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Abstract: We prove that the rescaled historical processes associated to critical spread-
out lattice trees in dimensions d > 8§ converge to historical Brownian motion. This is
a functional limit theorem for measure-valued processes that encodes the genealogical
structure of the underlying random trees. Our results are applied elsewhere to prove that
random walks on lattice trees, appropriately rescaled, converge to Brownian motion on
super-Brownian motion.

1. Introduction and Main Results

In the past three decades, various critical high-dimensional spatial branching models
have been conjectured or proved to converge to super-Brownian motion (SBM), which
is a continuous Markov process taking values in the space of finite measures on R¢. One
of the settings in which significant progress has been made is that of critically weighted
(and sufficiently spread-out) lattice trees (LT) above 8 dimensions [7,10,11,17-19]. In
particular, convergence on path space has recently been proved in this setting (see [11]).
For LT’s convergence to SBM means weak convergence to SBM of the rescaled empirical
measure process of the locations in the LT which are a given tree distance from the root.
Hence the tree distance to the root plays the role of time for the stochastic processes.
More recently, it has been proved in [20] that for LT’s, and in fact for several lattice
models, the rescaled ranges (for LT’s the range is the compact set of vertices in the tree)
converge weakly to the range of SBM. Convergence of genealogical observables is not
forthcoming from the notions of weak convergence to SBM described thus far. Results
of this kind can be obtained by proving convergence of the corresponding “historical
processes” [6]. For LT’s this would mean that instead of just having the convergence to
SBM of the rescaled empirical measure process of the particles in the LT, as a function
of the distance from the root, one establishes convergence to historical Brownian motion
(HBM) of the rescaled empirical measure process for the entire paths in the LT to the
endpoints, as a function of the distance from the root. HBM, constructed in [6], is a
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process taking values in the space of finite measures on R?-valued paths, which at time
t is the empirical measure of the past histories of the particles contributing to the SBM
at time 7. See Sect. 1.2.1 below for more about HBM, including the fact that is the weak
limit of the rescaled historical processes associated with Branching Brownian Motion
(Theorem 1.3). Our main result, Theorem 1.4 below, establishes this convergence of
“historical processes” for LT’s.

In Sect. 2.1 we give a set of general conditions that are sufficient for convergence of
discrete-time historical processes to HBM in the sense of finite-dimensional distributions
(Theorem 2.1). Most of these conditions are already known to hold for a range of
lattice models above the critical dimension including lattice trees (d > 8) and oriented
percolation (d > 4), as well as for the voter model (d > 2) and the contact process (d >
4), both of which are continuous-time models. The main condition that remains to be
proved in each case is convergence of the joint characteristic functions of the increments
of a finite dimensional subtree. These detailed r-particle transforms can be seen as
enriched versions of the r-particle transforms studied e.g. in [13,16,17] (called Fourier
transforms of (r + 1)-point functions therein) that record genealogy. We prove that these
conditions are satisfied for sufficiently spread-out lattice trees in high dimensions and
so establish convergence to HBM in the sense of f.d.d.’s (Proposition 2.4). The required
asymptotics of the detailed r-particle transforms are obtained via the lace expansion
(see e.g. [25]) in Sect. 4. It is worth noting that these asymptotics can be understood
from those of the usual r-particle transforms and the detailed 1-particle transform. In
particular we do not require any new “diagrammatic estimates”. We believe that all of
the conditions can also be verified for the other models' mentioned above. For the voter
model this is currently work in progress [1].

The second main ingredient in our proof is a novel tightness argument for historical
processes which upgrades f.d.d. convergence to convergence on path space in a historical
setting. This step is carried out in Sect. 3. We start with an abstract tightness result in a
general historical setting (Theorem 3.6). For all of the lattice models mentioned above
this reduces tightness of the approximating rescaled historical processes to that of the
R-valued processes obtained by integrating a test function (from an appropriate class)
with respect to the rescaled historical processes. (Verification of the other conditions
may be found in [20].) This key condition is then verified for LT’s with some effort in
Proposition 3.11. The main ingredients of this argument are tightness of the total mass
process from [11] and a uniform modulus of continuity for the approximating historical
paths from [20]. The latter is in fact verified for all of the other lattice models men-
tioned above, and so we have potentially reduced the problem of tightness for historical
processes to that of the total mass process for a range of other lattice models.

A simple consequence of our results is that the unique path in the tree from the origin to
auniformly chosen vertex (called the backbone from the origin to that vertex) of distance
n converges weakly to BM on path space (see [18, Theorem 1.3]). Another application
of our results concerns the scaling limit of random walk on lattice trees. In particular,
the historical convergence proved herein is used in [21] to verify certain conditions of
Ben-Arous et al. [2] which imply that random walk on lattice trees converges to a BM
on a SBM cluster.

1 For oriented percolation, one should choose a notion of historical paths e.g. each site in the cluster of the
origin chooses its parent uniformly at random from all possible parents in the cluster.
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Fig. 1. A (nearest neighbour) lattice tree in 2 dimensions

1.1. Lattice trees and scaling limits. A lattice tree is a finite connected set of lattice
bonds containing no cycles (see Fig. 1).

We will be considering lattice trees on Z¢ with bonds connecting any two vertices
that live in a common ball (in £+,) of sufficiently large radius L € N, and with d > 8.
To be more precise, let d > 8 and let D(-) be the uniform distribution on a finite box
([—L, L)%\ 0) NZ%, where 0 = (0, ...,0) € Z%. The assumption of uniformity of D
is not essential. We expect that the results herein hold for D as in [17, Section 1].

For alattice tree T > o define W, p(T) = I I D(e), where the product is over
the edges in 7 and |7T'| is the number of edges in 7.

ecT

Remark 1.1. If T is an edge-disjoint union of subtrees then W, p(T) can be factored
into a product over the weights of the subtrees. *

It turns out (see e.g. [10,17]) that there exists a unique critical value zp such that
P =72 75, Wy p(T) < 00 and E[|T]] = oo, where P(T =T) = ,O_IWZD,D(T) for
T > o. Hereafter we write W (-) for the critical weighting W, p () and suppose that we
are selecting a random tree 7 > o according to this critical weighting.

Let T be a lattice tree containing o € 74, and for m € N, let T,, denote the set of
vertices in T of tree distance m from o. In particular, 7o = {0}, and for any x € T, there
is a unique path from o to x in the tree of length m. Roughly speaking, in this paper we
consider the weak limit (as m — o0) of rescaled paths of this kind in high dimensions.
Fort € Ry \ Z define T; = T|;). Fort > O and x € Z4 we will write (r,x) € T to
mean that x € T;. The notation (¢, x) is consistent with that in [20], while in the oriented
percolation and contact process literature often (x, ) is used instead.

Functional limit theorems. For our general discussion we require the notion of weak
convergence of finite measures on Polish (i.e. complete, separable metric) spaces. We
refer the reader to [8, Chapter 3] for further details on what we discuss below.

For a Polish space 13, let M ¢ (B3) (resp. M (3)) denote the space of finite (resp. prob-
ability) measures on the Borel sets of 3. For a sequence v, € Mg (3) we say that v,

converges weakly to v € M () and write v, 5 vif for every f : P — R bounded
and continuous,

/f(x)vn(dx) — /f(x)v(dx), asn — oo.
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Equipped with the Vasershtein metric, which generates the topology of weak conver-
gence, M () is also Polish (see e.g., [24, Ch. II]). We will use the notation E\,[ f (X)]
for f f(x)v(dx), with the understanding that X € ‘B. This will be particularly conve-
nient when X is a ‘3-valued random variable defined on an underlying probability space
and v(-) = ¢ - P(X € -) for some ¢ > 0.

Let S, denote the location of a nearest-neighbour simple symmetric random walk on
7% after n steps (starting from the origin o € Z¢). Then E[S2] = n (here and elsewhere,
forx,y € R? we abuse notation and write xy to mean x - y, and hence x? to mean
|x|%) and the central limit theorem (CLT) states that n~ /25, converges in distribution
to a random vector Z that is (multivariate-) normally distributed with mean 0 € R4 and
cczivariance matrix diag(1/d). Define probability measures v,, v on (the Borel sets of)
R* by

() =P 25, €-), and v()=P(Z €.

Phrased in the language of weak convergence of (finite) measures, the CLT says that

Vi 5 v. The statement Yy 2 vin M F(Rd) is well known to be equivalent to
pointwise convergence of the characteristic functions (Fourier transforms), so for v,, v
as above

. , 2
/e‘kxvn(dx) — /e‘kxv(dx) = ef%, for k € RY.

For a Polish space 3 let D, () (resp. D(*B)) denote the space of cadlag paths (paths
that are continuous from the right with limits existing from the left) mapping [0, #]
(resp. [0, 00)) to P. Let C, (P) (resp. C(P)) denote the corresponding subspace of con-
tinuous paths. It is well known that there are complete metrics on these spaces (generating
the Skorokhod J; topology) for which D, (3) and D((]3) are also Polish (see [8, Chapter
3.5]). The functional central limit theorem (FCLT) concerns the entire path (W,"),>0
defined by

W =n"128,,.

Defined in this way, for each n, W™ jumps at times t = i /n fori € N and is constant
on intervals [i/n,i + 1/n) for i € Z,. In particular the process W is a random ele-
ment of the space D(RY) of cadlag paths from R, = [0, o) to R?. The FCLT states
that the sequence of rescaled random walks (Wz("))tzo converges to a d-dimensional
Brownian motion (B;);>o (with By ~ N(0, diag(1/d))). Phrased in the language of

weak convergence of (probability) measures this FCLT says that v, 5 v, where
Vn, v € M1 (D(R?)) are defined by

V(1) = ]P’((W;")),Zo € ')» v(-) = IED((Bt)tzo € )

Note that v puts all its mass on continuous paths.

Paths and measure-valued processes for lattice trees. For (m,x) € T let w(m, x) =
(wo(m, x) = o, wi(m, x), ..., w,(m, x) = x) denote the unique path in 7 from o to x
in the tree. It is convenient to extend this to a function on Z, and then to a function in
D by writing

wy(m, x) == w,,(m,x) =x, forn >m, wy(m, x) = w5 (m,x), fors e [0,00).

(1.1)
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Fig. 2. The MVP X gl) assigns masses to points in the tree at distance 5 from the root, while HS(I) assigns the
same masses to paths in the tree leading to these points

Thus every (m, x) € 7 hasassociated to it an infinite cadlag path w (m, x) thatis constant
after time m. Denote the collection of ancestral paths for 7 by W = (w(m, X)) n x)eT-

Fort > 0 and x € Z%//n such that \/nx € 7T,; we define w" (z, x) € D by

Wy ([0t ], \/ﬁx)
T’

By [10,17] there exist constants C4, Cy > 02 such that

w (1, x) = for s € [0, 00). (1.2)

lim E[|7,|]] = C4, and lim nPP(|7,| > 0) =2/(CsCy). (1.3)
n—0o0 n—o0
Let Co = C5Cy, and let

n 1 d
X;>=C—0n Z 8y € MpRY),  and
JnxeTy

n 1
H" = — > Sy € Mr(DRY) (1.4)
on
JnxeTy

denote the (rescaled) measure-valued “process” and historical “process” (see e.g. [6])
associated with the random lattice tree 7 respectively. Note that X\ assigns mass to
certain particles in the tree (but does not encode the genealogy) whereas Ht(") assigns
mass to genealogical paths leading to those particles. See e.g. Fig. 2.

For¢ : B — Cand Y, € Mp(PB) write ¥ (¢) = fd)dY,. Then for ¢ : RY — C we
have

[ owoan@w) = x@). (15)
and in particular
H" (1) = X"(1).
Define the survival/extinction time as
S™ :=inf{t > 0: X"(1) =0} =inf{r > 0: H" (1) = 0}.

2 Our constant C, isequal to A = A/p from [17] and our constant Cy is sz from [17].
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Let C;1 = C4Cy so that from (1.3),

2
nP(H" (1) > 0) = nP(S™ > 1) — Yo asn — 00. (1.6)
1

Then we define v\ € M p(D(Mp(R?))) by
v (0) = nCIP(X"™ € o),
and " € Mp(D(Mp(DR?)))) by
1T (e) = nCiP(H™ € o). (1.7)

Due to the survival probability asymptotics (1.6), multiplying by n and working on the
event that the process survives until time n is asymptotically the same (up to a constant)
as conditioning on survival until time n (or rescaled time 1).

According to [24, Section I1.7], for any y, o> > 0 (representing the branching rate

and diffusion parameter respectively) there exists a o-finite measure N = N> on
C(Mp(RY)), with N(X; (1) > 0) = 2/(y1) such that N is the canonical measure as-
sociated to the ((B;);>0, ¥, 0)-superprocess. Here (B;);¢[0,00) 1S @ d-dimensional BM
with By ~ N(0, 021;4), which is a (time-homogeneous) Markov process. The su-
perprocess in question (called super-Brownian motion) is a measure-valued process
that can be thought of as the empirical measures of an infinitesimal critical branch-
ing process whose spatial dispersion is governed by the R?-valued process (B;);>0. If
S =inf{r > 0: X,(1) = 0}, then N is supported on {X € C(Mr(R%)): Xg =0, S >
0, X; = 0Vt > §}, and so the above implies that

N(S > 1) = 2/(yt). (1.8)

By replacing the Markov process (B;);>o with the path-valued (time-inhomogeneous)

Markov process (B[o,1])i>0 = ((Bs)se[O,t]) >0’ and using the general theory of super-

processes, there also exists a o-finite measure Ny = N,’;’Uz on C(Mp(C(R%))) with
Ny (H;(1) > 0) = N(S > 1) such that Ny is the canonical measure associated to the
((B0.11)¢>0, ¥, 0)-superprocess. The latter (as well as the process H underlying Ny) is
called historical Brownian motion (HBM). The general construction of canonical mea-
sures for superprocesses may be found in [24, Section I1.7], while Section II.8 therein
shows how to consider the historical processes in this general framework. One can also
construct N from the canonical measure of Le Gall’s Brownian snake since the histor-
ical process is a functional of the snake. See [22, pages 34, 64] for details.

It is proved in [11,17] that for lattice trees in dimensions d > 8 (with L sufficiently

large) v,%T N N, where the parameters of N are y = 1 and Ug = og(L, d), which is to

be discussed later. Since the limit is a o -finite measure, v, %, Nis defined in terms of
weak convergence of a family of finite measures (indexed by ¢) on D(M r(R?)) as

vp(e, S™ > 1) -2 N(e, S > ), foreacht > 0, (1.9)

or equivalently in terms of weak convergence of their conditional (on § > t) counter-
parts, which are probability measures. (The equivalence holds by (1.6), (1.7) and (1.8).)
Similar results have been proved for other self-interacting branching systems such as
the voter model [3,4] (d > 2), oriented percolation (OP) [16] (d > 4), and the contact
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process (CP) [13] (d > 4)), although for OP and CP only convergence of the finite-
dimensional distributions has been established and tightness remains an open problem.

The corresponding result for the historical processes (i, > Nj) was an open problem
in all of the above contexts. Here we resolve this problem for lattice trees (d > 8§, and
L sufficiently large®), and, as was suggested above, our general approach may well also
help in the other contexts above. A discussion of possible extensions and challenges for
other models, including these, may be found in Sect. 1.3.

1.2. Main results. In this section we state our main result (Theorem 1.4 below). For
this, we first introduce some notation and present the relevant notions of weak con-
vergence. We then introduce critical branching Brownian motion (BBM) as a simpler
process from which one can understand the limiting historical Brownian motion through
a corresponding historical limit theorem for rescaled BBM’s, see Theorem 1.3. The latter
follows easily from results in the literature as we will describe. Following this, we state
our main result. Theorem 1.3 is also used in the proof of our main result by identifying
the joint characteristic functions of the general moment measures for the limiting HBM
in Proposition 2.6.

For a Polish space B, and x = (x;);>0 € D(MFp(P)), let S(x) = inf{r > 0 :
x:(P) = 0}. Let M™*(P) (resp. MT*(P)) denote the set of o-finite (resp. probability)
measures i on D(M g ()) such that

@) /L({x :S(x) > s}) € (0, 00) foreachs > 0 and u({x : S(x) = o0}) =0, and
2) /L({x : x¢:(P) > 0 for some ¢ > S(x)}) =0.

One should think of M*(P) as the space of excursion measures for cadlag measure-
valued paths where the measures are on B. For u € M (), and s > 0 define the
(probability) measure p* on D(M r(B)) to be u conditional on S > s, i.e.

() o x5 S@) = 5D
(x5 > sh

Forr e Nand7 = (11, ...,1,) € [0, 00)" and a finite measure k on D(M ¢ (R)), let K7
denote the (finite) measure on (Mg (3))" defined by

k7(®) = k({x : (x;,)i_; € o}).

Definition 1.2 (Weak convergence). Fix a sequence (fin)neNu{oc} in M ().

o We write , = Hoo as n — oo if for every s > 0, 1, (S > 5) = Uoo(S > )
and

15 =2 pSe, in My (DME(B)).

d.d. -
o We write f—) Moo if foreverys > 0,7 € Nandt € R/, we have 1, (S > s) —
oo (S > 5), and

'ufz,? — 'uio,f’ in M ((MF(‘B))r)

3 Super-Brownian motion is not expected to arise as the scaling limit for d < 8.



442 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Fig. 3. On the left is the index set / drawn (with labels as edges) up to and including generation 3. On the right
is an example of a Galton—Watson tree (with edge labels «), where ¢* = 0 for all « € {000, 0010, 0011, 01},
while ¢¢ = 2 for « € {0, 00, 001}. Note that we have dropped the parentheses and commas in the notation
for elements of 7 to declutter the pictures

1.2.1. Branching Brownian motion. A good way to understand historical Brownian mo-
tion is as a limit of critical branching Brownian motions. Recall that branching Brownian
motion may be viewed as a system of Brownian motions run along the edges of a crit-
ical Galton—Watson tree. The notation introduced below is presented in [24] at a more
leisurely pace. We start by defining a Brownian motion on a full binary tree. Let

I ={a=(xg,...,qp) 00 =0,; € {0, 1} fori > 0,n € Z,}, (1.10)

and for « as above set |«| = n, a|i = (ag, ..., ), < n, and say § is an ancestor of
a iff B = «a|i for some i < |a|. If o, B € I, the greatest common antecedent (gca) of «
and B is @ A B = «li, where i is the maximal integer such that «|i = B|i. If |o| > 0,
the parent of & is ma 1= o|(|a| — 1).

