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Abstract: We prove that the rescaled historical processes associated to critical spread-
out lattice trees in dimensions d > 8 converge to historical Brownian motion. This is
a functional limit theorem for measure-valued processes that encodes the genealogical
structure of the underlying random trees. Our results are applied elsewhere to prove that
random walks on lattice trees, appropriately rescaled, converge to Brownian motion on
super-Brownian motion.

1. Introduction and Main Results

In the past three decades, various critical high-dimensional spatial branching models
have been conjectured or proved to converge to super-Brownian motion (SBM), which
is a continuous Markov process taking values in the space of finite measures on R

d . One
of the settings in which significant progress has been made is that of critically weighted
(and sufficiently spread-out) lattice trees (LT) above 8 dimensions [7,10,11,17–19]. In
particular, convergence on path space has recently been proved in this setting (see [11]).
For LT’s convergence to SBMmeansweak convergence to SBMof the rescaled empirical
measure process of the locations in the LT which are a given tree distance from the root.
Hence the tree distance to the root plays the role of time for the stochastic processes.
More recently, it has been proved in [20] that for LT’s, and in fact for several lattice
models, the rescaled ranges (for LT’s the range is the compact set of vertices in the tree)
converge weakly to the range of SBM. Convergence of genealogical observables is not
forthcoming from the notions of weak convergence to SBM described thus far. Results
of this kind can be obtained by proving convergence of the corresponding “historical
processes” [6]. For LT’s this would mean that instead of just having the convergence to
SBM of the rescaled empirical measure process of the particles in the LT, as a function
of the distance from the root, one establishes convergence to historical Brownian motion
(HBM) of the rescaled empirical measure process for the entire paths in the LT to the
endpoints, as a function of the distance from the root. HBM, constructed in [6], is a
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process taking values in the space of finite measures on R
d -valued paths, which at time

t is the empirical measure of the past histories of the particles contributing to the SBM
at time t . See Sect. 1.2.1 below for more about HBM, including the fact that is the weak
limit of the rescaled historical processes associated with Branching Brownian Motion
(Theorem 1.3). Our main result, Theorem 1.4 below, establishes this convergence of
“historical processes” for LT’s.

In Sect. 2.1 we give a set of general conditions that are sufficient for convergence of
discrete-time historical processes toHBM in the sense of finite-dimensional distributions
(Theorem 2.1). Most of these conditions are already known to hold for a range of
lattice models above the critical dimension including lattice trees (d > 8) and oriented
percolation (d > 4), as well as for the voter model (d ≥ 2) and the contact process (d >

4), both of which are continuous-time models. The main condition that remains to be
proved in each case is convergence of the joint characteristic functions of the increments
of a finite dimensional subtree. These detailed r-particle transforms can be seen as
enriched versions of the r -particle transforms studied e.g. in [13,16,17] (called Fourier
transforms of (r +1)-point functions therein) that record genealogy. We prove that these
conditions are satisfied for sufficiently spread-out lattice trees in high dimensions and
so establish convergence to HBM in the sense of f.d.d.’s (Proposition 2.4). The required
asymptotics of the detailed r -particle transforms are obtained via the lace expansion
(see e.g. [25]) in Sect. 4. It is worth noting that these asymptotics can be understood
from those of the usual r -particle transforms and the detailed 1-particle transform. In
particular we do not require any new “diagrammatic estimates”. We believe that all of
the conditions can also be verified for the other models1 mentioned above. For the voter
model this is currently work in progress [1].

The second main ingredient in our proof is a novel tightness argument for historical
processes which upgrades f.d.d. convergence to convergence on path space in a historical
setting. This step is carried out in Sect. 3. We start with an abstract tightness result in a
general historical setting (Theorem 3.6). For all of the lattice models mentioned above
this reduces tightness of the approximating rescaled historical processes to that of the
R-valued processes obtained by integrating a test function (from an appropriate class)
with respect to the rescaled historical processes. (Verification of the other conditions
may be found in [20].) This key condition is then verified for LT’s with some effort in
Proposition 3.11. The main ingredients of this argument are tightness of the total mass
process from [11] and a uniform modulus of continuity for the approximating historical
paths from [20]. The latter is in fact verified for all of the other lattice models men-
tioned above, and so we have potentially reduced the problem of tightness for historical
processes to that of the total mass process for a range of other lattice models.

A simple consequence of our results is that the unique path in the tree from the origin to
a uniformly chosen vertex (called the backbone from the origin to that vertex) of distance
n converges weakly to BM on path space (see [18, Theorem 1.3]). Another application
of our results concerns the scaling limit of random walk on lattice trees. In particular,
the historical convergence proved herein is used in [21] to verify certain conditions of
Ben-Arous et al. [2] which imply that random walk on lattice trees converges to a BM
on a SBM cluster.

1 For oriented percolation, one should choose a notion of historical paths e.g. each site in the cluster of the
origin chooses its parent uniformly at random from all possible parents in the cluster.
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o

Fig. 1. A (nearest neighbour) lattice tree in 2 dimensions

1.1. Lattice trees and scaling limits. A lattice tree is a finite connected set of lattice
bonds containing no cycles (see Fig. 1).

We will be considering lattice trees on Z
d with bonds connecting any two vertices

that live in a common ball (in �∞) of sufficiently large radius L ∈ N, and with d > 8.
To be more precise, let d > 8 and let D(·) be the uniform distribution on a finite box
([−L , L]d \ o) ∩ Z

d , where o = (0, . . . , 0) ∈ Z
d . The assumption of uniformity of D

is not essential. We expect that the results herein hold for D as in [17, Section 1].
For a lattice tree T � o define Wz,D(T ) = z|T |∏

e∈T D(e), where the product is over
the edges in T and |T | is the number of edges in T .

Remark 1.1. If T is an edge-disjoint union of subtrees then Wz,D(T ) can be factored
into a product over the weights of the subtrees. �

It turns out (see e.g. [10,17]) that there exists a unique critical value zD such that
ρ = ∑

T �o WzD ,D(T ) < ∞ and E[|T |] = ∞, where P(T = T ) = ρ−1WzD,D(T ) for
T � o. Hereafter we write W (·) for the critical weighting WzD ,D(·) and suppose that we
are selecting a random tree T � o according to this critical weighting.

Let T be a lattice tree containing o ∈ Z
d , and for m ∈ N, let Tm denote the set of

vertices in T of tree distance m from o. In particular, T0 = {o}, and for any x ∈ Tm there
is a unique path from o to x in the tree of length m. Roughly speaking, in this paper we
consider the weak limit (as m → ∞) of rescaled paths of this kind in high dimensions.
For t ∈ R+ \ Z+ define Tt = T�t	. For t ≥ 0 and x ∈ Z

d we will write (t, x) ∈ T to
mean that x ∈ Tt . The notation (t, x) is consistent with that in [20], while in the oriented
percolation and contact process literature often (x, t) is used instead.

Functional limit theorems. For our general discussion we require the notion of weak
convergence of finite measures on Polish (i.e. complete, separable metric) spaces. We
refer the reader to [8, Chapter 3] for further details on what we discuss below.

For aPolish spaceP, letMF (P) (resp.M1(P)) denote the space of finite (resp. prob-
ability) measures on the Borel sets of P. For a sequence νn ∈ MF (P) we say that νn

converges weakly to ν ∈ MF (P) and write νn
w−→ ν if for every f : P → R bounded

and continuous,
∫

f (x)νn(dx) →
∫

f (x)ν(dx), as n → ∞.



438 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Equipped with the Vasershtein metric, which generates the topology of weak conver-
gence,MF (P) is also Polish (see e.g., [24, Ch. II]). We will use the notation Eν[ f (X)]
for

∫
f (x)ν(dx), with the understanding that X ∈ P. This will be particularly conve-

nient when X is aP-valued random variable defined on an underlying probability space
and ν(·) = c · P(X ∈ ·) for some c > 0.

Let Sn denote the location of a nearest-neighbour simple symmetric random walk on
Z

d after n steps (starting from the origin o ∈ Z
d ). Then E[S2

n ] = n (here and elsewhere,
for x, y ∈ R

d we abuse notation and write xy to mean x · y, and hence x2 to mean
|x |2) and the central limit theorem (CLT) states that n−1/2Sn converges in distribution
to a random vector Z that is (multivariate-) normally distributed with mean 0 ∈ R

d and
covariance matrix diag(1/d). Define probability measures νn , ν on (the Borel sets of)
R

d by

νn(·) = P
(
n−1/2Sn ∈ ·), and ν(·) = P(Z ∈ ·).

Phrased in the language of weak convergence of (finite) measures, the CLT says that
νn

w−→ ν. The statement νn
w−→ ν in MF (Rd) is well known to be equivalent to

pointwise convergence of the characteristic functions (Fourier transforms), so for νn, ν

as above
∫

eikxνn(dx) →
∫

eikxν(dx) = e− k2
2d , for k ∈ R

d .

For a Polish spaceP letDt (P) (resp.D(P)) denote the space of càdlàg paths (paths
that are continuous from the right with limits existing from the left) mapping [0, t]
(resp. [0,∞)) toP. Let Ct (P) (resp. C(P)) denote the corresponding subspace of con-
tinuous paths. It iswell known that there are completemetrics on these spaces (generating
the Skorokhod J1 topology) for whichDt (P) andD(P) are also Polish (see [8, Chapter
3.5]). The functional central limit theorem (FCLT) concerns the entire path (W (n)

t )t≥0
defined by

W (n)

t = n−1/2S�nt	.
Defined in this way, for each n, W (n) jumps at times t = i/n for i ∈ N and is constant
on intervals [i/n, i + 1/n) for i ∈ Z+. In particular the process W (n) is a random ele-
ment of the space D(Rd) of càdlàg paths from R+ = [0,∞) to R

d . The FCLT states
that the sequence of rescaled random walks (W (n)

t )t≥0 converges to a d-dimensional
Brownian motion (Bt )t≥0 (with B1 ∼ N (0, diag(1/d))). Phrased in the language of

weak convergence of (probability) measures this FCLT says that νn
w−→ ν, where

νn, ν ∈ M1(D(Rd)) are defined by

νn(·) = P
(
(W (n)

t )t≥0 ∈ ·), ν(·) = P
(
(Bt )t≥0 ∈ ·).

Note that ν puts all its mass on continuous paths.

Paths and measure-valued processes for lattice trees. For (m, x) ∈ T let w(m, x) =
(w0(m, x) = o, w1(m, x), . . . , wm(m, x) = x) denote the unique path in T from o to x
in the tree. It is convenient to extend this to a function on Z+ and then to a function in
D by writing

wn(m, x) := wm(m, x) = x, for n ≥ m, ws(m, x) = w�s	(m, x), for s ∈ [0,∞).

(1.1)
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Fig. 2. The MVP X (1)
5 assigns masses to points in the tree at distance 5 from the root, while H (1)

5 assigns the
same masses to paths in the tree leading to these points

Thus every (m, x) ∈ T has associated to it an infinite càdlàg pathw(m, x) that is constant
after time m. Denote the collection of ancestral paths for T byW = (w(m, x))(m,x)∈T .
For t ≥ 0 and x ∈ Z

d/
√

n such that
√

nx ∈ Tnt we define w(n)(t, x) ∈ D by

w(n)

s (t, x) = wns(�nt	,√nx)√
n

, for s ∈ [0,∞). (1.2)

By [10,17] there exist constants CA, CV > 02 such that

lim
n→∞ E[|Tn|] = CA, and lim

n→∞ nP(|Tn| > 0) = 2/(CACV ). (1.3)

Let C0 = C2
ACV , and let

X (n)

t = 1

C0n

∑

√
nx∈Tnt

δx ∈ MF (Rd), and

H (n)

t = 1

C0n

∑

√
nx∈Tnt

δw(n)(t,x) ∈ MF (D(Rd)) (1.4)

denote the (rescaled) measure-valued “process” and historical “process” (see e.g. [6])
associated with the random lattice tree T respectively. Note that X (n)

t assigns mass to
certain particles in the tree (but does not encode the genealogy) whereas H (n)

t assigns
mass to genealogical paths leading to those particles. See e.g. Fig. 2.

For φ : P → C and Yt ∈ MF (P) write Yt (φ) = ∫
φdYt . Then for φ : R

d → C we
have ∫

φ(wt )d H (n)

t (dw) = X (n)

t (φ), (1.5)

and in particular

H (n)

t (1) ≡ X (n)

t (1).

Define the survival/extinction time as

S(n) := inf{t > 0 : X (n)

t (1) = 0} = inf{t > 0 : H (n)

t (1) = 0}.
2 Our constant CA is equal to A′ = A/ρ from [17] and our constant CV is Vρ2 from [17].
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Let C1 = CACV so that from (1.3),

nP(H (n)

t (1) > 0) = nP(S(n) > t) → 2

C1t
, as n → ∞. (1.6)

Then we define νLT
n ∈ MF (D(MF (Rd))) by

νLT
n (•) = nC1P(X (n) ∈ •),

and μLT
n ∈ MF (D(MF (D(Rd)))) by

μLT
n (•) = nC1P(H (n) ∈ •). (1.7)

Due to the survival probability asymptotics (1.6),multiplying by n andworking on the
event that the process survives until time n is asymptotically the same (up to a constant)
as conditioning on survival until time n (or rescaled time 1).

According to [24, Section II.7], for any γ, σ 2 > 0 (representing the branching rate
and diffusion parameter respectively) there exists a σ -finite measure N = N

γ,σ 2
on

C(MF (Rd)), with N(Xt (1) > 0) = 2/(γ t) such that N is the canonical measure as-
sociated to the ((Bt )t≥0, γ, 0)-superprocess. Here (Bt )t∈[0,∞) is a d-dimensional BM
with B1 ∼ N (0, σ 2 Id×d), which is a (time-homogeneous) Markov process. The su-
perprocess in question (called super-Brownian motion) is a measure-valued process
that can be thought of as the empirical measures of an infinitesimal critical branch-
ing process whose spatial dispersion is governed by the R

d -valued process (Bt )t≥0. If
S = inf{t > 0 : Xt (1) = 0}, then N is supported on {X ∈ C(MF (Rd)) : X0 = 0, S >

0, Xt = 0 ∀t ≥ S}, and so the above implies that

N(S > t) = 2/(γ t). (1.8)

By replacing the Markov process (Bt )t≥0 with the path-valued (time-inhomogeneous)
Markov process (B[0,t])t≥0 ≡ (

(Bs)s∈[0,t]
)

t≥0, and using the general theory of super-

processes, there also exists a σ -finite measure NH = N
γ,σ 2

H on C(MF (C(Rd))) with
NH (Ht (1) > 0) = N(S > t) such that NH is the canonical measure associated to the
((B[0,t])t≥0, γ, 0)-superprocess. The latter (as well as the process H underlying NH ) is
called historical Brownian motion (HBM). The general construction of canonical mea-
sures for superprocesses may be found in [24, Section II.7], while Section II.8 therein
shows how to consider the historical processes in this general framework. One can also
construct NH from the canonical measure of Le Gall’s Brownian snake since the histor-
ical process is a functional of the snake. See [22, pages 34, 64] for details.

It is proved in [11,17] that for lattice trees in dimensions d > 8 (with L sufficiently
large) νLT

n
w−→ N, where the parameters of N are γ = 1 and σ 2

0 = σ 2
0 (L , d), which is to

be discussed later. Since the limit is a σ -finite measure, νn
w−→ N is defined in terms of

weak convergence of a family of finite measures (indexed by t) on D(MF (Rd)) as

νn(•, S(n) > t)
w−→ N(•, S > t), for each t > 0, (1.9)

or equivalently in terms of weak convergence of their conditional (on S > t) counter-
parts, which are probability measures. (The equivalence holds by (1.6), (1.7) and (1.8).)
Similar results have been proved for other self-interacting branching systems such as
the voter model [3,4] (d ≥ 2), oriented percolation (OP) [16] (d > 4), and the contact
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process (CP) [13] (d > 4)), although for OP and CP only convergence of the finite-
dimensional distributions has been established and tightness remains an open problem.
The corresponding result for the historical processes (μn

w−→ NH ) was an open problem
in all of the above contexts. Here we resolve this problem for lattice trees (d > 8, and
L sufficiently large3), and, as was suggested above, our general approach may well also
help in the other contexts above. A discussion of possible extensions and challenges for
other models, including these, may be found in Sect. 1.3.

1.2. Main results. In this section we state our main result (Theorem 1.4 below). For
this, we first introduce some notation and present the relevant notions of weak con-
vergence. We then introduce critical branching Brownian motion (BBM) as a simpler
process fromwhich one can understand the limiting historical Brownian motion through
a corresponding historical limit theorem for rescaled BBM’s, see Theorem 1.3. The latter
follows easily from results in the literature as we will describe. Following this, we state
our main result. Theorem 1.3 is also used in the proof of our main result by identifying
the joint characteristic functions of the general moment measures for the limiting HBM
in Proposition 2.6.

For a Polish space P, and x = (xt )t≥0 ∈ D(MF (P)), let S(x) = inf{t > 0 :
xt (P) = 0}. Let MEX(P) (resp. MEX

1 (P)) denote the set of σ -finite (resp. probability)
measures μ on D(MF (P)) such that

(1) μ
({x : S(x) > s}) ∈ (0,∞) for each s > 0 and μ({x : S(x) = ∞}) = 0, and

(2) μ
({x : xt (P) > 0 for some t > S(x)}) = 0.

One should think of MEX
1 (P) as the space of excursion measures for càdlàg measure-

valued paths where the measures are on P. For μ ∈ MEX(P), and s > 0 define the
(probability) measure μs on D(MF (P)) to be μ conditional on S > s, i.e.

μs(•) = μ(•, {x : S(x) > s})
μ({x : S(x) > s}) .

For r ∈ N and �t = (t1, . . . , tr ) ∈ [0,∞)r and a finite measure κ on D(MF (P)), let κ�t
denote the (finite) measure on (MF (P))r defined by

κ�t (•) = κ({x : (xti )
r
i=1 ∈ •}).

Definition 1.2 (Weak convergence). Fix a sequence (μn)n∈N∪{∞} inMEX(P).

• We write μn
w−→ μ∞ as n → ∞ if for every s > 0, μn(S > s) → μ∞(S > s)

and

μs
n

w−→ μs∞, inM1
(
D(MF (P))

)
.

• Wewriteμn
f.d.d.−→ μ∞ if for every s > 0, r ∈ N and �t ∈ R

r
+, we haveμn(S > s) →

μ∞(S > s), and

μs
n,�t

w−→ μs
∞,�t , inM1

(
(MF (P))r ).

�
3 Super-Brownian motion is not expected to arise as the scaling limit for d < 8.
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Fig. 3. On the left is the index set I drawn (with labels as edges) up to and including generation 3. On the right
is an example of a Galton–Watson tree (with edge labels α), where eα = 0 for all α ∈ {000, 0010, 0011, 01},
while eα = 2 for α ∈ {0, 00, 001}. Note that we have dropped the parentheses and commas in the notation
for elements of I to declutter the pictures

1.2.1. Branching Brownian motion. Agoodway to understand historical Brownianmo-
tion is as a limit of critical branching Brownianmotions. Recall that branching Brownian
motion may be viewed as a system of Brownian motions run along the edges of a crit-
ical Galton–Watson tree. The notation introduced below is presented in [24] at a more
leisurely pace. We start by defining a Brownian motion on a full binary tree. Let

I = {α = (α0, . . . , αn) : α0 = 0, αi ∈ {0, 1} for i > 0, n ∈ Z+}, (1.10)

and for α as above set |α| = n, α|i = (α0, . . . , αi ), i ≤ n, and say β is an ancestor of
α iff β = α|i for some i < |α|. If α, β ∈ I , the greatest common antecedent (gca) of α

and β is α ∧ β = α|i , where i is the maximal integer such that α|i = β|i . If |α| > 0,
the parent of α is πα := α|(|α| − 1).

Let {W α : α ∈ I } be iid d-dimensional Brownian motions with variance parameter
σ 2. For a fixed n ∈ N (dependence on n is suppressed) and for α ∈ I , let

B̂α
t =

|α|∑

i=0

∫ t

0
1{s∈[i/n,(i+1)/n)}dW α|i

s ,

and note that (B̂α
t )t≥0 is a d-dimensional Brownian motion, starting at 0, that runs until

time (|α|+1)/n (afterwhich it stays constant).We can view {B̂α
t : t < (|α|+1)/n, α ∈ I }

as a Brownianmotion run on a rescaled binary tree with edge lengths 1/n. We next prune
the binary tree to make it a critical Galton–Watson (G–W) tree. Let {eα : α ∈ I } be a
collection of iid random variables with (critical) binary offspring law 1

2δ0 +
1
2δ2 that is

independent of {W α : α ∈ I }. For a fixed n ∈ N (dependence on n is suppressed) and
for α ∈ I , let

τα = min
{ i + 1

n
: eα|i = 0

}
(min ∅ = |α| + 1

n
),

and also define

Bα
t =

{
B̂α

t , if t < τα,

�, if t ≥ τα.

Here � is added to R
d as a cemetery point. In this way GW = {α : τα = |α|+1

n } labels
the points (drawn as edges in Fig. 3) on a G–W tree with a critical binary offspring law
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(0,0)

Fig. 4. A (binary) branching Brownian motion in 1-dimension, with time on the x axis, drawn up to the third
branch time, 3/n. In the corresponding G–W tree, the root 0 has two children, exactly one of which has 2
children

that does not depend on n. We have scaled the edge lengths of the tree to be n−1 and
write α ∼ t iff α ∈ GW and |α|

n ≤ t <
|α|+1

n . Therefore α ∼ t means that α labels
an edge in the Galton–Watson tree which is alive at time t ≥ 0. In particular, 0 ∼ t
for every t < 1/n, see Fig. 3. Finally {Bα

t : α ∼ t} for t ≥ 0 is a system of Brownian
motions, starting with a single particle at the origin, and run along these edges while
undergoing critical binary branching at times { j/n : j ∈ N}, with the motions being
independent along the disjoint scaled edges in the G–W tree. Figure4 gives a depiction
of the system of Brownian motions in 1-dimension.

We define the scaled empirical measures X (n)· ∈ D(MF (Rd)) and H (n)· ∈ D
(MF (C(Rd))) associated with these locations and historical paths, respectively, by

X (n)

t = 1

n

∑

α∼t

δBα
t
, H (n)

t = 1

n

∑

α∼t

δBα·∧t
, t ≥ 0.

