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Abstract: In this paper, we investigate the lowMach and low Froude numbers limit for
the compressibleNavier–Stokes equationswith degenerate, density-dependent, viscosity
coefficient, in the strong stratification regime.We consider the case of a general pressure
law with singular component close to vacuum, and general ill-prepared initial data. We
perform our study in the three-dimensional periodic domain. We rigorously justify the
convergence to the generalised anelastic approximation, which is used extensively to
model atmospheric flows.

1. Introduction

Flows in the atmosphere are typically characterised by two main features (see [30]): first
of all, they are weakly compressible, moreover they undergo the combined effect of a
strong stratification (due to the action of gravity) and of a strong Coriolis force (due to
the rotation of the Earth, which is very fast if compared to the space-time scales of the
flows).

Neglecting the effects of the Earth rotation, the importance of the other two factors,
i.e. weak compressibility and strong stratification, may be assessed by introducing two
physical a-dimensional parameters, the Mach number and the Froude number, respec-
tively. The smaller these parameters are, the more predominant weak compressibility
and strong stratification become. Thus, as usual in Physics, it is natural to look at the
regime where both parameters vanish, to find reduced models for atmospheric flows.
They are simpler to deal with than the corresponding primitive system, both from the
analytical and numerical point of view.
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When the Mach number and the Froude number go to zero with the same speed, the
flow becomes incompressible and stratified at the same rate. Formally, this asymptotic
regime was considered already by Ogura and Phillips in [29]. The limiting system
takes the name of anelastic approximation. The physical importance of the anelastic
approximation is discussed, for example in [22] in the context of various atmospheric
flows, and in [1] in the context of astrophysics models.

1.1. The primitive system and the limit dynamics. In this paper we will give a rigorous
derivation of what we call the generalised anelastic approximation, namely an anelastic
approximation with variable viscosity. The starting system (referred to as the primi-
tive system) is the barotropic Navier–Stokes equations, with bulk viscosity coefficient
equal to 0 and the shear viscosity coefficient proportional to the density of the fluid. In
particular, the system strongly degenerates close to vacuum. This choice of the viscos-
ity coefficients is physically relevant, as viscosity is, in general, hardly expected to be
uniform for flows on large scales. Their specific form allows one to exploit a certain
mathematical structure of the system, called the BD-entropy (see more details in the
discussion below).

Assuming that both the Mach and Froude numbers are equal to a small parameter
ε > 0, the system of equations reads as follows:

∂t� + div(�u) = 0,

∂t (�u) + div(�u ⊗ u) +
1

ε2
∇ p(�) − ν div(�Du) = 1

ε2
�∇G.

(1)

The unknowns are the mass density � = �(t, x) ≥ 0, and the velocity vector field
u = u(t, x) ∈ R

3. The function p = p(�) denotes the internal pressure, the constant
ν > 0 is the viscosity coefficient, and D = 1

2

(∇ + ∇ t
)
is the symmetric part of the

gradient. Finally, G = G(x) is a smooth function (say G ∈ C3(�)) describing a scalar
external force acting on the flow. G typically encodes the action of gravity, in which
case G = −gx3, where g is the gravitational acceleration constant.

Due to the present state-of-the-art of the mathematical theory for system (1), we
assume that the fluid occupies the periodic box in R3, i.e. we consider the equations (1)
on the space domain

� := T
3 . (2)

The pressure function p is assumed of the following form:

p(�) = pe(�) + pc(�) = 1

γ
�γ − 1

κ
�−κ , γ > 1, κ ≥ γ − 2, κ > 3.

(3)
The first part is the standard barotropic pressure, while the second part is the so-called
“cold pressure”, because it is most significant in the region of temperatures close to
zero. The constants 1/γ and 1/κ are just normalisation factors; their presence is useful
in some computations. The restriction on the adiabatic exponent γ > 1 is somehow
classical in the theory of compressible Navier–Stokes equations. The conditions on the
exponent κ , instead, are of technical nature; they will arise naturally in the computations
of Sects. 3, 4 and 5.

Before going on, let us briefly comment on the cold pressure component pc(�) =
− 1

κ
�−κ of the pressure. Its presence in the pressure law (3) is essential in this work,

in order to compensate the previously mentioned degeneracy of the system close to
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vacuum regions � ≈ 0. We mention that, for similar reasons, a cold pressure term
already appeared in works [4] (in the context of heat conducting fluids), [28] (for mixture
of fluids with chemical reactions) and [19] (for some lubrication models in one space
dimension), and was recently employed in the study of [6] on the compressible Navier–
Stokes equations.

From a more physical perspective (see for instance the discussion in [4]), the term
pc(�) is associatedwith the zeroKelvin isothermal curve for heat conducting fluids; also,
singular pressures naturally appears when e.g. Van der Waals type laws are considered.
As amatter of fact, for densities and temperatures close to 0 the properties of themedium
drastically change, damaging the validity of the equations of motion: the presence of
pc(�) may be seen as a way of preserving stability of the model. Observe that different
terms could be added to the system instead of pc(�), in order to improve the stability of
the model in vacuum regions: for instance, one could use some drag forces (like in [3]
by Bresch and Desjardins for a 2-D shallow water model), or one could impose some
additional integrability conditions on the initial velocity, as done in [27] by Mellet and
Vasseur. We refer to papers [6] and [32] for a complete discussion on this subject, as
well as for recent developments. However, we have to remark that, because of technical
reasons, those approaches seem not to work in our context: while it is not clear to us that
theMellet-Vasseur estimates can be obtained uniformly in the small parameter ε ∈ ]0, 1],
the turbulent drag term from [3] seems to create difficulties in passing to the limit (see
more details in Sect. 1.3 below). For this reason, we resort here to the cold component
pc(�) in the pressure law.

When ε → 0+ in equations (1), we observe a competition between the large size of
the pressure term (low Mach number effect), which tends to drive the flow to incom-
pressibility, and the large size of the forcing term (low Froude number effect), which
increases the stratification of the flow. Due to the choice of scaling, those two terms are
in balance in the limit process. Therefore, it is easy to see that, when ε → 0+, � will
tend, at least formally, to the profile b = b(x) satisfying

∇ p(b) = b∇G . (4)

Smoothness of G(x) and strict monotonicity of p imply that there exists a smooth
function b ∈ C3(�) satisfying (4). Monotonicity of p implies convexity of the pressure
potential H (defined in (9) below) which provides existence of constants b∗, b∗ ∈ R

such that
∀ x ∈ �, 0 < b∗ ≤ b(x) ≤ b∗ . (5)

Note that, for p(�) = �2

2 , one gets G = b up to the choice of an irrelevant additive
constant, which is the case considered in [7]. On the other hand, if G(x) = −gx3 is the
gravitational potential, it is easy to see that b = b(x3) verifies (5).

Since � ≈ b for ε → 0+, linking the pressure and external force terms according to
(4) and assuming that we can identify the limits of the non-linear terms appearing in (1),
we formally check that the limiting system is an anelastic approximation with variable
viscosity coefficient, namely

div(bU) = 0

∂tU + (U · ∇)U + ∇π − b−1 ν div
(
bDU

) = 0 .
(6)

We refer to system (6) as the generalised anelastic approximation. In the above system,
π = π(t, x) denotes an unknown scalar function, and the term ∇π plays the role
of a Lagrangian multiplier associated with the anelastic constraint div (bU) = 0. The



1466 F. Fanelli, E. Zatorska

limiting system can be also regarded as the viscous counterpart of the so-called lake
equation, whose study was initiated in [23].

The goal of this paper is to rigorously justify the above formal derivation in the
framework of global in time finite energy weak solutions to the primitive system (1)–(3)
for general ill-prepared initial data.

1.2. An overview of related results. Due to the physical importance of the anelastic
approximation, its rigorous derivation has been the object of intensive studies in the past
years.

In [26], Masmoudi proved the rigorous derivation of the anelastic approximation,
starting from the classical barotropic Navier–Stokes system. He considered a bounded
domain in R

3, supplemented with Dirichlet boundary conditions, and the limit was
performed for ill-prepared initial data via a compensated compactness argument. Soon
after that, Feireisl, Málek, Novotný and Straškraba proved an analogous result on a
periodic box, and for pressure laws which are small variations of the ideal gas law, see
[15]. Finally, we refer to the book by Feireisl and Novotný [16] for a complete account
of the mathematical literature on the low Mach number limit, in the presence of both
low and high stratification effects. They presented the theory for the full Navier–Stokes–
Fourier system and in the framework of global in time finite energy weak solutions.
The literature related to the incompressible limit of compressible fluid equations is of
course much more extensive (see e.g. the pioneering works [10] by Ebin and [20,21] by
Klainerman and Majda) and recalling all relevant results goes far beyond the scope of
this introduction. We thus limit ourselves to quote a couple of recent works.

In [14], a variant of the anelastic approximation was derived, starting from a version
of the Navier–Stokes–Fourier system with neglected thermal diffusion: the potential
temperature is assumed to be just transported by the velocity field. The limit system that
is identified in [14] reads as a coupling of the anelastic approximation system (6) with a
transport equation for the limiting temperature. The convergence is proven in the infinite
slab R2×]0, 1[ through a spectral analysis of the singular perturbation operator and an
application of the celebrated RAGE theorem from scattering theory. The advantage
of that technique, in comparison to the one used in [26], is that it allows to get the
compactness of the sequence of velocity fields.

On the side of the incompressible limit (with no stratification effects, though), another
interesting result is [9], where the the authors deal with weakly compressible viscous
fluids in a critical regularity functional framework. In that paper, weak compressibility
is obtained by taking a large bulk viscosity coefficient limit, instead of the classical low
Mach number limit. More recently, in [13], a similar idea was implemented for fast
rotating fluids.

For the degenerate Navier–Stokes system (1), as considered in our paper, the relevant
results are much more sparse. The first one to mention is the incompressible limit in a
strong stratification regime considered in [7] by Bresch, Gisclon and Lin. Their system
includes two artificial drag terms in the momentum equation, in order to improve the
available information for the velocity field close to vacuum. The convergence to the
anelastic approximation is proven using the relative energy method, for a special choice
of pressure law p(�) = �2/2 and for well-prepared initial data.

A similar method was used in [3] by Bresch and Desjardins and in [18] by Jüngel, Lin
and Wu, for the low Mach number and low Rossby number limit in a two-dimensional
geometry. The external force in these papers is replaced by the Coriolis force (whence
the low Rossby number regime) and a capillarity term. The resulting limiting system is
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a quasi-geostrophic type equation for the stream function of the limit velocity field. We
also refer to [11,12] for a generalisation of these results to the 3-D setting and to the
case of general ill-prepared initial data.

1.3. The content of the paper. In the context depicted above, our work can be seen as
a generalisation of the result from [7], to the case of ill-prepared initial data and of
more general pressure laws (and hence, more general external forces G). We work in
the framework of global in time finite energy weak solutions to the primitive system.
Their existence, in presence of a cold part of the pressure (3), has been established in
[28,33]. The case without this assumption has been completed much more recently in
[32] by Vasseur and Yu. In all these results, the finite energy condition plays, of course, a
major role. However, the degenerate Navier–Stokes system (1) possesses also a second
energy inequality, usually named BD entropy inequality after Bresch and Desjardins,
who investigated this second energy conservation law in [3].

TheBD entropy estimate provides a control on the gradient of a certain function of the
density, whose exact form depends on the form of the viscosity coefficient. For system
(1), this function is ∇√

�. The BD entropy also allows to control the skew-symmetric
part A = 1

2

(∇ − ∇ t
)
of the gradient of the velocity. This, when combined with the

classical energy, provides the corresponding bound for the full gradient of the velocity.
The classical energy inequality, the BD entropy inequality, and all the bounds that

follow, are essential also in the present paper. As a matter of fact, for any value of
parameter ε ∈ ]0, 1], we consider a finite energy weak solution

(
�ε, uε

)
to system (1),

which satisfy both those energy inequalities. However, proving that the BD entropy
estimate is satisfied uniformly with respect to ε requires some effort, especially when a
general pressure law is considered: this is one of the first problems solved in our paper.

Having all these estimates satisfied uniformly for a sequence of finite energy weak
solutions

(
�ε, uε

)
ε
, the rest of the proof of the derivation of the generalised anelastic

approximation (6) boils down to showing that the weak limit (b, U) is indeed a solution
to (6). It is well known that passing to the limit in the weak formulation of equations
(1), especially in its nonlinear parts, is problematic. This is because the singular terms,
along with the ill-prepared initial data, are responsible for fast time oscillations of the
solutions (the so-called acoustic waves), which may prevent, in the end, the convergence
of the nonlinear terms to the expected limit. Showing that this does not happen is the
core of the whole proof.

The main concern is the convergence of the convective term in the momentum equa-
tion. To that purpose, we use a different technique than the one from [7]. Our approach
is inspired by the previous works [25] and [26] on the incompressible limit for the
classical barotropic Navier–Stokes system, and is based on a compensated compactness
argument. More precisely, we first regularise the primitive equations, which we recast
in the form of a wave system. After that, we exploit two pieces of information coming
from the wave system. First of all, we may deduce the compactness of the rotational
part of the velocity fields. On the other hand, by direct but elaborated algebraic manip-
ulations, we may infer that the interaction of the potential part of the velocity fields in
the convective term gives rise to small quantities, which tend to vanish when ε → 0+.
It is worth to point that this argument is robust enough to deal with other variants of the
system (1). For instance, we could trade the cold component of the pressure function,
which basically provides us with some integrability properties for ∇u, for a turbulent
drag term �|u|u, which would give a better integrability of the momentum V := �u. In



1468 F. Fanelli, E. Zatorska

that case, most of the steps are the same, although the derivation of essential estimates
becomes significantly more laborious. The only problem, and the breaking point, arises
when one wants to pass to the limit in this artificial drag term. This term turns out to be
even more non-linear than the convective term, because of the presence of the norm |u|
of the vector u. It is not clear how to bypass this difficulty in our framework, and so, the
problem remains open.

We conclude with a short outline of the paper. In the next section, we collect our main
hypotheses on the initial data, we give the definition of finite energy weak solutions, and
we state our main result. In Sect. 3, we deduce, from the energy inequality and the BD
entropy inequality, a long list of uniform bounds for the family of solutions

(
�ε, uε

)
ε
we

consider. That part of the study is rather delicate, due to the degeneracy of the system
close to vacuum. In Sect. 4, we use the previous uniform bounds to extract a weakly
convergent subsequence, and to derive first basic properties on its weak limit point. At
this stage we reformulate the primitive equations into the wave system, which describes
the propagation of the acoustic waves. In Sect. 5 we rigorously perform the convergence
in the weak formulation of equations (1), and conclude the derivation of the anelastic
approximation (6). For the convenience of the reader, we collect some tools from Fourier
analysis which we need in our study in the Appendix at the end of the paper.