Let {W? : o € I} be iid d-dimensional Brownian motions with variance parameter
0. For a fixed n € N (dependence on 7 is suppressed) and for o € 1, let

||

t
B = Z/O Liseti/n,+1/myd Wy,
i=0

and note that (f?f‘)tzo is a d-dimensional Brownian motion, starting at 0, that runs until
time (|ec|+1)/n (after which it stays constant). We can view {éf‘ it < (a|+D)/n,a € 1}
as a Brownian motion run on a rescaled binary tree with edge lengths 1/n. We next prune
the binary tree to make it a critical Galton—Watson (G-W) tree. Let {¢* : « € I} be a
collection of iid random variables with (critical) binary offspring law %50 + %82 that is
independent of {W* : « € I}. For a fixed n € N (dependence on n is suppressed) and
fora € 1, let

i+ 1 : +1
% = min [ 212 ool — 0} (min @ = i ),
n
and also define
B By, ifr <1t
! A, ifr> e,

Here A is added to R? as a cemetery point. In this way GW = {« : 1% = M} labels
the points (drawn as edges in Fig.3) on a G=W tree with a critical binary offspring law
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Fig. 4. A (binary) branching Brownian motion in 1-dimension, with time on the x axis, drawn up to the third
branch time, 3/n. In the corresponding G—-W tree, the root 0 has two children, exactly one of which has 2
children

that does not depend on n. We have scaled the edge lengths of the tree to be n~! and
write « ~ t iff « € GW and % <t < le#1 Therefore @ ~ ¢ means that « labels
an edge in the Galton—Watson tree which is alive at time ¢ > 0. In particular, 0 ~ ¢
for every t < 1/n, see Fig.3. Finally {Bf :  ~ t} for ¢t > 0 is a system of Brownian
motions, starting with a single particle at the origin, and run along these edges while
undergoing critical binary branching at times {j/n : j € N}, with the motions being
independent along the disjoint scaled edges in the G-W tree. Figure 4 gives a depiction
of the system of Brownian motions in 1-dimension.

We define the scaled empirical measures X € D(Mp(R?)) and H” € D
(M £ (C(R?))) associated with these locations and historical paths, respectively, by

1 1
(n) __ E () _ §
Xt —; 83;1, Ht —; 8B$\t’ t>0.

a~t a~t

It is easy to extend the above definitions to the setting of a general mean 1 finite
variance y offspring law in place of the critical binary branching law above where
we have y = 1 (see [24, Section I1.3]). In this setting let v;®™ = nP(X™ € -) and

UEPM = nP(H™ € -). We believe that the following limit result was first proved in [24],

although part (b) was not stated explicitly there. The original construction of N = N v.o?
was done by Le Gall using his Brownian snake (see [22, Ch. IV] and the references
therein) from which the result below was clear enough.

Theorem 1.3. As n — oo,

(a) U’?BM w Ny,dz;
w

2
(b) up™ —> Ny

Proof. (a) is a special case of [24, Theorem I1.7.3]. We also use Kolmogorov’s classical
result on survival asymptotics for critical branching processes (eg. [24, Theorem II.1.1]).

(b) also follows from the same results, where [24, Section I1.8] explains how to put
the historical setting into the general framework of [24, Theorem I1.7.3]. O

An easy consequence of the above and the obvious analogue of (1.5) for branching
Brownian motion is that H projects down to super-Brownian motion,

X;()=H({yeCRY) :y, €}) Vt>0 N, —ae.
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1.2.2. Lattice trees in high dimensions. Our main result is that the functional limit
theorem for historical processes in (b) above, continues to hold for lattice trees in high
dimensions (the analogue of (a) was already noted in (1.9)). Recall the definition of w,,
from (1.7).

Theorem 1.4. For each d > 8 there exists Loy > 1 such that: for every L > Ly, there

. ],rr2
exists O'g = G&(L, d) > 0 such that u.’ = N, %0,

Here, and throughout this work, the constant 002 is equal to vo? /d in[17, Theorem 3.7].

1.3. Discussion. We finish this section with a brief discussion of extensions and appli-
cations of our results, and commentary on possible extensions to other models.

Our results are extended in [21] and used in [2] to prove weak convergence of rescaled
random walk on lattice trees to a Brownian motion on a Super-Brownian motion cluster,
the latter as defined in [5]. [2] reduces this latter result to the verification of two con-
ditions. Roughly speaking, the first of these conditions is that if one chooses K points
at random in the lattice tree, then the spatial tree generated by these K points, and suit-
ably rescaled, converges (as the scaling parameter becomes large) to the random tree in
R¢ generated by choosing K paths independently at random according to fooo H;(-)dt
(normalized by its total mass). One interprets this convergence in an appropriate metric
space. The weak convergence in Theorem 1.4 is extended in [21] to joint convergence
with K independently chosen paths as above, and moreover one can include the branch
times and path lengths, to eventually obtain the required spatial tree convergence. The
second condition states that in a certain precise sense the vertices of the rescaled tree
generated by the K points become dense in the full rescaled lattice trees, uniformly in
the scaling parameter, as K becomes large. This is also verified in [21] by using one
of the inputs of our tightness argument, namely the modulus of continuity from [20] as
stated in Condition 3.4 below.

One may ask about historical convergence in other contexts. This is most natural in
cases where there are existing notions of time and ancestry in the model. Such notions
exist in the voter model, where the parent of (¢, x) is the corresponding point (¢’, x”)
from which (¢, x) most recently updated its vote, and also in the contact process where
the parent of an infected particle is the infected particle which most recently infected it.
In his PhD thesis, Tim Banova is using the methodology of Sect. 2 to prove historical
convergence of the voter model in dimensions d > 2 (for both nearest-neighbour and
spread-out (finite range) models). We believe the methodology of Sect. 2 is also relevant
for historical convergence of sufficiently spread-out contact processes for d > 4. Re-
sults for convergence of empirical measures associated with high-dimensional contact
processes (but not in the historical context) have relied on a time-discretisation argument
and analysis of oriented percolation (OP) (see [13]).

In the context of OP, there is a natural notion of time, but ancestral paths are not unique
because there can be multiple connections between vertices. One possible “remedy” is for
each site (n, x) of generation n in the cluster of the origin to choose a parent uniformly
at random from among sites of generation n — 1 in the cluster that are connected to
(n, x). We expect that the resulting historical process of sufficiently spread-out OP does
converge to historical Brownian motion in dimensions d > 4, but note that this process
does not encode every connection in the cluster of the origin.

Another approach that one could take (which would also be relevant for percolation
and lattice animals) is to define ancestral paths only in terms of pivotal bonds for con-
nections. Pivotal bonds for a connection from (0, 0) to (n, x) in oriented percolation,
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and from o to x in percolation and lattice animals (if such a connection exists) have
a natural temporal ordering, as all paths from point to point must pass through these
pivotal bonds in the same order. One could then define historical paths by e.g. linearly
interpolating between these pivotal bonds. After appropriate scaling we expect that these
historical processes would converge to historical Brownian motion in dimensions larger
than the respective critical dimension. Section 2 below would be relevant in each of these
contexts.

As has already been noted, except for the voter model [3,4], tightness for any of these
models has been a challenging problem even in the context of convergence of empirical
measures to SBM, where it has only been established for high-dimensional lattice trees
[11] with considerable effort. The proof of tightness for our historical lattice trees uses
some bounds on the total mass of the rescaled LT’s from [11], and Conditions 2.3 and
2.4 which have also been shown in [20] for OP and the contact process. The additional
special property of LT’s we use is a sub-Markov property, Lemma 3.15. It would be
interesting to see if the proof of tightness can be carried out without this property. The
reason is that then control of the total mass process should suffice to prove tightness, even
in the historical context, for both the contact process and OP. For percolation and lattice
animals, tightness through this historical approach, without even a uniform modulus
continuity (Condition 2.3), still seems to be out of reach.

Finally, note that in this paper we have assumed that the step kernel D(-) is uniform
on a large box. As noted earlier, the uniformity assumption is not essential. We suspect
that D with unbounded support but > 2 finite moments and with d > d. = 8 suffices
for convergence to historical Brownian motion. In particular this ought to be true in the
nearest-neighbour setting, but at present it would seem to be a considerable challenge
(see e.g. [9]) to quantify some dimension djy above which this holds.

2. Finite-Dimensional Distributions

2.1. A general theorem. In what follows we write N, for NZ"’Z where the branching
variance y > 0 and the diffusion parameter o> > 0 are fixed throughout.

A collection of G of bounded continuous functions from 3 to C is a determining
class for M () if whenever u, ' € Mp(P) satisfy [ gdu = [ gdu forall g € G,
then u = u’. The following is the path-valued analogue of [19, Theorem 2.6]:

Theorem 2.1 (F.d.d. convergence to historical BM). Let 1, € M), where 3 =
D(RY), and let G be a determining class for M p(D(R%)) that contains I and is closed
under complex conjugation. Assume

(i) for every n € N, /Ln( sup,>o Hy({h : ho # o}) # 0) = 0 (paths start at 0)
(i) for every t > 0, u, (S > t) — Ny (S > 1) (convergence of survival measures)

(iii) for every t > 0, E,, [H,(eo)] BN En, [H(e)] (weak convergence of finite mean
measures on D), and for every & > 0, w,(Ho(1) > &) — 0.
@iv) for every £ € Z, and every t € (0, oo)z, and every @1, ..., ¢p € G,

14
lim Ey, l—[Ht @) | = Eny ]_[H,_,(qu) < . (2.1)

j=1

d.d.
Then j—> Ny.
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Note that Ny (sup,~g Hi({h : hg # o}) # 0) = 0. The following elementary
consequence of [24, (I1.8.6)(a)] states that both the mean measure at time ¢ under N,
and the mean measure to a uniformly chosen point at time ¢ conditional on survival until
time ¢, are Wiener measure (i.e. the law of Brownian motion) for paths on [0, 7]:

. . . 1,02 .
Lemma 2.2. The historical canonical measure Ny = N;° satisfies

En, [Hi()] = P(Bjo.j € o) = Ex B v
. ’ " He (1)
where under P, By = (Bs)se[o,r] is a d-dimensional BM on [0, 00) (with By ~
N0, diag(c?))) stopped at time t > 0.

The proof of Theorem 2.1 is a simple adaption of the proof of [19, Theorem 2.6].

Sketch proof of Theorem 2.1. The only substantial change to the proof of [19, Theorem
2.6] is in the proof of tightness [19, Lemma 3.3].
If t, n > 0, by (iii) there exists a compact set K = K; ; C D such that

sup Ey,,, [Hi(K9)] < n?,
n

and so by Markov’s inequality

sup wn (Hy (K€) > 1) <. 2.2)

Fix s > 0. Since u,(Hs;(1) > 0) — 2/s we may find ny; € N and ¢; > 0 so that
inf,>,, wn(Hs(1) > 0) > ¢5. If € > 0 we may now use (2.2) and argue as in the proof

of [19, Lemma 3.3] to find a compact set K = K; , € M (D) such that

sup u,(H; € K") < &cy,
n

and hence (working now with the conditional measures) for ¢ > 0,

sup u, (H; € KC) <e.

n>ng

It follows that for any 7 € (0, 00)¢, (u; Z)neN is tight in Mz (D). Assume p €

Mp (M F (D)e) is a limit point of (,uz ;)neN~ Then it follows from (2.1) and Dominated
Convergence that

14 14
E, []‘[ H,, (¢i)} =N - []‘[ H,, (4)1-)} Voi,....¢t €G.
i=1 i=l

By [8, Proposition 3.4.6] it follows that u = N‘;“-. Although this result is stated in [8]
for G a set of real-valued functions, the fact that G is closed under complex conjugation
allows one to see it is also a determining class for complex-valued measures and the
proof in [8] then adapts easily to the complex-valued set of functions G. It follows that

“Z 2 BN N}‘i ;for all7 € (0, 00)t. Hypothesis (iii) implies that under w;,, Ho converges

to the zero measure, which is also equal to Hy under N3,. Thus, ujl ; N Nif - for all

fe [0, oo)e, as required. O
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For5 = (50, ..., Sm), Where 0 = 5o < - - < s,y andk = (ko, k1, . . ., ky,) € RIO+D
define ¢, ; : D — Cby

m
s f(w) =m0 [] ek (s =) (23)
=1

and let G* = {‘PE P s, k as above for some m e N}. Note that G* is a determining

class for M r(D(R?)) since finite measures on D(RY) are determined by their finite-
dimensional distributions, and the laws of these finite-dimensional random vectors are
determined by the characteristic functions of appropriate dimension. The elements of
G* are precisely those which correspond to tlle characteristic function of the increments
of the path at all finite sets of times. Setting k = 0 we see that 1 € G* and by replacing
k; with —k; we observe that G* is closed under complex conjugation. So we see that G*
satisfies the conditions on G in Theorem 2.1.

Remark 2.3. Under Ny, H; assigns mass only to paths that are constant from time ¢
onwards and start at o at time 0. The same holds for H," for all n for LT and BBM.
Therefore, when applying Theorem 2.1 in these settings, with G = G* as above, we may
restrict our attention to ¢z i - - -, $5 jo € G in part (iv) of the theorem satisfying

s}” <t foreachi, j and k(()i) = 0. The latter means we can set k() = (kY), R k,(,';)) €

RY™ and ignore the first factor in (2.3). Moreover we can without loss of generality
assume that that the largest element of 5’ is #; for each i (i.e., if not we can append an
extra component ¢ to s and set the corresponding k;’) equal to zero without changing

b50) fir)- *

In the context of Theorem 1.4, we will use Theorem 2.1 with the determining class
G* at the end of this section to first establish the following result:

Proposition 2.4. For d > 8 there is an Ly > 1 so that for L > Lo(d) there is a
002(L, d) > 0 for which
st fid) Ny.

Indeed, condition (i) of Theorem 2.1 trivially holds for lattice trees rooted at the
origin. Condition (ii) of the Theorem is (1.6). The first part of Condition (iii) holds by
[18, Theorem 2.1], and the second part is obvious because under L', Ho(1) = %n
Condition (iv) of the Theorem (for the determining class G*) will follow immediately
from Proposition 2.6 and Theorem 2.7 below. In order to state these results we need to
introduce various notation, which we proceed to do now.

The degree of a vertex in a graph is the number of incident edges. Vertices of degree
1 are called leaves. Vertices of degree > 3 are called branch points.

Definition 2.5. A non-degenerate shape is an isomorphism class of finite connected
rooted tree graphs whose vertices all have degree 1 or 3, and whose r + 1 leaves (for
some r > 1) are labelled O, 1, 2, ..., r: the root 0 is always one of the leaves. To be
more precise, two such graphs are considered to be the same shape if there is a graph
isomorphism which preserves the labelling of the leaves (thus there is exactly one shape
with 3 leaves and exactly 3 shapes with 4 leaves).

We let X, denote the set of non-degenerate shapes with r + 1 leaves. Forany f € Z,,
we know that « has » — 1 branch points, 2r vertices and 2r — 1 edges. Label the branch
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Fig. 5. A depiction of a shape / € X4 with vertex labels above vertices and edge labels in brackets. The set
of edges in the path from vertex O to vertex 1 is £1(F) = {1, 5, 6}. Variables u; are associated to each of
the vertices i, describing a ‘length’ from O to i, to form 7 (F, ). Differences in these u; are then the “edge
lengths”

points as 7 + 1, ..., 2r — 1 in order, as you encounter them as you move from the root
to vertex 1, then continue to label new internal vertices in the order that you encounter
them as you move from the root to vertex 2 and so on up to vertex r. See e.g. Fig. 5. This
is just a convenient arbitrary but fixed order. For i, j € {0, ..., 2r — 1}, we abuse the
notation for the usual order and leti A j € {0, ..., 2r — 1} denote the greatest common
antecedent (gca) of i and j. Theedgeseof f € X, arelabelledasE(F) = {1, ..., 2r—1}
corresponding to the vertex labelling of the endvertex of e that is farthest from the root.
Fore, f € E(F), write e < f if e is an ancestor of f in [ .

For leaves £ € 1, ..., r, let £ (F ) be the set of edges in the unique path in f from o to
L.

For /€ %, we assign edge lengths by letting # = (u1, ..., uz_1) € (0, 00)> !
give the distances from the vertices to the root. That is, u; is the distance from the root
to vertex i, and the edge lengths can be found by differencing. We let T(f, i) denote
the resulting tree with shape F and edge lengths ii. See Fig.5. We often will specify

the distances f = (11, ..., 1) € (0, 00)" of the r leaves to the root in advance. In this

case we let M(r, F) denote the set of possible vertex distances from the root. That is,
M(Z, F) denotes the set of it = (uj, ..., u2—1) € (0, 00)% ! such that:

u; =t, fori =1,...,r; 2.4)

ifk and j are vertices of /" and k is an ancestor of jin /7, thenuy <u;. (2.5)

D |

Consider a given (non-degenerate) shape [/ € X, 7€ (0,00),and ii € M(,F)

as above. Let s = (30,...,5"), where 5@ = (s¢’,...,5,), and 0 = 57’ <

m
57 < - < S:j)«) =ty foreach £ € [r] = {1,...,r}). If e ¢ &(F) then set

Z(e,s9) = @. If e € E(F), then let Z(e,s“) denote those elements of s that
fall in the interval (u—_(e), us(e)), where u_(e), uy(e) are the elements of u corre-
sponding to the endvertices of e (if e is adjacent to the root, then set u_(e) = 0). Let
I(e,s) = U,_,Z(e,5Y). The j(e) := |Z(e, s)| elements of Z(e, s) divide the interval
[u_(e), us(e)] into j, := j(e) + | subintervals - denote their lengths by (Se x)r=1..... Je
and set § = (Se.k)ecE(f)ik=1,....j,- If j(e) = Othen s, | = uy(e) —u_(e). Note that j(e)
and § depend on F, u, s. See Fig. 6.
Forl e [r],e € E(F),anda € {1, ..., j.}, let

a
c'Ya, £) = min {i <m® . si(e) >u_(e)+ Z ge,ie}-

ip=1
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Fig. 6. The tree T(/ , ii) together with times s. The (m" = 7) A symbols represent times si” ..... S;]).
Similarly [J symbols represent times s (with m® = 6) and ® symbols represent times 5 (withm® = 3)
respectively. In this example there is one point (on edge 5) that is both square and triangle simultaneously.