It is easy to extend the above definitions to the setting of a general mean 1 finite
variance γ offspring law in place of the critical binary branching law above where
we have γ = 1 (see [24, Section II.3]). In this setting let νBBM

n = nP(X (n) ∈ ·) and
μBBM

n = nP(H (n) ∈ ·). We believe that the following limit result was first proved in [24],

although part (b) was not stated explicitly there. The original construction of N = N
γ,σ 2

was done by Le Gall using his Brownian snake (see [22, Ch. IV] and the references
therein) from which the result below was clear enough.

Theorem 1.3. As n → ∞,

(a) νBBM
n

w−→ N
γ,σ 2

;

(b) μBBM
n

w−→ N
γ,σ 2

H .

Proof. (a) is a special case of [24, Theorem II.7.3]. We also use Kolmogorov’s classical
result on survival asymptotics for critical branching processes (eg. [24, Theorem II.1.1]).

(b) also follows from the same results, where [24, Section II.8] explains how to put
the historical setting into the general framework of [24, Theorem II.7.3]. ��

An easy consequence of the above and the obvious analogue of (1.5) for branching
Brownian motion is that H projects down to super-Brownian motion,

Xt (·) = Ht ({y ∈ C(Rd) : yt ∈ ·}) ∀t ≥ 0 NH − a.e..
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1.2.2. Lattice trees in high dimensions. Our main result is that the functional limit
theorem for historical processes in (b) above, continues to hold for lattice trees in high
dimensions (the analogue of (a) was already noted in (1.9)). Recall the definition of μn
from (1.7).

Theorem 1.4. For each d > 8 there exists L0 ≥ 1 such that: for every L ≥ L0, there

exists σ 2
0 = σ 2

0 (L , d) > 0 such that μLT
n

w−→ N
1,σ 2

0
H .

Here, and throughout this work, the constant σ 2
0 is equal to vσ 2/d in [17, Theorem 3.7].

1.3. Discussion. We finish this section with a brief discussion of extensions and appli-
cations of our results, and commentary on possible extensions to other models.

Our results are extended in [21] and used in [2] to proveweak convergence of rescaled
random walk on lattice trees to a Brownian motion on a Super-Brownian motion cluster,
the latter as defined in [5]. [2] reduces this latter result to the verification of two con-
ditions. Roughly speaking, the first of these conditions is that if one chooses K points
at random in the lattice tree, then the spatial tree generated by these K points, and suit-
ably rescaled, converges (as the scaling parameter becomes large) to the random tree in
R

d generated by choosing K paths independently at random according to
∫∞
0 Ht (·) dt

(normalized by its total mass). One interprets this convergence in an appropriate metric
space. The weak convergence in Theorem 1.4 is extended in [21] to joint convergence
with K independently chosen paths as above, and moreover one can include the branch
times and path lengths, to eventually obtain the required spatial tree convergence. The
second condition states that in a certain precise sense the vertices of the rescaled tree
generated by the K points become dense in the full rescaled lattice trees, uniformly in
the scaling parameter, as K becomes large. This is also verified in [21] by using one
of the inputs of our tightness argument, namely the modulus of continuity from [20] as
stated in Condition 3.4 below.

One may ask about historical convergence in other contexts. This is most natural in
cases where there are existing notions of time and ancestry in the model. Such notions
exist in the voter model, where the parent of (t, x) is the corresponding point (t ′, x ′)
from which (t, x) most recently updated its vote, and also in the contact process where
the parent of an infected particle is the infected particle which most recently infected it.
In his PhD thesis, Tim Banova is using the methodology of Sect. 2 to prove historical
convergence of the voter model in dimensions d > 2 (for both nearest-neighbour and
spread-out (finite range) models). We believe the methodology of Sect. 2 is also relevant
for historical convergence of sufficiently spread-out contact processes for d > 4. Re-
sults for convergence of empirical measures associated with high-dimensional contact
processes (but not in the historical context) have relied on a time-discretisation argument
and analysis of oriented percolation (OP) (see [13]).

In the context ofOP, there is a natural notion of time, but ancestral paths are not unique
because there can bemultiple connections betweenvertices.Onepossible “remedy” is for
each site (n, x) of generation n in the cluster of the origin to choose a parent uniformly
at random from among sites of generation n − 1 in the cluster that are connected to
(n, x). We expect that the resulting historical process of sufficiently spread-out OP does
converge to historical Brownian motion in dimensions d > 4, but note that this process
does not encode every connection in the cluster of the origin.

Another approach that one could take (which would also be relevant for percolation
and lattice animals) is to define ancestral paths only in terms of pivotal bonds for con-
nections. Pivotal bonds for a connection from (0, o) to (n, x) in oriented percolation,
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and from o to x in percolation and lattice animals (if such a connection exists) have
a natural temporal ordering, as all paths from point to point must pass through these
pivotal bonds in the same order. One could then define historical paths by e.g. linearly
interpolating between these pivotal bonds. After appropriate scaling we expect that these
historical processes would converge to historical Brownian motion in dimensions larger
than the respective critical dimension. Section 2 belowwould be relevant in each of these
contexts.

As has already been noted, except for the voter model [3,4], tightness for any of these
models has been a challenging problem even in the context of convergence of empirical
measures to SBM, where it has only been established for high-dimensional lattice trees
[11] with considerable effort. The proof of tightness for our historical lattice trees uses
some bounds on the total mass of the rescaled LT’s from [11], and Conditions 2.3 and
2.4 which have also been shown in [20] for OP and the contact process. The additional
special property of LT’s we use is a sub-Markov property, Lemma 3.15. It would be
interesting to see if the proof of tightness can be carried out without this property. The
reason is that then control of the total mass process should suffice to prove tightness, even
in the historical context, for both the contact process and OP. For percolation and lattice
animals, tightness through this historical approach, without even a uniform modulus
continuity (Condition 2.3), still seems to be out of reach.

Finally, note that in this paper we have assumed that the step kernel D(·) is uniform
on a large box. As noted earlier, the uniformity assumption is not essential. We suspect
that D with unbounded support but > 2 finite moments and with d > dc = 8 suffices
for convergence to historical Brownian motion. In particular this ought to be true in the
nearest-neighbour setting, but at present it would seem to be a considerable challenge
(see e.g. [9]) to quantify some dimension d0 above which this holds.

2. Finite-Dimensional Distributions

2.1. A general theorem. In what follows we write NH for N
γ,σ 2

H where the branching
variance γ > 0 and the diffusion parameter σ 2 > 0 are fixed throughout.

A collection of G of bounded continuous functions from P to C is a determining
class for MF (P) if whenever μ,μ′ ∈ MF (P) satisfy

∫
gdμ = ∫

gdμ′ for all g ∈ G,
then μ = μ′. The following is the path-valued analogue of [19, Theorem 2.6]:

Theorem 2.1 (F.d.d. convergence to historical BM). Let μn ∈ MEX(P), where P =
D(Rd), and let G be a determining class for MF (D(Rd)) that contains 1 and is closed
under complex conjugation. Assume

(i) for every n ∈ N, μn
(
supt≥0 Ht ({h : h0 �= o}) �= 0

) = 0 (paths start at o)
(ii) for every t > 0, μn(S > t) → NH (S > t) (convergence of survival measures)
(iii) for every t > 0, Eμn [Ht (•)] w−→ ENH [Ht (•)] (weak convergence of finite mean

measures on D), and for every ε > 0, μn(H0(1) > ε) → 0.
(iv) for every � ∈ Z+ and every �t ∈ (0,∞)�, and every φ1, . . . , φ� ∈ G,

lim
n→∞ Eμn

⎡

⎣
�∏

j=1

Ht j (φ j )

⎤

⎦ = ENH

⎡

⎣
�∏

j=1

Ht j (φ j )

⎤

⎦ < ∞. (2.1)

Then μn
f.d.d.−→ NH .
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Note that NH

(
supt≥0 Ht ({h : h0 �= o}) �= 0

) = 0. The following elementary
consequence of [24, (II.8.6)(a)] states that both the mean measure at time t under NH ,
and the mean measure to a uniformly chosen point at time t conditional on survival until
time t , are Wiener measure (i.e. the law of Brownian motion) for paths on [0, t]:
Lemma 2.2. The historical canonical measure NH = N

1,σ 2

H satisfies

ENH [Ht (•)] = P(B[0,t] ∈ •) = EN
t
H

[
Ht (•)

Ht (1)

]

, ∀t > 0,

where under P, B[0,t] = (Bs)s∈[0,t] is a d-dimensional BM on [0,∞) (with B1 ∼
N (0, diag(σ 2))) stopped at time t > 0.

The proof of Theorem 2.1 is a simple adaption of the proof of [19, Theorem 2.6].

Sketch proof of Theorem 2.1. The only substantial change to the proof of [19, Theorem
2.6] is in the proof of tightness [19, Lemma 3.3].

If t, η > 0, by (iii) there exists a compact set K = Kt,η ⊂ D such that

sup
n

Eμn

[
Ht (K c)

]
< η2,

and so by Markov’s inequality

sup
n

μn(Ht (K c) > η) < η. (2.2)

Fix s > 0. Since μn(Hs(1) > 0) → 2/s we may find ns ∈ N and cs > 0 so that
infn≥ns μn(Hs(1) > 0) > cs . If ε > 0 we may now use (2.2) and argue as in the proof
of [19, Lemma 3.3] to find a compact set �K = �Kt,ε ∈ MF (D) such that

sup
n

μn(Ht ∈ �Kc) < εcs,

and hence (working now with the conditional measures) for t > 0,

sup
n≥ns

μs
n(Ht ∈ �Kc) < ε.

It follows that for any �t ∈ (0,∞)�,
(
μs

n,�t
)

n∈N
is tight in MF (D)�. Assume μ ∈

MF
(
MF (D)�

)
is a limit point of (μs

n,�t )n∈N. Then it follows from (2.1) and Dominated
Convergence that

Eμ

[
�∏

i=1

Hti (φi )

]

= N
s
H,�t

[
�∏

i=1

Hti (φi )

]

∀φ1, . . . , φ� ∈ G.

By [8, Proposition 3.4.6] it follows that μ = N
s
H,�t . Although this result is stated in [8]

for G a set of real-valued functions, the fact that G is closed under complex conjugation
allows one to see it is also a determining class for complex-valued measures and the
proof in [8] then adapts easily to the complex-valued set of functions G. It follows that
μs

n,�t
w−→ N

s
H,�t for all �t ∈ (0,∞)�. Hypothesis (iii) implies that under μs

n , H0 converges

to the zero measure, which is also equal to H0 under N
s
H . Thus, μ

s
n,�t

w−→ N
s
H,�t for all

�t ∈ [0,∞)�, as required. ��
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For �s = (s0, . . . , sm), where 0 = s0 < · · · < sm and �k = (k0, k1, . . . , km) ∈ R
d(m+1)

define φ�s,�k : D → C by

φ�s,�k(w) = eik0ws0

m∏

j=1

eik j (ws j −ws j−1 )
, (2.3)

and let G∗ = {
φ�s,�k : �s, �k as above for some m ∈ N

}
. Note that G∗ is a determining

class for MF (D(Rd)) since finite measures on D(Rd) are determined by their finite-
dimensional distributions, and the laws of these finite-dimensional random vectors are
determined by the characteristic functions of appropriate dimension. The elements of
G∗ are precisely those which correspond to the characteristic function of the increments
of the path at all finite sets of times. Setting �k = �0 we see that 1 ∈ G∗ and by replacing
k j with −k j we observe that G∗ is closed under complex conjugation. So we see that G∗
satisfies the conditions on G in Theorem 2.1.

Remark 2.3. Under NH , Ht assigns mass only to paths that are constant from time t
onwards and start at o at time 0. The same holds for H (n)

t for all n for LT and BBM.
Therefore, when applying Theorem 2.1 in these settings, with G = G∗ as above, we may
restrict our attention to φ�s(1),�k(1) , . . . , φ�s(�),�k(�) ∈ G∗ in part (iv) of the theorem satisfying

s(i)
j ≤ ti for each i, j and k(i)

0 = 0. The latter means we can set �k(i) = (k(i)
1 , . . . , k(i)

m ) ∈
R

dm and ignore the first factor in (2.3). Moreover we can without loss of generality
assume that that the largest element of �s(i) is ti for each i (i.e., if not we can append an
extra component t (i) to �s(i) and set the corresponding k(i)

j equal to zero without changing
φ�s(i),�k(i)). �

In the context of Theorem 1.4, we will use Theorem 2.1 with the determining class
G∗ at the end of this section to first establish the following result:

Proposition 2.4. For d > 8 there is an L0 ≥ 1 so that for L ≥ L0(d) there is a
σ 2
0 (L , d) > 0 for which

μLT
n

f.d.d.−→ NH .

Indeed, condition (i) of Theorem 2.1 trivially holds for lattice trees rooted at the
origin. Condition (ii) of the Theorem is (1.6). The first part of Condition (iii) holds by
[18, Theorem 2.1], and the second part is obvious because under μLT

n , H0(1) = 1
C0n .

Condition (iv) of the Theorem (for the determining class G∗) will follow immediately
from Proposition 2.6 and Theorem 2.7 below. In order to state these results we need to
introduce various notation, which we proceed to do now.

The degree of a vertex in a graph is the number of incident edges. Vertices of degree
1 are called leaves. Vertices of degree ≥ 3 are called branch points.

Definition 2.5. A non-degenerate shape is an isomorphism class of finite connected
rooted tree graphs whose vertices all have degree 1 or 3, and whose r + 1 leaves (for
some r ≥ 1) are labelled 0, 1, 2, . . . , r : the root 0 is always one of the leaves. To be
more precise, two such graphs are considered to be the same shape if there is a graph
isomorphism which preserves the labelling of the leaves (thus there is exactly one shape
with 3 leaves and exactly 3 shapes with 4 leaves).

We let�r denote the set of non-degenerate shapes with r +1 leaves. For any � ∈ �r ,
we know that α has r − 1 branch points, 2r vertices and 2r − 1 edges. Label the branch
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•
0

•
5(5)

•
6

(6)

•
3

(3)

•
1(1)

•
4

•
7

(7)
(4)

•
2

(2)

u5

u3

Fig. 5. A depiction of a shape � ∈ �4 with vertex labels above vertices and edge labels in brackets. The set
of edges in the path from vertex 0 to vertex 1 is E1(�) = {1, 5, 6}. Variables ui are associated to each of
the vertices i , describing a ‘length’ from 0 to i , to form T (�, �u). Differences in these ui are then the “edge
lengths”

points as r + 1, . . . , 2r − 1 in order, as you encounter them as you move from the root
to vertex 1, then continue to label new internal vertices in the order that you encounter
them as you move from the root to vertex 2 and so on up to vertex r . See e.g. Fig. 5. This
is just a convenient arbitrary but fixed order. For i, j ∈ {0, . . . , 2r − 1}, we abuse the
notation for the usual order and let i ∧ j ∈ {0, . . . , 2r − 1} denote the greatest common
antecedent (gca) of i and j . The edges e of� ∈ �r are labelled asE(�) = {1, . . . , 2r−1}
corresponding to the vertex labelling of the endvertex of e that is farthest from the root.
For e, f ∈ E(�), write e ≺ f if e is an ancestor of f in �.
For leaves � ∈ 1, . . . , r , let E�(�) be the set of edges in the unique path in � from o to
�.

For � ∈ �r we assign edge lengths by letting �u = (u1, . . . , u2r−1) ∈ (0,∞)2r−1

give the distances from the vertices to the root. That is, ui is the distance from the root
to vertex i , and the edge lengths can be found by differencing. We let T(�, �u) denote
the resulting tree with shape � and edge lengths �u. See Fig. 5. We often will specify
the distances �t = (t1, . . . , tr ) ∈ (0,∞)r of the r leaves to the root in advance. In this
case we let M(�t, �) denote the set of possible vertex distances from the root. That is,
M(�t, �) denotes the set of �u = (u1, . . . , u2r−1) ∈ (0,∞)2r−1 such that:

ui = ti , for i = 1, . . . , r ; (2.4)

if k and j are vertices of� and k is an ancestor of j in �, then uk < u j . (2.5)

�
Consider a given (non-degenerate) shape � ∈ �r , �t ∈ (0,∞)r , and �u ∈ M(�t, �)

as above. Let s = (�s(1), . . . , �s(r)), where �s(�) = (s(�)

0 , . . . , s(�)

m(�) ), and 0 = s(�)

0 <

s(�)

1 < · · · < s(�)

m(�) = t� for each � ∈ [r ] := {1, . . . , r}. If e /∈ E�(�) then set
I(e, �s(�)) = ∅. If e ∈ E�(�), then let I(e, �s(�)) denote those elements of �s(�) that
fall in the interval (u−(e), u+(e)), where u−(e), u+(e) are the elements of �u corre-
sponding to the endvertices of e (if e is adjacent to the root, then set u−(e) = 0). Let
I(e, s) = ∪r

�=1I(e, �s(�)). The j (e) := |I(e, s)| elements of I(e, s) divide the interval
[u−(e), u+(e)] into je := j (e) + 1 subintervals - denote their lengths by (še,k)k=1,..., je
and set š = (še,k)e∈E(�);k=1,..., je . If j (e) = 0 then še,1 = u+(e)− u−(e). Note that j (e)
and š depend on �, �u, s. See Fig. 6.

For � ∈ [r ], e ∈ E�(�), and a ∈ {1, . . . , je}, let

ζ [e](a, �) = min

{

i ≤ m(�) : s(�)

i ≥ u−(e) +
a∑

ie=1

še,ie

}

.
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•
0

•
4(4)

•
5

(5)

⊗ ⊗ •
3
⊗

(3)

•
1(1)

•
2

(2)

š5,1 š5,2 š5,3

u4

u3

Fig. 6. The tree T(�, �u) together with times s. The (m(1) = 7) � symbols represent times s(1)
1 , . . . , s(1)

7 .

Similarly � symbols represent times s(2)
j (with m(2) = 6) and ⊗ symbols represent times s(3)

j (with m(3) = 3)
respectively. In this example there is one point (on edge 5) that is both square and triangle simultaneously.
The ‘subinterval’ lengths š5,i are indicated for edge 5

Given �k(�) = (k(�)

1 , . . . , k(�)

m(�) ) ∈ (Rd)m(�)
, for each � ∈ [r ], and for e ∈ {1, . . . , 2r − 1}

and a ≤ je, let
ǩe,a =

∑

�:e∈E�(�)

k(�)

ζ [e](a,�)
.

For given σ 2 > 0, r ∈ N, � ∈ �r , �u ∈ M(�t, �) for some �t ∈ (0,∞)r , and
for given k = (�k(1), . . . , �k(r)) and s = (s(�)

0 , . . . , s(�)

m(�) ) (where, for � ∈ [r ], m(�) ∈ N,

�s(�) = (0 = s(�)

0 , s(�)

1 , . . . , s(�)

m(�) = t�), (s
(�)

i < s(�)

i+1), �k(�) ∈ R
m(�)), define

�σ 2(�, �u, s, k) =
2r−1∏

e=1

je∏

i=1

exp
(−σ 2|ǩe,i (�, �u, s)|2še,i (�, �u, s)

2

)
. (2.6)

The following proposition (proved in Sect. 2.2) gives an explicit formula for the right
hand side of (2.1). The integral overM(�t, �) is actually an (r −1)-dimensional integral
over (ur+1, . . . , u2r−1) as the first r components are fixed.

Proposition 2.6. For any r ∈ N, �t ∈ (0,∞)r and φ(1), . . . , φ(r) ∈ G∗ (with φ(�) =
φ�s(�),�k(�) where �s(�) = (s(�)

0 = 0, s(�)

1 , . . . , s(�)

m(�) = t�), (s(�)

i < s(�)

i+1) and �k(�) = (k(�)

1 ,

. . . , k(�)

m(�) )) as in Remark 2.3,

E
N
1,σ2
H

[
r∏

�=1

Ht� (φ
(�))

]

=
∑

�∈�r

∫

�u∈M(�t,�)

�σ 2(�, �u, s, k)d �u.

The following result is proved in Sect. 2.4 below.

Theorem 2.7. Let d > 8. There exists L0 such that for all L ≥ L0, and r ∈ N, �t , and
φ(1), . . . , φ(r) ∈ G∗ as in Proposition 2.6,

EμLT
n

[
r∏

�=1

H (n)

t� (φ(�))

]

→
∑

�∈�r

∫

�u∈M(�t,�)

�σ 2
0
(�, �u, s, k)d �u as n → ∞. (2.7)

Proof of Proposition 2.4. As noted after the statement of the Proposition, we only need
verify condition (2.1) in Theorem 2.1 with G = G∗, and this is immediate from Propo-
sition 2.6 and Theorem 2.7. ��
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2.2. Branching Brownian motion f.d.d. and proof of Proposition 2.6.

Definition 2.8. Let r ∈ N, � ∈ �r , �t ∈ (0,∞)r , and �u ∈ M(�t, �). For each edge e we
let �(e) ∈ {1, . . . , r} be the minimal leaf such that e ∈ E�(�). Let (W i

s )s≤ti for i ∈ [r ]
be (dependent) d-dimensional Brownian motions with variance parameter σ 2, such that
for any distinct i, j ∈ {1, . . . , r},

W i
s = W j

s for all s ≤ ui∧ j , (2.8)

(recall ui∧ j is the distance from the root to the gca of i and j) and

{
(W �(e)

u−(e)+s − W �(e)
u−(e))s≤u+(e)−u−(e) : e an edge of T(�, �u)

}

are independent d-dimensional Brownian motions with variance σ 2. (2.9)

We call (W 1, . . . , W r ) a tree-indexed BM with variance parameter σ 2 on T(�, �u). �

(2.9) simply says that the collection of Brownianmotions run along the disjoint edges
ofT(�, �u) are independent. Note that in (2.9) we could choose any � such that e ∈ E�(�)

by (2.8). We remark that the law of (W 1, . . . , W r ) is uniquely specified by the above
(note it is mean zero Gaussian with Cov(W i (si ), W j (s j )) = σ 2 min(ui∧ j , si , s j )).

Proposition 2.9. Let r ∈ N, � ∈ �r , �t ∈ (0,∞)r , �u ∈ M(�t, �), and (W i
s )s≤ti for

i ∈ [r ] be a tree-indexed BM with variance parameter σ 2 on T(�, �u). If � ∈ [r ],
m(�) ∈ N, �s(�) = (0 = s(�)

0 , s(�)

1 , . . . , s(�)

m(�) = t�), (s(�)

i < s(�)

i+1), �k(�) ∈ R
m(�), and

φ(�) = φ�s(�),�k(�) , then

E

[ r∏

�=1

φ(�)(W �)
]

= �σ 2(�, �u, s, k).