2. Statement of the Main Result

In this section, we first introduce our assumptions on the initial data, then we define the
notion of finite energy weak solutions to system (1)–(3), and finally we formulate our
main theorem.

Initial data. Problem (1)–(3) is supplemented by general ill-prepared initial data.
Namely, for any small parameter ε ∈ ]0, 1] fixed, we pick initial data

(�, u)|t=0 = (
�0,ε, u0,ε

)
(7)

satisfying the following conditions:

(i) The initial densities �0,ε ≥ 0 are assumed to be small perturbations of the static state
b, defined by (4): more precisely, we assume1 that

�0,ε = b + ε φ0,ε , with
(
φ0,ε

)
ε

⊂ L∞(�) and
(
∇ ln

�0,ε

b

)

ε
⊂ L∞(�) ;

(ii) The initial velocity fields u0,ε are such that
(
u0,ε

)
ε

⊂ L∞(�).

Thus, up to extraction of a subsequence, not relabeled here, we may suppose that

φ0,ε → φ0 and u0,ε → u0 weakly- ∗ in L∞(�) . (8)

Energy functionals.Next, we need to introduce various energy functionals. The internal
energy function (sometimes called pressure potential) is defined by the ODE

� H ′(�) − H(�) = p(�) ,

1 Here and throughout this paper, we make use of the following notation: given a normed space X and a
sequence of functions

(
fε
)
ε
all belonging to X , we write

(
fε
)
ε

⊂ X implicitly meaning that the sequence is
also bounded in X .
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which implies in particular that

H ′′(�) = p′(�)

�
.

Notice that H is defined up to the sum of an affine function. Here, we fix the classical
choice

H(�) = �

∫ �

1

p(z)

z2
dz = 1

γ (γ − 1)
�
(
�γ−1 − 1

)
+

1

κ (κ + 1)
�
(
�−κ−1 − 1

)
.

(9)
We now denote

E
(
�, u

∣∣
∣ b

)
:= 1

2

∫

�

� |u|2 dx +
1

ε2

∫

�

(
H(�) − H(b) − H ′(b) (� − b)

)
dx

(10)

F
(
�, u

∣∣∣ b
)

:=
∫

�

�

∣∣∣u + ν∇ ln
�

b

∣∣∣
2
dx (11)

to be the classical energy and the BD entropy functions. We also set E
(
�, u

∣
∣∣ b

)
(T ) :=

E
(
�(T ), u(T )

∣∣∣ b
)
and E

(
�, u

∣∣∣ b
)
(0) := E

(
�0, u0

∣∣∣ b
)
, and similarly for the function

F .

Weak solutions to the primitive system. After this preparation, we are ready to give
the definition of weak solutions to system (1)–(3) which are relevant for us.

Definition 2.1. Let
(
�0, u0

)
be such that E

(
�0, u0

∣∣∣ b
)
+ F

(
�0, u0

∣∣∣ b
)

< +∞.

We say that the couple (�, u) is a finite energy weak solution of (1)–(3) in [0, T [ ×�,
with the initial datum

(
�0, u0

)
, provided the following conditions are satisfied:

(1) � ≥ 0 almost everywhere, with � ∈ L∞([0, T [ ; Lγ (�)
)
and �−1 ∈ L∞([0, T [ ; Lκ

(�)
)
, ∇√

� ∈ L∞([0, T [ ; L2(�)
)
and

√
p′(�)

�
∇� ∈ L2

([0, T [ ; L2(�)
)
;

(2)
√

�u ∈ L∞([0, T [ ; L2(�)
)
and

√
�∇u ∈ L2

([0, T [ ; L2(�)
)
;

(3) The equations of system (1) are satisfied in the sense of distributions: more precisely,
we have ∫

�

�0ξ(0) dx +
∫ T

0

∫

�

(
�∂tξ + �u · ∇ξ

)
dx dt = 0 (12)

for any test function ξ ∈ D([0, T [ ×�
)
, and

∫

�

�0u0 · ψ(0) dx +
∫ T

0

∫

�

(
�u · ∂tψ + �u ⊗ u : ∇ψ

)
dx dt

+
1

ε2

∫ T

0

∫

�

p(�) divψ dx dt +
1

ε2

∫ T

0

∫

�

�∇G · ψ dx dt

− ν

∫ T

0

∫

�

�Du : ∇ψ dx dt = 0

(13)

for any test function ψ ∈ D([0, T [ ×�;R3
)
;
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(4) For almost every t ∈ [0, T [ , the following energy inequalities hold true:

E
(
�, u

∣∣∣ b
)
(t) + ν

∫ t

0

∫

�

�|Du|2 dx ds ≤ E
(
�0, u0

∣∣∣ b
)

,

F
(
�, u

∣∣∣ b
)
(t) +

ν

ε2

∫ t

0

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx ds

+ ν

∫ t

0

∫

�

�|Au|2 dx ds ≤ C0 e
C0(1+T ) ,

(14)

where the constant C0 > 0 may depend on E
(
�0, u0

∣
∣∣ b

)
and F

(
�0, u0

∣
∣∣ b

)
but is

independent of ε.

The solution (�, u) is said global in time if the previous properties hold true for any
T > 0.

For any ε ∈ ]0, 1] fixed, the existence of global in time finite energy weak solutions
to system (1) in the sense of previous definition was proven in [33] and [28], in the case
G = 0 (corresponding to b = const.). The argument of those papers apply in a fairly
direct way also to the case considered in this paper, where G �= 0 and b is non-constant:
we explain in the next section how to modify the estimates of [28–33] in order to include
the force.

Main result. Before stating the main result of this paper, we need some additional
tools and notation. Following [15–25] (see also [24]), we introduce the twisted Leray-
Helmholtz projector Pb, related to the smooth function b satisfying (5), as follows: for
any smooth vector field v on �, we write

v = Pb[v] + b∇
 ,

where 
 is the unique solution to the Neumann problem

div
(
b∇


) = div v in �,

∫

�


 dx = 0 .

Remark that Pb[v] and Qb[v] := b∇
 are orthogonal in the weighted Hilbert space
L2
b(�;R3), which is defined as the space of functions f : � −→ R

3 which are L2-
summable with respect to the measure 1

b dx .
Similarly to the case of the classical Leray-Helmholtz projector P = P1 and its L2-

orthognal projector Q = Q1, it is possible to prove that both Pb and Qb are bounded
continuous functionals on L p(�;R3), for any 1 < p < +∞.

We can now state the main result of this paper, which is contained in the following
theorem.

Theorem 2.2. Let γ > 1 and κ ≥ γ − 2, κ > 3 in (3).
Let

(
�0,ε, u0,ε

)
ε
be a family of initial data satisfying hypotheses (i)-(ii) fixed above, so

in particular the condition

sup
ε∈ ]0,1]

E
(
�0,ε, u0,ε

∣∣
∣ b

)
+ sup

ε∈ ]0,1]
F
(
�0,ε, u0,ε

∣∣
∣ b

)
< +∞ (15)

holds. Define the couple (φ0, u0) as in (8).
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Let
(
�ε, uε

)
ε
be a family of global in time weak solutions to system (1)–(3), in the sense

of Definition 2.1, corresponding to the previous initial data. Define the scalar quantity
φε := �ε−b

ε
.

Then, there exists a couple of functions
(
φ, U

)
such that, passing to a suitable sub-

sequence as the case may be, in the limit ε → 0 one has

�ε → b strongly in L∞
loc

(
R+; L p(�)

)
, for any p ∈ [1, 3[ ,

φε → φ weakly in L2
loc

(
R+;W 1,min{γ,2}(�)

)
,

uε → U weakly- ∗ in L∞(
R+; L p1(�)

)

∩ L2
loc

(
R+;W 1,p1(�)

)
, where p1 := 2κ

κ + 1
.

In addition, φ = φ(b) is a function of the static profile b, while U is a solution of
the target system (6) in the weak sense, related to the initial datum U|t=0 = U0 :=
1
b Pb[b u0], i.e. one has div(bU) = 0 almost everywhere in R+ × � and

∫

�

b u0 · ψ(0) dx +
∫ T

0

∫

�

(
bU · ∂tψ + bU ⊗ U : ∇ψ

)
dx dt

− ν

∫ T

0

∫

�

b∇U : ∇ψ dx dt = 0

(16)

for any T > 0 and any test function ψ ∈ D([0, T [ ×�;R3
)
such that div(bψ) = 0.

Remark 2.3. Note that the initial condition equals

∫

�

b u0 · ζ dx =
∫

�

Pb[b u0] · ζ dx =
∫

�

bU0 · ζ dx

for any test function ζ ∈ D(
�;R3

)
such that div(bζ ) = 0.

3. A Priori Estimates

In this section, we derive uniform bounds for the family of weak solutions
(
�ε, uε

)
ε
to

the original Navier–Stokes system (1). The main tools for this are the classical energy
inequality and the so-called BD entropy estimate.

Here and everywhere in the text, we adopt the following notation: given a Banach
space X and any p ∈ [1,+∞], we set L p

T (X) := L p([0, T ]; X); in the case T = +∞,
instead, we explicitly write L p(R+; X). When convenient, we will use also the notation
L p
loc(R+; X) := ⋂

T>0 L
p
T (X).

We also point out that, in the computations below, the Lebesgue exponent p ∈
[1,+∞] is allowed to vary from an inequality to another. Each time we use it, we put
in evidence the right range of values of p for which the corresponding inequality holds
true. Thus, for instance, the exponent p appearing below is completely uncorrelated to
the one from Theorem 2.2.
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3.1. Bounds coming from the energy inequality. The energy inequality for
(
�ε, uε

)
,

which is satisfied by assumption, reads as follows: for almost any time T > 0, we have

E
(
�ε, uε

∣∣∣ b
)
(T ) + ν

∫ T

0

∫

�

�ε |Duε|2 dx dt ≤ E
(
�0,ε, m0,ε

∣∣∣ b
)

, (17)

where the function E
(
�, u

∣∣∣ b
)
has been defined in (10) and we recall that we have set

E
(
�ε, uε

∣∣∣ b
)
(T ) := E

(
�ε(T ), uε(T )

∣∣∣ b
)
. Notice that, due to the cold pressure, at any

value of ε ∈ ]0, 1] fixed, the velocity field uε is well-defined , thus the previous notation
makes sense.

From the energy inequality (17), we now derive first uniform bounds for the family(
�ε, uε

)
ε
. In fact, owing to our assumptions on the initial data, and in particular to (15),

the right-hand side of (17) is uniformly bounded: specifically, we have

sup
ε∈ ]0,1]

E
(
�0,ε, u0,ε

∣∣∣ b
)

< +∞ .

Then, it is easy to deduce the following uniform bounds:

(√
�ε uε

)
ε

⊂ L∞(
R+; L2(�)

)
, (18)

(√
�ε Duε

)
ε

⊂ L2(
R+; L2(�)

)
. (19)

Let us now focus on the density functions. To begin with, following the approach of
[16], it is convenient to decompose any function h into its essential and residual parts.
Thus, for almost every time t > 0 and all ε ∈ ]0, 1], we introduce the sets

�ε
ess(t) :=

{
x ∈ �

∣∣∣
b∗
2

≤ �ε(t, x) ≤ 2 b∗
}

, �ε
res(t) := �\�ε

ess(t) ,

where the constants b∗ and b∗ have been defined in (5) Then, given a function h, we can
write

h = [h]ess + [h]res , where [h]ess := h 1�ε
ess(t) .

Here above, 1A denotes the characteristic function of a set A ⊂ �.
For later use, it is convenient to divide the residual set �ε

res(t) further: we define

�ε
res,B(t) :=

{
x ∈ �ε

res(t)
∣
∣∣ 0 ≤ �ε(t, x) <

b∗
2

}
,

�ε
res,UB(t) :=

{
x ∈ �ε

res(t)
∣∣∣ �ε(t, x) > 2 b∗}

as the regions where �ε, respectively, stays bounded and may become unbounded.
After this preparation, let us come back to (17) and derive uniform bounds for the

family
(
�ε

)
ε
. In the essential set, we can perform Taylor’s expansion of the function H ;

we thus get

[
H(�) − H(b) − H ′(b) (� − b)

]

ess
≥ c

∣∣�ε − b
∣∣2 1�ε

ess(t) ,
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which implies that

sup
t∈R+

∥∥∥∥
1

ε

[
�ε − b

]
ess

∥∥∥∥
L2(�)

≤ C . (20)

On the other hand, using the convexity of the function H , the fact that
∣∣[�ε − b

]
res

∣∣ ≥
b∗/2 and equation (9), we discover (see e.g. [17] for details) the following bounds on
the residual set:

sup
t∈R+

∥∥[�ε

]
res

∥∥γ

Lγ (�)
+ sup

t∈R+

∥
∥∥
[
�−1

ε

]

res

∥
∥∥

κ

Lκ (�)
+ sup

t∈R+

‖[1]res‖L1(�) ≤ C ε2 . (21)

The previous estimate immediately implies that

sup
t∈R+

L(�ε
res(t)

) ≤ C ε2 , (22)

where we have denoted by L(A) the Lebesgue measure of a set A ⊂ �.
At this point, let us define the quantity

φε = 1

ε

(
�ε − b

)
.

From the uniform bound (20), we may deduce that
∥∥[φε

]
ess

∥∥
L∞(R+;L2)

≤ C . (23)

On the other hand, using (21) we can compute that for any p ≤ γ , we have
∫

�

∣∣[φε

]
res

∣∣p dx ≤ C

ε p

(∫

�

∣∣[�ε

]
res

∣∣p dx +
∫

�

[1]res dx
)

≤ C ε2−p .

Thus, we finally infer that

∀ 1 ≤ p ≤ γ ,
∥∥[φε

]
res

∥∥
L∞(R+;L p)

≤ C ε(2−p)/p . (24)

Of course, this estimate will be useful only in the case when p satisfies the additional
restriction p ≤ 2.

3.2. The Bresch–Desjardins estimate. As it is apparent from the bounds of the previous
subsection, the difficulty with system (1) is that we lose any control on the velocity fields
uε and their gradient ∇uε close to vacuum, specifically in the region �ε

res,B . The cold
pressure term pc is of great help in order to bypass that difficulty.