The ‘subinterval® lengths §5 ; are indicated for edge 5

Given k© = (k{",.... k")) € RIy"" for each £ € [r], and for e € {1,....2r — 1}
and a < j,, let
I 0]
kea= ) Ketera,e)°
Lee&(F)

For given 6> > 0,r € N, [ € %,, i € M(, F) for some 7 € (0,00)", and
for given k = (K, ..., k") and s = (s;”,...,s",) (where, for £ € [r], m" € N,
§O= =550, s =10, 651 < 55D kO € R"O), define

R —02 ko i (F ,id, $) %500 (F i, s
(s 0 = [ [Jexp (=2 | “(F’”’ZN Sei(F, 4 )). 2.6)
e=1 i=1

The following proposition (proved in Sect. 2.2) gives an explicit formula for the right
hand side of (2.1). The integral over M (¢, F ) is actually an (r — 1)-dimensional integral

over (Ur+1, - .., Uz,—1) as the first » components are fixed.

Proposition 2.6. For any r € N, 1 € (0,00)" and ¢, ..., 9" € G* (with ¢p© =
. h 30 — (5O = 0. 5© ®© O] ) d1§<‘> - (k®

¢§<‘3>,k<€> where s = (s;° = 0,5, N o), (87 < s;,1) an = (k"

e, k,(,i)(t‘))) as in Remark 2.3,

,
Ego |[THe@) | = Z/  @p(F il s, k)di.
L ] Fex, JUEMA.F)

The following result is proved in Sect. 2.4 below.

Theorem 2.7. Let d > 8. There exists Ly such that for all L > Lo, andr € N, 7, and
oV, ..., 9" € G* as in Proposition 2.6,

r

E,ix HH,Z’)(#“) — Z ﬁ ) CDGg(F,L?,s,k)dfi asn — oo. (2.7)
=1 Fex, ue M(t,F)
Proof of Proposition 2.4. As noted after the statement of the Proposition, we only need

verify condition (2.1) in Theorem 2.1 with G = G*, and this is immediate from Propo-
sition 2.6 and Theorem 2.7. O
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2.2. Branching Brownian motion f.d.d. and proof of Proposition 2.6.

Definition 2.8. Letr e N, [ € &,,7 € (0,00)",and 1 € M(&, I). For each edge e we
let £(e) € {1, ..., r} be the minimal leaf such that e € £ (F). Let (W;)Sfti fori € [r]
be (dependent) d-dimensional Brownian motions with variance parameter o2, such that
for any distinct i, j € {1, ..., r},

Wi =W/ foralls <uis,, 2.8)
(recall u; 5 is the distance from the root to the gca of i and j) and

{W, e = Wi U5 1oy : € an edge of T(F , i)}

u_(e)+s u_
are independent d-dimensional Brownian motions with variance o2 (2.9)
We call (W!, ..., W) a tree-indexed BM with variance parameter o2 onT(F ). <

(2.9) simply says that the collection of Brownian motions run along the disjoint edges
of T(F, u) are independent. Note thatin (2.9) we could choose any £ such thate € E;(F)
by (2.8). We remark that the law of (W', ..., W") is uniquely specified by the above
(note it is mean zero Gaussian with Cov(Wi (s;), W/ (sj)) = o? min(u;nj, Si, 5;)).

-

Proposition 2.9. Lerr € N, [ € %,, 7 € (0,00), ii € M, F), and (Wi)s<, for

i € [r] be a tree-indexed BM with variance parameter o> on T(F ,u). If £ € [r],

m® e N, 50 = (0 = s, s 5O = 1), (s < s9), k0 € R"® and
) 001 > 20 £) 13 i+17 )

¢ = ¢z j), then
r

B[ [Te" "] = @par . iios. b0,
=1
Proof. This is an elementary calculation which divides the dependent Brownian incre-
ments on the left-hand side into smaller non-overlapping independent increments and

keeps track of the Fourier coefficients multiplying each increment. The details are left
for the reader. |

Notation. For ¢ > 0, let

[t], = max{k/n € [0, 1] : k € Z4). (2.10)

Proof of Proposition 2.6. We will work with the measures (25" for branching Brownian
motion where the variance parameter is > > 0 and the offspring distribution is critical
binary branching, i.e., %80 + %52, and so y = 1. In this case, [23, Proposition 2.6(a)(i)]
with ¢ = 1, and Doob’s strong L? inequality for martingales imply

Vp > 1 thereisa Cp suchthat VK € N sup E, [ sup Ht(")(l)p] < CPK"’_l. (2.11)
n t<K
Theorem 1.3 and the continuity of + — H; under N, = N};gz imply weak conver-

gence of (H"(¢™), ..., H" (¢")) under (u2®™)"" to (H, (¢"), ..., H, (¢")) un-
der NQI (see, e.g., [8, Theorem 10.2 in Ch. 3]). Note also that for K large enough,
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TT- Ht;”’(¢(‘>)|2 < sup,.x H;" (1)*". Therefore, the above together with (2.11) and
Dominated Convergence imply that

ENH |:1_[ th (¢([))j| EN;I, |:l_[ th (¢(2>):| NH (S > tl)

=1 =1

’
lim E(MBBM)tl |:H Ht(;)((b(i))]u}l’?;BM(S(n) > 1)

n—0oo
=1
,
= lim E,pov [ I1 Htg”(qs“’)]. (2.12)

=1

A moment calculation for branching Brownian motion which uses Proposition 2.9
and is much simpler than that for lattice trees in Theorem 2.7, shows that the limit
on the right-hand side of the above equals the right-hand side of the equality in the
proposition. We sketch the proof as it explains how the right-hand side of (2.7) arises.
Let Zy/n = {j/n : j € Z,}. Recall (1.10), and let I, = {B € I : |B| = [t]}. Fix
f1, ..., > 0 and consider only large enough »n so that

lnt;] =2, i=1,...,r.

Recall the random subset GW of indices in / defined in Sect. 1.2.1. A simple expansion
of the sum defining H,(Z") shows that

r

Eu,‘?BM |: 1_[ H;Z")(q&“))] =

=1 ﬂlel,,, B €l
— Y Y BB C GW)E[]‘[W(E%Z)],
/3161,,1[ B €l =1
(2.13)

where in the last we used the independence of the branching variables {¢f : g € I} and

the spatial motions {Bf : B € I} as well as the fact that BBW = I}%e if ¢ € GW.
It is easy to see that the contribution to the above sum from 8!, ..., 8" such that for
some i # j: wp! is an ancestor of ,3/ is bounded by C(r, K)/n for max{t; : i €
[r]} < K. To see this, note that if 78’ is an ancestor of 8/, then 7" is determined
by B/ since its length is [n#;| — 1. This means there are only two possible values of
B and so we can bound this contribution by twice the (r — 1)-fold sum with each
k© = 0 (so each ¢ = 1), and applying (2.11), we obtain the above bound. Fix
B = (ﬂl, ... B") € Ly x -+ x I, so that none of the indices has a parent which is
an ancestor of another index (in particular all are distinct). Call such a E a good value
of B . Then, in particular, E uniquely determines a non-degenerate shape f (B) € X
where 1o B" label the r leaves and one can define the internal vertices of the shape
by locating the branch points from the root to 8!, then the new branch points while
proceeding from the root to 82, and so on up to A”. See e.g. Fig. 7. In this way we label
the internal vertices by 87*!, ..., 2 ~! using our labelling convention in Definition 2.5
(now with B! in place of i). For example (assuming r > 1), /! = Bllk,,1, where
Kkr+1 = max{k : Bk = B¢k forall £ > 1} € {0, ..., min{| 8|} — 2} (the upper bound
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to

— 13 2 _
0000 = j 32 = 0011 o 5 )

ty

0

Fig. 7. On the left is (part of) a GW tree with B!, 82, B3 indicated. Here |8!| = |8°| = 2, |8%| = 83| = 3,
and |8%| = 1, and this contributes to (2.13) when 7, t3 € [3/n,4/n) and t; € [2/n,3/n) as depicted. On
the right is the corresponding tree shape. The edge lengths associated to the latter are determined by taking
differences of the ue, where ug = 1/n,us =2/n,uy =tj,up =th,uz3 =13

since B is good), and then continue down the branch towards 8! until there is only one
leaf (B') along the remaining tree. Note that each B¢ for £ > r is of the form S|k, for
some i = i(£) < r and some ky < |/§i|, i.e. is an ancestor of some ﬂi.

We introduce tree distances #(8) = (uy,...,us—1) for the above shape, with
u; € Zy/n\ {0} fori > r, by setting

ty if¢ <r,
Uy =
¢ (B +)/n iftefr+1,...,2r —1}.
Recall that uy is the distance from vertex B¢ to the root and so edge distances can be
found by dlfferencmg Denote this tree shape with edge lengths by T(,B ). Note that the
fact that ,3 is good ensures that u, < |B|/n < Ui, whenever B¢ is an ancestor of 8’ for

¢ > randi < r.In fact, the possible values of u are now given by the discrete analogue
of M(z, I),

ne My, F):={ie (0,oo)2’_1 cu; =t fori <ru; € Zy/n\ {0} fori >r

and u; < uj whenever ,Bk is an ancestor of ﬂj }.
(2.14)

In the above notation we use the fact that the ordering of the leaves given by 7, the
shape f, and our convention on numbering internal vertices, determines the ancestral

relationship between the ¥, not the particular choice of ,5 . The definition of u, for the
internal branch points £ > r ensures that

(Wl, LW = (éﬁ], ey éﬁr) is a tree-indexed Brownian motion

with variance parameter o2 on ']I‘(,é). (2.15)

To see this, note that at a branch point B = B’ A B/ for leaves i, j and £ > r, the
Brownian paths BP" and B do not split apart and evolve independently until time

(B 1+ 1)/n = ug. .

We now decompose the sum over good S in (2.13) according to its shape, f, and
edge lengths u. Abbreviating (81, ..., Br) € Iny X <=+ X Ly, as ﬂ € I,7, and writing
B C GW for {B', ..., B"} C GW, the right hand side of (2.13) becomes
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1 1
> o Z tr @=r La@-aP P CGW)E[H"[’M(BM«)]“LO(Z)‘
rex, ieMu(.F) Bely; =1
f good
(2.16)

Recall the notation (2.10). Choose f € %,, u € Mn(f, F), and B € 1,7 such that
F(,B) F and ii(B) = 4. Let N = N(F,ii) € Z. be the number of ancestors of
B, ..., p" in the 1ndex set I. Note that N is equal to n times the sum of (truncated)
edge lengths in T(,B) determined by i’ where ”z =uyif £ > r and ”z [ueln = [teln
if £ < r (see e.g. the left hand side of Fig.7). (Here we identify each edge of rescaled
length 1/n with the index of its entry vertex in I.) Therefore N is a function of (£, i) as
the notation suggests. It follows immediately that IP’(E C GW) =27" since B cGW
if and only if each of these ancestors has two offspring.

It follows from this, (2.15), and Proposition 2.9, that (2.16) equals

1 _ . 1
> 2 Y Yygenlag-aPEBC GW)CD(F’“’S”‘”O(Z)
Fex, ieM, . F) Eel - ﬁgood

1 N
=D = 2 Ve Es k) Y VG Lag—n +O< )
Fev Mo .F) Pl

Here dropping the “good” requirement on ,5, at the cost of O(%), is again an easy
calculation along the lines of that done earlier.

For fixed F € ¥, and ii € M, (7, F), the number of choices for B C I with this
shape and edge lengths in the above is 2. This is because there are two choices for the
offspring labels for each of the N “ancestors” above. Therefore combining the above
equalities leads to

e[ [TH0n]= ¥ 5 ¥ ecisneo(l)

t=1 Fes, GeMy(G.F)

As n — oo in the above, the (r — 1)-fold Riemann sum converges to the (r — 1)-
dimensional integral in the right-hand side of the proposition, and so the result now
follows from (2.12). For the Riemann sum convergence, we note that the # dependence
of the integrand admits finitely many jump discontinuities. O

2.3. Lattice tree f.d.d. We now turn to the LT setting. Fix m € N, r > 0, k =

ki, ....kn) € R and§ = (0 =sg, ..., 5, =1), where s; < s;11. Then
(n) (n)
Ht(n)(d)g’ ];) =/ ¢dHt(n) Z Helk Ws;; (r.x)— Ws;; ~, @, x)) (2.17)
b fxe']}t,j 1
Letting X,, = (x1, ..., x,) and setting xo = 0 € Z¢ we have

; Ci i)
EM];T[HI( )(¢§Iz)] = FO Z l_[ el v T IFD(Xm € Tur, m_r/‘n:l{wns,- (nt, xp) = xj}>~
Tme@dym j=1

(2.18)
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Fig. 8. A depiction of the event in the detailed 1-particle function withn = 1,1 = 6,51 = 1 and 5o = 4, with
the path s — w; (6, x3) in bold (recall the notation from (1.1))

We call the quantity P(x,, € Ty, VI {wns, (1, X)) = x;}) a detailed I-particle func-
tion, (see e.g. Fig.8), and the Fourier transform of the increments is called a detailed
1-particle transform, i.e.

m
Z l_[ elkj(xj_xj*l)]P)(xm € Ty, ﬁ;(l=1{u—’nsj~ (nt, xp) = Xj})‘

Ipezdym j=1

Related quantities arising from expectations of the form

.
Eur [ [THS @) |.

=1

with ¢ = ¢z 00 5, k© as in Theorem 2.7) are called detailed r-particle trans-
forms. Therefore Theorem 2.7 amounts to verifying the appropriate asymptotics for the
detailed r-particle transforms.

When m = 1, the detailed 1-particle function is simply P(x; € 7,,), and its Fourier
transform becomes )" ;4 eXI*P(x € 7,,). These quantities are called the 1-particle
functions (traditionally in the literature these have been called the 2-point functions,
with the two points being the origin o and x). Forn € Z and X = (x1, ..., x,) € zr
we can define the r-particle functions (see e.g. Fig.9):

07 (X) =P(N_ i {xi € Tn;}),
and (their Fourier transforms) the r-particle transforms for ke (RY)":
pky =Y o).
xe(zdyr

We write O(x) to denote a quantity whose absolute value is bounded by a constant
times x. Using the inductive method of [12, 14] the following was shown in [17, Theorem
3.7]:
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Y2

Fig. 9. A depiction of the event in the 3-particle function p(3 3.6)(V1, ¥2, ¥3)

Theorem 2.10 [17]. Fix d > 8. There exists Lo = Lo(d) > 1 such that for every
L > Ly:
There exist K, C4 > 0 such that, for every § € (0,1 A %),

sup sup |pn (k)| = sup pn(0) < K, (2.19)

neZy keRd nely

.k _oglk? k|2 d-s
fn <ﬁ> = Cpe 2 [1 +O (n—5> +0(n 2 )] (2.20)

Recall that the constant Cy4 is equal to A’ in the paper [17], while 002 is equal to
vcrz/d in [17]. The error terms (see [17, Theorem 3.7, Lemma 3.8]) in (2.20) depend
on d, L but are uniform in {k € R? : |k|> < Clogn} (where C depends on §). Taking
k = 0 above we see that, as claimed in Sect. 1.1, C4 = lim,_, o E[|7,]]. Asymptotics
for the r-particle transforms are provided in [17, Theorem 1.14]. In particular there exists
Cy > 0 depending on D, d such that

and

n~ BT "1 = n"" pu.n(0,0) > CyCy. (2.21)

Recall that the constant Cy in our paper is equal to Vp? in [17]. Our task is to “upgrade”
these kinds of results from [17] to get asymptotics for the “detailed” r-particle transforms.
This is the focus of the next section.

2.4. The LT detailed r-particle transforms and proof of Theorem 2.7. Recall the labelling
convention for internal vertices (branch points) and edges in / from Definition 2.5.

A lattice tree T > o having r + 1 leaves (0 = xo and xy, ..., x;), r — 1 vertices
Xr+l1s - - -, X2r—1 Of degree 3, and all other vertices degree 2, has an associated abstract
tree I as follows: x; > i, and any two vertices i, i" in I" are connected via a single edge
if the shortest path from x; to x;s in T passes through no other x;. All vertices in I" are
degree 1 or 3. Relabelling the vertices of degree 3 according to the labelling convention



456 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

in Definition 2.5 gives an abstract shape I'’/, which is the shape of T and the points
X1, ..., X (and 0), and we write vy € {Xy41, ..., x2,—1} for the vertex in T that mapped
to branch point g € T"'.

Given I, y = (Ye,i)ielje] eel2r1]; and it = (fie.i)ielj,].eci2r—1] With each ¥, ; € Z¢
and each 7, ; € N, let T (F, y, n) denote the set of lattice trees T > o such that:

(*) foreach £ € [r]thetree T contains x; = Zee&(F) Zl’e | Ye,i» and the shape of the
minimal subtree 7’ of T containingoand x, . .., x, is f , and for each branch point

g € I, the corresponding vertex v, is tree distance )/, Zl 4 (it Zl Mgl
from the root in 77, and
(**) for each ¢ € [r],each e € & (F), and each i, € {1, ..., j}, the path from o to

x¢ in T passes through the point 3 ;_, leil V5i+ Zﬁ;l Ye.i € Z% at time (tree
distance from the root) }~ +_, Z{Ll npi+ Z;;l IRVAS
Let

iP5y = ,o]P’(T e T, 5, ﬁ)). (2.22)

Given n, I, and iz as above, and k= (/Ee,,-),-e[jd,eem,” with each l;e,,- € RY, define

2r—1 Jje

tA’SlF)(IVC) Z 1—[ l_[elk“ yg,t(F)( ).

y e=li=l

The following proposition will be proved in Sect. 4.5 via modifications of [17, Theorem
4.8] (where each j, = 1) as indicated in [18]:

Proposition 2.11. Fix d > 8. There exists Lo(d) such that for every L > Lg: for every
8, 1A% e>0reN F e (o)eer—1] € N1 it = (ie.i)iclj,) ecl2d—1]
(with each n.; € N and eachn, ;/n € (¢,1/¢)), R > 0, k= (lze,,-),-e[j@],ee[zd,” (with
each I;e,,' € [—R, R]d),

k 2r—1 Je 22;1_
A(H( ) r—1-2r—1 i led
_pC C l_[l_[e % 2 "
\/— e=1 i=1
v 2

2r—1 Jje 27‘1]9“ 318

(LY ) +o(X X )
elzlflef e=1 i=lI

where the constants in the error terms depend on L, 8, r, R, (je)ee[2r—11 and € > 0.