Proof. This is an elementary calculation which divides the dependent Brownian incre-
ments on the left-hand side into smaller non-overlapping independent increments and
keeps track of the Fourier coefficients multiplying each increment. The details are left
for the reader. ��
Notation. For t ≥ 0, let

[t]n = max{k/n ∈ [0, t] : k ∈ Z+}. (2.10)

Proof of Proposition 2.6. Wewill workwith themeasuresμBBM
n for branchingBrownian

motion where the variance parameter is σ 2 > 0 and the offspring distribution is critical
binary branching, i.e., 1

2δ0 +
1
2δ2, and so γ = 1. In this case, [23, Proposition 2.6(a)(i)]

with φ = 1, and Doob’s strong L p inequality for martingales imply

∀p > 1 there is a C p such that ∀K ∈ N sup
n

Eμn

[
sup
t≤K

H (n)

t (1)p
]

≤ C p K p−1. (2.11)

Theorem 1.3 and the continuity of t → Ht under NH = N
1,σ 2

H imply weak conver-
gence of (H (n)

t1 (φ(1)), . . . , H (n)

tr (φ(r))) under (μBBM
n )t1 to (Ht1(φ

(1)), . . . , Htr (φ
(r))) un-

der N
t1
H (see, e.g., [8, Theorem 10.2 in Ch. 3]). Note also that for K large enough,
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∣
∣∏r

l=1 H (n)

t� (φ(�))
∣
∣2 ≤ supt≤K H (n)

t (1)2r . Therefore, the above together with (2.11) and
Dominated Convergence imply that

ENH

[
r∏

�=1

Ht� (φ
(�))

]

= E
N

t1
H

[
r∏

�=1

Ht� (φ
(�))

]

NH (S > t1)

= lim
n→∞ E(μBBM

n )t1

[ r∏

�=1

H (n)

t� (φ(�))

]

μBBM
n (S(n) > t1)

= lim
n→∞ EμBBM

n

[ r∏

�=1

H (n)

t� (φ(�))

]

. (2.12)

A moment calculation for branching Brownian motion which uses Proposition 2.9
and is much simpler than that for lattice trees in Theorem 2.7, shows that the limit
on the right-hand side of the above equals the right-hand side of the equality in the
proposition. We sketch the proof as it explains how the right-hand side of (2.7) arises.
Let Z+/n = { j/n : j ∈ Z+}. Recall (1.10), and let It = {β ∈ I : |β| = �t	}. Fix
t1, . . . , tr > 0 and consider only large enough n so that

�nti	 ≥ 2, i = 1, . . . , r.

Recall the random subset GW of indices in I defined in Sect. 1.2.1. A simple expansion
of the sum defining H (n)

t� shows that

EμBBM
n

[ r∏

�=1

H (n)

t� (φ(�))

]

= 1

nr−1

∑

β1∈Int1

· · ·
∑

βr ∈Intr

E

[

1{{β1,...,βr }⊂GW }
r∏

�=1

φ(�)(Bβ�

·∧t� )

]

= 1

nr−1

∑

β1∈Int1

· · ·
∑

βr ∈Intr

P
({β1, . . . , βr } ⊂ GW

)
E

[ r∏

�=1

φ(�)(B̂β�

·∧t� )
]
,

(2.13)

where in the last we used the independence of the branching variables {eβ : β ∈ I } and
the spatial motions {B̂β : β ∈ I } as well as the fact that Bβ�

·∧t� = B̂β�

·∧t� if β� ∈ GW .
It is easy to see that the contribution to the above sum from β1, . . . , βr such that for
some i �= j : πβ i is an ancestor of β j , is bounded by C(r, K )/n for max{ti : i ∈
[r ]} ≤ K . To see this, note that if πβ i is an ancestor of β j , then πβ i is determined
by β j since its length is �nti	 − 1. This means there are only two possible values of
β i and so we can bound this contribution by twice the (r − 1)-fold sum with each
�k(�) = �0 (so each φ(�) = 1), and applying (2.11), we obtain the above bound. Fix
�β := (β1, . . . , βr ) ∈ Int1 × · · · × Intr so that none of the indices has a parent which is
an ancestor of another index (in particular all are distinct). Call such a �β a good value
of �β. Then, in particular, �β uniquely determines a non-degenerate shape �( �β) ∈ �r
where β1, . . . , βr label the r leaves and one can define the internal vertices of the shape
by locating the branch points from the root to β1, then the new branch points while
proceeding from the root to β2, and so on up to βr . See e.g. Fig. 7. In this way we label
the internal vertices by βr+1, . . . , β2r−1 using our labelling convention in Definition 2.5
(now with β i in place of i). For example (assuming r > 1), βr+1 = β1|κr+1, where
κr+1 = max{κ : β1|κ = β�|κ for all � > 1} ∈ {0, . . . ,min{|β�|} − 2} (the upper bound
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0

011 = β1

0000 = β3 β2 = 0011

00 10

t3

t2

t1

1/n

3 2

1

0

4

5

Fig. 7. On the left is (part of) a GW tree with β1, β2, β3 indicated. Here |β1| = |β5| = 2, |β2| = |β3| = 3,
and |β4| = 1, and this contributes to (2.13) when t2, t3 ∈ [3/n, 4/n) and t1 ∈ [2/n, 3/n) as depicted. On
the right is the corresponding tree shape. The edge lengths associated to the latter are determined by taking
differences of the ue , where u4 = 1/n, u5 = 2/n, u1 = t1, u2 = t2, u3 = t3

since �β is good), and then continue down the branch towards β1 until there is only one
leaf (β1) along the remaining tree. Note that each β� for � > r is of the form β i |κ� for
some i = i(�) ≤ r and some κ� < |β i |, i.e. is an ancestor of some β i .

We introduce tree distances �u( �β) = (u1, . . . , u2r−1) for the above shape, with
ui ∈ Z+/n \ {0} for i > r , by setting

u� =
{

t� if � ≤ r,
(|β�| + 1)/n if � ∈ {r + 1, . . . , 2r − 1}.

Recall that u� is the distance from vertex β� to the root and so edge distances can be
found by differencing. Denote this tree shape with edge lengths by T( �β). Note that the
fact that �β is good ensures that u� < |β i |/n ≤ ui , whenever β� is an ancestor of β i for
� > r and i ≤ r . In fact, the possible values of �u are now given by the discrete analogue
ofM(�t, �),

�u ∈ Mn(�t, �) := {�u ∈ (0,∞)2r−1 : ui = ti for i ≤ r, ui ∈ Z+/n \ {0} for i > r

and uk < u j whenever βk is an ancestor of β j }.
(2.14)

In the above notation we use the fact that the ordering of the leaves given by �t , the
shape �, and our convention on numbering internal vertices, determines the ancestral
relationship between the βk , not the particular choice of �β. The definition of u� for the
internal branch points � > r ensures that

(W 1, . . . , W r ) := (B̂β1
, . . . , B̂βr

) is a tree-indexed Brownian motion

with variance parameter σ 2 on T( �β). (2.15)

To see this, note that at a branch point β� = β i ∧ β j for leaves i, j and � > r , the
Brownian paths B̂βi

and B̂β j
do not split apart and evolve independently until time

(|β�| + 1)/n = u�.
We now decompose the sum over good �β in (2.13) according to its shape, �, and

edge lengths �u. Abbreviating (β1, . . . , βr ) ∈ Int1 × · · · × Intr as �β ∈ In�t , and writing
�β ⊂ GW for {β1, . . . , βr } ⊂ GW , the right hand side of (2.13) becomes
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∑

�∈�r

1

nr−1

∑

�u∈Mn(�t,�)

∑

�β∈In�t :�β good

1{�( �β)=�}1{�u( �β)=�u}P( �β ⊂ GW )E
[ r∏

�=1

φ(�)(B̂β�

·∧t� )
]
+O

( 1

n

)
.

(2.16)

Recall the notation (2.10). Choose � ∈ �r , �u ∈ Mn(�t, �), and �β ∈ In�t such that
�( �β) = � and �u( �β) = �u. Let N = N (�, �u) ∈ Z+ be the number of ancestors of
β1, . . . , βr in the index set I . Note that N is equal to n times the sum of (truncated)
edge lengths in T( �β) determined by �u′ where u′

� = u� if � > r and u′
� = [u�]n = [t�]n

if � ≤ r (see e.g. the left hand side of Fig. 7). (Here we identify each edge of rescaled
length 1/n with the index of its entry vertex in I .) Therefore N is a function of (�, �u) as
the notation suggests. It follows immediately that P( �β ⊂ GW ) = 2−N since �β ⊂ GW
if and only if each of these ancestors has two offspring.

It follows from this, (2.15), and Proposition 2.9, that (2.16) equals
∑

�∈�r

1

nr−1

∑

�u∈Mn(�t,�)

∑

�β∈In�t , �β good

1{�( �β)=�}1{�u( �β)=�u}P( �β ⊂ GW )�(�, �u, s, k) +O
( 1

n

)

=
∑

�∈�r

1

nr−1

∑

�u∈Mn(�t,�)

2−N �(�, �u, s, k)
∑

�β∈In�t

1{�( �β)=�}1{�u( �β)=�u} +O
( 1

n

)
.

Here dropping the “good” requirement on �β, at the cost of O
(
1
n

)
, is again an easy

calculation along the lines of that done earlier.
For fixed � ∈ �r and �u ∈ Mn(�t, �), the number of choices for �β ⊂ I with this

shape and edge lengths in the above is 2N . This is because there are two choices for the
offspring labels for each of the N “ancestors” above. Therefore combining the above
equalities leads to

EμBBM
n

[ r∏

�=1

H (n)

t� (φ(�))

]

=
∑

�∈�r

1

nr−1

∑

�u∈Mn(�t,�)

�(�, �u, s, k) +O
(1

n

)
.

As n → ∞ in the above, the (r − 1)-fold Riemann sum converges to the (r − 1)-
dimensional integral in the right-hand side of the proposition, and so the result now
follows from (2.12). For the Riemann sum convergence, we note that the �u dependence
of the integrand admits finitely many jump discontinuities. ��

2.3. Lattice tree f.d.d. We now turn to the LT setting. Fix m ∈ N, t > 0, �k =
(k1, . . . , km) ∈ R

dm , and �s = (0 = s0, . . . , sm = t), where si < si+1. Then

H (n)

t (φ�s,�k) =
∫

D
φd H (n)

t = 1

C0n

∑

√
nx∈Tnt

m∏

j=1

eik j

(
w

(n)
s j (t,x)−w

(n)
s j−1 (t,x)

)

. (2.17)

Letting �xm = (x1, . . . , xm) and setting x0 = 0 ∈ Z
d we have

EμLT
n

[H (n)

t (φ�s,�k)] = C1

C0

∑

�xm∈(Zd )m

m∏

j=1

e
i

k j√
n
(x j −x j−1)

P

(
xm ∈ Tnt ,∩m

j=1{wns j (nt, xm) = x j }
)
.

(2.18)
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o

x1

x2 x3

Fig. 8. A depiction of the event in the detailed 1-particle function with n = 1, t = 6, s1 = 1 and s2 = 4, with
the path s �→ ws (6, x3) in bold (recall the notation from (1.1))

We call the quantity P
(
xm ∈ Tnt ,∩m

j=1{wns j (nt, xm) = x j }
)
a detailed 1-particle func-

tion, (see e.g. Fig. 8), and the Fourier transform of the increments is called a detailed
1-particle transform, i.e.

∑

�xm∈(Zd )m

m∏

j=1

eik j (x j −x j−1)P

(
xm ∈ Tnt ,∩m

j=1{wns j (nt, xm) = x j }
)
.

Related quantities arising from expectations of the form

EμLT
n

[
r∏

�=1

H (n)

t� (φ(�))

]

,

with φ(�) = φ�s(�),�k(�) (�s(�), �k(�) as in Theorem 2.7) are called detailed r-particle trans-
forms. Therefore Theorem 2.7 amounts to verifying the appropriate asymptotics for the
detailed r -particle transforms.

When m = 1, the detailed 1-particle function is simply P(x1 ∈ Tnt ), and its Fourier
transform becomes

∑
x∈Zd eik1x

P(x ∈ Tnt ). These quantities are called the 1-particle
functions (traditionally in the literature these have been called the 2-point functions,
with the two points being the origin o and x1). For �n ∈ Z

r
+ and �x = (x1, . . . , xr ) ∈ Z

dr

we can define the r -particle functions (see e.g. Fig. 9):

ρ�n(�x) = P(∩r
i=1{xi ∈ Tni }),

and (their Fourier transforms) the r -particle transforms for �k ∈ (Rd)r :

ρ̂�n(�k) =
∑

�x∈(Zd )r

ei
�k·�xρ�n(�x).

We write O(x) to denote a quantity whose absolute value is bounded by a constant
times x . Using the inductivemethod of [12,14] the followingwas shown in [17, Theorem
3.7]:
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o

y3

y1

y2

Fig. 9. A depiction of the event in the 3-particle function ρ(3,3,6)(y1, y2, y3)

Theorem 2.10 [17]. Fix d > 8. There exists L0 = L0(d) � 1 such that for every
L ≥ L0:

There exist K , CA > 0 such that, for every δ ∈ (0, 1 ∧ d−8
2 ),

sup
n∈Z+

sup
k∈Rd

|ρ̂n(k)| = sup
n∈Z+

ρ̂n(0) ≤ K , (2.19)

and

ρ̂n

(
k√
n

)

= CAe
− σ20 |k|2

2

[

1 +O
( |k|2

nδ

)

+O
(

n− d−8
2

)]

. (2.20)

Recall that the constant CA is equal to A′ in the paper [17], while σ 2
0 is equal to

vσ 2/d in [17]. The error terms (see [17, Theorem 3.7, Lemma 3.8]) in (2.20) depend
on d, L but are uniform in {k ∈ R

d : |k|2 ≤ C log n} (where C depends on δ). Taking
k = 0 above we see that, as claimed in Sect. 1.1, CA = limn→∞ E[|Tn|]. Asymptotics
for the r -particle transforms are provided in [17, Theorem 1.14]. In particular there exists
CV > 0 depending on D, d such that

n−1
E[|Tn|2] = n−1ρ̂(n,n)(0, 0) → CV C3

A. (2.21)

Recall that the constant CV in our paper is equal to Vρ2 in [17]. Our task is to “upgrade”
these kinds of results from [17] to get asymptotics for the “detailed” r -particle transforms.
This is the focus of the next section.

2.4. The LT detailedr-particle transforms and proof of Theorem 2.7. Recall the labelling
convention for internal vertices (branch points) and edges in � from Definition 2.5.

A lattice tree T � o having r + 1 leaves (o = x0 and x1, . . . , xr ), r − 1 vertices
xr+1, . . . , x2r−1 of degree 3, and all other vertices degree 2, has an associated abstract
tree � as follows: xi �→ i , and any two vertices i, i ′ in � are connected via a single edge
if the shortest path from xi to xi ′ in T passes through no other x j . All vertices in � are
degree 1 or 3. Relabelling the vertices of degree 3 according to the labelling convention
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in Definition 2.5 gives an abstract shape �′, which is the shape of T and the points
x1, . . . , xr (and o), and we write vg ∈ {xr+1, . . . , x2r−1} for the vertex in T that mapped
to branch point g ∈ �′.

Given �, y̌ = (y̌e,i )i∈[ je],e∈[2r−1], and ň = (ňe,i )i∈[ je],e∈[2r−1] with each y̌e,i ∈ Z
d

and each ňe,i ∈ N, let Ť (�, y̌, ň) denote the set of lattice trees T � o such that:

(*) for each � ∈ [r ] the tree T contains x� = ∑
e∈E�(�)

∑ je
i=1 y̌e,i , and the shape of the

minimal subtree T ′ of T containingo and x1, . . . , xr is�, and for each branch point

g ∈ �, the corresponding vertex vg is tree distance
∑

f ≺g
∑ j f

i=1 ň f,i +
∑ jg

i=1 ňg,i

from the root in T ′, and
(**) for each � ∈ [r ], each e ∈ E�(�), and each ie ∈ {1, . . . , je}, the path from o to

x� in T passes through the point
∑

f ≺e
∑ j f

i=1 y̌ f,i +
∑ie

i=1 y̌e,i ∈ Z
d at time (tree

distance from the root)
∑

f ≺e
∑ j f

i=1 ň f,i +
∑ie

i=1 ňe,i ∈ Z
d .

Let

t (�)

ň ( y̌) = ρP

(
T ∈ Ť (�, y̌, ň)

)
. (2.22)

Given n, �, and ň as above, and ǩ = (ǩe,i )i∈[ je],e∈[2r−1] with each ǩe,i ∈ R
d , define

t̂ (�)

ň (ǩ) =
∑

y̌

2r−1∏

e=1

je∏

i=1

eiǩe,i ·y̌e,i t (�)

ň ( y̌).

The following proposition will be proved in Sect. 4.5 via modifications of [17, Theorem
4.8] (where each je = 1) as indicated in [18]:

Proposition 2.11. Fix d > 8. There exists L0(d) such that for every L ≥ L0: for every
δ ∈ (0, 1∧ d−8

2 ), ε > 0, r ∈ N, � ∈ �r , ( je)e∈[2r−1] ∈ N
2r−1, ň = (ňe,i )i∈[ je],e∈[2d−1]

(with each ňe,i ∈ N and each ňe,i/n ∈ (ε, 1/ε)), R > 0, ǩ = (ǩe,i )i∈[ je],e∈[2d−1] (with
each ǩe,i ∈ [−R, R]d ),

t̂ (�)

ň

( ǩ√
n

)
= ρCr−1

V C2r−1
A

2r−1∏

e=1

je∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n

+O
(2r−1∑

e=1

je∑

i=1

1

ň
d−8
2

e,i

)
+O

(2r−1∑

e=1

je∑

i=1

∣
∣
∣ǩ
∣
∣
∣
2

ň1−δ
e,i

n

)
,

where the constants in the error terms depend on L, δ, r , R, ( je)e∈[2r−1] and ε > 0.

The purpose of this section is to prove Theorem 2.7 using Proposition 2.11.
We begin with generalisations of (2.17) and (2.18) (where r = 1). Fix r ≥ 1 and

t1, . . . , tr > 0. Let s = (�s(1), . . . , �s(r)), where �s(�) = (s(�)

0 , . . . , s(�)

m(�) ), and 0 = s(�)

0 <

s(�)

1 < · · · < s(�)

m(�) = t� for each � (so each m(�) ∈ N). Then for φ(1), . . . , φ(r) ∈ G (with

φ(�) = φ�s(�),�k(�) and �k(�) = (k(�)

1 , . . . , k(�)

m(�) ) ∈ (Rd)m(�)
),
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r∏

�=1

H (n)

t� (φ(�))

=
(

1

C0n

)r ∑

√
nx1∈Tnt1

· · ·
∑

√
nxr ∈Tntr

r∏

�=1

m(�)
∏

j�=1

exp

{

ik(�)

j�

(
w

(n)

s(�)
j�

(t�, x�) − w
(n)

s(�)
j�−1

(t�, x�)
)
}

.

Take expectations and work with the un-normalised functions w(t, x) = w(t, x)
(
T
)
(a

slight abuse of notation, as before w(t, x) was defined as a function of the random tree
T ) to see that

EμLT
n

[
r∏

�=1

H (n)

t� (φ(�))

]

= C1

Cr
0nr−1

∑

�x∈(Zd )r

∑

T �o:�x∈Tn�t

P(T = T )

×
r∏

�=1

m(�)
∏

j�=1

exp

{

i
k(�)

j�√
n

(
w

ns(�)
j�

(nt�, x�) − w
ns(�)

j�−1
(nt�, x�)

)
}

, (2.23)

where �x ∈ Tn�t means xi ∈ Tnti for each i ∈ [r ].
Given �x = (x1, . . . , xr ) ∈ (Zd)r and T � o a lattice tree with x1, . . . , xr ∈ T , one

can consider the minimal subtree containing the origin and these points. Typically this
subtree has r −1 branch points that are connected to the root and the points xi according
to an abstract (rooted) shape � consisting of 2r − 1 edges e ∈ E(�) and 2r vertices.
Call this the shape associated to (T, �x). Contributions from subtrees containing fewer
than r − 1 branch points (arising if (i) the number of distinct elements in {x1, . . . , xr } is
smaller than r , or (ii) paths in T to one or more xi contain paths to one or more other x j ,
or (iii) the most recent common ancestor of two x j ’s is the origin, or (iv) some branch
point in the subtree has degree more than 3) will constitute error terms (see e.g. (2.26)
below) and they will be said to have a degenerate shape. For a given (non-degenerate)
shape � ∈ �r , and �t = (t1, . . . , tr ) ∈ (R>0)

r , recall the definition of Mn(�t, �) from
(2.14) (but nowwith � in place of β�). For �x ∈ (Zd)r , �y = (yr+1, . . . , y2r−1) ∈ (Zd)r−1,
and �u ∈ Mn(�t, �), let Tn(�, �t, �u, �x, �y) denote the set of lattice trees T containing the
origin and the points xi ∈ T�nti 	 for i ∈ [r ] for which the shape associated to (T, �x) is
�, such that for each branch point j = r + 1, . . . , 2r − 1 in �, the spatial and temporal
location of the corresponding branch point in T is (y j , nu j ). The main contribution to
(2.23) is therefore

C1ρ
−1

Cr
0nr−1

∑

�∈�r

∑

�u∈
Mn(�t,�)

∑

(�x,�y)∈
(Zd )2r−1

∑

T ∈
T n(�,�t,�u,�x,�y)

W (T )

×
r∏

�=1

m(�)
∏

j�=1

exp

{

i
k(�)

j�√
n

(
w

ns(�)
j�

(nt�, x�) − w
ns(�)

j�−1
(nt�, x�)

)
}

. (2.24)

The modulus of each exponential is bounded by 1. Next, using (2.19), and neglecting
interaction between parts of the tree corresponding to the 2r − 1 different edges in the
shape we get that for any shape � ∈ �r ,

∑

(�x,�y)

∑

T ∈
T n(�,�t,�u,�x,�y)

W (T ) ≤ K 2r−1
0 , (2.25)
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for some K0 > 0. If t̄ = maxi∈[r ] ti , we can sum over �u to conclude that
∑

�u∈
Mn(�t,�)

∑

(�x,�y)

∑

T ∈
T n(�,�t,�u,�x,�y)

W (T ) ≤ K 2r−1
0 (nt̄ + 1)r−1.