However, the cold pressure term alone is not strong enough to give us all the pieces of
information we need to pass to the limit. On the other hand, system (1) possesses a nice
underlying structure, as evidenced for the first time by Bresch and Desjardins (see e.g.
[3,5]). By taking advantage of that structure, it is possible to derive, via the so-called
BD entropy estimates, some uniform estimates on the gradient of the density functions
�ε. This is the goal of the next lemma.

A bound coming from BD entropy estimates has been required in the definition of
weak solutions, see point (4) in Definition 2.1. Here we show that such a bound holds
uniformly with respect to the small parameter ε ∈ ]0, 1]. Note that the result in Lemma
3.1 is stated for smooth solutions to the Navier–Stokes system (1). This is solely to
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justify the manipulations required to derive the inequality. Once the inequality is proven
for the smooth solutions, it is possible to deduce that it is inherited also by the finite
energy weak solutions considered in this paper (see [33] and [28] for details).

In the next statement, we resort to the notation introduced in (11), and we recall that
we denote by Au = (∇u − ∇ tu

)
/2 the skew-symmetric part of the Jacobian matrix

of the vector field u.

Lemma 3.1. Let (�ε, uε) be the smooth solution to (1)–(3). Then we have the inequality

sup
t∈ ]0,T [

(
F
(
�ε, uε

∣∣
∣ b

)
(t) +

1

ε2

∫

�

(
H(�ε) − H(b) − H ′(b)(�ε − b)

)
dx

)

+
ν

ε2

∫ T

0

∫

�

b2
p′(�ε)

�ε

∣∣∣∇
(�ε

b

)∣∣∣
2
dx dt

+ ν

∫ T

0

∫

�

�ε |Auε|2 dx dt ≤ C ,

(25)

where the constant C > 0 depends only on the initial data and on T . In particular, the
previous bound is uniform with respect to ε ∈ ]0, 1].
Proof. The proof of this estimate follows closely [7], with the onlymodifications associ-
atedwithmore general forms of the pressure and of the force.Weproceed in several steps,
assuming that �ε, uε are smooth enough to justify all the computations. For notational
simplicity, in what follows we write (�, u) instead of

(
�ε, uε

)
.

Step 1. From Lemma 5.1 in [7] it follows that for sufficiently smooth solutions of the
continuity equation in (1), the following equality holds true

1

2

d

dt

∫

�

�

∣∣∣∇ ln
�

b

∣∣∣
2
dx +

∫

�

�∇u · ∇ ln
�

b
∇ ln

�

b
dx

+
∫

�

�∇u · ∇ ln b∇ ln
�

b
dx +

∫

�

�u · ∇∇ ln b∇ ln
�

b
dx

+
∫

�

�∇ div u∇ ln
�

b
dx = 0.

Step 2. In this step, one multiplies the momentum equation by ν∇ ln �
b , we get

ν

∫

�

� (∂tu + u · ∇u) · ∇ ln
�

b
dx + ν2

∫

�

�Du : ∇2 ln
�

b
dx

+
ν

ε2

∫

�

(∇ p(�) − �∇G) · ∇ ln
�

b
dx = 0.

Let us now rewrite each term from the above expression. First, note that the transport
term gives

ν

∫

�

� (∂tu + u · ∇u) · ∇ ln
�

b
dx = ν

d

dt

∫

�

bu · ∇ �

b
dx − ν

∫

�

�∇u : ∇ tu dx

+ν

∫

�

�u · ∇(∇ ln b)u dx .
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For the diffusion term, after noticing that ∇2 is always symmetric, we have

ν2
∫

�

�Du : ∇2 ln
�

b
dx = ν2

∫

�

�∇u : ∇2 ln
�

b
dx

= ν2
∫

�

b∇u : ∇2 �

b
dx − ν2

∫

�

�∇u · ∇ ln
�

b
∇ ln

�

b
dx

= −ν2
∫

�

�∇u · ∇ ln b∇ ln
�

b
dx − ν2

∫

�

�∇ div u∇ ln
�

b
dx

− ν2
∫

�

�∇u · ∇ ln
�

b
∇ ln

�

b
dx .

Finally, for the pressure and force term, using (4), we obtain

ν

∫

�

∇ p(�) − �∇G

ε2
· ∇ ln

�

b
dx = ν

ε2

∫

�

b2
p′(�)

�

∣∣∣∇ �

b

∣∣∣
2
dx

+
ν

ε2

∫

�

(
p′(�) − p′(b)

)∇b · ∇ �

b
dx .

Step 3. Now, we sum up the equalities from the previous steps along with the energy
estimate. In our case, after setting H(�; b) := H(�) − H ′(b)(� − b) − H(b), the
statement of Lemma 5.2 from [7] gives

d

dt

∫

�

(
F
(
�, u

∣∣∣ b
)
+

1

ε2
H(�; b)

)
dx +

ν

ε2

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx + ν

∫

�

�|Du|2 dx

= ν

∫

�

�∇u : ∇ tu dx − ν

∫

�

�u · (∇∇ ln b)u dx

− ν2
∫

�

�u∇∇ ln b∇ ln
�

b
dx

− ν

ε2

∫

�

(
p′(�) − p′(b)

)∇b · ∇ �

b
dx .

(26)
Now notice that

ν

∫

�

�|Du|2 dx − ν

∫

�

�∇u : ∇ tu dx = ν

∫

�

�|Au|2 dx,

and so, we finally get

d

dt

∫

�

(
F
(
�, u

∣∣∣ b
)
+

1

ε2
H(�; b)

)
dx +

ν

ε2

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx + ν

∫

�

�|Au|2 dx

= −ν

∫

�

�u · (∇∇ ln b)u dx − ν2
∫

�

�u∇∇ ln b∇ ln
�

b
dx

− ν

ε2

∫

�

(
p′(�) − p′(b)

)∇b · ∇ �

b
dx

=
3∑

i=1

Ji .

(27)
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Step 4. We have to control the terms J1, J2, J3 appearing in the right-hand side of (27).
To begin with, we can easily estimate

∫ T

0
J1 dt = −ν

∫ T

0

∫

�

�u · (∇∇ ln b)u dx dt

≤ ‖∇2 ln b‖L∞
T (L∞)

∫ T

0

∫

�

�|u|2 dx dt ≤ C .

For J2, instead, we get

∫ T

0
J2 dt = −ν2

∫ T

0

∫

�

�u∇∇ ln b∇ ln
h

b
dx dt

≤ ν2‖∇2 ln b‖L∞
T (L∞)

∫ T

0
F
(
�, u

∣∣
∣ b

)
dt ,

hence J2 can be controlled by means of a Grönwall argument.
Finally, we have to deal with J3. This estimate is a bit more involved than the previous
ones, as this term depends on the pressure. We have to distinguish some different cases.

Case 1: integral over �ε
ess. We start by bounding the part of J3 which is restricted to

the essential set. For this, we use the Taylor expansion p′(�) = p′(b) + p′′(z)(� − b),
for some z between � and b, and the fact that � is bounded in �ess to write

∣
∣∣∣∣
ν

ε2

∫

�ε
ess

(
p′(�) − p′(b)

)∇b · ∇ �

b
dx

∣
∣∣∣∣

� ν

ε2

∫

�ε
ess

|� − b| |∇b|
∣∣∣∣
∣

√
p′(�)

�
b∇

(�

b

)
∣∣∣∣
∣
dx

� Cδ

∥∥[φ
]
ess

∥∥2
L2 + δ

ν

ε2

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx ,

where we have also applied the Young inequality in the last step. Here, δ > 0 can be
taken arbitrarily small, to the price of increasing the value of Cδ . Thus, taking δ small
enough, after integration in time, we can absorbe the last term of the previous estimate
in the left-hand side of (27), while the other term is bounded by a uniform constant C
times T , in view of (23).

Case 2: integral over �ε
res. In the residual set, it is convenient to split J3 into two

pieces, as follows:

ν

ε2

∫

�ε
res

(
p′(�) − p′(b)

)∇b · ∇ �

b
dx = ν

ε2

∫

�ε
res

p′(�)∇b · ∇ �

b
dx

− ν

ε2

∫

�ε
res

p′(b)∇b · ∇ �

b
dx (28)

The bound of the first term in the last equality is easy. We start by writing

ν

ε2

∫

�ε
res

p′(�)∇b · ∇ �

b
dx = ν

ε2

∫

�ε
res

√
p′(�) � ∇ ln b ·

(√
p′(�)

�
b∇ �

b

)

dx .
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Then, we observe that

p′(�) � = �γ + �−κ �⇒
[√

p′(�) �
]

res
∈ L∞(

R+; L2)

uniformly in ε > 0, owing to (21). Indeed, one has
∥∥∥
[√

p′(�) �
]

res

∥∥∥
L2

≤ ‖�‖γ /2
Lγ +

∥
∥�−1

∥
∥κ/2
Lκ . Thus, using (21) quantitatively and arguing as in Case 1, we deduce that

∣∣∣
∣∣
ν

ε2

∫

�ε
res

√
p′(�) � ∇ ln b ·

(√
p′(�)

�
b∇ �

b

)

dx

∣∣∣
∣∣

� Cδ

ε2

∥∥∥
[√

p′(�) �
]

res

∥∥∥
2

L2
+ δ

ν

ε2

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx

� Cδ + δ
ν

ε2

∫

�

b2
p′(�)

�

∣∣
∣∇

(�

b

)∣∣
∣
2
dx .

Once again, after integration in time, the last term on the right can be absorbed in the
left-hand side of (27), for δ > 0 small enough.

It remains to deal with the last term appearing in (28). We start by writing

ν

ε2

∫

�ε
res

p′(b)∇b · ∇ �

b
dx = ν

ε2

∫

�ε
res

√
�

p′(�)

p′(b)
b

∇b ·
(√

p′(�)

�
b∇ �

b

)

dx .

First note that

�

p′(�)
= �

p′
E (�) + p′

c(�)
= �κ+2

�γ+κ + 1
.

Thus, on the one hand we get
∣∣
∣∣∣
ν

ε2

∫

�ε
res,B

√
�

p′(�)

p′(b)
b

∇b ·
(√

p′(�)

�
b∇ �

b

)

dx

∣∣
∣∣∣

� ν

ε2

(
L(�ε

res)
)1/2

∥∥∥∥∥

√
p′(�)

�
b∇ �

b

∥∥∥∥∥
L2

.

On the other hand, we also have

1�ε
res,UB

√
�

p′(�)
� 1�ε

res,UB
�(2−γ )/2

ε .

Now, in view of (21), for 2 − γ ≥ 0 we have that

[
�
](2−γ )/2
res ∈ L∞(R+; Lq) , q := 2γ

2 − γ
> 2 , with

∥∥∥
[
�
](2−γ )/2
res

∥∥∥
Lq

= ∥∥[�
]
res

∥∥γ /q
Lγ � ε2/q .

If, on the other hand 2 − γ < 0, then we have

[
�
](2−γ )/2
res ∈ L∞(R+; Lq) , q := 2κ

γ − 2
, with
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∥
∥∥
[
�
](2−γ )/2
res

∥
∥∥
Lq

=
∥
∥∥
[
�−1

]

res

∥
∥∥

κ/q

Lκ
� ε2/q .

In the latter case, in order to have q ≥ 2, we need the condition

κ ≥ γ − 2 .

In any case, and under the assumption that the previous requirement is satisfied in the
case γ > 2, we can thus bound

∣
∣∣∣∣
ν

ε2

∫

�ε
res,UB

√
�

p′(�)

p′(b)
b

∇b ·
(√

p′(�)

�
b∇ �

b

)

dx

∣
∣∣∣∣

� 1

ε2

∥∥
∥
[
�
](2−γ )/2
res

∥∥
∥
Lq

∥∥∥
∥∥

√
p′(�)

�
b∇ �

b

∥∥∥
∥∥
L2

(
L(�ε

res)
)1/m

,

where 1/q + 1/m = 1/2. In the end, using (21), (22) and the definition of m, after an
application of Young’s inequality we arrive at

∣∣∣∣∣
ν

ε2

∫

�ε
res

√
�

p′(�)

p′(b)
b

∇b ·
(√

p′(�)

�
b∇ �

b

)

dx

∣∣∣∣∣
� Cδ + δ

ν

ε2

∥∥∥∥∥

√
p′(�)

�
b∇ �

b

∥∥∥∥∥

2

L2

.

Finally, putting all those inequalities together, we see that

∫ T

0

∣∣J3
∣∣ dt � Cδ + 3 δ

ν

ε2

∫ T

0

∫

�

b2
p′(�)

�

∣∣∣∇
(�

b

)∣∣∣
2
dx dt .

Hence, for δ > 0 small enough, we can absorbe the last term of the previous inequality
into the left-hand side of (27). The proof of the lemma is thus completed. ��

Before moving on, let us observe that the constant in Lemma 3.1 depends on time.
Therefore, all the boundswhichwe are going to derive from the BD entropy estimate will
be only local in time, on any arbitrarily large but compact interval [0, T ]. This contrasts
with the bounds coming from the classical energy inequality, which instead are global
in time.

3.3. Consequences of the BD entropy estimate. Lemma 3.1 provides us with at least
three additional pieces of information with respect to the classical energy inequality
(17). Those additional bounds will be fundamental in order to prove convergence in our
setting.

First of all, estimate (25) can be used to improve (19): indeed, as ∇u = Du + Au,
we have (√

�ε ∇uε

)
ε

⊂ L2
loc

(
R+; L2(�)

)
. (29)

Next, combining (25) with (17), we gather that

√
�ε ∇ ln

(�ε

b

)
= b√

�ε

∇
(�ε

b

)
∈ L∞

loc

(
R+; L2(�)

)
, (30)
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with uniform inclusion (of course, uniform with respect to ε ∈ ]0, 1]). At this point, an
easy computation shows that

b√
�ε

∇
(�ε

b

)

= 2∇√
�ε − √

�ε ∇ ln b = 2∇√
�ε −

(√[�ε]ess +
√[�ε]res

)
∇ ln b .

Observe that
([�ε]ess

)
ε
is uniformly bounded in L∞(R+ × �), whereas

(√[�ε]res
)
ε
is

uniformly bounded in L∞(R+; L2γ ) ↪→ L∞(R+; L2), in view of (21). Putting this
information together with (30), by Sobolev embeddings we finally deduce that

(∇√
�ε

)
ε

⊂ L∞
loc

(
R+; L2(�)

) �⇒ (
�ε

)
ε

⊂ L∞
loc

(
R+; L3(�)

)
. (31)

The previous property provides higher integrability for �ε, globally (i.e. in the whole �,
without having to distinguish between essential and residual parts) and uniformly with
respect to ε ∈ ]0, 1].

