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Abstract: Weconsider 3XORgameswith perfect commuting operator strategies. Given
any 3XOR game, we show existence of a perfect commuting operator strategy for the
game can be decided in polynomial time. Previously this problem was not known to
be decidable. Our proof leads to a construction, showing a 3XOR game has a perfect
commuting operator strategy iff it has a perfect tensor product strategy using a 3 qubit
(8 dimensional) GHZ state. This shows that for perfect 3XOR games the advantage of a
quantum strategy over a classical strategy (defined by the quantum-classical bias ratio)
is bounded. This is in contrast to the general 3XOR case where the optimal quantum
strategies can require high dimensional states and there is no bound on the quantum
advantage. To prove these results, we first show equivalence between deciding the value
of an XOR game and solving an instance of the subgroup membership problem on a
class of right angled Coxeter groups.We then show, in a proof that consumesmost of this
paper, that the instances of this problem corresponding to 3XOR games can be solved
in polynomial time.
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1. Introduction

One fantastic implication of quantummechanics is that measurements made on quantum
mechanical systems can produce correlated outcomes irreproducible by any classical
system. This observation is at the heart of Bell’s celebrated 1964 inequality [2] and
has since found applications in cryptography [1,11,15,34], delegated computing [29]
and short depth circuits [4,18,36], among others. Recent results have shown the sets of
correlations producible by measuring quantum states are incredibly difficult to charac-
terize [10,12,14,22,26,32].

In this work, we present a result in the opposite direction. We consider a natural
question concerning existence of quantum correlations which has been open for decades
and is comparable to the one shown to be undecidable in [32].We show it can be answered
in polynomial time. Furthermore we show that when these correlations can be produced,
they can be produced by simple measurements of a finite dimensional quantum state.
We begin by reviewing some necessary background.

Nonlocal Games.Nonlocal games describe experiments which test the correlations that
can be produced by measurements of quantum systems. A nonlocal game involves a
referee (also called the verifier) and k ≥ 1 players (also called provers). In a round of
the game, the verifer selects a question vector q = (q1, q2, ..., qk) randomly from a set
S of possible question vectors, then sends player i question qi . Each player responds
with an answer ai . The players cannot communicate with each other when choosing
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their answers. After receiving an answer from each player, the verfier computes a score
V (a1, a2, ..., ak |q1, q2, ..., qk) which depends on the questions selected and answers
recieved. The players know the set of possible questions S and the scoring function
V . Their goal is to chose a strategy for responding to each possible question which
maximizes their score in expectation. The difficulty for the players lies in the fact that in
a given round each player only has partial information about the questions sent to other
players.

For a given game G, the supremum of the expected scores achievable by players is
called the value of the game. The value depends on the resources available to the players.
If players are restricted to classical strategies, the value is called the classical value and
denoted ω(G). If players can make measurements on a shared quantum state (but still
can’t communicate) the value can be larger and is called the entangled value. More
specifically, if the players shared state lives in a Hilbert spaceH = H1⊗H2⊗ ...⊗Hk
and the i-th player makes a measurement on the i-th Hilbert space, the supremum of
the scores the players can obtain is called the tensor product value, denoted ω∗tp. If the
players share an arbitrary state and the only restriction placed on their measurements is
that the measurement operators commute (enforcing no-communication), the supremum
of the achievable scores is called the commuting operator value, denoted ω∗co. When the
state shared by the players is finite dimensional these definitions coincide. In the infinite
dimensional caseω∗tp ≤ ω∗co, and there exist games for which the inequality is strict [22].

Bounds On the Value. The commuting operator and tensor product values of a game
are in general uncomputable [22,32]. Intuitively, this is because the nonlocal games
formalism places no restriction on the dimension of the state shared by the players, and
so a brute force search over strategies will never terminate. However, such a search can
provide a lower bound on the value of a game. Given a game G, let ω∗d(G) denote the
maximum score achievable by players using states of dimension at most d. This value
lower bounds the tensor product (hence, commuting operator) value, and converges to
the tensor product value in the limit as d → ∞ [31], so supd<∞

{
ω∗d
} = ω∗tp. Given

a fixed d, ω∗d can be computed by exhaustive search. Computing ω∗d for an increasing
sequence of d’s produces a sequence of lower bounds that converge to ω∗tp from below.

It is also possible to bound the commuting operator value of a nonlocal game from
above, via a convergent hierarchy of semidefinite programs known as the NPA hierar-
chy [13,27]. (Both these papers focus on upper bounds in the two player case, but k
player generalizations are straightforward.) When run to a finite level, this hierarchy
gives an upper bound on the commuting operator value of a game. However there is no
guarantee that this bound can be achieved by any commuting operator strategy, hence no
guarantee that the upper bound matches the true commuting operator value. In general
all that can be said is that this hierarchy is complete, meaning that the bound computed
necessarily converges to the commuting operator value of the game. Because of the
previously mentioned undecidability results, no general bounds can be put on this rate
of convergence.

XORGames. XOR games are one family of games for which more concrete results are
known. These are nonlocal games where each question q j is drawn from an alphabet of
size n, player’s responses are single bits ai ∈ {0, 1} and the scoring function checks if the
overall parity of the responses matches a desired parity s j associated with the question,
that is

V (a1, a2, ..., ak |q1, q2, ..., qk) =
{
1 if

∑
i ai = s j (mod 2)

0 otherwise.
(1.1)
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We refer to an XOR game with k players as a kXOR Game. It is helpful to think of an
kXOR game as testing satisfiabiliy of a set of clauses:

X̂ (1)
q11 + X̂ (2)

q12 + ...X̂ (k)
q1k = s1, X̂ (1)

q21 + X̂ (2)
q22 + ...X̂ (k)

q2k = s2, ...,

X̂ (1)
qm1

+ X̂ (2)
qm2

+ ...X̂ (k)
qmk
= sm,

where each clause X̂ (1)
q j1+...+X̂ (k)

q jk = s j corresponds to aquestionvector (q j1, q j2, ..., q jk)

with associated parity bit s j . If question vectors are chosen uniformly at random, the
classical value of the game corresponds to themaximum fraction of simultaneously satis-
fiable clauses (see Sect. 2.1.2 for a proof of this fact). The tensor product and commuting
operator values have no such interpretation, and may be larger.

Famously, Bell’s inequality can be expressed as a 2XOR game called the CHSH
game [7], with clauses X̂ (1)

1 + X̂ (2)
1 = 1, X̂ (1)

0 + X̂ (2)
1 = 0, X̂ (1)

1 + X̂ (2)
0 = 0, and X̂ (1)

0 +

X̂ (2)
0 = 0. At most 3 of these 4 clauses can be simultaneously satisfied, so the classical

value of this game is 0.75. However, there exists a strategy involving measurements
on the two qubit Bell state |�+〉 = 1√

2
(|11〉 + |00〉) which achieves an expected score

of cos2(π/8) ≈ 0.85. 2XOR games are well understood in general; in 1987 Tsirelson
showed the optimal value for any 2XOR game can be achieved by a finite dimensional
strategy which can be found in polynomial time [33]. This result shows the 2 qubit
strategy is optimal for the CHSH game, so ω∗co(CHSH) = ω∗tp(CHSH) = cos2(π/8).
More generally, Tsirelson’s result showed ω∗co = ω∗tp for any 2XOR game.