Remark 2.12. Bounds similar to (2.25) hold in great generality. For any abstract rooted
tree graph (call it a generalised shape) �

∗ with edge set E∗, and any set of temporal
lengths (ne)e∈E∗ (with each ne ∈ N) associated with those edges: the total weight of all
lattice trees containing the origin having verticeswith spatial and temporal displacements
( ��e)e∈E∗ and (ne)e∈E∗ with the generalised shape of the connections to these points
being �

∗, summed over ( ��e)e∈E∗ gives at most K #E∗
0 . This is also obtained by ignoring

interactions between different parts of the trees corresponding to different edges in E∗.�
For degenerate shapes, one also has (2.25) (in fact the exponent 2r−1 can be reduced).

However, in comparison with (2.24), degenerate shapes give rise to sums over fewer (at
most r −2 in fact) u j ’s, each of which takes at most nt̄+1 possible values. After summing
over finitely many degenerate shapes and summing over �u we may bound the version of
(2.24) for degenerate shapes by

C

nr−1 (nt̄ + 1)r−2 ≤ C
(t̄ + 1)r−2

n
. (2.26)

We conclude that contributions to (2.23) from degenerate shapes are bounded in absolute
value by Cn−1(t̄ + 1)r−2 and the main contribution from non-degenerate shapes is at
most C(t̄ + 1)r−1. If we set m(�) = 1, �k(�) = 0, we conclude the following as a special
case:

Lemma 2.13. For eachr ∈ N there exists a constant Cr > 0 such that for all t1, . . . , tr≥0,

sup
n∈N

nE

[ r∏

i=1

H (n)

ti (1)
]

≤ Cr (t̄ + 1)r−1.

Given ε > 0, �t , s, and a (non-degenerate) shape � ∈ �r , let Mn,ε(�t, �, s) denote
the set of �u ∈ Mn(�t, �) for which (with u0 := 0) either:

• there exist a leaf � ∈ {1, . . . , r}, a branch point j ∈ {r + 1, . . . , 2r − 1} in the path
from o to �, and an i ∈ {1, . . . , m(�)}, such that

|u j − s(�)

i | ≤ ε,

• there exist i, j ∈ {0, . . . , 2r − 1} vertices of �, such that i is an ancestor of j in �

and

|ui − u j | ≤ ε.

Roughly speaking these correspond to situations where there is branching on a path
close to one of the observation times along the path, or where one of the edge-lengths is
short.

Let Mn,∗(�t, �, s) = Mn(�t, �) \ Mn,ε(�t, �, s). Then the sum over �u in (2.24)
can be split into a sum over �u ∈ Mn,∗(�t, �, s) and a sum over �u ∈ Mn,ε(�t, �, s).
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Using the same argument as for (2.26), we get that the absolute value of the sum over
�u ∈ Mn,ε(�t, �, s) is at most

nr−1Cε(t̄ + 1)r−1n−(r−1) = C(t̄ + 1)r−1ε. (2.27)

We therefore turn our attention to the quantity

C1ρ
−1

Cr
0nr−1

∑

�∈�r

∑

�u∈
Mn,∗(�t,�,s)

∑

(�x,�y)∈
(Zd )2r−1

∑

T ∈
Tn(�,�t,�u,�x,�y)

W (T )

r∏

�=1

m(�)
∏

j�=1

e
i

k(�)
j�√
n

(
w

ns(�)j�

(nt�,x�)−w
ns(�)j�−1

(nt�,x�)
)

.

(2.28)

We now define discrete analogues of the sets I following Definition 2.5. Recall the
notation (2.10). Let � ∈ �r , �t ∈ (0,∞)r , �u ∈ Mn(�t, �), and s = (�s(1), . . . , �s(r)),
where �s(�) = (s(�)

0 , . . . , s(�)

m(�) ), and 0 = s(�)

0 < s(�)

1 < · · · < s(�)

m(�) = t� for each
� ∈ [r ] be given. If e /∈ E�(�) then set In(e, �s(�)) = ∅. If e ∈ E�(�), then let
In(e, �s(�))denote those elements of [�s(�)]n := ([s(�)

1 ]n, . . . , [s(�)

m(�)]n) that fall in the interval
(u−(e), u+(e)∧[t�]n),whereu−(e), u+(e) are the elements of �u corresponding to the end-
vertices of e (and u−(e) = 0 if e is adjacent to the root). Let In(e, s) = ∪r

�=1In(e, �s(�)).
The j (e) := |In(e, s)| elements of In(e, s) divide the interval [u−(e), u+(e) ∧ [t�]n]
into j (e) + 1 subintervals - denote their lengths by (ňe,i/n)i=1,..., j (e)+1, and set ň =
(ňe,i )e∈E(�);i=1,..., j (e)+1. If j (e) = 0 then ňe,1/n = u+(e) − u−(e). Note that j (e) and

ň depend on �, �u, s (and n), and that
∑

e∈E�(�)

∑ j (e)+1
j=1 ňe, j = �nt�	.

For � ∈ [r ], e ∈ E�(�) and a ∈ {1, . . . , j (e) + 1} let

ζ [e]
n (a, �) = min

{

i ≤ m(�) : s(�)

i ≥ u−(e) +
a∑

ie=1

ňe,ie

n

}

.

(Note that s(�)

i is interchangeable with [s(�)

i ]n in the definition of ζ
[e]
n .) Given �k(�) =

(k(�)

1 , . . . , k(�)

m(�) ) ∈ (Rd)m(�)
, for each � ∈ [r ], and for e ∈ {1, . . . , 2r−1} anda ≤ j (e)+1,

let

ǩe,a(n) =
∑

�:e∈E�(�)

k(�)

ζ
[e]
n (a,�)

.

Let ǩ(n) = (ǩe,i (n))e∈[2r−1],i≤ j (e)+1 which depends on �, s, �u, n and of course k.
If n ∈ N,� ∈ �r , s, and �u ∈ Mn,∗(�t, �, s) are given, this determines ň = ň(�, s, �u)

as above. If we are given k aswell then this also determines ǩ(n). By expressing locations
of paths in terms of their spatial increments y̌ = (y̌e,i )i∈[ je],e∈[2r−1] (and recalling the
definition of Ť (�, y̌, ň) given prior to (2.22)) we see that (2.28) is equal to

C1ρ
−1

Cr
0nr−1 ·

∑

�∈�r

∑

�u∈
Mn,∗(�t,�,s)

∑

y̌

∑

T ∈
Ť (�, y̌,ň(�,s,�u))

W (T )

2r−1∏

e=1

j (e)+1∏

i=1

e
i

ǩe,i (n)√
n

·y̌e,i

= C1

Cr
0nr−1 ·

∑

�∈�r

∑

�u∈
Mn,∗(�t,�,s)

∑

y̌

2r−1∏

e=1

j (e)+1∏

i=1

e
i

ǩe,i (n)√
n

·y̌e,i
P

(
T ∈ Ť

(
�, y̌, ň(�, s, �u)

))
,

(2.29)
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Recall M(�t, �) from Definition 2.5. Given ε > 0 we define Mε(�t, �, s) to be the
set of �u ∈ M(�t, �) for which either:

• there exist a leaf � ∈ {1, . . . , r}, a branch point j in the path from o to � in �, and
i ∈ {1, . . . , m(�)} such that

|u j − s(�)
i | ≤ ε.

• there exists vertices i ≺ j of �, such that

|ui − u j | ≤ ε.

Let M∗(�t, �, s) = M(�t, �) \ Mε(�t, �, s). Then, as for (2.27), we have that
∫

�u∈Mε(�t,�,s)
1d �u < Crεt̄

Recall the definition of � (and its arguments) from (2.6). Below we will show that as
n → ∞ (2.29) converges to

∑

�∈�r

∫

�u∈M∗(�t,�,s)
�(�, �u, s, k)d �u. (2.30)

Fix � ∈ �r and consider the quantity in (2.29) with fixed � which can be written as

C1

Cr
0nr−1

∑

�u∈
Mn,∗(�t,�,s)

∑

y̌

2r−1∏

e=1

j (e)+1∏

i=1

e
i

ǩe,i (n)√
n

·y̌e,i
P

(
T ∈ Ť (�, y̌, ň(�, �u, s))

)
. (2.31)

Then (2.31) is equal to

C1ρ
−1

Cr
0nr−1

∑

�u∈
Mn,∗(�t,�,s)

t̂ (�)

ň(�,s,�u)

( ǩ(n)√
n

)
, (2.32)

where we recall that ǩ(n) depends on �, s, �u, n, k.

Proof of Theorem 2.7. Fix r , �t and the φ(�) (hence k and s).
Let δ(s) > 0 denote the minimum difference between distinct values in s (recall that

this includes 0 and each t�). Let ε ∈ (0, (δ(s)/2) ∧ 1). Above (see in particular (2.26),
(2.27) and (2.32)), we have shown that the left hand side of (2.7) is equal to

C1ρ
−1

Cr
0nr−1

∑

�∈�r

∑

�u∈
Mn,∗(�t,�,s)

t̂ (�)

ň(�,s,�u)

( ǩ(n)√
n

)
+O(ε) +O(n−1),

where the constants in theO notation here only depend on t̄, r, L , d. By definition of ň,
each ňe,i is equal to �ns	−�ns′	 for somedistinct s > s′ ∈ s (or is equal to |�ns(�)

i 	−nu j |
for some branch point j in the path from o to � in�, or |nui −nu j | for some i ≺ j in�).
It follows from the definition of δ(s) and the fact that �u ∈ Mn,∗(�t, �, s) that we have
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that ňe,i > nε/2 for all e, i for n sufficiently large depending on ε (which we assume in
what follows). By Proposition 2.11 (recalling that C0 = C2

ACV and C1 = CACV , and
δ ∈ (0, 1) is as in Proposition 2.11) we see that this is equal to

∑

�∈�r

1

nr−1

∑

�u∈
Mn,∗(�t,�,s)

[ 2r−1∏

e=1

j (e)+1∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n +O

(∑

e,i

1

ň
d−8
2

e,i

)
+O

(∑

e,i

|ǩ|2ň1−δ
e,i

n

)]

+O(ε) +O(n−1), (2.33)

where in the above, ň is determined by �, �u, s (and n), and ǩ is determined by these and
k. In addition the constants in the error terms in square brackets depends on ε (among
other things, as in Proposition 2.11). Also δ, ε ∈ (0, 1) and nε/2 ≤ ňe,i ≤ nt̄ imply the
error terms in square brackets are O((εn)−(δ∧(d−8)/2)) uniformly in �u ∈ Mn,∗(�t, �, s)
(where again the constant in the O notation here depends on ε, k). Since the sum over
�u gives at most (nt̄)r−1 we see that (2.33) is equal to

∑

�∈�r

1

nr−1

∑

�u∈
Mn,∗(�t,�,s)

2r−1∏

e=1

j (e)+1∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n +O((εn)−(δ∧(d−8)/2) +O(ε). (2.34)

Recall the definition of š = š(�, �u, s) from below (2.4). Together with the definition
of ňwe see that |še,i − ňe,i/n| ≤ 2/n for every e, i . Thus (for n large enough depending
on ε) (2.34) is equal to

∑

�∈�r

1

nr−1

∑

�u∈
Mn,∗(�t,�,s)

2r−1∏

e=1

j (e)+1∏

i=1

e−σ 2
0

ǩ2e,i
2 še,i+O(n−1) +O(ε), (2.35)

where the error term in the exponent depends on k but is uniform in �u. Recalling (2.6),
it follows that (2.35) is equal to

∑

�∈�r

1

nr−1

∑

�u∈
Mn,∗(�t,�,s)

2r−1∏

e=1

j (e)+1∏

i=1

e−σ 2
0

ǩ2e,i
2 še,i +O(ε)

=
∑

�∈�r

1

nr−1

∑

�u∈
Mn,∗(�t,�,s)

�(�, �u, s, k) +O(ε).

As n → ∞ in the above, the (r − 1)-fold Riemann sum converges to the (r − 1)-
dimensional integral in (2.30). We have therefore shown that there exists a constant C
(depending on k, s, �t) such that for any ε > 0, for n sufficiently large we have that

∣
∣
∣
∣EμLT

n

[
r∏

�=1

H (n)
t� (φ(�))

]

−
∑

�∈�r

∫

�u∈M(�t,α)

�σ 2(�, �u, s, k)d �u
∣
∣
∣
∣ ≤ Cε,

which completes the proof. ��
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3. Tightness

In this section we work in an abstract setting for historical processes motivated by the
historical paths {w(m, x) : m ∈ Z+, x ∈ Tm} of lattice trees and those for branching
Brownian motion, {Bα : |α| ∈ Z+, α ∈ GW } (with n = 1), both introduced in Sect. 1.

As before, add� toR
d as a cemetery point. Assume on a probability space (�,F , P)

we have

∀k ∈ Z+, Sk is an a.s. finite random subset of a countable setS. (3.1)

∀k ∈ Z+, β ∈ S, (w j (k, β)) j∈Z+ areR
d ∪ {�}-valued random variables such that

for β ∈ Sk, w j (k, β) areR
d -valued, w0(k, β) = 0, w j (k, β) = wk(k, β) ∀ j ≥ k,

and for β ∈ S \ Sk, w j (k, β) = �. (3.2)

So for each k ∈ Z+ and β in the random finite set Sk we have a discrete-time R
d -

valued stochastic process starting at 0 and freezing at time k.
For

w ∈ W := {w(k, β) : β ∈ Sk, k ∈ Z+} (the set of historical paths), (3.3)

we define the rescaled paths by

w(n)

s (t, β) = w�ns	(�nt	, β)√
n

, s, t ≥ 0, (3.4)

so that for t ≥ 0 and β ∈ S�nt	, w(n)(t, β) ∈ D(Rd). Define a càdlàg MF (D(Rd))-
valued process by

H (n)

t = 1

Cgn

∑

β∈S�nt	

δw(n)(t,β), (3.5)

where Cg > 0 is a model-dependent constant. We call this class of measure valued
processes, the historical processes associated withW .

Example 3.1 (Lattice trees). Here S = Z
d , Sm = Tm for m ∈ Z+ and for x ∈ Sm ,

w(m, x) is the tree history from the root to (m, x) in (1.1). If Cg = C0 then one can
easily check that H (n) as defined in (3.5) agrees with the historical process for lattice
trees in (1.4). Note here that the index set for w(n) has been changed from that in (1.2)
(and so we have abused the notation) but the actual empirical measures are unchanged.
Properties (3.1) and (3.2) are clear if we extend the definition ofw(m, x) to� for x /∈ Sm .

Example 3.2 (Branching random walk). We discretize (in time) the branching Brow-
nian motions introduced in Sect. 1 and use the notation from that construction. We
denote dependence on n ∈ N now in our notation for B̂β,(n) for β ∈ I . Let S = I ,
Sm = {β ∈ I : β ∈ GW, |β| = m}, and for β ∈ Sm set

w j (m, β) = B̂β,(1)
j∧m .

Then one can check that for α ∈ S�nt	,

w(n)

s (t, β) = B̂β,(1)

�n(t∧s)	
n1/2 .
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Set Cg = 1 in (3.5), and for |β| = �nt	, let Zβ,(n)

s = B̂β,(n)

�n(s∧t)	/n be a time discretization

of the stopped Brownian paths B̂β,(n). Brownian scaling shows that

if H̃ (n)

t = 1

n

∑

β∈GW :
|β|=�nt	

δZβ,(n) , then H̃ (n) is equal in law to

the nth historical process given by (3.5) for each n ∈ N. (3.6)

Clearly H̃ (n) is a rescaled branching random walk with Gaussian mean 0, variance σ 2

increments. Properties (3.1) and (3.2) are again clear if we extend the definition of
w(m, x) to � for x /∈ Sm .

In order to prove historical tightness, we will assume that the collection W (as in
(3.3)) of historical paths satisfies the following condition. Recall that w(n) is the scaled
version of w, as in (3.4).

Condition 3.3 (Modulus of continuity). For some q ∈ (0, 1/2), θ ∈ (0, 1], and constant
C2 > 0, there exist random variables (δn)n∈N so that for all historical paths w ∈ W and
n ∈ N,

∀si ∈ Z+/n, |s2 − s1| ≤ δn ⇒ |w(n)

s2 − w(n)

s1 | ≤ |s2 − s1|q ,

where nP(δn ≤ ρ) ≤ C2ρ
θ ∀ρ ∈ [0, 1). (3.7)

This condition is verified for any q ∈ (0, 1/2) and θ = 1 in [20, Theorem 6] for
sufficiently spread-out lattice trees in more than 8 dimensions in Example 3.1 above
(as well as a number of other models)—see Lemma 3.12 below. For the Branching
Random Walks with Gaussian increments in Example 3.2 it is easy to derive it from [6,
Theorem 8.1] for the same parameter values (in fact θ can be taken to be any value in
(0,∞)) . Here one takes the underlying diffusion to be Brownian motion, restricts the
time steps to be in Z+/n, and then uses (3.6).

In our abstract setting, the extinction times become

S(1) = min{k ∈ Z+ : Sk = ∅} ∈ Z+ ∪ ∞,

so that

S(n) := S(1)/n = inf{t ≥ 0 : H (n)

t (1) = 0},
agreeingwith our earlier definition for lattice trees.Weassume S(1) satisfies the following:

Condition 3.4 (Survival bounds). There exist c, c > 0 such that

c ≤ inf
t≥0

P(S(1) > t)(t ∨ 1) ≤ sup
t≥0

P(S(1) > t)(t ∨ 1) ≤ c. (3.8)

This conditionholds for the branching randomwalks inExample3.2 byKolmogorov’s
classical result for survival of critical branchingprocesses (e.g. see [24,TheoremII.1.1(a)])
and for the lattice tree historical paths in Example 3.1 by (1.6) (or see [20, (1.22) and
(1.27)]).



464 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Definition 3.5. For a metric space, E , a collection {Qn : n ∈ N} of probabilities on
D(R+, E) = D(E), is C-relatively compact iff every sequence nk → ∞ has a subse-
quence {n′

k} s.t. Qn′
k
converges weakly in D(E) to a law, Q, supported on C(E), the set

of continuous E-valued paths. If {Xn} is a sequence of càdlàg E-valued processes on our
underlying probability space, we say {Xn : n ∈ N} is Ccond-relatively compact iff for
every s0 > 0, the set of conditional laws {P(Xn ∈ ·|S(n) > s0) : n ∈ N} is C-relatively
compact in D(E). �

We start with a general tightness result for historical processes in this abstract setting:

Theorem 3.6. Assume H (n) is given by (3.5), where W satisfies Condition 3.3. Suppose
also that Condition 3.4 holds and {H (n)· (φ) : n ∈ N} is Ccond-relatively compact in
D(C) for each φ in a determining class D0 (for MF (D(Rd))) containing 1. Then
{H (n)· : n ∈ N} is Ccond-relatively compact, and for every s0 > 0, every limit point, H,
of {P(H (n) ∈ ·|S(n) > s0) : n ∈ N} satisfies Ht (C(Rd)c) = 0 for all t ≥ 0 a.s.

In practice it is the relative compactness of {H (n)· (φ) : n ∈ N} for a rich class of test
functions φ that will require most of the effort. For LT’s this is done in Proposition 3.11,
which is in turn proved in Sect. 3.2 below. Applying Theorem 3.6 to the case of lattice
trees (conditional on survival), we will then deduce the following below:

Theorem 3.7. Let H (n) be the sequence of rescaled historical processes associated with
sufficiently spread-out lattice trees in d > 8 dimensions, defined in (1.4). Then {H (n)· :
n ∈ N} is Ccond-relatively compact.

3.1. Proofs of Theorems 3.6 and 3.7. Our starting point for proving Theorem 3.6 is a
version of the Jakubowski-Kurtz Theorem for MF (D(Rd))-valued processes. It is a
simple extension of that for MF (Rd)-valued processes in [11, Theorem 5.2].

Theorem 3.8. Let D0 ⊂ C(D(Rd), C) be a determining class for MF (D(Rd)) contain-
ing 1.
A sequence of probabilities {Pk, k ∈ N} on D(MF (D(Rd))) is C-relatively compact iff

∀ η > 0, ∀T ∈ N, there is a compact set Kη,T ⊂ D(Rd) such that

sup
k

Pk

(
sup
t≤T

Ht (K c
η,T ) > η

)
< η, (3.9)

and

for all φ ∈ D0 the sequence of probabilities, {Pk(H·(φ) ∈ ·)},
is C-relatively compact inD(C). (3.10)

For δ, T > 0 and w ∈ D(Rd), we define

W ′(w, δ, T ) = inf{ti }
max

i
sup

s,t∈[ti−1,ti )
|ws − wt |,

where the infimum is over all partitions {ti } such that 0 = t0 < t1 < . . . tN−1 < T ≤ tN
such that ti − ti−1 > δ for all i . Note that W ′ is decreasing in δ and increasing in T .
We restate [8, Ch. 3, Theorem 6.3 and Remark 6.4] with their general metric space E
replaced by R

d and use the above monotonicity to take sequential limits and restrict
T ∈ N.
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Proposition 3.9. Let δ′
m ↓ 0. The closure of a set A ⊂ D(Rd) is compact iff

sup
w∈A,t≤T

|wt | < ∞ and lim
m→∞ sup

w∈A
W ′(w, δ′

m, T ) = 0, ∀ T ∈ N.

For 0<q<1/2 let Bm=Bm(q)={w ∈ D(Rd) : W ′(w, 2−m, T )≤2−(m−2)q∀ T ∈N},
and for M ∈ N define

AM = AM (q) = {w ∈ D(Rd) : |wt | ≤ (t + 1)2M+1 ∀t ≥ 0} ∩
(
∩∞

m=M Bm

)
.

An easy application of Proposition 3.9 shows that AM has compact closure in D(Rd).

Lemma 3.10. Assume Condition 3.3, and let q, δn be as in (3.7). For any n, M ∈ N, if
δn > max(22−M , n−1), then H (n)

t (Ac
M ) = 0 for all t ≥ 0.