Next, we consider the quantity
(

1

ε2

p′(�ε)

�ε

b2
∣∣∣∇

(�ε

b

)∣∣∣
2
)

ε

⊂ L1
loc

(
R+; L1(�)

)
. (32)

The term inside the parentheses can be written as

p′(�ε)

�ε

b2
∣∣
∣∇

(�ε

b

)∣∣
∣
2 =

(
�γ−2

ε + �−κ−2
ε

)
b2

∣∣
∣∇

(�ε

b

)∣∣
∣
2

=
∣∣∣∣b

γ /2
(�ε

b

)(γ−2)/2 ∇
(�ε

b

)∣∣∣∣

2

+

∣∣∣∣b
−κ/2

(�ε

b

)(−κ−2)/2 ∇
(�ε

b

)∣∣∣∣

2

=
∣∣∣∣
2

γ
bγ /2 ∇

(�ε

b

)γ /2
∣∣∣∣

2

+

∣∣∣∣−
2

κ
b−κ/2 ∇

(�ε

b

)−κ/2
∣∣∣∣

2

.

Thus, we get the following uniform embeddings:
(
1

ε
∇
(�ε

b

)γ /2
)

ε

⊂ L2
loc

(
R+; L2(�)

)
,

(
1

ε
∇
(�ε

b

)−κ/2
)

ε

⊂ L2
loc

(
R+; L2(�)

)
.

(33)
This is another fundamental piece of information, since it gives, roughly speaking, a
uniform control on the gradient of �ε/b, with a quantitative bound O(ε) in a suitable
norm. However, in order to be able to fully exploit this information, some preparatory
work is needed.

To begin with, we write

1

ε
∇
(�ε

b

)γ /2 = 1

ε
∇
(

�
γ/2
ε − bγ /2

bγ /2

)

.

Therefore, the uniform bound (33) implies that
(
1

ε

(
�γ/2

ε − bγ /2
))

ε

⊂ L2
loc

(
R+; L6(�)

)
. (34)
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Let us derive a couple of properties from (34). We notice that we can write

�γ/2
ε − bγ /2 = �

γ
ε − bγ

�
γ/2
ε + bγ /2

.

On the one hand, from the previous relation we immediately deduce that

(
1

ε
1�ε

res,B∪�ε
ess

(
�γ

ε − bγ
))

ε

⊂ L2
loc

(
R+; L6(�)

)
.

We use a Taylor expansion of the function f (s) = sγ to get, for a suitable point
zε = zε(t, x) between �ε(t, x) and b(x), the following fact:

�γ
ε − bγ = γ bγ−1 (�ε − b

)
+ γ (γ − 1) zγ−2

ε

(
�ε − b

)2 ≥ γ bγ−1 (�ε − b
)
.

This inequality, together with (34) above, implies that

(
1�ε

res,B∪�ε
ess

φε

)

ε
⊂ L2

loc

(
R+; L6(�)

)
. (35)

On the other hand, on the set �ε
res,UB we have that �ε ≥ 2 b∗. Hence, on that set we

can write

�
γ
ε − bγ

�
γ/2
ε + bγ /2

≥
(�ε

2

)γ 2γ − 1

2 �
γ/2
ε

≥ C �γ/2
ε .

Using (34) again, we gather that
(
1

ε
1�ε

res,UB
�γ/2

ε

)

ε

⊂ L2
loc

(
R+; L6(�)

) �⇒
(
1

ε
1�ε

res,UB
�ε

)

ε

⊂ Lγ
loc

(
R+; L3γ (�)

)
.

(36)

The main point of the last computations is that (33) does not really provide a uniform
control on the gradient of the functions φε in L2

T (L2), whenever γ �= 2. Such a control,
which is true when γ = 2, would give higher integrability of the φε’s in L2

T (L6).
Estimate (35) shows that we are not too far from getting that property, but this fact is
true only when �ε stays bounded. Since we do not have L∞ bounds on �ε, the density
functions may grow in some part of the domain � (which has to be small, recall (21)
above). Anyway, inequality (36) provides us with a useful control in that region.

Actually, in�ε
res,B we can derive an even better control on the �ε’s than (35). Indeed,

arguing in a similar way as for getting (36), from the second piece of information in (33)
we deduce

(
1

ε
1�ε

res,B
�−κ/2

ε

)

ε

⊂ L2
loc

(
R+; L6(�)

) �⇒
(
1

ε
1�ε

res,B
�−1

ε

)

ε

⊂ Lκ
loc

(
R+; L3κ (�)

)
.

(37)

We conclude this part by showing a third consequence of the BD entropy estimate
(25), that is a control on the gradient functions ∇φε in suitable Lebesgue norms. Since
this is a key property, we put it in the form of a proposition.
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Proposition 3.2. Let γ > 1 and κ > 0 such that κ ≥ γ − 2. Let
(
�ε, uε

)
ε
be a family of

global in time finite energy weak solutions to system (1), in the sense of Definition 2.1,
related to initial data

(
�0,ε, u0,ε

)
ε
such that (15) holds.

Then:

• If γ ≥ 2, one has the uniform embedding
(
φε

)
ε

⊂ L2
loc

(
R+; H1(�)

)
;

• When γ < 2, one deduces instead
(
φε

)
ε

⊂ L2
loc

(
R+;W 1,γ (�)

)
.

Proof. We start by observing that, as a consequence of (32), we get in particular
(

�ε
−(1−γ /2) b∇

(
φε

b

))

ε

⊂ L2
loc

(
R+; L2(�)

)
,

(
�ε

−(1+κ/2) b∇
(

φε

b

))

ε

⊂ L2
loc

(
R+; L2(�)

)
. (38)

Since on the set �ε
ess ∪ �ε

res,B we have 0 ≤ �ε ≤ 2b∗, we easily get

∣
∣∣∣1�ε

ess ∪�ε
res,B

b∇
(

φε

b

)∣∣∣∣ �
∣
∣∣∣1�ε

ess ∪�ε
res,B

�ε
−(1+κ/2) b∇

(
φε

b

)∣∣∣∣ ,

which implies that, for all T > 0 fixed, one has
(
1�ε

ess ∪�ε
res,B

b∇
(

φε

b

))

ε

⊂ L2
T (L2) . (39)

On the subset �ε
res,UB , we need to consider two cases.

Case 1. For 1 − γ /2 < 0 we can employ the first part of (38) and an argument similar
to the one used above to deduce that

∀ T > 0 ,

(
1�ε

res,UB
b∇

(
φε

b

))

ε

⊂ L2
T (L2) .

Case 2. For 1 − γ /2 ≥ 0 instead, we can write
∣∣∣∣1�ε

res,UB
b∇

(
φε

b

)∣∣∣∣ =
∣∣∣∣1�ε

res,UB
�ε

−(1−γ /2) b∇
(

φε

b

)∣∣∣∣
[
�ε

]1−γ /2
res,UB .

Since, for any T > 0 fixed,
([

�ε

]
res

)
ε
is uniformly bounded in L∞

T (Lγ ), we have

that
([

�ε

]1−γ /2
res,UB

)

ε
is uniformly bounded in L∞

T (L2γ /(2−γ )). In turn, combining this

information with (38) implies that

∀ T > 0 ,

(
1�ε

res,UB
b∇

(
φε

b

))

ε

⊂ L2
T (Lγ ) .

We have thus discovered that the family of∇(
φε/b

)
’s is uniformly bounded in the space

L2
T (Lγ ), for any time T > 0.
In order to conclude, we simply write

∇
(

φε

b

)
= 1

b
∇φε − 1

b2
φε ∇b ,
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and, when γ ≤ 2, we bound
(
φε

)
ε
uniformly in L∞

T (Lγ ), thanks to (23) and (24). When
γ > 2, instead, we use (23) again, together with the fact that, by definition of φε, we
have

∫

�res,B

|φε|2 dx = 1

ε2

∫

�res,B

|�ε − b|2 dx � 1

ε2
L(�res

)
� 1

∫

�res,UB

|φε|2 dx = 1

ε2

∫

�res,UB

|�ε − b|2 dx � 1

ε2

∫

�res,UB

�2
ε dx

� 1

ε2

∥∥[�ε

]
res

∥∥2
Lγ

(
L(�res

))(γ−2)/γ
� 1 ,

where we have used also the bounds provided by (21). We thus conclude that, when
γ > 2, we have

(
φε

)
ε

⊂ L∞
T (L2) for any T > 0 fixed.

In the end, the proposition is proved. ��
We also notice that, as a consequence of Proposition 3.2 and Sobolev embedding, we

get that

if 1 < γ < 2 ,
(
φε

)
ε

⊂ L2
loc

(
R+; L3γ /(3−γ )(�)

)
,

and if γ ≥ 2 ,
(
φε

)
ε

⊂ L2
loc

(
R+; L6(�)

)
. (40)

4. The Singular Perturbation Operator and the Wave System

In this section, we study in detail the singular part of the primitive equations (1). To
begin with, in Sect. 4.1 we establish first convergence properties for the sequence of
solutions

(
�ε, uε

)
ε
towards some targe profile

(
�, u

)
. Then, in Sect. 4.2 we derive some

constraints that the limit point
(
�, u

)
has to satisfy. Finally, in Sect. 4.3 we introduce the

system of waves, which encodes the propagation of fast time oscillations.

4.1. Preliminary convergence properties. From the uniform bounds exhibited in
Sects. 3.1, 3.2 and 3.3, we can derive first convergence properties for the family of
solutions

(
�ε, uε

)
ε
of our primitive system (1). Of course, the convergence we are going

to establish is only in weak topologies, therefore it will not be enough for deriving the
limit system (6).

Here below, it is convenient to work on time intervals [0, T ], for arbitrary large but
fixed T > 0. Also, in the notation we imply that all the convergences are taken in the
limit ε → 0+.

The density functions. We start by considering the sequence of the density functions
�ε. First of all, from (20) and (21), we see that we can decompose

�ε = b + �(1)
ε + �(2)

ε , with �(1)
ε −→ 0 in L∞

T (L2) , �(2)
ε −→ 0 in L∞

T (Lγ ) .

(41)
Since � is of finite measure, we can interpolate those convergence properties with (31)
to deduce that

�ε − b = rε , with rε −→ 0 in L∞
T (L p) ∀ p < 3 .

The uniform bounds of Sect. 3 allow us to find more quantitative convergence
properties. Indeed, from (23) and (35) it follows that there exists a function φ ∈
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L∞(
R+; L2(�)

) ∩ L2
loc

(
R+; L6(�)

)
such that, up to the extraction of a suitable subse-

quence, one has

[
φε

]
ess

∗
⇀ φ in L∞

T (L2) ∩ L2
T (L6) , (42)

where the symbol
∗
⇀ stands for the weak-∗ convergence in the respective functional

space. On the other hand, owing to (24), we know that
[
φε

]
res −→ 0 in L∞

T (L p) , ∀ p ∈ [1,min{γ, 2}[ . (43)

Of course, if γ ≥ 2, we have the previous strong convergence only for all 1 ≤ p < 2;
however, interpolating with the bounds of (40), in that case we get

[
φε

]
res −→ 0 in L2

T (L p) , ∀ p ∈ [1, 6[ .

The velocity fields. As it is apparent from equations (1), any information on the velocity
fields uε and their gradients is lost in regions close to vacuum. This is one of the main
difficulties arising in the analysis of system (1). On the other hand, at least at a first
sight, it is not so clear which is the right quantity to look at; for instance, keep in mind
inequalities (18), (29). Here, we decide to work with the momentum

Vε := �ε uε .

However, the first step is to get some uniform bounds on the velocity fields uε. This is
the goal of the next proposition.

Proposition 4.1. Let
(
�ε, uε

)
ε
be a family of global in time finite energy weak solutions

to system (1), in the sense of Definition 2.1, related to initial data
(
�0,ε, u0,ε

)
ε
such that

(15) holds.
Then we have the uniform estimates

(
uε

)
ε

⊂ L∞(
R+; L p1(�)

)
and

(∇uε

)
ε

⊂ L2
loc

(
R+; L p1(�)

)
, p1 := 2κ

κ + 1
.

In particular, we also have that

(
uε

)
ε

⊂ L2
loc

(
R+; L p2(�)

)
, where p2 := 6κ

κ + 3
.

Remark 4.2. Note that, due to our assumption κ > 3, one has p1 > 3/2 and p2 > 3 in
the above proposition.

Proof. We start by writing uε = �
−1/2
ε

√
�ε uε, from which, by use of (18) and (21),

we immediately deduce that
(
uε

)
ε
is bounded in L∞

T (L p1).
For the gradient terms, the argument is analogous, since we can write ∇uε =

�
−1/2
ε

√
�ε ∇uε and use, this time, (29) and (21). This implies the claimed bound on

the sequence
(∇uε

)
ε
.

Finally, the last uniform bound for the family of uε’s follows from the previous
property and Sobolev embeddings. ��

We are now ready to derive some important estimates for the velocity fields Vε.
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Proposition 4.3. Let
(
�ε, uε

)
ε
be a family of global in time finite energy weak solutions

to system (1), in the sense of Definition 2.1, related to initial data
(
�0,ε, m0,ε

)
ε
such that

(15) holds. For all ε ∈ ]0, 1], define Vε := �ε uε.
Then, the following facts hold:

(i) The sequence
(
Vε

)
ε
is uniformly bounded in the space L∞

loc

(
R+; L3/2(�)

)∩ L2
loc

(
R+;

W 1,p3(�)
)
, where p3 := 6κ/(5κ + 3);

(ii) There exist sequences
(Vε

)
ε
and

(
Wε

)
ε
of vector fields such that

∀ ε ∈ ]0, 1] , Vε = Vε + ε Wε,M ,

with the uniform embedding properties
(Vε

)
ε

⊂ L∞
loc

(
R+; L2(�)

)
and

(
Wε

)
ε

⊂ L2
loc

(
R+; L3/2(�)

) ;
(iii) After setting Ṽε := b uε, we can also write

Vε = Ṽε + ε W̃ε ,

with the uniform embedding properties
(Ṽε

)
ε

⊂ L2
loc

(
R+;W 1,p1(�)

)
and

(
W̃ε

)
ε

⊂ L2
loc

(
R+; L1(�)

)
.