The purpose of this section is to prove Theorem 2.7 using Proposition 2.11.
We begin with generalisations of (2.17) and (2.18) (where r = 1). Fix r > 1 and
f,....,t, > 0.Lets = (s©,...,57), where s¥ = (s((f), .. “)(,)) and 0 = s((f) <

57 << S,(j)u) = 1y for each £ (so each m® € N). Then for ¢“), ..., 9" € G (with
7 ( 0) ()
$© = s jo and kO = (K7, .. k") € R)™,
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[TH: @

(=1

()
Y T T 0 (0
() X % e em - wmol

ﬁxle'fn,] Jnxp €Ty, =1 je=1 Sjg-1

Take expectations and work with the un-normalised functions w(z, x) = w(z, x)(T) (a
slight abuse of notation, as before w (¢, x) was defined as a function of the random tree
T) to see that

El/«]TT |:l1:ll H[(é’)(¢(K))i| Cr T Z Z IP)(T T)

Fe(zdy T30:

xeTm

r om® 0)

X l_[ 1_[ exp {1—(11) g, xg) —w, (u (ntg,xg))} (2.23)
(=1 jo=1 v

where X € T,; means x; € Ty; foreachi € [r].

Given X = (x1,...,x,) € (Z9" and T > o a lattice tree with xj, ..., x, € T, one
can consider the minimal subtree containing the origin and these points. Typically this
subtree has r — 1 branch points that are connected to the root and the points x; according
to an abstract (rooted) shape f consisting of 2r — 1 edges ¢ € £(F ) and 2r vertices.
Call this the shape associated to (T, X). Contributions from subtrees containing fewer
than  — 1 branch points (arising if (i) the number of distinct elements in {xy, ..., x,} is
smaller than r, or (ii) paths in T to one or more x; contain paths to one or more other x;,
or (iii) the most recent common ancestor of two x;’s is the origin, or (iv) some branch
point in the subtree has degree more than 3) will constitute error terms (see e.g. (2.26)
below) and they will be said to have a degenerate shape. For a given (non-degenerate)
shape [ € =,,and 7 = (11, ...,1,) € (R=g)", recall the definition of M,, (7, F) from
(2.14) (but now with £ in place of B%). Forx € (Z4)",y = (yy41, ..., yar—1) € (Z4)" 1,
and it € M, (?, F),letT,(F, £, X , ¥) denote the set of lattice trees T containing the
origin and the points x; € T, fori € [r] for which the shape associated to (7, X) is
F, such that for each branch point j =r +1,...,2r — 1 in F, the spatial and temporal
location of the corresponding branch point in 7" is (y;, nu ;). The main contribution to
(2.23) is therefore

Cip~!
=D ID YD VD SRR
0 Fex, e (X,y)e €
Mo (@ F) (zdy2r=1 T (F,t,u X

r m® ()
X 1_[ 1_[ exp {1— w, o (nte, xe) —w, @« (nte, )Cg))} (2.24)
Je

t=1 jo=1 et

The modulus of each exponential is bounded by 1. Next, using (2.19), and neglecting
interaction between parts of the tree corresponding to the 2r — 1 different edges in the
shape we get that for any shape / € Z,,

Z Z W(T) < K5, (2.25)

(x5 Te _ .
T,(F ,t,u,x,y)
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for some K¢ > 0. If 7 = max;¢[r] f;, we can sum over u to conclude that

YooY > w =k i+ 1)

ue  (%.y) Te _
My, F) T,(F.tu,x,y)

Remark 2.12. Bounds similar to (2.25) hold in great generality. For any abstract rooted
tree graph (call it a generalised shape) f* with edge set E*, and any set of temporal
lengths (n.).cg* (with each n, € N) associated with those edges: the total weight of all
lattice trees containing the origin having vertices with spatial and temporal displacements
(Ae)eE g+ and (ne).cg+ with the generalised shape of the connections to these points
being F*, summed over (&e)eE g+ gives at most Kg E” This is also obtained by ignoring
interactions between different parts of the trees corresponding to different edges in E*. %

For degenerate shapes, one also has (2.25) (in fact the exponent 2r — 1 can be reduced).
However, in comparison with (2.24), degenerate shapes give rise to sums over fewer (at
most r —2 in fact) u ;’s, each of which takes at most nt +1 possible values. After summing
over finitely many degenerate shapes and summing over i we may bound the version of
(2.24) for degenerate shapes by

by r—2
mivly2<cr (2.26)
n

nr—l

We conclude that contributions to (2.23) from degenerate shapes are bounded in absolute
value by Cn~'(7 + 1)" =2 and the main contribution from non-degenerate shapes is at
most C(f + 1)’_1. If we set m©© = 1, k© = 0, we conclude the following as a special
case:

Lemma 2.13. Foreachr € Nthere exists aconstant C, > Qsuchthatforallty, ..., >0,

r

sup nIE[ I1 Htﬁ.")(l)] <C.i+1)L
neN i=1

Givene > 0,7, s, and a (non-degenerate) shape F € X,, let ./\/l,,,g(f, F, s) denote
the set of u € M, (¢, ) for which (with ug := 0) either:

e there existaleaf £ € {1,...,r},abranch point j € {r +1,...,2r — 1} in the path
fromoto¢,andani € {1,...,m®}, such that

(4
|uj—s;)| <e,

e there existi, j € {0, ..., 2r — 1} vertices of F, such that i is an ancestor of j in f
and

luj —uj| <e.

Roughly speaking these correspond to situations where there is branching on a path
close to one of the observation times along the path, or where one of the edge-lengths is
short.

Let M, +(f, F.s) = Mu(f,F)\ M, ¢, F.s). Then the sum over i in (2.24)
can be split into a sum over i € M, (¢, F,s) and a sum over i € M, ((, F,s).
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Using the same argument as for (2.26), we get that the absolute value of the sum over
e M,,(t, F,s)is at most

W TlCe(r+ 1) T = e+ 1) e (2.27)

We therefore turn our attention to the quantity

()
r m®© i

G X X T Towolllle”

Fex, (. 5)e =1 jy=1
Mn*(t F.s) (ZJ)ZV lTn(F t ii,X,y)

RO (nte,X/z)—wM(e) (me,w))
"jg Je—1

(2.28)

We now define discrete analogues of the sets 7 following Definition 2.5. Recall the
notation (2.10). Let f € %,,7 € (0,00), i € Mu(7,F),and s = ©,...,5),

where 5@ = (s, (%) and 0 = s’ < s7” < -+ < s(% =t for each
¢ € [r] be given. If e ¢ E(F) then set Z,(e,5Y) = @. If e € E(F), then let
T, (e, 59) denote those elements of [s“'],, := ([s“)]n, e [s;f)“)]n)thatfall in the interval

(u—_(e), uy(e)Alteln), where u_(e), uy (e) are the elements of i corresponding to the end-
vertices of e (and u_(e) = 0 if e is adjacent to the root). Let Z, (e, ) = U,_, Z, (e, 5).
The j(e) := |Z,(e, s)| elements of Z, (e, s) divide the interval [u_(e), ui(e) A [te]n]
into j(e) + 1 subintervals - denote their lengths by (7i.;/n)i—1,... j)+1, and set i =
(ei)ecE(F )si=1,....j(e)+1- If j(e) =O0thenri,1/n = u,(e) —u_(e). Note that j(e) and

v

i depend on F , ii, s (and n), and that Zee&(F) Z](e)H Ne j = |ntg].
Forf € [r],e € &(F) and a € {1, ..,](e)+1}let

a v

o . . 0 . Nei,
g“,[l‘](a, £) = min {l <m® . si“) >u_(e)+ Zl %}
lo=
(Note that s“) is interchangeable with [s“)]n in the definition of g“,,e].) Given k© =
€ oreac € |r],andiore € r—1janda < j(e)+1,
(K", %) R4 foreach ¢ € [r],andf 1,...,2r—1}anda < j(e)+1
let

ke.a(n) = K
() 2 o,
Lee&u(F)

Let l::(n) = (l;e,,-(n))ee[zr,“,ifj(em which depends on F, s, u, n and of course k.
Ifn e N,F € X,,s,and i € M, +(f, F, s) are given, this determines 7z = i(F , s, it)

as above. If we are given k as well then this also determines Ivc(n). By expressing locations
of paths in terms of their spatial increments y = (Ye,;)ie[j,],ec[2r—1] (and recalling the

definition of T(F , ¥, i) given prior to (2.22)) we see that (2.28) is equal to

2r—1 j(e)+l1 i)

Cip™! :

G L L X X woll e

0 Fesr e e=1 i=I
Mn*(th) T(Fy'l(Fsu))

2r—1 j(e)+l1 ke,("> .

crnrl Y XTI I e 7 “p(T et yiw.s.)),

FeXx, uE y e=l i=1
Mn*(tfs)

(2.29)



460 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Recall M(%, F) from Definition 2.5. Given ¢ > 0 we define M, (7, F, s) to be the
set of u € M(z, I) for which either:

e there exist aleaf £ € {1, ..., r}, a branch point j in the path from o to £ in /", and
i €{l,...,m®} such that

luj — sl.(e)| <e.
e there exists vertices i < j of f, such that
luj —ujl <e.

Let M, (7, F,s) = M(, )\ M(f, I, s). Then, as for (2.27), we have that

/ ldu < C,et
neMe(i,F ,s)

Recall the definition of ® (and its arguments) from (2.6). Below we will show that as
n — o0 (2.29) converges to

> / _ ®(FL s, kdi (2.30)

Fex, ue My (t,F ,s)

Fix f € X, and consider the quantity in (2.29) with fixed / which can be written as
Cl 2r—1 j(e)+1 ',;ei 5 o

e > X ]_[ ]_[ (T e Ty is)). 231

ic
Mn *(f F.s)

Then (2.31) is equal to

Cip~! ~) k(n)
rpr—1 Z tﬁ(F,s,“)(_)’ (2.32)
Cyn” — W\ /n
Mn,*(?»F,s)

where we recall that lvc(n) depends on £, s, i, n, k.

Proof of Theorem 2.7. Fix r, f and the ¢ (hence k and s).

Let §(s) > 0 denote the minimum difference between distinct values in s (recall that
this includes 0 and each #¢). Let ¢ € (0, (6(s)/2) A 1). Above (see in particular (2.26),
(2.27) and (2.32)), we have shown that the left hand side of (2.7) is equal to

Cip™! A(F) k(n)
— t. +0E)+ 0™ ),
i B W)
M« (t,F .8)

where the constants in the O notation here only depend on 7, r, L, d. By definition of 1,
eachri, ; isequal to [ns|—|ns’] for some distincts > s” € s (orisequal to | Lns“)J —nu |
for some branch point j in the path from o to £ in /-, or |nu i —nuj|forsomei < jin ).
It follows from the definition of §(s) and the fact that i € Mn *(t F, s) that we have
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that 1, ; > ne/2 for all e, i for n sufficiently large depending on & (which we assume in
what follows). By Proposition 2.11 (recalling that Cy = C%Cv and C; = C4Cy, and
6 € (0, 1) is as in Proposition 2.11) we see that this is equal to

1 E N 1 k|27
of 55t (9( _> (9< _el)
Yo X T e % vo(X ) +o(
Fex, ue e=1 i=1 el n,; e,i
My (&, F .5) ’
+0(e) + O™, (2.33)

where in the above, 7 is determined by £, i, s (and n), and I is determined by these and
k. In addition the constants in the error terms in square brackets depends on & (among
other things, as in Proposition 2.11). Also §, ¢ € (0, 1) and ne/2 < 1, ; < nf imply the
error terms in square brackets are O((en) = @=8/2)) yniformly in i € /\/ln,*(?, F.,s)
(where again the constant in the O notation here depends on ¢, k). Since the sum over
i gives at most (nf)"~! we see that (2.33) is equal to

2r—1 j(e)+1 ,;2

> nr: > MM Jleo™ L O((en) NI L OG6).  (234)

Fex, ug e=1 i=1
Mn,*(fyF,S)

Recall the definition of § = §(F, i, s) from below (2.4). Together with the definition
of in we see that |S, ; —11,.; /n| < 2/n for every e, i. Thus (for n large enough depending
on ¢) (2.34) is equal to

r-lj@+
pr= S T T e 50 o), (2.35)
Fex, ue e=1 i=1
Mn,*(;,f ,8)

where the error term in the exponent depends on k but is uniform in u. Recalling (2.6),
it follows that (2.35) is equal to

2r—1 j(e)+1 2

—azzse‘
Y e eon

Fezr ME
Mn*(th)

T Z O(F,u,s,k)+0O(e).

iic
Mn,*(t,F,S)

F e,

As n — oo in the above, the (r — 1)-fold Riemann sum converges to the (r — 1)-
dimensional integral in (2.30). We have therefore shown that there exists a constant C
(depending on k, s, t) such that for any ¢ > 0, for n sufficiently large we have that

.
‘EM%T |:1_[ Htilz)(¢([))i|
=1

which completes the proof. O

Z/ ®2(F i, s, k)dii| < Ce,
Fes, ieM(t,a)
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3. Tightness

In this section we work in an abstract setting for historical processes motivated by the
historical paths {w(m, x) : m € Z,,x € 7Tp,,} of lattice trees and those for branching
Brownian motion, {B* : |«| € Z4, @ € GW} (with n = 1), both introduced in Sect. 1.

As before, add A to R? as a cemetery point. Assume on a probability space (2, F, P)
we have

Vk € Z,, Sk is an a.s. finite random subset of a countable set S. (3.1

VkeZi, BeS, (wjk,p))jezs are RY U {A}-valued random variables such that
for B € Sk, w;(k, B) are R?-valued, wo(k, B) = 0, w;(k, B) =wik,B)Vj >k,
andfor € S\ Sk, wjk, B) = A. (3.2)

So for each k € Z, and g in the random finite set Sy we have a discrete-time R?-
valued stochastic process starting at O and freezing at time k.
For

weW:={wk,pB): B e Sk k € Z,} (the set of historical paths), (3.3)

we define the rescaled paths by

wLnsJ(l_nth B)
—«/ﬁ ,

so that for t > 0 and B € S| ), w™(t, B) € D(RY). Define a cadlag M p(D(R?))-
valued process by

w (1, B) = s,t>0, (3.4)

o1
Y = — > Sy (3.5)
gn
BES|nt)

where C, > 0 is a model-dependent constant. We call this class of measure valued
processes, the historical processes associated with W.

Example 3.1 (Lattice trees). Here S = Z¢, S,, = 7T,, form € Z, and for x € S,,,
w(m, x) is the tree history from the root to (m, x) in (1.1). If C; = Cy then one can
easily check that H™ as defined in (3.5) agrees with the historical process for lattice
trees in (1.4). Note here that the index set for w™ has been changed from that in (1.2)
(and so we have abused the notation) but the actual empirical measures are unchanged.
Properties (3.1) and (3.2) are clear if we extend the definition of w(m, x) to A forx ¢ S,,.

Example 3.2 (Branching random walk). We discretize (in time) the branching Brow-
nian motions introduced in Sect. 1 and use the notatior} from that construction. We
denote dependence on n € N now in our notation for BP-® for BelLetS =1,
Sp=1{B€l:BeGW,|B| =m}, andfor 8 € S, set

w](m’ ﬂ) = é/?,(l)

JjAm:
Then one can check that for o € S,

HB.(1)

B
w1, B) =~
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Set Cg = 1in (3.5), and for |B| = [nt], let zPm = éfr;((ﬁ)/\m/n be a time discretization

of the stopped Brownian paths BF-™_ Brownian scaling shows that

~ 1 -
if Ht(”) = - Z 8460, then H™ is equal in law to
n BeGW:
|Bl=|nt]

the nth historical process given by (3.5) for eachn € N. (3.6)

Clearly H™ is a rescaled branching random walk with Gaussian mean 0, variance o2

increments. Properties (3.1) and (3.2) are again clear if we extend the definition of
w(m, x)to A forx ¢ S,.

In order to prove historical tightness, we will assume that the collection W (as in
(3.3)) of historical paths satisfies the following condition. Recall that w™ is the scaled
version of w, as in (3.4).

Condition 3.3 (Modulus of continuity). For some g € (0, 1/2), 6 € (0, 1], and constant
C> > 0, there exist random variables (5, ),en so that for all historical paths w € W and
neN,

Vsi € Za/n, 52— 1] <8 = [wl — w®| < |sy — s11%,

where nP(5, < p) < Czpe Vp €[0,1). 3.7

This condition is verified for any ¢ € (0, 1/2) and & = 1 in [20, Theorem 6] for
sufficiently spread-out lattice trees in more than 8 dimensions in Example 3.1 above
(as well as a number of other models)—see Lemma 3.12 below. For the Branching
Random Walks with Gaussian increments in Example 3.2 it is easy to derive it from [6,
Theorem 8.1] for the same parameter values (in fact 6 can be taken to be any value in
(0, 00)) . Here one takes the underlying diffusion to be Brownian motion, restricts the
time steps to be in Z,./n, and then uses (3.6).

In our abstract setting, the extinction times become

SO =min{k € Zy : Sy =0} € Z, U oo,
so that
§™ =8 /n =inf{t > 0: H" (1) = 0},
agreeing with our earlier definition for lattice trees. We assume SV satisfies the following:

Condition 3.4 (Survival bounds). There exist ¢, ¢ > 0 such that

c< ingIP’(S“) > v <supPS? > (vl <t (3.8)
>

t>0

This condition holds for the branching random walks in Example 3.2 by Kolmogorov’s
classical result for survival of critical branching processes (e.g. see [24, Theorem I1.1.1(a)])
and for the lattice tree historical paths in Example 3.1 by (1.6) (or see [20, (1.22) and
(1.27D.
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Definition 3.5. For a metric space, E, a collection {Q, : n € N} of probabilities on
DRy, E) = D(E), is C-relatively compact iff every sequence ny — oo has a subse-
quence {n;} s.t. Q,,;{ converges weakly in D(E) to a law, Q, supported on C(E), the set
of continuous E-valued paths. If { X, } is a sequence of cadlag E-valued processes on our
underlying probability space, we say {X, : n € N} is C*®-relatively compact iff for
every so > 0, the set of conditional laws {P(X,, € -|S™ > s¢) : n € N} is C-relatively
compact in D(E). P |

We start with a general tightness result for historical processes in this abstract setting:

Theorem 3.6. Assume H™ is given by (3.5), where W satisfies Condition 3.3. Suppose
also that Condition 3.4 holds and {H™ (¢) : n € N} is C<relatively compact in
D(C) for each ¢ in a determining class Dy (for Mp(D(RYY)) containing 1. Then
{H™ : n e N} is Cc_relatively compact, and for every sy > 0, every limit point, H,
of {P(H™ € -|S™ > s0) : n € N} satisfies H;(C(RY)) = 0 forallt > 0 a.s.