Proof. Assume δn ≥ max(22−M , n−1), and let m ∈ N
≥M , T ∈ N and w ∈ W . If we

divide [0, $t%] into $t%2M intervals of length 2−M < δn , then the triangle inequality,
(3.7) and δn ≥ n−1 imply

|w(n)

t | = |w(n)

[t]n
− w

(n)

0 | ≤ $t%2M [2−Mq + n−q ] ≤ (t + 1)2M+1, (3.11)

where in the first inequality we have moved an interval endpoint to an appropriate neigh-
bouringpoint inZ+/n resulting in an error of atmostn−q . Consider nextW ′(w(n), 2−m, T )

for w ∈ W . If 2−m < 1
n , then W ′(w(n), 2−m, T ) = 0, as one can see by taking ti = i

n ,
i ∈ Z+ in the definition of W ′, and using the fact that w(n) is constant on [i/n, (i +1)/n)

for i ∈ Z+. Assume therefore that 2−m ≥ 1
n . Now set ti = i2−m+1, for i ∈ Z+, which

gives ti − ti−1 > 2−m for all i . We also have

[ti ]n − [ti−1]n ≤ 21−m +
1

n
< 22−m ≤ 22−M ≤ δn . (3.12)

By (3.7) this implies that for s, t ∈ [ti−1, ti )

|w(n)

t − w(n)

s | = |w(n)

[t]n
− w

(n)

[s]n
| ≤ |[t]n − [s]n|q ≤ 2−(m−2)q ,

where in the last line we have used the middle expression in (3.12). This proves that
W ′(w(n), 2−m, T ) ≤ 2−(m−2)q , which together with (3.11), shows that w(n) ∈ AM , and
so completes the proof. ��
Proof of Theorem 3.6. Let nk → ∞, fix s0 > 0, and define probabilities on D
(MF (D(Rd))) by

Pnk (·) = P(H (nk ) ∈ ·|S(nk ) > s0).

For the first assertion we need to show this sequence of probability laws are C-
relatively compact on D(MF (D(Rd))). For this we will use Theorem 3.8, and so need
to verify the hypotheses of that result. For (3.9), for all T ∈ N we set Kη,T = AM ,
where M is chosen below. The compactness of this set follows from Proposition 3.9, as
has already been noted above. By Lemma 3.10,

Pnk

(
sup

t
Ht (K c

η,T ) > 0
) ≤ P

(
H

(nk )

t (Ac
M ) > 0 for some t ≥ 0

∣
∣ S(nk ) > s0

)

≤ P
(
δnk ≤ max(22−M , n−1

k )
)
/P(S(nk ) > s0)

≤ c−1(nks0 + 1)n−1
k C2(2

(2−M)θ + n−θ
k ),
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where in the last inequality we have used (3.8) and (3.7). The above bound is at most
c−1(s0 + 1)C2(2(2−M)θ + n−θ

k ) which will be smaller than η if we set M = M(η) large
enough and assume nk > N (η). This proves (3.9) for large enough k. It is easy to
enlarge Kη,T to obtain a compact set which satisfies (3.9) for all k. For example, for
fixed n = nk ≤ N (η) and all t ≥ 0, H (n)

t is supported on the space of càdlàg paths
which are constant on [i/n, (i +1)/n) and on [S(n),∞), and whose jumps are uniformly
bounded in absolute value by

max
m/n≤S(n),β∈Sm ,1≤ j≤m

|w j (m, β) − w j−1(m, β)|
n1/2 < ∞ Pn − a.s. (3.13)

Now use (3.8) to bound S(n) and bound the upper bound on the jumps in (3.13), with
high Pn-probability, and so obtain a compact set of paths which supports H (n)

t for all
t ≥ 0 with Pn probability at least 1 − η, for the finite many values of n = nk ≤ N (η).

The other condition (3.10) of Theorem 3.8 holds by assumption and so the C-relative
compactness is established.

For the last statement we note first that if�wt = wt −wt− forw ∈ D(Rd) and t > 0,
then a simple Skorokhod topology exercise (e.g. use [8, Chapter 3, Proposition 5.3])
shows that for any δ > 0,

{
w ∈ D(Rd) : sup

s>0
|�ws | ≤ δ

}
is a closed set in D(Rd).

Consider a weak limit H of {Pnk }. By Skorokhod’s representation theorem and the
continuity of the limit point, H·, we may realize all our processes on a space with
underlying law P

′ and assume H
(nk )

t → Ht in MF (D(Rd)) for all t ≥ 0, P
′-a.s. So the

Portmanteau Theorem for the weak topology gives for all t ≥ 0 and M ∈ N,

Ht

({
sup
s>0

|�ws | ≤ 1/M
}c
)

≤ lim inf
k→∞ H

(nk )

t

({
sup
s>0

|�ws | ≤ 1/M
}c
)
.

Now fix t > 0 and use Fatou’s Lemma to see that for δ > 0,

P
′(Ht

({
sup
s>0

|�ws | > 1/M
})

> δ
)

≤ P
′( lim inf

k→∞ H
(nk )

t ({sup
s>0

|�ws | > 1/M}) > δ
)

≤ lim inf
k→∞ P

′(H
(nk )

t ({sup
s>0

|�ws | > 1/M}) > δ
)

≤ lim inf
k→∞ Pnk (δnk < 1/nk) = 0.

In the last inequality we use the fact that for k large enough δnk ≥ 1/nk implies that for
all ancestral paths, and all s > 0, |�w

(nk )

s | ≤ (1/nk)
q < 1/M , and in the final equality

we use Conditions 3.3 and 3.4. Now let M ↑ ∞ to see that Ht is supported by C = C(Rd)

a.s. for each t > 0. Therefore Ht (Cc) = 0 ∀t ∈ Q
>0. So using the openness of Cc and

the Portmanteau theorem again, we get from the continuity of t → Ht that Ht (Cc) = 0
for all t ≥ 0 a.s. ��

Let LipK denote the set of functions φ : D(Rd) → R such that for each w,w′ ∈
D(Rd), |φ(w)| ≤ K and |φ(w) − φ(w′)| ≤ K‖w − w′‖, where ‖w‖ = supt∈R+

|wt |.
Proposition 3.11. For critical sufficiently spread-out lattice trees in dimensions d > 8:
For each φ ∈ Lip1, {H (n)· (φ) : n ∈ N} is Ccond-relatively compact in D(R).
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The proof of this key result is more complicated and so is deferred until Sect. 3.2.
Assuming this, Theorem 3.7 now follows:

Proof of Theorem 3.7. We have already noted that the historical process for lattice trees
is a special case of the general framework in this Section, that Condition 3.3 was verified
in [20] with q = 1/4 and θ = 1 (see Lemma 3.12 below), and Condition 3.4 holds
by (1.6). Proposition 3.11 shows the last hypothesis of Theorem 3.6 holds with D0 =
Lip1. D0 is a determining class because it includes appropriate multiples of all finite-
dimensional Lipschitz continuous functions. The result now follows from Theorem 3.6.

��
One can also prove the analogue of Theorem 3.7 for the branching random walks

in Example 3.2, where the analogue of Proposition 3.11 yields easily to martingale
methods, but the convergence results here can be readily proved as in [24, Chapter II].

3.2. Tightness for lattice trees. The goal of this section is to prove Proposition 3.11. For
lattice trees, we will use the modulus of continuity in the following form:

Lemma 3.12. For each n ∈ N there exists a random δn ≥ 1
n and a constant c > 0

satisfying nP(δn ≤ ρ) ≤ cρ for every ρ ∈ [0, 1) and every w ∈ W (the system of
ancestral paths to points in the tree)

|s2 − s1| ≤ δn ⇒ |w(n)

s2 − w(n)

s1 | ≤ c(|s2 − s1|1/4 + n−1/4).

Proof. Apply [20, Theorem 6] with α = 1/4. The fact that we can take δn ≥ 1
n follows

from the finite-range assumption on the lattice trees, which gives |w(n)

i/n − w
(n)

(i−1)/n| ≤
Ln−1/2 ≤ Ln−1/4, and so allows us to replace δn with δn ∨ (1/n). ��

The other main ingredient we use is a bound on the fourth moments of the increments
of the total mass:

Proposition 3.13. There is a γ > 1 and for any T > 0, there is a cT such that for all
n ∈ N and all s1, s2 ∈ (Z+/n) ∩ [0, T ],

nE
[
(H (n)

s2 (1) − H (n)

s1 (1))4
] ≤ cT |s2 − s1|γ .

The above is condition (ii) of [11, Theorem 2.2] with k = 0 and is verified in that
reference (see [11, Theorem 3.3, Lemma 3.5, and Section 7]).

For w ∈ D(Rd) and t ≥ 0 let wt ∈ D(Rd) be defined by wt
s = ws∧t and for φ ∈

Lip1 let φt ∈ Lip1 be defined by φt (w) = φ(wt ). Define T (n)

t = n−1/2Tnt . We will use
T (n)

t as our index set for w(n), as in (1.2), and so depart from the notation in (3.4).

Lemma 3.14. Let δn be as in Lemma 3.12, and assume that 0 ≤ v ≤ t1 < t2 satisfy

t2 − v ≤ δn(ω).

Then for φ ∈ Lip1 and i = 1, 2,

|H (n)

ti (φ) − H (n)

ti (φv)| ≤ c((t2 − v)1/4 + n−1/4)(X (n)

t1 (1) ∨ X (n)

t2 (1)).



468 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Proof. Note that H (n)

t (φt ) = H (n)

t (φ) (recall (1.1), (1.2), and (1.4)), and therefore for ti
and v as above,

|H (n)

ti (φ) − H (n)

ti (φv)| ≤ c

n

∑

x∈T (n)
ti

∣
∣φ
(
w(n)(ti , x)

)− φ
(
(w(n)(ti , x))v

)∣
∣

≤ c

n

∑

x∈T (n)
ti

‖w(n)(ti , x) − (w(n)(ti , x))v‖

= c

n

∑

x∈T (n)
ti

sup
s∈[v,ti ]

|w(n)

s (ti , x) − w(n)

v (ti , x)|

≤ c(|ti − v|1/4 + n−1/4)X (n)

ti (1),

where we have used t2 − v ≤ δn and Lemma 3.12 in the last line. The result follows. ��
For a lattice tree T containing x (and o), let T≯x denote the tree consisting of all

vertices that are not descendants of x . If x /∈ T then let T≯x = ∅. Let F≯x = σ(T≯x ).
Let Tx denote the set of lattice trees containing the vertex x . If x ∈ T , let Rx (T ) ∈ Tx
denote the descendants of x in T together with x and all the edges joining them (if x /∈ T ,
let Rx (T ) = ∅), and let Rx (T ) − x ∈ To denote the translation of Rx (T ) by −x .

Lemma 3.15. For x ∈ Z
d , for every Borel measurable ϕ∗ : To → R+, and ϕ : {(x, R) :

x ∈ Z
d , R ∈ Tx } → R+ defined by ϕ(x, R) = ϕ∗(R − x) a.s.

E
[
ϕ(x, Rx (T ))

∣
∣F≯x

]
1{x∈T } ≤ ρE[ϕ(o, T )]1{x∈T }.

Proof. Let ϕ∗(R) := 1{R∈F}, where F ⊂ To. For S such that P(x ∈ T , T≯x = S) > 0,

E
[
ϕ(x, Rx (T ))

∣
∣T≯x = S, x ∈ T

]
1{T≯x =S}1{x∈T }

=
∑

n∈Z+

E[1{Rx (T )−x∈F}1{T≯x =S}1{x∈Tn}]
P(T≯x = S, x ∈ T )

1{T≯x =S}1{x∈T }

By [20, Lemma 9.4] this is at most

ρP(T ∈ F)
∑

n

E[1{T≯x =S}1{x∈Tn}]
P(T≯x = S, x ∈ T )

1{T≯x =S}1{x∈T } = ρP(T ∈ F)1{T≯x =S}1{x∈T }.

Summing over S gives

E
[
ϕ(x, Rx (T ))

∣
∣F≯x

]
1{x∈T } ≤ ρP(T ∈ F)1{x∈T }.

The right-hand side is equal to ρE[ϕ(o, T )]1{x∈T } as claimed. Use linearity to get the
result for simple non-negative functions, and monotone convergence to complete the
proof. ��

Assume 0 ≤ v ≤ t1 < t2 and φ ∈ Lip1. We want to bound

|H (n)

t2 (φ) − H (n)

t1 (φ)| ≤ |H (n)

t2 (φ) − H (n)

t2 (φv)| + |H (n)

t2 (φv) − H (n)

t1 (φv)|
+ |H (n)

t1 (φ) − H (n)

t1 (φv)|. (3.14)



Historical Lattice Trees 469

Lemma 3.14 will allow us to handle the first and last terms; the majority of the work
will be in bounding the expected 4th power of the middle term. For fixed n, T ∈ To and
x ∈ n−1/2

Z
d , let R(n)

x (T (n)) = n−1/2R√
nx (T ) ⊂ T (n) denote the subtree consisting of x

and its descendants. WriteR(n)
x = R(n)

x (T (n)).

H (n)

t2 (φv) − H (n)

t1 (φv) = 1

C0n

⎡

⎢
⎣

∑

z2∈T (n)
t2

φ((w(n)(t2, z2))
v) −

∑

z1∈T (n)
t1

φ((w(n)(t1, z1))
v)

⎤

⎥
⎦ .

Using the tree structure and v ≤ t1 < t2, this is equal to

1

C0n

⎡

⎢
⎣
∑

x∈T (n)
v

∑

z2∈T (n)
t2

∩R(n)
x

φ((w(n)(t2, z2))
v) −

∑

x∈T (n)
v

∑

z1∈T (n)
t1

∩R(n)
x

φ((w(n)(t1, z1))
v)

⎤

⎥
⎦

= 1

C0n

⎡

⎢
⎣
∑

x∈T (n)
v

φ(w(n)(v, x))
( ∑

z2∈T (n)
t2

∩R(n)
x

1 −
∑

z1∈T (n)
t1

∩Rx (T )

1
)
⎤

⎥
⎦

= 1

C0n

⎡

⎢
⎣
∑

x∈T (n)
v

φ(w(n)(v, x))
[|T (n)

t2 ∩ R(n)

x | − |T (n)

t1 ∩ R(n)

x |] .
⎤

⎥
⎦

If x ∈ Z
d/

√
n, let�(n)

x,v = 1{x∈T (n)
v }(|T (n)

t2 ∩R(n)
x |− |T (n)

t1 ∩R(n)
x |). If �xm = (x1, . . . , xm),

then

(H (n)

t2 (φv) − H (n)

t1 (φv))m = 1

Cm
0 nm

∑

�xm∈(T (n)
v )m

m∏

j=1

φ(w(n)(v, x j ))

m∏

j ′=1

�(n)

x j ′ ,v. (3.15)

Let 1(n)

{x,v} := 1{x∈T (n)
v } and recall γ > 1 is as in Proposition 3.13.

Lemma 3.16. Let ε ∈ (0, 1], K > 0 and T ∈ N. There is a CK ,T > 0 so that for n ∈ N,
0 < p ≤ 4, all x ∈ Z

d/
√

n, all ti ∈ Z+/n such that 0 ≤ t1 ≤ t2 ≤ t1 + 1, and all
0 ≤ v ≤ t1 − K (t2 − t1)ε,

nE

[
|�(n)

x,v/n|p
∣
∣
∣F≯x

]
≤ CK ,T |t2 − t1|γ p/4−ε1(n)

{x,v} a.s. (3.16)

Proof. By Lemma 3.15 with the function ϕ∗(R) = ∣
∣|Rn(t2−v)| − |Rn(t1−v)|

∣
∣p, the left

hand side of (3.16) is at most

CnρE

[
|H (n)

t2−v(1) − H (n)

t1−v(1)|p
]
1(n)

{x,v}

= CnρE

[
|H (n)

t2−v(1) − H (n)

t1−v(1)|p
∣
∣
∣H (n)

t1−v(1) > 0
]
P(H (n)

t1−v(1) > 0)1(n)

{x,v},

where we have used the fact that the integrand is 0 on {H (n)

t1−v(1) = 0}. By Jensen’s
inequality, this is at most

CnP(H (n)

t1−v(1) > 0)E
[
|H (n)

t2−v(1) − H (n)

t1−v(1)|4
∣
∣
∣H (n)

t1−v(1) > 0
]p/4

1(n)

{x,v}
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≤ CnP(H (n)

t1−v(1) > 0)
(

n−1
P(H (n)

t1−v(1) > 0)−1nE

[
|H (n)

t2−v(1) − H (n)

t1−v(1)|4
])p/4

1(n)

{x,v}
≤ CT (nP(H (n)

t1−v(1) > 0))1−p/4(|t2 − t1|γ )p/41(n)

{x,v},

where we have used Proposition 3.13, and that, without loss of generality, t2− t1 ≥ n−1,
so [t2 − v]n − [t1 − v]n ≤ t2 − t1 + n−1 ≤ 2(t2 − t1). Now use the uniform bound on
the survival probability from Condition 3.4 for lattice trees, to bound the above by

C(t1 − v)p/4−1|t2 − t1|γ p/41(n)

{x,v},

Since t1 − v ≥ K (t2 − t1)ε and |t2 − t1| ≤ 1, this is at most

CK ,T |t2 − t1| p
4 (γ+ε)−ε1{x,v} ≤ CK ,T |t2 − t1| p

4 γ−ε1(n)

{x,v},

as required. ��
In proving our next result, we will make use of Lemma 2.13 with each ti = t .

Proposition 3.17. There areη, ε ∈ (0, 1], and for any T ∈ N a constant CT , such that for
all φ ∈ Lip1, all t1, t2 ∈ [0, T ] satisfying (2n)−1 ≤ t2−t1 ≤ 1/2 and v ≤ t1−5(t2−t1)ε

(v may be negative), and all n ∈ N,

nE

[
(H (n)

t2 (φv+) − H (n)

t1 (φv+))4
]

≤ CT |t2 − t1|1+η.

Proof. We first show that it suffices to prove the above for ti ∈ Z+/n satisfying

ti ≤ T, t1 ≤ t2 ≤ t1 + 1, and any v ≤ t1 − (t2 − t1)
ε. (3.17)

Assume this result and let n, ti and v be as in the theorem. Using t2 − t1 ≤ 1/2, we have

[t2]n − [t1]n ≤ (t2 − t1) +
1

n
≤ 1

2
+
1

n
< 1.

In addition, using t2 − t1 ≥ 1/(2n) we have

[t2]n − [t1]n ≤ (t2 − t1) +
1

n
≤ 3(t2 − t1), (3.18)

which implies

[t1]n − ([t2]n − [t1]n)ε ≥ t1 − 1

n
− (3(t2 − t1))

ε

≥ t1 − 2(t2 − t1) − 3ε(t2 − t1)
ε

≥ t1 − 5(t2 − t1)
ε ≥ v.

The above inequalities show that our hypotheses (3.17) hold for [ti ]n and the given v.
Using the fact that H (n)

ti = H (n)

[ti ]n
we have from our assumed result, that

nE

[
(H (n)

t2 (φv+) − H (n)

t1 (φv+))4
]

≤ CT |[t2]n − [t1]n|1+η ≤ CT 3
1+η(t2 − t1)

1+η

(the last by (3.18)), as required.
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So consider now only ti ∈ Z+/n satisfying (3.17) and t2 > t1 (without loss of
generality). We first assume v ≤ 0. In this case for all x ∈ T (n)

ti , w(n)(ti , x)0 is the zero
path, 0̄, and so

H (n)

ti (φv+) = H (n)

ti (φ0) = φ(0̄)H (n)

ti (1) = φ(0̄)X (n)

ti (1).

The required inequality now follows (recall ti ∈ Z+/n) from Proposition 3.13 and
|φ(0̄)| ≤ 1.

So assume henceforth that 0 ≤ v ≤ t1 − (t2 − t1)ε. For x ∈ T (n)
v , and φ ∈Lip1, write

φ
(n)
x,v := φ(w(n)(v, x)). Note that from (3.15) we have

D4 := nE

[
(H (n)

t2 (φv) − H (n)

t1 (φv))4
]

= 1

C4
0n3

E

[ ∑

�x=(x1,x2,x3,x4)
∈(Zd/

√
n)4

4∏

j=1

(
φ(n)

x j ,v
�(n)

x j ,v

)]

= 1

C4
0n3

E

[ ∑

�x∈(Zd/
√

n)4

φ
(n)

�x,v
�

(n)

�x,v

]
, (3.19)

where�
(n)

�x,v
denotes the product of the indicators�

(n)
xi ,v over the elements xi of the vector

�x and φ
(n)

�x,v
is the product (running over the elements of the vector �x) of the φ

(n)
xi ,v .

We’d like to condition�
(n)
x4,v onF≯x4 in order to extract a positive power of t2−t1 using

Lemma 3.16. This is complicated by the fact that there are terms in the sums where other
xi = x4. If we specify for which i this is true for then we will also have a constraint that
the remaining x j are not equal to x4. After conditioning wewish to restore the possibility
that these x j = x4 in order to recover a term of the form (H (n)

t2 (φv) − H (n)

t1 (φv)) raised
to some power smaller than 4 and so derive a recursive inequality which will bound the
mean of fourth power of this increment. This results in an inclusion–exclusion argument
below. To shorten the notation we will drop the dependence on v and n in our notation
and also suppress the summation range of �x .

In what follows, A1 ⊂ [4] denotes the set of indices i for which xi = x4 (so in
particular 4 ∈ A1). Then letting Ac

1 = [4] \ A1, and writing x(A) := {xi : i ∈ A} and
�xA for the vector �x with coordinates restricted to A, we have

D4 =n−3C−4
0

∑

A1⊂[4]:
4∈A1

E

[∑

�xAc
1

φ�xAc
1
��xAc

1

∑

x4 /∈x(Ac
1)

φ|A1|
x4 �|A1|

x4

]

,

where in the case A1 = [4] we interpret the term in the expectation as
∑

x4 φ4
x4�

4
x4 .

Taking conditional expectation with respect to F≯x4 and using the fact that (for
xi �= x4), 1{x4,v}φxi �xi is F≯x4 -measurable (as is 1{x4,v}φx4 ) we have that D4 is equal
to

n−3C−4
0

∑

A1⊂[4]:
4∈A1

E

[∑

�xAc
1

φ�xAc
1
��xAc

1

∑

x4 /∈x(Ac
1)

φ|A1|
x4 E[�|A1|

x4 |F≯x4 ]
]

.
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Interpreting the empty sum
∑

x4∈x(Ac
1)
as zero when Ac

1 = ∅, we can write the above as

n−3C−4
0

∑

A1⊂[4]:
4∈A1

E

[∑

�xAc
1

φ�xAc
1
��xAc

1

∑

x4

φ|A1|
x4 E[�|A1|

x4 |F≯x4 ]
]

(3.20)

− n−3C−4
0

∑

A1⊂[4]:
4∈A1

E

[∑

�xAc
1

φ�xAc
1
��xAc

1

∑

x4∈x(Ac
1)

φ|A1|
x4 E[�|A1|

x4 |F≯x4 ]
]

. (3.21)

Note that |A1| + |Ac
1| = 4 and reason as in (3.19) to see that (3.20) equals

C
∑

A1⊂[4]:
4∈A1

E

[

(H (n)

t2 (φv) − H (n)

t1 (φv))|Ac
1|
∑

x4

φ|A1|
x4 nE[(�x4/n)|A1||F≯x4 ]

]

,

which, by Lemma 3.16 and |φ| ≤ 1, is bounded in absolute value by

C
∑

A1⊂[4]:
4∈A1

E

[

|H (n)

t2 (φv) − H (n)

t1 (φv)||Ac
1|
∑

x4

1{x4,v}
]

|t2 − t1|(γ |A1|/4)−ε.

