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Abstract: We consider a general system of interacting random loops which includes
several models of interest, such as the Spin O(N) model, random lattice permutations,
a version of the interacting Bose gas in discrete space and of the loop O(N) model. We
consider the system inZd , d ≥ 3, and prove the occurrence of macroscopic loops whose
length is proportional to the volume of the system. More precisely, we approximate Zd

by finite boxes and, given any two vertices whose distance is proportional to the diameter
of the box, we prove that the probability of observing a loop visiting both is uniformly
positive. Our results hold under general assumptions on the interaction potential, which
may have bounded or unbounded support or introduce hard-core constraints.

1. Introduction and Main Results

We consider a general system of interacting random loopswhich includes several models
of interest, such as the Spin O(N) model, random lattice permutations, a version of the
interactingBose gas in discrete space and of the loopO(N)model. In ourmodels the loops
can be oriented or unoriented and interact with each other via a potential which depends
on their mutual distance. The potential can have bounded or unbounded support and
can allow a bounded or an arbitrarily large number of visits at the vertices. We consider
the system in Z

d , with d > 2, and prove the occurrence of macroscopic loops, whose
length is proportional to the volume of the system. In particular, we approximate Zd by
finite boxes and, given any two vertices whose distance is proportional to the diameter
of the box, we prove that the probability of observing a loop visiting both is uniformly
positive. We now discuss some of the models to which our general loop soup reduces
or is related to, after that we provide a formal definition of the model and state our first
main theorem in wide generality.

Spin O(N) model. The Spin O(N) model is one of the most important statistical me-
chanics models. In this model the spins take values in a unit sphere of dimension N − 1,
see Sect. A.2 for the definition. Special cases of interest are the Ising model (N = 1), the
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XY model (N = 2) and the Heisenberg model (N = 3). The model is interesting for all
integer values of N ≥ 1, in particular its rigorous analysis is particularly challenging for
values of N greater than two, in which case important mathematical tools are missing,
for example correlation inequalities. An important mathematical object in the analysis
of such a spin system is the BFS-random loop model, which was introduced and studied
by Brydges, Fröhlich and Spencer in [13,14] following the work of Symanzik [35].
This is a random walk loop soup whose realisations are systems of closed random walk
trajectories interacting by local repulsive interactions. The general loop soup considered
in our paper reduces to the BFS-random loop representation for a special choice of the
parameters (as illustrated below). It is well known from the seminal work of Fröhlich,
Simon and Spencer [24] that a phase transition in the Spin O(N) model with respect
to the variation of an external parameter, the inverse temperature, occurs in dimension
d > 2. This phase transition corresponds to the fact that as long as the inverse tempera-
ture is a above a certain critical threshold, the spin-spin correlations do not decay to zero
with the distance (while they decay exponentially fast with the distance as the inverse
temperature is below such threshold, the sharpness of such a phase transition is however
known only for N = 1, 2). When translated into the language of loops through the BFS
representation, the non-decay to zero of the spin-spin correlations implies that the ratio
of two partition functions—with one partition function corresponding to the weight of
configurations with interacting loops and a walk connecting two points, and the other
partition corresponding to the weight of configurations with only loops—is uniformly
positive with respect to the variation of such two points and to the size of the system.
This fact has no direct consequence for the corresponding random loop model where
only closed trajectories are present. In this paper we show that a phase transition occurs
also in such a random loop model. More precisely, we prove that, for any integer N ≥ 2,
for large enough inverse temperatures, the expected length of any loop is proportional to
the volume of the system and, moreover, given any two distant points, the probability of
observing a loop connecting both is uniformly positive. This also extends a result from
[5], stating that, in the special case N = 2, a positive fraction of sites are crossed by
long loops when d ≥ 3 and the inverse temperature is large enough. Contrary to [5], our
result does not rely on the spin formulation of the random loop model and is entirely
derived from the analysis of a system of closed random walk trajectories. Hence, our
result holds for a much larger class of random loop models—which do not necessarily
admit a representation as a spin system—of which Spin O(N) is just a special case.
Moreover, when translated back into the language of spins, our result about occurrence
of macroscopic loops has new implications on the decay of correlations in the Spin O(N)
model itself, see Sect. A.2 for further results.

Interacting Bose gas. Providing a rigorous proof of the occurrence of Bose-Einstein
condensation (BEC)—a physical phenomenon predicted by Einstein occurring to a cer-
tain class of gasses at very low temperatures—is one of the most important open prob-
lems in rigorous statistical mechanics [28]. In 1953 Feynman introduced what is now
referred to as the Feynman–Kac representation [21]. This representation allows the re-
formulation of the Bose gas—which is defined in the functional analytic framework of
rigorous quantum mechanics—as a probabilistic model of interacting closed Brownian
trajectories [25]. In this system a phase transition corresponding to the occurrence of
macroscopic loops as the particle density is above a certain critical threshold and the
dimension is greater than two is expected to occur. This phase transition is considered to
be equivalent to Bose-Einstein condensation [36,37,42]. Providing a rigorous proof the
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Fig. 1. Illustration of a realisation of the randomwalk loop soup. The larger filled circles represent the starting
points of each loop. In the Bose gas interpretation of the random walk loop soup each step of each loop hosts
a particle

occurrence of macroscopic loops in such a random loop model is then of great physical
interest and an intriguing mathematical problem per se.

In recent years increasing effort in the mathematical physics and probability com-
munities has been made for the solution of this problem, which nevertheless remains
open. A first important progress was made in [2,17] (see also [28, Chapter 1]), where the
occurrence of macroscopic loops was proved for the Bose gas under hard-core local in-
teractions under the so-called half-filling condition. Further important progress has been
made in the rigorous analysis of spatial random permutation models [6,8–10,12,20] and
in the Bosonic loop soup considered in [16]. In these systems the loops interact through
a potential which depends on the total number of loops of a given length. The presence
of such potential makes the model interesting and challenging, however the interaction
does not depend on the mutual distance between the loops—and thus on how they are
displaced in space—and is then a simplification of the one which is present in the loop
representation of the Bose gas. A further recent progress has been made in [39], in this
paper the occurrence of a macroscopic (open) loop was proved for the model of lattice
permutations, in which the loops interact at sites via mutual-exclusion. A further ap-
proach based on large deviations allowed the characterisation of the free energy of the
Bose gas in R

d in a certain region of the phase diagram [1] and lead to a proof of BEC
on the complete graph [40].

A special case of our general random loop soup corresponds to the Bose gas in
Z
d under a minor modification. The modification consists in the replacement of the

continuous time simple random walk connecting two consecutive particles by a single-
step simple random walk trajectory (see also Sect. A.1 below for further details and
comments). Each such step of each loop then interacts with all the other steps through a
potential which depends on their mutual distance. We consider the system in the grand
canonical ensemble, in which the particle density is controlled by an external parameter,
the chemical potential. Our main result is a proof of the occurrence of macroscopic
loops as the average particle density is above a certain (finite) critical threshold. More
precisely, we prove that the expected length of any loop is proportional to the volume
of the system and that, given any two distant sites, the probability of existence of a loop
connecting both is uniformly positive.
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Lattice permutations and loop O(N). Our general loop soup reduces or is related
to further important statistical mechanics models, for example to the model of lattice
permutations and to the loop O(N) model. Lattice permutations are a special case of
our model in which the local time at each vertex is allowed to be at most one. They are
relevant for various aspects, for example they are a generalisation of the double dimer
model, which attracts interest for many different reasons, see [18,26,33,39]. The loop
O(N) model is a related model in which the local time at each edge (and not at each
vertex) is allowed to be atmost one (see [32] for an overview).Our theoremunfortunately
does not cover these models, since it holds only for models in which the local time at
each vertex is allowed to be a large enough constant. However, the qualitative behaviour
of our random walk loop soup is not expected to depend on the specific constraint on
the local time, hence it is interesting and natural to make a comparison to the above
mentioned models.

For lattice permutations, the only available results about existence of macroscopic
loops involve the special case of fully-packed loops, the so-called double dimer model,
which corresponds to the superposition of two independent dimer covers [18,26,33].
In the case of non fully-packed loops, it is known that one single ‘open loop’ forced
through the system is macroscopic [33] when the inverse temperature is large enough in
dimensions three and higher. For the loop O(N) model, the occurrence of ‘macroscopic’
loops has been proved on the hexagonal lattice [19] along the critical curve of the phase
diagram. In this (planar) case the term ‘macroscopic’ refers to the existence of a loop
which surrounds a circle of arbitrarily large diameter with uniformly positive probability.
In the higher dimensional case, instead, the notion of ‘macroscopic’ loop is stronger.
Indeed, our work shows that in Zd with d > 2, for each random walk loop soup which is
covered by our theorem, the expected length of any loop is proportional to the volume of
the box and, moreover, with uniformly positive probability there exists a loop connecting
any two distant vertices. Such a behaviour is not expected to occur in two dimensions.

Let us also stress that random walk loop soups are intriguing mathematical objects
which appear in many other subjects in probability and mathematical physics, for exam-
ple in the framework of quantum spin systems, and in relation to the theory of scaling
limits and SLE curves. We refer to [3,4,43] and [27,34] for some references on the two
subjects.

1.1. Definitions. Let TL be a torus of side length L in Zd , whose elements can be iden-
tified with the set {x = (x1, . . . , xd) ∈ Z

d : xi ∈ (− L
2 , L

2 ] for each i = 1, . . . d}. Let
L be the set of rooted oriented loops, i.e., finite ordered sequences of vertices in TL ,
� = (

�(0), �(1), . . . �(k)
)
, such that �(i) is a nearest-neighbour of �(i − 1) for each i ∈

{1, . . . , k}, �(k) = �(0) and k > 1. For any such sequence � = (
�(0), �(1), . . . , �(k)

) ∈
L, we denote by |�| := k the length of the loop �. We let � := ∪∞

n=0Ln be the con-
figuration space, whose elements are ordered collections of rooted oriented loops, see
Fig. 1. Given any configuration ω ∈ � we denote by |ω| the number of loops, i.e., |ω| is
defined as the integer n ∈ N0 such that ω ∈ Ln . For any ω ∈ �, we define by

nx (ω) :=
|ω|∑

n=1

|�n |−1∑

j=0

1{�n( j)=x}

the local time at x ∈ TL . We now introduce a very general probability measure on
�, which depends on several parameters and functions, after that we will show that
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very important models correspond to a special choice of such parameters and functions.
We first define a potential, v : Zd → R satisfying v(x) = v(−x) for each x ∈ Z

d

and make the interaction periodic under torus translations by introducing the function
vL : TL × TL → R, which depends on v and L , and is defined as

vL(x, y) :=
∑

z∈Zd

v(y + Lz − x). (1.1)

Moreover, we define the weight function, U : N0 → R
+
0 , which weights the local time

at sites and may, for example, suppress configurations with local time above a certain
threshold. We also introduce two parameters λ, N ∈ R

+. Our measure assigns to any
realisation ω ∈ � with n ∈ N0 loops, ω = (

�1, �2, . . . �n
) ∈ Ln , the weight,

PL ,U,v,N ,λ(ω) := 1

ZL ,U,v,N ,λ

1

n!
n∏

i=1

λ|�i |

|�i | (
N

2
)
n ∏

x∈TL

U (nx (ω)) exp
( − VL (ω)

)
,

(1.2)

where for any ω ∈ �,

VL(ω) :=
|ω|∑

i=1

|ω|∑

j=1

|�i |−1∑

m=0

|� j |−1∑

n=0

vL
(
�i (m), � j (n)

)
, (1.3)

and ZL ,U,v,N ,λ is a normalisation constant, to which we refer as partition function. We
generically refer to the random loop model defined by (1.2) as RandomWalk Loop Soup
(RWLS). According to the previous definition, any step of any loop interacts repulsively
or attractively (depending on the sign of vL(·, ·)) with all the other steps of all the other
loops through the function vL(·, ·). Moreover, the parameter λ ∈ (0,∞) provides a
penalisation or a reward for the total length of the loops, intuitively higher values of λ

correspond to a greater total loop length. The parameter N provides a penalisation or
a reward for the total number of loops, intuitively higher values of N correspond to a
higher number of loops. The weight 1/|�i | in (1.2) can be viewed as a normalisation
factor for the number of starting points of a given loop, the weight 1/n! can be viewed
as a normalisation factor for the number of ways the labels 1, 2, . . . n can be distributed
among the n loops. Thewell-definedness of themeasure (1.2) requires some assumptions
on v and U . We say that the potential v is tempered if

v := v(0) +
∑

x∈Zd

v(x)1{v(x)<0} ≥ 0 and
∑

x∈Zd

|v(x)| < ∞. (1.4)

A potential is tempered if it is locally non-attractive (v(0) ≥ 0), the total attractive
interactions (represented by the sum with the indicator in (1.4)) are not stronger than
such local repulsive interaction, and if it is summable. Such conditions allowus to prevent
that all the loops concentrate in a finite region of the torus with infinite local time. Given
the potential v, we say that the weight function U : N0 → R

+
0 is good if there exists

M < ∞ such that,

n U (n + 1) ≤ M U (n), (1.5)

where U (n) = U (n)e−v n2 . For example, U (n) = 1{n≤10} and U (n) = 1
n! are good for

any tempered potential v, while U (n) = n2 is good only if v is not only tempered but
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also v > 0. It is easy to ensure the well-definedness of (1.2) for any λ, N ∈ R
+ if v is

tempered and U is good (see Lemma 2.2 below).

Special cases. We now discuss the choices of v, U , λ and N of our general loop soup
which lead to other models of interest.

Interacting Bose gas. When N = 2, and U (n) = 1 for any n ∈ N0, our loop soup
is a version of the discrete Bose gas in the grand-canonical ensemble with chemical
potential log λ and unit inverse temperature, the only difference with the Bose gas in
continuous space is that the particles are located in Z

d rather than in R
d and that a

single-step random walk trajectory rather than a Brownian bridge of time β (the inverse
temperature) connects two consecutive particles. We refer to Sect. A.1 below for further
details on such an important connection.

Spin O(N) model and BFS representation. When N ∈ N, v(x) = 0 for any x ∈ Z
d ,

and

U (n) = �( N2 )

2n�( N2 + n)
, (1.6)

our model corresponds to the Brydges, Fröhlich and Spencer representation of the Spin
O(N) model with inverse temperature λ ≥ 0 [13] (note a correction of the original
definition in [14, eq. (6.18)]), see also [5,14,29,31] for further connections between the
Spin O(N) model and random loops and for a definition of the spin O(N) model.

Lattice permutations, loop O(N) model and other models. When v(x) = 0 for any
x ∈ Z

d and

U (n) =
{
1 if n ≤ R,

0 otherwise,
(1.7)

our model is such that the local time at each vertex is upper bounded by R ∈ N. When
R = 1, our model reduces to random lattice permutations [39], which, in turn, reduces
to the double dimer model [26] when λ = ∞ [39]. The double dimer model in turn
corresponds to the superposition of two independent configurations of the dimer model.
As we explained above, the loop O(N) model [32] is not a special case of our general
model, but it is closely related to. To see the connections between our model (where
the loops are oriented, labelled, and have a starting point) and these models (where the
loops are unoriented, receive no label and have no starting point), one should observe
that the terms 1

n! and
1

|�i | in (1.2) are normalisation factors for the number of possibilities
of assignment of n labels to the n loops and of shifting the starting point of each loop
respectively.

1.2. Main result about the occurrence of macroscopic loops. Our main theorem states
that, if λ is large enough, the expected length of any loop is of the order of the volume
of the torus. In particular, the probability of existence of a loop connecting any pair
of sites having distance proportional to the diameter of the box is uniformly positive.
Such a general result requires a further assumption on the potential, to which we refer
as separability. This assumption is introduced in Definition 4.1 below, here we provide
two main examples of potentials fulfilling such an assumption, i.e.,

v1(x) = α1{x=0} − β e−ι|x |11{x �=0},
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and

v2(x) = α1{x=0} − β |x |−s
1 1{x �=0},

for parameters α, β, ι, s ∈ [0,∞) such that s > d, where | · |1 is the �1 distance
on the torus. These two examples correspond to a local repulsive interaction and to a
long-range attractive interaction which decays exponentially or polynomially with the
distance. Such potentials are tempered if α is large enough with respect to β.

We now state our first main theorem. Let �x be the first loop visiting the vertex x ,
namely for anyω = (�1, . . . , �|ω|) ∈ �, we letwx (ω) := inf{i ∈ {1, . . . , |ω|} : x ∈ �i }
be the smallest index of the loops visiting x , where |ω| is the total number of loops in
ω. We then define for any ω = (�1, . . . , �|ω|) ∈ �,

�x (ω) :=
{

�wx (ω) if wx (ω) < ∞
∅ otherwise.

(1.8)

Moreover, for any i ∈ N we let �(i) be the ith loop of ω = (�1, . . . , �|ω|) ∈ �,

�(i)(ω) :=
{

�i if i ≤ |ω|
∅ otherwise.

(1.9)

Furthermore, we let EL ,U,v,N ,λ be the expectation with respect to (1.2). Finally, we say
that the weight function U : N0 → R

+
0 has range R if

R := sup{n ∈ N0 : U (n) > 0}. (1.10)

For example, the range of the weight function is infinite in the case of the interacting
Bose gas, U (n) = 1 for every n ∈ N0, and of the Spin O(N) model, (1.6), while the
range is finite if the weight function satisfies (1.7). We also let To

L be the set of sites
x = (x1, . . . , xd) ∈ TL such that xi ∈ 2N0 + 1 for every coordinate i ∈ [d] and denote
the origin by o ∈ TL .

Theorem 1.1. Let d, N ∈ N, be such that d ≥ 3 and N ≥ 2, let R be a large enough
integer depending on d and N, suppose that v : Zd → R is tempered and separable, let
U be a good weight function with range at least R. There exists λ0 < ∞ such that, for
any λ > λ0, the following two properties hold:

(i) There exists c1 ∈ (0,∞), which does not depend on L, such that,

lim inf
L→∞:
L∈2N

EL ,U,v,N ,λ(|�x |)
Ld

> c1, (1.11)

for any vertex x ∈ TL .
(ii) There exist c2, c3 ∈ (0, 1), which do not depend on L, such that, for any L ∈ 2N,

any x ∈ T
o
L such that dL(o, x) ≤ c2 L,

PL ,U,v,N ,λ

(∃n ∈ {1, . . . , |ω|} : o, x ∈ �(n)
)

> c3, (1.12)

where dL(x, y) is the torus graph distance.
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On the contrary, if λ is sufficiently small the model exhibits a quite different behaviour,
indeed EL ,U,v,N ,λ(|�x |) = O(1) in the limit as L → ∞ and the quantity in the left-hand
side of (1.12) decays exponentially with the distance between x and y (with exponen-
tial moments uniformly bounded in L). This can be proved using the cluster expansion
method (see for example [22, Chapter 5]) or the methods of [7,38]. Hence, the com-
bination of these facts and of our theorem imply the occurrence of a phase transition
with respect to the variation of the parameter λ. Under further assumptions on the weight
functionU the point-wise positivity result, (1.12), can be extended to any vertex x ∈ TL .

Moreover, our result complements a result from [15], where a random loop model
analogous to ours was considered, in which any edge is allowed to be crossed by at most
one loop and no long-range interactions are present. In this paper it was proved that, if
d ≥ 2 and N is a large enough integer, then the loops are ‘small’ for any λ ∈ [0,∞),
hence no phase transition with respect to λ occurs. On the contrary, our result states that,
if d ≥ 3 and N is any integer greater than two, then a phase transition with respect to λ

does occur as long as the range of the weight function is large enough (depending on d
and N ).

