) � − (−1)r |G(ωc)|−2r

π(1 − a)2

D+(
√
2rc′ϕc)√
2rc′ (84)

where

D+(z) = e−z2
∫ z

0
et

2
dt, D−(z) = ez

2
∫ ∞

z
e−t2dt. (85)

D+, D− are known as the Dawson function andMills ratio, respectively. These functions
are related to the imaginary and complementary error functions. We use 7.8.7 in [12] to
write

D+(z) <
1 − e−z2

z
(86)

for z > 0. We apply the upper bound |e−z2 − 1| ≤ z2ez
2
to (86) on (0, 1]. We also have

that for the same interval, the lower bounds e−z2 ≥ e−1, and t ≥ 0, et
2 ≥ 1 hold, hence

e−1z ≤ D+(z) < ez. (87)

For z ≥ 1, inequality (1) in [11] gives a lower bound and we apply the upper bound
1 − e−z2 ≤ 1 − e−1 to (86) to get

1

2z
≤ D+(z) <

1 − e−1

z
. (88)

By 7.8.3 in [12] we have
√

π

2
√

π z + 2
≤ D−(z) <

1

z + 1
(89)

for z ≥ 0. Hence

D+(
√
2rc′ϕc)√
2rc′ ≥

{
e−1ϕc,

√
2rc′ϕc ∈ (0, 1]

(4rc′ϕc)
−1

√
2rc′ϕc ∈ (1,∞),

(90)

D−(
√
2rc′ϕc)√
2rc′ ≥

√
π

8c′
1√

2πc′rϕc +
√
r

(91)

We can use (60) to show that both (90),(91) are much greater than 1/
√
n
√

ξc − ξ . Hence
it follows from (83), (84) and (66) that the remainders in (77) are negligible. So we have

K−1
a,1(x

(1), y(2)) � −i
(
Er,r − C̃ωc (r, r) + a(Er−1,r−1 − C̃ωc (r − 1, r − 1)

)
(92)
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� −i
( (−1)r |G(ωc)|2r

π(1 − a)2

[D−(
√
2rc′ϕc)√
2rc′ (a − |G(ωc)|−2) + O(

1

r
)
])

(93)

and

K−1
a,1(x

(2), y(1)) � i
( (−1)r |G(ωc)|−2r

π(1 − a)2

[D+(
√
2rc′ϕc)√
2rc′ (a − |G(ωc)|−2) + O(

1

r
)
])

.

(94)

The O(1/r) error appearing in (93) arises from the difference in evaluating
D−(

√
2 · c′ϕc)/

√
2 · c′ at r and r − 1, similarly for D+ and (94). By (90) and (91)

these errors are negligible in the current regime. Hence by (64) we have (79) for
1/(2ϕc)

2−γ ≤ r ≤ rn ��
We bring forward the asymptotics contained in (42.6) from [24] and (7.12.1), (7.6.2)

in [12] (for which we note D−(z) = √
πez

2
erfc(z)/2). For z > 0,

D+(z) =
{
z + O(z3) for z small
1
2z + O( 1

z3
) for z large

, D−(z) =
{√

π

2 + O(z) for z small
1
2z + O( 1

z3
) for z large

. (95)

We see the following distinct decay rates.
Regime I. As r varies from rmin to 1

log |G(i)|−4 log
1
ϕc

,

corr(e1, e2) � a(1 − a)

8π
√
1 + a2

|G(i)|4r
r

(96)

which decays exponentially.
For the next regime, we use (78) and (67) when r varies from 1

log |G(i)|−4 log
1
ϕc

to

1/(2ϕ2−γ
c ). We then use (95) on (79) when r varies from 1/(2ϕ2−γ

c ) to small compared
to 1/(2c′ϕ2

c ). These two sub-regimes have the same leading order term which is just an
artefact of how we proved the asymptotic formulas. We combine them into one regime.
Regime II. As r varies from 1

log |G(i)|−4 log
1
ϕc

to small compared to 1/(2c′ϕ2
c ),

corr(e1, e2) � a3/2(a − |G(ωc)|−2)2√
8π3(1 − a)5

√
1 + a2

ϕc√
r

(97)

which decays like 1/
√
r .

Regime III.As r varies fromsmall compared to 1/(2c′ϕ2
c ) to large compared to 1/(2c′ϕ2

c ),
corr(e1, e2) is given by (79) and the integral is bounded below by a positive constant.
Hence corr(e1, e2) decays like 1/r .

For the next regime, we use (95) in (79).
Regime IV. As r varies from large compared to 1/(2c′ϕ2

c ) to rn ,

corr(e1, e2) � (1 − a)2(a − |G(ωc)|−2)2

(4π)2(1 + a2)

1

(ϕcr)2
(98)

which decays like 1/r2. One can also show that both a−|G(i)|−2 < 0 and |G(i)|2−a <

0, hence we see that the correlation is positive in the four regimes above.
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3.3. Dimer–dimer correlations at an arbitrary angle.. Now we analyse a third case
which interpolates between the two previous cases. We consider 2rnϕ

2−γ
c ≤ 1 for a

fixed γ ∈ (1/2, 1). For an arbitrarily small fixed ε > 0, consider

(r1, r2) = √
2r(cos(θ), sin(θ)) =: r(σ1, σ2), θ ∈ [−π/4,−ε] ∪ [ε, π/4 − ε]. (99)

if θ = π/4 this would correspond to separating the two dimers along the diagonal, when
θ = −π/4 this corresponds to the anti-diagonal. In particular, it is interesting to examine
the behaviour for θ close to −π/4.

Let σ := σ2/σ1 = tan(θ), so −1 ≤ σ < 1. We now have l1,21 + 1 = l1,22 = rσ1 =
−l2,12 = −l2,11 −1 and k2,11 +1 = k2,12 = rσ2 = −k1,22 = −k1,21 −1. To state a formula for
the correlation in the current setting we require the definitions of some functions, these
functions come into the rate of exponential decay and leading term constants. Define
σ̃ = sign(θ), sign(0) = 1 and note σ1 > 0. Define the piecewise continuous functions

h±(θ) = R[g̃|σ |(iw|σ |)] ± (1 − σ) log |G(i)|, (100)

g±(θ) = f (|σ |)a − |G(iw|σ |)|±1|G(1/(iw|σ |))|∓σ̃

a − |G(i)|−2 (101)

where f (α) = (
√
2π |g′′

α(iwα)|wα

√
w2

α − 2c
√
1/w2

α − 2c)−1, α ∈ (0, 1].
Theorem 9. Take a very large n, a small ε > 0 and fix γ ∈ (1/2, 1]. Take ξc − ξ = δn,
which gives ϕc ∼ d

√
δn with an explicit constant d. Assume that rmin < r < rn,

2rnϕ
2−γ
c ≤ 1, (102)

and r(σ1 + σ2)ϕc/
√
1 − 2c ∈ �ε, where �ε is defined by (4). Then

corr(e1, e2) � −a2(a − |G(i)|−2)2

(1 + a2)2

∏

q=±

( gq (θ)√
rσ1

erσ1hq (θ) − sin(r(σ1 + σ2)ϕc/
√
1 − 2c)

rπ(σ1 + σ2)
√
1 − 2c

)
.

(103)

Proof. We use Theorem 4 to establish (105) and (108). By (32), we have

K
−1
1,1(x

(1), y(2)) = −i(E|rσ2|+σ̃2,rσ1−1 + aE|rσ2|,rσ1),

K
−1
1,1(x

(2), y(1)) = −i(E|rσ2|−σ̃2,rσ1+1 + aE|rσ2|,rσ1). (104)

Let α1,2 = (|rσ2| + σ̃2)/(rσ1 − 1) and observe that Cε ≤ |α1,2| ≤ 1, where Cε is
small, for large r by (99). By (49), we have

K
−1
1,1(x

(1), y(2)) � −i
f (α1,2)√
rσ1 − 1

(−1)|rσ2|+σ̃2

1 + a2
e(rσ1−1)R[g̃

α1,2 (iw
α1,2 )]

− ia
f (|σ |)√
rσ1

(−1)|rσ2|

1 + a2
erσ1R[g̃|σ |(iw|σ |)]. (105)

We have α1,2 − |σ | = (|σ | + σ̃2)/(rσ1) + O(1/r2) and f (α1,2)√
rσ1−1

= f (|σ |)√
rσ1

+ O(1/r) so

K
−1
1,1(x

(1), y(2))
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� −i
f (|σ |)(−1)r |σ2|√

rσ1(1 + a2)
|G(iw|σ |)|rσ1 |G(1/(iw|σ |))|r |σ2|

(
a − |G(iw|σ |)|−1|G(1/(iw|σ |))|σ̃

)

(106)

by lemma 6. Similarly,

K
−1
1,1(x

(2), y(1))

� −i
f (|σ |)(−1)r |σ2|√

rσ1(1 + a2)
|G(iw|σ |)|rσ1 |G(1/(iw|σ |))|r |σ2|

(
a − |G(iw|σ |)||G(1/(iw|σ |))|−σ̃

)
.

(107)

We have

Cωc (x
(i), y( j)) � −i(a − |G(i)|−2)

(−1)−rσ2 |G(i)|ri−r j

(1 + a2)π

sin(r(σ1 + σ2)ϕc/
√
1 − 2c)

r(σ1 + σ2)
√
1 − 2c)

.

(108)

We see the remainder R0,0 in (65) is much smaller than (108) via (66). ��
Note the following facts abouth+ andh−, since (1+|σ |) log |G(i)| ≤ (1−σ) log |G(i)|

≤ (1 − |σ |) log |G(i)| lemma 13 gives

h+ ≤ h− ≤ 0. (109)

Since h+ − h− = 2(1 − σ) log |G(i)| we have h+(θ) < 0, it is also easy to compute
h−(−π/4) = 0. In fact, one can show that there is a positive c5 > 0 such that h−(θ) =
−c5(θ + π/4)2 + O(θ + π/4)3.

We have the following decay regimes. Let m > 0 be such that m/
√
1 − 2c is small.

Regime I. As r varies from rmin to 1
σ1|h+(θ)| log(

1
ϕc

).

corr(e1, e2) � −sign(θ)
ac

√
1 − 2cw2|σ |

2π
√

(1 − σ 2)2 + 16c2σ 2

erσ1(h−(θ)+h+(θ))

rσ1
(110)

which decays exponentially. Note we used (115) here.
Regime II. As r varies from 1

σ1|h+(θ)| log(
1
ϕc

) to min( 1
σ1|h−(θ)| log(

1
ϕc

),m/((σ1 + σ2)ϕc)

� a2(a − |G(i)|−2)2g−(θ)

(1 − a)2(1 + a2)

ϕcerσ1h−(θ)

π
√
rσ1

(111)

which decays exponentially for θ = −π/4, and like 1/
√
r for θ = −π/4.

Regime III. As r varies frommin( 1
σ1|h−(θ)| log(

1
ϕc

),m/((σ1 +σ2)ϕc)) tom/((σ1 +σ2)ϕc)

� −
(a(a − |G(i)|−2)

π(1 − a)2

)2
ϕ2
c (112)

which has zero or no decay.
Regime IV. As r varies from m/((σ1 + σ2)ϕc) to rn ,

� −
( a(a − |G(i)|−2)

π(1 − a)
√
1 + a2

)2 sin2(r(σ1 + σ2)ϕc/
√
1 − 2c)

r2(σ1 + σ2)2
. (113)
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which oscillates and decays like 1/r2.
Hence we see that for θ > −π/4 close to −π/4, there are two distinct exponential

decay rates; a faster exponential decay in Regime I followed by a slower exponential
decay in Regime II. As we vary the angle θ closer to −π/4, Regime II increases in size,
and the decay in Regime II changes from exponential decay to a decay like 1/

√
r .

Remark 1. A simpler expression can be given for the product g−(θ)g+(θ) that appears
when one expands the product over q in (103). This comes into the formula for Regime
I (110). Through some manipulation one can show the identity

(a − |G(iw|σ |)||G(1/(iw|σ |))|−σ̃ )(a − |G(iw|σ |)|−1|G(1/(iw|σ |))|σ̃ )

= σ̃ (1 + a2)
√

w2|σ | − 2c
√
1/w2|σ | − 2c. (114)

The identity (114) together with w2|σ |
√
1/w2|σ | − 2c = α

√
w2|σ | − 2c and (129) can be

used to obtain

g−(θ)g+(θ) = σ̃
(1 + a2)

√
1 − 2cw2|σ |

2π
√

(1 − σ 2)2 + 16c2σ 2

1

(a − |G(i)|−2)2
(115)

4. Gibbs Measures and the Infinite Planar Graph

In [21], the authors describe the set of all translation invariant Gibbs measures of the
infinite bipartite planar dimer models with a certain double periodicity. They also give an
approach to compute the full plane inverse Kasteleyn matrix. The infinite planar graph
G = Ṽ ∪ Ẽ relevant for the two-periodic Aztec diamond is the infinite version of what
we defined above, and is defined as follows: for i ∈ {0, 1}, let

B̃i = {(x, y) ∈ Z
2 : x mod 2 = 0, y mod 2 = 1, x + y mod 4 = 2i + 1},

W̃i = {(x, y) ∈ Z
2 : x mod 2 = 1, y mod 2 = 0, x + y mod 4 = 2i + 1}

where B̃ = B̃0 ∪ B̃1 are the black vertices, W̃ = W̃0 ∪ W̃1 are the white vertices and
Ṽ = W̃ ∪ B̃. The edge set Ẽ is all edges of the form b − w = ±e1+,±e2, for all
b ∈ B̃, w ∈ W̃ . Let the edges contained in the smallest cycle surrounding the point
(i, j) where (i + j) mod 4 = 2, have weight a ∈ (0,∞) and the edges contained in the
smallest cycle surrounding the point (i, j) where (i + j) mod 4 = 0 have weight 1.

As a reference for the following we note [25], see also [18]. The graph G (together
with its weights) is doubly periodic in the sense that the set T of shifts of the form
ne1 +me2, (n,m) ∈ (2Z)2 preserve the colour of the vertices and edge weights. Define
the graphG1 to beGmod the same shifts so thatG is a collection of copies ofG1 obtained
by applying all shifts T . From its definition, G1 has periodic boundary conditions in
both directions e1 and e2, so one can also think of G1 as a graph on the torus. Define the
edge weights and Kasteleyn orientation of G1 as in figure 4, which induces a Kasteleyn
orientation on all of G. The graph G1 is called the fundamental domain of G, note that
it has vertices w0 ∈ W̃0, b0 = w0 + e2, b1 = w0 + e1, w1 = b0 + e1.

The authors of [21] introduce “magnetic coordinates” to parametrise the set of Gibbs
measures. Following [21], let (B1, B2) ∈ R

2 be the magnetic coordinates for the graph
G and take two paths γ1, γ2 in each fundamental domain as shown in Fig. 4. Multiply
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Fig. 4. Left: the fundamental domainG1 with corresponding Kasteleynmatrix entries. Right: the fundamental
domain of G1

eB1 ,eB2
with paths γ1, γ2

the edge weight of an edge e = (b, w) by eB1 (e−B1 ) if γ1 crosses e such that the white
vertex w is on its right (left). Similarly multiply the edge weight of e by eB2 (e−B2 ) if
γ2 crosses e such that w is on its right (left). This yields the same graph with a different
set of edge weights denoted GeB1 ,eB2 . Define the fundamental domain of GeB1 ,eB2 to be
G1

eB1 ,eB2
as shown in the Fig. 4. The magnetic coordinates introduced in this way re-

weight the average slope of the corresponding height functions. Note that B1 = B2 = 0
gives zero average slope in directions e1, e2 and gives the limiting smooth phase in the
two-periodic Aztec diamond we are considering.