Expressing the sum over x4 in terms of H (n)
v (1) this is equal to

C
∑

A1⊂[4]:
4∈A1

nE

[

|H (n)

t2 (φv) − H (n)

t1 (φv)||Ac
1| H (n)

v (1)

]

|t2 − t1|(γ |A1|/4)−ε.

By Hölder’s inequality this is at most

C
∑

A1⊂[4]:
4∈A1

nE

[
|H (n)

t2 (φv) − H (n)

t1 (φv)|4
]|Ac

1|/4
E

[
H (n)

v (1)4/(4−|Ac
1|)
](4−|Ac

1|)/4|t2 − t1|(γ |A1|/4)−ε

≤ C
∑

A1⊂[4]:
4∈A1

D
|Ac

1|/4
4 |t2 − t1|γ |A1|/4−ε

(
nE

[
H (n)

v (1)4/(4−|Ac
1|)
])(4−|Ac

1|)/4
.

Note that for b ≤ 3we have that for H ≥ 0, H4/(4−b) ≤ H+H4. Since nE[(H (n)
v (1))r ] <

Cr,T for each r ∈ N (by Lemma 2.13), this shows that this quantity is at most (C may
depend on T throughout)

C
∑

A1⊂[4]:
4∈A1

D
|Ac

1|/4
4 |t2 − t1|(γ |A1|/4)−ε.

We turn now to the quantity (3.21), and it is convenient to introduce further notation.
For sets Ai ⊂ [4], let Bi = ∪i

j=1A j . In particular B1 = A1. Thus (3.21) is equal to the
negative of

n−3C−4
0

∑

A1⊂[4]:
4∈A1

E

[∑

�xBc
1

φ�xBc
1
��xBc

1

∑

x4

1{x4∈x(Bc
1)}φ

|A1|
x4 E[�|A1|

x4 |F≯x4 ]
]

. (3.22)
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Abusing notation by writing x(A) = x to mean that xi = x for each i ∈ A we can write

1{x4∈x(Bc
1)} =

∑

A2⊂Bc
1 :

A2 �=∅

1{x(A2)=x4}1{x4 /∈x(Bc
2)},

which is simply the statement that x4 ∈ x(Bc
1) if and only if the set A2 := {i ∈ [4] \ B1 :

x4 = xi } is non-empty. Thus, since xi = x4 for i ∈ A2 in this expression, (3.22) is equal
to

n−3C−4
0

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

E

[∑

�xBc
2

φ�xBc
2
��xBc

2

∑

x4

1{x4 /∈x(Bc
2)}φ

|B2|
x4 �|A2|

x4 E[�|A1|
x4 |F≯x4 ]

]

,

(3.23)

where we have also used the fact that φ�xBc
1

= φ�xBc
2
φ�xA2

= φ�xBc
2
φ

|A2|
x4 , and |A2| + |A1| =

|B2|. In the case Bc
2 = ∅ the term in the expectation in (3.23) should be interpreted as

∑
x4 φ4

x4�
|A2|
x4 E[�|A1|

x4 |F≯x4 ].
We can again condition on F≯x4 to see that (3.23) is equal to

n−3C−4
0

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

E

[∑

�xBc
2

φ�xBc
2
��xBc

2

∑

x4 /∈x(Bc
2)

φ|B2|
x4

2∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

.

Using inclusion–exclusion in the sum over x4 this can be written as

n−3C−4
0

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

E

[∑

�xBc
2

φ�xBc
2
��xBc

2

∑

x4

φ|B2|
x4

2∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

(3.24)

− n−3C−4
0

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

E

[∑

�xBc
2

φ�xBc
2
��xBc

2

∑

x4∈x(Bc
2)

φ|B2|
x4

2∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

, (3.25)

where the sum over x4 in (3.25) is interpreted as 0 when Bc
2 = ∅. The quantity (3.24)

is equal to [reasoning as in (3.19)]

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

C

n
E

[

(H (n)

t2 (φv) − H (n)

t1 (φv))|Bc
2 |
∑

x4

φ|B2|
x4

2∏

i=1

nE[(�x4/n)|Ai ||F≯x4 ]
]

.

We have also used |Bc
2 | + |A1| + |A2| = 4 to get the correct powers of n. Using Lemma

3.16 again as before, we may bound the summand (in absolute value) by

CE

[
|H (n)

t2 (φv) − H (n)

t1 (φv)||Bc
2 | H (n)

v (1)
] 2∏

i=1

|t2 − t1|(γ |Ai |/4)−ε (3.26)

≤ n−1|t2 − t1|(γ |B2|/4)−2ε D
|Bc

2 |/4
4 , (3.27)
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where we have again used Hölder’s inequality, Lemma 2.13, and
∑2

i=1 |Ai | = |B2|
since A1 and A2 are disjoint. As in (3.23), the negative of (3.25) is equal to

C−4
0

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

E

[∑

�xBc
3

φ�xBc
3
��xBc

3

∑

x4 /∈x(Bc
3)

φ|B3|
x4 �|A3|

x4

2∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

,

where if Bc
3 = ∅ the term in the expectation is interpreted as

∑
x4 φ4

x4�
|A3|
x4

∏2
i=1 E[�|Ai |

x4 |F≯x4 ]. Conditioning again, this is equal to

C−4
0

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

E

[∑

�xBc
3

φ�xBc
3
��xBc

3

∑

x4 /∈x(Bc
3)

φ|B3|
x4

3∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

= C−4
0

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

E

[∑

�xBc
3

φ�xBc
3
��xBc

3

∑

x4

φ|B3|
x4

3∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

(3.28)

− C−4
0

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

E

[∑

�xBc
3

φ�xBc
3
��xBc

3

∑

x4∈x(Bc
3)

φ|B3|
x4

3∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

.

(3.29)

As in (3.26) and (3.27), the term (3.28) is bounded in absolute value by

C

n2

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

nE

[

|H (n)

t2 (φv) − H (n)

t1 (φv)||Bc
3 |H (n)

v (1)

] 3∏

i=1

|t2 − t1|γ |Ai |/4−ε

≤ C

n2

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

D
|Bc

3 |/4
4 |t2 − t1|γ |B3|/4−3ε.

Since in (3.29) Bc
3 can contain at most one element, the sums over �xBc

3
and x4 ∈ x(Bc

3)

therein reduce to a sum over x4 (with �xBc
3

= x4). After conditioning again we get that
the negative of (3.29) is equal to

C−4
0

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

∑

A4⊂Bc
3 :

A4 �=∅

E

[∑

x4

φ|B4|
x4

4∏

i=1

E[�|Ai |
x4 |F≯x4 ]

]

, (3.30)

where we note that if this term is to be non-zero then each |Ai | = 1, and in particular
B4 = [4]. By Lemma 3.16 and then Lemma 2.13, (3.30) is bounded in absolute value
by

C

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

∑

A4⊂Bc
3 :

A4 �=∅

E

[∑

x4

1{x4,v}
] 4∏

i=1

|t2 − t1|γ |Ai |/4−ε
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≤ C

n3

∑

A1⊂[4]:
4∈A1

∑

A2⊂Bc
1 :

A2 �=∅

∑

A3⊂Bc
2 :

A3 �=∅

∑

A4⊂Bc
3 :

A4 �=∅

|t2 − t1|γ−4ε.

After dropping some negative powers of n, we have shown above that

D4 ≤ C ′
3∑

�=0

D�/4
4 |t2 − t1|

γ
4 (4−�)−4ε,

Thus, letting d = D4|t2 − t1|16ε−γ and recalling that |t2 − t1| ≤ 1, we have

d ≤ C ′
3∑

�=0

d�/4.

Recall that D4 is finite by Lemma 2.13, and so from the above, d ≤ C = C(C ′), and
therefore D4 ≤ C |t2 − t1|γ−16ε. Choosing ε < (γ − 1)/16 completes the proof. ��

For v < 0 define φv = φ0 so that φv = φv+ .

Proof of Proposition 3.11. Let φ ∈ Lip1 and nk → ∞. For a fixed s0 > 0 wemust show

that {nk} has a subsequence {n′
k} along which P

(
H

(n′
k )

· (φ) ∈ ·|S(n′
k ) > s0

)
converges

weakly to a continuous limit. The argument remains unchanged if we assume nk = k,
and to ease the notation we will assume this. So our goal is to show that

{P(H (n)· (φ) ∈ ·)|S(n) > s0) : n ∈ N} has a weakly convergent

subsequence in D(R+, R) to a continuous limit. (3.31)

For T ∈ N, define
X (n)

T
∗
(1) = sup

t≤T
X (n)

t (1).

Now fix T ∈ N and assume

t1, t2 ∈ [0, T ], 0 ≤ t2 − t1 ≤ 1 and t1 − 5(t2 − t1)
ε ≤ v ≤ t1, (3.32)

where ε is as in Proposition 3.17; note that v may be negative. Recall from (3.14) that

|H (n)

t2 (φ) − H (n)

t1 (φ)| ≤
[ 2∑

i=1

|H (n)

ti (φ) − H (n)

ti (φv)|
]
+ |H (n)

t2 (φv) − H (n)

t1 (φv)|. (3.33)

Note that (3.32) implies t2 − v+ ≤ t2 − v ≤ (t2 − t1) + 5(t2 − t1)ε, and so if δn(ω) is
as in Lemma 3.12, then Lemma 3.14 (applied to v+ ≥ 0) together with the facts that
φv = φv+ and t2 − t1 ≤ 1 show that

(t2 − t1) + 5(t2 − t1)
ε ≤ δn implies

2∑

i=1

|H (n)

ti (φ) − H (n)

ti (φv)| ≤ C X (n)

T
∗
(1)[(t2 − t1)

ε/4 + n−1/4]. (3.34)
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If η > 0 is as in Proposition 3.17, let η0 = η/8. Proposition 3.17 shows that form, n ∈ N

satisfying

m ≤ (log2 n) + 1, that is, 2−m ≥ 1

2n
,

then, by taking a union bound over k ∈ Z+ : 0 ≤ k2−m ≤ T + 1,

nP

(
max

0≤k≤2m (T+1)

∣
∣H (n)

(k+1)2−m (φ(k2−m−5·2−mε)+) − H (n)

k2−m (φ(k2−m−5·2−mε)+)
∣
∣ > 2−mη0

)

≤ 24mη0(T + 2)2mCT+22
−m(1+η) = C ′

T 2
−m(η/2).

By a union bound there is an M (n)

0 (ω) ∈ N
≥2 so that

for all M ≥ 2, nP(M (n)

0 ≥ M) ≤ CT,η2
−Mη/2, (3.35)

and for all m ∈ N satisfying M (n)

0 ≤ m ≤ (log2 n) + 1, we have

max
0≤k≤2m (T+1)

∣
∣H (n)

(k+1)2−m (φ(k2−m−5·2−mε)+) − H (n)

k2−m (φ(k2−m−5·2−mε)+)
∣
∣ ≤ 2−mη0 .

Set η1 = (ε/4) ∧ η0 > 0. Combine the above bound with (3.34) and use it in (3.33)
(with T +1 in place of T in the latter two) to see that for all natural numbers m satisfying

1

2n
≤ 2−m ≤ 2−M(n)

0 and 6 · 2−mε ≤ δn,

we have

max
0≤k≤2m (T+1)

|H (n)

(k+1)2−m (φ) − H (n)

k2−m (φ)| ≤ 2C X (n)

T+2
∗
(1)(2−mε/4 + n−1/4) + 2−mη0

≤ (6C X (n)

T+2
∗
(1) + 1)2−mη1 . (3.36)

Set mn = �(log2 n)+1	 and Tn = { j2−mn : j ∈ Z+∩[0, (T +1)2mn ]}. Lévy’s binary
expansion argument and (3.36) shows that if

t1, t2 ∈ Tn, and 0 ≤ t2 − t1 < 2−M(n)
0 ∧ (δn/6)1/ε,

then
|H (n)

t2 (φ) − H (n)

t1 (φ)| ≤ C(X (n)

T+2
∗
(1) + 1)|t2 − t1|η1 . (3.37)

Since 1
2mn < 1

n , for any t ∈ [0, T ] we may choose {t}n ∈ [[t]n, [t]n + 1
n

) ∩ Tn . Let

δ′
n = 1

3
(2−M(n)

0 ∧ (δn/6)1/ε).

Let t1, t2 ∈ [0, T ] ∩ Z+/n be such that 0 < t2 − t1 ≤ δ′
n . Then |ti − {ti }n| < 1/n ≤

|t2 − t1|, which implies that

|{t2}n − {t1}n| ≤ |t2 − t1| + 2

n
< 3|t2 − t1| ≤ 2−M(n)

0 ∧ (δn/6)1/ε.

Thus (3.37) holds for {t2}n, {t1}n , that is,

|H (n)

{t2}n
(φ) − H (n)

{t1}n
(φ)| ≤ C(X (n)

T+2
∗
(1) + 1)|{t2}n − {t1}n|η1

≤ C3η1(X (n)

T+2
∗
(1) + 1)|t2 − t1|η1 .
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Now use the fact that H (n)

ti (φ) = H (n)

{ti }n
(φ) for i = 1, 2 to conclude that:

for all t1 < t2 ∈ [0, T ] ∩ (Z+/n) such that t2 − t1 ≤ δ′
n we have (3.38)

|H (n)

t2 (φ) − H (n)

t1 (φ)| ≤ CT (X (n)

T+2
∗
(1) + 1)|t2 − t1|η1 . (3.39)

Next use Lemma 3.12 and (3.35) to see that for r ∈ (0, 1
12 ), then

nP(δ′
n ≤ r) ≤ nP(M (n)

0 ≥ log2(1/3r)) + nP(δn ≤ 6(3r)ε)

≤ CT,η(3r)η/2 + c6(3r)ε

≤ C ′
T,ηrε∧(η/2) ≤ C ′

T,ηrη1 . (3.40)

Our objective now follows easily from (3.39) and (3.40). Let {H̃ (n)

t , t ≥ 0} be the
continuous process obtained by linearly interpolating {H (n)

j/n(φ) : j ∈ Z+}. It follows
from (3.38) and (3.39), with T + 1 in place of T , that for some C ′

T ,

if t1 ≤ t2 ∈ [0, T ] and (t2 − t1) ∨ 1

n
≤ δ′

n, then

|H̃ (n)

t2 − H̃ (n)

t1 | ≤ C ′
T (X (n)

T+3
∗
(1) + 1)|t2 − t1|η1 . (3.41)

For t2 − t1 ≥ 1
n this is an easy consequence of the triangle inequality and the fact

that δ′
n ≥ 1

n . For 0 < t2 − t1 < 1
n , either [t1]n = [t2]n and the linear interpolation

and δ′
n ≥ 1/n easily give the desired bound, or [t2]n = [t1]n + 1/n, and the triangle

inequality gives

|H̃ (n)

t2 − H̃ (n)

t1 | ≤ |H̃ (n)

t2 − H̃ (n)

[t2]n
| + |H̃ (n)

[t2]n
− H̃ (n)

t1 |
which leads to the required bound using the linear interpolation and δ′

n ≥ 1/n again.
Recall that |φ| ≤ 1 implies |H̃ (n)

0 | ≤ 1
C0n . We now fix T ∈ N, and for δ, M > 0,

define a compact set of paths in C = C([0, T ], R) by

Kδ,M = {
w ∈ C : |w0| ≤ C−1

0 and ∀t1, t2 ∈ [0, T ], if |t2 − t1| ≤ δ then

|wt2 − wt1 | ≤ C ′
T (M + 1)|t2 − t1|η1

}
.

Compactness is clear by the Arzela–Ascoli Theorem. Recall that s0 > 0. It follows from
(3.41) and (3.40) that for small enough δk > 0 and large enough Mk, nk ∈ N,

nP(H̃ (n)· |[0,T ] /∈ Kδ,M , S(n) > s0) ≤ nP
(
X (n)

T+3
∗
(1) > M, S(n) > s0

)
+ nP

(
δ′

n ≤ 1

n
∨ δ

)

≤ 2−k , if δ ≤ δk , M ≥ Mk , and n ≥ nk . (3.42)

Here we are using the tightness of the maximum total mass processes from [11, Theo-
rem1.2 andCorollary 1.3]. By further decreasing δk and increasing Mk we can realize the
bound in (3.42) for all n ∈ N. It now follows that for the compact sets K̂m = ∩∞

k=m Kδk ,Mk

we have
for all m, n ∈ N, nP

(
H̃ (n)|[0,T ] /∈ K̂m, S(n) > s0

) ≤ 21−m . (3.43)

We use the lower bound on the survival probability from (3.8):

P(S(n) > s0) ≥ c((ns0) ∨ 1)−1.



478 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

Combine the above with (3.43) to conclude that for all m, n ∈ N,

P
(
H̃ (n)|[0,T ] /∈ K̂m |S(n) > s0

) ≤ P(H̃ (n)|[0,T ] /∈ K̂m, S(n) > s0)

c/((ns0) ∨ 1)

≤ c−1(ns0 + 1)P(H̃ (n)|[0,T ] /∈ K̂m, S(n) > s0)

≤ c−1(s0 + 1)21−m .

This shows that {P(H̃ (n) ∈ ·|S(n) > s0) : n ∈ N} is tight in C(R+, R) and so by Prohorov’s
theorem is relatively compact in C(R+, R). This implies (see, e.g., [8, Proposition 10.4
in Chapter 3]) that {P(H (n)(φ) ∈ ·|S(n) > s0) : n ∈ N} is C-relatively compact in
D(R+, R), proving (3.31), as required. ��

4. Proof of Proposition 2.11

The goal of this section is to prove Proposition 2.11. The proof is a modification of that
of [17, Theorem 4.8], so we will not give all of the details here. Instead we will indicate
the main ideas of the proof, and refer the reader to [17] for various details.

For� ∈ �r , [17, Theorem4.8] proves Proposition 2.11 in the simplified settingwhere
je = 1 for every e ∈ E(�). In that reference (and with je = 1 for each e) the quantity
t̂ (�)

ň (·) is written as t̂N (�,ň)(·), where N (�, ň) denotes a skeleton network consisting
of inserting ňe,1 − 1 vertices into edge e, for each e ∈ E(�). The quantity ρ−1 t̂N (�,ň)

then encodes (in Fourier space) the probability of our random tree T connecting the
origin to r specified space–time points with the spatial and temporal locations of the
branch points, as well as the “shape” of the connections also specified (consider the set
Ť (�, y̌, ň) in the case where each je = 1). In our paper je need not be equal to 1. In
this more general setting, t̂ (�)

ň (·) encodes (in Fourier space) the probability of a subset
of the above event, where now the spatial locations at various other fixed times are also
specified. The appropriate skeleton network is now a marked skeleton network N + (see
below), where certain vertices on the skeleton networkN at fixed times (graph distance
from the root) are marked.

The approach in [17, proof of Theorem 4.8] relies on the so-called lace expansion and
involves an inductive argument (on r ). To be more precise [17] uses the lace expansion
on a tree network (introduced in [15] for networks of self-avoiding walks) in the context
of lattice trees, with the expansion applied at the closest branch point to the root in
the network N . The expansion gives rise to certain diagrams that involve lattice trees
connecting or intersecting in various ways. Some of these connections are of fixed
temporal length, and others are of unrestricted length. A crucial part of the analysis
involves bounding these diagrams. The bounds depend on the complexity of the diagram,
as well as the total temporal length in the diagram. Diagramswhere either the complexity
or the length is large give small contributions (recall that we are in high dimensions), as
they are asking for either lots of intersections, or for intersections to occur over a large
distance.

The point of this discussion is that, in our setting, when je need not be 1, one can
perform exactly the same expansion. It turns out that there are essentially no new dia-
grams to deal with in our setting. Belowwe introduce the definition of a marked skeleton
network (see also Fig. 10) and then proceed in the following subsections to expand the
above outline of the proof of Proposition 2.11.
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root

marked edge

Fig. 10. An example of a marked skeleton network from a shape � ∈ �4. Branch points and leaves are �,
marked points are �

Definition 4.1. Given � ∈ �r and ň = (ňe,i )i∈[ je],e∈[2r−1] where je ∈ N for each
e ∈ E(�), define N +(�, ň) to be the marked skeleton network which is obtained from
� by

• inserting je − 1 marked points into edge e of � for each e ∈ [2r − 1], thus each
edge e in � becomes a path of je edges, called marked edges, which are labelled as
(e, i) for i ≤ je; and
• inserting ňe,i − 1 vertices into every marked edge (e, i), so ňe,i ∈ N denotes the
length of the marked edge (e, i).

Write E(N +) for the set of marked edges of N +. Marked edges are adjacent if they
share a vertex in common.

The branch N +
e of N + associated to an edge e of � is the set of vertices of N +

consisting of the endpoints of e together with all points (marked or not) inserted
into that edge as per the definition of N +. The set of branches is written B(N +) :=
(N +

e )e∈E(�). Two distinct branchesN +
e andN +

e′ are adjacent if and only if they have
a vertex in common (equivalent to e and e′ being adjacent in �).
A special point of N + is any marked point, branch point or leaf. �

Remark 4.2. The sets of (all) vertices and edges of a marked skeleton network N +

will be denoted by N + and E(N +) respectively (note the abuse of notation that N +

denotes both the marked skeleton and its set of vertices). The cardinality of E(N +) is
#E(N +) = ∑

e∈�

∑ je
i=1 ňe,i and the number of vertices is 1 larger. All special points

are also vertices of N +, while marked edges should be considered as distinct objects
from edges, even for marked edges (e, i) such that ňe,i = 1 (note that we have thus far
specified a labelling scheme for marked edges, but not edges). The set of marked edges
of N + is E(N +). �

4.1. Asymptotics of the detailed 1-particle transform. For the case where r = 1, there
exists only one shape in �1 which consists of a single edge e. In this case, we use
the notation [ň1, . . . , ň�], for (ňi )i≤� ∈ N

� with � ≥ 0 to designate the corresponding
marked skeleton network (containing no branch point) with ň = {ňe,1, . . . , ňe,�}.