Paper organisation and proof structure. We end this introduction by presenting the
organisation of the paper. In Sect. 2 we introduce the Random Path Model (RPM), a
random loop model which differs from the RWLS, (1.2), and plays an important role
in our proofs. In Sect. 3 we prove that these random loop models are equivalent if
one considers averages of functions which do not depend on certain features of the
configuration, like for example the loop orientation or the starting point of the loop. The
loop length is an example of such functions. From this point of the paper until the last
page we work with the RPM and exploit the nice properties of such a model in all the
proofs, for example reflection positivity, colours, the conditional pairing independence.
In Sect. 4 we introduce the first important technique for the analysis of the random path
model, reflection positivity and the chessboard estimate. In Sect. 5 we relate the two
point function to some important observable of random loop model—for example we
relate the two-point function defined at two neighbour vertices to the expected number of
links of a certain colours crossing the corresponding edge—and use some probabilistic
and combinatorial tools to provide bounds on the two-point function of the random path
model. In Sect. 6 we derive the so-called Key Inequality. In Sect. 7 we use elementary
Fourier analysis notions for the derivation of the so-called Infrared-bound from the
Key Inequality. In Sect. 8 we present the proof of our main theorem. Here we use the
Infrared-bound and our estimates on the two-point function to prove the occurrence of
macroscopic loops in the RPM. By our equivalence theorem this result is then extended
to the RWLS, thus concluding the proof of our main theorem, Theorem 1.1.

Notation

R
+, R+

0 Strictly positive and non-negative real numbers, respectively
N, N0 Strictly positive and non-negative integers, respectively
[n] Set of integers {1, 2, . . . , n}
G = (V,E) An undirected, simple, finite graph
e ∈ E or {x, y} ∈ E Undirected edges
(x, y) ∈ E Edge directed from x to y
m = (me)e∈E Link cardinalities, with me corresponding number of links on the edge e
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c = (ce)e∈E Link colourings, with ce : {1, . . . ,me} → {1, . . . , N }
π = (πx )x∈V Pairings, with πx pairing the links touching the vertex x or leaving them

unpaired
g = (gx )x∈V Configuration of ghost pairings
WG The set of configurations of the RPM inG, withw = (m, c, π, g) ∈ WG
W̃G Set of configurations of the RPM with no unpaired links and no ghost

pairings
nx Number of pairings at x
ux Number of unpaired endpoints of links at x
�G Set of configurations of the RWLS in G
LG Set of rooted oriented loops in G
�(WG ), �(�G ), �(LG ) Set of equivalence classes
δ(l) Stretch-factor of l ∈ LG
J (l) Multiplicity of l ∈ LG
Z

�
L ,U,v,N ,λ

Partition function of the random path model
ZL ,U,v,N ,λ(x, y) Directed partition function
GL ,U,v,N ,λ(x, y) Two-point function
GL ,U,v,N ,λ(x) Equivalent to GL ,U,v,N ,λ(o, x)
ĜL ,U,v,N ,λ(k) Fourier transform of GL ,U,v,N ,λ(x)
ZL ,U,v,N ,λ Partition function of the random walk loop soup
(TL ,EL ) Graph corresponding to the torus Zd/LZd

(TL ,EL ) Extended torus, with original and virtual vertices

T
(2)
L ⊂ TL Set of virtual vertices

T
∗
L Fourier dual torus

o ∈ TL , o ∈ TL , o ∈ T
∗
L Origin

x ∼ y Pair of vertices in TL which are connected by an edge in EL
v = (vx )x∈TL Real-valued vector, with coordinates associated to TL
h = (hx )x∈TL

Vector of real numbers, with coordinates associated to TL
ZL ,U,v,N ,λ(h) Partition function with colour changes at x receiving a multiplicative

weight hx
Z(2)
L ,U,v,N ,λ

(h) Second term of the polynomial expansion

Throughout the paper, we denote any positive constant that depends on the model
parameters L ,U, v, N , λ by c. The constants c may differ from line to line. Any further
dependence will be denoted explicitly.

2. Random Path Model

In this section we define the Random Path Model (RPM). Let G = (V, E) be an undi-
rected, simple, finite graph, and let N ∈ N. We refer to N as the number of colours. A
realisation of the random path model can be viewed as a collection of unoriented paths
whichmight be closed or open. To define a realisation we need to introduce links, colour-
ings and pairings. A glance at Fig. 2 might be helpful. We represent a link configuration
by m ∈ MG := {m ∈ N

E
0 : ∀x ∈ V,

∑
y∼x m{x,y} ∈ 2N0}. More specifically

m = (
me

)
e∈E ,

whereme ∈ N0 represents the number of links on the edge e. Intuitively, a link represents
a ‘visit’ at the edge from a path. The links are ordered and receive a label between 1 and
me. We denote by (e, p) the p-th link at e ∈ E with p ∈ [me]. If a link is on the edge
e = {x, y}, then we say that it touches x and y.

Given a link configurationm ∈ MG , a colouring c = (ce)e∈E , with ce : [me] → [N ]
is a function which assigns an integer in [N ] to each link, which will be called its colour.
More precisely, ce(p) ∈ [N ] is the colour of the p-th link on the edge e ∈ E , with
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Fig. 2. Representation of a triplet (m, c, π) with m ∈ MG , c ∈ CG (m) and π ∈ PG (m, c), where G
corresponds to the graph {1, 2, 3} × {1, 2, 3} with edges connecting nearest neighbours. The vertices are
represented by black circles and the edges are not drawn in the figure. The lowest leftmost vertex corresponds
to (1, 1). On every edge e the links are ordered and receive a label between 1 and me . We assume that
N = 3 and rather than by using numbers we represent the colours using the letters b, o, g. Paired links
are connected by a dotted gray line. For example, at (1, 1), all links are paired and the pairing is given by
π(1,1) = {{(e1, 1), (e1, 3)}, {(e1, 2), (e2, 1)}}, where e1 and e2 are defined as the edges connecting (1, 1) and
(2, 1) and (1, 1) and (1, 2), respectively. At (2, 1), there exist precisely two unpaired links and the pairing is
given by π(2,1) = {{(e1, 1), (e1, 3)}, {(e1, 2)}, {(e3, 1)}}, where e3 is the edge connecting (2, 1) and (3, 1)

p ∈ [me]. A link with colour i ∈ [N ] is called an i-link. We let CG(m) be the set of
possible colourings c = (ce)e∈E for m.

Given a link configuration m ∈ MG , and a colouring c ∈ CG(m), a pairing π =
(πx )x∈V for (m, c) pairs links touching x in such a way that, if two links are paired,
then they have the same colour. A link touching x can be paired to at most one other
link touching x , and it is not necessarily the case that all links touching x are paired to
another link at x . More formally, πx is a partition of the links touching x into sets of at
most two links. If a link touching x is paired at x to no other link touching x , then we
say that the link is unpaired at x . Given two links, if there exists a vertex x such that
such links are paired at x , then we say that such links are paired. We remark that, by
definition, a link cannot be paired to itself. We denote by PG(m, c) the set of all such
pairings for m ∈ MG , c ∈ CG(m).

We can view a triplet (m, c, π) with m ∈ MG, c ∈ CG(m) and π ∈ PG(m, c) as a
collection of (open or closed) paths which are unrooted and unoriented, see also Fig. 2.

Additionally, we also introduce ghost pairings. A configuration of ghost pairings is
an element g = (gx )x∈V ∈ HG := {0, 1, 2}V . We introduce ghost pairings since at some
point we will need to ‘replace’ some removed pairings by ‘ghost’ pairings in order to
preserve theweight of the configuration (laterwewill introduce ameasurewhichweights
the configurations depending on the sum of the number of pairings and ghost pairings
at the vertices), and they allow the derivation of some useful monotonicity properties,
as we explain in Remark 5.3 below.

A configuration of the random path model is an element w = (m, c, π, g) such that
m ∈ MG , c ∈ CG(m), π ∈ PG(m, c) and g ∈ HG . We let WG be the set of such
configurations.

With slight abuse of notation, we will also view, m, c, π, g : WG → N0 as functions
such that for any w′ = (m′, c′, π ′, g′) ∈ WG , m(w′) = m′, c(w′) = c′, π(w′) = π ′
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and g(w′) = g′. For any x ∈ V and i ∈ [N ], let uix : WG → N0 be the function
corresponding to the number of i-links touching x which are not paired to any other link
touching x and let ux : WG → N0 defined by

ux (w) :=
N∑

i=1

uix (w)

be the total number of unpaired links touching x . Let further nix : WG → N0 be
the function corresponding to the number of pairings of i-links at x . We then define
nx : WG → N0 by

nx (w) :=
N∑

i=1

nix (w) + gx (w).

as the total number of pairings at x , which are ghost or not ghost. Let m(i)
e : WG → N0

denote the number of i-links on e for any i ∈ [N ] and e ∈ E , namely for any w ∈ WG ,
m(i)

e (w) := ∑me
j=1 1{ce( j)=i}(w).

We let

W̃G := {w ∈ WG : ux = 0 = gx ∀x ∈ V} (2.1)

be the set of configurations in which there exist no unpaired links and no ghost pairings.
Elements of W̃G are simply denoted by triples w = (m, c, π).

We now introduce a (non-normalised) measure onWG and a probability measure on
W̃G .

Definition 2.1. Let N ∈ N, λ ∈ R
+, U : N0 → R

+
0 and vG : V × V → R be given. We

refer to U as weight function and to vG as potential. We define V : WG → R by

∀w ∈ WG V (w) :=
∑

x,y∈V
vG(x, y)nx (w)ny(w) (2.2)

and introduce the (non-normalised) non-negative measure μG,U,vG ,N ,λ on WG ,

∀w = (m, c, π, g) ∈ WG μG,U,vG ,N ,λ(w) :=
( ∏

e∈E

λme(w)

me(w)!
)( ∏

x∈V
U (nx (w))

)
e−V (w).

(2.3)

Given a function f : WG → C, we represent its average by μG,U,vG ,N ,λ

(
f
) :=∑

w∈WG

μG,U,vG ,N ,λ(w) f (w).

We define the measure μ�
G,U,vG ,N ,λ

as the restriction of the measure μG,U,vG ,N ,λ to

the set of configurations W̃G and define a probability measure on W̃G by

∀w = (m, c, π) ∈ W̃G PG,U,vG ,N ,λ(w) :=
μ�
G,U,vG ,N ,λ

(w)

Z
�
G,U,vG ,N ,λ

, (2.4)

where Z
�
G,U,vG ,N ,λ

:= μG,U,vG ,N ,λ(W̃G) is the partition function. We denote by
EG,U,vG ,N ,λ the expectation under the measure PG,U,vG ,N ,λ. Sometimes, for a lighter
notation, we will omit the sub-scripts.
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The next lemma provides a sufficient condition for the well-definedness of the mea-
sure (2.4).

Lemma 2.2. Let N ∈ N, λ ∈ R
+ and suppose that vG : V×V → R satisfies vG(x, y) =

vG(y, x) for any x, y ∈ V and that

∀x ∈ V v̄G(x) := vG(x, x) +
∑

y∈V
vG(x, y)1{vG (x,y)<0} ≥ 0. (2.5)

Suppose that for U : N0 → R
+
0 , there exists M < ∞ such that

∀x ∈ V U (n) (2n − 1)!! e−v̄G(x)n2 ≤ Mn . (2.6)

Then, for any a ∈ R
+
0 , it holds that

μ�

( ∏

x∈V
eanx

)
≤ eλeaMN |E |. (2.7)

In particular, for the choice a = 0, (2.7) provides an explicit upper bound on the partition
function Z

�.

Condition (2.5) implies that the local repulsive interactions prevail on the possibly at-
tractive long-range interactions.

Proof. Let a ∈ R
+
0 . To begin, we apply the Cauchy–Schwarz inequality and obtain that

for any w ∈ W̃G ,

− V (w) ≤ −
∑

x,y∈V
nxnyvG(x, y)1{vG(x,y)<0} −

∑

x∈V
vG(x, x)n2x

≤
(

−
∑

x,y∈V
n2xvG(x, y)1{vG(x,y)<0}

) 1
2
(

−
∑

x,y∈V
n2yvG(x, y)1{vG (x,y)<0}

) 1
2

−
∑

x∈V
vG(x, x)n2x

≤ −
∑

x∈V
n2x v̄G(x). (2.8)

By assumption (2.5), v̄G(x) ≥ 0 for any x ∈ V . In the next calculation, we neglect the
constraint that the number of links touching any vertex is even and obtain that

μ�

( ∏

x∈V
eanx

)
≤

∑

m=(me)e∈E∈NE
0

∏

e∈E

(λN )me

me!
∏

x∈V
eanx U

(1
2

∑

y∼x

m{x,y}
)

×
( ∑

y∼x

m{x,y} − 1
)
!! e−v̄G(x)

(
1
2

∑
y∼x m{x,y}

)2

≤
∑

m=(me)e∈E∈NE
0

∏

e∈E

(MNλea)me

me! =
∏

e∈E

∑

me∈NE
0

(MNλea)me

me! = eλeaMN |E|,

(2.9)

where M appears in (2.6). Here, in the first step, we used the fact |PG(m, c)| ≤∏
x∈V

( ∑
y∼x m{x,y} −1

)!! for anym ∈ MG and any c ∈ CG(m). In the second step, we
used condition (2.6) and the fact that

∑
x∈V nx = ∑

e∈E me. This concludes the proof. ��
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From now on, we will always assume that the potential vG : V × V → R satisfies
(2.5) and that the weight function U : N0 → R

+
0 satisfies (2.6).

3. Equivalence

The goal of this section is to state an equivalence property between the random path
model, which was defined in the previous section, and the random walk loop soup,
which was defined in the introduction. Most of the paper—except for the proof of
Theorem 1.1—can be read independently from this section. To state the main result
of this section, Theorem 3.14 below, we first introduce an equivalence relation on the set
of configurations in both models. Throughout the section, we fix an arbitrary undirected,
simple, finite graph G = (V, E), parameters N ∈ N, λ ∈ R

+, and functions U : N0 →
R
+
0 and vG : V × V → R.

Rooted oriented loops. Let LG be the set of rooted oriented loops (in short: r-o-loops)
in G, i.e., finite ordered sequences of vertices in V , � = (

�(0), . . . , �(k)
)
such that �(i)

is a nearest-neighbour of �(i − 1) for each i ∈ [k], �(k) = �(0) and k ∈ 2N. For any
such � = (

�(0), . . . , �(k)
) ∈ LG , we denote by |�| := k the length of �. We call two

r-o-loops equivalent if one sequence can be obtained as a time-reversion and/or a cyclic
permutation of the other sequence. More precisely, for any � = (

�(0), . . . , �(k)
) ∈ LG

with k ∈ 2N, we denote by cm(�) := (
�(m), �(m+1), . . . , �(k), �(1), . . . , �(m)

)
the r-o-

loop that is obtained from � through a cyclic permutation of length m ∈ {0, . . . , |�| − 1}
and by r(�) := (

�(k), �(k−1), . . . , �(0)
)
we denote the time-reversal of �. We then say

that �, �′ ∈ LG are equivalent if |�| = |�′| and if there exists m ∈ {0, . . . , |�| − 1} such
that �′ = cm(�) or �′ = cm(r(�)). We denote the equivalence class of � ∈ LG by γ (�)

and by �(LG) we denote the set of equivalence classes of r-o-loops.
Given two r-o-loops �, �′ ∈ LG such that �(0) = �′(0), we define their concatenation

as �⊕ �′ := (
�(0), . . . , �(|�|), �′(1), . . . , �′(|�′|)). We define the multiplicity of �, J (�),

as the maximal integer n ∈ N such that � can be written as the n-fold concatenation
of some r-o-loop, �̃, with itself. Such a loop �̃ = �̃(�) has multiplicity one and will be
referred to as the elementary loop of �. We call an r-o-loop � stretched if there exists a
cyclic permutation of � that is identical to r(�), i.e., if there exists m ∈ {0, . . . , |�| − 1}
such that cm(�) = r(�). Otherwise the r-o-loop is called unstretched, see Fig. 3. For any
� ∈ LG , we define the stretch-factor δ(�) by

δ(�) :=
{
1 if � is stretched,
2 if � is unstretched.

Note that, for any pair of equivalent r-o-loops �, �′ ∈ LG , it holds that J (�) = J (�′) and
δ(�) = δ(�′). Thus, by slight abuse of notation, we also use the notations δ(γ ) and J (γ )

for the equivalence classes γ ∈ �(LG). Further, we denote by α(γ ) the length of any
r-o-loop in γ and by |γ | we denote the cardinality of γ .

The next lemma provides an exact formula for the cardinality of any equivalence
class γ ∈ �(LG). This is an auxiliary lemma for the equivalence relation that is treated
later in this section.

Lemma 3.1. For any γ ∈ �(LG), we have that

∣∣γ
∣∣ = δ(γ ) α(γ )

J (γ )
. (3.1)
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Fig. 3. Three rooted oriented loops. The roots are denoted by filled dots. (a) The loop has multiplicity one and
is stretched. (b) The loop has multiplicity one and is unstretched. (c) The loop is stretched and has multiplicity
two. It is the 2-fold concatenation of the loop in (a)

Proof. To begin, we fix an arbitrary r-o-loop � ∈ γ and write γ = γ (�) = A∪B, where

A := {
cm(�) : m ∈ {0, . . . , |�| − 1}} and B := {

cm(r(�)) : m ∈ {0, . . . , |�| − 1}}.
We consider the set A and we define k := |�|/J (�). By definition of the multiplicity,
� is the J (�)-fold concatenation of its elementary loop �̃ = �̃(�) of length k and of
multiplicity one with itself. This implies that for any m > k, cm(�) = cm−k(�) and
that for any m,m′ ∈ {0, . . . , k − 1} such that m �= m′, cm(�) �= cm′(�). It follows
that |A| = k. Since length and multiplicity of � and r(�) each are identical, the same
considerations as above apply to the set B implying that |B| = |A| = k.

We will now see that the sets A and B are either identical or disjoint depending on
whether l is stretched or unstretched. We first consider the case that � is stretched. This
means that there exists m̃ ∈ {0, . . . , |�| − 1} such that cm̃(�) = r(�) and thus r(�) ∈ A.
In particular, any cyclic permutation of r(�) is a cyclic permutation of � since for any
m ∈ {0, . . . , |�| − 1}, we have that cm(r(�)) = cm(cm̃(�)) = c(m+m̃) mod |�|(�), implying
that A = B. We thus obtain (3.1) with δ = 1 for � stretched.

Suppose now that � is unstretched and assume that A ∩ B �= ∅. Then, there exist
m,m′ ∈ {0, . . . , |�|− 1} such that cm(�) = cm′(r(�)) implying that c(m−m′) mod |�|(�) =
r(�). This contradicts the fact that � is unstretched and thus it must hold that A∩ B = ∅.
We obtain (3.1) with δ = 2 for � unstretched. This concludes the proof. ��

3.1. Equivalence classes in the random walk loop soup. In this section we introduce an
equivalence relation on the set of configurations of the random walk loop soup that was
defined in the introduction. We first generalize the definition of the model on a general
undirected, simple, finite graph G = (V, E) and then define the equivalence relation.
We denote by LG the set of rooted oriented loops in G. We let �G := ∪∞

n=0Ln
G be the

configuration space. For a potential vG : V × V → R, a weight function U : N0 → R
+
0

and parameters λ, N ∈ R
+, we define the non-normalized measure

νG,U,vG ,N ,λ(ω) := 1

n!
n∏

i=1

λ|�i |

|�i | (
N

2
)
n ∏

x∈V
U (nx (ω)) exp

( − V(ω)
)
, (3.2)

where

V(ω) :=
n∑

i, j=1

|�i |−1∑

m=0

|� j |−1∑

n=0

vG
(
�i (m), � j (n)

)
, (3.3)



Macroscopic Loops in the Bose Gas, Spin O(N) and Related Models 2095

for any ω ∈ �G such that ω = (
�1, �2, . . . �n

) ∈ Ln
G for some n ∈ N0. We refer to the

constant ZG,U,vG ,N ,λ := νG,U,vG ,N ,λ(�G) as partition function. We define a probability
measure on �G by

∀ω ∈ �G PG,U,vG ,N ,λ(ω) := νG,U,vG ,N ,λ(ω)

ZG,U,vG ,N ,λ

. (3.4)

We always assume that the potential vG satisfies (2.5) and that the weight function U
satisfies (2.6) such that the measure in (3.2) has finite mass. We denote by EG,U,vG ,N ,λ

the expectation with respect to the measure (3.4). Sometimes, for a lighter notation, we
will omit the sub-scripts.