In practice it is the relative compactness of {H ™ (¢) : n € N} for a rich class of test
functions ¢ that will require most of the effort. For LT’s this is done in Proposition 3.11,
which is in turn proved in Sect. 3.2 below. Applying Theorem 3.6 to the case of lattice
trees (conditional on survival), we will then deduce the following below:

Theorem 3.7. Let H™ be the sequence of rescaled historical processes associated with
sufficiently spread-out lattice trees in d > 8 dimensions, defined in (1.4). Then {H™ :
n € N} is C¢_relatively compact.

3.1. Proofs of Theorems 3.6 and 3.7. Our starting point for proving Theorem 3.6 is a
version of the Jakubowski-Kurtz Theorem for M g (D(R%))-valued processes. It is a
simple extension of that for M g (]Rd )-valued processes in [11, Theorem 5.2].

Theorem 3.8. Let Dy C C(D(RY), C) be a determining class for M g (D(R%)) contain-
ing 1.
A sequence of probabilities { Py, k € N} on D(M p(D(RYY)) is C-relatively compact iff

Vn >0, VT €N, there is a compact set K, 7 C D(Rd) such that

sup Pk<sup HI(K; ) > 17) <, (3.9)
k t<T ’

and

forall ¢ € Dy the sequence of probabilities, { P, (H.(¢) € -)},
is C-relatively compact in D(C). (3.10)

Ford, T >0and w € D(Rd), we define

W (w,8,T) =infmax sup |w; — wyl,
iy 0 srelnon,n)

where the infimum is over all partitions {#;} suchthat0 =7y < #; < ...ty—1 < T <ty
such that ; — t;_1 > § for all i. Note that W’ is decreasing in § and increasing in 7.
We restate [8, Ch. 3, Theorem 6.3 and Remark 6.4] with their general metric space E
replaced by R¢ and use the above monotonicity to take sequential limits and restrict
T e N.
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Proposition 3.9. Let 8, | 0. The closure of a set A C D(R?) is compact iff

sup |ws] <oo and lim sup W (w,8, ,T)=0, VT eN.

’ m7
weA,t<T M= yeA

For 0<g<1/2 let B,,=B,(q)={w € DRY) : W (w,2™", T)<2~"m=24y TeN},
and for M € N define

Ay = Au(q) = (w € DRY) : |w,| < (1 + 1)2M* vr > 01N (m;;f:MBm).

An easy application of Proposition 3.9 shows that A, has compact closure in D(R?).

Lemma 3.10. Assume Condition 3.3, and let q, §,, be as in (3.7). Foranyn, M € N, if
8p > max(2>~M n=1), then H/(AS,) = 0 forallt > 0.

Proof. Assume §,, > max(ZZ_M, n~1),andletm € N2M T € Nand w € W. If we

divide [0, [#]] into []2M intervals of length 2=¥ < §,,, then the triangle inequality,
(3.7) and 8,, > n~! imply

lwi”| = |wy —wg’| < 12279 +n~9] < (1 + 1)2M+1, (3.11)
where in the first inequality we have moved an interval endpoint to an appropriate neigh-
bouring pointinZ./n resultmg inanerror of atmostn 7. Consider next W' (w™, 2™ T)

forw e W.If27" < E then W/(w™, 27", T) = 0, as one can see by taking t; = ,

i € Z, in the definition of W', and using the fact that w™ is constant on [i /n, (i + 1)/n)
for i € Z,. Assume therefore that 27" > % Now set t; = i27m+ fori e Z., which

gives t; — t;_1 > 27" for all i. We also have

1
(610 — [tici]le < 2" + ~< 22m <2 M 5 (3.12)

By (3.7) this implies that for s, ¢ € [t;_1, t;)
wi” —w| = |wgy, = wiyy, | < [l = [s]al? < 27729,

where in the last line we have used the middle expression in (3.12). This proves that
W/ (w™, 27" T) < 2~m=24 which together with (3.11), shows that w™ € Ay, and
so completes the proof. O

Proof of Theorem 3.6. Let ny — oo, fix s9 > 0, and define probabilities on D
(Mp(DR?))) by

Pﬂk(') — I[D(H(nk) c '|S(”k) > S0)~

For the first assertion we need to show this sequence of probability laws are C-
relatively compact on D(M ¢ (D(R?))). For this we will use Theorem 3.8, and so need
to verify the hypotheses of that result. For (3.9), for all T € N we set K, 7 = Aum,
where M is chosen below. The compactness of this set follows from Proposition 3.9, as
has already been noted above. By Lemma 3.10,

nk(sup H,(K; 1) > 0) < P(H H"(AS;) > 0 forsomet > 0| S™ > s0)

< P(8,, < max(2*™M, n h)/P(S™ > s50)

< ¢ Nnpso + 1)nk_1C2(2(2 MO 09y,
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where in the last inequality we have used (3.8) and (3.7). The above bound is at most
¢ (so+ DC2(2%~MP + ;%) which will be smaller than 7 if we set M = M () large
enough and assume n; > N(n). This proves (3.9) for large enough k. It is easy to
enlarge K 7 to obtain a compact set which satisfies (3.9) for all k. For example, for
fixedn = nx < N(n) and all t > 0, H" is supported on the space of cadlag paths
which are constant on [i /n, (i + 1)/n) and on [S™, 00), and whose jumps are uniformly
bounded in absolute value by
lwj(m, ) —wj—1(m, )l

max 73 <00 P, —a.s. (3.13)
m/n<S®™ BeS, 1<j<m nl/

Now use (3.8) to bound S and bound the upper bound on the jumps in (3.13), with
high P,-probability, and so obtain a compact set of paths which supports H," for all
t > 0 with P, probability at least 1 — n, for the finite many values of n = ny < N(n).

The other condition (3.10) of Theorem 3.8 holds by assumption and so the C-relative
compactness is established.

For the last statement we note first that if Aw, = w; —w,_ forw € D(RY) and ¢ > 0,
then a simple Skorokhod topology exercise (e.g. use [8, Chapter 3, Proposition 5.3])
shows that for any § > 0,

{w € DRY) : sup |Aws| < 5} is a closed set in D(RY).
5>0

Consider a weak limit H of {P,, }. By Skorokhod’s representation theorem and the

continuity of the limit point, H., we may realize all our processes on a space with

underlying law P’ and assume H,("") — H; in Mp(D(R?)) forall t > 0, P'-a.s. So the

Portmanteau Theorem for the weak topology gives for all # > 0 and M € N,

Ht<{ sup |Awg| < l/M}C) < liminf H,("")<{ sup |Awg| < 1/M}C).
s>0 k—o00

s>0

Now fix ¢ > 0 and use Fatou’s Lemma to see that for § > 0,

IP”(H,({ sup |Aw,| > 1/M}) > 5) < P’(liminf H™ ({sup | Aws| > 1/M}) > 5)
s>0 k—o00 s>0

< liminf P’(H,("k)({sup |Awg| > 1/M}) > 5)
k—o00

s>0

< liminf P,, (§,, < 1/nx) = 0.
k—00

In the last inequality we use the fact that for k large enough 6,, > 1/n; implies that for
all ancestral paths, and all s > 0, |Aw§"")| < (1/ng)? < 1/M, and in the final equality
we use Conditions 3.3 and 3.4. Now let M 1 oo to see that H; is supported by C = C(R?)
a.s. for each t > 0. Therefore H;(C¢) = 0 Vr € Q>°. So using the openness of C¢ and
the Portmanteau theorem again, we get from the continuity of r — H, that H;(C°) =0

forallt > 0 a.s. m]

Let Lipx denote the set of functions ¢ : D(R?) — R such that for each w, w’ €
D(RY), |¢(w)| < K and |¢(w) — ¢p(w)| < K[w — w'|l, where [|w]| = sup, g, |w;.

Proposition 3.11. For critical sufficiently spread-out lattice trees in dimensions d > 8:
For each ¢ € Lipy, {H" (¢) : n € N} is C°"-relatively compact in D(R).
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The proof of this key result is more complicated and so is deferred until Sect. 3.2.
Assuming this, Theorem 3.7 now follows:

Proof of Theorem 3.7. We have already noted that the historical process for lattice trees
is a special case of the general framework in this Section, that Condition 3.3 was verified
in [20] with ¢ = 1/4 and & = 1 (see Lemma 3.12 below), and Condition 3.4 holds
by (1.6). Proposition 3.11 shows the last hypothesis of Theorem 3.6 holds with Dy =
Lip;. Dy is a determining class because it includes appropriate multiples of all finite-
dimensional Lipschitz continuous functions. The result now follows from Theorem 3.6.

O

One can also prove the analogue of Theorem 3.7 for the branching random walks
in Example 3.2, where the analogue of Proposition 3.11 yields easily to martingale
methods, but the convergence results here can be readily proved as in [24, Chapter II].

3.2. Tightness for lattice trees. The goal of this section is to prove Proposition 3.11. For
lattice trees, we will use the modulus of continuity in the following form:

Lemma 3.12. For each n € N there exists a random §, > ’l and a constant ¢ > 0
satisfying nP(8, < p) < cp for every p € [0, 1) and every w € W (the system of
ancestral paths to points in the tree)

52— s1] < 8 = (Wl — w| < c(lsy — s1"/* +n7 1),

Proof. Apply [20, Theorem 6] with « = 1/4. The fact that we can take 6, > l follows
from the finite-range assumption on the lattice trees, which gives |w§'}n w! ( l 1 /n| <
Ln~Y2 < Ln=14 and so allows us to replace 8, with §,, v (1/n). O

The other main ingredient we use is a bound on the fourth moments of the increments
of the total mass:

Proposition 3.13. There is a y > 1 and for any T > 0, there is a c such that for all
n € Nandall 51,52 € (Z+/n) N[0, T],

nE[(HS (1) = H{" ()] < erlsa =11
The above is condition (ii) of [11, Theorem 2.2] with k& = 0 and is verified in that
reference (see [11, Theorem 3.3, Lemma 3.5, and Section 7]).
For w € D(RY) and t > 0 let w' € D(RY) be defined by w! = wjs,, and for ¢ €

Lip; let ¢’ € Lip, be defined by ¢’ (w) = ¢ (w'). Define 7," = n=1/27T,,. We will use
7;(”) as our index set for w™, as in (1.2), and so depart from the notation in (3.4).

Lemma 3.14. Let §,, be as in Lemma 3.12, and assume that 0 < v < t| < tp satisfy
fh —v < 5 (w).
Then for ¢ € Lip; andi = 1,2,

|H" () — H" (@")] < c((ta — ) + 07 H X (1) v X2 (D).
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Proof. Note that H" (¢') = H"(¢) (recall (1.1), (1.2), and (1.4)), and therefore for #;
and v as above,

A
|

H (@) — H" (@) < = > |op(w . x) — (. x))")|

xe'];’,(")

S w0 — @, )|

XG’Z;:’I)

IA
|

sup [w(t, x) — w1, x)|
)se[v,ti]

S| o

xe'T,l.("
<c(ti — v +n7VHX ),
where we have used r» — v < §,, and Lemma 3.12 in the last line. The result follows. O

For a lattice tree T’ containing x (and 0), let T, denote the tree consisting of all
vertices that are not descendants of x. If x ¢ T then let Ty, = &. Let F, = 0(Ty,).
Let T, denote the set of lattice trees containing the vertex x. If x € T, let R (T) € Ty
denote the descendants of x in T together with x and all the edges joining them (if x ¢ T,
let Ry (T) = @), and let R, (T) — x € T, denote the translation of R,(7T") by —x.

Lemma 3.15. For x € 74, for every Borel measurable ¢* : T, — Ry, and ¢ : {(x, R) :
x € Z4 R € Ty} — R, defined by ¢(x, R) = ¢*(R — x) a.s.

E[o(x, Re(T))|Fpx] LiveT) < pEI@(0, T jxeT)-
Proof. Let *(R) := L{rer), where F C T,. For § such that P(x € 7, 7Ty, = §) > 0,
Epx, R(T)|Tyx =S, x € T| Li7y,=5)LixeT)

-y E[L (g, (7)-xer) 11Ty, =5) LixeT,)]
B P(Tyy=S.xeT)

L7y, =5y LixeT)
nely

By [20, Lemma 9.4] this is at most

Bz, =51 (xe7n)]
P(T}x =S5,x¢€ T)

pP(T € F) Z Ty, =5t LixeT) = PP(T € F)Iy7, —5y1(xeT)
n

Summing over S gives
E[o(x, R (T))|Fpx] Liver) < pP(T € F)1jsery-

The right-hand side is equal to pE[¢(0, 7)]1 7} as claimed. Use linearity to get the
result for simple non-negative functions, and monotone convergence to complete the
proof. O

Assume 0 < v <1 <t and ¢ € Lip;. We want to bound

|HY (9) = Hy ()] < [Hy (¢) — HY (@) + [ HL (@) — H” (@)
+|H" (@) — H(@")]. (3.14)
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Lemma 3.14 will allow us to handle the first and last terms; the majority of the work

will be in bounding the expected 4th power of the middle term. For fixed n, T € T, and

x € n1274 1et RV(T™) = n=2R - (T) C T™ denote the subtree consisting of x
Jnx g

and its descendants. Write R = R (T™),

1
HL'(¢") - B0 = Y s, )~ Y ¢ (1, 21))")

(n) (n)
2€7T;, 21€7;,

Using the tree structure and v < t| < t, this is equal to

c%n Yo s @)= Y Y e )Y

€T HeTARY €T 0 eTWRY |
1
el DR (D DR ED DI
_xe'T,,(") 2 EZ;")ORE") 21 e?}f”)me (T)
1 (n) (n) (n) (n) (n)
== | 2 @) [T NRY - 1T NRY].
0 _xe,z—v(n)

Ifx € Z¢/n,let Ay, = ]l{xETvm)}(l?;;")ﬂRﬁﬂ — T OARYD. I Xy = (X1, ..., X)),
then

n v n v m l n n
(H (@) — H” (") = T ; ]]"[1¢<w“(v X)) H AL (B.15)
X e( n ym

Let 1%

o) - {XE%@)} and recall y > 1 is as in Proposition 3.13.

Lemma 3.16. Lete € (0, 1], K > 0and T € N. Thereisa Cx v > 0so thatforn € N,
0<p=<4alx e Zd/ﬁ, all ti € Zy/n such that 0 < t; < th < t1 + 1, and all
O0<v=t—-Kt—1n)

RE[IAY, /11| Far] = Crrle = P71 ) as (3.16)
Proof. By Lemma 3.15 with the function ¢*(R) = ||Rn(t2,v)| —|R P the left

hand side of (3.16) is at most

CrpE[|HL, (1) = H I |1,
= CnpE[ |, (1) = H (DIP| i, (1) > O[PCH, (1) > 017,

where we have used the fact that the integrand is 0 on {H,, o ’,(1) = 0}. By Jensen’s
inequality, this is at most

p/4
YHD (1) > o] 1

{x,v}

CnP(H" (1) > O)IE[|H‘”’ o(1) — H"
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r/4 1({”)

x,v}

< CnP(H". (1) > 0) (n*'P(H;I")_U(l) > O)’lnIE[|H,‘2”’_U(1) - Ht‘l’”_v(l)|4])

< Cr(nP(H,"

1—v

(1) > 0)' P4 (| — nHPALY

where we have used Proposition 3.13, and that, without loss of generality, 1o —¢; > n~!,

so[tr —v],—[tH—vl,<th—t+ n! < 2(tp — t1). Now use the uniform bound on
the survival probability from Condition 3.4 for lattice trees, to bound the above by

Ctr = )Py = rritaf)
Since t; —v > K (2 — 1) and [t — 1| < 1, this is at most
C.rlt — 0|57, ) < Cxrl — l‘l|%y7€1&),v},
as required. .
In proving our next result, we will make use of Lemma 2.13 with each #; = 1.

Proposition 3.17. Therearen, ¢ € (0, 1], andforany T € Na constant Ct, such that for
allp € Lipy, allty, tp € [0, T'] satisfying (2n)’1 <th—t) <1/2andv <t} —5(tr—11)*¢
(v may be negative), and all n € N,

nE[(H(@¢") = H" 6" )*] < Crl = n]™",
Proof. We first show that it suffices to prove the above for #; € Z, /n satisfying
<T, 1 <thb<n+1,andanyv <1 — (t — 11)°. (3.17)

Assume this result and let , ; and v be as in the theorem. Using #, —#; < 1/2, we have

1 1 1
[l -l =@ —t)+-=<-+-<1.
n~_ 2 n
In addition, using r, — #; > 1/(2n) we have
1
(2] =[] = (2 — 1) + - <3(r—n), (3.18)

which implies

1
(111, — (2], — (111 = 11 — i (Bt — 11))*

>0 =2 —1)—3t—n)°
>t —5(n —1)° > v.

The above inequalities show that our hypotheses (3.17) hold for [#;],, and the given v.
Using the fact that Ht(i"> = H[(tl,l-)],, we have from our assumed result, that

nE[(H(@#") = H{" 6" )] < Crilialy = (11" = €13 — )™

(the last by (3.18)), as required.
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So consider now only #; € Zy/n satisfying (3.17) and t» > #; (without loss of
generality). We first assume v < 0. In this case for all x € ’Z;i(”), w™ (7, x)V is the zero

path, 0, and so
H"(¢") = H" (¢°) = ¢ O)H" (1) = 0 X" (1).

The required inequality now follows (recall t; € Z,/n) from Proposition 3.13 and

pO)] < 1.

So assume henceforth that 0 < v < #; — (12 — #1)°. Forx € 7., and ¢ €Lipy, write
"y = ¢ (w™ (v, x)). Note that from (3.15) we have

Dy = nE[(HP(4") - H;;”<¢“>>“]

Al 3 M)

¥=(x1,x2,x3,x4) j=1

e(z?//ny*

1 (n) A (n)
_ —C4n3E[ 3 qb;’vA},v], (3.19)
0 Xe(zd/ )t

where A(") denotes the product of the indicators A(") v over the elements x; of the vector
X and ¢(") is the product (running over the elements of the vector X) of the @y, .

We’d like to condition A;’; von Fy,, inorder to extract a positive power of £, —¢ using
Lemma 3.16. This is complicated by the fact that there are terms in the sums where other
x; = x4. If we specify for which i this is true for then we will also have a constraint that
the remaining x; are not equal to x4. After conditioning we wish to restore the possibility
that these x; = x4 in order to recover a term of the form (Ht(z") (PV) — H,(I’” (¢V)) raised
to some power smaller than 4 and so derive a recursive inequality which will bound the
mean of fourth power of this increment. This results in an inclusion—exclusion argument
below. To shorten the notation we will drop the dependence on v and » in our notation
and also suppress the summation range of X.