For kXOR games with k > 2 the situation is much more opaque. There exist poly-
nomial time algorithms that can compute ω∗co and ω∗tp in special cases [35,37]. On the
other hand it is NP-hard to compute the classical value of a 3XOR game [19], and there
is no known upper bound on the runtime required to compute the commuting operator
or tensor product value of a kXOR game when k ≥ 3. Furthermore, the commuting
operator and tensor product values of a kXOR game are not known to coincide. One
natural and efficiently solvable problem involving kXOR games is identifying games
with perfect classical value ω = 1. This is equivalent to asking if the corresponding set
of clauses is exactly solvable, so can be answered in polynomial time using Gaussian
elimination.

Interestingly, there exist XOR games with ω∗tp = 1 and ω < 1; the sets of clauses
associated with these games appear perfectly solvable when the game is played by
players sharing an entangled state, despite the clauses having no actual solution. The
most famous of these XOR pseudotelepathy games [3] is the GHZ game, a 3XOR game
with 4 clauses and classical value ω = 3/4. There is a perfect value tensor product
strategy for this game involving measurements of the GHZ state 1√

2
(|000〉 + |111〉) so

ω∗tp(GHZ) = ω∗co(GHZ) = 1 [17,24].
The relative difficulty of computing the classical value of kXOR games compared to

the ease of identifying perfect value kXOR games motivates an analogous question con-
cerning the entangled values. Does there exist a non-commutative analogue of Gaussian
elimination that can easily identify kXOR games with ω∗co or ω∗tp = 1? How hard is it
to identify XOR pseudotelepathy games?
Bias. XOR games can also be characterized by their bias β(G), defined by β(G) =
2ω(G)−1.1 The entangled biasesβ∗co andβ∗tp are defined analogously.A completely ran-
dom strategy for answering anXORgamewill achieve a score of 1/2, henceω(G) ≥ 1/2

1 Some definitions vary by a factor of 2, defining β(G) = ω(G)− 1/2.
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and β(G) ∈ [0, 1], with identical bounds holding on the other biases. When comparing
classical and entangled biases, the quantity usually considered is the ratio β∗tp(G)/β(G)

(or β∗co(G)/β(G)), called the quantum-classical gap.
For 2XOR games this gap can be related to the Grothendieck inequality, with

β∗co(G)/β(G) = β∗tp(G)/β(G) ≤ KR

G , (1.2)

where KR

G is the real Grothendieck constant.2 For 3XOR games no such bound holds [6,
28], and there exist families of games {Gn}n∈N with

lim
n→∞β∗tp(Gn)/β(Gn) = ∞. (1.3)

All these families have the property that limn→∞ β∗tp(Gn) = 0; it is open whether an
unbounded quantum-classical gap can exist for kXOR games with β∗co bounded away
from zero. One special case where a bound on the quantum-classical gap is known is
3XORgameswith the players restricted to aGHZstate [28] (later generatlized toSchmidt
states in [5]). In this case the quantum-classical gap is bounded above by 4KR

G [5].

Our Main Results. This paper considers perfect commuting operator strategies for
XOR games. We first show a link between XOR games and algebraic combinatorics:
proving a kXOR game has value ω∗co = 1 iff an instance of the subgroup membership
problem on a right angled Coxeter group corresponding to the kXOR game has no for
an answer. For kXOR games with k ≥ 3, the corresponding class of Coxeter groups
has undecidable subgroup membership problem. A priori, it is not clear whether or not
the instances determining if a game has value ω∗co = 1 are decidable. In this paper we
resolve the 3XOR case by proving an algebraic result (whose proof consumes most of
this paper) showing the instances of the subgroup membership problem determining the
value of 3XOR games are equivalent to instances on a simpler groupG/K obtained from
G by modding out a particular normal subgroup K . This equivalence lets us construct
a polynomial time algorithm that determines if 3XOR games do or do not have value
ω∗co = 1. Previously this problem was not known to be decidable. For k ≥ 4 it remains
open whether or not there is any algorithm which can decide in finite time if a game has
a perfect commuting operator strategy.

Combining this result with arguments from [35] shows 3XOR games with ω∗co = 1
also have perfect value tensor product strategies, with the players sharing a three qubit
GHZ state. Combining that observationwith the known bounds on the quantum-classical
gap for strategies using a GHZ state [5,28] shows that 3XOR games with ω∗co = 1 have
classical value bounded a constant distance above 1/2. In other words, when ω∗co = 1,
how well quantum bias outperforms classical bias is bounded. This is in contrast with
the behavior, see Eq. (1.3), of not perfect games.

Section 2 gives basic definitions, precise statements of the main theorems, and proofs
or proof sketches where appropriate. Section3 gives proofs of the more involved alge-
braic results. The appendices fill in proof details and give perspectives, mostly about the
subgroup K .

Comparison with Other Work. Our result shares high-level structure with the work
of Cleve and coauthors [8,9] and followup work by Slofstra [32] concerning linear sys-
tems games, though our work comes to a very different conclusion than theirs. In both
that work and ours, perfect value commuting operator strategies are shown to exist for a

2 Because ω∗co = ω∗tp for 2XOR games, we also have β∗co = β∗tp .
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family of nonlocal games iff an algebraic property is satisfied on a related group. In [32],
Slofstra showed that the algebraic property associated with linear systems games was
undecidable, implying existence of a linear systems game whose only perfect value
strategies were incredibly complicated (infinite dimensional). Here we show the alge-
braic property associated with perfect value 3XOR games can be checked in polynomial
time, and give a finite dimensional strategy, called a MERP strategy, that achieves value
1 whenever a perfect value commuting operator strategy exists.

The MERP strategy is a variant of the GHZ strategy that has been considered before.
In [37] this strategy was shown to be optimal for kXOR games with two questions per
player. In [35] this strategy was shown to be optimal for a restricted class of XOR games
(symmetric kXOR games)3 with perfect value. In [21] a quantum circuit closely related
to this strategy was used as a subroutine in short depth circuits.

2. A Detailed Overview

Webegin this section by introducing notation necessary to state themain theorems of this
work. Much of it is specific to this paper, so we suggest a reader familiar with the field
still read Sect. 2.1 fairly closely. Section2.2 contains all the major theorem statements
of this paper.