For L ∈ 2N>0, define GL = (VL , EL) to be the graph obtained by applying all shifts
of the form ne1 + me2, (n,m) ∈ (2Z ∩ [−L , L])2 to G1 and with periodic boundary
conditions, observe that G = ∪LGL . If BL are the black vertices and WL are the white
vertices so that VL = BL ∪ WL then viewing the Kasteleyn matrix K L of the graph
GL as an operator CWL → C

BL , [21] block diagonalise K L (along with three slightly
modified variants of K L ). The authors of [21] then use an extension ofKasteleyn’s theory
for dimer models on the torus to perform a limiting argument in L which yields a double
contour integral formula for the free energy (per fundamental domain) of G, and posit a
formula for the inverseKasteleynmatrix. Following [21], denote themagnetically altered
Kasteleyn matrix for the fundamental domain G1 by K (z, w) where one multiplies the
edge weight of an edge e = (b, w) by z (or 1/z) if γ1 crosses e with the white vertex on
its right (or left). Likewise multiply the edge weight of e by w (or 1/w) if γ2 crosses e
such that w is on its right (or left). So for i, j ∈ {0, 1} we obtain

(
K (z, w)

)
bi ,w j

=
(
i(a + 1/w) a + z
a + 1/z i(a + w)

)

i+1, j+1
. (116)

Themagnetically alteredKasteleynmatrix inmagnetic coordinates (B1, B2) correspond-
ing to G1

eB1 ,eB2
is K (eB1 z, eB2w).

Suppose that x ∈ W̃ε1 and y ∈ B̃ε2 , ε1, ε2 ∈ {0, 1}. Let (u, v) ∈ Z
2 be such that

u(2e1)+v(2e2) is the translation to get from the fundamental domain containing x to the
fundamental domain containing y. The whole plane inverse Kasteleyn matrix of Gs1,s2
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for the entries x, y in magnetic coordinates (log(s1), log(s2)) is

K
−1
s1,s2(x, y) = s−u+1

1 s−v+1
2

(2π i)2

∫

�s1

dz

z

∫

�s2

dw

w

Q(z, w)ε1+1,ε2+1

P(z, w)
zuwv (117)

where �r is a circle or radius r around the origin,

Q(z, w) =
(

i(a + w) −(a + z)
−(a + 1/z) i(a + 1/w)

)
(118)

and

P(z, w) = −2 − 2a2 − a

w
− aw − a

z
− az (119)

is called the characteristic polynomial. Note that K (z, w)−1 = Q(z, w)/P(z, w). The
formula for K−1

s1,s2 differs compared to the one in [8] by multiplication of s−u+1
1 s−v+1

2 .

If we set s1 = s2 = 1 in (117) we get K−1
1,1 which agrees with K

−1
1,1 given by (32) as

shown in [8].We summarise a derivationof (32) from (117).Make the changeof variables
z = −u1u2, w = u2/u1 for (u1, u2) ∈ �2

1 in the double contour integral (117) so that
the characteristic polynomial is P(z, w) = −2(1+a2)+a(u1−1/u1)(u2−1/u2). Then
perform a small deformation in the u1, u2 variables so that (u1, u2) ∈ �2

R for R < 1 very

close to 1 (avoiding the zeros of P). Then recall that u →
√

c
2 (u−1/u) is a bijection from

{u; |u| < 1} to C \ i[−√
2c,

√
2c] with inverse w → G(w). Then if we make another

change of variables ui = G(wi ) for i = 1, 2 the characteristic polynomial becomes
−2(1 + a2)(1− w1w2). Under the condition that k, � ≥ 0, one obtains a single contour
integral from the pole w1w2 = 1. One then checks that this single contour integral
formula agrees with (32) in each of the cases of vertices ε1, ε2 ∈ {0, 1}. The formula
holds for all k, � by a symmetry argument. An extended summary of this derivation is
given in [23]. For all the rest of the details, see [8].

In fact the whole plane inverse Kasteleyn matrix (117) can be related to the quantities
whose asymptotics we analyze. We bring forward lemma 3.3 in [8].

Lemma 10. For x = (x1, x2) ∈ Wε1 , y = (y1, y2) ∈ Bε2 , and s1 = 1, s2 = 1/|G(ωc)|2
we have

K
−1
s1,s2(x, y) = |G(ωc)|2v−2

[
K

−1
1,1(x, y) − Cωc(x, y)

]
, (120)

where (u, v) ∈ Z
2 is such that u(2e1) + v(2e2) is the translation to get from the funda-

mental domain containing x to the fundamental domain containing y.

This means that Propositions 2, 3 and 4 also yield uniform asymptotics for the inverse
Kasteleyn matrix for the infinite planar dimer model Gs1,s2 .

4.1. Discussion of dimer–dimer correlations on the infinite planar graph. Using (117)
we can reformulate the discussion of dimer to dimer correlations in Sect. 3 in terms of
the infinite planar graph Gs1,s2 . Instead of varying the distance n(ξc − ξ) of the two
dimers to rough–smooth boundary, we can vary the magnetic coordinates in such a way
that the Gibbs measure of the infinite dimer model varies between rough and smooth
phases. Note that above we fixed n and chose ξ depending on n so the n-dependence
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now sits in the magnetic coordinates (log(s1), log(s2)) = (0, log(1/|G(ωc)|2)). Using
lemma 5 one can compute 1/|G(ωc)|2 = 1/|G(i)|2 + c4(ξc − ξ) + O(ξc − ξ)3/2 for
some c4 > 0 depending on a, so we have

s1 = 1 s2 = 1/|G(ωc)|2 = 1/|G(i)|2 + c4(ξc − ξ) + O(ξc − ξ)3/2, (121)

where 1/|G(i)|2 = 2a/(
√
1 + a2 − 1 + a)2 > 1. We see that varying ξ corresponds to

varying s2 while keeping s1 fixed.
Take two dimers, ei = (x (i), y(i)) ∈ W̃0 × B̃0, i = 1, 2 with e1 placed arbitrarily.

Define the coordinates of e2 as

x (2) = x (1) + 2(r1, r2), y(2) = y(1) + 2(r1, r2) (122)

where r1, r2 ∈ Z and r1 + r2 is even. Let ξc − ξ > 0 be sufficiently small and let the

distance between the two dimers r = 2
√
r21 + r22 lie in [rmin, rn) (rmin is large but fixed

and rn = ∞). Note that this allows for any direction between the dimers. We see that the
discussion in Sect. 3 of the dimer–dimer correlation between the dimers e1, e2 translates
into this setting.

Recall from [21] that the amoeba associated to the characteristic polynomial P is the
image of the zero set of P(z, w) under the map (z, w) → (log |w|, log |z|). A picture
of the amoeba of our characteristic polynomial (119) is given for a ∼ 0.36 as the right
hand picture in figure 2 in [21], (i.e. the amoeba of z+ z−1 +w+w−1−6.25). The results
of this paper together with the results in section 4 in [21] show that for the collection
of weights s1 = eB1 = 1, 1 ≤ s2 = eB2 ≤ 1/|G(i)|2 the corresponding magnetic
coordinates (B1, B2) lie in the bounded complementary component of the amoeba of
P(z, w), sincewe have exponential decay of correlations for thesemagnetic coordinates.
This corresponds to a single unique (smooth) Gibbs measure with an average slope of
(0, 0). When ϕc > 0 but small and s1 = 1, s2 = 1/|G(ie−iϕc )|2 the corresponding
magnetic coordinates (B1, B2) lie in the interior of the amoeba of P(z, w), as here the
long distance decay is polynomial for all ϕc > 0. For each ϕc > 0 there is a unique
(rough) Gibbs measure with average slope te1 for some t ∈ (0, 1], and the regime of
distances r for which dimers have exponential decay of correlations varies from some
fixed number rmin to a term proportional to log(1/ϕc) (see Regime I corresponding to
(110)). For any large, bounded region, we can take ϕc so small that all of the dimers in
the region have exponential decay of correlations between one another. From this we
see Theorem 1 holds.

An interpretation is that when we have a non-zero average slope, there are infinitely
long paths related to the level curves of the height function that are present. These infinite
paths appear to imply quasi-long range order and power law decay. As we transition
to the smooth phase these infinite paths typically become further and further apart,
corresponding to a decreasing average slope of the height function. The length scales
that are much smaller than the typical distance between these infinite paths experience
exponential decay of correlations. If we move to the smooth phase the paths move
infinitely far apart, disappearing and leaving only short range order.

5. Asymptotics of K−1
1,1

In [8], the asymptotics of Ek,� are computed when ±� is close to k, i.e when the vertices
lie close to diagonal or cross-diagonal from one another. Here we extend the asymptotics
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to arbitrary angles. Note from the symmetry relation (48) we can restrict our attention
to the case |k| ≤ |�| without loss of generality. Let α = |k|

|�| and write

Ek,� = i−|k|−|�|

2(1 + a2)2π i

∫

�1

dw

w

exp[|�|̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

(123)

with saddle point function g̃α(w) defined in (44).
The integrand in (123) is analytic in the region C \ (i[−√

2c,
√
2c] ∪ i[1/√2c,∞)

∪ i(−∞,−1/
√
2c]), so by Cauchy’s deformation theorem, for r > 1, we can deform

�1 to �wα(r) = ∪3
j=0γ j (r) where

γ0(r) = {r + i t : t ∈ [−wα,wα]} γ1(r) = {−t + iwα : t ∈ (−r, r)},
as setsγ3(r) = −γ1(r),γ2(r) = −γ0(r) and as curves eachγ j (r)has positive orientation
counter-clockwise around the origin. For η1, η2, r ≥ 0,where η2 is small define γη1,η2(r)
as

{ i√
2c

− η2i + t : t ∈ [0, η2)}

∪ { i√
2c

+ t i + η2 : t ∈ [−η2, η1)} ∪ { i√
2c

+ iη1 + η2 + t : t ∈ [0, r)} (124)

which is a path from i/
√
2c+iη1+η2+r to i/

√
2c−η2i consisting of three straight lines.

Note we define the orientation of this curve to be in the direction of the path beginning
at i/

√
2c + iη1 + η2 + r and ending at i/

√
2c − η2i .

LetR[z] and I[z] denote the real and imaginary part of a complex number z, respec-
tively. Denote the upper half plane H ⊂ C.

Lemma 11. For k, � ∈ Z,

Ek,� = i−|k|−|�|

2(1 + a2)2π i

∫

γ1(∞)

dw

w

(1 + (−1)|�|+|k|) exp[|�|̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

. (125)

If � + k is even, η1, η2 ≥ 0 then

Ek,� = i−|k|−|�|

(1 + a2)2π
I
[ ∫

γη1,η2 (∞)

dw

w

exp[|�|̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

]
. (126)

Proof. Take the integral (123), now perform the deformation of the contour�1 to�wα(r)
described above. Now from the definition of G in (25), clearly |G(w)| < 1 for all w in
the domain of G. Using this fact we can see that for large |w|, the dominant factor in the
integrand isw

√
w2 + 2c appearing in the dominator. Hence the modulus of the integrand

is bounded above by O(1/|w|2) for large |w|. We can now take the limit r → ∞ and
see that the contributions from γ0(r) and γ2(r) vanish. We split the integral up over
the sections γ1(∞) and γ3(∞). Using the symmetries −√

w2 + 2c = √
(−w)2 + 2c,

−G(w) = G(−w) we rewrite the integral over γ3(∞) to be over γ1(∞), this causes us
to a pick up a factor (−1)|�|+|k| which yields (125).

Similarly, for (126), we take the integral in (123) and deform �1 to γη1,η2(∞) ∪
γη1,η2(∞) ∪ −γη1,η2(∞) ∪ −γη1,η2(∞) by an almost identical argument. Then (126)
follows by further applications of the symmetries (28), (29) and noting that if � + k is
even then |�| + |k| is even. ��



Dimer–Dimer Correlations at the Rough–Smooth Boundary 1281

Next we give a lemma concerning the existence of descent paths.

Lemma 12. For α ∈ [0, 1], β ∈ [1, 1/√2c] the mapping (0,∞) � t → R[̃gα(iβ + t)]
is strictly decreasing. Moreover, if α = 0 the same mapping is strictly decreasing for all
β ∈ [1,∞).

Proof. We use an integral representation of

1√
w2 + 2c

= 1

π

∫ √
2c

−√
2c

1

w − is

ds√
2c − s2

,

which yields the correct branch cut and sheet of the square root. From (45) write

g̃′
α(w) = 1

π

∫ √
2c

−√
2c

−1

w − is
+

α

w − isw2

ds√
2c − s2

= 1

π

∫ √
2c

0

−1

w − is
− 1

w + is
+ α

(
1

w − isw2 +
1

w + isw2

)
ds√

2c − s2

=: 1

π

∫ √
2c

0
fα(w, s)

ds√
2c − s2

.

Now,

1

t
R fα(iβ + t, s) = −1

t2 + (β − s)2
− 1

t2 + (s + β)2

+ α

(
1 + 2sβ

t2(1 + 2sβ)2 + (β − s(t2 − β2))2
+

1 − 2sβ

t2(1 − 2sβ)2 + (β + s(t2 − β2))2

)

(127)

= −1

s2 − 2sβ + t2 + β2 +
−1

s2 + 2sβ + t2 + β2

+ α

(
1 + 2sβ

(t2 + β2)(1 + 2sβ + s2(t2 + β2))
+

1 − 2sβ

(t2 + β2)(1 − 2sβ + s2(t2 + β2))

)
.

(128)

Let t < β, the fact that the denominators in (128) are greater than zero and 1 ± 2sβ +
s2(t2 + β2) ≥ 1 ± 2sβ yields

1

t
R fα(iβ + t, s) ≤ −1

t2 + (s − β)2
+

−1

t2 + (s + β)2
+

2α

t2 + β2 .

The assertion that the previous expression is less than zero is equivalent to

2α

t2 + β2 s
4 + (4α

t2 − β2

t2 + β2 − 2)s2 − 2(t2 + β2 − 2) < 0.

The quartic above factorises into the form 2α(s2 − C−)(s2 − C+)/(t2 + β2) where
explicitly

C± = 1

4α

(
2t2(1 − 2α) + 2β2(1 + 2α))
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±
√

(2t2(1 − 2α) + 2β2(1 + 2α))2 + 16α(t2 + β2)2(1 − α)

)
,

clearly C− < 0 and C+ > 1
2α (t2(1− 2α)+β2(1+2α)) > t2(1/α − 1)+β2 > 2c where

the second last inequality holds since t < β.
For t ≥ β, the function x → 1/(1 + x) is convex for x > −1 so the sum of the first

two terms in (128) is bounded above by

−1

(t2 + β2)s2 − 2sβ + t2 + β2 +
−1

(t2 + β2)s2 + 2sβ + t2 + β2

≤ 1

t2 + β2

⎛

⎝ −1

1 + s2 − 2sβ
t2+β2

+
−1

1 + s2 + 2sβ
t2+β2

⎞

⎠

≤ 1

t2 + β2

( −2

1 + s2

)
,

so from (128)

(t2 + β2)R fα(iβ + t, s)/t <
−2

1 + s2
+ 1 +

1 − 2sβ

1 − 2sβ + s2(t2 + β2)
.

The assertion that the previous expression is less than zero is now equivalent to

s2((t2 + β2)s2 − 4βs + 2 − t2 + β2) < 0.