We now introduce an equivalence relation on �G . We call two configurations in
�G equivalent if one configuration can be obtained from the other one by changing the
orientation and/or the root of the r-o-loops and/or by changing the labels of the r-o-loops.
This is formalized in the next definition. We denote by Sn the group of permutations of
n elements for n ∈ N.

Definition 3.2. We call two configurations ω,ω′ ∈ �G equivalent if there exists n ∈ N

such that ω = (�1, . . . , �n) and ω′ = (�′1, . . . , �′n) and if there exists a permutation
π ∈ Sn such that �π(i) ∈ γ (�′i ) for all i ∈ [n]. We denote by ρ(ω) the equivalence class
of ω ∈ �G and by �(�G) we denote the set of equivalence classes of �G .

Note that for any two equivalent configurations ω,ω′ ∈ �G , it holds that ν(ω) = ν(ω′).
Definition 3.3. We call a function f : �G → R that is constant on each equivalence
class root-orientation-label-independent (in short: r-o-l-independent).With slight abuse
of notation, we then let f (ρ) be the evaluation of f at any configuration in ρ ∈ �(�G).

For any γ ∈ �(LG), we introduce the function k1γ : �G → N0, which is defined
as follows: For any ω ∈ �G such that ω = (�1, . . . , �n) ∈ Ln

G for some n ∈ N0,

we set k1γ (ω) = |{i ∈ [n] : �i ∈ γ }|. Hence, k1γ counts the number of r-o-loops in a
configuration ω ∈ �G that are an element of the equivalence class γ . For any ω ∈ �G ,
we define the sets �1(ω) := {(γ, k1γ (ω)) : γ ∈ �(LG)} and

�∗
1(ω) := {(γ, k1γ (ω)) ∈ �1(ω) : k1γ (ω) > 0}. (3.5)

Note that �∗
1(ω) is always finite. The next lemma follows immediately from our defini-

tions.

Lemma 3.4. Two configurations ω,ω′ ∈ �G are equivalent if and only if �∗
1(ω) =

�∗
1(ω

′).
In particular, it follows that the function�∗

1 is r-o-l-independent. The next proposition
provides a formula for the cardinality of any equivalence class ρ ∈ �(�G). Recall from
the beginning of this section that δ(γ ), J (γ ) and α(γ ) denote the stretch-factor, the
multiplicity and the length of γ ∈ �(LG).

Proposition 3.5. Suppose that ω ∈ �G is such that ω ∈ Lk
G for some k ∈ N and

suppose that �∗
1(ω) = {(γ1, k1), . . . , (γp, kp)} for some p ∈ [k], γ1, . . . , γp ∈ �(LG)

and k1, . . . , kp ∈ N. Then,

∣∣ρ(ω)
∣∣ =

(
k

k1, . . . , kp

) p∏

j=1

(
δ(γ j ) α(γ j )

J (γ j )

)k j
. (3.6)
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Fig. 4. Two equivalent configurationsw, w′ ∈ W̃G , where G corresponds to the graph {x, y, z, w}with edges
connecting nearest neighbour vertices. The number of colours is N = 2 (1 := g, 2 := o). The configuration
w′ on the right can be obtained from the configuration w on the left through the permutation κ for m defined
by κ{x,y}(n) = n for n ∈ [4], κ{y,z}(1) = 1, κ{y,z}(2) = 3, κ{y,z}(3) = 2, κ{y,z}(4) = 5, κ{y,z}(5) = 4,
κ{y,z}(6) = 6 and κ{z,w}(n) = n for n ∈ [2]

Proof. Let p ∈ N, γ1, . . . , γp ∈ �(LG), k1, . . . , kp ∈ N and ω ∈ �G be fixed such that
�∗

1(ω) = {(γ1, k1), . . . , (γp, kp)}. Using Lemma 3.4, we have that

∣∣ρ(ω)
∣∣ = ∣∣{ω′ ∈ �G : �∗

1(ω
′) = �∗

1(ω)}∣∣
= ∣∣{(�′1, . . . , �′k) ∈ Lk

G : #{i ∈ [k] : �′i ∈ γ j } = k j ∀ j ∈ [p]}∣∣

= ∣∣{(γ ′
1, . . . , γ

′
k) ∈ �(LG)k : #{i ∈ [k] : γ ′

i = γ j } = k j ∀ j ∈ [p]}∣∣
p∏

j=1

|γ j |k j

=
(

k

k1, . . . , kp

) p∏

j=1

(
δ(γ j ) α(γ j )

J (γ j )

)k j
,

where we used (3.1) in the last step. This concludes the proof. ��

3.2. Equivalence classes in the random path model. We now introduce an equivalence
relation on the set W̃G , which is defined in (2.1). Roughly speaking, we call two con-
figurations in W̃G equivalent if one configuration can be obtained from the other one by
changing the positions of the links on the edges while keeping their colours and pairings
fixed, see Fig. 4 for an example.

Given m ∈ MG , we call a sequence of permutations κ = (κe)e∈E a permutation for
m if κe ∈ Sme for each e ∈ E , where Sn is the group of permutations of n integers.

Consider now m ∈ MG , c ∈ CG(m) and π = (πx )x∈V ∈ PG(m, c) such that
(m, c, π) ∈ W̃G and let κ = (κe)e∈E be a permutation for m. For πx = {{(e1, pe1),
(e2, pe2)}, . . . , {(el−1, pel−1), (el , pel )}

}
, we define

πκ
x := {{(e1, κe1(pe1)), (e2, κe2(pe2))}, . . . , {(el−1, κel−1(pel−1)), (el , κel (pel ))}

}
.

Furthermore, for any w = (m, c, π) ∈ W̃G and any permutation κ for m we let wκ =
(m′, c′, π ′) be the configuration such that m = m′, c′e(p) = ce(κ−1

e (p)) for all e ∈ E ,
and π ′

x = πκ
x for all x ∈ V . See also Fig. 4.

Definition 3.6. We call two configurations w = (m, c, π),w′ = (m′, c′, π ′) ∈ W̃G
equivalent if there exists a permutation κ = (κe)e∈E for m, such that w′ = wκ . We
denote by σ(w) the equivalence class of w ∈ W̃G and we denote by �(W̃G) the set of
equivalence classes of W̃G .
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Note that for any twoequivalent configurationsw,w′ ∈ W̃G , it holds thatμ(w) = μ(w′).
With slight abuse of notation, if a function f : W̃G → R is constant on each equivalence
class, then we let f (σ ) be the evaluation of f at any configuration in σ ∈ �(W̃G).

Our goal is now to compute the cardinality of an equivalence class σ ∈ �(W̃G) and
our result is presented in Proposition 3.9 below.

Given a configuration w = (m, c, π) ∈ W̃G and a permutation for m, κ , the con-
figuration wκ is by definition equivalent to w. Clearly, there exist

∏
e∈E me! distinct

permutations for m. However distinct permutations for m, κ and κ ′, may lead to the
same configuration, namely it may be the case that wκ = wκ ′

. Hence, in order to de-
termine the number of configurations which are equivalent to w, we need to control the
overcounting. For this, we now introduce the notion of cycles.
Cycles. Given m ∈ MG , a rooted oriented linked loop (in short: r-o-l-loop) for m is an
ordered sequence of nearest-neighbour vertices and pairwise distinct links,

L = (x0, ({x0, x1}, p1), x1, ({x1, x2}, p2), . . . , ({xk−1, xk}, pk), xk
)
,

where p j ∈ {1, . . . ,m{x j−1,x j }} for each j ∈ [k] and such that x0 = xk for some k ∈ 2N.
The vertex x0 is called the root of L , the link ({x0, x1}, p1) is called the starting link of
L and the length of L is defined by |L| := k. We let Rm be the set of all r-o-l-loops for
m. Two r-o-l-loops are said to be equivalent if one sequence can be obtained as a time-
inversion and/or a cyclic permutation of the other sequence.More precisely,we denote by
cn(L) := (xn, ({xn, xn+1}, pn+1), . . . , xk, ({x0, x1}, p1), x1, . . . , ({xn−1, xn}, pn), xn)
the r-o-l-loop that is obtained from L through a cyclic permutation of length n ∈
{0, . . . , |L| − 1} and by r(L) := (xk, ({xk−1, xk}, pk), xk−1, ({xk−1, xk−2}, pk−1), . . . ,

({x0, x1}, p1), x0
)
we denote the time-reversal of L . We then say that L , L ′ ∈ Rm are

equivalent if |L| = |L ′| and if there exists n ∈ {0, . . . , |L| − 1} such that L ′ = cn(L)

or L ′ = cn(r(L)). We denote by χ(L) ⊂ Rm the equivalence class of L ∈ Rm and we
denote by �(Rm) the set of equivalence classes of r-o-l-loops. The equivalence class of
an r-o-l-loopwill simply be referred to as cycle, which can be thought of as an unoriented
loop with no root. We say that a link (e, p) with p ∈ [me] and e ∈ E or a vertex x ∈ V
is contained in χ ∈ �(Rm) if (e, p) or x occurs in the sequence L for every L ∈ χ . We
then write (e, p) ∈ χ and x ∈ χ . A set of cycles for m, {χ1, . . . , χk} ⊂ �(Rm) with
k ∈ N, is called an ensemble of cycles for m if every link is contained in precisely one
cycle of the set, i.e. if for every (e, p) with p ∈ [me], e ∈ E , there exists precisely one
i ∈ [k] such that (e, p) ∈ χi . We denote by Em the set of ensembles of cycles for m.

For any w = (m, c, π) ∈ W̃G , we can uniquely construct an ensemble of cycles

ζ(w) := {χ1(w), . . . , χk(w)(w)} ∈ Em (3.7)

as follows:We take any link ({x, y}, p{x,y}) and choose a point z0 ∈ {x, y}. Step-by-step,
we construct a r-o-l loop L1 for m with root z0 and with starting link ({x, y}, p{x,y}) by
choosing z1 ∈ {x, y} \ {z0} as the next vertex and by choosing the link which is paired
at z1 to ({x, y}, p{x,y}) as the next link in the sequence. We continue until we are back at
the link ({x, y}, p{x,y}). We define the cycle χ1(w) ∈ �(Rm) as the equivalence class
of L1. For the next cycle, we choose a link that has not been selected yet and proceed
as before. We continue until all links have been selected. We call a cycle χ ∈ ζ(w) an
i-cycle with i ∈ [N ] if every link that is contained in χ has colour i .

Recall thatLG denotes the set of r-o-loops, as defined at the beginning of this section.
For m ∈ MG , we introduce the map

ϑ : Rm → LG,
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which acts by projecting an r-o-l-loop L = (x0, ({x0, x1}, p1), x1, . . . , ({xk−1, xk}, pk),
xk

) ∈ Rm onto the corresponding r-o-loop ϑ(L) := (x0, x1, . . . , xk) ∈ LG by ‘forget-
ting’ about the links in the sequence. It is important to note that for any two equiva-
lent r-o-l-loops L , L ′ ∈ Rm also the r-o-loops ϑ(L), ϑ(L ′) ∈ LG are equivalent. By
slight abuse of notation, we thus also use the function ϑ to map an equivalence class
χ ∈ �(Rm) to its corresponding equivalence class ϑ(χ) ∈ �(LG).

For any γ ∈ �(LG) and any i ∈ [N ], we introduce the function k2γ,i : W̃G → N0,

where k2γ,i (w) is defined as the number of i-cycles χ ∈ ζ(w) that satisfy ϑ(χ) = γ for

any w ∈ W̃G . We further define k2γ (w) := ∑N
i=1 k

2
γ,i (w). For any w ∈ W̃G we define

the set �2(w) := {
(γ, k2γ (w)) : γ ∈ �(LG)

}
. We further define

�∗
2(w) := {

(γ, k2γ (w)) ∈ �2(w) : k2γ (w) > 0
}
. (3.8)

Note that �∗
2(w) is always finite and that �∗

2 is many-to-one. It follows immediately
from our definitions that the following lemma holds true.

Lemma 3.7. Two configurations w,w′ ∈ W̃G are equivalent if and only if �∗
2(w) =

�∗
2(w

′) and k2γ,i (w) = k2γ,i (w
′) for any γ ∈ �(LG) and i ∈ [N ].

The next lemma is a preparatory lemma for Proposition 3.9 below.

Lemma 3.8. Suppose that w = (m, c, π) ∈ W̃G is such that �∗
2(w) = {

(γ1, k1), . . . ,
(γp, kp)

}
for some p ∈ N, γ1, . . . , γp ∈ �(LG) and k1, . . . , kp ∈ N and suppose that

k2γ j ,i
(w) = m j,i for some m j,i ∈ N0 with i ∈ [N ] such that

∑N
i=1 m j,i = k j for any

j ∈ [p]. It holds that

|σ(w)| =
p∏

j=1

(
k j

m j,1, . . . ,m j,N

)∣∣∣
{{χ1, . . . χk } ∈ Em : |{l ∈ [k] : ϑ(χl ) = γ j }| = k j ∀ j ∈ [k]}

∣∣∣,

(3.9)

where k := ∑p
j=1 k j .

Proof. Suppose that �∗
2(w) = {

(γ1, k1), . . . , (γp, kp)
}
and k2γ j ,i

(w) = m j,i for all
i ∈ [N ], j ∈ [p], as in the statement of the lemma. We set

Ẽm = Ẽm(γ1, . . . , γp)

:= {{χ1, . . . χk} ∈ Em : |{l ∈ [k] : ϑ(χl) = γ j }| = k j ∀ j ∈ [k]} ⊂ Em .

We denote by ζ̃ : σ(w) → Ẽm the restriction of the map ζ , which was defined in (3.7),
onto σ(w), i.e., ζ̃ (w′) := ζ(w′) ∈ Ẽm for all w′ ∈ σ(w). By Lemma 3.7 the map ζ̃ is
well-defined and, for any {χ1, . . . χk} ∈ Ẽm , ζ̃−1({χ1, . . . χk}) corresponds to the set of
configurations w′ = (m, c′, π ′) ∈ σ(w), where c′ ∈ CG(m) is a colouring function that
has the following two properties: (1): c′ assigns the same colour to any two links that
are contained in the same cycle; (2): |{l ∈ [k] : ϑ(χl) = γ j and c′e(p) = i ∀ (e, p) ∈
χl}| = m j,i for any j ∈ [p] and i ∈ [N ]. The pairing configuration π ′ ∈ PG(m, c′) is
then uniquely defined by {χ1, . . . χk}. From these considerations, we deduce that,

|ζ̃−1({χ1, . . . χk})| =
p∏

j=1

(
k j

m j,1, . . . ,m j,N

)
, (3.10)
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where the binomial coefficients correspond to the number of ways of choosing which
of the k j cycles χ ∈ {χ1, . . . , χk} that satisfy ϑ(χ) = γ j are assigned colour i for
any i ∈ [N ]. Since the right hand-side of (3.10) does not depend on the choice of
{χ1, . . . , χk} ∈ Ẽm , we obtain (3.9) and the proof is concluded. ��

The next proposition provides a formula for the cardinality of any equivalence class
σ ∈ �(W̃G). Recall from the beginning of this section that δ(γ ) and J (γ ) denote the
stretch-factor and the multiplicity of γ ∈ �(LG).

Proposition 3.9. For w ∈ W̃G satisfying the same assumptions as in Lemma 3.8 we
have that,

|σ(w)| =
∏

e∈E
me!

p∏

j=1

1

m j,1! · · ·m j,N !
(

δ(γ j )

2J (γ j )

)k j
. (3.11)

Proof. Suppose that w ∈ W̃G satisfies the assumptions of the proposition. In the fol-
lowing calculation, we use that any cycle χ ∈ �(Rm) such that ϑ(χ) = γ ∈ LG is the
equivalence class of precisely 2α(γ ) r-o-l-loops. For j ∈ [p] we set υ j :=

( k j
m j,1,...,m j,N

)

and we obtain from Lemma 3.8 that

|σ(w)| =
p∏

j=1

υ j

∣∣∣
{{χ1, . . . χk} ∈ Em : |{n ∈ [k] : ϑ(χn) = γ j }| = k j ∀ j ∈ [k]}

∣∣∣

=
p∏

j=1

υ j

(
1

2α(γ j )

)k j

×
∣∣∣
{{L1, . . . , Lk} ⊂ Rm : {χ(L1), . . . , χ(Lk)} ∈ Em : |{n ∈ [k] :
ϑ(Ln) = γ j }| = k j ∀ j ∈ [k]}

∣
∣∣

=
p∏

j=1

υ j

(
1

2α(γ j )

)k j 1

k!

×
∣∣∣
{
(L1, . . . , Lk) ∈ Rk

m : {χ(L1), . . . , χ(Lk)} ∈ Em : |{n ∈ [k] :
ϑ(Ln) = γ j }| = k j ∀ j ∈ [k]}

∣∣
∣

=
p∏

j=1

υ j

(
1

2α(γ j )

)k j 1

k!
∏

e∈E
me!

∣∣∣
{
(�1, . . . , �k) ∈ �(LG)k : |{n ∈ [k] :

�n ∈ γ j }| = k j ∀ j ∈ [k]}
∣∣∣

=
p∏

j=1

(
k j

m j,1, . . . ,m j,N

)(
1

2α(γ j )

)k j
|γ j |k j 1

k!
(

k

k1, . . . , kp

) ∏

e∈E
me!

=
∏

e∈E
me!

p∏

j=1

1

m j,1! · · ·m j,N !
(

δ(γ j )

2J (γ j )

)k j
,
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where in the last step we used (3.1) for the cardinality of γ j for each j ∈ [p]. This
concludes the proof of the proposition. ��

3.3. Relation between RPM and RWLS. We now state an equivalence relation between
the RPM and the RWLS. We first associate through a map, �, to each equivalence class
in �(�G) a set of equivalence classes in �(W̃G), see also Fig. 5. After that, we use
this map to associate to any function taking values in �G which does ‘not depend’ on
‘certain features’ of the configurations in �G a function taking values in W̃G , which
also does not depend on certain features of the configurations in W̃G . Our equivalence
theorem, Theorem 3.14 below, states that the average with respect to the RWLSmeasure
of the function taking values in �G equals the average with respect to the RPM of the
corresponding function taking values in W̃G .

To begin, recall the definitions of the maps �∗
1 and �∗

2 in (3.5) and (3.8). For any
ρ ∈ �(�G), we define the set,

�(ρ) := (�∗
2)

−1(�∗
1(ρ)

) ⊂ �(W̃G).

The map � is well-defined since �∗
1(�G) = �∗

2(W̃G). Let ρ ∈ �(�G) be such
that �∗

1(ρ) = {
(γ1, k1), . . . , (γp, kp)

}
for some p ∈ N, γ1, . . . , γp ∈ �(LG) and

k1, . . . , kp ∈ N. It follows from the definition of � that any σ ∈ �(ρ) ⊂ �(W̃G)

satisfies the following two properties:

(i) �∗
2(σ ) = �∗

1(ρ),
(ii) There exist m j,i ∈ N0 such that

∑
i∈[N ] m j,i = k j for all j ∈ [p] and such that

k2γ j ,i
(σ ) = m j,i for any j ∈ [p] and i ∈ [N ].