One of the main results of [18] (see Theorem 4.3(ii) of that reference) can be refor-
mulated as the following proposition (the error terms are not stated explicitly in [18,
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Theorem 4.3], but if we keep track of them we get the following result), which is the
r = 1 case of Proposition 2.11:

Proposition 4.3. Fix d > 8. There exists L0(d) � 1 such that for all L ≥ L0:
For each δ ∈ (0, 1 ∧ d−8

2 ), R > 0, every � ∈ N and (ňi )i≤� ∈ N
� and for any

ǩ ∈ [−R, R]� we have, for the unique shape � ∈ �1,

t̂ (�)

ň

( ǩ√
n

)
= CA

�∏

i=1

e−σ 2
0

ǩ2i
2 (

ňi
n ) +O

⎛

⎝
�∑

i=1

1

ň
d−8
2

i

⎞

⎠ +O
(

|ǩ|2
�∑

i=1

ň1−δ
i

n

)

,

where the error depends on R, δ, L, d, �, and any lower bound on mini≤� ňi/n and
upper bound on maxi≤� ňi/n.

Note that in [18] each ňi is of the form �nti	 − �nti−1	, where 0 = t0 < t1 < · · · <

t� ≤ t∗ and where the error term depends on min{ti − ti−1} and t∗.

4.2. Lace expansion. We will use the lace expansion (and induction on r ) to reduce our
required estimates on a shape in �r with r ≥ 2 to the shape in �1. In the following we
letN + = N +(�, ň) for some � ∈ �r and some ň, where r ≥ 2. Since each ňe,i/n ≥ ε

in Proposition 2.11, for fixed ε we may assume that n is sufficiently large so that each
ňe,i ≥ 2 in what follows.

Definition 4.4. If N + is a marked skeleton network, we say that M+ is a marked sub-
network of N + and write M+ ⊂ N + if

• as a graph, M+ is a (connected) subgraph of N +, and
• the marked points of M+ are those vertices in M+ that were marked points in N +

(i.e. marked points are inherited from N +).

As usual we also writeM+ for the set of vertices of the marked subnetworkM+. �

Definition 4.5. LetM+ be a marked subnetwork of some marked skeleton networkN +.

1. A bond vv′ is a pair of distinct vertices v, v′ ofM+. The set of vertices in the unique
path inM+ from v to v′ is written [v, v′]. We say that the bond vv′ covers the vertices
in [v, v′] (and the edges therein). We write vv′ ∈ M+ to mean that vv′ is a bond in
M+.

2. A graph on M+ is a set of bonds and we denote the set of graphs on M+ by GM+ .
3. Let RM+ denote the set of bonds in M+ that cover 2 or more special points. Fur-

thermore set G−R
M+ = {� ∈ GM+ , � ∩RM+ = ∅}, i.e. the graphs onM+ that do not

contain any bond inRM+ .
4. A graph � ∈ GM+ is said to be connected on M+ if every edge of M+ is covered

by some st ∈ �. Let Gcon
M+ be the set of connected graphs on M+, and G−R,con

M+ =
Gcon
M+ ∩ G−R

M+ .
5. Given � ∈ GM+ and A ⊂ M+, we define �|A = {vv′ ∈ �, v, v′ ∈ A}.
6. For a vertex v ∈ M+ and � ∈ GM+ , we let Av(�) be the largest connected sub-

network A of M+ containing v and such that �|A is a connected graph on A. In
words, this is the connected component of covered (by �) vertices containing v. By
convention we take Av(�) = {v} if no bond in � covers v .



Historical Lattice Trees 481

b

Fig. 11. A graph � on a marked skeleton network N +, with b denoting the branch point nearest to the root.
The rightmost bond is in R since it covers two special points. Also, � ∈ Eb

N + since Ab(�) (highlighted)
contains a neighbour of a marked point

7. If v ∈ N +, we let Ev
N + denote the set of graphs � ∈ GN + such thatAv(�) contains a

vertex adjacent to some special point u �= v of N +, and E−R,v
N+

= G−R
N + ∩ Ev

N + . See
e.g. Fig. 11. �

In this section, for a bond vv′ ∈ N +, Uvv′ will denote a quantity in {−1, 0}. Observe
that (withR = RN +),

∏

vv′∈N +

[1 +Uvv′ ] =
∏

vv′∈N +\R
[1 +Uvv′ ] −

( ∏

vv′∈N +\R
[1 +Uvv′ ]

)(
1−

∏

vv′∈R
[1 +Uvv′ ]

)
.

(4.1)

Definition 4.6. For �m ∈ Z
3
+ we write S �m for the (unmarked) network consisting of paths

of lengths (m j )
3
j=1 respectively meeting at a common vertex. If exactly i of the m j are

strictly positive then this is a star-shaped network of degree i . The case i = 0 is a single
vertex. The central point of S �m is the common vertex of the 3 paths. �

Definition 4.7. For a marked skeleton networkN + = N +(�, ň) with � ∈ �r for some
r ≥ 2, let b denote the branch point lying on the same branch as the root. Let S−

N + be
the largest subnetwork of N + containing b and which does not contain a neighbour of
any other special point of N + �

Remark 4.8. If � ∈ G−R
N + \Eb

N+
thenAb(�) is a (connected subnetwork of a) star-shaped

network of degree at most 3 (since � ∈ �r with r ≥ 2). �

Definition 4.9. IfN + is a marked skeleton network andA ⊂ S−
N + with b ∈ A, then the

vertex setN + \A (with the edge structure and marked points induced fromN +) consists
of exactly three marked skeleton networks (each of which is connected) that we write as
(N + \ A)i for i = 1, 2, 3. Those three subnetworks together contain all special points
of N + except b. �

For a subnetwork A ⊂ N +, let K(A) = ∑
�∈G−R

A

∏
st∈� Ust . Then we can write
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K(N +) :=
∑

�∈G−R
N+

∏

st∈�

Ust

=
∑

A⊂S−
N+

b∈A

∑

�∈G−R,con
A

∏

st∈�

Ust

3∏

i=1

[ ∑

�i ∈G−R
(N+\A)i

∏

vi v
′
i ∈�i

Uvi v
′
i

]
+

∑

�∈E−R,b
N+

∏

st∈�

Ust ,

(4.2)

with the convention that
∑

�i ∈G−R
∅

∑
vi v

′
i ∈�i

Uvi v
′
i
= 1. Inwords this decomposition says

that the set of graphs � onN + containing no bonds that cover two or more special points
consists of (i) those graphs � for which the induced connected subnetwork containing b
also contains a neighbour of some other special point (this is the last term in (4.2)) and
(ii) those graphs � for which this induced subnetwork does not contain the neighbour of
another special point. For (ii) the induced connected subnetwork is some setA contained
in S−

N + so we can first sum over the possibilities for A and then sum over connected
graphs on A and graphs on each (N + \ A)i . Introducing

J (A) =
∑

�∈G−R,con
A

∏

st∈�

Ust ,

then (4.2) becomes

K(N +) =
∑

A⊂S−
N+ :

b∈A

J (A)

3∏

i=1

K
(
(N + \ A)i

)
+

∑

�∈E−R,b
N+

∏

st∈�

Ust . (4.3)

4.3. Application of the Lace expansion. Given N + = N +(�, ň) for some � ∈ �r

(r ≥ 1), and ň = (ňe,i )i∈[ je],e∈[2r−1] ∈ N
E(N +), and given y̌ = (y̌e,i )i∈[ je],e∈[2r−1] ∈

(Zd)E(N +), define tN +( y̌) = t (�)

ň ( y̌). This notation will help us deal with various
subnetworks. Recalling (2.22), we have

tN +( y̌) =
∑

T ∈Ť (ň, y̌)

W (T ).

Definition 4.10. Given N + and y̌ as above, we define �N +( y̌) to be the set of embed-
dings ω = (ω(s))s∈N + of N + into Z

d such that

1. the root is mapped to 0,
2. adjacent vertices in N + are mapped to points in Z

d at (�∞) distance at most L from
each other.

3. the endpoint of the marked edge (e, j) that is farthest from the root (this endpoint
is necessarily a special point) is mapped to

∑
f ≺e

∑
k≤ j f

y̌ f,k +
∑

k≤ j y̌e,k for all
e ∈ [2r − 1] and j ≤ je. �
For a collection of lattice trees (Rs)s∈N + and for a bond (pair of distinct vertices) st

of N + define

Ust =
{
0, if Rs ∩ Rt = ∅,

−1, otherwise.
(4.4)
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Definition 4.11. Given x ∈ Z
d , we write

∑
R�x to denote a sum over lattice trees R

containing the point x ∈ Z
d . �

As for [17, Eq. (4.17)] we can write

tN +( y̌) =
∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∏

uu′∈N +

[1 + Uuu′ ], (4.5)

as any combination (ω ∈ �N +( y̌), (Rs)s∈N +) such that the Rs are mutually avoiding
lattice trees, uniquely defines a lattice tree T ∈ Ť (�, ň, y̌) and vice versa. Here, Rs is
the tree hanging off the vertex s ∈ N +. Note that in the shorthand notation of [17] (4.5)
would be written as

tN +( y̌) =
∑

ω∈�N+ ( y̌)

W (ω)
∏

s∈N +

∑

Rs�ω(s)

W (Rs)
∏

uu′∈N +

[1 + Uuu′ ]. (4.5’)

Recalling Definition 4.5 and (4.1), we set

φR
N + ( y̌) =

∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
( ∏

uu′∈Rc

[1 + Uuu′ ]
)(

1 −
∏

vv′∈R
[1 + Uvv′ ]

)
,

(4.6)
which is 0 unless Uvv′ = −1 for some vv′ ∈ R, and (recalling the last term in (4.3))

φb
N +( y̌) =

∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∑

�∈E−R,b
N+

∏

vv′∈�

Uvv′ .

By (4.1) we have

tN +( y̌) =
∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )K(N +) − φR
N +( y̌)

and by (4.3)

tN +( y̌)

=
∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∑

A⊂S−
N+ ,

b∈A

J (A)

3∏

i=1

K((N + \ A)i )

+ φb
N +( y̌) − φR

N +( y̌). (4.7)

This decomposition is related to Fig. 11 where, loosely speaking, the term in J
corresponds the interactions induced by bonds around the first branch point and the
three terms in K correspond to three new smaller networks. Some notation associated
to this decomposition is introduced in the next definition.
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Definition 4.12. For a marked skeleton network N +, let ě1, ě2, ě3 be the three marked
edges incident to the branch point b. Note that each for k = 1, 2, 3, ěk = (ek, ik) for
some ek ∈ [2r − 1] and some ik ∈ {1, jek } (this marked edge is necessarily the last
marked edge on the branch containing the origin and the first marked edge on the other
two branches containing b).

Given �m = (mk)
3
k=1 such that 0 ≤ mk ≤ ňěk − 2 where ňěk := ňek ,ik , k = 1, 2, 3,

we define (N +
k, �m)k=1,2,3 as the three components ofN + \S �m as in Definition 4.9 (recall

Definition 4.6, and note that eachN +
k, �m is itself a marked skeleton network). Since each

mk < ňek ,ik , there is a bijection between marked edges of N + and the marked edges
of (N +

k, �m)k=1,2,3. The marked edge ěk is split between S �m and N +
k, �m , but we will abuse

notation by retaining this label to refer to the corresponding truncated edge in both
components.

Set E∗(N +
k, �m) = E(N +

k, �m) \ {ěk}. For k = 1, 2, 3, write ň �m,k ∈ N
E(N +

k, �m) for the
vector whose components encode the lengths of marked edges in N +

k, �m , i.e.

ň �m,k
ě =

{
ňě if ě ∈ E∗(N +

k, �m),

ňě − (mk + 1) if ě = ěk .

Similarly for y̌ ∈ (Zd)E(N +), k ∈ {1, 2, 3} and vk ∈ Z
d we write y̌vk ,k ∈ (Zd)

E(N +
k, �m)

for the vector whose components are

y̌vk ,k
ě =

{
y̌ě if ě ∈ E∗(N +

k, �m),

y̌ě − vk if ě = ěk .

�

Let ňb := (ňě1 , ňě2 , ňě3) be the lengths of the marked edges adjacent to b in N +.
Define

Hňb = { �m : 0 ≤ mk ≤ ňěk

3
∧ (ňěk − 2), k = 1, 2, 3

}

Hňb = { �m : 0 ≤ mk ≤ ňěk − 2, k = 1, 2, 3} \ Hňb .

Remark 4.13. For �m ∈ Hňb , we know that for k ∈ {1, 2, 3} and ě ∈ E(N +
k, �m) we have

2
3 ňě ≤ ň �m,k

ě ≤ ňě (with ň �m,k
ě = ň whenever ě ∈ E∗(N +

k, �m)). In particular, recalling that
there is a bijection between marked edges ofN + and the marked edges of (N +

k, �m)k=1,2,3,
we can see that for any a ∈ R there exist c(a), C(a) > 0 such that for �m ∈ Hňb

c(a)

3∑

k=1

∑

ě∈E(N +
k, �m )

(ň �m,k
ě )a ≤

∑

ě∈E(N +)

ňa
ě ≤ C(a)

3∑

k=1

∑

ě∈E(N +
k, �m)

(ň �m,k
ě )a .

�
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Finally, we set

φπ
N +( y̌) =

∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∑

�m∈Hňb

J (S �m)

3∏

i=1

K
(
N +

i, �m
)
,

and (noting the change to the sum over �m)

QN +( y̌) =
∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∑

�m∈H
ňb

J (S �m)

3∏

i=1

K
(
N +

i, �m
)
.

(4.8)
From the argument above and (4.7), we can see that

tN +( y̌) = QN +( y̌) + φπ
N +( y̌) + φb

N +( y̌) − φR
N +( y̌). (4.9)

The last three terms are error terms. The relevant estimates (bounds) are given in the
following lemma, whose proof (which is very similar to the corresponding error bounds
in [17]) will be presented in Sect. 4.6.

Lemma 4.14. Fix d > 8. There exists L0(d) such that for all L ≥ L0 and for a marked
skeleton network N +,

∑

y̌

∣
∣
∣φR

N +( y̌)
∣
∣
∣ = O

(2r−1∑

e=1

je∑

j=1

1

ň
d−8
2

e, j

)
, (e:R)

∑

y̌

∣
∣φπ

N +( y̌)
∣
∣ = O

(2r−1∑

e=1

je∑

j=1

1

ň
d−8
2

e, j

)
, (e:π )

∑

y̌

∣
∣
∣φb

N +( y̌)
∣
∣
∣ = O

(2r−1∑

e=1

je∑

j=1

1

ň
d−8
2

e, j

)
, (e:b)

where the constants in the O notation depend on d and the number of special points in
N +.

We end this section by introducing an important quantity that will appear in the de-
composition of QN + and describes the interactions induced by the term J (S �m) in (4.8).

Definition 4.15. For �m ∈ Z
3
+ and �u ∈ (Zd)3 we define π�0(�u) = ρ1{�u=0} and if some

mi > 0,

π �m(�u) =
∑

ω∈�S �m (�u)

W (ω)
∑

(Rs )s∈S �m :
Rs�ω(s)∀s∈S �m

∏

t∈S �m

W (Rt )J (S �m),

where the set of embeddings �S �m (�u) is defined similarly to Definition 4.10: the root of
S �m (which is the vertex along branch 1 at graph distance m1 from the central vertex - if
m1 = 0 this is simply the central vertex itself) is mapped to 0; adjacent vertices in S �m are
mapped to points in Z

d at distance at most L; and the central point is mapped to u1 and
the leaves on branches i for i = 2, 3 are mapped to u1 + u2 and u1 + u3 respectively. �
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Remark 4.16. This definition of π �m is exactly the same as the one in [17] (Definition
4.12) and as such the results on this quantity, that rely heavily on diagrammatic estimates,
can be transferred directly to our context. �

Recall from (2.21) and the discussion thereafter that CV = ρ2V . The constant V
was defined in [17, (4.30)] as

V = z3D
∑

�m∈Z
3
+

∑

�u∈(Zd )3

π �m(�u) = z3D
∑

�m∈Z
3
+

π̂ �m(0). (4.10)

For N ∈ N we define

π
(N )

�m (�u) =
∑

L∈L(N )(S �m )

∑

ω∈�S �m (�u)

W (ω)
∑

(Rs )s∈S �m :
Rs�ω(s)∀s∈S �m

∏

t∈S �m

W (Rt )
∏

st∈L

(−Ust )
∏

vv′∈C(L)

(1 + Uvv′),

(4.11)
where L ∈ L(N )(S �m) is the set of laces on S �m with N bonds and C(L) denotes the
set of bonds which are compatible with L . We refer to [17, Section 2] for the precise
definitions, and give only a rough description here: A lace L on S �m is either a minimal
graph covering S �m (i.e. the removal of any bond in L results in a graph that no longer
covers S �m) or one that is almost minimal (in this case there is a bond covering the
branch point whose removal results in a minimal graph covering S �m). There is a rule for
(uniquely) defining a lace L(�) associated to a connected graph � on S �m . For a fixed
lace L the bonds compatible with L are those for which adding them to L results in a
connected graph �′ for which L(�′) = L .

In our work we only need a few facts about π
(N )

�m (·), including the obvious fact that
π

(N )

�m (�u) ≥ 0 and that (see [17, (4.28)–(4.29)]) if some mi > 0 then

π �m(�u) =
∞∑

N=1

(−1)N π
(N )

�m (�u). (4.12)

Equations (4.12) and (4.11) are the lace expansion. A key result about this expansion is
the following minor correction of [17, Proposition 4.13].

Proposition 4.17. Fix d > 8. There exists L0(d) such that for all L ≥ L0 there exists
a constant C > 0 (independent of L) and BN ( �m) > 0 such that for all N ≥ 1 and
�� = (�1, �2, �3) ∈ Z

3
+ \ {(0, 0, 0)} we have for j ∈ {1, 2, 3},

∑

�u∈(Zd )3

|u j |2qπ
(N )

�m (�u) ≤ C(L2N 2‖ �m‖∞)q BN ( �m), for q ∈ {0, 1}, and (4.13)

∞∑

N=1

∑

�m:m j ≥� j

BN ( �m) ≤ C

(� j ∨ 1)
d−8
2

, and (4.14)

∞∑

N=1

N 2
∑

�m≤��
‖ �m‖∞ BN ( �m) ≤ C ×

{
‖��‖

10−d
2 ∨0

∞ if d �= 10
log(‖��‖∞ ∨ 2) if d = 10.

(4.15)

The correction is that the ∨1 and ∨2 are missing in [17, Proposition 4.13], but what
we have stated above is what is actually proved therein. Here we have also not included
the extra decay in L appearing in these bounds in [17, Proposition 4.13] as we do not
need it.
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4.4. Decomposition ofQN + . By (4.8) we can see that QN +(�,ň)( y̌) can be decomposed
into 4 parts: the connected component S �m of bonds stemming from the branching point
(term inJ ) and the three subgraphs ofN + remaining after the removal of this connected
component (terms in K). These four subgraphs are not connected by any bonds by
definition ofJ andK on the respective subgraphs. Furthermore the star-shaped subgraph
S �m contains the special point b, while all other special points are contained in one of
the other subgraphs. This means that our problem can be reduced to three independent
similar problems for smaller lengths. This reasoning translates into the following lemma
which can be proved exactly as for [17, Lemma 4.14] so we do not repeat the proof.
Recall the definition of y̌vi ,i and the marked skeleton networksN +

i, �m in Definition 4.12.

Lemma 4.18. For a marked skeleton network N + = N +(�, ň) and y̌ ∈ (Zd)E(N +),

QN +( y̌) =
∑

�m∈Hňb

∑

�u∈(Zd )3

π �m(�u)

3∏

i=1

(
zD

∑

vi

D(vi − ui )tN +
i, �m ( y̌vi ,i )

)
.

For any marked skeleton network N +(�, ň), we introduce the Fourier transform of
tN + and QN + for any ǩ = (ǩe, j ) j∈[ je],e∈[2r−1] by

t̂N +(ǩ) =
∑

y̌∈(Zd )E(N+)

2r−1∏

e=1

je∏

j=1

eiǩe, j y̌e, j tN +( y̌),

Q̂N +(ǩ) =
∑

y̌∈(Zd )E(N+)

2r−1∏

e=1

je∏

j=1

eiǩe, j y̌e, j QN +( y̌).

Lemma 4.18 implies that

Q̂N +(ǩ) = z3D
∑

�m∈Hňb

π̂ �m(ǩ
b
)

3∏

i=1

D̂(ǩěi )t̂N +
i, �m (ǩ

i
), (4.16)

where ǩ
b = (ǩě1, ǩě2 , ǩě3) (meaning the part of ǩ corresponding tomarked edges incident

to the branch point b) and ǩ
i
denotes the vector of ǩe, j corresponding to marked edges

e in N +
i, �m . Note that (4.16) is exactly the “marked” network analog of the unmarked

relation [17, (4.39)].

4.5. Proof of Proposition 2.11. The proof now closely follows that of [17, Theorem 4.8]
with obvious (and straightforward) modifications. We will present the main ideas, but
not the details. The goal is to prove that

t̂N +(�,ň)

( ǩ√
n

)
= ρCr−1

V C2r−1
A

2r−1∏

e=1

je∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n

+O
(2r−1∑

e=1

je∑

i=1

1

ň
d−8
2

e,i

)
+O

(2r−1∑

e=1

je∑

i=1

∣
∣
∣ǩ
∣
∣
∣
2

ň1−δ
e,i

n

)
.
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From (4.9), our bounds on the error terms therein (Lemma 4.14), and (4.16) we have
that

t̂N +(�,ň)

( ǩ√
n

)
= Q̂N +

( ǩ√
n

)
+O

(2r−1∑

e=1

je∑

i=1

1

ň
d−8
2

e,i

)

= z3D
∑

�m∈Hňb

π̂ �m
( ǩ

b

√
n

) 3∏

j=1

D̂
( ǩě j√

n

)
t̂N +

j, �m

( ǩ
j

√
n

)
+O

(2r−1∑

e=1

je∑

i=1

1

ň
d−8
2

e,i

)
.

(4.17)

We proceed by induction on r for networks with shape � ∈ �r , using Lemma 4.3
for the initializing case (r = 1).