Proof. Let T > 0 be arbitrary, but fixed throughout the following computations.
The proof of the L∞

T (L3/2) bound of item (i) is easy to get: it is enough to write
Vε = √

�ε
√

�ε uε and use the uniform bounds given in (18) and (31). Next, let us
focus on the bounds for the gradient. For any 1 ≤ j ≤ 3, we compute

∂ jVε = √
�ε

√
�ε ∂ juε + uε ∂ j�ε = √

�ε
√

�ε ∂ juε

+ 2
√

�ε uε ∂ j
√

�ε := Aε + Bε .

Repeating the previous argument, using this time (29) and (31), it is easy to see that(
Aε

)
ε

⊂ L2
T (L3/2). As for Bε, we start by observing that, owing to Proposition 4.1, we

have
(
uε

)
ε

⊂ L2
T (L p) for p ≤ p2 := 6κ

κ+3 . On the other hand, we have
(∇√

�ε

)
ε

⊂
L∞
T (L2) and

(√
�ε

)
ε

⊂ L∞
T (L6). Hence, we get

(
Bε

)
ε

⊂ L2
T (L p3) where p3 = 6κ

5κ+3 .
Notice that p3 > 1 if and only if κ > 3: this is precisely the place where the strongest
assumption on κ appears. Item (i) is thus proven.

For showing the decomposition in item (ii), we notice that

Vε = √
b

√
�ε uε + ε

√
�ε − √

b

ε

√
�ε uε .

Thus, if we define Vε := √
b

√
�ε uε, from (18) we immediately infer that

(Vε

)
ε

⊂
L∞
T (L2). Next, we define

Wε :=
√

�ε − √
b

ε

√
�ε uε .

At this point, we use that
∣∣
∣
√

�ε − √
b
∣∣
∣ ≤ b−1/2∗ |�ε − b|. Hence, on the one hand, by

using (35), we see that
(

1�ε
res,B∪�ε

ess

√
�ε − √

b

ε

)

ε

⊂ L2
T (L6) ;
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on the other hand, since

0 ≤ 1�ε
res,UB

(√
�ε − √

b
)

≤ 1�ε
res,UB

√
�ε � 1�ε

res,UB
�γ/2

ε ,

in view of (36) we gather that also

(
1�ε

res,UB

√
�ε −√

b
ε

)

ε

is uniformly bounded in

L2
T (L6). Therefore, we get that

(√
�ε − √

b

ε

)

ε

⊂ L2
T (L6) �⇒ (

Wε

)
ε

⊂ L2
T (L3/2) .

Theproof of item (iii) is similar. This time,wewrite�ε−b = (√
�

ε
−√

b
)(√

�
ε
+
√
b
)

and get

Vε = b uε +
(√

�ε − √
b
)√

�ε uε +
(√

�ε − √
b
)√

b uε .

If we set Ṽε := b uε, Proposition 4.1 ensures us that the claimed bounds for this quantity
are satisfied. Next, we claim that the sequence of

W̃ε :=
√

�
ε
− √

b

ε

√
�ε uε +

√
�

ε
− √

b

ε

√
b uε

is uniformly bounded in L2
T (L1), for all T > 0 fixed. For this, owing to (18), the last

part of Proposition 4.1 and Remark 4.2, it is enough to show that
√

�ε − √
b is of order O(ε) in L∞

T (L2) . (44)

As a matter of fact, since
∣∣∣
√

�ε − √
b
∣∣∣ ≤ b−1/2∗ |�ε − b|, from (20) and (21) we imme-

diately get that

((
1�ε

ess
+ 1�ε

res,B

) √
�ε−

√
b

ε

)

ε

is uniformly bounded in L∞
T (L2). Finally,

as done above, we have

0 ≤ 1�ε
res,UB

(√
�ε − √

b
)

≤ 1�ε
res,UB

√
�ε ,

which, in view of (21) again, implies that
∥∥∥1�ε

res,UB

(√
�ε − √

b
)∥∥∥

L2
�

∥∥∥1�ε
res,UB

√
�ε

∥∥∥
L2γ

(
L(�ε

res)
)1/2−1/2γ

� ε .

In the end, we have shown (44), which in turn implies the sought bound for the vector
fields W̃ε. ��

From the previous proposition, we immediately deduce the following corollary. The
proof is rather straightforward, hence omitted.

Corollary 4.4. Under the assumptions of Proposition 4.3, there exists a vector field V,
belonging to L∞

loc

(
R+; L3/2(�)

) ∩ L2
loc

(
R+;W 1,p3(�)

)
such that, up to the extraction

of a suitable subsequence, one has Vε
∗
⇀ V in that space.

In addition, V also belongs to L∞
loc

(
R+; L2(�)

) ∩ L2
loc

(
R+;W 1,p1(�)

)
, and, up to

further extractions, for all T > 0 one has that Vε
∗
⇀ V in L∞

T (L2) and Ṽε ⇀ V in
L2
T (W 1,p1).
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To conclude this part, we define the target velocity field U as

U := 1

b
V , (45)

where V is the vector field identified in Corollary 4.4.
We notice that U is (up to a further extraction) the weak-limit point of the sequence(

uε

)
ε
in the functional spaces identified in Proposition 4.1. We point out also that U

belongs to the same functional spaces to which V belongs.

4.2. Constraints on the limit. In the previous subsection, we have identified the limit
points b, φ and V of the families

(
�ε

)
ε
,
(
φε

)
ε
and

(
Vε

)
ε
, respectively. Our next goal is to

find some properties those limit points have to satisfy. We point out that these conditions
do not fully characterise the limit dynamics, which will be deduced by passing to the
limit in the momentum equation.

Proposition 4.5. Let
(
�ε, uε

)
ε
be a family of global in time finite energy weak solutions

to system (1), in the sense of Definition 2.1, related to initial data
(
�0,ε, u0,ε

)
ε
such that

(15) holds. For all ε ∈ ]0, 1], define Vε := �ε uε. Let φ be the scalar function identified
in (42), V the vector field identified in Corollary 4.4 and U the vector field defined in
(45).

Then U has to satisfy the anelastic constraint

div
(
bU

) = 0 in D′(
R+ × �

)
.

On the other hand, φ = φ(b) is determined as a function of b only.

Before proving the previous proposition, let us state a simple lemma. It will be useful
to understand how to deal with the singularity of the pressure and gravitational terms,
and to put in evidence the right singularity in the momentum equation.

Lemma 4.6. Let the assumptions of Proposition 4.5 be in force. Then, after defining

�(�ε; b) := p(�ε) − p(b) − p′(b)
(
�ε − b

)
,

we have the equality

1

ε2

(
∇ p(�ε) − �ε∇G

)
= 1

ε
b∇(

H ′′(b) φε

)
+

1

ε2
∇�(�ε; b) .

In addition, one has that
( 1

ε2
�(�ε; b)

)
ε
is uniformly bounded in L∞(

R+; L1(�)
)
.

Proof. The claimed identity follows from a simple algebraic computation:

1

ε2

(
∇ p(�ε) − �ε∇G

)
= 1

ε2

(
∇(

p(�ε) − p(b)
) − (

�ε − b
)∇G

)

= 1

ε2
∇�(�ε; b) +

1

ε2

(
∇
(
p′(b)

(
�ε − b

)) − (
�ε − b

)∇G

)

= 1

ε
b∇(

H ′′(b) φε

)
+

1

ε2
∇�(�ε; b) ,

where, in the last step, we have used the equality ∇G = H ′′(b)∇b, which holds owing
to (4).
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It remains us to show the uniformbounds for the family
( 1

ε2
�(�ε; b)

)
ε
. The argument

is similar to the proof of Lemma 4.1 in [13]; however, since that paper did not deal with
non-constant limit density profiles b nor with the presence of a cold component pc of
the pressure, we report here most of the details.

First of all, using Taylor formula at the second order for the pressure function p
together with (23), we easily see that

1

ε2

[
�(�ε; b)

]
ess ≈ φ2

ε �⇒
(

1

ε2

[
�(�ε; b)

]
ess

)

ε

⊂ L∞(R+; L1) .

Next, let us denote by �E (�ε; b) and �c(�ε; b) the functions defined as �(�ε; b), but
using respectively pE and pc instead of the full pressure function p. Then, a Taylor
expansion again and (22) imply that

1

ε2

([
�E (�ε; b)

]
res,B +

[
�c(�ε; b)

]
res,UB

)
⊂ L∞(R+; L1) .

Finally, we notice that
∣∣∣
[
�E (�ε; b)

]
res,UB

∣∣∣ �
[
�ε

]γ
res and

∣∣∣
[
�c(�ε; b)

]
res,B

∣∣∣ �
[
�ε

]−κ

res ,

for which one can deduce the sought bounds by using the controls in (21).
In the end, the lemma is completely proved. ��
We can now turn our attention to the proof of Proposition 4.5.

Proof of Proposition 4.5.. We start by considering the weak form of the momentum
equation: given a test function ϕ ∈ D(

R+ × �
)
, with Suppϕ ⊂ [0, T [ ×� for some

positive time T > 0, we have

−
∫ T

0

∫

�

�ε ∂tϕ dx dt −
∫ T

0

∫

�

�ε uε · ∇ϕ dx dt =
∫

�

�0,ε ϕ(0) dx .

By assumption on the initial data, we know that �0,ε − b −→ 0 in L2 ∩ L∞, so it
is easy to pass to the limit in the right-hand side of the previous relation. Moreover, in
view of (41) and Corollary 4.4, we know that �ε −→ b and �ε uε = Vε −→ V in
D′([0, T [ ×�). Thus, passing to the limit in the previous equality yields the constraint
∫ T

0

∫

�

V · ∇ϕ dx dt = 0 ∀ϕ ∈ D �⇒ divV = 0 in D′ .

Now, using the definition of U given in (45) immediately gives the anelastic constraint.
Let us turn our attention to the momentum equation. As appears in the statement, the

momentum equation does not give any relevant information on the limit points: we will
discover that φ is a quantity which play no role in the limit dynamics.

Indeed, we can test the momentum equation by ε ψ , where ψ ∈ D(R+ × �;R3)

is a test function with support (say) included in [0, T [ ×�, for some T > 0. By the
uniform bounds established in Sect. 3, and using the identity in Lemma 4.6 above, it
is possible to see that all the terms in the momentum equation tend to 0, except for the
term b∇(

H ′′(b) φε

)
. Thus, passing to the limit for ε → 0+, we find that

∫ T

0

∫

�

H ′′(b) φ div
(
bψ

)
dx dt = 0 ∀ψ ∈ D .
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Sinceb never vanishes, this implies that∇(
H ′′(b) φ

) = 0, and thenH ′′(b(x)
)
φ(t, x) =

c(t) a.e. onR+ ×�, for a suitable function c(t) only depending on the time variable. We
claim that c(t) ≡ c(0) is in fact constant, and does not depend on time neither. Indeed,
let us denote by 〈 f 〉 the space average over � of a function f = f (t, x), namely

〈 f 〉 = 〈 f 〉(t) := 1

L(�)

∫

�

f (t, x) dx .

Using the definition of φε, we can recast the continuity equation as

∂tφε +
1

ε
divVε = 0 . (46)

Taking the mean value with respect to the space variable, we discover that ∂t 〈φ〉 = 0,
thus the mean value of φ is preserved in time: 〈φ〉(t) = 〈φ0〉 for almost all times t ≥ 0,
where φ0 is the weak limit point of the initial data

(
φ0,ε

)
ε
specified in (8). On the other

hand, coming back to the equality H ′′(b) φ = c(t) and computing the space average,
we have that 〈φ〉(t) = 〈1/H ′′(b)〉 c(t), which in turn implies that c(t) ≡ c0 has to be a
constant function.

The proposition is now proved. ��
As already pointed out, the previous proposition does not allow us to identify the

limit dynamics yet. The main problem consists in passing to the limit in the momentum
equation, which reveals a not so easy task, owing to the non-linear terms appearing in
it. In order to succeed, we first need to understand the propagation of fast oscillations in
time: this is the goal of the next subsection.

4.3. Acoustic equation. Lemma 4.6 and Proposition 4.5 allow us to identify the singular
part of the equations of motion. Because of the ill-preparation of the initial data, this
singular part is responsible for fast oscillations in time of the solution, the so called
acoustic waves, which may eventually prevent the convergence of the non-linear terms.
In order to study those oscillations and be able to pass to the limit in the equations, we
reformulate our system (1) as a wave system.

Let us recall that we have denoted

φε = �ε − b

ε
and Vε = �ε uε .

As already remarked in the proof of Proposition 4.5, in terms of those quantities the
continuity equation can be rewritten as in (46). Concerning the momentum equation,
instead, we can take advantage of the identity of Lemma 4.6 to combine the pressure
and gravitation terms together.

In the end, we discover that system (1) can be recasted in the following form:
{

ε ∂tφε + divVε = 0
ε ∂tVε + b∇(

H ′′(b) φε

) = ε fε ,
(47)

where we have defined

fε = ν div(�ε Duε) − div(�εuε ⊗ uε) − 1

ε2
∇�(�ε; b) . (48)
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By the uniform bounds (18), we get that the sequence
(
�εuε ⊗ uε

)
ε
is uniformly

bounded in L∞
T (L1), for all times T > 0. On the other hand, by arguing as in the proof

of Proposition 4.3, it is easy to see that
(
�ε Duε

)
ε
is uniformly bounded in L2

T (L3/2).
Finally, the term �(�ε; b) has been dealt with in Lemma 4.6. Therefore, owing to the
Sobolev embedding Hs(�) ⊂ L∞(�) for any s > 3/2, we get that

∀ T > 0 , ∀ s > 5/2 ,
(
fε
)
ε

⊂ L2
T (H−s) . (49)

For later use, it is convenient to introduce a regularised version of the wave system
(47). For this, we employ the low frequency cut-off operator SM , withM ∈ N, introduced
in relation (67) in the Appendix.

Since SM commutes with all partial derivatives, applying operator SM to (47) yields
{

ε ∂tφε,M + divVε,M = 0
ε ∂tVε,M + b∇(

H ′′(b) φε,M
) = ε fε,M + hε,M ,

(50)

where we have denoted φε,M = SM (φε), Vε,M = SM (Vε) and fε,M = SM (fε), and
we have set

hε,M := [
b, SM

]∇(
H ′′(b)φε

)
+ b∇([

H ′′(b), SM
]
φε

)
.