In what follows, A; C [4] denotes the set of indices i for which x; = x4 (so in
particular 4 € Ap). Then letting A = [4] \ A1, and writing x(A) := {x; : i € A} and
x4 for the vector X with coordinates restricted to A, we have

Dy =nCyt Y [z% s X elal]

A1Cl4]: Xpc x4¢x(A])
4eA

where in the case A = [4] we interpret the term in the expectation as y - ¢4 A4

Taking conditional expectation with respect to Fy,, and using the fact that (for
Xi 7 x4), Ly, 0105 Ay, 1S f}x4-measurable (asis Ly,,v)¢x,) wWe have that Dy is equal
to

ncgt Y [Z@Ac T > ¢L§‘1E[AL§1'|@X4]}

A1C[4]: Xpc X4¢x(AS)
4eA;
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Interpreting the empty sum ) . Jex(AS) S Zero when A{ = @, we can write the above as

_3C04 Z Z¢XA° XAL fo)IA”E[AlAIH}—}m :| (3.20)
AiCl4]: xAC
4e Ay
_3C —4 Z |:Z¢XAC XAC Z ¢|A1E[AA1||]:;£x4]i| (3.21)
Ai cl4]: xA¢ x4€x (A7)
€A}

Note that |A| + |A{| = 4 and reason as in (3.19) to see that (3.20) equals

c > E[(H“”«p) H" (" ))'A'qu'Al‘nE[(A /n>'A1|f¢X4]],

ArCl4]:
4eA;

which, by Lemma 3.16 and |¢| < 1, is bounded in absolute value by

C Z E|:|Ht(2”)(¢v) _ Ht(lrl)((pv)'IAfl Z H{X4,v}i||t2 _ tll(y‘All/‘L)_E-
A C[4]: X4
4eA

Expressing the sum over x4 in terms of H” (1) this is equal to
C Z nE|:|Ht(2n)(¢U) _ Ht(ln)(qsv”ATlHén)(l)] Ity — t1|(}/‘A1|/4)—8‘
A1Cl4]:
4eA

By Holder’s inequality this is at most

(“-|ATD/4

w v . |AS|/4 ) e )
c Y nE[IHD@" - HY @O E[H )] _ s
AjCl4]:
4eA,
<C Z DIA \/4 tl|y\A]|/47£(n]EI:Hsn)(l)4/(47|ALI‘D])(4*|A§|)/4.
A C[4]:
4eA

Note that forb < 3 we have that for H > 0, H*/“4=%) < H+H* Since nE[(H{" (1)) ] <
C,r for each r € N (by Lemma 2.13), this shows that this quantity is at most (C may
depend on T throughout)

|A{1/4 All/4)—

C Z D41 |t2—t1|(yl /4 €
AiCl4]:
4eA,

We turn now to the quantity (3.21), and it is convenient to introduce further notation.
For sets A; C [4], let B; = U’jzlAj. In particular By = Aj. Thus (3.21) is equal to the
negative of

n3cgt Y [Z% Az Z 1 X4€x(3c>}¢x4l'E[A'Al|J—‘;;x4]]. (3.22)
AC[4l: b Fpe
4eAq 1
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Abusing notation by writing x (A) = x to mean that x; = x foreachi € A we can write

Liger) = D Liw(an=va) Ligess)s
A>CBY:
Ar#D
which is simply the statement that x4 € x(BY) if and only if the set A3 := {i € [4]\ By :
X4 = x;} is non-empty. Thus, since x; = x4 fori € A in this expression, (3.22) is equal
to

n3c4 A A
G' ) D E Z‘%«AxscZﬂ{x4¢x<32>}¢X42‘A' AE[AG Fy, }

A1C[4]: ApCBf: ch
4eAy Az;ég

(3.23)

where we have also used the fact that ¢;B§. = q&;Bg ¢;A2 = ¢;B§. ,'sz‘, and |Az| + |A(] =

|B>]. In the case B = & the term in the expectation in (3.23) should be interpreted as

A A
Zx4 ¢x4A| Z‘E A‘ l||f x4
We can again condltlon on f?;x4 to see that (3.23) is equal to

P OID IR Do W SR ERCIE|

A1C[4]: Ach‘ Xpe x4§éx(B‘
4€A1 A2#g 2

Using inclusion—exclusion in the sum over x4 this can be written as

2
n3cgt Yy E[ZQSWAWZ@BZHE[AL@H@M]} (3.24)
i=1

A1C[4]: AyCBY:
4e A, Az;ﬁﬂ
2
et Y Y [Z% B D ¢L§2'HE[AL?”|@M]] (3.25)
A1C[4]: AyCBf: pg x4€x(BS) i=1
4e Ay Az;ﬁ@

where the sum over x4 in (3.25) is interpreted as 0 when BS = @. The quantity (3.24)
is equal to [reasoning as in (3.19)]

2
C c )
> —E[(H,;'“w")—H;;”(¢“)>'BzZ«pL(fz nE[(AM/n)'Al'm;;M]]
A1C[4]: Ay CBf: X4 i=1
4e Ay AZ#Q

We have also used |BS| + |A1] + |A3| = 4 to get the correct powers of n. Using Lemma
3.16 again as before, we may bound the summand (in absolute value) by

CE[ |1 (@) — H}(@" )|'B"H<">(1>]]"[|rz n|AVTE T (3.26)
i=l1
_]|

<n 1 — t1|(y‘32‘/4)_2€DLB§|/4, (327)
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where we have again used Holder’s inequality, Lemma 2.13, and 21-2:1 |A;| = |B>]
since A1 and A are disjoint. As in (3.23), the negative of (3.25) is equal to

A1C[4]: AyCBY{: A3CBS:
de A,

2
2R 5| Stugtng T ¢'B3'Ax’23'HE[AQ"'WM]]
Az;ﬁ@ A#@ 5§ X4¢x(B i1

where if Bj

D d)i‘ A

= @ the term in the expectation is

interpreted as
li\" ]_[ - ]E[AlA ‘|}'>;x4]. Conditioning again, this is equal to

Xpc
By

B A;
EED VD D O DI SRR | CEIE)
A1C[4]: ApCBf: A3CBS: x4¢x(B3

AAl Mo Ay

3
BT T T e S Dol [t i

ACl4]: AzCB A;CB i=1
YAl MytD At

]i| (3.28)

XB(

A C[4]: AyCBY: A3CBS:
4eA,

3
SIS 3D o D ol SSHD DI | EECIE]

ch x4ex(B3) i=1
Az#@ As#@

(3.29)
As in (3.26) and (3.27), the term (3.28) is bounded in absolute value by

3
=IO DD nE[|H;”(¢)—H,i"><¢“>|'3§H,5"><1>}1"[|tz—my'f‘f'/48
L=y er i=1
€Al Myt0 Ao

= _2 Z Z Z DJ‘Bé.‘/4|t2 —t1|y‘B3‘/4_38_
n

A1C[4]: ApCBf: A3CBS:
€A Ay#tE AsHO

Since in (3.29) BS can contain at most one element, the sums over X BS and x4 € x(B3)

therein reduce to a sum over x4 (with X BS = x4). After conditioning again we get that
the negative of (3.29) is equal to

4
)IED DD DD E[Z@f“'HE[ALﬂ"Iﬂéml],
X4 i=1

(3.30)
A C[4]: A2CBS: A3CBS: A4CBS:
1€AL My#£T A3EOD AgFD
where we note that if this term is to be non-zero then each |A;| = 1, and in particular
B4 = [4]. By Lemma 3.16 and then Lemma 2.13, (3.30) is bounded in absolute value
by

n% Y YT [Z]l{mv}]l_[|t2_tl|V|A,~|/4—s

A C[4]: A2CB{: A3CBS: A4CBS: i=1
YAl Moits MpD At



Historical Lattice Trees 475

S DD D SRS

A|C[4]: AyCBY{: A3CBS: A4CBS:
€A1 Ay£D A3£D Ag#ED

After dropping some negative powers of n, we have shown above that

3
Di= €'Y Dl a0,
£=0

Thus, letting d = D4|t, — 11197 and recalling that |/, — #1] < 1, we have

3
d=<C Zd‘/“.
=0

Recall that Dy is finite by Lemma 2.13, and so from the above, d < C = C(C’), and
therefore Dy < Clt, — 11]7 ~16¢. Choosing ¢ < (y — 1)/16 completes the proof. O

For v < 0 define ¢V = ¢* so that ¢” = ¢*".

Proof of Proposition 3.11. Let¢ € Lip; andny — oo. Forafixed sp > 0 we must show

. ()
that {n;} has a subsequence {n}(} along which ]P(H. K(p) e -|S(”;<) > so) converges
weakly to a continuous limit. The argument remains unchanged if we assume ny = k,
and to ease the notation we will assume this. So our goal is to show that

{P(H™(¢) € -)|S™ > s0) : n € N} has a weakly convergent
subsequence in D(R;, R) to a continuous limit. (3.31)

For T € N, define
XP(1) = sup X{"(1).

t<T

Now fix T € N and assume
H,tel0,T],0<t, —1; <1 and H—5n-—-1n)°<v<rn, (3.32)

where ¢ is as in Proposition 3.17; note that v may be negative. Recall from (3.14) that

2
HY @)~ HY @) < [ 3011 @) = B @]+ 1H 6" = HP @M. (3.33)
i=1
Note that (3.32) implies t) — vt <1, — v < (t2 — 11) + 5(ty — )¢, and so if 8, () is
as in Lemma 3.12, then Lemma 3.14 (applied to v* > 0) together with the facts that
¢’ = ¢" and 1, — 1; < 1 show that

(2 — 1) +5(ra — 11)° < 8, implies
2
SIHT($) — H" (@) < CXPH (DIt — ) + 0714, (3.34)

i=1
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Ifn > Oisasin Proposition 3.17, let no = n/8. Proposition 3.17 shows that form,n € N
satisfying

1
m < (logyn)+1, thatis, 27" > —,
2n
then, by taking a union bound overk € Z, : 0 < k27" < T +1,
(n) (k27™m—5.2—mey+ (n) (K2~ —5.2-mey+ _
nP(OSkSngg)((T.H) |H(k+])2_’" (¢ ) - Hk2—111 (¢ )} > 2 m’l())

< 240 (T 4.2)2M Cp 2N = ¢h =m0/,
By a union bound there is an M(()")(a)) € NZ2 5o that
forall M > 2, nP(My" > M) < Cr,2~M"/2, (3.35)
and for all m € N satisfying M(()") <m < (logyn) + 1, we have

n —m _g.n—mey+ n —m__g§.p—mey+ —
‘ (n) (¢(k2 52 ) )_Hliz)—m(qb(kz 52 ) )’ < 2 mr]o-

max H _
0<k=<om(T+1) ! (K+DZ7"

Set n1 = (¢/4) A no > 0. Combine the above bound with (3.34) and use it in (3.33)
(with T +1 in place of T in the latter two) to see that for all natural numbers m satisfying

1 (n)
— <27 <2™My and 6-27¢ < §,,,

2n
we have
(n) (n) (n) * —me/4 —1/4 _
0o T HE 00 @) = HS (@) = 2CXT,T (DT n ™ 270
< (6CXP, (1) +1)27mm, (3.36)

Setm, = [(logyn)+1]and T, = {j27" : j € Z,+ N[0, (T +1)2""]}. Lévy’s binary
expansion argument and (3.36) shows that if

(n)
t,theT, and0 <t —1, <2 M0 A (5,/6)°,

then
|HY (@) — H" (@) < C(X5, (1) + Dt — 11]™. (3.37)
1

Since o < %, for any t € [0, T] we may choose {t}, € [[t],,, [t], + %) NT,. Let
1 o
5 =@M A 8,/6)7).

Letf, 12 € [0, TINZy/nbesuchthat 0 < o — #; < §),. Then |t; — {t;},] < 1/n <
|t — t1], which implies that

2 (n)
{2l = {0l < 2 =11 + = <3l — 1| < 27Mo" A (8,/6)VE.
Thus (3.37) holds for {f2},, {t1},, that is,
[H{, () — HIYy (@)] < CX0," (1) + Dk, — {t1)al™

< C3N (XY, () + Dl — 1|,

+
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Now use the fact that H," (¢) = H{(tni)}n (¢) for i = 1, 2 to conclude that:

forallt; <t € [0, T] N (Zs+/n) suchthatt, — ] < 8;, we have (3.38)
|HY ($) — H"(@)] < Cr(Xy, (D) + D — 1], (3.39)

Next use Lemma 3.12 and (3.35) to see that for r € (0, %), then

nP(8, < r) < nP(My" > log,(1/3r)) +nP(8, < 6(3r))
< Cr.,(3r)"? + ¢6(3r)°
<C} nrsA(n/Z) < Cjr™. (3.40)

Our objective now follows easily from (3.39) and (3.40). Let {I:I,("), t > 0} be the
continuous process obtained by linearly interpolating {H](.';)n (¢) : j € Z4}. It follows
from (3.38) and (3.39), with T+ 1 in place of T, that for some C.,

1
ifty <t €[0,T]and (f, —1;) V — < 8, then
n

|HY — B < CR(XP () + DI — ™. (3.41)

+

Fort, — 11 > }l this is an easy consequence of the triangle inequality and the fact
that ), > % For0 <t — 1 < %, either [#1], = [f2], and the linear interpolation
and 8, > 1/n easily give the desired bound, or [r2], = [f1], + 1/n, and the triangle
inequality gives

|+ [ Hjp)

7 (n) 7 (n) 7 (n) 7 (n)
|H, — H,"| < |H,,” — H (121

7 (n)
[£2]n — Hy'l

which leads to the required bound using the linear interpolation and 8, > 1/n again.

Recall that [¢| < 1 implies |I-I(()")| < ﬁ We now fix T € N, and for §, M > 0,

define a compact set of paths in C = C([0, T'], R) by
Ksu = {weC:lwl < CO_1 and Vi1, 1, € [0, T, if |to — t;] < & then
lwi, — wyy | < Cp(M + D[t — 11"},

Compactness is clear by the Arzela—Ascoli Theorem. Recall that s > 0. It follows from
(3.41) and (3.40) that for small enough §; > 0 and large enough My, n; € N,

. 1
nP(H™j0.11 ¢ Ks.p, S™ > s0) < nIP(X%*(L) > M, 8" > s50) +nP(s), < ~V 8)
<27% if§ <8, M > My, andn > ny. (3.42)

Here we are using the tightness of the maximum total mass processes from [11, Theo-
rem 1.2 and Corollary 1.3]. By further decreasing §; and increasing My we can realize the

boundin (3.42) foralln € N. It now follows that for the compact sets K,,, = ﬁ,‘:i o Ko, My
we have ~ .
forallm,n € N, nP(H"|j0,71 ¢ Km, S™ > s0) < 2l=m (3.43)

We use the lower bound on the survival probability from (3.8):

P(S™ > s50) > c((nso) v ).
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Combine the above with (3.43) to conclude that for all m,n € N,

_ P o1y ¢ K, S > 50)
- ¢/((nso) v 1)
< ¢ 'nso+ DPH 10,71 & K, S® > 50)

<c Mo+ D27

P(H™|j0,1) ¢ KnlS® > 50)

This shows that {P(H™ € -|S™ > s9) : n € N}istightin C(R,, R) and so by Prohorov’s
theorem is relatively compact in C(R4, R). This implies (see, e.g., [8, Proposition 10.4
in Chapter 3]) that {P(H"(¢) € -|S™ > s¢) : n € N} is C-relatively compact in
D(R,, R), proving (3.31), as required. |

4. Proof of Proposition 2.11

The goal of this section is to prove Proposition 2.11. The proof is a modification of that
of [17, Theorem 4.8], so we will not give all of the details here. Instead we will indicate
the main ideas of the proof, and refer the reader to [17] for various details.

For f € ¥,,[17, Theorem 4.8] proves Proposition 2.11 in the simplified setting where
Jje = 1 for every e € E£(F). In that reference (and with j, = 1 for each ¢) the quantity
t:gf )(-) is written as fN(F,ﬁ)(’)’ where NV (F, 1) denotes a skeleton network consisting
of inserting 71,1 — 1 vertices into edge e, for each e € £(F ). The quantity p’lfN(F’;,)
then encodes (in Fourier space) the probability of our random tree 7 connecting the
origin to r specified space—time points with the spatial and temporal locations of the
branch points, as well as the “shape” of the connections also specified (consider the set
T, ¥, i) in the case where each j. = 1). In our paper j, need not be equal to 1. In
this more general setting, f;f >(-) encodes (in Fourier space) the probability of a subset
of the above event, where now the spatial locations at various other fixed times are also
specified. The appropriate skeleton network is now a marked skeleton network N'* (see
below), where certain vertices on the skeleton network A/ at fixed times (graph distance
from the root) are marked.

The approach in [17, proof of Theorem 4.8] relies on the so-called lace expansion and
involves an inductive argument (on r). To be more precise [17] uses the lace expansion
on a tree network (introduced in [15] for networks of self-avoiding walks) in the context
of lattice trees, with the expansion applied at the closest branch point to the root in
the network N. The expansion gives rise to certain diagrams that involve lattice trees
connecting or intersecting in various ways. Some of these connections are of fixed
temporal length, and others are of unrestricted length. A crucial part of the analysis
involves bounding these diagrams. The bounds depend on the complexity of the diagram,
as well as the total temporal length in the diagram. Diagrams where either the complexity
or the length is large give small contributions (recall that we are in high dimensions), as
they are asking for either lots of intersections, or for intersections to occur over a large
distance.

The point of this discussion is that, in our setting, when j, need not be 1, one can
perform exactly the same expansion. It turns out that there are essentially no new dia-
grams to deal with in our setting. Below we introduce the definition of a marked skeleton
network (see also Fig. 10) and then proceed in the following subsections to expand the
above outline of the proof of Proposition 2.11.
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marked edge
—

root

Fig. 10. An example of a marked skeleton network from a shape f € X4. Branch points and leaves are W,
marked points are x

Definition 4.1. Given / € X, and 1 = (11¢,i)ie[j,],ecl2r—1] Where jo € N for each
e € E(F), define N*(F , i) to be the marked skeleton network which is obtained from
F by

e inserting j, — 1 marked points into edge e of [ for each e € [2r — 1], thus each
edge e in / becomes a path of j, edges, called marked edges, which are labelled as
(e, i) fori < j,;and

e inserting 71, ; — 1 vertices into every marked edge (e, i), so 7o, € N denotes the
length of the marked edge (e, 7).

Write E(N™) for the set of marked edges of A'*. Marked edges are adjacent if they
share a vertex in common.