The previous quartic factorises into the form (t2 + β2)s2(s − B−)(s − B+) where

B± = 2β

t2 + β2 ±
√

1 + 2
2β2 − 1

t2 + β2 .

It is obvious that since β ≥ 1, B+ > 1 >
√
2c and B− ≤ 0 is equivalent to

4
β2

(t2 + β2)2
≤ 1 + 2

2β2 − 1

t2 + β2

which is true when t ≥ β. So the mapping (0,∞) × [0,√2c] → R such that (t, s) →
R fα(iβ + t, s) is negative which proves the first result. The extension to β ∈ [1,∞)

when α = 0 is immediate from (127). ��
Since R[̃gα(iβ − t)] = R[̃gα(iβ + t)] for t ∈ (−∞,∞), lemma 12 also proves

(0,∞) → R; t → R[̃gα(iβ − t)] is decreasing.
Proof of Proposition 2. We perform a saddle point analysis on the right hand side of
(125) and begin by proving the first statement. Multiply both sides of (45) by w, taking
the derivative reveals

g̃′
α(w) + wg̃′′

α(w) = 2c

( −1

(w2 + 2c)3/2
− α

w2

1

(1/w2 + 2c)3/2

)
.
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Recall that wα ∈ [1, 1/√2c). Computing
√

(iwα)2 + 2c = i
√

w2
α − 2c and√

(1/ iwα)2 + 2c = −i
√
1/w2

α − 2c, and using g̃′
α(iwα) = 0 we see that the above

gives

g̃′′
α(iwα) = 2c

wα

( −1

(w2
α − 2c)3/2

− α

w2
α

1

(1/w2
α − 2c)3/2

)
.

Wecan simplify this as follows.Computing1/w2
α =− 1

4cα2 (1−α2−√
(1 − α)2 + 16c2α2),

we see that 1− 2c
w2

α
= 1

α2 (1− 2cw2
α) to get the identity (w2

α − 2c)3/2 α
w3

α
= w3

α

α2 (1/w2
α −

2c)3/2. Hence,

g̃′′
α(iwα) = −2c

(w2
α − 2c)3/2

(
1

wα

+
w3

α

α2

)
. (129)

Take ε > 0 small and less than min(1/
√
2c − wα,wα − √

2c) and write (125) as

Ek,� = Ck,�

(∫

γ1(ε/2)

dw

w

exp[|�|̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

+
∫

γ1(∞)\γ1(ε/2)
dw

w

exp[|l |̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

)

where Ck,� = (1+(−1)|�|+|k|)i−|k|−|�|
2(1+a2)2π i

. We parametrise γ1(∞) by

w(t) = iwα − t, t ∈ (−∞,∞).

Taylor’s theorem yields

g̃α(w(t)) − g̃α(iwα) = g̃′′
α(iwα)

t2

2
+ t3R9(t, α), (130)

where

R9(t, α) = 1

2π i

∫

∂Bε(iwα)

dz
g̃α(z)

(z − w(t))(z − iwα)3
(=: R9(t)).

Here ∂B(iwα, ε) = {εeiθ + iwα : θ ∈ [0, 2π)}, so |R9(t, α)| ≤ C for t ∈ [−ε/2, ε/2]
and all α. Since g′′

α(iwα) is less than some negative number for all α, we can take ε so
small that

g′′
α(iwα)/2 + |t R9(t, α)| < −b (131)

for some b > 0 uniformly in α and t ∈ [−ε/2, ε/2]. Setting β = wα in lemma 12,
we have a descent contour so it follows from (130) and (131) that there are positive
constants C1,C2 so that

∣∣∣∣∣

∫

γ1(∞)\γ1(ε/2)
dw

w

exp[|�|(g̃α(w) − g̃α(iwα))]√
w2 + 2c

√
1/w2 + 2c

∣∣∣∣∣

≤ C1 sup
w∈γ1(∞)\γ1(ε/2)

exp[−|�||R(g̃α(w) − g̃α(iwα))|]

≤ C2e
−b|�|ε2/4.
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For the integral over γ1(ε/2), in a similar fashion to above we parametrise γ1(ε/2) as
w(t) = iwα − t where t ∈ (−ε/2, ε/2). Now (130) gives
∫

γ1(ε/2)

dw

w

exp[|�|̃gα(w)]√
w2 + 2c

√
1/w2 + 2c

= −exp[|�|̃gα(iwα)]
V (iwα)

∫ ε/2

−ε/2
exp[|�|(g̃′′

α(iwα)t2/2 + t3R9(t))]V (iwα)/V (iwα − t)dt

(132)

where V (w) = w
√

w2 + 2c
√
1/w2 + 2c. We require three bounds. Taylors theorem

applied to t → V (iwα)/V (iwα − t) at t = 0 yields
∣∣∣∣
∫ ε/2

−ε/2
exp[|�|(g̃′′

α(iwα)t2/2 + t3R9(t))] V (iwα)

V (iwα − t)
dt

−
∫ ε/2

−ε/2
exp[|�|(g̃′′

α(iwα)t2/2 + t3R9(t))]dt
∣∣∣∣

≤
∫ ε/2

−ε/2
|t exp[|�|(g̃′′

α(iwα)t2/2 + t3R9(t))]|dt ≤ C3

∫ ε/2

−ε/2
|t |e−|�|bt2dt ≤ C4

|�|3/2 .

We use the bound |et − 1| ≤ |t |e|t | to get
∣∣∣∣
∫ ε/2

−ε/2
exp[|�|(g̃′′

α(iwα)t2/2 + t3R9(t))]dt −
∫ ε/2

−ε/2
exp[|�|(g̃′′

α(iwα)t2/2)]dt
∣∣∣∣

≤
∫ ε/2

−ε/2

∣∣∣e|�|t3R9(t) − 1
∣∣∣ exp[|�|(g̃′′

α(iwα)t2/2)]dt

≤ |�|
∫ ε/2

−ε/2
|t |3 exp[|�|(g′′

α(iwα)t2/2 + |t3R9(t)|)]dt

≤ C5|�|
∫ ε/2

−ε/2
|t |3 exp[−|�|bt2]dt ≤ C6

|�| .

Finally,

∣∣∣∣
∫ ε/2

−ε/2
exp[|�|g′′

α(iwα)t2/2]dt −
∫ ∞

−∞
exp[|�|g′′

α(iwα)t2/2]dt
∣∣∣∣ ≤ C7

e−|�|bε2/4

ε
.

(133)

Now take the absolute value of the integral in (132) minus the second term of the differ-
ence in (133). Write this as a sum of differences above, then use the triangle inequality
and the three bounds. The main factor in (49) comes from the term exp[|�|̃gα(iwα)]

V (iwα)
in

(132).
The case α = |k|/|�| for fixed k is handled differently. Recall the integral in (126) and
write it as

−
∫

γ ′
η1,η2

(∞)

dw

w

exp[|�|̃g0(w)]G(1/w)|k|√
w2 + 2c

√
1/w2 + 2c

. (134)
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The minus sign in (134) appears by defining γ ′
η1,η2

(∞) to be γη1,η2(∞) with reverse

orientation. In this case the asymptotics come from the branch point i/
√
2c, and the

saddle point function g̃0 is analytic at this point. Parametrise w(t) = i(t + 1/
√
2c) + η2

for t ∈ [0, η1] and observe that

√
1/w(t)2 + 2c → √

t
√
2c/(t + 1/

√
2c) +

√
2c/(t + 1/

√
2c)2 (135)

as η2 → 0+. So

G(1/w(t))|k|

w(t)
√

w(t)2 + 2c
√
1/w(t)2 + 2c

→ f (t)√
t

, as η2 → 0+ (136)

for a function f . A computation gives

f (0) = −G(−i
√
2c)|k|

√
1 − 4c2

√
2c + 1. (137)

We can get a bounded function R10(t) such that

f (t) − f (0) = t R10(t) (138)

for t ∈ [0, η1]. From (45) we also have a bounded function R11(t) such that

g̃0(i/
√
2c + i t) − g̃0(i/

√
2c) = −t

√
2c/(1 − 4c2) + t2R11(t) (139)

for t ∈ [0, η1]. Let b′ = √
2c/(1 − 4c2). By lemma 12, the straight line from i/

√
2c +

iη1 + η2 to infinity is a descent contour. Take η1 > 0 so small that

−t
√
2c/(1 − 4c2) + t2|R11(t)| < −t

√
2c/(1 − 4c2)/2. (140)

Then, by (138) and (139), there are positive constants C4,C5 such that
∣∣∣∣∣

∫

i/
√
2c+iη1+R>0

dw

w

exp[|�|̃g0(w)]G(1/w)|k|√
w2 + 2c

√
1/w2 + 2c

∣∣∣∣∣ ≤ C4e
|�|R[̃g0(i/

√
2c)]−C5|�|η1 . (141)

Take η2 → 0+ in (134). We consider a sequence of approximations and bound their
differences. First, we have the estimate,

∣∣∣∣
∫ η1

0

dt√
t
f (t)e|�|̃g0(i/

√
2c+i t) −

∫ η1

0

dt√
t
f (0)e|�|̃g0(i/

√
2c+i t)

∣∣∣∣

≤ C
∫ η1

0
dt

√
te|�|Rg̃0(i/

√
2c+i t) ≤ Ce|�|Rg̃0(i/

√
2c)

∫ η1

0
dt

√
te−|�|b′t/2 ≤ C ′ e|�|Rg̃0(i/

√
2c)

|�|3/2 ,

secondly,
∣∣∣∣
∫ η1

0

dt√
t
f (0)e|�|̃g0(i/

√
2c+i t) −

∫ η1

0

dt√
t
f (0)e|�|(g̃0(i/

√
2c)−b′t)

∣∣∣∣

≤
∫ η1

0

dt√
t
f (0)e|�|(Rg̃0(i/

√
2c)−b′t)

∣∣∣eR11(t)t2 − 1
∣∣∣
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≤ C ′′′
∫ η1

0
dt t3/2e|�|(Rg̃0(i/

√
2c)−b′t+t2|R11(t)|)

≤ C ′′′′e|�|Rg̃0(i/
√
2c)

∫ η1

0
dtt3/2e−|�|b′t/2 ≤ C (v) e

|�|Rg̃0(i/
√
2c)

|�|5/2 ,

and finally,

∣∣∣∣
∫ η1

0

dt√
t
f (0)e|�|̃g0(i/

√
2c)−�b′t −

∫ ∞

0

dt√
t
f (0)e|�|̃g0(i/

√
2c)−�b′t

∣∣∣∣ ≤ C (vi)e|�|Rg̃0(i/
√
2c) e

−|�|b′η1

|�|b′√η1
.

Furthermore,
∫ ∞

0

dt√
t
f (0)e|�|̃g0(i/

√
2c)−�b′t

= −
√

π

|�|G(
i√
2c

)|�|G(−i
√
2c)|k|(1 − 4c2)3/2

√√
2c + 1/

√
2c. (142)

Now note that when � + k is even, G( i√
2c

)|�|G(−i
√
2c)|k| is a real number. The main

contribution to the integral in (126) is the right hand side of (142). If we write the
difference between the main contribution and the integral as sum of the differences
above, then by the triangle inequality, (50) holds. ��
Remark 2. We can rewrite the expressions for Ek,l in lemma 2 as

Ek,l = cos(π(|k| + |�|)/2)G(iwα)max (|k|,|�|)G(1/(iwα))min (|k|,|�|)

(1 + a2)
√
2π |g̃′′

α(iwα)max(|k|, |�|)|wα

√
w2

α + 2c
√
1/w2

α + 2c
(1 + o(1))

(143)

when α = min (
|k|
|�| ,

|�|
|k| ) varies in compact subset of (0, 1]. If instead one of k or � is

fixed, then

Ek,l =
cos( π max(|k|,|�|)

2 )G( i√
2c

)max(|k|,|�|)G(−i
√
2c)min(|k|,|�|)

2(1 + a2)
√

π max(|k|, |�|)

√
(1 − 4c2)3(2c + 1)

(2c)1/4
(1 + o(1)).

(144)

We know that |G(w)| < 1 for allw in the domain ofG, which follows from the definition
of G, from this we discern that Ek,l is exponentially decaying since R[g̃α(iwα)] =
logG(iwα)+α logG(1/(iwα)) < 0, where 0 ≤ α ≤ 1. However, we give the following
quantitative estimate.

Lemma 13. For 0 ≤ α < 1,

R[g̃α(iwα)] ≤ (1 + α) log |G(i)| < 0. (145)

Proof. Consider the integral

∫ x

√
2c

du√
u2 − 2c

= − log
( x√

2c
−

√( x√
2c

)2 − 1
)
. (146)



Dimer–Dimer Correlations at the Rough–Smooth Boundary 1287

We see that

R[g̃α(iwα)] = −
∫ wα

√
2c

du√
u2 − 2c

− α

∫ 1/wα

√
2c

du√
u2 − 2c

(147)

and

(1 + α) log |G(i)| = −(1 + α)

∫ 1

√
2c

du√
u2 − 2c

(148)

where 1 ≤ wα ≤ 1/
√
2c. Define

s(α) := Rg̃α(iwα) − (1 + α) log |G(i)|
= −

∫ wα

1

du√
u2 − 2c

+ α

∫ 1

1/wα

du√
u2 − 2c

. (149)

We want to show that s(α) ≤ 0. Substituting u = 1/v yields

∫ 1

1/wα

du√
u2 − 2c

=
∫ wα

1

1√
1 − 2cv2

dv

v
, (150)

and hence

s(α) =
∫ wα

1

α

u
√
1 − 2cu2

− 1√
u2 − 2c

du. (151)

For 1 ≤ u ≤ 1/
√
2c,

α

u
√
1 − 2cu2

≤ 1√
u2 − 2c

, (152)

which is equivalent to

2cu4 − (1 − α2)u2 − 2cα2 ≤ 0 (153)

or

1 − α2 − √
(1 − α2)2 + 16c2α2

4c
≤ u2 ≤ w2

α (154)

Hence the integrand in (151) is less than or equal to zero, so s(α) ≤ 0. ��
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6. Uniform Asymptotics of Cωc

The goal of this section is to prove propositions 3 and 4, first we prove a lemma about
descent paths.

Lemma 14. |G(eiθ )| is strictly increasing for θ ∈ (0, π/2).

Proof. Since |G(eiθ )|2 = G(eiθ )G(e−iθ ), taking the logarithmwe can see the statement
of this lemma is equivalent to assertion that the function {eiθ : θ ∈ (0, π/2)} → R such
that g̃1(w) = log(G(w)) + log(G(1/w)) is strictly increasing over θ . From

wg̃′
1(w) = − w√

w2 + 2c
+

1

w

1√
1/w2 + 2c

,

changing variables w(θ) = eiθ and from
√

(w)2 + 2c = √
w2 + 2c,

d

dθ
g̃1(e

iθ ) = 2 I
(

eiθ√
(eiθ )2 + 2c

)
.

Once again we use the integral representation of the reciprocal square root to write

I
(

eiθ√
(eiθ )2 + 2c

)
= 1

π

∫ √
2c

−√
2c
I
(

eiθ

eiθ − is

)
ds√

2c − s2

= 1

π

∫ √
2c

0

4s2 sin(θ) cos(θ)

|eiθ + is|2|eiθ − is|2
ds√

2c − s2

and since the integrand is positive for 0 < s <
√
2c, 0 < θ < π/2 the lemma follows.

��
Corollary 14.1. For α ∈ (−1,∞) (α ∈ (−∞,−1)) the function (0, π/2) � θ �→
R[gα(ie−iθ )] is strictly decreasing (strictly increasing). If α = −1 the same function is
zero.