2.1. Background and notation.

2.1.1. Games As mentioned in Sect. 1, we think of XOR games as testing satisfiability
of an associated system of equations. Our starting point for defining any kXOR game is
a system of equations of the form

X̂ (1)
n11 + X̂ (2)

n12 + ... + X̂ (k)
n1k = s1, X̂ (1)

n21 + X̂ (2)
n22 + ... + X̂ (k)

n2k = s2, ...,

X̂ (1)
nm1

+ X̂ (2)
nm2

+ ... + X̂ (k)
nmk

= sm

where niα ∈ [N ], si ∈ {0, 1}, X̂ (α)
n are formal variables taking values in {0, 1} and the

equations are all takenmod 2. N is called the alphabet size of the game, andm the number
of clauses. The kXORgame associated to this systemof equations hasm question vectors
{(n11, n12, ..., n1k), ..., (nm1, nm2, ..., nmk)}. In a round of the game the verifier selects a
i ∈ [m] uniformly at random, then sends question vector (ni1, ni2, ..., nik) to the players,
i.e. player j receives question ni j . The players respond with single bit answers and win
(get a score of 1 on) the round if the sum of their responses equals si mod 2. They get a
score of 0 otherwise. Any kXOR game where clauses are chosen uniformly at random
can be described by specifying the associated system of equations.4

For the case of 3XORgames,wewill simplify notation slightly by omitting a subindex
and instead writing our system of equations as

X̂ (1)
a1 + X̂ (2)

b1
+ X̂ (3)

c1 = s1, X̂ (1)
a2 + X̂ (2)

b2
+ X̂ (3)

c2 = s2, ..., X̂ (1)
am + X̂ (2)

bm
+ X̂ (3)

cm = sm

where ai , bi , ci ∈ [N ] for all i ∈ [m]. The question vector sent to the players is then
(a j , b j , c j ), with the players winning the round if their responses sum to s j mod 2.

3 Symmetric XOR games are XOR games whose scoring function is invariant under permutations of the
players. As an example, this would force V (a1⊕ a2|q1, q2) = V (a2⊕ a1|q2, q1) for a two player symmetric
XOR game.

4 Because we are concerned with the case of perfect value XOR games, fixing the distribution clauses are
drawn from to be uniform doesn’t change the scope of our results.
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2.1.2. Strategies For ease of notation, we will describe strategies in the special case
of 3XOR games. We note that all the definitions given here generalize naturally to
the k-player case. We begin this section with a brief discussion of classical strategies,
then move on to consider entangled strategies. The discussion of classical strategies is
included mostly for perspective, and can be skipped. The definitions related to entangled
strategies are essential.

The most general classical strategy can be described by specifying a response for
each player based on the question received and some shared randomness λ. If we are
only concerned with strategies that maximize the players’ score, a convexity argument
shows that we can ignore the shared randomness (fix λ to the value that maximizes the
players’ score in expectation), so optimal classical strategies can be described by fixing
responses for each player to each possible question. To better align with the quantum
case, we describe these strategies multiplicatively rather then additively. Define X (α)

i to

equal 1 if player α responds to question i with a 0, and X (α)
i = −1 if the player responds

with a 1. Players win on the j-th question vector iff X (1)
a j X

(2)
b j

X (3)
c j (−1)s j = 1 so the

expected score of the players conditioned on receiving the j-th question vector can be
written

1

2
+
1

2
X (1)
a j

X (2)
b j

X (3)
c j (−1)s j . (2.1)

and the expected score this strategy achieves on a XOR game is given by

1

2
+

1

2m

∑

j

X (1)
a j

X (2)
b j

X (3)
c j (−1)s j . (2.2)

We refer to strategies where players share and measure a quantum state before de-
ciding their response as entangled strategies.5 In the most general entangled strategy,
players share an state |ψ〉 and randomness λ. Then they receive a question, make a
measurement on the quantum state based on the question and shared randomness, and
then send a response to the verifier based on the measurement outcome. Mathematically,
any strategy can be described by fixing the state |ψ〉 and POVMs (Positive Operator-
ValuedMeasures) for each possible question sent to the players. ANaimark type dilation
theorem tells us that any such strategy can be transformed to one where players’ mea-
surements are all described by PVMs (Projective Valued Measures) without changing
the score that strategy achieves on a game (the finite dimensional case is standard, see
[16] Section 3, for the infinite dimensional argument). Thus, when considering whether
or not a game has an optimal strategy we are free to consider only strategies which can
be described by a shared state |ψ〉 and PVMs (Projective Valued Measures) for each
possible player and question.

In this paperwe describe entangled strategies using the PVM formalism.More specif-
ically, we study self adjoint operators associated with these PVMs. We define these
self-adjoint operators as follows:

1. First, specify the shared state |ψ〉 which lives in some Hilbert space H.

5 The name quantum strategies, while more natural, can cause confusion with strategies where questions
and responses are themselves quantum states. Entanglement is not necessary for these strategies, but the
players’ achieve a value exceeding their classical value only if the state they share is entangled.
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2. For each player α ∈ [k] and question i ∈ [N ], let P(α)
i be the projector onto the

subspace of H associated with a 1 response by player α to question i . Similarly, let
Q(α)

i = 1 − P(α)
i be the projector onto the subspace associated with a 0 response.

Here 1 represents the identity operator.
3. For every α and i , define the strategy observable X (α)

i = Q(α)
i − P(α)

i .

The operators X (α)
i satisfy some useful properties. Firstly, they are self-adjoint by con-

struction with eigenvalues ±1. From this, or from direct calculation, it follows that

(
X (α)
i

)2 =
(
Q(α)

i

)2
+
(
P(α)
i

)2
+ 2Q(α)

i P(α)
i = Q(α)

i + P(α)
i = 1, (2.3)

where we have used the fact that Q(α)
i and P(α)

i are orthogonal projectors on the last
line.

Secondly, the restriction that players be non-communicating means that a players
chance of responding 1 (resp. 0) should be independent of another player’s response.
Hence

P(α)
i P(β)

j = P(β)
j P(α)

i (2.4)

for any i, j, α �= β.Defining thegroupcommutator of twoobservables [y, z]:=yzy−1z−1
we see

[
X (α)
i , X (β)

j

]
= 1 (2.5)

whenever α �= β.
Finally, we consider a product of operators corresponding to a question vector in the

XOR game. A state is in the 1 eigenspace of X (1)
a j X

(2)
b j

X (3)
c j iff the sum mod 2 of the

players responses to the verifier upon measuring this state is 0. Similarly a state is in the
−1 eigenspace iff the sum of the players responses upon measuring this state is 1. Then,
players win on question vector j with probability

1

2
+
1

2
〈ψ |X (1)

a j
X (2)
b j

X (3)
c j (−1)s j |ψ〉 (2.6)

and their overall score on the game is given by

1

2
+

1

2m

∑

j

(
〈ψ |X (1)

a j
X (2)
b j

X (3)
c j (−1)s j |ψ〉

)
. (2.7)

An important consequence of Eq. (2.7) is that the players win the game with probability
1 iff

X (1)
a j

X (2)
b j

X (3)
c j (−1)s j |ψ〉 = |ψ〉 (2.8)

for all j ∈ [m]. This is because each X (α)
i has norm ≤ 1.
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2.1.3. Groups Now we introduce groups whose structure mimics the structure of the
strategy observables introduced in Sect. 2.1.2. We describe these groups using the lan-
guage of group presentations. The language in this section is, at times, technical and we
alert the reader that explicit examples of this notation are given in Sect. 2.3.

Given integers k and N we define the game group G to be the group with generators
σ and x (α)

i for all i ∈ [n], α ∈ [k], and relations:

1.
(
x (α)
i

)2 = 1 for all i, j ∈ [n], α ∈ [k]
2.
[
x (α)
i , x (β)

j

]
= 1 for all i, j ∈ [n], α �= β ∈ [k]

3. σ 2 =
[
σ, x (α)

i

]
= 1 for all i, j ∈ [n], α �= β ∈ [k].