Thanks to the uniform bounds for the sequence
(
φε

)
ε
in L2

loc

(
R+;W 1,γ (�)

)
if γ <

2, in L2
loc

(
R+; H1(�)

)
when γ ≥ 2 (keep in mind Proposition 3.2 above), standard

commutator estimates (see e.g. Lemma 2.97 of [2]) imply that

∀ T > 0 ,
∥∥hε,M

∥∥
L2
T (Lγ )

+
∥∥curl hε,M

∥∥
L2
T (Lγ )

� 2−M , (51)

where we agree that the Lebesgue exponent γ is changed into 2 whenever γ ≥ 2.
We explicitly point out that, in the above estimate (51), the multiplicative constant

is uniform with respect to both M ∈ N and ε ∈ ]0, 1], but it may depend on the fixed
time T > 0. Notice that, for the uniform bound on curl hε,M , the gradient structure of
the commutator terms play a key role. We remark also that the commutator term hε,M
is much better controlled than the corresponding term in [26], thanks to the uniform
bounds provided by the BD entropy estimates.

In addition, as an immediate consequence of (49), we get that

∀ T > 0 , ∀ s ≥ 0 ,
∥∥fε,M

∥∥
L2
T (Hs )

≤ C(s, M) , (52)

where the constants C(s, M) > 0 depend only on the quantities inside the parentheses.
Notice that these constants blow up when M → +∞, but they have finite value for any
M ∈ N fixed.

We conclude this part by showing uniform bounds on the two sequences
(
φε,M

)
ε,M

and
(
Vε,M

)
ε,M . As a matter of fact, in view of our computations in Sect. 5 below, it is

important to introduce a fine decomposition of those terms.

Lemma 4.7. Let T > 0 be arbitrarily large, but fixed. For any M ∈ N, define the
quantities φε,M = SM (φε) and Vε,M = SM (Vε) as above.

(i) Both sequences
(
φε,M

)
ε
and

(
Vε,M

)
ε
are sequences of smooth functions in space,

which are uniformly bounded (with respect to ε, but not with respect to M) in the
space L2

T (Hs), for any s ≥ 0 arbitrarily large.
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(ii) For any M ∈ N and any ε ∈ ]0, 1], we can write

φε,M = ϕε,M + ε(2−γ )/γ πε,M , (53)

where we have the uniform estimates

sup
M∈N

sup
ε∈ ]0,1]

∥
∥ϕε,M

∥
∥
L∞
T (L2)∩L2

T (L6)
≤ C and ∀ s ≥ 0 ,

sup
ε∈ ]0,1]

∥∥πε,M
∥∥
L∞
T (Hs )

≤ C(s, M) ,

for suitable positive constants C and C(s, M), which depend only on T > 0 and on
the quantities in the brackets. In the case γ ≥ 2, one can simply take πε,M ≡ 0.

(iii) For any M ∈ N and ε ∈ ]0, 1], one has
Vε,M = Vε.M + ε Wε,M , (54)

with the uniform bounds

sup
M∈N

sup
ε∈ ]0,1]

∥∥Vε,M
∥∥
L∞
T (L2)

≤ C and ∀ s ≥ 0 ,

sup
ε∈ ]0,1]

∥∥Wε,M
∥∥
L2
T (Hs )

≤ C(s, M) .

(iv) We can also write
Vε,M = Ṽε.M + ε W̃ε,M , (55)

with the uniform estimates

sup
M∈N

sup
ε∈ ]0,1]

∥∥Ṽε,M
∥∥
L2
T (W 1,p1 )

≤ C and ∀ s ≥ 0 ,

sup
ε∈ ]0,1]

∥∥W̃ε,M
∥∥
L2
T (Hs )

≤ C(s, M) .

Proof. Theproperties claimed in item (i) are an immediate consequence of the bounds for
the families

(
φε

)
ε
and

(
Vε

)
ε
, combined with the smoothing effect of the low frequency

cut-off operators SM . Keep in mind (23), (24) and Propositions 3.2 and 4.3.
The decompositions of items (iii) and (iv), together with the corresponding uni-

form estimates, also follow from Proposition 4.3, simply setting Vε,M := SM (Vε) and
Wε,M = SM (Wε), and similarly for Ṽε,M and W̃ε,M .

Finally, let us prove item (ii). We start by considering the case 1 < γ < 2. In this
case, we decompose

φε = [
φε

]
ess +

[
φε

]
res .

Thus, if we set ϕε,M := SM
([

φε

]
ess

)
, estimates (23) and (35) easily imply the uniform

boundedness (both with respect to M ∈ N and ε ∈ ]0, 1]) of the sequence (
ϕε,M

)
ε,M .

Next, we define

πε := 1

ε(2−γ )/γ

[
φε

]
res and πε,M := SM (πε) ,

and we conclude with the help of (24). When γ ≥ 2, instead, one has that
(
φε

)
ε
is

uniformly bounded in L∞
T (L2)∩ L2

T (H1), thanks to Proposition 3.2. Hence, in this case
one can simply define ϕε,M = SM (φε) and πε,M = 0. This completes the proof of the
lemma. ��
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5. Passage to the Limit

In this section, we finish the proof of our main theorem, showing the convergence (up
to an extraction) of weak solutions to (1) to weak solutions to the target system (6).

The main problem is to pass to the limit in the most non-linear term, namely the
convective term in the momentum equation. This convergence will be proved in the
following two subsections, by use of a compensated compactness argument. Finally, in
Sect. 5.3 we will take care of the other terms, and complete the proof of the convergence.

Before going into the details, let us recall that convergence will be proved for any
test function lying in the kernel of the singular perturbation operator, namely (in view
of Proposition 4.5) for any test function

ψ ∈ D(
R+ × �;R3) , such that div

(
bψ

) = 0 . (56)

Also, it is useful to introduce the followingnotation:wedenote by Rε,M any remainder
term, that is any term such that

lim
M→+∞ lim sup

ε→0+

∣∣∣
∣

∫ T

0
〈Rε,M , ψ〉D′×D dt

∣∣∣
∣ = 0 , (57)

for some given time T > 0 and test function ψ ∈ D([0, T [ ×�;R3
)
taken as above.

Similarly, we will use the notation Rε,M for any scalar term such that

lim
M→+∞ lim sup

ε→0+
Rε,M = 0 . (58)

Typically, we will have

Rε,M =
∫ T

0
〈Rε,M , ψ〉D′×D dt .

In the next computations, the precise values of Rε,M and Rε,M may change from one
line to another.

5.1. Approximation of the convective term. Passing to the limit in the convective term
is based on a compensated compactness argument, following work [26] of Masmoudi.
This argument relies on using algebraically the structure of the wave system (47) and
performing direct computations on it. Of course, for that, we need first of all to smooth
out all the quantities with respect to the space variables: this is the scope of the next
lemma.

Notice that the approximation argument here is delicate, due to the degeneracy of the
system close to vacuum. The cold pressure term pc will be of great help.

Lemma 5.1. For any T > 0 fixed and any smooth test function ψ as in (56), such that
Suppψ ⊂ [0, T [ ×�, we have

lim
M→+∞ lim sup

ε→0+

∣∣∣∣

∫ T

0

∫

�

�εuε ⊗ uε : ∇ψ dx dt −
∫ T

0

∫

�

1

b
Vε,M ⊗ Vε,M : ∇ψ dx dt

∣∣∣∣ = 0 .
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Proof. We start by observing that, in view of Propositions 4.1 and 4.3, we have
(
Vε

)
ε

⊂
L2
T (L3/2) and

(
uε

)
ε

⊂ L2
T (L p) for all p ∈ [1, p2], where p2 = 6κ/(κ + 3). We also

notice that, under our assumption κ > 3, we have 2/3 + 1/p2 < 1, i.e. p2 > 3. Thus,
given any M ∈ N, we can write

I :=
∫ T

0

∫

�

�εuε ⊗ uε : ∇ψ dx dt

=
∫ T

0

∫

�

1

b
Vε ⊗ SM (b uε) : ∇ψ dx dt

+
∫ T

0

∫

�

1

b
Vε ⊗ (Id − SM )(b uε) : ∇ψ dx dt ,

where all terms arewell-defined, and the last termon the right can be bounded as follows:
∣∣∣∣

∫ T

0

∫

�

1

b
Vε ⊗ (Id − SM )(b uε) : ∇ψ dx dt

∣∣∣∣

� ‖Vε‖L2
T (L3/2) ‖(Id − SM )(b uε)‖L2

T (L3) .

At this point, taking advantage ofBernstein’s inequalities ofLemmaA.1 in theAppendix,
we can bound

‖(Id − SM )(b uε)‖L3 ≤
∑

j≥M

∥∥� j (b uε)
∥∥
L3 �

∑

j≥M

2− j
∥∥� j∇(b uε)

∥∥
L3

�
∑

j≥M

2
j
[
−1 + 3

(
1
p1

− 1
3

)] ∥∥� j (b uε)
∥∥
L p1

≤ 2−αM ‖∇(b uε)‖B0
p1,∞

∑

j≥0

2−α j , (59)

where p1 = 2κ/(κ + 1) has been defined in Proposition 4.1 and we have set α =
(κ − 3)/2κ > 0. Owing to the embedding L p ↪→ B0

p,∞ for any p ∈ [1,+∞], we
finally get

‖(Id − SM )(b uε)‖L3 � 2−αM ‖∇(b uε)‖L p1 � 2−αM .

As a result, the previous computations show that, in the sense of (58), one has

I =
∫ T

0

∫

�

1

b
Vε ⊗ SM (b uε) : ∇ψ dx dt + Rε,M .

Next, we use again the uniform bound
(
uε

)
ε

⊂ L2
T (L p2), together with the fact

that
(
SM (b uε)

)
ε
is uniformly bounded (with respect to ε, but not to M) in the space

L2
T (L∞), to get

∫ T

0

∫

�

1

b
Vε ⊗ SM (b uε) : ∇ψ dx dt

=
∫ T

0

∫

�

uε ⊗ SM (b uε) : ∇ψ dx dt
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+ ε

∫ T

0

∫

�

1

b
φε uε ⊗ SM (b uε) : ∇ψ dx dt

=
∫ T

0

∫

�

1

b
SM

(
b uε

) ⊗ SM (b uε) : ∇ψ dx dt + Rε,M . (60)

Indeed, first note that, due to (40), we can write, for γ < 2, the following estimate:

∣∣∣∣

∫ T

0

∫

�

1

b
φε uε ⊗ SM (b uε) : ∇ψ dx dt dt

∣∣∣∣

� ‖φε‖L∞
T (L3γ /(3−γ )) ‖uε‖L2

T (L p2 ) ‖SM (b uε)‖L2
T (L∞) � 1 .

We observe that this makes sense whenever (3 − γ )/3γ + (κ + 3)/6κ ≤ 1, hence for
κ ≥ 3γ /(7γ − 6). But, for γ > 1, one always has 3γ /(7γ − 6) < 3, therefore the
previous estimate is satisfied for all κ > 3. Notice that, since p2 > 3, we can repeat the
exact same computations also when γ ≥ 2, up to use the right bound from (40).

On the other hand, after noticing that 1/p1 + 1/p2 < 1 for κ > 3 and arguing in a
similar way as above, we can estimate

∣∣∣
∣

∫ T

0

∫

�

1

b
(Id − SM )(b uε) ⊗ SM (b uε) : ∇ψ dx dt

∣∣∣
∣

� ‖(Id − SM )(b uε)‖L2
T (L p1 ) ‖SM (b uε)‖L2

T (L p2 )

� 2−M ‖∇(b uε)‖2L p1 � 2−M .

Thus, we have proven that the last equality in (60) holds true.
At this point, to conclude the argument wemay use the decomposition of Lemma 4.7.

Indeed, keeping in mind the definition of the vector fields Ṽε given in Proposition 4.3
above, we notice that SM (b uε) = Ṽε,M = Vε,M − ε W̃ε,M . Thus, using the bounds
collected in item (iv) of Lemma 4.7 we easily see that

∫ T

0

∫

�

1

b
SM

(
b uε

) ⊗ SM (b uε) : ∇ψ dx dt

=
∫ T

0

∫

�

1

b
Vε,M ⊗ Vε,M : ∇ψ dx dt + Rε,M .

This last equality finally ends the proof of the lemma. ��

5.2. Compensated compactness. Owing to Lemma 5.1, it is enough to compute the limit
of the approximate convective term

−
∫ T

0

∫

�

1

b
Vε,M ⊗ Vε,M : ∇ψ dx dt =

∫ T

0

∫

�

div

(
1

b
Vε,M ⊗ Vε,M

)
· ψ dx dt ,

for any test function ψ ∈ D([0, T [ ×�;R3
)
belonging to the kernel of the singular

perturbation operator, namely such that div (bψ) = 0. Here above, we have performed
an integration by parts, because the vector fields Vε,M are smooth in the space variable.
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5.2.1. Preliminary reductions Now, we compute

div

(
1

b
Vε,M ⊗ Vε,M

)
= 1

b
div(Vε,M ) Vε,M + Vε,M · ∇

(
1

b
Vε,M

)

= 1

b
div(Vε,M ) Vε,M +

b

2
∇
∣∣∣
∣
1

b
Vε,M

∣∣∣
∣

2

− curl

(
1

b
Vε,M

)
× Vε,M , (61)

where the symbol × denotes the usual external product of vectors in R
3 and, for a 3-D

vector field U, we have curlU := ∇ × U. Notice that the second term in the last line
identically vanishes, whenever tested against a test functionψ as in (56). Thus, this term
contributes as a remainder Rε,M to the limit, in the sense of relation (57).

Therefore, resorting to the first equation in (50) for dealing with the first term, we
can write

div

(
1

b
Vε,M ⊗ Vε,M

)
= − ε

b
∂tφε,M Vε,M − curl

(
1

b
Vε,M

)
× Vε,M + Rε,M

= ε

b
φε,M ∂tVε,M − curl

(
1

b
Vε,M

)
× Vε,M + Rε,M ,

where, in the second step, we have included the total time derivative ε ∂t
(
φε,M Vε,M

)

into the remainder Rε,M . Indeed, the time derivative can be put on the test function
and the family

(
φε,M Vε,M

)
ε
is uniformly bounded in e.g. L2

T (L2), owing to item (i) of
Lemma 4.7.

At this point, we use the second equation in (50) to deal with the term presenting the
time derivative, and we get

div

(
1

b
Vε,M ⊗ Vε,M

)

= −φε,M ∇(
H ′′(b) φε,M

)
+

ε

b
φε,M fε,M +

1

b
φε,M hε,M

− curl

(
1

b
Vε,M

)
× Vε,M + Rε,M .