The branch N} of N'* associated to an edge e of F is the set of vertices of N'*
consisting of the endpoints of e together with all points (marked or not) inserted
into that edge as per the definition of A/*. The set of branches is written B(N*) :=
(Neee(r)- Two distinct branches ;" and NV} are adjacent if and only if they have
a vertex in common (equivalent to e and ¢’ being adjacent in f ).

A special point of N'* is any marked point, branch point or leaf. |

Remark 4.2. The sets of (all) vertices and edges of a marked skeleton network N
will be denoted by N'* and E(N™) respectively (note the abuse of notation that N
denotes both the marked skeleton and its set of vertices). The cardinality of E(N™Y) is
#EWN') =3 cr leezl fe,i and the number of vertices is 1 larger. All special points
are also vertices of A/, while marked edges should be considered as distinct objects

from edges, even for marked edges (e, i) such that 72, ; = 1 (note that we have thus far
specified a labelling scheme for marked edges, but not edges). The set of marked edges
of Nt is E(NY). *

4.1. Asymptotics of the detailed 1-particle transform. For the case where r = 1, there
exists only one shape in X; which consists of a single edge e. In this case, we use
the notation [11, ..., 71¢], for (17;)i<¢ € N¢ with £ > 0 to designate the corresponding
marked skeleton network (containing no branch point) with 2 = {7, 1, ..., ie ¢}.

One of the main results of [18] (see Theorem 4.3(ii) of that reference) can be refor-
mulated as the following proposition (the error terms are not stated explicitly in [18,
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Theorem 4.3], but if we keep track of them we get the following result), which is the
r = 1 case of Proposition 2.11:

Proposition 4.3. Fix d > 8. There exists Lo(d) > 1 such that for all L > Ly:
For each § € (0,1 A %), R > 0, every £ € N and (nj)i<¢ € N¢ and for any

ke [—R, R1® we have, for the unique shape | € %1,

¢ S1-
; 1 v n.
(“( ) CAHe 5 o0 Y +O(|k|22’ )
~ "7 . n

i=1 n;

where the error depends on R, 8, L, d, £, and any lower bound on min; <, n; /n and
upper bound on max; <¢ 1; /n.

Note that in [18] each 7; is of the form |nf; | — |nt;_1], where 0 =1y < 1] < --- <
t¢ < t* and where the error term depends on min{¢; — #;_} and ¢*.

4.2. Lace expansion. We will use the lace expansion (and induction on r) to reduce our
required estimates on a shape in X, with » > 2 to the shape in X1. In the following we
let V¥ = N*(F, i) for some F € %, and some 72, where r > 2. Since each 71, ;/n > ¢
in Proposition 2.11, for fixed ¢ we may assume that n is sufficiently large so that each
Te,i > 2 in what follows.

Definition 4.4. If N'* is a marked skeleton network, we say that M™ is a marked sub-
network of N* and write M* C N* if

e as a graph, M™ is a (connected) subgraph of A'*, and
e the marked points of M are those vertices in M* that were marked points in A/*
(i.e. marked points are inherited from N').

As usual we also write M™ for the set of vertices of the marked subnetwork M™*. <«
Definition 4.5. Let M™ be a marked subnetwork of some marked skeleton network A/*.

1. A bond vv' is a pair of distinct vertices v, v" of M*. The set of vertices in the unique
path in M™ from v to v’ is written [v, v']. We say that the bond vv’ covers the vertices
in [v, v'] (and the edges therein). We write vv’ € M™ to mean that vv’ is a bond in
M.

2. A graph on M* is a set of bonds and we denote the set of graphs on M* by G \¢+.

3. Let R aq+ denote the set of bonds in M™* that cover 2 or more special points. Fur-
thermore set g Y ={T € Gpgr, TNR A4+ = B}, i.e. the graphs on M™ that do not
contain any bond in Raq+.

4. A graph T € Gq+ is said to be connected on M™ if every edge of M™ is covered
by some st € I'. Let G{f\ be the set of connected graphs on M*, and G, ~R.con
G N Gri M

. leen [ € Gagr and A C M, we define T'| 4 = {vv' € T, v,v' € A}.

6. For a vertex v € M* and ' € Gaq+, we let A, () be the largest connected sub-
network A of M* containing v and such that I'| 4 is a connected graph on A. In
words, this is the connected component of covered (by I') vertices containing v. By
convention we take A, (I") = {v} if no bond in T" covers v .

9]
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Fig. 11. A graph I on a marked skeleton network N/'*, with b denoting the branch point nearest to the root.
The rightmost bond is in R since it covers two special points. Also, I' € Sj’\ﬂ since Ay (") (highlighted)
contains a neighbour of a marked point

7.Ifv e N, we let g}{/q_ denote the set of graphs I" € Gar+ such that A, (I") contains a

vertex adjacent to some special point # # v of N, and EX/-?‘” = g;]} NERr- See
e.g. Fig. 11. <

In this section, for a bond vv’ € N'*, U, will denote a quantity in {—1, 0}. Observe
that (with R = Ras+),

[To+vwl= JI 0+vw1=( [T o+vw1)(1= T 0+0w1).

v eN+ v eNH\R v eNH\R v eR
4.1)

Definition 4.6. For m € Zi we write S;; for the (unmarked) network consisting of paths
of lengths (m j)j.= | respectively meeting at a common vertex. If exactly i of the m ; are
strictly positive then this is a star-shaped network of degree i. The case i = 0 is a single
vertex. The central point of S is the common vertex of the 3 paths. |

Definition 4.7. For a marked skeleton network Nt = N'*(F , i) with F € £, for some
r > 2, let b denote the branch point lying on the same branch as the root. Let Sy be
the largest subnetwork of Nt containing b and which does not contain a neighbour of
any other special point of N'* <

Remark 4.8. If T" € QX/} \5Jb\/—+ then A (I") is a (connected subnetwork of a) star-shaped
network of degree at most 3 (since f € X, withr > 2). *

Definition 4.9. If V't is a marked skeleton network and A C Sﬁﬁ with b € A, then the
vertex set N\ A (with the edge structure and marked points induced from N'*) consists
of exactly three marked skeleton networks (each of which is connected) that we write as
(Nt \ A); fori = 1,2, 3. Those three subnetworks together contain all special points
of N'* except b. <

For a subnetwork A C N¥, let K(A) = ZFEQ;‘R [ I ;er Us:- Then we can write
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KNY = > ] U

Feg;v?f stel’
3
= > X MwIll X TIlou]+ X Io
ACSX[Jr Feg;’R,con stel’ i=1 rieg(j\’/['a‘*'\A),- v U,{EFI‘ FESX/’T’b stel
beA
4.2)
with the convention that ZF,- e Zv'_ vl v, o = 1. In words this decomposition says

that the set of graphs I on A/ containing no bonds that cover two or more special points
consists of (i) those graphs I" for which the induced connected subnetwork containing b
also contains a neighbour of some other special point (this is the last term in (4.2)) and
(ii) those graphs I" for which this induced subnetwork does not contain the neighbour of
another special point. For (ii) the induced connected subnetwork is some set .4 contained
in 8,7, so we can first sum over the possibilities for A and then sum over connected
graphs on A and graphs on each (Nt \ A);. Introducing

JA= Y []Us

reg;’l{,con stell

then (4.2) becomes

3
KN = Y JAOTTEWNA)+ Y ] U 43)
ACS 4 i=l l“eé';;f‘b stel
beA

4.3. Application of the Lace expansion. Given Nt = N*(f, i) for some f € X%,
(r = D,and it = (fei)ielj,],ecl2r—1] € NEWVY and given y = (Fe,)ieljolecl2r—1] €
(Zd)E(N +), define ta+(y) = t’gf )(S’). This notation will help us deal with various
subnetworks. Recalling (2.22), we have

I+ (§) = Z W (T).
TeT(1.y)
Definition 4.10. Given A'* and y as above, we define Qar+() to be the set of embed-
dings @ = (w(s))sepn+ of N into 74 such that

1. the root is mapped to 0,

2. adjacent vertices in N'* are mapped to points in 74 at (£o) distance at most L from
each other.

3. the endpoint of the marked edge (e, j) that is farthest from the root (this endpoint
is necessarily a special point) is mapped t0 >/, Zkgjf Yk + D g< Ve for all
ec[2r—1land j < j,. ' <

For a collection of lattice trees (Ry);ear+ and for a bond (pair of distinct vertices) st
of N'* define

0. ifR,NR, =9,
Uy,z{ TR, R =0 (4.4)

—1, otherwise.
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Definition 4.11. Given x € Z9, we write ) ., to denote a sum over lattice trees R
containing the point x € Z4. <

As for [17, Eq. (4.17)] we can write

M= > W Y [ w®w) [] 1+U]. @5
weQpr+ (¥) (Ry)gen+:  teN+ uu' eN+
Rysw(s)VseN™*

as any combination (w € Qar+(¥), (Ry)sen+) such that the R are mutually avoiding
lattice trees, uniquely defines a lattice tree T € T(F , 1, y) and vice versa. Here, Ry is
the tree hanging off the vertex s € N'*. Note that in the shorthand notation of [17] (4.5)
would be written as

=Y, W [[ Y WR) [] 11+Uwl (4.5)

weQpr+(Y) seN™* Rysw(s) uu' eN*

Recalling Definition 4.5 and (4.1), we set

oR= > we Y JTw)( T 0+vwl)(1= [T 11+0w1).

weQpr+(9) (Ry)gepr+:  teNH uw’ R weR
Ryw(s)VseN™

4.6)
which is 0 unless U,y = —1 for some vv’ € R, and (recalling the last term in (4.3))
¢§7\/+(5’) = Z W (w) Z 1_[ W(R,) Z l_[ Uyy.
0EQpr+(3) (Ry)senr+:  teN* reg Reb vv'el
Rysw(s)VseN+ N

By (4.1) we have

@@= Y W Y J] WRIKW) = 6% ()
wE€Qpr+(Y) (Ry)gep+:  teN™
Ry3w(s)VseN*

and by (4.3)
In+(Y)

3
= > W Y JIW®R) Y TWD]]E@W\ A

weQpr+(F) (Ry)gepn+: teN+ AcST.., i=1
Rsaw(s)g‘v’se./\/’+ beﬁﬁ
+ R (F) — R (3). 4.7)

This decomposition is related to Fig. 11 where, loosely speaking, the term in J
corresponds the interactions induced by bonds around the first branch point and the
three terms in K correspond to three new smaller networks. Some notation associated
to this decomposition is introduced in the next definition.
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Definition 4.12. For a marked skeleton network N/*, let é;, ¢2, €3 be the three marked
edges incident to the branch point b. Note that each for k = 1,2, 3, &, = (e, ix) for
some e, € [2r — 1] and some iy € {1, jg,} (this marked edge is necessarily the last
marked edge on the branch containing the origin and the first marked edge on the other
two branches containing b).

Given m = (mk)k , such that 0 < my < 71z, — 2 where ﬁeA = Rei k= 1,2,3,
we define (V' fn )k=1.2.3 as the three components of N'* \ S;; as in Definition 4.9 (recall
Definition 4.6, and note that each N + - is itself a marked skeleton network). Since each
my < Ne i there is a bijection between marked edges of /" and the marked edges
of (/\/k -)k=1.2.3- The marked edge ¢ is split between S;; and N i , but we will abuse
notation by retaining this label to refer to the corresponding truncated edge in both
components.

Set E*(N; ) = EW; )\ {&). For k = 1,2,3, write #”* € NEY) for the
vector whose components encode the lengths of marked edges in /\/'k+r71, ie.

|

Similarly for y € (Zd)E(N+), k € {1,2,3} and vy € Z¢ we write jlvk’k e (zZ%)
for the vector whose components are

S«

; if & e E*(N{ ),
g—(mk+1) iféZék.

AT

7

ENSR

é Vs — v ifé = é.

juk _ iyé ifé e E*(N 5,

<

Let it := (11g,, gy, Nz,) be the lengths of the marked edges adjacent to b in N'*.
Define

v

- ng, “
a0 ={m : OSmkST/\(nék—Z),kzl,Z,?)}
{m

il
I

Ofmkfflék—Z, k=1,2,3}\Hﬁb.

Remark 4.13. For m € H», we know that for k € {1,2,3} and ¢ € E(N, ) we have
%;lé < ﬁ?’k < 1y (with ﬁ?’k = 71 whenever ¢ € E*(N!.)). In particular, recalling that
there is a bijection between marked edges of A/ and the marked edges of (V, ,: rh)k= 1,2,3»
we can see that for any a € R there exist c(a), C(a) > 0 such that for m € Hyp

3
c(a)z > ke < Yoo tzc@d Y

k=1¢cEWN} ;) SeEN*) k=1¢cEWN} ;)
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Finally, we set

PM=>Y W Y. J]W®R) Z J(S)]_[/C

wEQN+(j’) (Ry )AEN+ teN+
Rydw(s)VseN* Tt

and (noting the change to the sum over 1)

o= > W > J]ww) > J(Sm)l_[/C

weg/\/*(j’) (Rg)gen+: teN+ meH. b
Ry3w(s)VseN+
4.8)

From the argument above and (4.7), we can see that

IN+(F) = O (D) + BT (9) + R (9) — 95 (3). (4.9)

The last three terms are error terms. The relevant estimates (bounds) are given in the
following lemma, whose proof (which is very similar to the corresponding error bounds
in [17]) will be presented in Sect. 4.6.

Lemma 4.14. Fix d > 8. There exists Lo(d) such that for all L > Lq and for a marked
skeleton network N'*,

2r—1 Je

Sk =0(X > VdT) (eR)
y e=1 j= ln e.j
2r—1 Jje
Z |¢;\T[+(S’)‘ = ( L) (e:r)
y e=1 j= 11 2]
2r—1 Jje |
Z ‘¢N+( ( Z @), (e:b)
e=1 j=1 ne,j

where the constants in the O notation depend on d and the number of special points in
N*.

We end this section by introducing an important quantity that will appear in the de-
composition of Q or+ and describes the interactions induced by the term 7 (S;;) in (4.8).

Definition 4.15. For m € Z3 and i € (Z9)? we define 75(i) = plii=oy and if some
m; >0,

maG)y = > W Y. ] WR)TSi).
a)EQSﬁl @) (R.V)SES,;,: teS;
Rs2w(s)VseS;;
where the set of embeddings Qs.. ;) is defined similarly to Definition 4.10: the root of
Sy (which is the vertex along branch 1 at graph distance m | from the central vertex - if
m1 = 0 this is simply the central vertex itself) is mapped to 0; adjacent vertices in Sj; are
mapped to points in Z¢ at distance at most L; and the central point is mapped to u and
the leaves on branches i for i = 2, 3 are mapped to u + up and u| + u3 respectively. «
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Remark 4.16. This definition of m;; is exactly the same as the one in [17] (Definition
4.12) and as such the results on this quantity, that rely heavily on diagrammatic estimates,
can be transferred directly to our context. %

Recall from (2.21) and the discussion thereafter that Cyy = p2V. The constant V
was defined in [17, (4.30)] as

V=2 > Y mal) =2z Y #a0). (4.10)

meZ3 ue(2d)3 meZ}

For N € N we define

aW@= Y Y we Y. J]w®)[[Uo J] (+Uw.

LeLW)(Sy) ©€Qs, iy (Ro)sesy:  t€S stel v’ eC(L)
Ry30(s)VseS;

4.11)
where L € L™(S;) is the set of laces on Sz with N bonds and C(L) denotes the
set of bonds which are compatible with L. We refer to [17, Section 2] for the precise
definitions, and give only a rough description here: A lace L on Sj; is either a minimal
graph covering S (i.e. the removal of any bond in L results in a graph that no longer
covers S;;) or one that is almost minimal (in this case there is a bond covering the
branch point whose removal results in a minimal graph covering S;;). There is a rule for
(uniquely) defining a lace L(I") associated to a connected graph I"' on S;. For a fixed
lace L the bonds compatible with L are those for which adding them to L results in a
connected graph I for which L(I'’) = L.

In our work we only need a few facts about 7T(N (), including the obvious fact that

73 (i) > 0 and that (see [17, (4.28)-(4.29)]) if some m; > O then
o
ma i) = Y (=DHNa ). (4.12)
N_
Equations (4.12) and (4.11) are the lace expansion. A key result about this expansion is

the following minor correction of [17, Proposition 4.13].

Proposition 4.17. Fix d > 8. There exists Lo(d) such that for all L > L there exists
a constant C > 0 (independent of L) and By (m) > 0 such that for all N > 1 and
= (1,0, 03) € Zi \ {(0, 0, 0)} we have for j € {1, 2,3},

D uiPr’ i) < CLPN?iilloo)? By (i), forq € {01}, and (4.13)

er(Zd)3

Z > BN(m)<—, and (4.14)

N=lrizm;>L; ( vz

Z 2 4,0 £ 10
Zsz I7llso By (71) < C x 1€l ifd # w5
N=1  p<i log(I€]leo V2) ifd = 10.

The correction is that the V1 and V2 are missing in [17, Proposition 4.13], but what
we have stated above is what is actually proved therein. Here we have also not included
the extra decay in L appearing in these bounds in [17, Proposition 4.13] as we do not
need it.
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4.4. Decomposition of Qnr+. By (4.8) we can see that Q nr+( i) (¥) can be decomposed
into 4 parts: the connected component S; of bonds stemming from the branching point
(term in 7) and the three subgraphs of N'* remaining after the removal of this connected
component (terms in K). These four subgraphs are not connected by any bonds by
definition of 7 and /C on the respective subgraphs. Furthermore the star-shaped subgraph
S;, contains the special point b, while all other special points are contained in one of
the other subgraphs. This means that our problem can be reduced to three independent
similar problems for smaller lengths. This reasoning translates into the following lemma
which can be proved exactly as for [17, Lemma 4.14] so we do not repeat the proof.

Recall the definition of y”*' and the marked skeleton networks /\/'l.+’;l in Definition 4.12.

Lemma 4.18. For a marked skeleton network N* = N*(F ,in) and y € (ZHEN),

o= > Y nm<u)]"[(ZDZD<vl—u>tN+ (3")-

meH,,b ne(Z4)3
For any marked skeleton network N'* (£, 11), we introduce the Fourier transform of
tn+ and Q ar+ for any k = (ke,j)je[je],ee[Zr—l] by
2r—1 Jje

vy = Y T TTe e,

ye(ZAEWN™) e=1 j=I1

2r—1 je

O = 3 T on.

ye@dHEWN) e=1 j=I1

Lemma 4.18 implies that

3 )
Onety =2 3 #a@) ] D)y @), (4.16)

n—’lE'H;,b i=1

vb v v v v
wherek = (k;,, k3, , k;,) (meaning the part of k corresponding to marked edges incident

to the branch point b) and k' denotes the vector of Iée, j corresponding to marked edges
e in ./\/l.+ﬁ1. Note that (4.16) is exactly the “marked” network analog of the unmarked
relation [17, (4.39)].