Here the x (α)
i are group elements satisfying the same relations as the strategy observables

defined in Sect. 2.1.2. The element σ is a formal variable playing the role of −1. Note
σ �= 1 in the group. While it is not needed for the paper, we remark here that G is a right
angled Coxeter group.

Given an k-player XOR game testing the system of m equations

X̂ (1)
n11 + X̂ (2)

n12 + ... + X̂ (k)
n1k = s1, X̂ (1)

n21 + X̂ (2)
n22 + ... + X̂ (k)

n2k = s2, ...,

X̂ (1)
nm1

+ X̂ (2)
nm2

+ ... + X̂ (k)
nmk

= sm

we define the clauses h1, h2, ..., hm of the game by

hi =
k∏

α=1
X (α)
niα σ si ∈ G, (2.9)

where σ 0 = 1. We denote the set of all clauses by S and define the clause group H ≤ G
to be the subgroup generated by the clauses, so H = 〈S〉 = 〈{hi : i ∈ [m]}〉 .

We note that this construction lets us associate any k-player XOR game with a sub-
group H of the group G. It is also worth noting that the clause group H is, in general,
not a normal subgroup of the game group G. Here we recall that a subgroup T of G
is called a normal subgroup (denoted T � G) if gTg−1 = T for all g ∈ G, i.e. for all
g ∈ G, t ∈ T we also have

gtg−1 ∈ T . (2.10)

Important subgroups of groups G and H are those consisting of even length words
corresponding to each player. Define the even subgroups GE , HE by

GE :=
〈{
x (α)
i x (α)

j : i, j ∈ [N ], α ∈ [k]
}
∪ {σ }

〉
and HE := 〈{hi h j : i, j ∈ [m]

}〉

(2.11)

Note that HE < GE .
Given a set of elements R ⊆ GE the normal closure of R inGE , denoted in this paper

by 〈R〉GE
is defined to be the smallest normal subgroup of GE containing the elements

of R. Equivalently, 〈R〉GE
is the subgroup of GE generated by the set of elements

{grg−1 : g ∈ GE , r ∈ R}. (2.12)
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Define the even commutator subgroup K of GE by:

K =
〈{[

xα
i x

α
j , x

α
k x

α
l

]
: i, j, k, l ∈ [n], α ∈ [k]

}〉GE

. (2.13)

In this paper we will frequently study the group GE/K obtained by modding out the
group GE by the normal subgroup K . The first isomorphism theorem tells us that this
is a well defined group whose elements can be identified with the cosets

{wK = Kw : w ∈ GE } (2.14)

of K in the group GE . In this paper we will denote the elements of GE/K as [w]K
where w ∈ GE and

[w1]K = [w2]K (2.15)

iff w1k = w2 for some k ∈ K . The normal subgroup property ensures that elements in
GE/K multiply as in the group GE , with6

[w1]K [w2]K = [w1w2]K . (2.16)

We can also understand subgroups of GE/K using the (second) isomorphism theo-
rem. This theorem tells us that, given any subgroup T of GE , denoted T < GE :

1. T K is a subgroup of GE

2. T ∩ K is a normal subgroup of T
3. (T K )/K is isomorphic to T/(T ∩ K ).

Particularly important to this paper will be the group (HEK )/K which we view as a
subgroup of GE/K . We have for any element [w]K ∈ GE/K that [w]K ∈ (HEK )/K
iff

wk1 = hk2 ⇔ h = wk3 (2.17)

for some k1, k2, k3 ∈ K and h ∈ H (note in this equivalence we have again used the
normal property of the subgroup K ). This condition is also equivalent to the condition

[hE
1 ]K [hE

2 ]K ...[hE
l ]K = [w]K (2.18)

where hE
1 , hE

2 , ...hE
l are generators of HE . This shows that (HEK )/K is equal to the

subgroup of GE/K generated by the elements
{[hi h j ]K : i, j ∈ [m]

}
(2.19)

(that is the generators of HE taken mod K generate the subgroup (HEK )/K ofGE/K ).
For this reason we use the notation [HE ]K to denote the group (HEK )/K . Of particular
importance to the rest of this paper will be the condition

[σ ]K ∈ [HE ]K (2.20)

which we also sometimes state as σ ∈ HE (mod K ).

6 To see this observe that, for any w1, w2 ∈ G, k1, k2 ∈ K , there exists a k′1 ∈ K with w1k1w2k2 =
g1g2k

′
1k2 by the definition of a normal subgroup.
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2.2. Precise statements of main results. In this section we give theorem statements
covering the main results of this paper, along with some relevant theorems from previous
work.

2.2.1. An algebraic characterization of perfect k-player XOR Games Our first result
shows the problem of determining ifω∗co = 1 is equivalent to an instance of the subgroup
membership problem on the game group G.

We should mention that some ingredients of this proof have appeared before in other
contexts [27,35]. The key innovation of this theorem is the algebraic formulation of the
issue.

Theorem 2.1. A kXOR game has commuting operator value ω∗co = 1 iff σ /∈ H, where
σ, H are defined relative to the kXOR game as described in Sect.2.1.3.

Proof. For notational convenience, we prove the result here in the special case of k = 3
players. The proof generalizes easily to other values of k.

We first show that σ ∈ H ⇒ w∗ < 1. Assume for contradiction that σ ∈ H and
w∗ = 1. Then, since σ ∈ H , there exists a sequence of clauses whose product

ht1ht2 ...htl = σ, (2.21)

where each clause

hti = x (1)
ati

x (2)
bti

x (3)
cti

σ sti ∈ S with ati , bti , cti ∈ [n], sti ∈ {0, 1} (2.22)

is a generator of the clause group H . At the same time, by definition of a perfect commut-
ing operator strategy (see Sect. 2.1.2) there exists a Hilbert spaceH and a state |ψ〉 ∈ H
with the property that, for every clause x (1)

ati
x (2)
bti

x (3)
cti

σ sti ∈ H , there exist strategy observ-

ables X (1)
ati

, X (2)
bti

, and X (3)
cti

satisfying

X (1)
ati

X (2)
bti

X (3)
cti

(−1)sti |ψ〉 = |ψ〉 (2.23)

for all ti ∈ {t1, t2, ..., tl}. We can relate the group elements x (α)
j and σ to the observables

X (α)
j and−1 via a respresentation. By construction the strategy observables X (α)

j satisfy

the same relations as the elements of x (α)
j ∈ G and the element σ satisfies the same

relations as −1 (viewed as an element of the the algebra of bounded linear operators
acting on the Hilbert space H, denoted B(H)). Then we can define a representation
π : G → B(H) with π(x (α)

j ) = X (α)
j and π(σ) = −1. Then we have

π(ht1ht2 ...htl ) = π(σ) = −1 (2.24)

by Eq. (2.21) and also

π(ht1ht2 ...htl )|ψ〉 = |ψ〉 (2.25)

by repeated application of Eq. (2.23). We conclude

−|ψ〉 = |ψ〉, (2.26)

a contraction.



742 A. Bene Watts, J. W. Helton

It remains to show σ /∈ H ⇒ w∗ = 1. A proof of this fact that relies on completeness
of the nsSoS hierarchy is given in [35] (Theorem 6.1, in which a sequence of clauses
ht1ht2 ...htl satisfying ht1ht2 ...htl = σ is referred to as a refutation). Here we give a
standalone proof, which can be viewed as a special case of the GNS construction. We
assume σ /∈ H , and construct the strategy observables and state |ψ〉 explicitly.