Proof. Due to lemma 29

R[gα(ie−iθ )] = log|G(ie−iθ )| + α log|G(1/(ie−iθ ))|
= (1 + α) log |G(ei(π/2−θ))|

so the statement follows from lemma 14. ��
We write

ψ(θ) := g̃α(eiθ ) = (1 + α) log |G(eiθ )| + i(1 − α) arg(G(eiθ )). (155)

to shorten the expressions. We require a few facts and approximations that will be used
multiple times in the following proofs. From (155) and (29) we have

ψ(θ) = ψ(π − θ) + iπ(1 − α), (156)

from which we see that I[ψ(π/2 + θ)] andR[ψ(π/2 + θ)] are odd and even functions
on [−π/2, π/2], respectively. In particular, (156) gives

I[ψ(π/2)] = (1 − α)π/2 and R[ψ ′(π/2)] = R[ψ ′′′(π/2)] = 0 (157)
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A computation yields

ψ ′(θ) = (1 + α)R[ −ieiθ√
(eiθ )2 + 2c

]
+ i(1 − α)I[ −ieiθ√

(eiθ )2 + 2c

]
(158)

from which we get

ψ ′(π/2) = −i
(1 − α)√
1 − 2c

. (159)

Further computation gives

ψ ′′(π/2) = − 2c(1 + α)

(1 − 2c)3/2
, ψ ′′′(π/2) = i

4c(1 + c)(1 − α)

(1 − 2c)5/2
. (160)

Taylor’s theorem gives a bounded function R12(θ, θc, α) such that

ψ(θ) − ψ(θc) = ψ ′(θc)(θ − θc) + ψ ′′(θc)(θ − θc)
2/2

+ ψ ′′′(θc)(θ − θc)
3/3! + R12(θ, θc, α)(θ − θc)

4, (161)

and there are also bounded functions R13(θc, α), R14(θc, α), R15(θc, α) such that

ψ ′(θc) = ψ ′(π/2) − ψ ′′(π/2)ϕc +
ψ ′′′(π/2)

2
ϕ2
c + R13(θc, α)ϕ3

c ,

ψ ′′(θc) = ψ ′′(π/2) − ψ ′′′(π/2)ϕc + R14(θc, α)ϕ2
c ,

ψ ′′′(θc) = ψ ′′′(π/2) + R15(θc, α)ϕc. (162)

From (157), (161) and (162) we obtain

R[ψ(θ) − ψ(θc)] = [ϕcψ
′′(π/2) +R[R13(θc, α)]ϕ3

c ](θc − θ)

+ [ψ ′′(π/2) +R[R14(θc, α)]ϕ2
c ]

(θc − θ)2

2
− R[R15(θc, α)]ϕc(θc − θ)3 +R[R12(θ, θc, α)](θc − θ)4. (163)

We have a bounded function R16(θ, α) such that

ψ(π/2 + θ) = ψ(π/2) + ψ ′(π/2)θ + ψ ′′(π/2)θ2/2 + θ3R16(θ, α), (164)

which using (157), (159) gives a bounded function R8(θ) on R such that

I[ψ(π/2 + θ)] = (1 − α)(π/2 − θ/
√
1 − 2c + R8(θ)θ3) (165)

We are now ready for the proof of Proposition 3.

Proof of Proposition 3. We parametrise w(θ) = eiθ and use the fact that l + k is even to
write

C̃ωc (k, �) = i−k−�

2(1 + a2)2π i
(1 + (−1)�+k)

∫

�ωc∩H
dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

= i−k−�

2(1 + a2)π

∫ π−θc

θc

exp (�ψ(θ))

|e2iθ + 2c| dθ (166)
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We rewrite (164) to get a R17(θ, α) such that

ψ(θ) − ψ(π/2) = −ψ ′(π/2)(π/2 − θ) + R17(θ, α)(π/2 − θ)2. (167)

We use (167) and the bound |et − 1| ≤ |t |e|t | to get constants C1,C2 > 0 such that
∣∣∣∣
∫ π−θc

θc

exp (�ψ(θ))

|e2iθ + 2c| dθ −
∫ π−θc

θc

exp (�ψ(π/2) − ψ ′(π/2)(π/2 − θ))

|e2iθ + 2c| dθ

∣∣∣∣

≤ C1|�|ϕ2
c e

�R[ψ(π/2)]
∫ π−θc

θc

e|�R17(θ,α)|(π/2−θ)2dθ

≤ C1e
�R[ψ(π/2)]ϕ1+γ

c eC2ϕ
γ
c . (168)

Next the second term in the difference in (168) can be approximated by (186). We get
∣∣∣∣
∫ π−θc

θc

exp(�ψ(π/2) − �ψ ′(π/2)(π/2 − θ))

|e2iθ + 2c| dθ

−
∫ π−θc

θc

exp(�ψ(π/2) − �ψ ′(π/2)(π/2 − θ))

1 − 2c
dθ

∣∣∣∣

≤ C4e
�R[ψ(π/2)]ϕ3

c ≤ C4e
lR[ψ(π/2)] ϕ

1+γ
c

|�| . (169)

Finally, the second them in the difference in (169) is

∫ π−θc

θc

exp(�ψ(π/2) − �ψ ′(π/2)(π/2 − θ))

1 − 2c
dθ = 2e�ψ(π/2) sin((� − k)ϕc/

√
1 − 2c)

(� − k)
√
1 − 2c

(170)

The two bounds (168), (169) together with (170) and (166) give a bounded function
R18(ξ, �, k) such that

C̃ωc (k, �) = (−1)k |G(i)|�+k
(1 − a)2π

( sin((� − k)ϕc/
√
1 − 2c)

(� − k)/
√
1 − 2c

+ R18(ξ, �, k)ϕ1+γ
c

)
. (171)

Next, for all ε > 0 small if bx ∈ �ε then there is a C(ε) > 0 such that
∣∣∣∣
sin(bx)

x

∣∣∣∣ ≥ C(ε)min(|b|, 1/|x |) (172)

where we used the lower bound | sin(x)/x | ≥ 1 − 2|x |/π for x ∈ [−π/2, π/2]. Hence
if R6 is defined by (51),

|R6| ≤ Cϕ
1+γ
c /min(ϕc/(1 − 2c), 1/|� − k|)

≤ C max(ϕγ
c (1 − 2c), ϕ1+γ

c |� − k|). (173)

Now ϕ
2−γ
c |�−k| ≤ ϕ

2−γ
c (|�|+|k|) < 1 implies ϕ

1+γ
c |�−k| ≤ ϕ

−1+2γ
c and ϕ

γ
c (1−2c) ≤

ϕ
−1+2γ
c , so we obtain (52). ��
Now we give three propositions which go into the proof of Proposition 4.
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Proposition 5. Let non-zero integers �, k be such that � + k ≤ 2 is even and α = k/�
lies in a compact subset of [−1, 1). There is a bounded function R19(ξ, �, k) such that

C̃ωc(k, �) = (−1)k |G(ωc)|�+k
π(1 − a)2

[ sin ((� − k)(F(ϕc)))

(� − k)/
√
1 − 2c

+ R19(ξ, �, k)
ϕc

(� − k)

]
. (174)

Proof. We recall (166) as

C̃ωc(k, �) = i−k−�

2(1 + a2)π

∫ π−θc

θc

exp (�ψ(θ))

|e2iθ + 2c| dθ. (175)

Take the integral in (175), integrating by parts we have it equal to

∫ π−θc

θc

exp (�ψ(θ))

|e2iθ + 2c| dθ = 1

�

∫ π−θc

θc

d

dθ

(
exp (�ψ(θ))

) 1

ψ ′(θ)|e2iθ + 2c|dθ

= 1

�

(
e�ψ(π−θc)b(π − θc) − e�ψ(θc)b(θc)

)

− 1

�

∫ π−θc

θc

e�ψ(θ)b′(θ)dθ (176)

where

b(θ) = 1/[ψ ′(θ)|e2iθ + 2c|]. (177)

Integrating by parts again, we have the integral in (176) as

∫ π−θc

θc

e�ψ(θ)b′(θ)dθ = 1

�

∫ π−θc

θc

d

dθ

(
e�ψ(θ)

) b′(θ)

ψ ′(θ)
dθ

= 1

�

(
e�ψ(π−θc)

b′(π − θc)

ψ ′(π − θc)
−e�ψ(θc)

b′(θc)
ψ ′(θc)

)− 1

�

∫ π−θc

θc

exp(�ψ(θ))
d

dθ

( b′(θ)

ψ ′(θ)

)
dθ.

Substituting this, we see that the integral in (175) is equal to

1

�

(
e�ψ(π−θc)b(π − θc) − e�ψ(θc)b(θc)

) − 1

�2

(
e�ψ(π−θc)

b′(π − θc)

ψ ′(π − θc)
− e�ψ(θc)

b′(θc)
ψ ′(θc)

)

+
1

�2

∫ π−θc

θc

exp(�ψ(θ))
d

dθ

( b′(θ)

ψ ′(θ)

)
dθ. (178)

From (156) we get ψ ′(θ) = −ψ ′(π − θ) and so b(θ) = −b(π − θ). This gives

e�ψ(π−θc)b(π − θc) − e�ψ(θc)b(θc) = −2e�R[ψ(θc)]R[
ei�I[ψ(θc)]b(θc)

]
. (179)

Note that because of (159) the term next to the exponential in the integrand in (178) is
not defined when α = 1. It is bounded when α lies in a compact subset of [−1, 1), this
follows from the change of variables w = eiθ in lemma (45) and noting that wα > 1
for 0 < α < 1. When � + k < 0 and α < 1 we have � < 0 so by corollary 14.1,
lR[ψ(θ)] achieves its maximum over [θc, π − θc] at the endpoints where lR[ψ(θc)] =
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lR[ψ(π − θc)]. For � + k ∈ {0, 1, 2}, �R[ψ(θ)] is bounded trivially on [θc, π − θc].
From this we obtain a bounded function R20(ξ, �, k) such that
∫ π−θc

θc

exp (�ψ(θ))

|e2iθ + 2c| dθ = −2

�
e�R[ψ(θc)]R[

ei�I[ψ(θc)]b(θc)
]
+ϕc

e�R[ψ(θc)]

�2(1−α)2
R20(ξ, �, k).

(180)

By (162) and (185) there is a bounded function R21(ξ, α) such that

|b(θc) − b(π/2)| ≤ 2
|R21(ξ, α)|ϕc

(1 − 2c)2|ψ ′(π/2)|2 . (181)

From (165), (181) and b(π/2) = i/[(1 − α)
√
1 − 2c] there are bounded functions

R22(ξ, α), R23(ξ, �, k) such that (180) equals

2i�−ke�R[ψ(θc)]
([ sin [(� − k)ϕc/

√
1 − 2c − (� − k)R7(−ϕc)ϕ

3
c ]

(� − k)
√
1 − 2c(

1 + R22(ξ, α)ϕc

)]
+ R23(ξ, �, k)

ϕc

(� − k)2

)
. (182)

Hence (174) follows by (175), (180) and (182). ��
Proposition 6. Let non-zero integers �, k be such that � + k < 0 is even and α = k/�
lies in a compact subset of (−1, 1]. There is a bounded function R24(ξ, �, k) such that

C̃ωc (k, �) = (−1)k |G(ωc)|�+k
π(1 − a)2

[
e

(�+k)cϕ2c
(1−2c)3/2

∫ ϕc

0
cos((� − k)F(θ))e

− (�+k)c
(1−2c)3/2

θ2

dθ

+ R24(ξ.�, k)
ϕc

|� + k|
]
. (183)

Proof. Recall C̃ωc(k, �) as in (35) and that �ωc = {eiθ : θ ∈ (θc, π − θc) ∪ (−π +
θc,−θc)}. We parametrise �ωc ∩H

+ by w(θ) = eiθ for θ ∈ [θc, π/2], use (196) and the
fact that � + k is even to write

C̃ωc (k, �) = i−k−�

2(1 + a2)2π i
(1 + (−1)�+k)

[ ∫

�ωc∩H+

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

− (−1)�+k
∫

�ωc∩H+

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

]

= i−k−�

(1 + a2)2π i
2ie�R[ψ(θc)]R

[ ∫ π/2

θc

e�ψ(θ)−�R[ψ(θc)]

|e2iθ + 2c| dθ
]
. (184)

Now,

d

dθ
|e2iθ + 2c| = 2ic(e−2iθ − e2iθ )

|e2iθ + 2c| (185)

which is zero when θ = π/2, so there is a bounded function R25(θ) such that

1

|e2iθ + 2c| = 1

(1 − 2c)
+ R25(θ)(θ − π/2)2. (186)
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Hence the integral in (184) can be approximated with an error bound given by
∣∣∣∣∣

∫ π/2

θc

e�ψ(θ)−�R[ψ(θc)]

|e2iθ + 2c| dθ −
∫ π/2

θc

e�ψ(θ)−�R[ψ(θc)]

1 − 2c
dθ

∣∣∣∣∣

≤ C
∫ π/2

θc

(π/2 − θ)2e�R[ψ(θ)−ψ(θc)]dθ (187)

for some C > 0. We will return to this bound. Also note that the assumptions � + k < 0
and α ∈ (−1, 1] give ψ ′′(π/2) > 0 and � < 0. We now focus on approximating the real
part of the second integral appearing in the difference in (187)

R
( ∫ π/2

θc

e�ψ(θ)−�R[ψ(θc)]
)

=
∫ π/2

θc

cos(�I[ψ(θ)])e�R[ψ(θ)−ψ(θc)]dθ. (188)

Recalling (163), we see that

− ψ ′′(π/2)ϕc(θ − θc) + ψ ′′(π/2)(θc − θ)2/2

− |R[R13(θc, α)ϕ3
c (θc − θ) + R14(θc, α)ϕ2

c (θc − θ)2/2

R15(θc, α)ϕc(θc − θ)3 + R12(θc, α)(θc − θ)4]|
> −1

4
ψ ′′(π/2)ϕc(θ − θc) (189)

uniformly for θc ≤ θ ≤ π/2. Note the inequality in (189) reverses upon multiplying
both sides by � < 0. Now we use (163), (189) and the bound |et − 1| ≤ |t |e|t | to obtain
a constant C > 0 such that

∣∣∣∣
∫ π/2

θc

cos(�I[ψ(θ)])e�R[ψ(θ)−ψ(θc)]dθ −
∫ π/2

θc

cos(�I[ψ(θ)])e−�ψ ′′(π/2)(θ−θc)[ϕc− θ−θc
2 ]dθ

∣∣∣∣

≤ C |�|
∫ ϕc

0
e−�ψ ′′(π/2)ϕcθ/4

(
ϕ3
c θ + ϕ2

c θ
2 + ϕcθ

3 + θ4
)
dθ

≤ 4C |�|ϕ3
c

∫ ϕc

0
e−�ψ ′′(π/2)ϕcθ/4 θdθ = 4C

ϕc

|�| (ψ ′′(π/2))2

∫ �ψ ′′(π/2)ϕ2
c

0
e−θ/4 θdθ. (190)

We return to the bound (187). By a similar argument to (190)

Ce�R[ψ(θc)]
∣∣∣∣
∫ π/2

θc

(π/2 − θ)2e�Rψ(θ)−ψ(θc)dθ

−
∫ π/2

θc

(π/2 − θ)2e−�ψ ′′(π/2)(θ−θc)[ϕc−(θ−θc)/2]dθ

∣∣∣∣ (191)