4.5. Proof of Proposition 2.11. The proof now closely follows that of [17, Theorem 4.8]
with obvious (and straightforward) modifications. We will present the main ideas, but
not the details. The goal is to prove that

» ( k ) pCllC2- 121r—[ll]—e[e—ag%’“7’
AN e=1 i=1
2r—1 Jje 2r—1 Jje ,;zﬁi;(s
ro(X ) ro(X )

) — =
n“ e=1 i=1
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From (4.9), our bounds on the error terms therein (Lemma 4.14), and (4.16) we have
that

) I; . l; 2r—1 Je 1
fN*(Fﬁ)(ﬁ) = QN*(%) +O(; ; @)
- 2 =N o )

4.17)

We proceed by induction on r for networks with shape /' € X,, using Lemma 4.3
for the initializing case (r=1).

Lets € (0, 1A 458 ) By the induction hypothesis applied to each N o (having r;+1
leaves, where ri = 1 and r, + r3 = r) we may write

3 l}j 3 , kz s
2 ~ 3,r—=2~2r—1 —0, ET
i () =reex | TT <] o
j=1 J=1=écEWNT )
where we recall that the notation 7”""/ was introduced in Definition 4.12. The error terms

in the above approximation are obtained from the induction hypothesis and Remark 4.13
(using the fact that nv /"is comparable to 71 i for some

j <3-sincem € th) We then use the fact that

(4.13) with ¢ = 0 and (4.15) of Proposition 4.17, and |l§| < 1 to get an error term in
(4 17) (when replacing the right-hand side of (4.18) with 725 in the exponent instead of

m.J ) of at most (’)(Z3 I k2 7117%7~1). For the relevant details of this part of the argu-
€j J

ment and in particular for the bounds on the error terms, one can look at the derivation
of [17, (4.56)].
Now D(kéj/ﬁ) =1+ O(lkg,.|2/n) and

vb 3
. A P )
) — A O] = LSS P,

j=1 u

which, when summed overm ; < ne ,j=1,2,3, glvesatmostCL2 _1|k |2 Z] 1 n Vl 8

(see (4.13) with ¢ = 1 and (4.15)). Next, Zmeth 7;;(0) differs from the full sum
> Tin(0) by at most C Z _(d 872
(4.10) and that Cy = p2V reveals that

by (4.14). Combining the above and recalling

2r—1 Je

2 1‘1 ”Pl
tN+(F n)( )NZD Zﬂm(o)p Cr 2C2r 1 1_[ l—[eia() 2

e=1 i=1

2r—1 Je

Cr 1C2r 1 1_[ l_[efog%n;—'.

e=1 i=1
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An analysis of the error terms involved in the various =~ approximations is handled
rigorously in [17, Sections 4.3—4.5], making use of Proposition 4.17. O

4.6. Proof of Lemma 4.14. The proof of Lemma 4.14 relies on diagrammatic estimates.
These estimates are built from a single lemma which gives the bounds on the simplest
diagrams. For u € Z¢ let us denote

22(D % ty—p % D)(u) ifm >2
hy () = { zpD(u) ifm=1
L=y ifm =0,

where t,,(u) = pPu € 7,) (so to(u) = pli—o}), and we recall that % denotes the

convolution of functions on Z. Note that in [17] there is a ¢ in the definition, but this
¢ = 1 because of Lemma 3.9 of [17]. Note that for m > 2,

oW Y J[w®) [ [11+Uwl

i (u) =
024 (Ry)o<s<m: =0 uvel0,m]
@:0=u Ry BZ?sSVs
m—1
< DY W@ Y WR) Y WR) Y, [[w®w) ] [1+Ua]
w‘OLr;u Rin3w(m) Ro30(0) (Rs)lgxgm—l: t=1 uvel[l,m—1]
’ Rydw(s)Vs
m—1
< > Wpt Y J][WR) ] [+Ual=phww). (4.19)
0™ (Rg)1<s<m—1: t=1 uvell,m—1]
Rsw(s)Vs

Let us recall partially from [17, Lemma 5.4] ,%in which the function o: 74 — R, is
defined by o(x) = pP(x € 7).

Lemma 4.19. Fix d > 8. There exists Lo(d) such that for all L > Ly: For any | > 1
there exists C; > 0 such that for all k € {0,1,2,3,4} and m" = (my,...,m;) € 7

andm = Zé:] m;, then

bt +]. =

For a given skeleton network N'*, let r,. = #E(N™). If there is a bond uu’ covering
two special points then either we can find two non-neighbouring marked edges ¢ > u
and ¢’ > u/, or (at least) one of u, u’ is a leaf of A/*. In order to accommodate the latter
cases, for the proof of Lemma 4.14(e:R) it is notationally convenient to adjoin to each
leaf in A'* a “phantom” marked edge of length 0, and write E (N **) for this enlarged
set of marked edges. For marked edges ¢, ¢’ € E(N*) write ¢ ~ ¢’ if they are adjacent,
and ¢ 7 ¢’ otherwise. Recall from (4.4) that in the notation U, st is a pair of vertices in
N*. For non-adjacent marked edges ¢, ¢’ € E(N**) and m < 71z, and m" < 7, write
st(é,¢,m,m’) to denote the pair of vertices in A/* corresponding to the m-th vertex

4 [17, Lemma 5.4] is stated under some additional hypotheses (display (3.24) in that paper). Nevertheless
[17, Theorem 3.7] shows that the assumptions (3.24) are met.
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o
(/1

Fig. 12. A skeleton network A/t with a bond in R. This bond has endpoints in the marked edge ¢ € N'* and
the “phantom” marked edge & € N™** of lengths /i3 = 6 and 11}, = O respectively. We write s (¢, &', g, ;)
for this bond. Here, m; = 2 is indicated, while nﬁé, = 0. The set of marked edges E g pon the path from ¢ to
&' is {f1, f>} from M to x and » to M as indicated

along marked edge ¢ in the direction away from ¢’ and the m’-th vertex along marked

edge ¢ in the direction away from ¢&’. If e.g. ¢ was one of the phantom marked edges then

s = 0 and the relevant vertex is actually the leaf that ¢ was adjoined to. See e.g. Fig. 12.

For0 < a < b < ny, write ¢[a, b] to denote that part of the marked edge ¢ consisting

of the a-th to the b-th vertices (with ordering directed away from &’ as above) and
similarly define ¢'[a’, b'] for0 <a’ < b’ < ﬁé,.

Proof of Lemma 4.14(e:'R). In the definition of ¢/7\Q/+ (see (4.6)), we can see that

1— 1_[ [1+Uyy] < Z Z st(ee mg,nt ,)’

weR 8,8 eE(/\/'**) Mg <ig,

since if there is a bond uu’ covering two special points then we can find two non-
neighbouring marked edges in E(N**) containing u and u’ respectively (for more
details see [17, Section 6.5.1]).

For a marked edge f € E(N™), write ]_[

vertices u, v in the interior of f (i.e. u, v are vertices in f that are not the endvertices of
f ). For non-adjacent marked edges ¢, ¢’ and 0 < a < b < iy as above, write ﬁuve Sla.b]
for a product over pairs of distinct u, v in ¢[a, b] that are neither endvertex of this set,
and similarly define ﬁuveé’[a’,b’] forO0<d <b' < ﬁ/é,.

Fix distinct ¢ 7 ¢ in E(N*) and my < ng, my < ny. By ignoring the constraints
of non-intersection between various R; (bounding some 1 + U,/ by 1), we obtain

l_[ 1+ U] < 1_[ |: ﬁ[l"'Uuu/]]

uve f for a product over pairs of distinct

uu' €RC fEEWNH\(8,&) ~un'ef
X [ [T 0+ UMO%]M [T o+ Uulu/l]:|
u()ué)eé[(),)ﬁg,] M|M/I eelmy,ng)

><|: I1 [1+Uu2u/2]]|: I1 [1+Uu3u/3]].

uzu’zeé’lo,nﬁ;,] uzus e[ ,,n ,]
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where e.g. if my € {0, 11z} then the corresponding empty product is 1. (Note that this
kind of approach is used to prove (2.25) as well as the more general statement appearing
in Remark 2.12.) Using the above inequalities we can see that

0= ( [T n+vu)(1= [T 11+ 0w1)

uu' €RC vw'eR
D DD DN S [ [1 [1+Uuu/]}

¢,¢'eE(N*™), ms<iiz, FEEWN\(8.8) un'ef
é7¢é, Hv‘lg,/fl’vlé/

X [ [T 0+ UMO%]M [T o+ Uulu/l]:|
uouf)eé[o,nﬁg] u|u’leé[nv15,ﬁg]

X [ ]‘[ [1+ Uy ]M ]‘[ [1+ Uu3u/3]], (4.20)
uzu’zeé’[o,ﬂl’é,] uzuy e [rh’ le; ]

Note thatif e.g. ¢ is a phantom marked edge then the corresponding sum over riz; contains
only the value 0 = 7.

Now, the w in (4.6) can be broken up at every special point and at the two vertices
corresponding to sz(¢, &', m, m’). The graph then becomes broken up into (at most)
ry+ + 2 segments. Let us now introduce the set E g’é, of marked edges which connect
(but do not include) é to ¢’ which is non-empty since ¢ and &’ are not neighbours, and
Ev v = Ev o U{é, €'} Letting y; o = (yf)feE+ with each y Vi€ 7% we have from

(4.20) and Remark 1.1 that (cf. [17, (6.18)])

> [oF
< D) Z Z ( l_[ Zh,;f, (ifv))z Z [ l_[ hi (V)

& eEWN™), thzsiiz,  fleE(N*\ELy Y Yew Mete " feE},
epé g /<n 5

x hyy, (U, (uz)o® (”é +uy + Z ?f-) Zhﬁé_nag (Ve — ug) Zhﬁ;/ iy e — ”é’)]~

feEs, Ve Yo

This arises because e.g. if f and f "are two distinct marked edges for which there is no Uy,
term appearing anywhere in (4.20) with s and 7 vertices of f and f " respectively, then the
corresponding segments of w (and the sets of lattice trees R. hanging off them) have been
decoupled. Segments of w and corresponding elements of y can then be summed over
“independently”, with factors of p arising at endvertices, similarly to (4.19). Similarly,
the presence of the term [—Ug..... )] in (4.20) forces two corresponding trees R. to
intersect, which yields the 0® term above. Recalling that 3 5 hn (y) < C for any n by
Lemma 4.19 we see that

e D DI D A . IOt
y ¢,8'eE(N*'), m€<ne fEE&é’ .
8766‘ ny /<n S

(The power of Cy is ry — #E » +2 < rq, and so assuming C1 > 1 without loss of
generality, the above follows. ) The notation in the last convolution above means that



492 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

there is one term in the convolution for each f eE : »- By Lemma 4.19 with k = 2 and

I =1, :=2+H#E7 ; we have that for n; ; = ZfeE;fé, rvzf,

. . Ci,
SlpRi| =2y Y Y —— -
y ¢,¢' e EN™), 1<y, (mg+my +ngy) 2

1224 my <iy

1
S C(r+) Z d—8
S eEN*, N3,

7 é,e
éré

2r—1 Je

<C0 Y Y
2 2
e.j

e=1 j= ln

O
Proof of Lemma 4.14(e:mr). Similarly to Lemma 4.18 (but note the change in the first
summation) we have that

= > ﬂm(u)]—[(ZDZD(v,—u/)t/w "))

meH; ME(Z‘])3

Therefore, for any y € (Z4)"~,

pR-n| =] > ZﬂmW)Zl_[ZD(vf—“ﬂw+ 3"

meHy, U =1 v
Z Z Z”(N)(”)ZHZD(U/ _”/)t./\f+ 3.
N=1jeH;, =1 v

Using a generalisation of (2.25) as in Remark 2.12, and then (4.13) and (4.14), we have

3

Z!¢N+<y>\<CZ > alankg < ii > BNoﬁ)sZ%.
N=1 k= 2

lneH, b ii lﬁime’V’Ek/3 k=1 nék

The result follows. O

The proof of Lemma 4.14(e:b) is again an adaptation of the proof in [17] (specifically
in [17, Section 6.5.3]). Here we will indicate the changes to the argument required for
the present setting of a marked skeleton network. We start by adapting [17, Definition
2.2]. Given a graph I' € Ej(ﬁ on N'*, a special point v of N'* and a marked edge e of
which v is an endpoint, we define the bond associated to e at v as follows: If there is no
bond in I covering v that has an endpoint strictly on e then there is no bond associated
to e at v. Otherwise from the set of such bonds we choose the one whose endpoint in
e is farthest from v. If this is not unique then we choose from this set one according
to a fixed but arbitrary rule (e.g. choose from those whose other endpoint is strictly on
some edge ¢’ of smallest label the one whose endpoint on ¢’ is farthest from v in this
direction).
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Proof of Lemma 4.14(e:b). Recall that

= > We > J]wR) > ] Uw @21

WEQpr+(P) (Ry)gen+:  teN+ reg-Rbvv'el
Rysw(s)VseN™* NE

Recall also that (éi)?zl are the marked edges adjacent to b and denote their end vertices
(other than b) as (ﬁ,-)?zl, which are special points.
For F C {1, 2, 3} let

SF A= {F IS 5_73"5 Vi € F, Ap(T") contains a nearest neighbour of ﬁi}.

Note that if F' # {1, 2, 3} this set may include I" for which some 4, (") also contains a
nearest neighbour of v; for some i € {1, 2,3} \ F. Inclusion—exclusion over the sets F

T =X Y Ml

—R.,b pv’ b /
r€5N+, vv'el F#9 FEEF,N’f vv'el

(4.22)

GivenI" € 52 A+ We define a subgraph I'r C T to be the set of bonds sz € I' such
that

e st is the bond associated to one of the marked edges ¢; at b, for some i € F, or
e st is the bond associated to one of the marked edges ¢;, at v; where i € F, or
e st are both vertices in the marked edge ¢; for some i € F.

Let Sf denote the largest connected subnetwork of A/* containing b that is covered by
I'r. Then SF is a star-shaped network of degree 3 or less (with branch point b) and I' g
is a connected graph on Sg. Moreover Sg contains at most #F + 1 special points of A/*
(one of which is b) since I" contains no bonds in R. Note that the length of branch i of
Sr is at least 7; — 1. Let Sp(N™) denote (for fixed F) the set of possible Sr that can
arise as above from graphs I' € 82’ A+ Lt follows that

> ITow= > > TIUw (4.23)

Fegll;,/\ﬂ vv'el’ SeSpN™*) I‘eSb Lvv'el
SF(F) Vs

Now we may proceed as in [17, (6.23)—(6.28)], which we briefly discuss in the following
paragraph but direct the reader to [17] for details. For fixed F and S € Sp(N™*) we
have the notion of a lace on S containing N bonds and the set of bonds, C(L), which are
compatible with the lace L, as described after (4.11). Similarly, given F,and " € £ FN+
such that Sp(I') = S we have the lace associated to the subgraph I'r, which is a
connected graph on §. Thus, as in [17, (6.23)—(6.24)], we can write (4.23) as

i(—l)’v >y []‘[(—Us»][ 3 ]‘[UUU/], (4.24)

N=1 SeSpN*) LE%N»F stel FEE?J\H_; vv'el

Sp()=S,
L(Tp)=L

where the sum over L is a sum over (a certain subclass of all) laces on S containing
exactly N bonds (for the definition of this subclass see [17, definition prior to (6.23)]).
The last two pages of [17] show how to deal with the “messy” final sum in (4.24), by
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breaking the sum over I into three sets: (i) sets of bonds on S that are compatible with
L; (ii) sets of bonds that live on N\ S; and (iii) sets of bonds st with one endpoint in S
and one in At \ S for which Sp(L U {st}) = S (in each case bonds in R are excluded).
Using this decomposition we see that (4.24) is equal to

g:l(l)zv > X “_[(stt)][ 3 ]_[Ux,][ » ]‘[US,]

SeSp(N+) LELgV).F steLl FeLg(lé)R.Zm:steF F/Eg/_\;}\s stel”

[z ne

* -R .stel’
["efs st
Sp(LUr*=8

=i( pyoyY Y []_[( U‘,)][ I1 [1+Ust]][ I1 [1+US,]] (4.25)

SeSpN*) Le/;“‘” F stel steC(L) steN*H\S
x ]_[ [1+ Uyl (4.26)
seS teNN\S:
Sr(LU{sth=8

We bound the absolute value of the above by simply removing the factors (—1)V
(everything else is non-negative). Then we can ignore the last product (4.26) (bound it
by 1) and get an upper bound. Similarly we can discard any part of the last product in
(4.25) to get an upper bound. For the latter we throw away all st such that s and ¢ are
on different connected components of N'* \ S. We deduce from (4.21), (4.22), and the
above that

> gk

¥

SYEYY Y we X vk

FEBN=1 § weQy+() (Ry)gen+: teN™
Ry3w(s)VseN*

Ant\s

Y { > [TTeuas] T1 [1+Ust]:|= T[] IT v+ua]

SeSpN+) LeﬁfSN),F steL steC(L) j=1  ste(N*\S);
4.27)

where A \+ s denotes the number of disjoint components of N*\ S and the components
are denoted by (V*\S) ;. Here, the components S, and (N*\S) ; for all j have now been
decoupled, because there are no U, terms where s and ¢ are on different components.
Recalling (4.11), the term in curly brackets in (4.27) (in combination w1th the part of w
and the trees R. corresponding to ) is the quantity that gives rise to n W (where the m;
are the lengths of the branches of S) except that we are summing over ‘a restricted set of
laces containing N bonds. But we can also sum over all L € LN)(S), the set of laces
on S with exactly N bonds, to get an upper bound. This gives rise to a bound

Z“f’b <> Z Z ZN(N)(M)C(M (4.28)
Yy

F#2 N=1
m,>n,7]VzeF
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where we note that the sum over m arises from the sum over S seen in previous expres-
sions, and the constant C(r,) arises from the generalisation of (2.25) noted in Remark
2.12. Finally use Proposition 4.17 to see that (4.28) is at most

00 3
CYY Y > By <) 58.

F£@N=1 5 =17
m;>n;—1
VieF
This proves the result. O
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