Definition 3.10. We call a function f : W̃G → R colour-label-independent (in short:
c-l-independent) if f (w) = f (w′) for any w,w′ ∈ W̃G such that �∗

2(w) = �∗
2(w

′).
Stated differently, a function which is c-l-independent does not depend on the colour

of the cycles nor on the label of the links of the cycle. In particular, any c-l-independent
function f : W̃G → R is constant on�(ρ) for each ρ ∈ �G .Wewill now give examples
of functions that are c-l-independent and of functions that are not c-l-independent. Recall
from Sect. 2 that nix (w) and nx (w) denote the number of pairings of i-links and the total
number of pairings at x for any i ∈ [N ], x ∈ V and w ∈ W̃G .

Example 3.11. Consider the functions fi : W̃G → R, i = 1, . . . , 6 below, which are
defined for any w ∈ W̃G and A ⊂ V as,

• f1(w) := 1{There exist two links on {o,e1} that are paired together at both its endpoints}(w)

• f2(w) := no(w)

• f3(w) := 1{There exists a cycle that touches every vertex x∈A}(w)

• f4(w) := 1{There exist two links on {o,e1} that have colour 1}(w),
• f5(w) := n1o(w),
• f6(w) := 1{The link ({o,e1},1) and the link ({o,e1},2) are paired together at both its endpoints}(w).

The first three functions are c-l-independent, while the last three functions are not.

Recall fromDefinition 3.3 that we call a function f : �G → R r-o-l-independent if it
is constant on each equivalence class ρ ∈ �(�G). With the next definition we associate
to any r-o-l independent function a c-l independent function.
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Definition 3.12. Suppose that f : �G → R is r-o-l-independent and that f̃ : W̃G → R

is c-l-independent. We write f ∼ f̃ if f (ρ) = f̃ (σ ) for any ρ ∈ �(�G) and any
σ ∈ �(ρ).

For instance, the r-o-l independent function g : �G → R defined by g(w) :=
1{(o,e1,o)∈ω or (e1,o,e1)∈ω}(ω) for ω ∈ �G satisfies g ∼ f1, where f1 : W̃G → R is de-
fined in Example 3.11 above. Another important example is provided in the next lemma,
to which we will refer in the proof our main theorem, Theorem 1.1. For x, y ∈ V we
introduce the functionsNx,y : �G → R and Ñx,y : W̃G → R, which count the number
of loops in a configuration that visit x and y. More precisely, for any ω ∈ �G such that
ω = (�1, . . . , �n) ∈ Ln

G for some n ∈ N0, we set

Nx,y(ω) :=
n∑

j=1

1{x,y∈� j }(ω) (3.12)

and for any w ∈ W̃G , we set

Ñx,y(w) :=
∑

χ∈ζ(w)

1{x,y∈χ}(w). (3.13)

It is easy to see that Nx,y is r-o-l-independent, that Ñx,y is c-l-independent.

Lemma 3.13. For any x, y ∈ V , it holds that

Nx,y ∼ Ñx,y . (3.14)

Proof. Consider ρ ∈ �(�G) and σ ∈ �(ρ). It holds that

Nx,y(ρ) =
∑

(γ,k)∈�∗
1(ρ)

k 1{x∈�∀ �∈γ } =
∑

(γ,k)∈�∗
2(σ )

k 1{x∈�∀ �∈γ } = Ñx,y(σ ),

where in the second step we used that �∗
1(ρ) = �∗

2(σ ). It thus holds thatNx,y ∼ Ñx,y .
��

We now have all ingredients to state and prove the equivalence theorem. In (3.16)
below the expectation in the left hand-side was defined in (3.4) and refers to the random
walk loop soup. The expectation in the right hand-side was defined in (2.4) and refers
to the random path model. The identity (3.16) states that the two models are equivalent
if one looks at functions which do not depend on certain features of the configurations;
the colour and the label of the links for the random path model, and the root, orientation
and label of the rooted oriented loops for the random walk loop soup.

Theorem 3.14. For any ρ ∈ �(�G) it holds that

ν(ρ) = μ�(�(ρ)). (3.15)

In particular, if f : �G → R is r-o-l-independent, f̃ : W̃G → R is c-l-independent and
f ∼ f̃ , then

EG,U,vG ,N ,λ( f ) = EG,U,vG ,N ,λ( f̃ ). (3.16)



2102 A. Quitmann, L. Taggi

Fig. 5. a A configuration w = (m, c, π) ∈ W̃G . b A configuration ω = (�1, �2, �3, �4) ∈ �G . The roots of
the rooted oriented loops in ω are represented by small gray filled circles. It holds that σ(w) ∈ �(ρ(ω)) and
it is easy to see that �∗

1(ω) = �∗
2(w)

Proof. To begin, we fix p ∈ N, k1, . . . , kp ∈ N and γ1, . . . , γp ∈ �(LG) and we
consider ρ ∈ �(�G) such that�∗

1(ρ) = {
(γ1, k1), . . . , (γp, kp)

}
.Wewill now calculate

ν(ρ). Note that for any ω,ω′ ∈ ρ, it holds that ν(ω) = ν(ω′). We can thus fix a
configuration ω = (�1, . . . , �k) ∈ ρ, where k = ∑p

j=1 k j , and write

ν(ρ) = |ρ| ν(ω). (3.17)

Given the set �∗
1(ω) = �∗

1(ρ), we rewrite the sum of the interaction terms (3.3) of ν(ω)

as

V(ω) =
∑

x,y∈V
vG(x, y)nx (k, γ )ny(k, γ ), (3.18)

where nx (k, γ ) := ∑p
j=1 k jnx (γ j ) for x ∈ V . Plugging (3.6) and (3.18) in (3.17) we

obtain that

ν(ρ) =
p∏

j=1

1

k j !
(
Nλα(γ j )δ(γ j )

2J (γ j )

)k j ∏

x∈V

(
U (nx (k, γ ))

∏

y∈V
e−vG(x,y)nx (k,γ )ny(k,γ )

)
.

(3.19)

Consider now σ ∈ �(ρ) and let m j,i ∈ N0 be such that
∑

i∈[N ] m j,i = k j for any
j ∈ [p] and such that k2γ j ,i

(σ ) = m j,i for any j ∈ [p] and i ∈ [N ]. We note that for

any w,w′ ∈ σ , it holds that μ(σ) = μ(σ ′). We can thus fix a configuration w ∈ σ and
write

μ�(σ ) = |σ |μ�(w). (3.20)

Using (3.20) and (3.11) we obtain that

μ�(σ) =
p∏

j=1

N∏

i=1

1

m j,i !
(

λα(γ j )δ(γ j )

2J (γ j )

)k j ∏

x∈V

(
U (nx (k, γ ))

∏

y∈V
e−vG (x,y)nx (k,γ )ny (k,γ )

)
. (3.21)
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Applying (3.21), we then obtain that
μ�(�(ρ)) =

∑

σ ′∈�(ρ)

μ�(σ ′)

=
p∏

j=1

(
λα(γ j )δ(γ j )

2J (γ j )

)k j ∏

x∈V

(
U (nx (k, γ ))

∏

y∈V
e−vG (x,y)nx (k,γ )ny (k,γ )

)( p∏

j=1

∑

m j,1,...,m j,N∈N0 :
m j,1+···+m j,N=k j

1

m j,1! · · ·m j,N !
)

=
p∏

j=1

1

k j !
(

λα(γ j )Nδ(γ j )

2J (γ j )

)k j ∏

x∈V

(
U (nx (k, γ ))

∏

y∈V
e−vG (x,y)nx (k,γ )ny (k,γ )

)
= ν(ρ),

where we used (3.19) in the last step. This proves (3.15). Let now f : �G → R be
r-o-l-independent and f̃ : W̃G → R be c-l-independent such that f ∼ f̃ . Applying
(3.15), we have that

μ�
(
f̃
) =

∑

ρ∈�(�G)

μ�
(
f̃ 1{σ∈�(ρ)}

) =
∑

ρ∈�(�G)

f (ρ)ν(ρ) = ν
(
f
)
. (3.22)

In particular, the partition functions of bothmodels, corresponding respectively to ν(�G)

and μ�(W̃G), are identical. This implies that (3.22) also holds true for the normalized
measures giving (3.16) and thus concludes the proof of the theorem. ��
In the proof of our main theorem, Theorem 1.1, such an equivalence theorem together
with Lemma 3.13 will be used to extend to the RWLS our result about occurrence of
macroscopic loops, which will be first be proved for the RPM. From now on the paper
will deal with the RPM.

4. Reflection Positivity and Chessboard Estimate

We now introduce reflection positivity, and its immediate consequence, the chessboard
estimate. The novelty of this section with respect to [39] is that the technique of re-
flection positivity is extended to the measure (2.3), in which long-range interactions are
present. Consider the d-dimensional torus (TL ,EL) with d, L ∈ N, i.e., the graph with
vertex set TL = {x = (x1, . . . , xd) ∈ Z

d : xi ∈ (− L
2 , L

2 ] for each i ∈ [d]} and with
edges connecting nearest neighbour vertices. Similar to [39], the derivation of the Key
Inequality in Sect. 6 below requires the introduction of a new graph.

Extended torus, virtual and original vertices. We now view (TL ,EL) as the sub-
graph of a larger graph embedded in Rd+1, which is denoted by (TL , EL) and is referred
to as extended torus. The extended torus is obtained from the d-dimensional torus by
duplicating the vertex-set and by adding an edge between every vertex in TL and its
copy. More precisely, we define the vertex set of the extended torus as,

TL := {
(x1, . . . , xd+1) ∈ Z

d+1 : xi ∈ (− L

2
,
L

2
] for every i ∈ [d], and xd+1 ∈ {1, 2} }

,

where TL = {(x1, . . . , xd+1) ∈ TL : xd+1 = 1} ⊂ TL , and T(2)
L := TL \TL . We define

the edge-set,

EL := EL ∪ {{x, y} ⊂ Z
d+1 : x ∈ TL , y = x + (0, . . . , 0, 1)

}
.

This defines the extended torus (TL , EL). We will refer to the vertices in TL ⊂ TL as
original and to the vertices inT(2)

L ⊂ TL as virtual. From now onwewill replace the sub-
script G in all the quantities which were defined above by TL or TL , when considering
the random path model in the extended or in the original torus. We keep referring to o,
corresponding to the vertex (0, . . . , 0) ∈ TL ⊂ TL ⊂ Z

d+1, as the origin.
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4.1. Reflection positivity. We now introduce reflection positivity, partially following
[39, Section 4.2].

Domains and restrictions.We introduce the notion of domain and restriction. A func-
tion f : WTL → C has domain D ⊂ TL if, for any pair of configurations w =
(m, c, π, g), w′ = (m′, c′, π ′, g′) ∈ WTL such that

∀e ∈ EL : e ∩ D �= ∅, ∀z ∈ D, me = m′
e ce = c′e, πz = π ′

z, gz = g′z

one has that f (w) = f (w′). Moreover, for any w = (m, c, π, g) ∈ WTL we define the
restriction of w to D ⊂ TL , wD = (mD, cD, πD, gD) ∈ WTL , by

(i) (mD)e = me for any edge e ∈ EL which has at least one end-point in D and
(mD)e = 0 otherwise,

(ii) (cD)e = ce for any edge e which has at least one end-point in D and (cD)e = ∅
otherwise,

(iii) (πD)x = πx for any x ∈ D, and for x ∈ TL \ D we set (πD)x as the pairing which
leaves all links touching x unpaired (if any)

(iv) (gD)x = gx for any x ∈ D, and for x ∈ TL \ D we set (gD)x = 0.

Reflection through edges. Recall that the graph (TL , EL) is embedded in Rd+1. We say
that the plane R is through the edges of (TL , EL) if it is orthogonal to one of the cartesian
vectors ei for i ∈ [d] and if it intersects themidpoint of Ld−1 edges of the graph (TL , EL),
i.e. R = {z ∈ R

d+1 : z · ei = u}, for some u such that u − 1/2 ∈ Z ∩ (− L
2 , L

2 ] and
i ∈ [d]. Given such a plane R, we denote by� : TL → TL the reflection operator which
reflects the vertices of TL with respect to R, i.e. for any x = (x1, x2, . . . , xd+1) ∈ TL ,

�(x)k :=
{
xk if k �= i,
2u − xk mod L if k = i.

(4.1)

Let T +
L , T −

L ⊂ TL be the corresponding partition of the extended torus into two disjoint
halves such that �(T ±

L ) = T ∓
L . Let E+

L , E−
L ⊂ EL , be the set of edges {x, y} with

at least one of x, y in T +
L respectively T −

L . Moreover, let E R
L := E+

L ∩ E−
L . Note that

this set contains 2Ld−1 edges, half of them intersecting the plane R, and all of them
belonging to EL . Further, let � : WTL → WTL denote the reflection operator reflecting
the configuration w = (m, c, π, g) with respect to R (we commit an abuse of notation
by using the same letter). More precisely we define �w = (�m,�c,�π,�g), where
(�m){x,y} = m{�x,�y}, (�c){x,y} = c{�x,�y}, (�π)x = π�x , and (�g)x = g�x . Given
a function f : WTL → C, we also use the letter � to denote the reflection operator
� which acts on f as � f (w) := f (�w). We denote by A± the set of functions with
domain T ±

L and denote byW±
TL

the set of configurations w ∈ WTL that are obtained as

a restriction of some w′ ∈ WTL to T ±
L .

We remark that, although the graph (TL , EL) is embedded in R
d+1, we will only

consider reflections with respect to reflection planes which are orthogonal to one of the
cartesian vectors ei for i ∈ [d] (and not i = d + 1).

Recall from the introduction that for a potential v : Z
d → R, the function vL :

TL ×TL → R is defined by vL(x, y) := ∑
z∈Zd v(y + Lz− x) for any x, y ∈ TL . From

nowon,wewill viewvL as a functiononTL×TL byassuming thatvL (x+ed+1, y+ed+1) =
vL(x + ed+1, y) = vL(x, y) for any x, y ∈ TL .
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Definition 4.1. The function vL : TL × TL → R is called i-separable, i ∈ [d], if there
exists an integer k ∈ N, a measure space (T, T , ν), where ν is a finite, non-negative
measure, and two bounded measurable functions

α, α̃ : T × TL → C
k,

such that for any, x, y ∈ TL with xi > 0 > yi , we can write

− vL(x, y) =
∫

T
dν(t) α(t, x) · α̃(t, y), (4.2)

where α(t, x) · α̃(t, y) denotes the inner product of two vectors in C
k and such that it

holds

∀x = (x1, . . . , xd) ∈ TL α̃(t, x) = α(t, x1, . . . , xi−1,−xi , xi+1, . . . , xd)

ν − almost surely. (4.3)

We say that v is separable if vL is i-separable for any i ∈ [d].
Recall also the definition in (1.4) of a tempered potential v : Zd → R. Two examples

of potentials v that are tempered and separable are given in Lemma A.2 in the appendix.
The next theorem introduces an important tool. The theorem states that the random

path model is reflection positive.

Theorem 4.2 (Reflection positivity). Consider the torus (TL , EL) for L ∈ 2N. Let R be
a reflection plane through edges, which is orthogonal to one of the cartesian vectors
ei , i ∈ {1, . . . , d}, let � be the corresponding reflection operator. Consider the random
path model with N ∈ N, λ ∈ R

+, and weight function U : N0 → R
+. Let v : Zd → R

be tempered and separable. For any pair of functions f, g ∈ A+, we have that,

(1) μTL ,U,v,N ,λ( f �g) = μTL ,U,v,N ,λ(g� f ),
(2) μTL ,U,v,N ,λ( f � f ) ≥ 0.

From this we obtain that,

Re
(
μTL ,U,v,N ,λ

(
f �g

)) ≤ μTL ,U,v,N ,λ

(
f � f

) 1
2 μTL ,U,v,N ,λ

(
g�g

) 1
2 . (4.4)

Proof. The proof of the case where v equals the zero function, denoted v = 0, is
analogous to the proof of Theorem 4.3 in [39] and will not be stated here. The only
difference is that here we deal with complex functions and that, in addition to links,
colourings and pairings, also ghost pairings are present.

We now present the proof in case v : Zd → R is a non-zero, tempered and separable
potential. It holds that

μTL ,U,v,N ,λ(ω) = μ(ω)e−V (ω), (4.5)

where we use the notation μ = μTL ,U,0,N ,λ with v = 0 denoting the zero function.
By translation invariance of the random path measure we can assume without loss of
generality that the reflection plane R passes through the origin. We can decompose the
terms of the function V , which is defined in (2.2), into three groups, those involving
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sites lying entirely in T +
L or T −

L and those involving sites that lie in both halves of the
torus:

V (ω) =
∑

x,y∈T+
L

vL(x, y)ñx (ω)ñ y(ω)

︸ ︷︷ ︸
=:V +

+
∑

x,y∈T−
L

vL(x, y)ñx (ω)ñ y(ω)

︸ ︷︷ ︸
=�(V +)

+ 2
∑

x∈T+
L ,y∈T−

L

vL(x, y)ñx (ω)ñ y(ω)

︸ ︷︷ ︸
=:VR

,
(4.6)

where ñz(w) := nz(w)+nz+ed+1(w) for any z ∈ TL andw ∈ W . We note that V (θw) =
V (w) and μTL ,U,v,N ,λ(θw) = μTL ,U,v,N ,λ(w) for any w ∈ WTL . The proof of (1) is
thus the same as in [39]. We now prove (2). Using (4.2) we obtain for each l ∈ N that,

(−VR)l =
∑

x1,...,xl∈T+
L

y1,...,yl∈T−
L

(−vL (x1, y1))ñx1 ñ y1 . . . (−vL (xl , yl ))ñxl ñ yl

=
∫

T
dν(t1) . . .

∫

T
dν(t l)

∑

j1,..., jl∈{1,...,k}

( ∑

x1,...,xl∈T+
L

α j1 (t
1, x1) · · ·α jl (t

l , xl )ñx1 · · · ñxl
)

×
( ∑

y1,...,yl∈T−
L

α̃ j1 (t
1, y1) · · · α̃ jl (t

l , yl )ñ y1 · · · ñ yl
)

=
∫

T
dν(t1) · · ·

∫

T
dν(t l )

∑

j1,..., jl∈{1,...,k}
Ft1,...,tl , j1,..., jl �Ft1,...,tl , j1,..., jl , (4.7)

where Ft1,...,tl , j1,..., jl : W → C is defined by

Ft1,...,tl , j1,..., jl (w) :=
∑

x1,...,xl∈T+
L

α j1(t
1, x1) · · ·α jl (t

l , xl)ñx1(w) · · · ñxl (w).

Using (4.5), (4.6), (4.7) and a Taylor expansion, we obtain that

μTL ,U,v,N ,λ

(
f � f

) = μ( f e−V +
�( f e−V +

)e−2VR ) =
∑

l≥0

2l

l! μ( f e−V +
�( f e−V +

)(−VR)l )

=
∑

l≥0

2l

l!
∫

T
dν(t1) · · ·

∫

T
dν(t l )

∑

j1,..., jl∈{1,...,k}
μ( f e−V +

Ft1,...tl , j1,..., jl �( f e−V +
Ft1,...tl , j1,..., jl ))︸ ︷︷ ︸

≥0

≥ 0,

where in the last step we used that the measure μwith v = 0 is reflection positive. Thus,
the theorem is proven. ��

4.2. Chessboard estimate. We now introduce the notion of support. Contrary to the
notion of domain, which was introduced in Sect. 4.1, the notion of support is defined
only for subsets of the original torus.We say that the function f : WTL → R has support
in D ⊂ TL if it has domain in D ∪ D(2), where D(2) is defined as the set of sites which
are ‘on the top’ of those in D,

D(2) := {z ∈ T
(2)
L : z − ed+1 ∈ D}.
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Fix an arbitrary site t ∈ TL and let t0 = o, t1, . . ., tk = t be a self-avoiding nearest-
neighbour path from o to t , and for any i ∈ {1, . . . , k}, let �i be the reflection with
respect to the plane going through the edge {ti−1, ti }. Let f be a function having support
in {o} and define

f [t] := �k ◦ �k−1 . . . ◦ �1 ( f ).