≤ Ce�R[ψ(θc)]
∫ ϕc

0
(ϕc − θ)2e−�ψ ′′(π/2)ϕcθ

(
ϕ3
c θ + ϕ2

c θ
2 + ϕcθ

3 + θ4
)
dθ

≤ 4Ce�R[ψ(θc)]ϕ3
c

|�ψ ′′(π/2)|2
∫ �ψ ′′(π/2)ϕ2

c

0
e−θ/4 θdθ. (192)

The second term in the difference in (191) is bounded by

Ce�R[ψ(θc)]
∫ π/2

θc

(π/2 − θ)2e−�ψ ′′(π/2)(θ−θc)[ϕc−(θ−θc)/2]dθ



1294 K. Johansson, S. Mason

≤ Ce�R[ψ(θc)]
∫ ϕc

0
ϕ2
c e

−�ψ ′′(π/2)θϕc/2dθ ≤ C1e
�R[ψ(θc)] ϕc

|�ψ ′′(π/2)| . (193)

for someC1 > 0. Hence by the triangle inequality (187) is bounded above by the sum of
(192) and the right hand side of (193). Next, because of (156), the fact that I[ψ(π/2+θ)]
is odd on [−π/2, π/2] and that �π(1−α) = π(�− k) is an even multiple of π , we have

∫ π/2

θc

cos(�I[ψ(θ)])e−�ψ ′′(π/2)(θ−θc)[ϕc− θ−θc
2 ]

=
∫ ϕc

0
cos(�I[ψ(θ + θc)])e�ψ ′′(π/2)[(θ−ϕc)

2−ϕ2
c ]/2dθ

= e−�ψ ′′(π/2)ϕ2
c /2

∫ 0

−ϕc

cos(�I[ψ(π/2 + θ)])e�ψ ′′(π/2)θ2/2dθ

= e−�ψ ′′(π/2)ϕ2
c /2

∫ ϕc

0
cos(�I[ψ(π/2 − θ)])e�ψ ′′(π/2)θ2/2.dθ (194)

The integral in (183) follows directly from (194) since (194) multiplied by 1/(1 − 2c)
gives the main contribution to the integral in (184). ��

We now note that by equation 4.21 in [8], the formula (30) in fact holds for k > 0 or
� > 0 instead of just k, � > 0 as we stated it. Hence for non-zero integers k, � such that
k > 0 or � > 0, define a function Dωc (k, �) = Ek,� − C̃ωc(k, �) where

Dωc(k, �) = i−k−�

2(1 + a2)2π i

∫

�̃ωc

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

(195)

and where �̃ωc = �1 \ �ωc has positive orientation counterclockwise around the origin.
Note that Dωc (k, �) = Dωc(�, k) when k, � > 0.

One can use the symmetries in (28) to get

∫

�a,b

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

= −
∫

�a,b

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

= (−1)�+k
∫

−�a,b

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

=

− (−1)�+k
∫

−�a,b

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

(196)

where �a,b = {eiθ : θ ∈ [a, b]}, 0 ≤ a < b ≤ π/2} and each curve has orientation
counterclockwise around the origin.

Proposition 7. Let non-zero integers �, k be such that � + k > 0 is even and α = k/�
lies in a compact subset of (−1, 1]. There exists a bounded function R26(ξ, �, k) such
that

Dωc (k, �) = i2ke�R[ψ(θc)]

π(1 + a2)(1 − 2c)

[
e

(�+k)c
(1−2c)3/2

ϕ2
c

∫ ∞

ϕc

cos((� − k)F(θ))e
− (�+k)c

(1−2c)3/2
θ2

dθ

+ R26(ξ, �, k)
( ϕc

(� + k)(1 + α)
+

1

(� + k)3/2

)]
(197)
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Proof. From the definition of Dωc (k, �) we see that

Dωc(k, �) = i−k−�

2(1 + a2)2π i
(1 + (−1)�+k)

[ ∫

�̃ωc∩H+

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

− (−1)�+k
∫

�̃ωc∩H+

dw

w

G(w)�G(1/w)k√
w2 + 2c

√
1/w2 + 2c

]

= i−k−�

(1 + a2)2π i
2ie�R[ψ(θc)]R

[ ∫ θc

θc−δ

e�ψ(θ)−�R[ψ(θc)]

|e2iθ + 2c| dθ

+
∫ θc−δ

0

e�ψ(θ)−�R[ψ(θc)]

|e2iθ + 2c| dθ
]

(198)

where we parametrised �̃ωc ∩H
+ byw(θ) = eiθ for θ ∈ [0, θc] and δ > 0 will be chosen

small enough. The main contribution to Dωc comes from the first integral in (198).
From (186) we have a constant C > 0 such that

∣∣∣∣∣

∫ θc

θc−δ

e�ψ(θ)−R[ψ(θc)]

|e2iθ + 2c| dθ −
∫ θc

θc−δ

e�ψ(θ)−�R[ψ(θc)]

1 − 2c
dθ

∣∣∣∣∣

≤ C
∫ θc

θc−δ

(θ − π/2)2e�R[ψ(θ)−ψ(θc)]dθ. (199)

We will return to this bound. First we will consider

R
[ ∫ θc

θc−δ

e�ψ(θ)−�R[ψ(θc)]dθ
]

=
∫ θc

θc−δ

cos(�I[ψ(θ)])e�R[ψ(θ)−ψ(θc)]dθ (200)

since this contributes to the leading term of Dωc .
Recall (163) and take δ so small that

ψ ′′(π/2)ϕc(θc − θ) + ψ ′′(π/2)(θc − θ)2/2

+ |R[R13(θc, α)ϕ3
c (θc − θ) + R14(θc, α)ϕ2

c (θc − θ)2/2

R15(θc, α)ϕc(θc − θ)3 + R12(θc, α)(θc − θ)4]|
<

1

2

[
ψ ′′(π/2)ϕc(θc − θ) + ψ ′′(π/2)(θc − θ)2/2

]
(201)

for all θ ∈ [θc − δ, θc]. Now we use (163), the bound |et − 1| ≤ |t |e|t | and then (201)
to give a constant C such that

∣∣∣∣
∫ θc

θc−δ

cos(�I[ψ(θ)])e�R[ψ(θ)−ψ(θc)]dθ −
∫ θc

θc−δ

cos(�I[ψ(θ)])e�ψ ′′(π/2)[ϕc(θc−θ)+(θc−θ)2/2]dθ

∣∣∣∣

≤ C�

∫ δ

0
e

�
2

[
ψ ′′(π/2)ϕcθ+ψ ′′(π/2)θ2/2

][
ϕ3
c θ + ϕ2

c θ
2 + ϕcθ

3 + θ4
]
dθ. (202)

Rewrite the integral on the right hand side of (202) as a sum of four integrals. We
bound these four integrals separately. Here, and several times below, we will use that
ψ ′′(π/2) < 0 and � > 0. The first bound is

�

∫ δ

0
e�

[
ψ ′′(π/2)ϕcθ+ψ ′′(π/2)θ2/2

]
/2

ϕ3
c θdθ
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≤ �

∫ δ

0
e�

[
ψ ′′(π/2)ϕcθ

]
/2

ϕ3
c θdθ <

ϕc

�ψ ′′(π/2)2

∫ ∞

0
e−θ/2θdθ, (203)

the third is

�

∫ δ

0
e�

[
ψ ′′(π/2)ϕcθ+ψ ′′(π/2)θ2/2

]
/2

ϕcθ
3dθ

≤ �

∫ δ

0
e�ψ ′′(π/2)θ2/4ϕcθ

3dθ <
ϕc

�ψ ′′(π/2)2

∫ ∞

0
e−θ2/4θ3dθ, (204)

and the fourth is

�

∫ δ

0
e

�
2

[
ψ ′′(π/2)ϕcθ+ψ ′′(π/2)θ2/2

]
θ4dθ

≤ �

∫ δ

0
e�ψ ′′(π/2)θ2/4θ4dθ <

1

(−�ψ ′′(π/2))3/2

∫ ∞

0
e−θ2/4θ4dθ. (205)

We bound the second integral slightly differently by making the substitution θ →
(�2ψ ′′(π/2)2ϕc)

−1/3θ in

�

∫ δ

0
e

�
2

[
ψ ′′(π/2)ϕcθ+ψ ′′(π/2)θ2/2

]
ϕ2
c θ

2dθ

= ϕc

�ψ ′′(π/2)2

∫ δ(�2ψ ′′(π/2)2ϕc)1/3

0
e

−1
2

[
(�|ψ ′′(π/2)|ϕ2

c )
1/3θ+(�|ψ ′′(π/2)|ϕ2

c )
−1/3θ2/2

]
θ2dθ

<
ϕc

�ψ ′′(π/2)2

∫ ∞

0
e

−1
2

[
(�|ψ ′′(π/2)|ϕ2

c )
1/3θ+(�|ψ ′′(π/2)|ϕ2

c )
−1/3θ2/2

]
θ2dθ. (206)

The integral in (206) is bounded because
∫ ∞
0 e−tθ/2−θ2/(4t)θ2dθ is bounded uniformly

for all t > 0. We now return to the bound (199). Similar to how we got the bound (202),
we obtain
∣∣∣∣
∫ θc

θc−δ

(θ − π/2)2e�R[ψ(θ)−ψ(θc)]dθ −
∫ θc

θc−δ

(θ − π/2)2e�ψ ′′(π/2)[ϕc(θc−θ)+(θ−θc)
2/2]dθ

∣∣∣∣

≤ C�

∫ θc

θc−δ

(θ − π/2)2e�ψ ′′(π/2)[ϕc(θc−θ)+(θ−θc)
2/2][ϕ3

c (θc − θ)

+ ϕ2
c (θc − θ)2 + ϕc(θc − θ)3 + (θc − θ)4]dθ (207)

≤ C(2δ2 + 2ϕ2
c )

(
�

∫ θc

θc−δ

e�ψ ′′(π/2)[ϕc(θc−θ)+(θ−θc)
2/2][ϕ3

c (θc − θ)

+ ϕ2
c (θc − θ)2 + ϕc(θc − θ)3 + (θc − θ)4]dθ

)
(208)

The term appearing in the big brackets in (208) was bounded previously via (203), (205),
(204) and (206). The second integral in the difference in (207) is

∫ θc

θc−δ

(θ − π/2)2e�ψ ′′(π/2)[ϕc+(θ−θc)
2/2]dθ

≤
∫ δ

0
(2θ2 + 2ϕ2

c )e
�ψ ′′(π/2)[ϕcθ+θ2/2]dθ
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≤
∫ δ

0
2θ2e�ψ ′′(π/2)θ2/2dθ +

∫ δ

0
ϕ2
c e

�ψ ′′(π/2)ϕcθdθ

<
2

(−�ψ ′′(π/2))3/2

∫ ∞

0
θ2e−θ2/2dθ +

2ϕc

−�ψ ′′(π/2)

∫ ∞

0
e−θdθ. (209)

Hence we have established an upper bound on the right hand side of (199). The second
integral appearing in the difference in (202) contributes to the main term and using
similar manipulations leading to (194) we can rewrite it is as

∫ θc

θc−δ

cos(�I[ψ(θ)])e�ψ ′′(π/2)[ϕc(θc−θ)+(θc−θ)2/2]dθ

= e−�ψ ′′(π/2)ϕ2
c /2

∫ δ+ϕc

ϕc

cos(�I[ψ(π/2 − θ)])e�ψ ′′(π/2)θ2/2dθ. (210)

We extend the integration in the last integral to infinity which gives an error term

∣∣∣∣
∫ δ+ϕc

ϕc

cos(�I[ψ(π/2 − θ)])e�ψ ′′(π/2)θ2/2dθ −
∫ ∞

ϕc

cos(�I[ψ(π/2 − θ)])e�ψ ′′(π/2)θ2/2dθ

∣∣∣∣

≤
∫ ∞

δ+ϕc

e�ψ ′′(π/2)θ2/2dθ ≤ 2
e�ψ ′′(π/2)(δ+ϕc)

2/2

−�ψ ′′(π/2)(δ + ϕc)
. (211)

Thus the infinite integral

e−�ψ ′′(π/2)ϕ2
c /2

∫ ∞

ϕc

cos(�I[ψ(π/2 − θ)])e�ψ ′′(π/2)θ2/2dθ

gives the main term in (197).
It remains to bound the second integral in (198). SinceR[ψ(θ)] increases on (0, π/2),

there is a constant C > 0 such that
∣∣∣∣∣

∫ θc−δ

0
dθ

e�ψ(θ)−�R[ψ(θc)]

|e2iθ + 2c|

∣∣∣∣∣ ≤ Ce�R[ψ(θc−δ)−ψ(θc)]. (212)

From (163) we can take δ so small that

R[ψ(θc − δ) − ψ(θc)] <
ψ ′′(π/2)

2
[δϕc + δ2/2] ≤ ψ ′′(π/2)δ2

4
.

Hence (212) is bounded above by

Ce−�|ψ ′′(π/2)|δ2/4.

��
Now we give some lemmas from which we obtain the leading order terms in the

preceding expansions.
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Lemma 15. Let non-zero integers �, k be such that � + k > 0 is even and α = k/� lies
in a compact subset of [−1, 1). There is bounded function R35(ξ, k, �) such that

e
(�+k)c

(1−2c)3/2
ϕ2
c

∫ ∞

ϕc

cos((� − k) argG(ie−iθ ))e
− (�+k)c

(1−2c)3/2
θ2

dθ

= −i�−k sin((� − k)F(ϕc))

(� − k)/
√
1 − 2c

+ R35(ξ, k, �)
( √

� + k

(� − k)2
+

ϕc(� + k)

(� − k)2

)
. (213)

If instead α = 1 + κ� ∈ [−1, 1] such that �κ� is bounded then there is a bounded
function R38 such that

e(�+k)c′ϕ2
c

∫ ∞

ϕc

cos((� − k) argG(ie−iθ ))e−(�+k)c′θ2dθ

= i�−k D−(
√

(� + k)c′ϕc)√
(� + k)c′ +

( 1

(� + k)3/2
+

ϕc

� + k

)
R38(ξ, k, �). (214)

The proof of the above lemma is in Sect. 8

Lemma 16. Let �, k be non-zero integers such that � + k < 0 and α = k/� = 1 + κ� for
some κ� = O(1/|�|). There is a bounded function R40(ξ, κ�, �) such that

e(�+k)c′ϕ2
c

∫ ϕc

0
cos((l − k)F(θ))e−(�+k)c′θ2dθ (215)

= D+(ϕc
√−(� + k)c′)√−(� + k)c′ +

ϕ2
c√|� + k| min(ϕc

√
c′|� + k|, 1

ϕc
√
c′|� + k| )R40(ξ, κ�, �)

(216)

Similarly, the proof of the above lemma is delayed to Sect. 8.
We now have all of the ingredients to prove Proposition 4.

Proof of Proposition 4. We divide the proof into five cases, one when α̃ = −1, the other
four when α̃ ∈ (−1, 1) or α̃ = 1 and � + k is positive or negative. Each case consists of
defining R9 by the rearrangement of (54) and using the stated substitutions and bounds.