First we define a Hilbert spaceH with orthogonal basis vectors corresponding to the
left cosets of H in G. That is,H is spanned by basis vectors {|H〉, |g1H〉, ...} with inner
product

〈g1H |g2H〉 =
{
1 if g−11 g2 ∈ H
0 otherwise.

(2.27)

Next we define the representation π : G → GL(H) to be the representation given by
the left action of G on H , so

π(g1)|g2H〉 = |g1g2H〉. (2.28)

Finally, define

|ψ〉 = 1√
2

(|H〉 − |σH〉) , (2.29)

and note that σ /∈ H by assumption implies |ψ〉 �= 0.We claim that strategy observables
π(x (α)

i ) and state |ψ〉 achieve value ω∗ = 1 for the game. To see this, first note that

π(σ)|ψ〉 = π(σ) (|H〉 − |σH〉) = |σH〉 − |H〉 = −|ψ〉 (2.30)

and for word w ∈ H we have

π(w)|ψ〉 = π(w) (|σH〉 − |H〉) = |σwH〉 − |wH〉 = |σH〉 − |H〉 = |ψ〉 (2.31)

since σ commutes with all elements of G. Then, for any j ∈ [m] we have
π(x (1)

a j
)π(x (2)

b j
)π(x (3)

c j )(−1)s j |ψ〉 = π(x (1)
a j

x (2)
b j

x (3)
c j σ s j )|ψ〉 = π(h j )|ψ〉 = |ψ〉

(2.32)

where we used that h j ∈ H and Eq. (2.31) on the final line. Then the strategy achieves
value ω∗ = 1 by Eq. (2.8). ��

As we shall see in this paper we find it much easier to study the question of whether
σ ∈ HE rather than if σ ∈ H . The following lemma shows that these conditions are
equivalent.

Lemma 2.2. For any kXOR game, σ ∈ H iff σ ∈ HE.

Proof. The direction σ ∈ HE ⇒ σ ∈ H is immediate.
To see the converse direction, note that each clause hi contains exactly one generator

x (α)
i for each α ∈ [k]. Then an odd length sequence of clauses contains an odd number of

generators x (α)
i for each α ∈ [k]. Because all the relations of G relate words containing

an even number of x (α)
i generators to the identity, the parity of the number of generators

corresponding to each player remains fixed when applying the relations of G. Then any
word in G which is equal to the product of an odd number of clauses from H contains
an odd number of generators corresponding to each player α. Thus the word contains at
least one generator corresponding to each player α and hence cannot equal σ .

From this, we conclude that if σ ∈ H there is a product an even number of clauses
h1h2...h2l ∈ HE which equals σ , thus σ ∈ HE as well. ��
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2.2.2. Sufficient conditions for kXOR games to have ω∗co = 1 Theorem 2.1 and Lemma
2.2 imply that we could identify XOR games with value ω∗ = 1 by solving instances of
the subgroup membership problem in the groups G or GE . Unfortunately, the subgroup
membership problem in these groups is, in general, undecidable.7 Instead of reasoning
about this problem directly it is helpful to consider a computationally simpler subgroup
membership problem obtained by modding out the group GE by the normal subgroup
K . We show this simpler problem can be solved in polynomial time.

Theorem 2.3. Let σ, HE , K be defined relative to an kXOR game as described in
Sect.2.1.3. Let [σ ]K be the coset containing σ after modding GE out by K and let
[HE ]K = (HEK )/K be the subgroup of GE/K generated by the cosets corresponding
to generators of H E . Then we can check if [σ ]K /∈ [HE ]K in polynomial time.

Proof. First note that K � GE and HE < GE , so the question is well defined. To show
a polynomial time algorithm, note that GE/K is an abelian group – in fact we have
modded out by exactly the commutator subgroup of GE . The subgroup membership
problem for any abelian group can be solved in polynomial time (see Theorem B.1 in
Appendix B), so the result follows. ��

An immediate consequence of Lemma 2.2 and Theorem 2.1 is that

[σ ]K /∈ [HE ]K �⇒ σ /∈ HE ⇔ σ /∈ H �⇒ the associated XOR game has ω∗co = 1. (2.33)

Then, Theorem 2.3 tells us that a sufficient condition for an XOR game to have ω∗co = 1
can be checked in polynomial time. In fact we can say something stronger: when the
condition given by Theorem 2.3 is met an optimal strategy can be chosen from a simple
family of strategies which generalize the regular 3 qubit GHZ strategy. We introduce
these strategies in Definition 2.4.

Definition 2.4 (MERP strategies). AMERP (maximally entangled, relative phase) strat-
egy for a kXOR game is one where the players share the k-qubit GHZ state |ψ〉 =
1√
2

(|11...1〉 + |00...0〉) and, given question j, the α-th player measures the α-th qubit of
the state with a strategy observable of the form

M (α)
j := exp(iθ(α)

j σz)σx exp(−iθ(α)
j σz) (2.34)

where σx , σz are the Pauli X and Z matrices: σx =
(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
. 8

The angle θ
(α)
j depends on the player index α along with the question j sent to the

player. To specify a MERP strategy we just need to specify the angles θ
(α)
j for every

j and α. For this reason we refer to the set of angles {θ(α)
j : α ∈ [k], j ∈ [N ]} as a

description of the strategy.

7 A game group G with k ≥ 2 and n ≥ 3 contains F2 ×F2 as a subgroup, where F2 is the free group on
two elements. This group has undecidable subgroup membership problem by [25]. A similar argument applies
to the group GE .

8 In the language of Sect. 2.1.2, the state |ψ〉 lives in the Hilbert space
(
C
2
)k

and, given question j , player

α measures a strategy observable of the form I⊗α−1 ⊗ M(α)
j ⊗ I⊗k−α where I is the 2 by 2 identity matrix.
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TheMERP strategy observables for any choice of θ(α)
j are valid strategy observables,

that is, they are hermitianwith eigenvalues±1 andobservables corresponding to different
players commute.

We can now state the relationship between MERP strategies and the condition σ /∈
HE (mod K ).

Theorem 2.5. Let σ, HE , K be defined relative to an kXOR game as described in
Sect.2.1.3 and define [σ ]K , [HE ]K as in Theorem 2.3. Then [σ ]K /∈ [HE ]K iff the
game has ω∗co = ω∗tp = 1 with a perfect value MERP strategy. A description of this
strategy can be found in polynomial time.

Proof. This theorem is a rephrasing of Theorem 5.30 from [35], where the condition
[σ ]K /∈ H (mod K ) was referred to as existence of a PREF (parity refutation). The
equivalence between the σ ∈ H (mod K ) condition and existence of a parity refutation
is elaborated on in Appendix A.3.