Observe that the function f [t] does not depend on the chosen path (see also Figure 6
in [39]). The next proposition provides an important tool that can be applied to upper
bound the measure of a product of local functions.

Proposition 4.3 (Chessboard estimate). Let f = ( ft )t∈TL be real-valued functions with
support {o} which are either all bounded or all non-negative. Under the same assump-
tions as in Theorem 4.2, we have that

μTL ,U,v,N ,λ

( ∏

t∈TL

f [t]t

)
≤

( ∏

t∈TL

μTL ,U,v,N ,λ

( ∏

s∈TL

f [s]t

) ) 1
|TL |

. (4.8)

For the proof of Proposition 4.3 we refer to the original paper [23] or to the overviews
[11, Theorem 5.8] or [22, Theorem 10.11].

The following remark states that the chessboard estimate can also be applied to the
expectation ETL for the RPM in the original torus with only closed paths being present
(recall the definition of the expectation E provided right after Eq. (2.4)).

Remark 4.4. For any F : WTL → R, we let fF : WTL → R be a function which extends
F to WTL in such a way that fF (w) := F(wTL ) for any w ∈ WTL , where we recall
from Sect. 4.1 that wTL denotes the restriction of w ∈ WTL to TL and can be viewed as
a configuration inWTL . We then have from our construction of the extended torus that,

ETL ,U,v,N ,λ[F] =
μTL ,U,v,N ,λ

(
fF 1W̃o

TL

)

Z
�
TL

,

where

W̃o
TL

:= {w ∈ W̃TL : nz = 0 ∀z ∈ T
(2)
L }, (4.9)

corresponds to the set of configurations w ∈ W̃TL in which any closed path lies entirely
in the original torus (recall also that W̃TL , defined in (2.1), is the set of configurations
with no unpaired link and no ghost pairing). From this relation, from the fact that

1W̃o
TL

=
∏

x∈TL

1{nx+ed+1=0}1{ux=ux+ed+1=0}1{gx=gx+ed+1=0}

and from Proposition 4.3 we deduce that (4.8) also holds true withμTL replaced byETL .

The next lemma provides an upper bound on the local time for the RPM with only
closed paths being present.

Lemma 4.5. Under the same assumptions as in Theorem 4.2, there exists c ∈ (0,∞)

such that for any A ⊂ TL and any vector (ax )x∈A ∈ N
A
0 , it holds for any L ∈ 2N that

ETL ,U,v,N ,λ

( ∏

x∈A
eaxnx

)
≤ ecλNd

∑
x∈A eax . (4.10)
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Proof. Consider A ⊂ TL and (ax )x∈TL ∈ N
TL
0 . From (4.8) and from Remark 4.4 we

obtain that

ETL ,U,v,N ,λ

( ∏

x∈A
eaxnx

)
≤

( ∏

x∈A
ETL ,U,v,N ,λ

( ∏

y∈TL

eaxny
))

1
|TL | ≤ ecλNd

∑
x∈A eax ,

where in the last step we applied (2.7). This concludes the proof. ��

5. Two-Point Function and Its Properties

In this section we define the two-point function and study its properties. This function
is an important object in our analysis and corresponds to a fraction between partition
functions. We will later, in Proposition 5.9 below, relate the two-point function to the
expected number of closed paths touching two vertices in the random path model with
only closed paths. In the whole section, we consider the RPM on the (original) torus
(TL ,EL). Recall from Sect. 2 that uix (w) denotes the number of i-links touching x that
are unpaired at x and that gx (w) denotes the number of ghost pairings at x for any
x ∈ TL , i ∈ [N ] and w ∈ WTL . Recall from (1.10) that we denote by R ∈ N0 ∪ {∞}
the range of U : N0 → R

+
0 .

Definition 5.1. For x, y ∈ TL with x �= y, we define the sets

Wx,y :=
{
w ∈ WTL : uz = gz = 0 ∀z ∈ TL \ {x, y},

u1z = 1 = u2z , u
i
z = 0 ∀i ∈ {3, . . . , N }, gz = 2 ∀z ∈ {x, y}

}
(5.1)

and

Wx,x :=
{
w ∈ WTL : uz = gz = 0 ∀z ∈ TL \ {x},

u1x = 2 or u2x = 2 or ux = 0 and uix = 0 ∀i ∈ {3, . . . , N }, gx = 4
}
. (5.2)

Moreover, we define the directed partition function,

ZTL ,U,v,N ,λ(x, y) :=
{

μTL ,U,v,N ,λ(Wx,y) if x �= y,

μTL ,U,v,N ,λ(2
1{u1x=2}+1{u2x=2} 1Wx,x ) if x = y,

(5.3)

and the two-point function,

GTL ,U,v,N ,λ(x, y) := λ2
ZTL ,U,v,N ,λ(x, y)

Z
�
TL ,U,v,N ,λ

. (5.4)

Stated differently, any configuration w ∈ Wx,y with x �= y is such that there exist
precisely two open paths connecting x and y, one of them having colour 1 and one of
them having colour 2, see also Fig. 6. In Sect. 5.1 we will define a map which changes
the colour of one of the open paths and merges them afterwards. This will allow us to
relate the two-point function to the expected number of closed paths connecting x and y.
It is important to have two open paths of different colour. Indeed, imposing two unpaired
links of same colour at x and y does not necessarily imply a connection between x and
y.
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Fig. 6. a A configuration w ∈ Wx,y such that u1x = u2x = u1y = u2y = 1. There exist precisely two open
paths connecting x and y, one of colour 1 := o and one of colour 2 := b. There also exists a closed path of
colour 3 := g. b The configuration F1(w) ∈ W̃ . The two open paths in w have been merged to a closed path
containing x and y

From now on we fix the dimension d ∈ N, the number of colours N ∈ N≥2, the
size of the system L ∈ 2N, the parameter λ ∈ R

+, a tempered and separable potential
v : Zd → R and a good weight function U : N0 → R

+
0 . For a lighter notation we will

omit the dependence from such quantities when appropriate.
A first important property of the two-point function is monotonicity.

Proposition 5.2. Let x ∈ TL be an arbitrary vertex such that n = x ·ei is odd and n ≥ 3
for some i ∈ [d]. Then,

G(o, x) ≤ G(o, nei ) ≤ G(o, (n − 2)ei ). (5.5)

Proof. Note that, by definition, for any pair of distinct vertices x, y ∈ TL , the two-point
function can be expressed as

G(x, y) =
λ2μ

(
1{gx=2}1{u1x=u2x=1,ux=2}1{gy=2}1{u1y=u2y=1,uy=2}

∏
z �=x,y 1{uz=gz=0}

)

μ(W̃TL )
,

(5.6)

namely as the expectation with respect to a reflection positive measure of a product of
functions, with the domain of each function corresponding to a vertex of the torus. It
follows then from the general theorem [30, Theorem 2.1] that a function satisfying such
a property satisfies (5.5). ��
Remark 5.3. The introduction of the ghost pairings is particularly useful to express the
two point function as the average of a product of functions, with the domain of each
function corresponding to a vertex of the torus. This allows us to apply [30, Theorem
2.1] and to deduce the monotonicity property.

5.1. Reformulation of the two-point function. In this section we provide a reformulation
of the two-point function. In Sect. 5.2 this reformulation will be used to derive a lower
bound forG(o, e1) and in Sect. 5.3 it will be used to derive the relation between the two-
point function and the expected number of closed paths touching two vertices. Recall
from (2.1) that W̃ denotes the set of configurations of the RPM with only closed paths
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being present. Recall also that ζ(w) denotes the ensemble of cycles of w ∈ W̃ and
was defined in (3.7). We let ζ 1(w) ⊂ ζ(w) be the set of 1-cycles of ζ(w) and for any
χ ∈ ζ(w) and x ∈ TL , we denote by n(χ)

x the number of visits of the cycle χ at x ,
namely

n(χ)
x := 1

2

∑

y∼x

m{x,y}∑

p=1

1{
({x,y},p)∈χ

}.

In other words n(χ)
x is the number of links contained in χ touching x divided by two.

The next lemma states that the two-point function G(x, y) can be expressed as the
expectation of a function that involves the number of visits of 1-cycles at x and y. Recall
the definition of P and of its expectation E, which were provided in (2.4).

Lemma 5.4. For x, y ∈ TL with x �= y we have that

G(x, y) = 2 λ2 E
( ∑

χ∈ζ 1(w)

n(χ)
x n(χ)

y
U (nx + 1)

U (nx )

U (ny + 1)

U (ny)
e−ṽx,y(w)

)
, (5.7)

where

ṽx,y(w) := 2
(
vL(o, o) + vL(x, y) +

∑

u∈TL

(vL(u, x) + vL(u, y))nu(w)
)
. (5.8)

In (5.7), we use the convention that 0
0 = 1. Note that, since U is good, it is the case that

U (n) = 0 implies that U (n + 1) = 0.

Proof. Consider x, y ∈ TL , x �= y. Recall from (2.1) that W̃ denotes the set of config-
urations w ∈ W in which there exist no unpaired links nor ghost pairings. We introduce
a map F1 : Wx,y → W̃ which acts by changing the colour of all links that are contained
in the open path of colour 2 to colour 1, by then pairing at x and y the two 1-links that
have an unpaired endpoint and by removing all ghost pairings in the configuration, see
also Fig. 6. For any w ∈ W̃ , F−1

1 (w) then corresponds to the set of configurations that
are obtained from w by adding two ghost pairings at x and y, by choosing an arbitrary
1-cycle χ ∈ ζ 1(w), by selecting two arbitrary pairs of links belonging to such a cycle
which are paired at x and y respectively and unpairing them (thus obtaining two open
paths with end-points x and y both), by changing the colour of the links belonging to one
of these two open paths to 2. From these considerations we deduce that for any w ∈ W̃
we have that

∣∣{w′ ∈ Wx,y : F1(w′) = w}∣∣ = 2
∑

χ∈ζ 1(w)

n(χ)
x n(χ)

y . (5.9)

Further, for any w ∈ W̃ , for any w′ ∈ Wx,y such that F1(w′) = w and for any
z ∈ TL ,

nz(w
′) = nz(w) + 1{z∈{x,y}}

since at x and y precisely two ghost pairings are removed, and precisely one pairing (of
colour 1) is added. In particular,

V (w′) =
∑

u,z∈TL

v(u, z)(nu(w) + 1{u∈{x,y}}) (nz(w) + 1{z∈{x,y}}) = V (w) + ṽx,y(w)
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implying that

μ(w′) = μ(w)
U (nx (w) + 1)

U (nx (w))

U (ny(w) + 1)

U (ny(w))
e−ṽx,y(w). (5.10)

From (5.9) and (5.10) we obtain that,

Z(x, y) =
∑

w∈W̃
μ

(
Wx,y ∩ {F1(w′) = w})

= 2
∑

w∈W̃
μ(w)

∑

χ∈ζ 1(w)

n(χ)
x n(χ)

y
U (nx (w) + 1)

U (nx (w))

U (ny(w) + 1)

U (ny(w))
e−ṽx,y(w).

(5.11)

Multiplying both sides of (5.11) with λ2

Z� gives (5.7) and the proof is concluded. ��
The next lemma provides a further reformulation of the two-point function evaluated

at two neighbour vertices, this value plays an important role in our method.

Lemma 5.5. It holds that

G(o, e1) = E
(
m(1)

{o,e1}m
(2)
{o,e1}

)
. (5.12)

Proof. To begin, we introduce amap F2 : Wo,e1 → W̃ which acts by inserting precisely
one 1-link and one 2-link on the edge {o, e1} such that the 1-link has the highest and the
2-link has the second highest position, by pairing at o and e1 the inserted links with the
link of same colour that has an unpaired endpoint and by removing all ghost pairings in
the configuration. For any w = (m, c, π) ∈ W̃ we have that

∣∣{w′ ∈ Wo,e1 : F2(w′) = w}∣∣ = 1{
c{o,e1}(m{o,e1})=1, c{o,e1}(m{o,e1}−1)=2

}(w), (5.13)

where we recall from Sect. 2 that ce(p) denotes the colour of the p-th link on the edge
e. For any w ∈ W̃ and for any w′ ∈ Wo,e1 such that F2(w′) = w, it holds that

μ(w′) = 1

λ2
μ(w)

m{o,e1}(w)!
(m{o,e1}(w) − 2)! . (5.14)

We defineML ,N ⊂ N
EL×[N ]
0 as the set of elementsm = (m1

e, . . . ,m
N
e )e∈EL ∈ N

EL×[N ]
0

such that
∑

y∼x m
i{x,y} ∈ 2N0 for all x ∈ TL and i ∈ [N ]. Recall from Sect. 2 that

m(i)
e (w) denotes the number of i-links on e for any e ∈ EL , i ∈ [N ], and w ∈ W̃ . Note

that

W̃ =
⋃

m̃∈ML ,N

{w ∈ W̃ : m(i)
e (w) = m̃i

e ∀i ∈ [N ] ∀e ∈ EL}, (5.15)
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where the union in (5.15) is disjoint. From (5.13), (5.14) and (5.15), we obtain that

G(o, e1) = λ2

Z�

∑

w∈W̃
μ

(
Wo,e1 ∩ {F2(w′) = w})

= E

( m{o,e1}!
(m{o,e1} − 2)!1

{
c{o,e1}(m{o,e1})=1, c{o,e1}(m{o,e1}−1)=2

}
)

=
∑

m̃∈ML ,N

E

( m{o,e1}!
(m{o,e1} − 2)!1{c{o,e1}(m{o,e1})=1, c{o,e1}(m{x,y}−1)=2}1{m(i)

e =m̃i
e ∀e∈EL∀i∈[N ]}

)

=
∑

m̃∈ML ,N

m̃{o,e1}!
(m̃{o,e1} − 2)! P

(
m(i)

e = m̃i
e ∀e ∈ EL∀i ∈ [N ])

× P
(
c{o,e1}(m{o,e1}) = 1, c{o,e1}(m{o,e1} − 1) = 2 |m(i)

e = m̃i
e ∀e ∈ EL∀i ∈ [N ]),

(5.16)

where m̃{o,e1} :=
∑N

i=1 m̃
i{o,e1}. For any m̃ ∈ ML ,N , we have that

P
(
c{o,e1}(m{o,e1}) = 1, c{o,e1}(m{o,e1} − 1) = 2 |m(i)

e = m̃i
e ∀e ∈ EL∀i ∈ [N ])

=
( m̃{o,e1}−2

m̃1{o,e1}−1,m̃2{o,e1}−1,m̃3{o,e1},...,m̃
N{o,e1}

)

( m̃{o,e1}
m̃1{o,e1},m̃

2{o,e1},m̃
3{o,e1},...,m̃

N{o,e1}

) = (m̃{o,e1} − 2)!
m̃{o,e1}!

m̃1{o,e1}m̃
2{o,e1}.

(5.17)

For the first equation we used thatμ(w) = μ(w′) for anyw,w′ ∈ {w ∈ W̃ : m(i)
e (w) =

m̃i
e ∀i ∈ [N ] ∀e ∈ EL}. The fraction between the two multinomial coefficients thus

corresponds to the different numbers of colourings. Plugging (5.17) into (5.16) and
using (5.15), we obtain (5.12) and the proof is concluded. ��

5.2. Lowerbound forG(o, e1). In this sectionwe show that the quantityE(m(1)
{o,e1}m

(2)
{o,e2}),

which was proved to be equal to the term G(o, e1) of the two-point function, gets ar-
bitrarily large as the range of the weight function, R, and λ are large. In particular, we
show that E(m(1)

{o,e1}m
(2)
{o,e2}) gets larger than E(m(1)

{o,e1}) uniformly in L as R and λ are
large. Our estimate is presented in Proposition 5.8 below. We first state two preparatory
lemmas. Recall that nx denotes the local time at x . The next lemma states that the local
time approaches the range of the weight function as λ goes to infinity uniformly in the
size of the box.

Lemma 5.6. For any k < R, where R is the range of U, it holds that,

lim
λ→∞ lim sup

L→∞
L even

P
(
no ≤ k

) = 0. (5.18)

Proof. Consider k < R and take k′ > k such that U (k′) > 0. Applying the chessboard
estimate, Proposition 4.3 and Remark 4.4, we obtain that

P
(
no ≤ k

) ≤ P
(∀ x ∈ TL , nx ≤ k

) 1
|TL | ≤

(
μ�

(∀ x ∈ TL , nx ≤ k
)

μ�
(∀ x ∈ TL , nx = k′

)
) 1

|TL |
. (5.19)
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Using similar calculations as in (2.9), we obtain for the numerator that

μ�
(∀ x ∈ TL , nx ≤ k

) ≤
∑

m=(me)e∈EL ∈N
EL
0

∏

e∈EL

(cNλ)me

me! 1{ ∑

y∼x
m{x,y}≤2k ∀x∈TL

}

≤ (cNλ)k|TL | (2k + 1)d|TL |.

(5.20)

We used that there exist no more than (2k +1)d|TL | link configurationsm = (me)e∈EL ∈
N
EL
0 that satisfy

∑
y∼x m{x,y} ≤ 2k for any x ∈ TL .

For the denominator we choose as lower bound the weight of a single configuration
and obtain that

μ�(∀ x ∈ TL , nx = k′) ≥ λk
′|TL |

(2k′)!|TL |/2 U (k′)|TL |. (5.21)

The right hand-side of (5.21) corresponds to the weight of a configuration where the 2k′
links touching a vertex are on precisely one edge each. From (5.19), (5.20) and (5.21)
we deduce that,

P
(
no ≤ k

) ≤ λk−k′c(d, k, k′, N ,U, v),

where the constant c(d, k, k′, N ,U, v) < ∞ does not depend on λ and L . This proves
(5.18). ��

The next lemma states that, as long as the number of links on {o, e1} is sufficiently
large compared to the local time at the origin, the probability that {o, e1} is crossed by
at least two distinct closed paths is also large. This is a necessary step for proving that
E(m(1)

{o,e1}m
(2)
{o,e1}) is large.

Lemma 5.7. For any k ∈ N≥2, 0 < ε < 2 and any weight function U with range R ≥ k
ε

it holds that,

P
(
all links on {o, e1} belong to the same closed path |m{o,e1} ≥ noε ≥ k

) ≤ e−ε( 14− 1
2k ).

(5.22)

Proof. Consider k ∈ N≥2 and 0 < ε < 2. Using that for any configuration w ∈ W̃ all
links on {o, e1} belong to the same closed path only if they have the same colour, we
can write

P
(
all links on {o, e1} belong to the same closed path

∣∣m{o,e1} ≥ noε ≥ k
)

= P
(
all links on {o, e1} belong to the same closed path, m{o,e1} ≥ noε ≥ k

)

P
(
m{o,e1} ≥ noε ≥ k

)

≤
∑N

i=1 P
(
all links on {o, e1} belong to the same closed path, m(i)

{o,e1} ≥ noε ≥ k, m( j)
{o,e1} = 0 ∀ j �= i

)

∑N
i=1 P

(
m(i)

{o,e1} ≥ noε ≥ k, m( j)
{o,e1} = 0 ∀ j �= i

)

= P
(
all links on {o, e1} belong to the same closed path, m(1)

{o,e1} ≥ noε ≥ k, m( j)
{o,e1} = 0 ∀ j �= 1

)

P
(
m(1)

{o,e1} ≥ noε ≥ k, m( j)
{o,e1} = 0 ∀ j �= 1

) .