First the case α̃ = −1 for which the assumptions imply � + k ∈ {−2, 0, 2}. By (172)
we have

∣∣∣∣
sin((� − k)F(ϕc))

� − k

∣∣∣∣ ≥ C(ε)min(ϕc, 1/|� − k|). (217)

By lemma 13 and proposition 2 and there are C1,C2 > 0 such that

E|k|,|�| ≤ C1e
−C2|�|. (218)

We define R9 as the rearrangement of (54)

R9 := Ek,� − Cωc (k, �) + (−1)k |G(ωc)|�+k sin((� − k)F(ϕc))(π(1 − a)2(� − k)/
√
1 − 2c)−1

−(−1)k |G(ωc)|�+k sin((� − k)F(ϕc))(π(1 − a)2(� − k)/
√
1 − 2c)−1

(219)

and use the formula for Cωc given by Proposition 5 so that R9 is equal to

− E|k|,|�| − (−1)k |G(ωc)|�+k R29(ξ, �, k)ϕc(π(1 − a)2(� − k))−1

(−1)k |G(ωc)|�+k sin((� − k)F(ϕc))(π(1 − a)2(� − k)/
√
1 − 2c)−1

. (220)



Dimer–Dimer Correlations at the Rough–Smooth Boundary 1299

Now we use the upper bounds (217) and (218), and the conditions ϕ
2−γ
c (|�| + |k|) ≥

1/2, � + k ∈ {−2, 0, 2} to get

|R9| ≤ C3
e−C2|�|

|G(ωc)|�+k min(ϕc, 1/|� − k|) + C4
ϕc

|� − k|min(ϕc, 1/|� − k|)
≤ C5 max(

1

|�| , ϕc). (221)

For the case α̃ ∈ (−1, 1) and � + k < −2 we can set the two different expressions for
C̃ωc , (174) and (183), equal to one another so that bound (217) carries over to

∣∣∣∣∣
|G(ωc)|�+ke(�+k)c′ϕ2

c

π(1 − a)2

∫ ϕc

0
cos((� − k)F(θ))e(�+k)c′θ2dθ

∣∣∣∣∣

≥ C1(ε)|G(ωc)|�+k min(
ϕc

1 − 2c
,

1

|� − k| ) (222)

for |�| large enough. We also have that �R[ψ(θc)] = (� + k) log |G(eiθc )| ≥ (� +
k) log |G(i)| > 0 which implies |G(ωc)|�+k grows exponentially in |�|. Just as in (219)
we define R9 to be the rearrangement of (54) but now use the formula for Cωc provided
by Proposition 6 so that

R9 = E|k|,|�| − (−1)k |G(ωc)|�+k R19(ξ, �, k)ϕc(|� + k|π(1 − a)2)−1

−(−1)k |G(ωc)|�+k(π(1 − a)2)−1e−(�+k)c′ϕ2
c
∫ ϕc
0 cos((� − k)F(θ))e(�+k)c′θ2dθ

.

(223)

Just as in (221), we use (223) together with (218), (222) to get the bound

|R9| ≤ C(α̃)max(
1

|�| , ϕc). (224)

For the case α̃ = 1, � + k < −2 we again define R9 as the rearrangement of (54). We
then use Proposition 5 followed by lemma 16 on Cωc . Then using the bounds (218),
(87), (88) we obtain a C > 0 such that

|R9| ≤ C

{
1

|�+k| +
ϕc√|�+k| ,

√|� + k|c′ϕc ∈ (0, 1]
ϕ2
c ,

√|� + k|c′ϕc ∈ [1,∞).
(225)

For the case α̃ ∈ (−1, 1), �+k > 2we again define R9 as the rearrangement of (54). Then
use Proposition 7 together with lemma 15 on the function Ek,� − Cωc(k, �) appearing

in the numerator of R9. Then use the bound (217) and ϕ
2−γ
c (|�| + |k|) ≥ 1/2 to obtain

|R9| ≤ C ′(α̃)max(
1√
�
+ ϕc,

ϕ
1−γ
c√

�
+

1√
�
). (226)

For the case α̃ = 1, � + k > 2 use lemmas 15 and 7 and the bound (89) to obtain

|R9| ≤ C ′(ϕ2
c +

ϕc√
� + k

+
1

� + k
). (227)

��
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7. Uniform Bound on Rε1,ε2

We begin by proving Theorem 3. It is proved in [8] that for n = 4m, m ∈ N>0,
(x1, x2) ∈ Wε1 , (y1, y2) ∈ Bε2 with ε1, ε2 ∈ {0, 1} we have the formula

K−1
a,1((x1, x2), (y1, y2)) = K

−1
1,1((x1, x2), (y1, y2)) − Bε1,ε2(a, (x1, x2), (y1, y2))

+ B∗
ε1,ε2

(a, (x1, x2), (y1, y2)) (228)

where Bε1,ε2(a, x1, x2, y1, y2) is given by (229) below and B∗
ε1,ε2

is the sum of three
double contour integrals related to Bε1,ε2 by symmetry.

We recall Bε1,ε2 as equation (3.11) in [8],

Bε1,ε2(a, x1, x2, y1, y2)

= i (x1−x2+y1−y2)/2

(2π i)2

∫

�r ′

dw1

w1

∫

�1/r ′
dw2

Vε1,ε2(w1, w2)

w2 − w1

Hx1+1,x2(w1)

Hy1,y2+1(w2)
(229)

where equation (2.11) in [8] is

Hx,y(w) = wn/2G(w)(n−x)/2

G(w−1)(n−y)/2
(230)

for integers 0 < x, y < n and G is defined in (25). The expression for Vε1,ε2(w1, w2) is
somewhat involved and we refer to equation (3.7) in [8]. The precise form is of Vε1,ε2

is not needed here. However we note that Vε1,ε2 is analytic in
(
C \ (i(−∞,−1/

√
2c] ∪

i[−√
2c,

√
2c] ∪ i[1/√2c,∞))

)2. Thus the integrand of Bε1,ε2 is analytic in the same
set minus the collection of points w1 = w2.

Define the error term

Rε1,ε2(a, x1, x2, y1, y2)

= i (x1−x2+y1−y2)/2

(2π i)2

∫

descξ

dw1

w1

∫

ascξ
dw2

Vε1,ε2(w1, w2)

w2 − w1

Hx1+1,x2(w1)

Hy1,y2+1(w2)
(231)

where descξ and ascξ are the contours of steepest descent and ascent of the function gξ

passing through ωc, see [8] or lemmas 17 and 18 below. We want to show that

Bε1,ε2(a, x1, x2, y1, y2) = Cωc (x, y) + Rε1,ε2(a, x1, x2, y1, y2). (232)

The formula (232) follows by a contour deformation in the contour integral formula for
Bε1,ε2 as given in (229). For this section we use the coordinates in (38). From equations
(230) and (33) we compute

Hx1+1,x2(w1)

Hy1,y2+1(w2)
=

(G(w−1
1 )a2

G(w1)a1

G(w2)
b1

G(w−1
2 )b2

)
exp {n

2
(gξ (w1) − gξ (w2))}. (233)

We have lemma 3.15 from [8]

Lemma 17. For ξ = ξc there is a path of steepest descent for gξ leaving i at the angle
−π/6 going to 0 (via H

+) and a path of steepest ascent leaving at an angle π/6 and
going to infinity (via H+).
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Note R[gξ (w)] is symmetric across the real and imaginary axes so this also gives the
paths on the upper left quadrant and bottom half of the plane. We have lemma 3.20 from
[8]

Lemma 18. For ξc > ξ > − 1
2

√
1 + 2c, choose ωc = eiθc with θc ∈ (0, π/2) such that

g′
ξ (ωc) = 0. There is a contour of steepest ascent leavingωc at an angle θc−π/4 ending

at infinity (via H
+) and a contour of steepest ascent leaving ωc at an angle θc + 3π/4

ending at a cut (via H
+) and an ascent contour ending at i

√
2c traveling via the cut

i[0,√2c].
There is a contour of steepest descent leaving ωc at an angle θc − 3π/4 ending at zero
(via H

+) and a contour of steepest descent leaving ωc at an angle θc + π/4 ending at a
cut (viaH+) and a descent contour ending at i/

√
2c traveling via the cut i[1/√2c,∞).

Now deform �r ′ to the path of steepest descent, descξ , for gξ passing through the
critical points ±ωc, ±ωc. This can be done due to the following crude estimates for
|w2| = R large and |w1| = 1/R small,

∣∣∣∣
1

Hy1,y2+1(w2)

∣∣∣∣ =
∣∣∣∣∣
G(w−1

1 )a2

G(w1)a1
exp(−ngξ (w2)/2)

∣∣∣∣∣ = ( c
2

)a2 1

Rn(1+ξ)/2−a2
|(1 + O(1/R))| ,

(234)

∣∣Hx1+1,x2(w1)
∣∣ =

∣∣∣∣∣
G(w2)

b1

G(w−1
2 )b2

exp(ngξ (w1)/2)

∣∣∣∣∣ = ( c
2

)b1 1

Rn(1+ξ)/2−b1
|(1 + O(1/R))| ,

(235)

which follow by Taylor expansions. Deform�1/r ′ to path of steepest ascent of gξ passing
through the points ±ωc, ±ωc, label this contour ascξ . Since the w2-contour passes over
the w1-contour we pick up a contribution

i (x2−x1+y1−y2)/2

2π i

∫

�ωc

Vε1,ε2(w,w)G(w)(y1−x1−1)/2G(w−1)(x2−y2−1)/2 dw

w
(236)

by the residue theorem. Lemma (3.2) in [8] is

Vε1,ε2(w,w) = (−1)1+h(ε1,ε2)aε2G(w−1)h(ε1,ε2) + a1−ε2G(w)G(w−1)1−h(ε1,ε2)

2(1 + a2)
√

w2 + 2c
√
1/w2 + 2c

.

(237)

This together with the definitions in (23) and (24) give that the contribution (236) is
equal to Cωc (x, y) defined in (36). The rest of the integral is given by what we called
the error term, (231). This proves the formula (232) and hence Theorem 3.

We now turn to the proof of Proposition 1. This involves an analysis of the steepest
descent and ascent contours for the saddle point function gξ , across a region of the
parameter space ξ where two single critical points merge to form a double critical point.
In order to carry out this analysis we note that the ascent contour is infinite and the
descent contour travels to the origin, where the integrand is not analytic. In light of this,
we make the following deformations.
Consider the upper right quadrant ofC. Take R > 2 very large, by lemmas 3.15 and 3.20
in [8], the path of steepest ascent of gξ in the upper right quadrant intersects the quarter
circle centred at 0 that travels from R to i R. Deform the section of ascξ in the upper right
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Fig. 5. A numerical plot of {w : I[gξ (w) − gξ (ωc)] = 0}, ξc − ξ = 0.01 (blue) and the branch cut of of gξ
(black) where a = 1/2

descξ

ascξ

˜descξ,1/R

ãscR
ξ

Fig. 6. Global contour deformations

quadrant that extends from the intersection to infinity to the section of the quarter circle
starting at the intersection, travelling down the quarter circle and ending at the point
R ∈ C. Make the equivalent symmetric deformations in the other three quadrants and
label this contour ascRξ . Similarly, the path of steepest descent in the upper right quadrant
intersects a small quarter circle centred at 0 of radius ε, take ε = 1/R for simplicity.
Deform the section of descξ starting at the intersection and going to zero to the contour
starting from the intersection and travelling down along the small quarter circle to the
point 1/R ∈ C. Make the equivalent symmetric deformations in the other quadrants
and label this new contour descξ,1/R . Now note from (235) that we can take R so large
and fixed so thatR[gξ (ωc)] > R[gξ (w1)] + 1 andR[−gξ (ωc)] > R[−gξ (w2)] + 1 for
|w1| = 1/R, |w2| = R.



Dimer–Dimer Correlations at the Rough–Smooth Boundary 1303

i

˜descξ,1/R

ãscR
ξ

Fig. 7. Local contour deformations near i in H
+

In order to deal with the contributions to the asymptotics coming from small neigh-
bourhoods of the critical points we make the following local deformations.
Let 0 ≤ ξc − ξ ≤ δ∗

n where δ∗
n > 0 is a sequence going to zero. Consider the section

of the contour descξ,1/R in H
+. For δ0 > 0 sufficiently small and n large enough, later

we will prove that the section of descξ,1/R that leaves the small quarter circle centred
at 0 of radius 1/R and travelling up to ω′

c passes through the set {i + δ0eiθ : θ ∈
[−π/4−a∗,−π/6+a∗]} for some positive a∗ < π/24. Label the contours intersection
with this set as w∗

ξ . Next consider the connected component of descξ,1/R with endpoints
w∗

ξ and ωc, deform this component to a straight line connecting the two endpoints. Also,
deform the component of descξ,1/R starting at ωc and ending at the imaginary axis to the
straight line starting from ωc and leaving at an angle 3π/5, extending to the imaginary
axis. In the case ωc = i this last section vanishes. Make the equivalent symmetric
deformations in the other three quadrants of C. Label this deformed contour d̃escξ,1/R
and note it now depends on δ0 and ξ , it has also only been defined for δ0 sufficiently
small and n large enough. We call the equivalent deformations to ascRξ as ãscRξ .
We now have

Rε1,ε2(a, x1, x2, y1, y2)

= i (x1−x2+y1−y2)/2

(2π i)2

∫

d̃escξ,1/R

dw1

w1

∫

ãscRξ

dw2
Vε1,ε2(w1, w2)

w2 − w1

Hx1+1,x2(w1)

Hy1,y2+1(w2)
(238)

So we have the bound
∣∣Rε1,ε2

∣∣

= 1

(2π)2

∣∣∣∣∣

∫

d̃escξ,1/R

dw1

w1

∫

ãscRξ

dw2

(G(w−1
1 )a2

G(w1)a1

G(w2)
b1

G(w−1
2 )b2

)Vε1,ε2(w1, w2)

w2 − w1

exp{n
2
(gξ (w1) − gξ (w2))}

∣∣∣ (239)

≤ M

(2π)2

∫

d̃escξ,1/R

|dw1|
∫

ãscRξ

|dw2||K (w1, w2)|
∣∣∣∣
exp{ n2 (gξ (w1) − gξ (w2))}

w2 − w1

∣∣∣∣ .

(240)
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where

M := sup
1

{∣∣Vε1,ε2(w1, w2)
∣∣}, K (w1, w2) := G(w−1

1 )a2

G(w1)a1

G(w2)
b1

G(w−1
2 )b2

(241)

and sup1 is the supremum over a compact subset A of (B(0, R) \ B(0, 1/R))2 such
that Vε1,ε2 is analytic on A and d̃escξ,1/R, ãscRξ ⊂ A for every ξ . Note that both

d̃escξ,1/R, ãscRξ ⊂ B(0, R) \ B(0, 1/R) for all 0 ≤ ξc − ξ ≤ δ∗
n . Now we are in a

position to prove our bound on Rε1,ε2 .

Proof of Proposition 1. Wefirst formulate a few key lemmas. The first of these, provides
us with the fact that the contours d̃escξ,1/R , ãscRξ are well-defined.

Lemma 19. Let δ∗
n > 0 be a sequence that goes to zero as n → ∞, for δ0 > 0

sufficiently small there is a natural number N such that for all n > N the section of
descξ with endpoints 0 and ωc intersects the set {i + δ0eiϕ : ϕ ∈ [−π/4,−π/12]} for all
0 ≤ ξc − ξ ≤ δ∗

n and the section of ascξ starting at ωc and ending at infinity travelling
via H+ intersects the set {i + δ0eiϕ : ϕ ∈ [π/12, π/4]}.
The next lemma gives control over the integral in a neighbourhood of the critical points.

Lemma 20. Let δ∗
n > 0 be a sequence going to zero as n → ∞. If δ0 > 0 is sufficiently

small then for w1 ∈ d̃escξ,1/R ∩B(i, δ0) and all n large enough, there exists C > 0 such
that

R[gξ (w1) − gξ (ωc)] ≤ −C max{|w1 − ωc|3,
√

ξc − ξ |w1 − ωc|2} (242)

for all 0 ≤ ξc − ξ ≤ δ∗
n . Also, for w2 ∈ ãscRξ ∩ B(i, δ0) and n large enough,

R[gξ (ωc) − gξ (w2)] ≤ −C max{|w2 − ωc|3,
√

ξc − ξ |w1 − ωc|2} (243)

for all 0 ≤ ξc − ξ ≤ δ∗
n .