Owing to (52) and item (i) of Lemma 4.7, it is clear that the second term in the right-
hand side is a remainder, in the sense of (57). Next, we claim that also the third term,
i.e.

(
φε,M hε,M/b

)
ε,M , is a remainder. For proving this claim, in the case γ ≥ 2 it

is enough to employ Proposition 3.2 and recall that estimate (51) holds true with the
Lebesgue exponent γ replaced by 2. When γ ∈ ]1, 2[ , instead, we notice that the piece
of information coming from (40) is not good enough to cover all possible values of γ in
that interval. Our approach is instead based on the use of item (ii) of Lemma 4.7, which
allows us to write

1

b
φε,M hε,M = 1

b
ϕε,M hε,M + ε(2−γ )/γ 1

b
πε,M hε,M .

Thanks to (51) and item (ii) of Lemma 4.7, we can estimate
∥∥∥∥
1

b
ϕε,M hε,M

∥∥∥∥
L1
T (L6γ /(6−γ ))

�
∥∥ϕε,M

∥∥
L2
T (L6)

∥∥hε,M
∥∥
L2
T (Lγ )

� 2−M ,
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which implies that this term satisfies (57). In addition, it is easy to see that also
(
ε(2−γ )/γ

πε,M hε,M/b
)
ε
verifies (57). Indeed, recall that in the case γ ≥ 2, one can simply take

πε,M ≡ 0. For 1 < γ < 2 one has only to notice that
∥∥
∥∥ε

(2−γ )/γ 1

b
πε,M hε,M

∥∥
∥∥
L2
T (Lγ )

� ε(2−γ )/γ
∥
∥πε,M

∥
∥
L∞
T (L∞)

∥
∥hε,M

∥
∥
L∞
T (Lγ )

� C(M) ε(2−γ )/γ .

As a result of the previous computations, we infer that

div

(
1

b
Vε,M ⊗ Vε,M

)
= −φε,M ∇(

H ′′(b) φε,M
) − curl

(
1

b
Vε,M

)
×Vε,M + Rε,M .

(62)

5.2.2. Compactness of the rotational part The next lemma takes care of the convergence
of the curl term in (62).

Lemma 5.2. Denote by V the weak-limit of
(
Vε

)
ε
identified in Corollary 4.4, so that

VM = SMV is the weak-limit of
(
Vε,M

)
ε
when ε → 0+. Then, for any ψ ∈ D(

R+ ×
�;R3

)
, one has

lim
M→+∞ lim sup

ε→0+

(∫ T

0

∫

�

curl

(
1

b
Vε,M

)
× Vε,M · ψ dx, dt

−
∫ T

0

∫

�

SMcurl

(
1

b
V
)

× VM · ψ dx dt

)
= 0 .

Proof. We start the proof by recalling that, owing to Proposition 4.3, we have
(
Vε

)
ε

⊂
L2
T (W 1,p3), hence

(
curlVε

)
ε

⊂ L2
T (L p3). Observe that, by dual Sobolev embeddings

(see e.g. Theorem 0.5 of [16]), we have that, for any compact K ⊂ �, the space L p3(K )

is compactly embedded into H−2(K ), for instance.
Next, consider the (not regularised) wave system (47). Dividing themomentum equa-

tion by b and then taking the curl (which simply consists in an adequate choice of the
test function in the weak formulation), we deduce

∂tcurl

(
1

b
Vε

)
= curl

(
fε
b

)
.

In turn, this relation, together with (49) and the fact that b ∈ C3(�), implies that(
∂tcurl

( 1
bVε

) )
ε
is uniformly bounded in the space L2

T (H−s), for any s > 7/2.
Putting together these pieces of information and applying the Aubin-Lions lemma

(see e.g. Lemma 3.7 of [31]), we gather that
(
curl

(
1

b
Vε

))

ε

is compact in L2
T

(
H−2(K )

)
,

for any compact set K ⊂ �. This implies that, for any M ∈ N and any compact K ⊂ �

fixed, the sequence
(
SMcurl

(
1

b
Vε

))

ε

is compact (with respect to ε) in L2
T

(
L2(K )

)
.

(63)
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Next, we write

∫ T

0

∫

�

curl

(
1

b
Vε,M

)
× Vε,M · ψ dx dt

=
∫ T

0

∫

�

SMcurl

(
1

b
Vε

)
× Vε,M · ψ dx dt +

∫ T

0

∫

�

curl

([
1

b
, SM

]
Vε

)

× Vε,M · ψ dx dt .

By what we have just said, we have that

lim
ε→0+

∫ T

0

∫

�

SMcurl

(
1

b
Vε

)
× Vε,M · ψ dx dt

=
∫ T

0

∫

�

SMcurl

(
1

b
V
)

× VM · ψ dx dt .

On the other hand, using the embedding
(
Vε

)
ε

⊂ L2
T (W 1,p3) again, we have

∥∥∥
∥curl

([
1

b
, SM

]
Vε

)∥∥∥
∥
L2
T (L p3 )

� 2−M ,

whereas item (iv) of Lemma 4.7 and Bernstein’s inequalities (see Lemma A.1 in the
Appendix) imply

∥∥Vε,M
∥∥
L2
T (L p′3 )

� 2
3M( 1

p2
− 1

p′3
)
+ εCM ,

for a constant CM which blows up when M → +∞, but which is uniform in ε > 0.
Observe that

3

(
1

p2
− 1

p′
3

)
= 3

(
κ + 3

6κ
− 1 +

5κ + 3

6κ

)
= 3

κ
, with

3

κ
< 1 .

Thus, we deduce that

lim
M→+∞ lim sup

ε→0+

∫ T

0

∫

�

curl

([
1

b
, SM

]
Vε

)
× Vε,M · ψ dx dt = 0 .

The proof of the lemma is now completed. ��

5.2.3. Handling the pressure term Before computing the limit with respect toM → +∞
in the previous lemma, let us treat the first term in the right-hand side of (62). As a matter
of fact, we need to couple it with a term coming from the pressure function, namely

− 1

ε2

∫

�

�(�ε; b) divψ dx ,

where�(�ε; b) has been defined in Lemma 4.6. We will use a fundamental cancellation
(appearing after regularisation), which is already present in [26]. For this, we need the
following preparatory lemma.
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Lemma 5.3. For any T > 0 fixed and any test functionψ as in (56), such that Suppψ ⊂
[0, T [ ×�, the following relation holds true, in the sense of (58):

− 1

ε2

∫ T

0

∫

�

�(�ε; b) divψ dx dt = − 1

2

∫ T

0

∫

�ε
ess

p′′(b) φ2
ε divψ dx dt + Rε,M .

Proof. Let us start by decomposing the term on the left-hand side of the claimed equality
into two integrals, one on the essential set and the other on the residual set:

1

ε2

∫ T

0

∫

�

�(�ε; b) divψ dx dt = 1

ε2

∫ T

0

∫

�ε
ess

�(�ε; b) divψ dx dt

+
1

ε2

∫ T

0

∫

�ε
res

�(�ε; b) divψ dx dt .

Notice that, in order to treat the integral over �ε
res, the bounds of Lemma 4.6 are not

enough. Instead, in order to take advantage of the smallness bounds in (21), we need to
introduce a finer decomposition and split that term further into two pieces.

To begin with, let us consider �E (�ε; b) = pE (�ε)− pE (b)− p′
E (b)(�ε − b) only.

On the one hand, thanks the uniform bounds of (35), we have, for some zε = zε(t, x)
belonging to the interval ]�ε(t, x), b(x)[ , the estimate
∣∣
∣∣∣
1

ε2

∫

�ε
res,B

�E (�ε; b) divψ dx

∣∣
∣∣∣

� 1

ε

∫

�ε
res,B

(
p′
E (zε) + p′

E (b)
) ∣
∣φε

∣
∣
∣
∣ divψ

∣
∣ dx

� 1

ε

∥∥
∥1�ε

res,B
φε

∥∥
∥
L2
T (L6)

(
L(�ε

res)
)5/6

� ε−1+5/3 = ε2/3 ,

which tells us that the contribution coming from this term is a remainder, in the sense of
(57). On the other hand, proceeding similarly and employing the assumption p′

E (z) ≈
zγ−1, we get

∣∣∣∣∣
1

ε2

∫

�ε
res,UB

�E (�ε; b) divψ dx

∣∣∣∣∣
� 1

ε

∫

�ε
res,UB

�γ−1
ε

∣∣φε

∣∣ ∣∣ divψ
∣∣ dx .

Now, owing to (36), we gather the uniform bound
(
1

ε
1�ε

res,UB
�γ−1

ε

)

ε

⊂ Lr
T (L p) , r := γ

γ − 1
and p := 3 γ

γ − 1
, (64)

whereas we can use (40) to control the φε term. After checking that

∀ 1 < γ ≤ 2 ,
γ − 1

γ
+

1

2
≤ 1 and

1

q
:= 3 − γ

3 γ
+

γ − 1

3 γ
< 1 ,

we can thus bound
∣∣∣
∣∣
1

ε2

∫ T

0

∫

�ε
res,UB

�E (�ε; b) divψ dx dt

∣∣∣
∣∣

�
(
1

ε

∥∥∥1�ε
res,UB

�γ−1
ε

∥∥∥
LrT (L p)

)
‖φε‖L2

T (L3γ /(3−γ ))

(
L(�res)

)1−1/q
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� ε2(1−1/q) .

A direct computation shows that 1 − 1/q > 0. Therefore, for 1 < γ ≤ 2, we have
proved that the contribution coming from the integral over the residual set is indeed a
remainder, in the sense of (57).

In the case γ > 2, instead, we interpolate between the L∞
T (Lγ /(γ−1)) bound on

(
1�ε

res,UB
�

γ−1
ε

)
ε
, which comes from (21), and the bounds provided by (64). We find that

(
1�ε

res,UB
�γ−1

ε

)

ε
⊂ L2

T (Lm) , m := 3γ

2γ − 3
≥ 6

5
.

Hence, owing to (40) again, when γ > 2 we can set θ := γ−2
2(γ−1) and estimate∣∣∣∣∣

1

ε2

∫ T

0

∫

�ε
res,UB

�E (�ε; b) divψ dx dt

∣∣∣∣∣

� 1

ε

∥∥∥1�ε
res,UB

�γ−1
ε

∥∥∥
L2
T (Lm )

‖φε‖L2
T (L6)

(
L(�ε

res)
)5/6−1/m

� 1

ε

∥
∥∥1�ε

res,UB
�γ−1

ε

∥
∥∥

θ

L∞
T (Lγ /(γ−1))

∥
∥∥1�ε

res,UB
�γ−1

ε

∥
∥∥
1−θ

LrT (L p)
ε2(5/6−1/m)

� ε2/3 ε−2/m ε2θ(γ−1)/γ ε1−θ = ε4/3 ε−(γ−2)/2(γ−1) .

A simple computation shows that

∀ γ >
2

5
,

4

3
− γ − 2

2(γ − 1)
> 0 ,

which finally implies that, also in the case γ > 2, the integral over the residual set is a
remainder, in the sense of (57).

In the end, we have proved that, for any value of γ > 1, the contribution coming
from the integral of �E over the residual set is a remainder, in the sense of relation (57).

Next, let us consider the integral involving�c(�ε; b) := pc(�ε)−pc(b)−p′
c(b)(�ε−

b) over the residual set. For this term, the roles of �ε
res,B and �ε

res,UB are inverted.
For instance, by Taylor formula at the first order we can write, for suitable zε(t, x) ∈
]b, �ε(t, x)[ , the following estimate:∣

∣∣∣∣
1

ε2

∫

�ε
res,UB

�c(�ε; b) divψ dx

∣
∣∣∣∣

� 1

ε2

∫

�ε
res,UB

(
p′
c(zε) + p′

c(b)
)

�ε

∣∣ divψ
∣∣ dx

� 1

ε2

∥∥∥1�ε
res,UB

�ε

∥∥∥
Lγ
T (L3γ )

(
L(�ε

res)
)1−1/(3γ )

� ε1−2/(3γ ) ,

which obviously converges to 0 when ε → 0+. In the previous computation, we have
used (36) and (21) to absorb the negative powers of ε.

In �res,B , instead, Taylor formula and the fact that zε(t, x) ∈ ]�ε(t, x), b[ yield
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∣∣∣∣
∣
1

ε2

∫ T

0

∫

�ε
res,B

�c(�ε; b) divψ dx dt

∣∣∣∣
∣

� 1

ε2

∫ T

0

∫

�ε
res,B

(
p′
c(zε) + p′

c(b)
)

(b − �ε)
∣∣ divψ

∣∣ dx dt

� 1

ε2

∫ T

0

∫

�ε
res,B

�−κ−1
ε dx dt

� 1

ε2

∥∥
∥1�ε

res,B
�−κ/2

ε

∥∥
∥
2

L2
T (L6)

∥∥
∥
[
�−1

ε

]
res

∥∥
∥
L∞
T (Lκ )

(
L(�ε

res)
)2/3−1/κ

,

which, in view of (37) and (21), is of order O(ε4/3).
To sum up, we have shown that also the contribution from �c over the residual set is

a remainder, in the sense of (57).
In light of what we have shown above, in order to complete the proof of the lemma

it remains us to deal with the integral on the essential set. For this, we remark that, by
Taylor formula, we can write

1

ε2

∫ T

0

∫

�ε
ess

�(�ε; b) divψ dx dt = 1

2

∫ T

0

∫

�ε
ess

p′′(b) φ2
ε divψ dx dt

+
ε

6

∫ T

0

∫

�ε
ess

p′′′(zε) φ3
ε divψ dx dt ,

for some zε = zε(t, x) belonging to the interval joining b(x) and �ε(t, x). At this point,
we notice that the second integral on the right-hand side of the previous equality can be
bounded, with the help of (23) and (35), in the following way:

∣∣
∣∣

∫ T

0

∫

�ess

p′′′(zε) φ3
ε divψ dx dt

∣∣
∣∣ �

∥∥
∥
[
φ
]2
ess

∥∥
∥
L1
T (L3)

∥
∥[φε

]
ess

∥
∥
L∞
T (L2)

� 1 .

Putting everything together, we finally get the claimed relation. ��
Of course, in the equality of Lemma 5.3 there is no dependence of the remainder on

the approximation parameter M . However, in order for this information to be useful, we
need to introduce the regularisation in the first term of the right-hand side. This is easy,
thanks to Proposition 3.2 and the fact that, on the essential set, the function φε possesses
higher integrability in space (keep in mind property (35)).