In Appendix A.4we prove the theorem in one direction by showing thatMERPmatri-
ces satisfy the defining relations for K . The other direction is proved by defining a system
of linear diophantine equations which are solved only when [σ ]K ∈ HE (mod K ) then
showing, via a theorem of alternatives, that these equations being unsatisfied implies a
MERP strategy can achieve value 1. ��

2.2.3. For 3 player games the sufficient conditions are necessary Theorems 2.5 gives
a necessary and sufficient condition characterizing when an XOR game has a perfect
MERP strategy. This also gives a sufficient (but not, in general, necessary) condition
for a game to have ω∗co = 1.9 Theorem 2.6, the main mathematical engine underlying
this paper, gives the surprising result that this sufficient condition is also necessary for
3XOR games.

Theorem 2.6. Let σ, HE , K be defined relative to an 3XOR game as described in
Sect.2.1.3 and define [σ ]K , [HE ]K as in Theorem 2.3. Then

[σ ]K ∈ [HE ]K ⇔ σ ∈ HE . (2.35)

The proof of this result is purely algebraic, but involved.We give the full proof in Sect. 3.
We now state the main result of the paper, which follows as a consequence of Theo-

rems 2.1, 2.3, 2.5 and 2.6 and Lemma 2.2.

Theorem 2.7. A 3XOR game has valueω∗co = 1 iff it has a perfect value MERP strategy,
implying ω∗co = ω∗tp = 1. Additionally, there exists a polynomial time algorithm which
decides if a 3XOR game has value ω∗co = 1, and outputs a description of the perfect
value MERP strategy if one exists.

Proof. By Theorem 2.1, an 3XOR game has ω∗co = 1 iff σ /∈ H in the associated
group. By Theorem 2.6, this is also equivalent to the statement [σ ]K ∈ H (mod K ).
By Theorem 2.5 this implies a MERP strategy, and the first part of the result follows.

To get the polynomial time algorithm, we just need to check if [σ ]K ∈ H (mod K ),
which we can do in polynomial time by Theorem 2.3. If true, there exists a MERP
strategy and we can find it by Theorem 2.5. If false, the same chain of implications as
above shows ω∗co < 1. ��

9 The “123 game” introduced in [35] gives an example of a gamewith a perfect commuting operator strategy
but no perfect MERP strategy.
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For k > 3 players, our arguments break down because we have no analog of Theorem
2.6. Indeed it remains open whether there is any finite time algorithm for identifying
perfect k-player XOR games when k > 3. Some speculation about possible k-player
analogues of Theorem 2.6 is provided in Appendix A.5.

2.2.4. Bounds on the bias ratio Combining Theorem 2.7 with a result from [28] gives
the following.

Theorem 2.8. A 3XOR game with ω∗co = 1 also has classical value ω > 1/2 + 1
8KR

G
≥

0.57, where KR

G is the real Grothendieck constant.

Proof. By Theorem 2.7, a 3XOR game G with ω∗co = 1 must also have a perfect value
MERP strategy. This strategy uses a GHZ state for the players, and a bound from [28]
gives that

β∗GHZ/β ≤ 4KR

G , (2.36)

where β∗GHZ is the maximum bias achieved with a strategy using a GHZ state. But then

β(G) ≥ β∗GHZ (G)

4KR

G

= 1

4KR

G

(2.37)

�⇒ ω(G) ≥ 1

2
+

1

8KR

G

(2.38)

and the result follows. ��

2.3. Examples. In this subsection we re-analyze some well known XOR games using
the techniques developed in this paper.

2.3.1. The CHSH game The first gamewe analyze is the CHSH game, introduced in [7].
This is a two question, two player XOR game. Following convention, questions sent to
the players are indicated with labels in {0, 1}. The CHSH tests a system of 4 equations:

X̂ (1)
0 + X̂ (2)

0 = 0 X̂ (1)
0 + X̂ (2)

1 = 0

X̂ (1)
1 + X̂ (2)

0 = 0 X̂ (1)
1 + X̂ (2)

1 = 1.

Following the procedure as outlined in Sect. 2.1.3 (Eq. (2.9)) we see the clause group
HCHSH associated with this game is generated by the clauses

{
x (1)
0 x (2)

0 , x (1)
0 x (2)

1 , x (1)
1 x (2)

0 , x (1)
1 x (2)

1 σ
}

. (2.39)

We can multiply these clauses together and then simplifying using the relations of the
game group G to show

(
x (1)
0 x (2)

0

) (
x (1)
0 x (2)

1

) (
x (1)
1 x (2)

1 σ
) (

x (1)
1 x (2)

0

)
= σ ∈ HCHSH . (2.40)

We conclude the CHSH game does not have a perfect commuting operator strategy by
Theorem 2.1.
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2.3.2. The GHZ game Next, we analyze the GHZ game, introduced in [17]. This is a 3
player game testing a system of equations

X̂ (1)
0 + X̂ (2)

0 + X̂ (3)
0 = 0 X̂ (1)

1 + X̂ (2)
1 + X̂ (3)

0 = 1

X̂ (1)
0 + X̂ (2)

1 + X̂ (3)
1 = 1 X̂ (1)

1 + X̂ (2)
0 + X̂ (3)

1 = 1.

Thus the associated clause group HGHZ is generated by clauses
{
x (1)
0 x (2)

0 x (3)
0 , x (1)

1 x (2)
1 x (3)

0 σ, x (1)
0 x (2)

1 x (3)
1 σ, x (1)

1 x (2)
0 x (3)

1 σ
}

. (2.41)

The GHZ game has a perfect MERP strategy. Here, we reprove this result using the
techniques developed in the paper.

The first step is to construct the even clause group HE
GHZ , which is generated by the

pairs of clauses

{
x (1)
0 x (2)

0 x (3)
0 x (1)

1 x (2)
1 x (3)

0 σ, x (1)
0 x (2)

0 x (3)
0 x (1)

0 x (2)
1 x (3)

1 σ, x (1)
0 x (2)

0 x (3)
0 x (1)

1 x (2)
0 x (3)

1 σ,

x (1)
1 x (2)

1 x (3)
0 σ x (1)

0 x (2)
1 x (3)

1 σ, x (1)
1 x (2)

1 x (3)
0 σ x (1)

1 x (2)
0 x (3)

1 σ, x (1)
0 x (2)

1 x (3)
1 σ x (1)

1 x (2)
0 x (3)

1 σ
}
.

(2.42)

(and, by definition, their inverses). Simplifying these using the relations of the game
group G gives generating set
{ (

x (1)
0 x (1)

1

) (
x (2)
0 x (2)

1

)
σ,

(
x (2)
0 x (2)

1

) (
x (3)
0 x (3)

1

)
σ,

(
x (1)
0 x (1)

1

) (
x (3)
0 x (3)

1

)
σ,

(
x (1)
1 x (1)

0

) (
x (3)
0 x (3)

1

)
,
(
x (2)
1 x (2)

0

) (
x (3)
0 x (3)

1

)
,
(
x (1)
0 x (1)

1

) (
x (2)
1 x (2)

0

) }
.