The next lemma gives control of the integral over sections of the descent path bounded
away from the critical points, and follows from the above lemma.

Lemma 21. Let δ∗
n > 0 be a sequence that goes to zero as n → ∞, if δ0 > 0 is

sufficiently small and w∗
ξ is a point where descξ intersects ∂B(i, δ0) in H

+, w∗∗
ξ be a

point where ascξ intersects ∂B(i, δ0) in H+. There is a number C(δ0) > 0 such that

R[gξ (w
∗
ξ ) − gξ (ωc)] < −C(δ0) (244)

for all 0 ≤ ξc − ξ ≤ δ∗
n , when n is large. We also have

R[gξ (ωc) − gξ (w
∗∗
ξ )] < −C(δ0) (245)

for all 0 ≤ ξc − ξ ≤ δ∗
n , when n is large.
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Let δ0 > 0 be small enough and n large enough such that the above lemmas hold.
Define

�in
d = d̃escξ,1/R ∩ B(i, δ0) ∩ H

+, �out
d = (d̃escξ,1/R \ B(i, δ0)) ∩ H

+,

�in
a = ãscRξ ∩ B(i, δ0) ∩ H

+, �out
a = (ãscRξ \ B(i, δ0)) ∩ H

+. (246)

It is enough to bound the integral in (240) restricted to (H+)2,
∫

d̃escξ,1/R∩H+
|dw1|

∫

ãscRξ ∩H+
|dw2||K (w1, w2)|

∣∣∣∣
exp{ n2 (gξ (w1) − gξ (w2))}

w2 − w1

∣∣∣∣ . (247)

In particular write this integral as a sum of integrals over products of sets of the form
(246). The bound

∫

�out
d

|dw1|
∫

ãscRξ ∩H+
|dw2||K (w1, w2)|

∣∣∣∣
exp{ n2 (gξ (w1) − gξ (w2))}

w2 − w1

∣∣∣∣

≤ exp{−n

2
(C(δ0) − R[gξ (ωc)] + C ′r)}

∫

�out
d

|dw1|
∫

ãscRξ ∩H+
|dw2|

∣∣∣∣
1

w2 − w1

∣∣∣∣ (248)

holds by lemma 21 and the trivial bound sup(B(0,R)\B(0,1/R))2 |K (w1, w2)| ≤ eC
′r for

someC ′ > 0. SinceR[gξ (eiθ )] = 0 for any real θ ,R[gξ (ωc)] = 0. By an application of
the Hayman-Wu theorem (see Garnett and Marshall [17]), the contours are finite length.
To see this, recall a version of the Hayman-Wu theorem; If ϕ : D → C is conformal on
the unit disc and L is a straight line inC then length(ϕ−1(L)) ≤ 4π . One can take ξc −ξ

small enough that d̃escξ,1/R and ãscRξ do not intersect the branch cuts so we can find a
compact set A ⊂ B(0, R +1)\B(i, δ0) such that gξ is analytic on A and A contains both
d̃escξ,1/R and ãscRξ for all ξ . Cover A with finitely many open balls that do not intersect
the branch cuts. Apply the Hayman-Wu theorem to the straight line ±iI[gξ (ωc)] + R

and gξ restricted to each open ball. Since the number of balls is finite the contours are
finite. The same theorem gives the same bound for each contour and so the contours
lengths are bounded uniformly in ξ, ξ ′. The integrand in (248) is integrable since the
two sections of the contours do not intersect. Hence the integral over �out

d × ãscRξ ∩H
+ is

O(e−C(δ0)n/2+C ′r ). One obtains the same bound for �out
a × d̃esc

R
ξ ∩H

+ in an analogous
fashion. The integral over sections of the contours contained in (B(i, δ0) ∩ H

+)2 is
∫

�in
d

|dw1|
∫

�in
a

|dw2||K (w1, w2)|
∣∣∣∣
exp{ n2 (gξ (w1) − gξ (w2))}

w2 − w1

∣∣∣∣ . (249)

These contours are straight lines by definition

�in
d = {ωc + t ′ei3π/5} ∪ {ωc + s′(w∗

ξ − ωc)} =: �
in,1
d ∪ �

in,2
d ,

�in
a = {ωc + te−i3π/5} ∪ {ωc + s(w∗∗

ξ − ωc)} =: �in,1
a ∪ �in,2

a . (250)

It is straightforward to see that the lengths of these straight lines are uniformly bounded in
0 ≤ ξc−ξ ≤ δ∗

n , indeed, their endpoints all lie in a bounded region ofC. Define γ a,1(t) =
ωc + teiθa,1 , θa,1 = −3π/5 for t ∈ [0,R[ωc]/ sin(π/10)], γ a,2(t) = ωc + teiθa,2 ,
θa,2 = arg(w∗∗

ξ − ωc) for t ∈ [0, |w∗∗
ξ − ωc|], γ d,1(s) = ωc + seiθd,1 , θd,1 = 3π/5 for
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s ∈ [0,Rωc/ sin(π/10)], and finally, γ d,2(s) = ωc + seiθd,2 , θd,2 = arg (w∗
ξ − ωc) for

s ∈ [0, |w∗
ξ − ωc|]. These parametrise the straight lines in �in

d and �in
a . For i, j = 1, 2

consider the bound
∫

�
in,i
d

|dw1|
∫

�
in, j
a

|dw2||K (w1, w2)|
∣∣∣∣
exp{ n2 (gξ (w1) − gξ (w2))}

w2 − w1

∣∣∣∣

≤ exp{−n

2
(R[gξ (ωc) − gξ (ωc)])}

∫

�
in,i
d

|dw1|
∫

�
in, j
a

|dw2||K (w1, w2)|
∣∣∣∣∣
exp{−C n

2 (|w1 − ωc|3 + |w2 − ωc|3)}
w2 − w1

∣∣∣∣∣ (251)

which holds by lemma 20. We can take δ0 small enough that for j ∈ {1, 2}
| log(G(w j )) − log(G(ωc))| ≤ C ′′|w j − ωc|,
| log(G(1/w j )) − log(G(1/ωc))| ≤ C ′′|w j − ωc|

for w j ∈ B(i, δ0) ∩ H
+. From which we gain a C ′′′ > 0 such that

|K (w1, w2)| ≤ |G(ωc)|b1−a1 |G(1/ωc)|a2−b2eC
′′′r [|w1−ωc|+|w2−ωc|].

Insert this bound into (251). Parametrising and recallingR[gξ (eix )] = 0 for any real x ,
(251) is bounded by the prefactor |G(ωc)|b1−a1 |G(1/ωc)|a2−b2 multiplied by

∫

Dom(γ d,i )

|ds|
∫

Dom(γ a, j )

|dt |
∣∣∣∣
exp{−Cn(s3 + t3)/2 + C ′′′r(s + t)}

teiθa, j − seiθd,i

∣∣∣∣ (252)

= 1

n1/3

∫

n1/3Dom(γ d,i )

|ds|
∫

n1/3Dom(γ a, j )

|dt |
∣∣∣∣
exp{−C(s3 + t3)/2 + C ′′′rn−1/3(s + t)}

teiθa, j − seiθd,i )

∣∣∣∣ (253)

≤ 1

n1/3

∫ ∞

0
ds

∫ ∞

0
dt exp{−C(s3 + t3)/2 + C ′′′(s + t)} 1∣∣teiθa, j − seiθd,i

∣∣ . (254)

when r ≤ n1/3. The double integral in (254) is bounded above by some positive constant
uniformly for ξ, n. To prove the 1/

√
n
√

ξc − ξ bound in (39), we instead useR[gξ (wi )−
gξ (ωc)] ≤ −C

√
ξc − ξ |wi − ωc|2 in (251) and then make the change of variables

s → s/
√
n
√

ξc − ξ, t → t/
√
n
√

ξc − ξ instead of s → n−1/3s, t → n−1/3t in (253).
��

We now turn to the proof of lemmas 19 to 21. Let δ0 < 1 − √
2c so that for

− 1
2

√
1 + 2c < ξ ≤ ξc, gξ (w) is analytic in the annulus L(δ0) = {z ∈ C : 1 − δ0 <

|z| < 1 + δ0}. From Taylor’s theorem,

gξ (w) = gξ (ωc) + g′′
ξ (ωc)(w − ωc)

2/2 + g′′′
ξ (ωc)(w − ωc)

3/3! + Rωc (w)(w − ωc)
4

(255)

for ξc ≥ ξ ≥ ε∗ > − 1
2

√
1 + 2c. Where

Rωc(w) = 1

2π i

∫

|z−ωc|=δ1

gξ (z)

(z − ωc)4(z − w)
dz (256)

for any 0 < δ1 < δ0 and Rωc(w)(w − ωc)
4 is O(|w − ωc|4) uniformly in ξ .
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We have the equations

wg′
ξ (w) = 1 + ξ

( w√
w2 + 2c

+
1

w
√
1/w2 + 2c

)
, (257)

wg′
ξ (w) + w2g′′

ξ (w) = 2cξ
( w

(w2 + 2c)3/2
− 1

w(1/w2 + 2c)3/2
)
, (258)

g′
ξ (w) + 3wg′′

ξ (w) + w2g′′′
ξ (w) = 2cξ

( 2(c − w2)

(w2 + 2c)5/2
+

2

w2

c − 1/w2

(1/w2 + 2c)5/2
)
. (259)

which follow by taking derivatives. Before we prove Lemmas 19, 20, 21 we relate the
second and third derivatives of gξ at ωc to ξc − ξ .

Lemma 22. There are functions R27(ξ), R28(ξ) bounded for some interval 0 ≤ ξc−ξ <

c2 such that

g′′
ξ (ωc) = −d2i

√
ξc − ξ + R27(ξ)(ξc − ξ) (260)

and

g′′′
ξ (ωc) = −id3 + R28(ξ)(ξc − ξ)1/2 (261)

where d2 = 4
√

c(1+c)
(1−2c)5/2

, d3 = 8c(1+c)|ξc|
(1−2c)5/2

.

Proof. From (258) write

g′′
ξ (ωc) = ω−2

c 4icξI[ ωc

(ω2
c + 2c)3/2

] = 4icξe−2iθcI[ eiθc

((eiθc )2 + 2c)3/2
]. (262)

Define F4(θc) = eiθc/((eiθc )2 + 2c)3/2. For each θc ∈ [0, π/2] there existsχ ∈ [θc, π/2]
such that

I[F4(θc)] = I[F4(π/2)] − I[F ′
4(π/2)]ϕc + R29(ξ)ϕ2

c (263)

with R29(ξ) = I[F ′′
4 (χ)]. Since I[F4(π/2)] = 0,

g′′
ξ (ωc) = 4icξ [−1 + R5(ξ)ϕc][−I[F ′

4(π/2)]ϕc + R29(ξ)ϕ2
c ] (264)

where ϕc R30(ξ) = e−2iθc + 1, R30(ξc) = 2i and |R30(ξ)| ≤ 2eπ−2θc .

g′′
ξ (ωc) = −4icξcI[−F ′

4(π/2)ϕc] + R31(ξ)ϕ2
c − 4ic(ξc − ξ)I[F ′

4(π/2)ϕc] (265)

where R31(ξ) = 4icξ [I[R29(ξ)](−1 − R30(ξ)ϕc) + R30(ξ)F ′
4(π/2)] is bounded.

A computation yields

F ′
4[θc]

∣∣∣
θc=π/2

= ieiθc
2(c − ei2θc )

((eiθc )2 + 2c)5/2

∣∣∣
θc=π/2

= i
2(1 + c)

(1 − 2c)5/2
. (266)

Inserting (43) into (265) we have

g′′
ξ (ωc) = −8ic(1 + c)|ξc|

(1 − 2c)5/2

√
(1 − 2c)5/2

4c(1 + c)ξ2c

√
ξc − ξ + R27(ξ)(ξc − ξ) (267)
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for a bounded function R27.
For the third derivative, from (259) write

g′′′
ξ (ωc) = 4cξω−3

c R[ 2ωc(c − ω2
c )

(ω2
c + 2c)5/2)

] − 3ω−1
c g′′

ξ (ωc). (268)

Define L2(θc) = R[ 2eiθc (c−e2iθc )
((eiθc )2+2c)5/2)

], for every θc ∈ [0, π/2] there is a χ ∈ [θc, π/2] such
that R32(ξ) = −L ′

2(χ) and L2(θc) − L2(π/2) = R32(ξ)ϕc. It is clear that L2(π/2) =
2(1+c)

(1−2c)5/2
. So now

g′′′
ξ (ωc) = 4cξ(i + R10(ξ)ϕc)(

2(1 + c)

(1 − 2c)5/2)
+ R32(ξc)ϕc) − 3(i + R34(ξ)ϕc)g

′′
ξ (ωc)

(269)

where |R33(ξ)| ≤ 3e3π/2−3θc , |R34(ξ)| ≤ eπ/2−θc . The lemma follows by the statement
on g′′

ξ (ωc) and lemma 5. ��
Lemma 23. Let p exp (iθ) + ωc (p > 0, θ ∈ (−π, π ]) be a point in the annulus L(δ0)

satisfying

I[gξ (ωc + peiθ )] = I[gξ (ωc)], R[gξ (ωc + peiθ )] < R[gξ (ωc)]. (270)

There are constants a1, a2 > 0 sufficiently small such that the following holds. Set
δ = δ(ε) = min{εa1, a2}. For every ε > 0, if 0 ≤ ξc − ξ ≤ δ4 and δ/2 ≤ p ≤ δ then

|cos(3θ)| < ε, sin(3θ) < ε. (271)

If instead R[gξ (ωc + peiθ )] > R[gξ (ωc)], then for every ε > 0 there is a δ > 0
sufficiently small such that if 0 ≤ ξc − ξ ≤ δ4 and δ/2 ≤ p ≤ δ then

|cos(3θ)| < ε, sin(3θ) > ε. (272)

Proof. Let 0 < δ1 < 1 be small enough so that the remainders in equation (255) and
lemma 22 are bounded for all 0 ≤ ξc − ξ ≤ δ41 and 0 ≤ p ≤ δ1. Insert the Taylor
expansion (255) into the first condition in (270),

I[g′′
ξ (ωc)e

2iθ + g′′′
ξ (ωc)

pe3iθ

3
] = I[−Rωc(ωc + peiθ )e4iθ p2]. (273)

Now apply lemma 22 to the left hand side, a rearrangement gives

cos(3θ) = 3

d3
I
[
R27(ξ)e2iθ

ξc − ξ

p
+ R28(ξ)e3iθ

√
ξc − ξ

3

+ Rωc (ωc + peiθ )e4iθ p
]

− 3d2
√

ξc − ξ

d3 p
cos(2θ). (274)

The absolute value of the right hand side of (274) is bounded above by

3d2
√

ξc − ξ

d3 p
+

3

d3
|Rωc (ωc + peiθ )|p + |R27(ξ)|3(ξc − ξ)

d3 p
+ |R28(ξ)|d3

√
ξc − ξ .

(275)

This is bounded by some constant C1 multiplied by δ when δ ≤ δ1. Hence we take
δ = min(ε/C1, δ1) and a1 = 1/C1, a2 = δ1. The remaining statements are proved by
alterations to the above argument. ��
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For s > 0 and a subset S ofR define B(S, s) = ∪x∈SB(x, s). We now prove a lemma
from which Lemma 19 follows.