(5.23)

We now provide an upper bound for the numerator of the last term in (5.23). The idea
is to condition on the link and colouring configuration on every edge and on the pairing
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Fig. 7. Part of a link and colouring configuration, in which only the 1-links are depicted. All pairings outside of
the origin are fixed. There exist precisely five open paths starting and ending at the origin. The links belonging
to the five paths are drawn in different widths

configuration outside the origin. Givenm ∈ M and c ∈ C(m), we denote byPo(m, c) ⊂
P(m, c) the set of pairing configurations π = (πx )x∈TL ∈ P(m, c) which are such that
each link is paired at both its endpoints, except for the 1-links touching the origin, which
are left unpaired at the origin. We denote by AL ,ε,k the set of triples (m, c, π) with
m ∈ M, c ∈ C(m) and π ∈ Po(m, c), which are such that m{o,e1} ≥ noε ≥ k, all links
on {o, e1} have colour 1 and U

( 1
2

∑
y∼x m{x, y}) > 0 for all x ∈ TL .

Using the conditional probability formula, we have that

P(all links on {o, e1} belong to the same closed path, m(1)
{o,e1} ≥ noε ≥ k, m( j)

{o,e1} = 0 ∀ j �= 1
)

=
∑

(m̃,c̃,π̃)∈AL ,ε,k

P(precisely one closed path on {o, e1}
∣
∣me(w) = m̃e, ce(w) = c̃e ∀e ∈ EL , πx (w) = π̃x ∀x �= o)

× P(me(w) = m̃e, ce(w) = c̃e ∀e ∈ EL , πx (w) = π̃x ∀x �= o)

=
∑

(m̃,c̃,π̃)∈AL ,ε,k

|P(m̃, c̃, π̃)|
|{π ∈ P(m̃, c̃) : πx = π̃x ∀x �= o}|P(me(w) = m̃e, ce(w) = c̃e ∀e ∈ EL , πx (w) = π̃x ∀x �= o),

(5.24)

where |P(m̃, c̃, π̃)| denotes the number of pairing configurations π ∈ P(m̃, c̃) which
are such that πx = π̃x for all x ∈ TL \ {o} and such that all 1-links on the edge {o, e1}
belong to the same closed path. In the last step, we used that P(w) = P(w′) for any
two configurations w,w′ ∈ W̃ such that me(w) = me(w

′) and ce(w) = ce(w′) for all
e ∈ EL .

We now derive an upper bound for |P(m̃, c̃, π̃)|. The pairings of the 1-links outside
of the origin are fixed in such a way that we have a collection of open paths of colour
1 which start and end at the origin, meaning that precisely two links of each such
path have an unpaired endpoint at the origin, see also Fig. 7. The idea is to pair the
paths step-by-step such that we obtain a closed path that contains all links on the edge
{o, e1}. We begin with the path containing the first link on {o, e1}, ({o, e1}, 1), and we
denote by ({o, y1}, k1) with y1 ∼ o, and 1 ≤ k1 ≤ m̃{o,y1} the other link of this path
which is unpaired at the origin. At the origin, we then pair the link ({o, e1}, 1) to a link
({o, y2}, k2) which is not ({o, y1}, k1), since we do not want to close the path. Hence,
for the first link on the edge {o, e1}, we have (2ñ1o − 2) pairing possibilities, where
ñ1o := 1

2

∑
y∼o

∑
p∈[m̃{o,y}] 1{c̃{o,y}(p)=1} is the number of 1-links touching o divided by
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two. We denote by ({o, y3}, k3) the link corresponding to the same path as ({o, y2}, k2).
This link may neither be paired to ({o, y1}, k1) at the origin implying that we have
(2ñ1o − 4) pairing possibilities for the link ({o, y2}, k2). We proceed in this manner until
we have paired all links on the edge {o, e1}. More precisely, the link ({o, y1}, k1) is
first paired at the origin after all links on {o, e1} have been explored. We need at least
α := �(m̃{o,e1} − 2)/2� pairings at the origin until all 1-links on {o, e1} belong to a
closed path. An upper bound for the number of pairing possibilities of links of colour 1
at the origin is thus given by

|P(m̃, c̃, π̃)| ≤ (2ñ1o − 2)(2ñ1o − 4) · · · (2ñ1o − 2α)(2ñ1o − 2α − 1)!!. (5.25)

We compare the upper bound for |P(m̃, c̃, π̃)| with the number (2ñ1o − 1)!! of pairing
possibilities of the 1-links without the restriction that all links on the edge {o, e1} must
belong to the same closed path. We consider the case m̃{o,e1} even, which is the worst
case. Using the estimate 1− x ≤ e−x for any x ∈ R, we obtain that

|P(m̃, c̃, π̃)|
(2ñ1o − 1)!! = (2ñ1o − 2)(2ñ1o − 4) · · · (2ñ1o − m̃1{o,e1} + 2)

(2ñ1o − 1)(2ñ1o − 3) · · · (2ñ1o − m̃1{o,e1} + 3)

≤ exp

(
−

(m̃{o,e1}−2)/2∑

l=1

1

2ñ1o − (2l − 1)

)

≤ exp

(
− 1

2ño

m̃{o,e1} − 2

2

)
≤ exp

(
− ε

4
+

ε

2k

)
, (5.26)

where in the last step we used that m̃{o,e1} ≥ εn0 ≥ k. The proof is concluded by
plugging (5.26) in (5.24) and by using (5.23). ��

The next proposition states that G(o, e1) gets arbitrarily large as long as the range
of the weight function and the parameter λ are sufficiently large. In particular, G(o, e1)
gets much larger than the expected number of links of a given colour on {o, e1}.

Proposition 5.8. Let d ∈ N, N ∈ N≥2 and v : Zd → R be tempered and separable. For
any M, a ∈ (0,∞), there exists R ∈ (0,∞) such that for any good weight function U
with range at least R, there exists λ0 > 0 such that for any λ ≥ λ0 and any L ∈ 2N,

E
(
m(1)

{o,e1}m
(2)
{o,e1}

) − a E
(
m(2)

{o,e1}
) ≥ M. (5.27)

Proof. Let d ∈ N, N ∈ N≥2 and v : Zd → R be tempered and separable and consider
M, a ∈ (0,∞). In the following calculations, U : N0 → R

+
0 will be an arbitrary good

weight function and we will later specify its range such that all the events on which we
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condition have a strictly positive probability. Consider k ∈ N such that k ≥ a. We have
that

E
(
m(1)

{o,e1}m
(2)
{o,e1}

) − a E
(
m(2)

{o,e1}
) = 1

N − 1
E

( N∑

j=2

m( j)
{o,e1}(m

(1)
{o,e1} − a)

)

≥ k − a

N − 1
P
(
m(1)

{o,e1} ≥ k,
N∑

i=2

m(i)
{o,e1} ≥ 1

)

≥ k − a

N − 1
P
(
m(1)

{o,e1} ≥ k,
N∑

i=2

m(i)
{o,e1} ≥ 1 |m{o,e1} ≥

no
d

≥ kN ,

not all links on {o, e1} of same colour
)

× P(m{o,e1} ≥
no
d

≥ kN , not all links on {o, e1} of same colour )

≥ k − a

N (N − 1)
P(m{o,e1} ≥

no
d

≥ kN )

× P(not all links on {o, e1} of same colour |m{o,e1} ≥
no
d

≥ kN ).

(5.28)

We provide a lower bound for the first probability appearing in (5.28). Using the condi-
tional probability formula, we have that,

P
(
m{o,e1} ≥

no
d

≥ kN
) =

∞∑

j=kdN

P
(
m{o,e1} ≥

j

d
| no = j

)
P
(
no = j

)

≥ 1

2d
P
(
no ≥ kdN

)
,

(5.29)

where we used the rotational symmetry of the torus in the last step. For the second
probability in (5.28) we apply Lemma 5.7 with ε = 1

d and obtain that,

P(not all links on {o, e1} of same colour |m{o,e1} ≥
no
d

≥ kN )

≥ N − 1

N
P
(
at least two closed paths at {o, e1} |m{o,e1} ≥

no
d

≥ kN
)

≥ N − 1

N

(
1− e−

1
d ( 14− 1

2kN )
) ≥ 1

8d

N − 1

N
,

(5.30)

where in the last step we used that e−x ≤ 1 − 1
2 x for any x ∈ (0, 1

3 ). Plugging the
lower bounds (5.29) and (5.30) in (5.28) and applying Lemma 5.6 we obtain that for any
weight function U with range R ≥ kdN , where k := 16d2N 2M + a + 1, there exists
λ0 = λ0(d, N ,U, v, M, a) < ∞, such that for any λ ≥ λ0 and for any L ∈ 2N,

E
(
m(1)

{o,e1}m
(2)
{o,e1}

) − a E
(
m(2)

{o,e1}
) ≥ k − a

16d2N 2 P
(
no ≥ kd

) ≥ M.

This concludes the proof. ��
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5.3. Two-point function and expected number of closed paths connecting two vertices.
In this section we derive the important relation between the two-point function G(x, y)
defined in (5.4) and the expected number of closed paths connecting x and y using
reformulation (5.7) of the two-point function. Recall from the definition in (3.13) that
we denote by Ñx,y : W̃ → R the function which counts the number of closed paths
(cycles) visiting x and y.

Proposition 5.9. There exists c > 0 such that for all L ∈ 2N and for all x, y ∈ TL with
x �= y,

E
(
Ñx,y

) ≥ cG(x, y)4. (5.31)

Proof. Consider x, y ∈ TL with x �= y. By the reformulation (5.7) of the two-point
function, we have that

G(x, y) = 2 λ2

N
E

( ∑

χ∈ζ(w)

n(χ)
x n(χ)

y
U (nx + 1)

U (nx )

U (ny + 1)

U (ny)
e−ṽx,y

)

≤ 2λ2M2

N
E

(
Ñ

1
4
x,y e

2 v̄ (nx+ny ) e−ṽx,y
)
, (5.32)

where we used the upper bound
∑

χ∈ζ(w) n
(χ)
x n(χ)

y ≤ Ñ
1
4
x,y nx ny for any w ∈ W̃ and

then applied the definition in (1.5) of a good weight function U . Using now twice the
Cauchy–Schwarz inequality, we obtain from (5.32) that

G(x, y) ≤ 2λ2M2

N
E

(
Ñx,y

) 1
4 E

(
e8v̄(nx+ny)

) 1
4 E

(
e−2ṽx,y(w)

) 1
2 .

For the proof of (5.31) it only remains to show that the two expectations E
(
e8 v̄ (nx+ny)

)

and E(e−2ṽx,y(w)) are finite uniformly in L ∈ 2N. The existence of a finite c such that
for any L ∈ 2N,

E
(
e8v̄(nx+ny)

) ≤ c,

follows from Lemma 4.5 and Proposition 4.3. We now derive a uniform upper bound
for E(e−2ṽx,y(w)). For any x, y ∈ TL , we have that

μ�(e−2ṽx,y (w)) = e4
(
vL (o,o)+vL (x,y)

)

×μ

(
U (nx − 2)

U (nx )

U (ny − 2)

U (ny)
1{gx=2=gy }1{gz=0 ∀z∈TL\{x,y}}1{uz=0 ∀z∈TL }

)
,

(5.33)

where we use the convention 0
0 = 1. The identity (5.33) can be derived by defining a

map on W̃ that adds precisely two ghost pairings at x and at y. From (5.33), Proposition
4.3 and Remark 4.4 we obtain that

E(e−2ṽx,y(w)) ≤ e4α
(

1

Z�
μ

( ∏

x∈TL

U (nx − 2)

U (nx )
1{gx=2,ux=0}

)) 2
Ld

, (5.34)

where α := ∑
x∈Zd |v(x)| < ∞ since v is tempered. To prove that the term on the

right-hand side of (5.34) is finite, we use that Z� ≥ 1 and we follow the same steps
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as in the proof of Lemma 2.2. The only difference here is that in the interaction term
V (w) at each vertex precisely two ghost pairings are present (in addition to the pairings
of the links). However, as can be seen in (2.9), the presence of such two ghost pairings
at each vertex decreases the weight of the whole expression. From these considerations
and from (5.34) and (2.9) we thus deduce that there exists c ∈ (0,∞) such that for any
L ∈ 2N it holds that, E(e−2ṽx,y(w)) ≤ c. This concludes the proof of the proposition. ��

6. Derivation of the Key Inequality

Themain goal of this section is to derive Theorem 6.5 below, which states a Key Inequal-
ity for the two-point function defined in (5.4). The derivation of such a Key Inequality
involves a central quantity, defined in (6.1) below, and the chessboard estimate, which
is given in Sect. 4.2.

Throughout the section, we fix parameters d > 2, N ∈ N≥2, λ ∈ R
+, L ∈ 2N

and functions v : Zd → R and U : N0 → R
+
0 such that v is tempered and separable

and such that U is good and has range R ≥ 2. Recall from Sect. 4 that (TL ,EL) and
(TL , EL) refer to the original and to the extended torus. We write the sub-script TL or
TL when considering the RPM in the extended or in the original torus and we omit all
the remaining sub-scripts for lighter notation.

We now introduce the central quantityZ (h) for a real-valued vector h = (hx )x∈TL .
In Sect. 6.1 wewill expandZ (ϕh), with ϕ ∈ R, as a polynomial in ϕ. When considering
its limit ϕ → 0, we will see its relation to the partition functions defined right after
Definition 2.1 and in (5.3).

Central quantity.We denote byWvert
TL

⊂ WTL the set of configurationsw ∈ WTL such
that the following properties hold at the same time, see also Fig. 8:

(i) The number of 1-links on {x, y} that are unpaired at x is equal to the number of
2-links on {x, y} that are unpaired at x for any {x, y} ∈ EL ,

(ii) There exists no link of colour i ≥ 3 that is unpaired,
(iii) There exists no ghost pairing,
(iv) At virtual vertices all links are unpaired.

Condition (iv) implies that any closed path of w lies entirely in the original torus. Recall
from Sect. 2 that ux (w) denotes the number of links touching x that are unpaired at x
for any x ∈ TL . Given w ∈ WTL , we denote by αx (w) the number of links on the edge
{x, x + ed+1} that are unpaired at x ∈ TL .

Definition 6.1 (Central quantity). For any vector of real numbers h = (hx )x∈TL , we
define

Z (h) := μTL

( ∏

x∈TL

h
ux
2
x

∏

x∈TL

(1
2

) αx
2
1Wvert

TL

)
. (6.1)

In other words, in (6.1) a multiplicative factor hx is assigned to each pair of unpaired
links of different colour at x , while a multiplicative factor 1√

2
is assigned to each link

on an edge touching the virtual torus which is unpaired at both its end-points.
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Fig. 8. a A configuration w ∈ Wvert
TL

(we assume for graphical reasons that all the links lie on the original
torus). There exist precisely two open paths connecting x and y, one of colour 1 := o and one of colour 2 :=
b. There also exist two closed paths of colour 3 := g. b The configuration F5(w) ∈ Wx,y . The extremal links
on {x, q} and {y, r} have been removed

6.1. Polynomial expansion. For any vector of real numbers h = (hx )x∈TL , we define
the discrete Laplacian of h on the extended torus,

(�∗h)x :=
∑

y∈TL :{x,y}∈EL

hy .

Proposition 6.2 (Polynomial expansion). For any vector of real numbers h = (hx )x∈TL

and any ϕ ∈ R, we have that,

Z (ϕh) = Z
�
TL

+ ϕ2Z (2)(h) + o(ϕ2), (6.2)

in the limit ϕ → 0, where

Z (2)(h) := λ2 Z�
TL

( ∑

{x,y}∈EL

hxhy +
1

2

∑

x∈TL

hxhx+ed+1

)
+ 2 λ2μ�

TL

(
m(1)

{o,e1}
) ∑

{x,y}∈EL

hxhy

+
λ4

2

∑

x,y∈TL

ZTL (x, y)(�∗h)x (�∗h)y − λ4

4

∑

x∈TL

ZTL (x, x)
∑

q∈TL :{x,q}∈EL

h2q .
(6.3)

Reflection positivity will allow us to derive an upper bound on the term (6.3) for a
particular choice of h, which will then lead to the Key Inequality (6.15). The remainder
of the current subsection is devoted to the proof of Proposition 6.2, Sect. 6.2 can be read
independently from what follows below in the current subsection.

From now on we will call a link extremal if at least one of its endpoints is unpaired.
The term Z (2)(h) of order two, defined in (6.3), is the contribution to Z (h) of all

configurations w ∈ Wvert
TL

which are such that
∑

x∈TL
ux (w) = 4. By definition of

Wvert
TL

a total number of four unpaired endpoints of links can exist in three different
situations depending on the number of extremal links, see also Fig. 9. The first one is
that there exist precisely two extremal links which are unpaired at both its endpoints.
Such two extremal links have to be on the same edge. The second situation is that there
exist precisely three extremal links, one of them is unpaired at both its endpoints and
the other two are unpaired at precisely one of its endpoints. Also such three extremal
links have to be on the same edge. The third and last situation is that there exist precisely
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Fig. 9. a A configuration w ∈ A({x, y}). b A configuration w ∈ Ã1({x, y}). c A configuration w ∈
A((x, q), (y, r)). The colours are defined by 1 := b, 2 := o and 3 := g. In all three configurations there exist
precisely four unpaired endpoints of links

four extremal links, which are all unpaired at precisely one of its endpoints. Such four
extremal links are either all on the same edge or there exist two edges with precisely two
extremal links each.

Subsets of Wvert
TL

. We now define several subsets of Wvert
TL

⊂ WTL according to the
considerations above. A glance at Fig. 9 might be helpful. Recall that {x, y} ∈ EL
represents an undirected edge. In the following definition, with slight abuse of notation,
we represent by (x, y) ∈ EL an edge directed from x to y.

(i) For any {x, y} ∈ EL , we let A({x, y}) be the set of realisations w ∈ Wvert
TL

with
precisely two extremal links, such extremal links are on the edge {x, y}, one of them
having colour 1 and one of them having colour 2 and both extremal links are unpaired
at both its endpoints. It follows from this definition that in any w ∈ A({x, y}), there
exist only closed paths except for one open path of colour 1 and one open path of
colour 2 which both have length 1.

(ii) For any {x, y} ∈ EL , we let Ã1({x, y}) be the set of realisations w ∈ Wvert
TL

with
precisely three extremal links, such extremal links are all on the edge {x, y}, two of
them being 1-links and one being a 2-link. One of the extremal 1-links is paired at
x and unpaired at y and the other one is paired at y and unpaired at x . The extremal
2-link is unpaired at both its endpoints. Any configuration w ∈ Ã1({x, y}) is such
that there exist only closed paths except for one open path of colour 2 which has
length 1 and one open path of colour 1 which has length > 1. Let Ã2({x, y}) be
defined as Ã1({x, y}), but with the properties of the extremal 1- and 2-links on {x, y}
interchanged.

(iii) For any pair of (directed) distinct edges (x, q), (y, r) ∈ EL , let A((x, q), (y, r)) be
the set of realisations w ∈ Wvert

TL
with precisely four extremal links, two of them on

{x, q} and two of them on {y, r}. One of the extremal links on {x, q} and {y, r} is a
1-link and the other one is a 2-link. The extremal links on {x, q} are both paired at x
and unpaired at q and the extremal links on {y, r} are both paired at y and unpaired
at r . It follows from this definition that any configuration w ∈ A((x, q), (y, r)) is
such that there exist only closed paths except for two open paths, one of them having
colour 1 and one of them having colour 2, which both have length> 1. Further, we let
A((x, q), (x, q)) be the set of realisations w ∈ Wvert

TL
with precisely four extremal

links, such extremal links are all on {x, q}, two of them being 1-links and two being
2-links and all extremal links are paired at x , but unpaired at q.