Let δ ∈ (0, 1∧ d−8
2 ). By the induction hypothesis applied to eachN +

j, �m (having r j +1
leaves, where r1 = 1 and r2 + r3 = r ) we may write

3∏

j=1

t̂N +
j, �m

( ǩ
j

√
n

)
≈ ρ3Cr−2

V C2r−1
A

3∏

j=1

[ ∏

ě∈E(N +
j, �m)

e−σ 2
0

ǩ2
ě
2

ň
�m, j
ě
n

]

, (4.18)

where we recall that the notation ň �m, j· was introduced in Definition 4.12. The error terms
in the above approximation are obtained from the induction hypothesis and Remark 4.13
(using the fact that ň �m, j

ě is comparable to ňě—they are identical unless ě = ě j for some
j ≤ 3 - since �m ∈ Hňb

). We then use the fact that

3∏

j=1

e−σ 2
0

ǩ2
ě j
2

ň
�m, j
ě j
n −

3∏

j=1

e−σ 2
0

ǩ2
ě j
2

ňě j
n ≤ C

n

3∑

j=1

ǩ2ě j
m j ,

(4.13) with q = 0 and (4.15) of Proposition 4.17, and |D̂| ≤ 1 to get an error term in
(4.17) (when replacing the right-hand side of (4.18) with ňě in the exponent instead of
ň �m, j

ě ) of at most O(
∑3

j=1 ǩ2ě j
ň1−δ

ě j
n−1). For the relevant details of this part of the argu-

ment, and in particular for the bounds on the error terms, one can look at the derivation
of [17, (4.56)].

Now D̂(ǩě j /
√

n) = 1 +O(|ǩě j |2/n) and

|π̂ �m(ǩ
b
/
√

n) − π̂ �m(0)| ≤ C
|ǩb|2

n

3∑

j=1

∑

�u
|u j |2|π �m(�u)|,

which,when summedoverm j ≤ ňě j , j = 1, 2, 3, gives atmostC L2n−1|ǩb|2∑3
j=1 ň1−δ

ě j

(see (4.13) with q = 1 and (4.15)). Next,
∑

�m∈Hňb
π̂ �m(0) differs from the full sum

∑
�m π̂ �m(0) by at most C

∑3
j=1 ň−(d−8)/2

ě j
by (4.14). Combining the above and recalling

(4.10) and that CV = ρ2V reveals that

t̂N +(�,ň)

( ǩ√
n

)
≈ z3D

∑

�m
π̂ �m(0)ρ3Cr−2

V C2r−1
A

2r−1∏

e=1

je∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n

= ρCr−1
V C2r−1

A

2r−1∏

e=1

je∏

i=1

e−σ 2
0

ǩ2e,i
2

ňe,i
n .
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An analysis of the error terms involved in the various ≈ approximations is handled
rigorously in [17, Sections 4.3–4.5], making use of Proposition 4.17. ��

4.6. Proof of Lemma 4.14. The proof of Lemma 4.14 relies on diagrammatic estimates.
These estimates are built from a single lemma which gives the bounds on the simplest
diagrams. For u ∈ Z

d let us denote

hm(u) =

⎧
⎪⎨

⎪⎩

z2D(D ∗ tm−2 ∗ D)(u) ifm ≥ 2
zD D(u) ifm = 1
1{u=0} ifm = 0,

where tm(u) = ρP(u ∈ Tm) (so t0(u) = ρ1{u=0}), and we recall that ∗ denotes the
convolution of functions on Z

d . Note that in [17] there is a ζ in the definition, but this
ζ = 1 because of Lemma 3.9 of [17]. Note that for m ≥ 2,

tm(u) =
∑

ω:0 m→u

W (ω)
∑

(Rs )0≤s≤m :
Rs�ω(s)∀s

m∏

t=0

W (Rt )
∏

uv∈[0,m]
[1 + Uuv]

≤
∑

ω:0 m→u

W (ω)
∑

Rm�ω(m)

W (Rm)
∑

R0�ω(0)

W (R0)
∑

(Rs )1≤s≤m−1:
Rs�ω(s)∀s

m−1∏

t=1

W (Rt )
∏

uv∈[1,m−1]
[1 + Uuv]

≤
∑

ω:0 m→u

W (ω)ρ2
∑

(Rs )1≤s≤m−1:
Rs�ω(s)∀s

m−1∏

t=1

W (Rt )
∏

uv∈[1,m−1]
[1 + Uuv] = ρ2hm(u). (4.19)

Let us recall partially from [17, Lemma 5.4],4 in which the function � : Z
d → R+ is

defined by �(x) = ρP(x ∈ T ).

Lemma 4.19. Fix d > 8. There exists L0(d) such that for all L ≥ L0: For any l ≥ 1
there exists Cl > 0 such that for all k ∈ {0, 1, 2, 3, 4} and �m(l) = (m1, . . . , ml) ∈ Z

l
+

and m = ∑l
i=1 mi , then

∥
∥
∥∗l

i=1hmi ∗ �(k)
∥
∥
∥∞ ≤ Cl

m
d−2k
2

, and
∥
∥
∥∗l

i=1hmi

∥
∥
∥
1

≤ Cl .

For a given skeleton network N +, let r+ = #E(N +). If there is a bond uu′ covering
two special points then either we can find two non-neighbouring marked edges ě � u
and ě′ � u′, or (at least) one of u, u′ is a leaf ofN +. In order to accommodate the latter
cases, for the proof of Lemma 4.14(e:R) it is notationally convenient to adjoin to each
leaf in N + a “phantom” marked edge of length 0, and write E(N ++) for this enlarged
set of marked edges. For marked edges ě, ě′ ∈ E(N ++)write ě ∼ ě′ if they are adjacent,
and ě �∼ ě′ otherwise. Recall from (4.4) that in the notation Ust , st is a pair of vertices in
N +. For non-adjacent marked edges ě, ě′ ∈ E(N ++) and m ≤ ňě, and m′ ≤ ň′

ě′ , write
st (ě, ě′, m, m′) to denote the pair of vertices in N + corresponding to the m-th vertex

4 [17, Lemma 5.4] is stated under some additional hypotheses (display (3.24) in that paper). Nevertheless
[17, Theorem 3.7] shows that the assumptions (3.24) are met.



490 M. Cabezas, A. Fribergh, M. Holmes, E. Perkins

b

f1

f2

m̌ě

Fig. 12. A skeleton networkN + with a bond inR. This bond has endpoints in the marked edge ě ∈ N + and
the “phantom”marked edge ě′ ∈ N ++ of lengths ňě = 6 and ň′

ě′ = 0 respectively.Wewrite st (ě, ě′, m̌ě, m̌′
ě′ )

for this bond. Here, m̌ě = 2 is indicated, while m̌′
ě′ = 0. The set of marked edges E+

ě,ě′ on the path from ě to

ě′ is { f1, f2} from � to � and � to � as indicated

along marked edge ě in the direction away from ě′ and the m′-th vertex along marked
edge ě′ in the direction away from ě′. If e.g. ě was one of the phantommarked edges then
ňě = 0 and the relevant vertex is actually the leaf that ě was adjoined to. See e.g. Fig. 12.

For 0 ≤ a ≤ b ≤ ňě, write ě[a, b] to denote that part of the marked edge ě consisting
of the a-th to the b-th vertices (with ordering directed away from ě′ as above) and
similarly define ě′[a′, b′] for 0 ≤ a′ ≤ b′ ≤ ň′

ě′ .

Proof of Lemma 4.14(e:R). In the definition of φR
N + (see (4.6)), we can see that

1 −
∏

vv′∈R
[1 + Uvv′ ] ≤

∑

ě,ě′∈E(N ++),
ě �∼ě′

∑

m̌ě≤ňě,

m̌ě′≤ňě′

−Ust (ě,ě′,m̌ě,m̌
′
ě′ )

,

since if there is a bond uu′ covering two special points then we can find two non-
neighbouring marked edges in E(N ++) containing u and u′ respectively (for more
details see [17, Section 6.5.1]).

For a marked edge f̌ ∈ E(N +), write
∏

uv∈ f̌ for a product over pairs of distinct

vertices u, v in the interior of f̌ (i.e. u, v are vertices in f̌ that are not the endvertices of
f̌ ). For non-adjacent marked edges ě, ě′ and 0 ≤ a ≤ b ≤ ňě as above, write

∏
uv∈ě[a,b]

for a product over pairs of distinct u, v in ě[a, b] that are neither endvertex of this set,
and similarly define

∏
uv∈ě′[a′,b′] for 0 ≤ a′ ≤ b′ ≤ ň′

ě′ .
Fix distinct ě �∼ ě′ in E(N ++) and m̌ě ≤ ňě, m̌ě′ ≤ ňě′ . By ignoring the constraints

of non-intersection between various Ri (bounding some 1 + Uuu′ by 1), we obtain

∏

uu′∈Rc

[1 + Uuu′ ] ≤
∏

f̌ ∈E(N +)\{ě,ě′}

[ ∏

uu′∈ f̌

[1 + Uuu′ ]
]

×
[ ∏

u0u′
0∈ě[0,m̌ě]

[1 + Uu0u′
0
]
][ ∏

u1u′
1∈ě[m̌ě,ňě]

[1 + Uu1u′
1
]
]

×
[ ∏

u2u′
2∈ě′[0,m̌′

ě′ ]
[1 + Uu2u′

2
]
][ ∏

u3u′
3∈ě′[m̌′

ě′ ,ň
′
ě′ ]

[1 + Uu3u′
3
]
]

.
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where e.g. if m̌ě ∈ {0, ňě} then the corresponding empty product is 1. (Note that this
kind of approach is used to prove (2.25) as well as the more general statement appearing
in Remark 2.12.) Using the above inequalities we can see that

0 ≤
( ∏

uu′∈Rc

[1 + Uuu′ ]
)(

1 −
∏

vv′∈R
[1 + Uvv′ ]

)

≤
∑

ě,ě′∈E(N ++),
ě �∼ě′

∑

m̌ě≤ňě,

m̌ě′≤ňě′

[−Ust (ě,ě′,m̌ě,m̌
′
ě′ )

]
∏

f̌ ∈E(N +)\{ě,ě′}

[ ∏

uu′∈ f̌

[1 + Uuu′ ]
]

×
[ ∏

u0u′
0∈ě[0,m̌ě]

[1 + Uu0u′
0
]
][ ∏

u1u′
1∈ě[m̌ě,ňě]

[1 + Uu1u′
1
]
]

×
[ ∏

u2u′
2∈ě′[0,m̌′

ě′ ]
[1 + Uu2u′

2
]
][ ∏

u3u′
3∈ě′[m̌′

ě′ ,ň
′
ě′ ]

[1 + Uu3u′
3
]
]

, (4.20)

Note that if e.g. ě is a phantommarked edge then the corresponding sumover m̌ě contains
only the value 0 = ňě.

Now, the ω in (4.6) can be broken up at every special point and at the two vertices
corresponding to st (ě, ě′, m, m′). The graph then becomes broken up into (at most)
r+ + 2 segments. Let us now introduce the set E+

ě,ě′ of marked edges which connect
(but do not include) ě to ě′ which is non-empty since ě and ě′ are not neighbours, and
Ē
+
ě,ě′ = E+

ě,ě′ ∪ {ě, ě′}. Letting y̌ě,ě′ = (y̌ f̌ ) f̌ ∈E+
ě,ě′

with each y̌ f̌ ∈ Z
d we have from

(4.20) and Remark 1.1 that (cf. [17, (6.18)])
∑

y̌

∣
∣
∣φR

N + ( y̌)
∣
∣
∣

≤ ρ2(r++2)
∑

ě,ě′∈E(N ++),
ě �∼ě′

∑

m̌ě≤ňě,

m̌ě′ ≤ňě′

( ∏

f̌ ′∈E(N +)\Ē+
ě,ě′

∑

y̌ f̌ ′

hň f̌ ′ (y̌ f̌ ′ )
)∑

y̌ě,ě′

∑

uě,uě′

[ ∏

f̌ ∈E+
ě,ě′

hň f̌
(y̌ f̌ )

× hm̌ě
(uě)hm̌ě′ (uě′ )�(2)

(
uě + uě′ +

∑

f̌ ∈E+
ě,ě′

y̌ f̌

)∑

y̌ě

hňě−m̌ě
(y̌ě − uě)

∑

y̌ě′
hňě′ −m̌ě′ (y̌ě′ − uě′ )

]

.

This arises because e.g. if f̌ and f̌ ′ are twodistinctmarked edges forwhich there is noUst

term appearing anywhere in (4.20) with s and t vertices of f̌ and f̌ ′ respectively, then the
corresponding segments ofω (and the sets of lattice trees R· hanging off them) have been
decoupled. Segments of ω and corresponding elements of y̌ can then be summed over
“independently”, with factors of ρ arising at endvertices, similarly to (4.19). Similarly,
the presence of the term [−Ust (·,·,·,·)] in (4.20) forces two corresponding trees R· to
intersect, which yields the �(2) term above. Recalling that

∑
y̌ hn(y̌) ≤ C1 for any n by

Lemma 4.19 we see that
∑

y̌

∣
∣
∣φR

N +( y̌)
∣
∣
∣ ≤ ρ2(r++2)Cr+

1

∑

ě,ě′∈E(N ++),
ě �∼ě′

∑

m̌ě≤ňě,

m̌ě′≤ňě′

(hm̌ě
∗ hm̌ě′ ∗ �(2) ∗

f̌ ∈E+
ě,ě′

hň f̌
)(0).

(The power of C1 is r+ − # Ē
+
ě,ě′ + 2 ≤ r+, and so assuming C1 ≥ 1 without loss of

generality, the above follows.) The notation in the last convolution above means that
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there is one term in the convolution for each f̌ ∈ E+
ě,ě′ . By Lemma 4.19 with k = 2 and

l = l+ := 2 + #E+
ě,ě′ we have that for ně,ě′ = ∑

f̌ ∈E+
ě,ě′

ň f̌ ,

∑

y̌

∣
∣
∣φR

N +( y̌)
∣
∣
∣ ≤ ρ2(r++2)Cr+

1

∑

ě,ě′∈E(N ++),
ě �∼ě′

∑

m̌ě≤ňě,

m̌ě′≤ňě′

Cl+

(m̌ě + m̌ě′ + ně,ě′)
d−4
2

≤ C(r+)
∑

ě,ě′∈E(N ++),
ě �∼ě′

1

n
d−8
2

ě,ě′

≤ C ′(r+)
2r−1∑

e=1

je∑

j=1

1

ň
d−8
2

e, j

.

��
Proof of Lemma 4.14(e:π ). Similarly to Lemma 4.18 (but note the change in the first
summation) we have that

φπ
N +( y̌) =

∑

�m∈Hňb

∑

�u∈(Zd )3

π �m(�u)

3∏

j=1

(
zD

∑

v j

D(v j − u j )tN +
j, �m ( y̌v j , j

)
)
.

Therefore, for any y̌ ∈ (Zd)r+ ,

∣
∣φπ

N +( y̌)
∣
∣ ≤ C

∣
∣
∣
∣
∣
∣
∣

∑

�m∈Hňb

∑

�u
π �m(�u)

∑

y̌

3∏

j=1

∑

v j

D(v j − u j )tN +
j, �m ( y̌v j , j

)

∣
∣
∣
∣
∣
∣
∣

≤ C
∞∑

N=1

∑

�m∈Hňb

∑

�u
π

(N )

�m (�u)
∑

y̌

3∏

j=1

∑

v j

D(v j − u j )tN +
j, �m ( y̌v j , j

).

Using a generalisation of (2.25) as in Remark 2.12, and then (4.13) and (4.14), we have

∑

y̌

∣
∣φπ

N + ( y̌)
∣
∣ ≤ C

∞∑

N=1

∑

�m∈H
ňb

∑

�u
π

(N )

�m (�u)K r+
0 ≤ C

∞∑

N=1

3∑

k=1

∑

�m:mk≥ňěk
/3

BN ( �m) ≤
3∑

k=1

C ′

ň
d−8
2

ěk

.

The result follows. ��
The proof of Lemma 4.14(e:b) is again an adaptation of the proof in [17] (specifically

in [17, Section 6.5.3]). Here we will indicate the changes to the argument required for
the present setting of a marked skeleton network. We start by adapting [17, Definition
2.2]. Given a graph � ∈ Eb

N + on N +, a special point v of N + and a marked edge e of
which v is an endpoint, we define the bond associated to e at v as follows: If there is no
bond in � covering v that has an endpoint strictly on e then there is no bond associated
to e at v. Otherwise from the set of such bonds we choose the one whose endpoint in
e is farthest from v. If this is not unique then we choose from this set one according
to a fixed but arbitrary rule (e.g. choose from those whose other endpoint is strictly on
some edge e′ of smallest label the one whose endpoint on e′ is farthest from v in this
direction).
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Proof of Lemma 4.14(e:b). Recall that

φb
N +( y̌) =

∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )
∑

�∈E−R,b
N+

∏

vv′∈�

Uvv′ . (4.21)

Recall also that (ěi )
3
i=1 are the marked edges adjacent to b and denote their end vertices

(other than b) as (v̌i )
3
i=1, which are special points.

For F ⊂ {1, 2, 3} let
Eb

F,N + = {
� ∈ E−R,b

N + : ∀i ∈ F,Ab(�) contains a nearest neighbour of v̌i
}
.

Note that if F �= {1, 2, 3} this set may include � for which some Ab(�) also contains a
nearest neighbour of v̌i for some i ∈ {1, 2, 3} \ F . Inclusion–exclusion over the sets F
gives ∣

∣
∣

∑

�∈E−R,b
N+

∏

vv′∈�

Uvv′
∣
∣
∣ ≤

∑

F �=∅

∣
∣
∣

∑

�∈Eb
F,N+

∏

vv′∈�

Uvv′
∣
∣
∣. (4.22)

Given � ∈ Eb
F,N + we define a subgraph �F ⊂ � to be the set of bonds st ∈ � such

that

• st is the bond associated to one of the marked edges ěi at b, for some i ∈ F , or
• st is the bond associated to one of the marked edges ěi , at v̌i where i ∈ F , or
• st are both vertices in the marked edge ěi for some i ∈ F .

Let SF denote the largest connected subnetwork of N + containing b that is covered by
�F . Then SF is a star-shaped network of degree 3 or less (with branch point b) and �F
is a connected graph on SF . Moreover SF contains at most #F + 1 special points ofN +

(one of which is b) since � contains no bonds in R. Note that the length of branch i of
SF is at least ňi − 1. Let SF (N +) denote (for fixed F) the set of possible SF that can
arise as above from graphs � ∈ Eb

F,N + . It follows that

∑

�∈Eb
F,N+

∏

vv′∈�

Uvv′ =
∑

S∈SF (N +)

∑

�∈Eb
F,N+ :

SF (�)=S

∏

vv′∈�

Uvv′ . (4.23)

Nowwemay proceed as in [17, (6.23)–(6.28)], which we briefly discuss in the following
paragraph but direct the reader to [17] for details. For fixed F and S ∈ SF (N +) we
have the notion of a lace on S containing N bonds and the set of bonds, C(L), which are
compatible with the lace L , as described after (4.11). Similarly, given F , and � ∈ Eb

F,N +

such that SF (�) = S we have the lace associated to the subgraph �F , which is a
connected graph on S. Thus, as in [17, (6.23)–(6.24)], we can write (4.23) as

∞∑

N=1

(−1)N
∑

S∈SF (N +)

∑

L∈L(N ),F
S

[ ∏

st∈L

(−Ust )
][ ∑

�∈Eb
F,N+ :

SF (�)=S,
L(�F )=L

∏

vv′∈�

Uvv′
]

, (4.24)

where the sum over L is a sum over (a certain subclass of all) laces on S containing
exactly N bonds (for the definition of this subclass see [17, definition prior to (6.23)]).
The last two pages of [17] show how to deal with the “messy” final sum in (4.24), by
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breaking the sum over � into three sets: (i) sets of bonds on S that are compatible with
L; (ii) sets of bonds that live onN + \S; and (iii) sets of bonds st with one endpoint in S
and one inN + \S for which SF (L ∪ {st}) = S (in each case bonds inR are excluded).
Using this decomposition we see that (4.24) is equal to

∞∑

N=1

(−1)N
∑

S∈SF (N +)

∑

L∈L(N ),F
S

[ ∏

st∈L

(−Ust )
][ ∑

�∈G−R,con
S :

L(�)=L

∏

st∈�

Ust

][ ∑

�′∈G−R
N+\S

∏

st∈�′
Ust

]

×
[ ∑

�∗∈G−R
S,N+\S :

SF (L∪�∗)=S

∏

st∈�

Ust

]

=
∞∑

N=1

(−1)N
∑

S∈SF (N +)

∑

L∈L(N ),F
S

[ ∏

st∈L

(−Ust )
][ ∏

st∈C(L)

[1 + Ust ]
][ ∏

st∈N +\S
[1 + Ust ]

]
(4.25)

×
∏

s∈S,t∈N +\S:
SF (L∪{st})=S

[1 + Ust ]. (4.26)

We bound the absolute value of the above by simply removing the factors (−1)N

(everything else is non-negative). Then we can ignore the last product (4.26) (bound it
by 1) and get an upper bound. Similarly we can discard any part of the last product in
(4.25) to get an upper bound. For the latter we throw away all st such that s and t are
on different connected components of N + \ S. We deduce from (4.21), (4.22), and the
above that
∑

y̌

|φb
N + ( y̌)|

≤
∑

F �=∅

∞∑

N=1

∑

y̌

∑

ω∈�N+ ( y̌)

W (ω)
∑

(Rs )s∈N+ :
Rs�ω(s)∀s∈N +

∏

t∈N +

W (Rt )

×
∑

S∈SF (N +)

{ ∑

L∈L(N ),F
S

[ ∏

st∈L

(−Us,t )
][ ∏

st∈C(L)

[1 + Ust ]
]}�N+\S∏

j=1

[ ∏

st∈(N +\S) j

[1 + Ust ]
]
,

(4.27)

where�N +\S denotes the number of disjoint components ofN +\S and the components
are denoted by (N +\S) j . Here, the componentsS, and (N +\S) j for all j have nowbeen
decoupled, because there are no Ust terms where s and t are on different components.
Recalling (4.11), the term in curly brackets in (4.27) (in combination with the part of ω

and the trees R· corresponding to S) is the quantity that gives rise to π
(N )

�m (where the mi
are the lengths of the branches of S) except that we are summing over a restricted set of
laces containing N bonds. But we can also sum over all L ∈ L(N )(S), the set of laces
on S with exactly N bonds, to get an upper bound. This gives rise to a bound

∑

y̌

∣
∣
∣φb

N +( y̌)
∣
∣
∣ ≤

∑

F �=∅

∞∑

N=1

∑

�m:
mi ≥ňi −1∀i∈F

∑

�u
π

(N )

�m (�u)C(r+), (4.28)
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where we note that the sum over �m arises from the sum over S seen in previous expres-
sions, and the constant C(r+) arises from the generalisation of (2.25) noted in Remark
2.12. Finally use Proposition 4.17 to see that (4.28) is at most

C
∑

F �=∅

∞∑

N=1

∑

�m:
mi ≥ňi −1

∀i∈F

BN ( �m) ≤
3∑

i=1

C

ň
d−8
2

i

.

This proves the result. ��
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