Indeed, for any M ∈ N, we can write

[
φε

]2
ess = [

φε

]
ess φε,M +

[
φε

]
ess

(
Id − SM

)
φε .

Concerning the last term on the right, for any T > 0 fixed, we proceed as follows: we
use the uniform bounds

([
φε

]
ess

)
ε

⊂ L2
T (L6) and, for 6/5 ≤ γ < 2, the fact that

∥∥(Id − SM
)
φε

∥∥
L2
T (Lγ )

� 2−M
∥∥(Id − SM

)∇φε

∥∥
L2
T (Lγ )

� 2−M . (65)

This control follows from Bernstein’s inequality (see Lemma A.1 in the Appendix) and
the uniform bounds of Proposition 3.2, by arguing in a similar way as done in (59).
When 1 < γ < 6/5, instead, we can use an interpolation argument between Lebesgue



1500 F. Fanelli, E. Zatorska

norms (because the inequality 3γ /(3 − γ ) > 6/5 holds for any γ > 6/7) to get, for a
suitable θ ∈ ]0, 1[ , the following series of inequalities:

∥∥(Id − SM
)
φε

∥∥
L2
T (L6/5)

�
∥∥(Id − SM

)
φε

∥∥θ

L2
T (Lγ )

∥∥(Id − SM
)
φε

∥∥1−θ

L2
T (L3γ /(3−γ ))

� 2−θM ‖∇φε‖θ

L2
T (Lγ )

‖∇φε‖1−θ

L2
T (Lγ )

� 2−θM .

Finally,when γ ≥ 2,we can simply use Proposition 3.2 and relation (68) of theAppendix
to find that

∥
∥(Id − SM

)
φε

∥
∥
L2
T (L2)

� 2−M .

Next, we further decompose
[
φε

]
ess φε,M = [

φε,M
]2
ess + 1�ε

ess

(
Id − SM

)
φε φε,M .

At this point, we notice that all the uniform bounds satisfied by
(
φε

)
ε
are also satisfied by(

φε,M
)
ε
, uniformly with respect to both M ∈ N and ε ∈ ]0, 1]. Thus, the same argument

as above yields
∥
∥1�ε

ess

(
Id − SM

)
φε φε,M

∥
∥
L1
T (L1)

� 2−θM ,

where θ = 1 if γ ≥ 6/5, whereas θ ∈ ]0, 1[ is as above in the case 1 < γ < 6/5.
In the end, putting everything together, we have discovered that

− 1

ε2

∫ T

0

∫

�

�(�ε; b) divψ dx dt = − 1

2

∫ T

0

∫

�ε
ess

p′′(b) φ2
ε,M divψ dx dt + Rε,M .

(66)

5.2.4. Coupling the pressure with the convective term We are now ready to deal with
the first term appearing in the right-hand side of (62). We have to pay attention, because
here the signs are important. We start by writing, for ψ as in (56),

−
∫

�

φε,M∇(
H ′′(b) φε,M

) · ψ dx

= − 1

2

∫

�

H ′′(b)∇φ2
ε,M · ψ dx −

∫

�

φ2
ε,M H ′′′(b) ψ · ∇b dx

= − 1

2

∫

�

H ′′(b)∇φ2
ε,M · ψ dx +

∫

�

φ2
ε,M H ′′′(b) b divψ dx ,

where we have also used the fact that div(bψ) = 0. An integration by parts shows that

− 1

2

∫

�

H ′′(b)∇φ2
ε,M · ψ dx

= 1

2

∫

�

φ2
ε,M H ′′(b) divψ dx +

1

2

∫

�

φ2
ε,M H ′′′(b)∇b · ψ dx

= 1

2

∫

�

φ2
ε,M H ′′(b) divψ dx − 1

2

∫

�

φ2
ε,M H ′′′(b) b divψ dx .

At this point,we insert this expression into the previous one; after exploiting the definition
H ′′(z) = p′(z)/z for all z > 0, we finally gather

−
∫

�

φε,M∇(
H ′′(b) φε,M

) · ψ dx = 1

2

∫

�

φ2
ε,M divψ p′′(b) dx .
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Owing to item (i) of Lemma 4.7 and estimate (22), we easily see that the integral over
the residual set is small. Therefore, after integrating also in time, in the end we get

−
∫ T

0

∫

�

φε,M∇(
H ′′(b) φε,M

) ·ψ dx dt = 1

2

∫ T

0

∫

�ε
ess

φ2
ε,M divψ p′′(b) dx dt + Rε,M .

The fundamental point, here, is that the first term on the right-hand side exactly cancels
out with the term coming from (66).

5.2.5. Limit of the convective term: conclusion Putting together Lemma 5.1 and the
computations of Sect. 5.2, we finally discover that, for any test function ψ belonging to
the kernel of the singular perturbation operator, namely such that (56) holds true, one
has

lim
ε→0+

(∫ T

0

∫

�

�εuε ⊗ uε : ∇ψ dx dt − 1

ε2

∫ T

0

∫

�

�(�ε; b) divψ dx dt dt

)

= lim
M→+∞

∫ T

0

∫

�

SMcurl

(
1

b
V
)

× VM · ψ dx dt .

At this point, remark that, since V is a weak-limit point of the sequence
(
Vε

)
ε
, in

view of Corollary 4.4 and Lemma 4.7, it enjoys the following property:

V ∈ L∞
loc

(
R+; L2(�)

) ∩ L2
loc

(
R+;W 1,p1(�)

)
, p1 := 2κ

κ + 1
.

In particular, we also have V ∈ L2
loc

(
R+; L p2(�)

)
, where p2 := 6κ/(κ + 3).

Hence, repeating the computations used in the final part of the proof to Lemma 5.2,
we get that

lim
M→+∞

∫ T

0

∫

�

SMcurl

(
1

b
V
)

× VM · ψ dx dt

= lim
M→+∞

∫ T

0

∫

�

curl

(
1

b
VM

)
× VM · ψ dx dt ,

and performing computations in (61) backwards, we deduce that, for any test function
ψ such that div (bψ) = 0, we have

lim
M→+∞

∫ T

0

∫

�

SMcurl

(
1

b
V
)

× VM · ψ dx dt

= lim
M→+∞ −

∫ T

0

∫

�

1

b
VM ⊗ VM : ∇ψ dx dt ,

where we have also used the fact that divV = 0 (as it follows from taking the limit in
the mass equation, recall Proposition 4.5 above).

Now, using that V ∈ L2
T (W 1,p1) and arguing as in (59), it is easy to see that, for

almost any t ∈ [0, T ], one has
∥
∥SM

(
V(t)

) − V(t)
∥
∥
L p1 � 2−M ‖∇V(t)‖L p1 ,

which immediately implies that

SMV −→ V strongly in L2
T (L p1) .
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In fact, this convergence holds true even in L2
T (B1

p1,2
) (notice that, by (69) below, we

have W 1,p1 ↪→ B1
p1,2

), owing to Lemma A.4 and the Lebesgue dominated convergence
Theorem; however, the previous weaker convergence result is enough for our scopes.

Therefore, SMV converges strongly toV in any intermediate space between L2
T (L p1)

and L2
T (L p2), thus also in L2

T (L2) for instance. Thanks to this latter property, we can
compute

lim
M→+∞ −

∫ T

0

∫

�

1

b
VM ⊗ VM : ∇ψ dx dt dt = −

∫ T

0

∫

�

1

b
V ⊗ V : ∇ψ dx dt dt .

5.3. Deriving the asymptotic system: final computations. In Sects. 5.1 and 5.2, we have
seen how passing to the limit in the convective term and the pressure term. About the
latter, we recall that we have to make use of Lemma 4.6, and more precisely of the
relation

1

ε2

(
∇ p(�ε) − �ε∇G

)
= 1

ε
b∇(

H ′′(b) φε

)
+

1

ε2
∇�(�ε; b) ,

where the first term on the right disappears whenever tested again a test function satis-
fying (56), whereas the second term is combined with the convective term to give rise
to small remainders, in the sense of relations (57) and (58).

On the other hand, the same computations performed in Proposition 4.5 show how
dealing with the continuity equation for the densities �ε and with the time derivative
term

(
∂t (�ε uε)

)
ε
in the momentum equation. Therefore, in order to complete the proof

of Theorem 2.2, we must show convergence of the viscosity term

ν

∫ T

0

∫

�

�ε Duε : ∇ψ dx dt ,

where ψ is as in (56) and is such that Suppψ ⊂ [0, T [ ×�. We start by observing that
only the integral over�ε

ess matters, owing to the uniformbounds
(√

�ε ∇uε

)
ε

⊂ L2
T (L2)

and
([√

�ε

]
res

)
ε

⊂ L∞
T (L2γ ), with 1/2 + 1/(2γ ) < 1.

Next, on �ε
ess we use the strong convergence �ε → b in L∞

T (L2) ∩ L2
T (L6) and

the weak convergence Duε ⇀ DU in L2
T (L p1). We observe that 1/6 + 1/p1 ≤ 1.

Therefore, we deduce that, for any test function ψ as above, we have

ν

∫ T

0

∫

�

�ε Duε : ∇ψ dx dt −→
∫ T

0

∫

�

bDU : ∇ψ dx dt when ε → 0+ .

Theorem2.2 is now proven. ��

Data sharing Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory



Low Mach Number Limit for the Degenerate Navier–Stokes Equations 1503

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

A. Appendix: Elements of Fourier Analysis

We recall here the main ideas of Littlewood–Paley theory, which we will exploit in our
analysis. The classical construction is usually given in the Rd setting: we refer e.g. to
Chapter 2 of [2] for details. However, everything can be adapted (see e.g. reference [8])
to cover also the case of a d-dimensional periodic box T

d
a , where a ∈ R

d (this means
that the domain is periodic in space with, for any 1 ≤ j ≤ d, period equal to 2πa j with
respect to the j-th component).

For simplicity of presentation, we focus here on the case where a j = 1 for all j ,
and we simply write the spacial domain as Td . We also denote by |Td | = L(Td) the
Lebesgue measure of the box T

d .
First of all, let us recall that, for a tempered distribution u ∈ S ′(Td), we denote by

Fu = (
ûk

)
k∈Zd its Fourier series, so that we have

u(x) = 1

|Td |1/2
∑

k∈Zd

ûk e
ik·x .

Next, we introduce the so called Littlewood-Paley decomposition, based on a non-
homogeneous dyadic partition of unity with respect to the Fourier variable. We fix a
smooth scalar function ϕ such that 0 ≤ ϕ ≤ 1, ϕ is even and supported in the ring{
r ∈ R

∣∣ 5/6 ≤ |r | ≤ 12/5
}
, and such that

∀ r ∈ R\{0} ,
∑

j∈Z
ϕ
(
2− j r

) = 1 .

Let us define |D| := (−�)1/2 as the Fourier multiplier2 of symbol |k|, for k ∈ Z
d .

The dyadic blocks (� j ) j∈Z are then defined by

∀ j ∈ Z , � j u := ϕ(2− j |D|)u =
∑

k∈Zd

ϕ(2− j |k|) ûk eik·x .

Notice that, for j < 0 negative enough (in general, depending on the boxTd
a ), one has

� j ≡ 0. In addition, one has the following Littlewood-Paley decomposition in S ′(Td):

∀ u ∈ S ′(Td) , u = û0 +
∑

j∈Z
� j u in S ′(Td) .

Finally, we introduce the following low frequency cut-off operators: for any j ∈ Z,
we define

S ju := û0 +
∑

m≤ j−1

�mu . (67)

2 Throughout we agree that f (D) stands for the pseudo-differential operator u �→ F−1( f Fu).

http://creativecommons.org/licenses/by/4.0/
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We explicitly remark that, for any j ∈ Z, the operators� j and S j are linear operators
which are bounded on L p for any p ∈ [1,+∞], with norm independent of j and p.
At this point,wepresent a simplifiedversion of the classicalBernstein inequalities,which
turns out to be enough for our scopes. We refer to Chapter 2 of [2] for the statement in
its full generality.

Lemma A.1. There exists a constant C > 0, only depending on the space dimension
d, on the size of the torus Td

a and on the support of the function ϕ fixed above, such
that the following properties hold true: for any j ∈ Z, for any α ∈ N

d , for any couple
(p, q) ∈ [1,+∞]2 such that p ≤ q, and for any smooth enough u ∈ S ′(Td), we have

∥
∥∇αS j u

∥
∥
Lq ≤ C |α|+1 2 j |α|+ jd

(
1
p − 1

q

)

‖S j u‖L p

and C−|α|−1 2− j |α| ‖� j u‖L p ≤ ‖∇α� j u‖L p ≤ C |α|+1 2 j |α| ‖� j u‖L p ,

where we have denoted |α| := ∑
j α j .

By use of Littlewood-Paley decomposition, we can now define the class of Besov spaces.

Definition A.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space
Bs
p,r = Bs

p,r (T
d) is the set of tempered distributions u ∈ S ′(Td) for which

‖u‖Bs
p,r

:=
⎛

⎝|̂u0|r +
∑

j∈Z
2 jsr ‖� j u‖rL p

⎞

⎠

1/r

< +∞ ,

with the standard modification in the definition of the norm in the case when r = +∞.

It is well known that, for all s ∈ R, the space Bs
2,2 coincides with Hs , with equivalent

norms:
‖ f ‖2Hs ∼ |̂u0|2 +

∑

j∈Z
22s j ‖� j u‖2L2 . (68)

When p �= 2, non-homogeneous Besov spaces are interpolation spaces between
Sobolev spaces Wk,p: for all p ∈ ]1,+∞[ , one has the chain of following continuous
embeddings:

B0
p,min(p,2) ↪→ L p ↪→ B0

p,max(p,2) . (69)

As an immediate consequence of the Bernstein inequalities, one gets the following
Sobolev-type embedding result.

Proposition A.3. Let 1 ≤ p1 ≤ p2 ≤ +∞. The, the space Bs1
p1,r1 is continuously

embedded in the space Bs2
p2,r2 whenever

s2 < s1 − d

(
1

p1
− 1

p2

)
or s2 = s1 − d

(
1

p1
− 1

p2

)
and r1 ≤ r2 .

We conclude this appendix by recalling Lemma 2.73 of [2].

Lemma A.4. If 1 ≤ r < +∞, for any f ∈ Bs
p,r one has

lim
j→+∞

∥
∥ f − S j f

∥
∥
Bs
p,r

= 0 .
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