Lemma 6.3. For any (x, q), (y, r), {u, b} ∈ EL , any {z, w} ∈ EL and any i ∈ {1, 2},
we have that

μTL

(
A({u, b})) = λ2 Z�

TL
, (6.4)
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μTL

(
Ãi ({z, w})) = λ2μ�

TL
(m(i)

{z,w}), (6.5)

μTL

(
A((x, q), (y, r))

) =
{

λ4 ZTL (x, y) if (x, q) �= (y, r),
λ4

4 ZTL (x, x) if (x, q) = (y, r).
(6.6)

Proof. We begin with the proof of (6.4). Fix an arbitrary undirected edge {u, b} ∈ EL .
Recall the definition of the set W̃o

TL
in (4.9). We define a map F3 : A({u, b}) → W̃o

TL
,

which acts by removing the two extremal links on the edge {u, b}. For any w ∈ W̃o
TL
,

F−1
3 (w) corresponds to the set of configurations which are obtained fromw by inserting

a 1-link and a 2-link on {u, b} and by leaving the links unpaired at both its endpoints.
We thus have that

∣∣F−1
3 (w)

∣∣ = 2

(
m{u,b}(w) + 2

2

)
, (6.7)

which corresponds to the number of ways a 1-link and a 2-link can be inserted on the
edge {u, b} among the ones already present in w.

For any w̃ ∈ W̃o
TL
, for any w ∈ A({u, b}) such that F3(w) = w̃, we have that

μTL (w) = λ2μTL (w̃)
m{u,b}(w̃)!

(m{u,b}(w̃) + 2)! . (6.8)

From (6.7) and (6.8), we deduce that

μTL

(A({u, b})) =
∑

w̃∈W̃o
TL

μTL

(A({u, b}) ∩ {F3(w) = w̃}) = λ2
∑

w̃∈W̃o
TL

μTL (w̃) = λ2 Z�
TL

.

This concludes the proof of (6.4).
We continue with the proof of (6.5). Fix an arbitrary edge {x, y} ∈ EL . We define

a map F4 : Ã1({x, y}) → W̃o
TL
, which acts by removing the extremal 2-link and the

extremal 1-link on {x, y} that is unpaired at x and by pairing at y the remaining extremal
1-link on {x, y}with the 1-link that has received an unpaired endpoint. For anyw ∈ W̃o

TL
,

F−1
4 (w) corresponds to the set of configurations which are obtained from w

(i) by inserting one 2-link on {x, y} and by leaving the inserted link unpaired at both its
endpoints,

(ii) by choosing one 1-link, ({x, y}, p) with p ∈ [m{x,y}], on {x, y} and by removing its
pairing at y,

(iii) by inserting one 1-link on {x, y}, by leaving the inserted link unpaired at x and by
pairing the inserted link at y to the link to which the link ({x, y}, p) has been paired
before the removal of its pairing at y.

For any w ∈ W̃o
TL
, we thus have that

|F−1
4 (w)| =

(
m{x,y}(w) + 2

2

)
2m(1)

{x,y}(w), (6.9)

where the binomial coefficient correspond to thenumber ofways two links canbe inserted
on {x, y} among the ones already present in w. The factor 2 accounts for the number
of possibilities of choosing which of the inserted links has colour 1 and which one has



2122 A. Quitmann, L. Taggi

colour 2. The factorm(1)
{x,y} corresponds to the number of possibilities of choosing a 1-link

on {x, y} whose pairing gets removed at y. For any w ∈ W̃o
TL

and any w̃ ∈ A1({x, y})
such that F4(w̃) = w, we have that

μTL (w̃) = λ2μTL (w)
m{x,y}(w)!

(m{x,y}(w) + 2)! . (6.10)

Combining (6.9) and (6.10) we thus obtain that

μTL

(
A1({x, y})) =

∑

w∈W̃o
TL

μTL

(
A1({x, y} ∩ {F4(w̃) = w}) = λ2μ�

TL

(
m(1)

{x,y}
)
.

This concludes the proof of (6.5).
We continue with the proof of (6.6). Consider x, y ∈ TL (possibly x = y) and

q, r ∈ TL such that q ∼ x and r ∼ y. We denote byWo
x,y the extension ofWx,y , defined

in (5.1) and (5.2), to the extended torus by replacingTL byTL and by adding the condition
that nz = 0 for any z ∈ TL \TL . We define a map F5 : A((x, q), (y, r)) → Wo

x,y , which
acts by removing all extremal links in the configuration, by leaving unpaired the links
to which these removed links were paired and by adding 2 ghost pairings at x and y in
case x �= y and by adding 4 ghost pairings at x in case x = y, see also Fig. 8. For any
w ∈ Wo

x,y , F
−1
5 (w) corresponds to the set of configurations which are obtained from w

(i) by removing all ghost pairings in the configuration,
(ii) by inserting gx

2 1-links and gx
2 2-links on {x, q} and by inserting gy

2 1-links and gy
2

2-links on {y, r}, where gx = gy = 2 in case that x �= y and gx = 4 in case x = y,
(iii) by leaving the inserted links unpaired at q and r and by pairing them at x and y to

the links of same colour that have an unpaired endpoint in some arbitrary manner.

For any w ∈ Wo
x,y , we thus have that,

∣∣F−1
5 (w)

∣∣ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4
(m{x,q}(w)+2

2

) (m{y,r}(w)+2
2

)
if x �= y and {x, q} �= {y, r},

4
(m{x,q}(w)+4

4

) (4
2

)
if (x, q) = (r, y),

2
1{u1x=2}+1{u2x=2} 4

(m{x,q}(w)+2
2

) (m{x,r}(w)+2
2

)
if x = y and q �= r,

2
1{u1x=2}+1{u2x=2} (m{x,q}(w)+4

4

)(4
2

)
if (x, q) = (y, r).

(6.11)

We now explain (6.11). In all four cases, the binomial coefficients involving the number
of links on the edges correspond to the number of ways the extremal links can be inserted
on {x, q} and {y, r} among the ones already present in w. If {x, q} �= {y, r} we then
have precisely two possibilities on each edge to colour the inserted links such that on
each edge one of the inserted links has colour 1 and the other one has colour 2 giving
us a factor of 4. If {x, q} = {y, r} we have

(4
2

)
possibilities of colouring the inserted

links such that two of them have colour 1 and two of them have colour 2. The remaining
factors in (6.11) correspond to the number of pairing possibilities of the inserted links.
If x �= y and {x, q} �= {y, r}, we have precisely one possibility of pairing the inserted
links at x and y with the extremal links of same colour. If (x, q) = (r, y) we have
two possibilities of choosing which of the inserted 1-links is unpaired at q and two
possibilities of choosing which of the inserted 2-links is unpaired at q. After having
chosen these links, there exists precisely one pairing possibility, thus giving us a factor
of 4. If x = y, we have to distinguish between three situations. If ux (w) = 0, then the
inserted 1-links and 2-links have to be paired with each other at x . This implies that
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there exists precisely one possibility of pairing the inserted links. If u1x = 2 and u2x = 0,
then the inserted 2-links are paired with each other at x , but the inserted 1-links are not
paired with each other at x . We thus have precisely one possibility of pairing the inserted
2-links and two possibilities of pairing the inserted 1-links with the extremal 1-links at
x . The same considerations hold true in the cases u1x = 0 and u2x = 1, and u1x = 2 = u2x .

For any w̃ ∈ Wo
x,y , for any w ∈ A((x, q), (y, r)) such that F5(w) = w̃, we have

that nz(w̃) = nz(w) for all z ∈ TL due to the insertion of the ghost pairings at x and y.
Together with the considerations above, we deduce that,

μTL (w) =
⎧
⎨

⎩

λ4μTL (w̃)
m{x,q}(w̃)!

(m{x,q}(w̃)+2)!
m{y,r}(w̃)!

(m{y,r}(w̃)+2)! if {x, q} �= {y, r},
λ4μTL (w̃)

m{x,q}(w̃)!
(m{x,q}(w̃)+4)! if {x, q} = {y, r}. (6.12)

Recalling the definition of the partition function in (5.3) and using (6.11) and (6.12), we
obtain for any pair of directed edges (x, q), (y, r) ∈ EL that

μTL

(
A((x, q), (y, r))

) =
∑

w̃∈Wo
x,y

μTL

(
A((x, q), (y, r)) ∩ {F5(w) = w̃})

=
{

λ4 ZTL (x, y) if (x, q) �= (y, r),
λ4

4 ZTL (x, y) if (x, q) = (y, r).

This concludes the proof of the lemma. ��
We now have all ingredients to prove Proposition 6.2.

Proof of Proposition 6.2. Fix a vector of real numbers h = (hx )x∈TL and ϕ ∈ R. For
any i ∈ N0, let

C(i)(h) := μTL

(
1{U=i}

∏

z∈TL

h
uz
2
z

∏

x∈TL

(1
2

) αx
2
1Wvert

TL

)
,

where U (w) := 1
2

∑
z∈TL

uz(w) is the total number of unpaired endpoints of links in

w ∈ Wvert
TL

divided by two.Using thatC(0)(h) = μTL (W̃o
TL

) = Z
�
TL

and thatC(i)(h) = 0
for any i ∈ 2N0 + 1, we have that

Z (ϕh) = Z
�
TL

+ ϕ2 C(2)(h) + o(ϕ2).

Further,

C(2)(h) =
∑

{x,y}∈EL

μTL

(
A({x, y})

)
hxhy +

1

2

∑

x∈TL

μTL

(
A({x, x + ed+1})

)
hxhx+ed+1

+ 2
∑

{x,y}∈EL

μTL

(
Ã1({x, y}

)
hxhy

+
∑

{(x,q),(y,r)}⊂EL

μTL

(
A((x, q), (y, r))

)
hqhr .

(6.13)
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Note that the fourth sum in the right hand-side of (6.13) is over all unordered pairs of
(not necessarily distinct) directed edges. Applying Lemma 6.3 this sum can be rewritten
as follows,

∑

{(x,q),(y,r)}⊂EL

μTL

(
A((x, q), (y, r))

)
hqhr

= 1

2

∑

x,y∈TL :
x �=y

∑

q,r∈TL :{x,q},{y,r}∈EL

μTL

(
A((x, q), (y, r))

)
hqhr

+
1

2

∑

x∈TL

∑

q,r∈TL :{x,q},{y,r}∈EL ,q �=r

μTL

(
A((x, q), (x, r))

)
hqhr

+
∑

x∈TL

∑

q∈TL :{x,q}∈EL

μTL

(
A((x, q), (x, q))

)
h2q

= λ4

2

∑

x,y∈TL

ZTL (x, y)(�∗h)x (�∗h)y − λ4

4

∑

x∈TL

ZTL (x, x)
∑

q∈TL :{x,q}∈EL

h2q .

Applying Lemma 6.3 also to the first three terms of (6.13), we obtain that C(2)(h) =
Z (2)(h), where Z (2)(h) is defined in (6.13). This concludes the proof of the proposition.

��

6.2. Key Inequality. Before stating the Key Inequality we state a proposition which is a
direct application of Proposition 4.3.

Proposition 6.4. Let h = (hz)z∈TL be a real-valued vector such that |hz| ≤ 1 for every
z ∈ TL . For any x ∈ TL define the new real-valued vector hx = (hxz )z∈TL by

∀z ∈ TL hxz :=
{
hx if z ∈ TL ,

hx+ed+1 if z ∈ T
(2)
L .

We have that

Z (h) ≤
( ∏

x∈TL

Z
(
hx

) ) 1
|TL |

. (6.14)

The above proposition follows immediately from Proposition 4.3 after observing that
we can write,

Z (h) = μTL

( ∏

x∈TL

f [x]h,x

)
,

for a sequence of real-valued functions ( fh,x )x∈TL that all have support {o} and where
f [x]h,x is defined as the reflection of fh,x to the site x , see the definition in Sect. 4.2.
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We can now state the Key Inequality. For any vector of real numbers, v = (vz)z∈TL ,
we define the discrete Laplacian of v on the original torus,

∀x ∈ TL (�v)x :=
∑

y∈TL :
y∼x

(vy − vx ).

Theorem 6.5 (Key Inequality). For any real-valued vector v = (vx )x∈TL , we have that,
∑

x,y∈TL

GTL (x, y)(�v)x (�v)y ≤ (
1 + 2E

(
m(1)

{o,e1}
)) ∑

{x,y}∈EL

(vy − vx )
2. (6.15)

Proof. Fix a real-valued vector v = (vx )x∈TL , and let h
v = (hv

x )x∈TL be obtained from
v as follows:

∀x ∈ TL hv
x :=

{
vx if x ∈ TL ,

−2 d vx−ed+1 if x ∈ T
(2)
L .

(6.16)

We will use the following identities:

(i)
∑

{x,y}∈EL

hv
xh

v
y +

1
2

∑

x∈TL

hv
xh

v
x+ed+1 = − 1

2

∑

{x,y}∈EL

(
vx − vy

)2,

(ii) (�∗hv)x = (�v)x ,
(iii)

∑
x∈TL

∑
q∈TL :{x,q}∈EL

(hv
q)

2 = 2d (1 + 2d)
∑

x∈TL
v2x .

Recall the definition of Z (2)(h) in (6.3) for a vector h = (hx )x∈TL ∈ R
TL . From (i), (ii),

(iii) we deduce that,

Z (2)(hv) = −λ2

2
Z

�
TL

∑

{x,y}∈EL

(vy − vx )
2 + 2λ2μ�

TL

(
m(1)

{o,e1}
) ∑

{x,y}∈EL

vxvy

+
λ4

2

∑

x,y∈TL

ZTL (x, y)(�v)x (�v)y

− λ4

2
ZTL (o, o) d (1 + 2d)

∑

x∈TL

v2x .

(6.17)

Moreover, recall that, as defined in Sect. 4.2, for any original vertex x ∈ TL , (hv)x is
defined as the vector which is obtained from hv by copying the value hv

x = vx at any
original vertex and the value hv

x+ed+1 = −2dvx at any virtual vertex and deduce from
this and from (6.17) that for any v = (vz)z∈TL and for any x ∈ TL ,

Z (2)((hv)x
) =

(
2 λ2 μ�

TL

(
m(1)

{o,e1}
) |EL | − λ4

2
ZTL (o, o) d (1 + 2d) |TL |

)
v2x .

(6.18)

Using Propositions 6.2 and 6.4, a Taylor expansion and (6.18), we have that, in the limit
as ϕ → 0,
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Z (ϕhv) = Z
�
TL

+ ϕ2Z (2)(hv) + o(ϕ2) ≤
( ∏

x∈TL

Z
(
(ϕhv)x

)) 1
|TL |

= Z
�
TL

+ ϕ2
(
2 λ2 μ�

TL

(
m(1)

{o,e1}
)
d − λ4

2
ZTL (o, o) d (1 + 2d)

) ∑

x∈TL

v2x + o(ϕ2).

Thus we proved that, in the limit as ϕ → 0,

Z
�
TL

+ ϕ2Z (2)(hv) + o(ϕ2)

≤ Z
�
TL

+ ϕ2
(
2 λ2 μ�

TL

(
m(1)

{o,e1}
)
d − λ4

2
ZTL (o, o) d (1 + 2d)

) ∑

x∈TL

v2x + o(ϕ2),

where hv was defined in (6.16) as a function of v, and this can only hold true if

Z (2)(hv) ≤
(
2 λ2 μ�

TL

(
m(1)

{o,e1}
)
d − λ4

2
ZTL (o, o) d (1 + 2d)

) ∑

x∈TL

v2x . (6.19)

By replacing (6.17) in the left-hand side of (6.19), dividing the whole expression by
λ2

2 Z
�
TL

and plugging in (5.4), we deduce that, for any finite strictly positive λ,

∑

x,y∈TL

GTL (x, y)(�v)x (�v)y

≤
∑

{x,y}∈EL

(
vy − vx

)2 + 4ETL

(
m(1)

{o,e1}
) (
d

∑

x∈TL

v2x −
∑

{x,y}∈EL

vxvy
)

= (
1 + 2ETL

(
m(1)

{o,e1}
)) ∑

{x,y}∈EL

(
vy − vx

)2
.

This concludes the proof of the theorem. ��
Remark 6.6. The bound (6.14) is reminiscent of the Gaussian Domination bound, which
appears in the framework of spin systems with continuous symmetry [24], where a
quantity which is analogous to our quantityZ (h) is defined. In that frameworkGaussian
Domination is referred to the inequality Z (h) ≤ Z (0). Our case differs from [24]
since, as one can deduce from our Polynomial expansion, Proposition 6.2, no Gaussian
Domination can hold.

7. Upper Bound on the Fourier Sum

In this section we provide a uniform lower bound for the Cesàro sum of the two-point
function (recall the definition in (5.4)). The result is presented in Theorem 7.1 below.
It is derived using Fourier transforms and the Key Inequality for the two-point function
stated in Theorem 6.5. The lower bound depends on the numerical value of G(o, e1)
and on the expected number of 1-links on {o, e1}. For a comparison between these two
quantities we refer the reader to Proposition 5.8. In the whole section d > 2, N ∈ N>1,
λ ∈ R

+, L ∈ 2N, U : N0 → R
+
0 and v : Zd → R are fixed and satisfy the assumptions

of Theorem 6.5. We omit all sub-scripts here.



Macroscopic Loops in the Bose Gas, Spin O(N) and Related Models 2127

For x ∈ Z
d , we denote by Nx := ∑∞

n=0 1{Sn=x} the number of visits at x of a
simple random walk S = (Sn)n∈N0 in Z

d starting at the origin. We denote its probability
measure and its expectation by P r.w. and E r.w..

Theorem 7.1. We have that

1

|TL |
∑

x∈TL

G(o, x) ≥ G(o, e1) +G(o, o)

2
− (

1 + 2E(m(1)
{o,e1})

)
CL(d), (7.1)

where (CL(d))L∈N is a sequence of non-negative real numbers, which is defined in (7.10)
below, whose limit L → ∞ exists and satisfies

lim
L→∞CL(d) = 2Er.w.(No) − 1

4d
. (7.2)

To begin, we define the Fourier dual torus,

T
∗
L := {2π

L
(n1, . . . , nd) ∈ R

d : ni ∈ (− L

2
,
L

2
] ∩ Z ∀i ∈ [d]}.

We denote the elements of T∗
L by k = (k1, . . . , kd) and we keep using the notation o for

(0, . . . , 0) ∈ TL or (0, . . . , 0) ∈ T
∗
L . Given a function f ∈ l2(TL), we define its Fourier

transform,

∀k ∈ T
∗
L , f̂ (k) :=

∑

x∈TL

e−ik·x f (x). (7.3)

It follows from this definition that ,

∀x ∈ TL , f (x) = 1

|TL |
∑

k∈T∗
L

eik·x f̂ (k). (7.4)

We use the notation G(x) = G(o, x) and we denote by Ĝ(k) the Fourier transform of
G(x). We start from the following equality which is an immediate consequence of (7.3)
and of (7.4).

Lemma 7.2. We have that,

2

|TL |
∑

x∈TL

G(x) = G(o) +G(e1) − 2

|TL |
∑

k∈T∗
L\{o}

cos2
(k1
2

)
Ĝ(k). (7.5)

Proof. To begin note that it follows from (7.4) that,

G(e1) = 1

|TL |
∑

k∈T∗
L

eik·e1Ĝ(k) = 1

|TL | Ĝ(o) +
1

|TL |
∑

k∈T∗
L\{o}

eik·e1Ĝ(k) (7.6)

and that

G(o) = 1

|TL |
∑

k∈T∗
L

Ĝ(k) = 1

|TL | Ĝ(o) +
1

|TL |
∑

k∈T∗
L\{o}

Ĝ(k). (7.7)
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By definition (7.3), it holds that 1
|TL | Ĝ(o) = 1

|TL |
∑

x∈TL
G(x). Thus, by summing (7.6)

and (7.7), we obtain that

2

|TL |
∑

x∈TL

G(x) = G(o) +G(e1) − 1

|TL |
∑

k∈T∗
L\{o}

(
1 + eik·e1

)
Ĝ(k). (7.8)

Since the term in the left-hand side of (7.8) is real and since Ĝ(k) is real, it follows that

1

|TL |
∑

k∈T∗
L\{o}

(
1 + eik·e1

)
Ĝ(k) = 2

|TL |
∑

k∈T∗
L\{o}

cos2
(k1
2

)
Ĝ(k),

where we used the equality 1 + cos(k1) = 2 cos2( k12 ). This concludes the proof. ��
The goal is to bound away from zero uniformly in L the quantity on the left-hand side
of (7.5). The next proposition is an application of Theorem 6.5.