(2.43)

where bracketed terms now indicate generators ofGE . Workingmod K all the bracketed
terms commute with each other,10 so now straightforward linear algebra can be used to
show that

σ /∈ HE
GHZ (mod K ). (2.44)

Then we see that the GHZ game has a perfect MERP strategy by Theorem 2.5.
While we didn’t use it in either of these examples Theorem 2.6 tells us that the

techniques used above to analyze the GHZ game can be used to analyze any 3 player
game. In particular, analyzing any 3-player game G with even clause group HE

G we will
either find that that

σ /∈ HE
G (mod K ) (2.45)

and the game (like the GHZ game) has a perfect MERP strategy or

σ ∈ HE
G (mod K )⇔ σ ∈ HE (2.46)

by Theorem 2.6 and so the game has no perfect commuting operator strategy of any
kind.
10 A careful reader might notice that all the bracketed terms actually commute with each other even before

modding out by the subgroup K . This is a consequence of the fact that the GHZ game is a two question
game, but doesn’t hold in general. Elaborating on this observation, it is possible to show that a two question
XOR game with any number of players has a perfect commuting operator strategy iff it has a perfect MERP
strategy, giving a special case of the result shown in [37].
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3. Technical Details

This section begins with definitions, then compares the algebraic structure defined in
this paper to the one introduced in [8], then proves Theorem 2.6.

3.1. Background and definitions. Webriefly recap the definitions given in Sect. 2.1, then
give some additional notation that will be useful in this section. In everything that follows
[ , ] denotes the group commutator, so [x, y] = xyx−1y−1.

3.1.1. Recap We consider a 3XOR game with questions drawn from an alphabet of
size [N ]. The game has m question vectors labeled (a1, b1, c1), ...., (am, bm, cm) with
ai , bi , ci ∈ [N ]. When asked the i-th question vector (ai , bi , ci ) players win the game
if their responses sum (mod 2) to the parity bit si ∈ {0, 1}. Parity bits are defined for all
i ∈ [m].

There are several algebraic objects associated with the game. The first is the game
group G, defined to be the group generated by the set of elements

{x (a)
i : i ∈ [n], α ∈ [3]} ∪ {σ } (3.1)

with relations

1.
(
x (α)
i

)2 = 1 for all i, α

2.
[
x (α)
i , x (β)

j

]
= 1 for all i, j, α �= β

3. σ 2 = 1
4.
[
σ, x (α)

i

]
= 1 for all i, α.

The generators x (α)
i correspond to the observables measured by player α upon receiv-

ing question number i . The group element σ should be though of as a formal variable
corresponding to −1 in the group. Note σ has order two (σ 2 = 1) and commutes with
all elements of group ([σ,w] = 1 for any w ∈ G).

For all i ∈ [m] we define the associated clause

hi = x (1)
ai x (2)

bi
x (3)
ci σ si . (3.2)

The clause set S = {hi }i∈[m] contains all clauses of the game. The clause group H = 〈S〉
is the subgroup of G generated by the clauses.

The even game group GE is the subgroup of G consisting of words with an even
number of generators corresponding to each player and possibly the element σ , so

GE =
〈{
x (α)
i x (α)

j : i, j ∈ [N ], α ∈ [k]
}
∪ {σ }

〉
. (3.3)

The even clause group is the subgroup of G generated by an even number of clauses

HE = 〈{hi h j : i, j ∈ [m]
}〉

. (3.4)

An important observation is that HE is a subgroup of GE .
Finally, K is the commutator subgroup of GE , defined to be the normal closure of

the set of commutators of the generators of GE . In math:

K =
〈{[

xα
i x

α
j , x

α
k x

α
l

]
: i, j, k, l ∈ [n], α ∈ [3]

}〉GE

(3.5)

Where 〈X〉Y denotes the normal closure of the set X in the group Y .
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3.1.2. Projections and clause graphs It will be helpful to have notation for referring to
just the observables associated with a single player. To this end, define player subgroups
Gα ≤ G by

Gα =
〈{
x (α)
i : i ∈ [N ]

}〉
(3.6)

and GE
α ≤ GE by

GE
α =

〈{
x (α)
i x (α)

j : i, j ∈ [N ]
}〉

(3.7)

for all α ∈ {1, 2, 3}. One advantage to working with the player subgroups Gα and GE
α is

that they have simple group presentations. We give these presentations in the following
lemmas.

Lemma 3.1. The group Gα ≤ G is finitely presented, with generating set

{x (α)
i : i ∈ [N ]} (3.8)

and relations
(
x (α)
i

)2 = 1 for all i ∈ [N ]. (3.9)

Proof. Since Gα was defined to be the subgroup of G generated by the elements x (α)
i ,

it is clear that any element in Gα is a word in the generators presented above.
Because the relations given above are clearly true in the group Gα , all that remains

to show is that the relations given in Eq. (3.9) can transform two words into one another
if they are equal in the group Gα . To prove this, we first say a word consisting of x (α)

i
generators is in fully reduced form iff:

1. There are no
(
x (α)
i

)−1
in the word and

2. No two x (α)
i with the same value of i are adjacent in the word.

Any word made up of the generators given in Eq. (3.8) can be put in fully reduced form
by repeated application of the relations given in Eq. (3.9) (first by the replacement

(
x (α)
i

)−1 =
(
x (α)
i

)−1 (
x (α)
i

)2 = x (α)
i (3.10)

and then by deleting any two adjacent instances of the generator x (α)
i ). Furthermore, it

is clear that two words in Gα made up of x (α)
i generators are equal iff their fully reduced

forms are equal (i.e. fully reduced forms are canonical forms for words in Gα). This
shows that any two words in Gα made up of x (α)

i generators can be transformed into
each other via the relations given in Eq. (3.9) iff their canonical forms are equal. The
claim follows. ��
Lemma 3.2. The group GE

α ≤ GE is finitely presented, with generating set

{x (α)
i x (α)

j : i, j ∈ [N ]} (3.11)

and relations
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(1) x (α)
i x (α)

j x (α)
j x (α)

k = x (α)
i x (α)

k for all i, j, k ∈ [N ]
(2) x (α)

i x (α)
j x (α)

j x (α)
i = 1 for all i, j ∈ [N ].

Proof. Similarly to the proof of Lemma 3.1, it is immediate that the generators given in
Eq. (3.11) generate the group GE

α .
Also similarly to the proof of Lemma 3.1, we show that the relations given above

can transform two words constructed from the generating set given in Eq. (3.11) into
one another if they are equal in the group GE

α by showing the relations can put words
in fully reduced form. To see this first notice we can remove inverses using relation (2)
and the argument

(
x (α)
i x (α)

j

)−1 =
(
x (α)
i x (α)

j

)−1
x (α)
i x (α)

j x (α)
j x (α)

i = x (α)
j x (α)

i (3.12)

and then remove any adjacent x (α)
i elements using relation (1). The proof follows. ��

Because observables corresponding to different players commute, we can write any
w ∈ G as

w = w1w2w3σ
sw (3.13)

where wα ∈ Gα for all α ∈ {1, 2, 3}, and sw ∈ {0, 1}. Similarly, any w′ ∈ GE can be
written as

w = w′1w′2w′3σ s′w (3.14)

with w′α ∈ GE
α and s′w ∈ {0, 1}.