Lemma 24. For every ε > 0 sufficiently small there is a δ > 0 (with δ → 0 when
ε → 0) such that descξ intersects {i + εeiϕ : ϕ ∈ B(−π/6, δ)} for all 0 ≤ ξc − ξ ≤ ε4.

Proof. Let p > 0, θ ∈ (−π, π ] be such that p exp (iθ) + ωc is in the component �ξ

of descξ with endpoints 0 and ωc. By Lemma 23 and the fact the cos(3θ) is locally
invertible near its roots; for every ε > 0 sufficiently small θ is close to one of the points
−5π/6,−π/6, π/2 for all 0 ≤ ξc − ξ ≤ ε4 and ε/2 ≤ p ≤ ε. Let us discount the cases
where θ is close to −5π/6 or π/2. By lemma 5 there is C > 0 such that |ωc − i | ≤ Cε2.
Take ε so small that |ωc − i | ≤ ε/8 < ε/2 ≤ p. Because �ξ can not cross the imaginary
axis and by basic geometry, θ is not close to −5π/6. Since �ξ leaves ωc at an angle
θc − 3π/4 andR[gξ (eix )] = 0 for all real x , �ξ can not cross the unit circle. So θ is not
close to π/2.

Set i+εeiϕ = ωc+ peiθ .We have the inequality |p−ε| ≤ |peiθ −εeiϕ | = |ωc−i |. So
there is a constantC > 0 such that |ϕ+π/6| ≤ |θ +π/6|+C |ωc − i |2 ≤ |θ +π/6|+Cε2.

��
Lemma 25. Let δ∗

n > 0 be a sequence going to zero as n → ∞. If δ0 > 0 is sufficiently
small then for w1 ∈ d̃escξ ∩ B(i, δ0) and all n large enough, there exists C > 0 such
that

R[gξ (w1) − gξ (ωc)] ≤ −C max{|w1 − ωc|3,
√

ξc − ξ |w1 − ωc|2} (276)

for all 0 ≤ ξc − ξ ≤ δ∗
n .

Proof. We give the proof for d̃escξ , the case for ãscξ is similar. Set w1 − ωc = peiθ .
From lemma 22 and (255),

R[g′′
ξ (ωc)(w1 − ωc)

2/2! + g′′′
ξ (ωc)(w1 − ωc)

3/3! + Rωc (w1)(w1 − ωc)
4]

= d2
√

ξc − ξ
p2

2
sin(2θ) + d3

p3

3! sin(3θ) +R[R27(ξ)(ξc − ξ)p2e2iθ

+ R28(ξ)(ξc − ξ)1/2 p3e3iθ + Rωc (w1)(w1 − ωc)
4]. (277)

For δ0 small enoughandn large there is aC ′ > 0 such that |Rωc (w1)|, |R8(ξ)|, |R12(ξ)| ≤
C ′ using these inequalities in (277) we obtain

R[gξ (w1) − gξ (ωc)] ≤ d2
√

ξc − ξ
p2

2
(sin(2θ) +

2C ′

d2

√
ξc − ξ)

+ d3
p3

3! (sin(3θ) +
6C ′

d3
(
√

ξc − ξ + p)) (278)

Next we recall a fact proved in the proof of lemma 24, for any δ0 sufficiently small and n
large enough, ifw∗

ξ ∈ �ξ ∩ ∂B(i, δ0) then arg(w∗
ξ −ωc) ∈ B(−π/6, π/24). Recall also,

that d̃escξ ∩ B(i, δ0) consists of two straight lines: One leaving ωc at angle θ = 3π/5,
terminating at the imaginary axis and the other having endpointsωc,w∗

ξ . Hence take δ0 so

small that 6C ′δ0/d3 < 1/8, and n so large that max(2C ′√ξc − ξ/d2, 6C ′/d3(
√

ξc − ξ +
|ωc − i |)) < 1/8 so

R[gξ (w1) − gξ (ωc)] ≤ d2
√

ξc − ξ
p2

2
(sin(2θ) + 1/8) + d3

p3

3! (sin(3θ) + 1/4)]
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≤ −3d2
√

ξc − ξ
p2

16
− d3

p3

4! (279)

since both sin(2θ), sin(3θ) < −1/2 when θ = 3π/5 or θ ∈ [−5π/24,−3π/24]. Note
this proof also yields Lemma 21. ��

8. Some Technical Lemmas

Now we give the proof of the lemma relating ωc and ξ .

Proof of lemma 5. By (257), ξ = −1/(2R[F1(eiθc )]) and ξc = −1/(2R[F1(i)]) where
we define F1(w) = w/

√
w2 + 2c. Let F2(θc) = 1/R[F1(eiθc )], F2 is smooth on

[0, π/2]. For any θc ∈ [0, π/2] there exists χ between π/2 and θc such that

F2(θc) − F2(π/2) = −F ′
2(π/2)ϕc +

F ′′
2 (π/2)

2
ϕ2
c − F ′′′

2 (π/2)

3! ϕ3
c +

F ′′′′
2 (χ)

4! ϕ4
c .

(280)

Direct computation gives that F ′
2(π/2) = F ′′′

2 (π/2) = 0 and that F ′′
2 (π/2) = −4c(1 +

c)/
√
1 − 2c. (41) follows by defining R35(ϕc) = F ′′′′

2 (χ) for the corresponding χ and
the fact that ξc − ξ = (F2(π/2) − F2(θc))/2.

Define F3(w) = F1(w) + F1(1/w). We are going to find a section of a small
neighbourhood around i in which to invert F3(w). Note F3 is not one-to-one in any
neighbourhood of i . It is straightforward to compute F3(i) = −1/ξc, F ′

3(i) = 0 and
F ′′
3 (i) = −8c(1+c)/(1−2c)5/2. One sees from the definition of F3 that F3 is analytic in

the discB(i, δ1)where δ1 = 1−√
2c. Define H such that F3(i)−F3(w) = H(w)(w−i)2

so that H is analytic inB(i, δ1) and H(i) = −F ′′
3 (i)/2 is a positive real number.Non-zero

analytic functions have isolated zeros sowe can find 0 < δ2 < δ1 so that 0 /∈ H(B(i, δ2))
and define a branch of

√
H(w) so that

√
H(w) is analytic on B(i, δ2). Now define the

analytic function h(w) = (w − i)
√
H(w) on B(i, δ2), one sees h has a non-vanishing

derivative at i . Note h(w)2 = F3(i)− F3(w). Let c1 > 0 be chosen so that |h(w)| ≥ 2c1
on |w − i | = δ2. By Lagrange’s Inverse Function theorem (see [16]) we have

h−1(z) = 1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ ) − z
dζ, |z| < c1. (281)

Now consider − 1
2

√
1 + 2c < ξ ≤ ξc such that c21 ≥ 1

ξ
− 1

ξc
≥ 0 and label w±(ξ) =

h−1(±
√

1
ξ

− 1
ξc

). Take a sequence θ
(n)
c → π/2− such that eiθ

(n)
c ∈ B(i, δ2) ∩ H

+

for all n, by continuity
√
H(eiθ

(n)
c ) → √

H(i) which is a positive real number, so

arg(
√
H(eiθ

(n)
c )) → 0. Since [−π/4, 0) � arg(eiθ

(n)
c − i) → 0 one can take n so large

thatR[h(eiθ
(n)
c )] > 0. This discounts the possibility w− = ωc and so we have w+ = ωc.

Hence we have obtained

ωc(ξ) = 1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )

1

1 −
√

1
ξ
− 1

ξc
h(ζ )

dζ. (282)
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For |t | < 1, 1
1−t = 1 + t + t2

1−t ,

ωc(ξ) = 1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )
dζ +

√
1

ξ
− 1

ξc

1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )2
dζ

+
(1
ξ

− 1

ξc

) 1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )3

1

1 −
√

1
ξ
− 1

ξc
h(ζ )

dζ. (283)

Since h on B(i, δ2) only has a simple zero at ζ = i the first term on the right hand side
of (283) is i by Cauchy’s residue theorem. In the second term of (283) we have

1

2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )2
dζ = 1

2π i

∫

|ζ−i |=δ2

ζ(
H ′(ζ )

2
√
H(ζ )

3
(ζ − i)

+
1√

H(ζ )(ζ − i)2
)dζ

= i
H ′(i)

2
√
H(i)

3 + lim
ζ→i

d

dζ

ζ√
H(ζ )

= 1√
H(i)

= 1

2

√
(1 − 2c)5/2

c(1 + c)
.

By the mean value theorem for every − 1
2

√
1 + 2c ≤ ξ ≤ ξc there exists ηξ ∈ (0, (ξ −

ξc)/ξc) such that
√

1
ξ

− 1
ξc

=
√

ξc−ξ
|ξc| (1 + (ξc−ξ)/ξc

2(1+ηξ )3/2
). (42) follows by letting

R2(ξ) = 1

ξcξ2π i

∫

|ζ−i |=δ2

ζh′(ζ )

h(ζ )3

1

1 −
√

1
ξ
− 1

ξc
h(ζ )

dζ − 1

2

√
(ξc − ξ)(1 − 2c)5/2

2(1 + ηξ )3ξ2c c(1 + c)
. (284)

Since e−iϕc = −i(ωc − i) + 1, we can take the principle branch log so

ϕc = i log(1 − i(ωc − i)) = ωc − i − (ωc − i)2

2π

∫

|z|=δ1

log(1 + z)

w2(w + i(ωc − i))
dz,

(285)

(43) follows from substituting (42) in to (285). ��
Now we have the proofs of the lemmas which extract the leading order terms in

proposition 4.

Proof of lemma 15. Recall (155) and write the integral in (213) as

e
(�+k)c

(1−2c)3/2
ϕ2
c

∫ ∞

π/2−θc

cos((� − k)argG(ie−iθ ))e
− (�+k)c

(1−2c)3/2
θ2

dθ

= e(�+k)c′ϕ2
c

∫ ∞

ϕc

cos(�I[ψ(π/2 − θ)])e−(�+k)c′θ2dθ. (286)
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We use integration by parts to get (286) equal to

− f (ϕc)

� − k
sin(�I[ψ(π/2 − ϕc)]) − e(�+k)c′ϕ2

c

� − k

∫ ∞

ϕc

sin(�I[ψ(π/2 − θ)]) d

dθ

[
e−c′(�+k)θ2 f (θ)

]
dθ

(287)

where

f (θ) =
( d

dθ
arg(G(ie−iθ ))

)−1
. (288)

Note: Want to show that if G(eiθ ) is real and negative then θ = 0.
Except for the discontinuities at θ = 2πn, n ∈ Z caused by arg, one can check that
arg(G(eiθ )) has negative derivative bounded above by some negative number for all θ

and so f is smooth on R \ {2πn}. Indeed, from (158) we can compute

d

dθ
arg(G(eiθ )) = I

[ −ieiθ√
(eiθ )2 + 2c

]

= −1

π

∫ √
2c

−√
2c
R

[ eiθ

eiθ − is

] ds√
2c − s2

= −2

π

∫ √
2c

0

1 + s2 cos(2θ)

|eiθ + is|2|eiθ − is|2
ds√

2c − s2
(289)

where the integrand is bounded below by some positive number. Integrating by parts
again we have (286) equal to

− f (ϕc)

� − k
sin(�I[ψ(π/2 − ϕc)])

+
ec

′(�+k)ϕ2
c

(� − k)2

∣∣∣∣∣

∞

ϕc

cos(�I[ψ(π/2 − θ)]) f (θ)
d

dθ

[
e−c′(�+k)θ2 f (θ)

]

+
ec

′(�+k)ϕ2
c

(� − k)2

∫ ∞

ϕc

cos(�I[ψ(π/2 − θ)]) d

dθ

[
f (θ)

d

dθ

[
e−c′(�+k)θ2 f (θ)

]]
dθ. (290)

From (165)

�I[ψ(π/2 − θ)] = (� − k)π/2 +
� − k√
1 − 2c

θ − (� − k)R7(−θ)θ3. (291)

Together with Taylors theorem applied to f , for each ϕc > 0 we get a χ ∈ (0, ϕc) such
that

f (ϕc)

� − k
sin(�I[ψ(π/2 − ϕc)])

=
i�−k sin( �−k√

1−2c
ϕc − (� − k)R7(−ϕc)ϕ

3
c )

� − k

(
− √

1 − 2c + f ′(χ)ϕc

)
(292)
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where we used f (0) = i(1 − α)/ψ ′(π/2) and the values of (157) and (159) computed
earlier. By taking a derivative there is a C > 0 such that

∣∣∣∣ f (θ)
d

dθ

[
e−c′(�+k)θ2 f (θ)

]∣∣∣∣ ≤ Ce−c′(�+k)θ2(1 + (� + k)θ) (293)

since f is smooth. Similarly,
∣∣∣∣
d

dθ

[
f (θ)

d

dθ

[
e−c′(�+k)θ2 f (θ)

]]∣∣∣∣ ≤ Ce−c′(�+k)2((� + k) + (� + k)θ + (� + k)2θ2).

(294)

So by (293) the second term in (290) is bounded above by

C
1 + (� + k)ϕc

(� − k)2
. (295)

Then if we use (294) in the third term (290) and integrate by parts, the third term in
(290) is bounded above by

C
ec

′(�+k)ϕ2
c

(� − k)2

(
(� + k)2

[ ∫ ∞

ϕc

e−c′(�+k)θ2

2(� + k)
dθ +

ϕce−c′(�+k)ϕ2
c

� + k

]

+ (� + k)
e−c′(�+k)ϕ2

c

2(� + k)
+ (� + k)

∫ ∞

ϕc

e−c′(�+k)θ2dθ
)

≤ C ′(
√

� + k

(� − k)2
+

1

(� − k)2
+

ϕc(� + k)

(� − k)2

)
(296)

where in the last line we used the fact that there is a C ′ > 0 such that
∫ ∞

z
e−x2dx ≤ C ′e−z2 (297)

for z > 0. Inserting (292) into (290) the two bounds (295) and (296) can be used to give
(213).

Now we prove (214). We have

cos(�κ�θh(θ)) = 1 + θ2R39(θ, κ�, �) (298)

for a smooth h on R and bounded R39. Recall (53), we have that

e(�+k)c′ϕ2
c

∣∣∣∣
∫ ∞

ϕc

cos(�κ�θF(θ))e−(�+k)c′θ2dθ −
∫ ∞

ϕc

e−(�+k)c′ϕ2
c dθ

∣∣∣∣

≤ C1e
(�+k)c′ϕ2

c

∫ ∞

ϕc

θ2e−c′(�+k)θ2dθ ≤ C2
D−(ϕc

√
(� + k)c′)

(� + k)3/2
+ C3

ϕc

� + k
(299)

where the last inequality follows since
∫ ∞

z
x2e−x2dx = 1

2
e−z2(D−(z) + z). (300)

Now recall the bound D−(z) < 1/(z + 1) from (89). ��
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Proof of lemma 16. We have (298) so

∣∣∣∣
∫ ϕc

0
cos(�κ�F(θ))e−(�+k)c′θ2dθ −

∫ ϕc

0
e−(�+k)c′θ2dθ

∣∣∣∣ ≤ C
ϕ2
c√|� + k|

∫ ϕc
√

c′|�+k|

0
eθ2dθ

(301)

Now use the pair of inequalities
∫ z

0
ex

2
dx ≤ zez

2+1,

∫ z

0
ex

2
dx ≤ ez

2+1/z (302)

for z > 0. ��
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