Proposition 7.3 (High frequency upper bound). We have that

∀k ∈ T
∗
L \ {o} cos2

(k1
2

)
Ĝ(k) ≤ cos2( k12 )

ε(k)

(
1 + 2E(m(1)

{o,e1})
)
, (7.9)

where for any k ∈ T
∗
L ,

ε(k) := 2
d∑

j=1

(
1− cos(k j )

)
.

Proof. To begin, we fix an arbitrary k ∈ T
∗
L \ {o} and define the vector v = (vx )x∈TL ∈

R
TL by,

∀x ∈ TL vx := cos(
k1
2

) cos(k · x).

We note that under this choice the following facts hold true,

(i) For any x ∈ TL , (�v)x = −ε(k) vx ,

(ii)
∑

{x,y}∈EL
(vy − vx )

2 = ε(k)
∑

x∈TL
v2x ,

(iii)
∑

x,y∈TL
vx vy G(x, y) = Ĝ(k)

∑
x∈TL

v2x .

These computations are classical and a proof can be found for example in the appendix
of [39]. We now apply (i) to the left-hand side of (6.15) and (ii) to the right-hand side of
(6.15), thus obtaining that

ε2(k)
∑

x,y∈TL

vx vy G(x, y) ≤ ε(k)
(
1 + 2E(m(1)

{o,e1})
) ∑

x∈TL

v2x .

Applying (iii) to the left-hand side of the previous inequality and dividing everything by
ε2(k)

∑
x∈TL

cos2(k · x) gives (7.9) and concludes the proof. ��
We now have all ingredients for proving Theorem 7.1.
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Proof of Theorem 7.1. To begin, we deduce from (7.5) and (7.9) that

1

|TL |
∑

x∈TL

G(x) ≥ G(o) +G(e1)
2

− (
1 + 2E(m(1)

{o,e1})
) 1

|TL |
∑

k∈T∗
L\{o}

cos2( k12 )

ε(k)
.

We set

CL(d) := 1

|TL |
∑

k∈T∗
L\{o}

cos2( k12 )

ε(k)
. (7.10)

Using the fact that the sum in (7.10) is Riemann and using the identity cos2( k12 ) =
1
2 (1 + cos(k1)), we obtain

lim
L→∞CL(d) = E r.w.(Ne1) + E r.w.(No)

4d
= 2E r.w.(No) − 1

4d
, (7.11)

where in the last step we used that E r.w.(Ne1) = E r.w.(No)−1. For a detailed derivation
of (7.11) see also [39, Section 5]. This proves (7.2) and concludes the proof. ��

8. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1. The idea of the proof is to first
use our results from Sects. 4 to 7 to derive statements that are similar to the ones in
Theorem 1.1, but in the RPM. The main results for the RWLS will then follow from the
equivalence theorem, Theorem 3.14. Recall our convention on the constant c, which is
always positive and finite and may differ from line to line.

Proof of Theorem 1.1. Let d, N ∈ N such that d ≥ 3 and N ≥ 2 and suppose that
v : Zd → R is tempered and separable. Recall from Sect. 7 that we denote by Er.w.(No)

the expected number of visits at the origin of a simple random inZd starting at the origin.
We let M >

2E r.w.(No)−1
4d and we set M̃ := M − 2E r.w.(No)−1

4d > 0. Let U : N0 → R
+
0

be good with large enough range R and let λ0 ∈ (0,∞) be such that for any λ ≥ λ0, it
holds that

lim inf
L→∞
L∈2N

1

|TL |
∑

x∈TL

G(o, x) ≥ M̃ > 0. (8.1)

The existence of such a weight function U and parameter λ0 follows from Theorem
7.1 and from the lower bound (5.27) for the term G(o, e1). We now fix λ > λ0. By
site-monotonicity, Proposition 5.2, and by Lemma 4.5 there exists c > 0 such that for
any L ∈ 2N and x, y ∈ TL , we have that

G(x, y) ≤ G(o, e1) ≤ E(n2o) ≤ c. (8.2)

Recall the definition of Ñx,y : W̃ → N0 in (3.13). From the monotonicity result [30,
Theorem 2.2] and from (8.2) we deduce that there exist m ∈ (0, 1) and c > 0 such that,
for any L ∈ 2N and any x, y ∈ TL satisfying |xi − yi | ∈ 2N + 1 for all i ∈ [d] and such
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that |x − y| ≤ mL , we have that G(x, y) ≥ c, from which we deduce using (5.31) that
there exists c′ ∈ (0,∞) such that for each such pair of sites x, y ∈ TL ,

E(Ñx,y) > cG(x, y)4 ≥ c′. (8.3)

The Cauchy–Schwarz inequality now implies that

P(Ñx,y > 0) ≥ E(Ñx,y)
2

E(Ñ 2
x,y)

> c, (8.4)

where in the last step we used (8.3) and that E(Ñ 2
x,y) ≤ E(n2xn

2
y) < c by Lemma

4.5. Recall from Lemma 3.13 that Nx,y : � → N0, defined in (3.12), is such that
Nx,y ∼ Ñx,y . From (8.3), (8.4) and from Theorem 3.14 we can thus deduce that

E(Nx,y) > c, (8.5)

and

P
(∃n ∈ {1, . . . , |ω|} : x, y ∈ �(n)

) = P(Nx,y > 0) > c, (8.6)

where we recall that the expectation in (8.5) refers to the expectation in the RWLS. This
proves (1.12). It remains to prove (1.11). Let x ∈ TL . For any ω ∈ �, let Kx (ω) be the
total length of r-o-loops in ω visiting x , namely, for any ω = (�1, . . . , �|ω|) ∈ �, we let

Kx (ω) :=
|ω|∑

j=1

1{x∈� j }(ω),

be the local time at x for the RWLS.
For any ω = (�1, . . . , �|ω|) ∈ �, recall from (1.8) that �x (ω) denotes the first loop

of ω that contains x . Then, for any k ∈ N, we have that

∑

y∈TL

E(Nx,y1{nx≤k}) ≤ E(Kx1{nx≤k}) ≤
k∑

n=1

E
(
Kx1{precisely n loops contain x}

)

≤ E
(|�x |

) k(k + 1)

2
.

(8.7)

Further, there exists c ∈ R
+ such that for any y ∈ TL such that |x − y| ≤ mL , it holds

that

E(Nx,y1{nx≤k}) = E(Nx,y) − E(Nx,y1{nx>k}) > c − E(Nx,y1{nx>k}), (8.8)

where we used (8.5) in the last step. The second term in (8.8) converges to 0 as k → ∞,
which can be seen by applying the equivalence theorem, Theorem 3.14, the Cauchy–
Schwarz inequality, the Markov inequality and Lemma 4.5. Indeed,

E(Nx,y1{nx>k}) = E(Ñx,y1{nx>k}) ≤ E(Ñ 2
x,y)

1
2 P(nx > k)

1
2

≤
(
E(n2x )

E(nx )

k

) 1
2 =: c(k),

(8.9)



Macroscopic Loops in the Bose Gas, Spin O(N) and Related Models 2131

where limk→∞ c(k) = 0. From (8.7), (8.8) and (8.9) we thus deduce that for any k ∈ N,

E(|�x |) >
2(c − c(k))

k(k + 1)
m̃ Ld

for some m̃ ∈ (0,∞). We now choose k0 ∈ N large enough such that c(k0) < c and the
proof of the theorem is concluded. ��
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A. Appendix

A.1. The interacting Bose gas and random loops. We introduce the partition function of
the random loop model corresponding to the Bose gas in TL with interaction potential
vL : TL ×TL → R. Given n ∈ N, the number of particles, and β ∈ [0,∞), the inverse
temperature, we define the partition function,

Zbose
n,β := 1

n!
∑

x=(x1,...,xn )∈(TL )n

∑

π∈Sn

n∏

i=1

∫
dWβ

xi ,xπ(i)
(ωi (t)) exp

( ∑

1≤i, j≤n

∫ β

0
vL

(
ωi (t), ω j (t)

)
dt

)
(A.1)

where Sn is the group of permutations of n integers,dWβ
x,y is themeasure of a continuous-

time simple random walk in TL of time-length β which starts at x and ends at y, and is
defined in the measure space of continuous-time Càdlàg trajectories ω : [0, β] → TL

which start from x and end at y, the normalisation is such that
∫
dWβ

x,y equals the
probability that a continuous time simple random walk in TL of time β starting from
x ends at y, vL is the interaction potential which was defined in the introduction. This
reformulation of the Bose gas can be derived from the quantum analytic formulation
through the Feyman-Kac formula [25], see also [42] for the analogous derivation in
continuous space. Since permutations naturally induce cycles, (A.1) can be viewed as

http://creativecommons.org/licenses/by/4.0/
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the partition function of a random loop model. The grand canonical partition function
of the interacting Bose gas is then defined as,

Zbose,g
μ,β =

∞∑

n=0

eμn Zbose
n,β , (A.2)

where μ ∈ R is the chemical potential, an external parameter. We formally obtain the
RWLS considered in this paper (in the special case N = 2 andweight functionU (n) = 1
for any n ∈ N0) if we replace the continuous time simple random walk of length β by
a single-step simple random walk trajectory. More formally, replace dWβ

x,y in (A.1) by

dŴβ
x,y , where dŴ

β
x,y is defined as the measure which assigns weight 1

2d to the trajectory
such that,

∀t ∈ [0, β] ω(t) =
{
x if t ∈ [0, β),

y if t = β,

and weight zero to all the other trajectories. In other words, the particle spends time β

at the vertex x and then jumps to a nearest neighbour, y, with uniform probability. We
now make this connection formal by setting for simplicity β = 1. By replacing dW 1

x,y

by dŴ 1
x,y in (A.1), we thus obtain

Ẑ bose
n := 1

n!
∑

x=(x1,...,xn)∈TL
n

∑

π∈Sn

n∏

i=1

∫
dŴβ

xi ,xπ(i)
(ωi ) exp

( ∑

1≤i, j≤n

∫ 1

0
vL (ωi (t), ω j (t))dt

)

= 1

n!
∑

x=(x1,...,xn)∈TL
n

∑

π∈Sn
(
1

2d
)n 1{|xπ(i)−xi |1=1∀i∈[n]} exp

( ∑

1≤i, j≤n

vL (xi , x j )
)

=
n∑

k=1

1

k!
∑

(�1,...,�k )∈Lk

1{ k∑

i=1
|�i |=n

}
k∏

i=1

(2d)−|�i |

|�i | exp
(V(�1, . . . , �k)

)
,

where V was defined in (1.3). For the last identity, for any pair (x, π) appearing in the
sum we summed over all the loop configurations (�1, . . . , �k) ∈ Lk with the same loop
structure as in (x, π) and divided by the number of such configurations.After simplifying
the resulting factorials and summing over all configurations (x, π) we obtain the last
expression in the previous display. Finally, by considering the grand canonical ensemble
and setting λ = 1

2d e
μ we obtain,

Ẑ bose,g
μ :=

∞∑

n=0

eμn Ẑbose
n (A.3)

=
∞∑

k=0

1

k!
∑

(�1,...,�k )∈Lk

n∏

i=1

λ|�i |

|�i | exp
(
V(�1, . . . , �k)

)
(A.4)

= ZL ,U,v,N ,λ, (A.5)

whereZL ,U,v,N ,λ was defined in the introduction, here N = 2,U (n) = 1 for any n ∈ N0

and v : Zd → R is related to vL by (1.1).
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A.1.1. Extensions Our proof technique would allow us to prove the occurrence of BEC
for random loop models which are even closer to the Bose gas, (A.1), than (A.3). Indeed,
the only limitation of our technique is that the distance between two consecutive particles
in the same loop is at most one. This is a necessary condition for reflection positivity,
which is employed in a crucial way. For example, onemay consider the followingmodel,

Z̃ bose
n,β := 1

n!
∑

x=(x1,...,xn)∈(TL )n

∑

π∈Sn
1{

∀i∈[n] |xπ(i)−xi |1≤1
}

×
n∏

i=1

∫
dWβ

xi ,xπ(i)
(ωi ) exp

( ∑

1≤i≤ j≤n

∫ β

0
vL

(
ωi (t), ω j (t)

)
dt

)
,(A.6)

which is a minor modification of the Bose gas, (A.1). The modification consists in the
introduction of the indicator that the distance between xi and xπ(i) is at most one for
each particle i . Our proof method would allow us to prove the occurrence BEC for this
model in the grand canonical ensemble, namely the occurrence of macroscopic loops for
any β ∈ [0,∞) as long as the chemical potentialμ. Now if β is ‘sufficiently’ small, then
(A.6) is extremely ‘close’ to the interacting Bose gas, (A.1). Indeed, since β is small,
it rarely happens in (A.1) that xπ(i) (corresponding to the position of the last step of a
continuous time simple random walk of time β starting from xi ) is at a distance greater
than 1 from xi . Being the two models so close, the hope is that in the future it may be
possible to deduce BEC for (A.1) by a comparison with (A.6).

A.2. Implications for the Spin O(N) model. Our result has new implications on the Spin
O(N) model, which is ‘equivalent’ to our random loop model when the weight function
is chosen as in (1.6) and the potential v is zero.
To begin, we define the Spin O(N )model precisely. LetG = (V, E) be a finite undirected

graph. Fix an integer N ∈ N>0. We denote by ϕ ∈ (SN−1)
V
the spin configurations,

where SN−1 ⊂ R
N is the unit sphere of dimension N − 1. For example, S0 = {−1, 1}

and S
1 ⊂ R

2 is the unit circle. We will often write spin configurations as ϕ = (ϕx )x∈V
where ϕx = (ϕ1

x , . . . , ϕ
N
x ) ∈ R

N is the value of ϕ at the vertex x ∈ V . The hamiltonian
of the spin O(N ) model is defined as

HG,N (ϕ) = −
∑

{x,y}∈E
ϕx · ϕy, (A.7)

where ϕx · ϕy denotes the usual inner product of two N -component vectors. For a
parameter β ≥ 0 known as the inverse temperature the partition function at inverse
temperature β is given by

Zspin
G,N ,β

=
( ∏

x∈V

∫

SN−1
dϕx

)
e−βHG,N (ϕ), (A.8)

where dϕx denotes the uniform probability measure on S
N−1, that is,

∫
SN−1 dϕx = 1.

We introduce an expectation operator 〈·〉G,N ,β on functions (SN−1)V → R, that assigns
the value

〈 f 〉G,N ,β = 1

Zspin
G,N ,β

( ∏

x∈V

∫

SN−1
dϕx

)
f
(
(ϕx )x∈V

)
e−βHG,N (ϕ). (A.9)
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We write 〈 f 〉L ,N ,β when G is the d-dimensional torus of side length L .
When translated back into the language of spins, our general result about macroscopic
loops implies that the correlation functions of the form 〈ϕ1

xϕ
2
xϕ

1
yϕ

2
y〉L ,N ,β are uniformly

positive as long as N ≥ 2, d ≥ 3 and β is large enough. The transition from a regime of
exponential decay of such correlation functions (when β is small) to a regime of uniform
positivity of such correlation functions (when β is large) in dimensions d ≥ 3 can be
seen as an alternative characterisation of the phase transition in the Spin O(N) model
with N ≥ 2. As far as we know, only in the special case N = 2 such a point-wise
positivity result can be deduced from the point-wise positivity of the correlations of
the form 〈ϕ1

xϕ
1
y〉L ,N ,β , which was proved in [24] (see [5] for a derivation, which uses

Pfister’s theorem). Hence, our result on the Spin O(N) model, which is stated in the next
theorem, is new when N > 2.

Theorem A.1. Suppose that d ≥ 3, N ≥ 2, and β is large enough, then there exists
c1, c2 > 0 such that for any L ∈ 2N and for any x, y ∈ TL such that ‖x− y‖∞ ≤ c2 L,

〈ϕ1
xϕ

2
xϕ

1
yϕ

2
y〉L ,N ,β ≥ c1. (A.10)

Proof. Using the same expansion as in [29, Proposition 2.3] we deduce that, under the

same choice of the weight function,U (n) = �( N
2 )

�( N
2 +n)

for any n ∈ N0, and in the absence

of long range interactions, i.e, v(x) = 0 for any x ∈ Z
d ,

GTL ,U,v,N ,β(x, y) = β2〈ϕ1
xϕ

2
xϕ

1
yϕ

2
y〉L ,N ,β .

From (8.3) we then deduce the desired result. ��

A.3. Examples of tempered and separable potentials. In this section we provide exam-
ples of potentials v : Zd → R that are tempered and separable.

Lemma A.2. Let v1, v2 : Zd → R be defined by

v1(x) = α11{x=0} − β1e
−ι|x |11{x �=0}, v2(x) = α21{x=0} − β2|x |−s

1 1{x �=o},

for some constants α1, α2, β1, β2, ι, s > 0 such that α1 > β1
∑

y∈Zd ,y �=o e
−ι|y|1 , α2 >

β2
∑

y∈Zd ,y �=0 |y|−s
1 , and s > d. Then v1 and v2 are tempered and separable.

Proof. It is easy to see that v1 and v2 are tempered. We now prove separability of v1.
Let i ∈ [d] and let x, y ∈ TL with yi < 0 < xi . We have that

−v1L(x, y) = β1

d∏

j=1

∑

z∈Z
e−ι|x j−y j−Lz|.

We can write the factor involving the i-th coordinate by

∑

z∈Z
e−ι|xi−yi−Lz| = 1

eLι − 1
eι|xi |eι|yi | + eLι

eLι − 1
e−ι|xi |e−ι|yi |. (A.11)

For j ∈ [d] \ {i}, we use complex Fourier transforms (see e.g. [41]) and obtain that

∑

z∈Z
e−ι|x j−y j−Lz| =

∑

z∈Z
e−ι |(|x j−y j | mod L)−Lz| =

∞∑

n=−∞
f̂ (n)ei

2πn
L x j e−i 2πnL y j , (A.12)
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where f̂ is the Fourier transform of f : R → [0,∞), f (z) = e−ιL|z| given by f̂ (ξ) =
2ιL

ι2L2+4π2ξ2
≥ 0. Combining (A.11) and (A.12) we can write

−v1L(x, y) =
∫

Rd−1
α(t, x) · α̃(t, y)dν(t),

where α : Rd−1 × TL → C
2 is defined by α(t, x) = (α j (t, x)) j∈{1,2} with

α1(t, x) = c1e
ι|xi |ei

2π
L (x1,...,xi−1,xi+1,...,xd )·�t ;

α2(t, x) = c1e
−ι|xi |ei

2π
L (x1,...,xi−1,xi+1,...,xd )·�t 

for some c1 = c1(β, ι, L) ∈ R
+. The function α̃ : R

d−1 × TL → C
2 is defined

as in (4.3). Here we use the notation �t = (�t1 , . . . , �td−1 ) ∈ Z
d−1 for a vector

t = (t1, . . . , td−1) ∈ R
d−1. The finite, non-negative measure dν(t) is given by

dν(t) = f̂ (�t1 ) · · · f̂ (�td−1 )dt,
where dt denotes the Lebesguemeasure on T = R

d−1. Hence, v1L yields a representation
of the form (4.2).
Separability of v2 can be deduced from separability of v1 since for x, y ∈ TL it holds
that

v2L(x, y) = −β2

∑

z∈Zd

1

|x − y − Lz|s1
= −β2

∑

z∈Zd

1

�(s)

∫ ∞

0
μs−1e−μ|x−y−Lz|1dμ.

��
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