For any α ∈ {1, 2, 3} we also define the projector onto player subgroups ϕα : G →
Gα by defining its action on the generators of G:

ϕα(x (β)
i ) =

{
x (β)
i if α = β

1 otherwise
and ϕα(σ ) = 1 (3.15)

then extending ϕα to a homorphism on G. To see this defines a valid homomorphism
note that it preserves the group relations:

ϕα

(
x (β)
i

)2 =
⎧
⎨

⎩

(
x (β)
i

)2 = 1 if α = β

12 = 1 otherwise
(3.16)

with a similarly simple argument showing commutation relations are preserved. It is
also helpful to define a projection ϕσ which acts on the generators of G as

ϕσ

(
x (β)
i

)
= 1 and ϕσ (σ ) = σ. (3.17)

Combining Eq. (3.13) with the definition of ϕα gives the equation

w = ϕ1(w)ϕ2(w)ϕ3(w)ϕσ (w) (3.18)

for any w ∈ G.
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Fig. 1. Sample hypergraph G123 for a game with alphabet size N = 6 and 11 clauses. The hypergraph is

generated by clause set (σ terms omitted since they don’t affect the graph): S = {x(1)
1 x(2)

1 x(3)
1 , x(1)

1 x(2)
2 x(3)

1 ,

x(1)
2 x(2)

2 x(3)
2 , x(1)

1 x(2)
3 x(3)

3 , x(1)
2 x(2)

3 x(3)
4 , x(1)

3 x(2)
4 x(3)

4 , x(1)
4 x(2)

4 x(3)
3 , x(1)

5 x(2)
4 x(3)

4 , x(1)
5 x(2)

6 x(3)
5 , x(1)

5 x(2)
5

x(3)
5 , x(1)

6 x(2)
6 x(3)

6 }

Next, we define the clause (hyper)graph11 G123 which gives a useful way of visual-
izing the clause structure of a game. The graph has 3N vertices which we identify with
the generators xα

i of the group G. We label the vertices by the corresponding generator.
Hyperedges in the graph correspond to clauses, with a hyperedge going through vertices
x (1)
ai , x

(2)
bi

, and x (3)
ci for every clause x (1)

ai x (2)
bi

x (3)
ci σ si ∈ S. Note that the existence of the

hyperedge is independent of the value of si , so the clause graph contains no information
about the parity bits. Because edges in the hypergraph correspond to clauses h ∈ S,
we can identify any sequence of edges in G123 with a word w ∈ H . We will use this
relationship frequently in the future.

We also define important subgraphs of G123 by taking the induced graphs on vertices
corresponding to a subset of players.12 For any α �= β ∈ {1, 2, 3} we define the multi-
graph Gαβ to be subgraph of G123 induced by the vertices corresponding to generators
of Gα and Gβ . See Fig. 2 for an example. As with the graph G123, edges in the graph
Gαβ can be identified with clauses in H and sequences of edges in Gαβ can be identified
with words w ∈ H .

In Sect. 3.3 we show that we can restrict our attention to the case where G123 is a con-
nected graph. The induced graph Gαβ can be disconnected, and the different connected
components of this graph (and representative elements from each) play an important
role in the proof in Sect. 3.4.

11 A hypergraph is a graph with edges passing through more than two vertices.
12 For a graph X = (V, E), the subhypergraph induced by a set of vertices V ′ ⊆ V is the hypergraph with

vertex set V ′ and edge set E ′ = {e ∩ V ′ : e ∈ E}. Essentially, edges are all truncated to the vertices in V ′.
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Fig. 2. Induced graph G23 corresponding to the same clause set as Fig. 1

3.1.3. Defining homomorphisms via group presentations Wenow recap a standard alge-
braic result which we shall use frequently when making arguments involving the groups
Gα and GE

α . In the following Lemma we describe a group as being presented by a set of
generators S and relations R. It is understood that these relations correspond to the set
of equations {r = 1} for all r ∈ R.

Lemma 3.3. Let G be a group presented by the set of generators S and relations R. Let
the group H be arbitrary and

f : S → H (3.19)

be some function mapping generators of G to elements in the group H. Then f can be
extended to a homomorphism f : G → H which acts on inverses as

f (s−1) = f (s)−1 (3.20)

and on words s1s2...sl ∈ G as

f (s1s2...sl) = f (s1) f (s2)... f (sl) (3.21)

iff

f (r) = 1 (3.22)

for all r ∈ R.

Proof. The only if direction is clear, since f (r) �= 1 implies that f (1) �= 1 and so f
can’t be a homomorphism.

To prove the if direction, we first show is that f is well defined. To see this, note that
any two words s1s2...sl and t1t2...tk made up of elements from the generating set S are
equal in G iff

t1t2...tk = s1s2...sk
∏

i

wi riw
−1
i (3.23)
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where words wi ∈ Gα are arbitrary, each ri is in R, and equality in the equation above
now holds as words (that is, the only thing that needs to be cancelled are elements
adjacent to their own inverse). Then

f (t1t2...tk) = f

(

s1s2...sk
∏

i

wi riw
−1
i

)

(3.24)

= f (s1s2...sk)
∏

i

f (wi ) f (ri ) f (wi )
−1 (3.25)

= f (s1s2...sk) (3.26)

and it is clear the function f is well defined. From here it is clear that f is a homomor-
phism, since for any words w1 and w2 we have

f (w1w2) = f (w1) f (w2), (3.27)

and we are done. ��
In practice, given a function f mapping the generators of some group G into a group

H and satisfying the conditions of Lemma 3.3, we will refer to the homomorphism
f : G → H constructed using the above procedure as the homorphism constructed by
“extending f in the natural way”, or with similar language.

3.2. Comparison with linear systems games. A reader familiar with the work of Cleve,
Liu and Slofstra concerning linear systems games [8] may notice a similarity between
the solution group defined in that paper and the clause group defined in this work. In
this section we give a direct comparison between the two. Our goal in doing this is not
to provide any deep insights—we simply hope a direct comparison will help a reader
already familiar with linear systems games to better understand our work. We do not
define linear systems games here, and point readers to [8] for a formal introduction to
them. This section is not critical and a reader can safely skip it without impacting their
understanding of the rest of this paper.

Following [8], we consider a binary linear system of m equations on n variables
Mx = b, with M ∈ Z

m×n
2 and b ∈ Z

m . Mi j specifies an individual entry in the matrix
M , and bi specifies an entry from the vector b. The solution group of the binary linear
system is a group with generators g1, g2..., gn, J and relations

1. g2i = 1 for all i ∈ [n] and J 2 = 1
2. [gi , J ] = 1 for all i ∈ [n]
3.
[
gi , g j

] = 1 if xi and x j appear in the same equation (that is Mli = Mlj = 1 for
some l ∈ [m]).

4.
∏

i

(
gMli
i

)
Jbl = 1 for all l ∈ [m].

In [8] the authors showed the following result:

Theorem 3.4 (Implied by Theorem 4 of [8], paraphrased). The linear system game
associated to the system of equations Mx = b has a perfect value commuting operator
strategy iff in the associated solution group we have J �= 1.
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Theorem 2.1 can be thought of as an analog of Theorem 3.4 for 3XOR games. We
can restate Theorem 3.4 in a way that makes the comparison even more apparent.

Given a system of equations Mx = b, define the group Glsg to be the group with
generators g1, g2, ..., gn, J and relations 1-3 above. Note that J �= 1 in this group.
Next, define the subgroup Hlsg � Glsg to be the normal closure in Glsg of the words
corresponding to equations in the system of equations Mx = b (that is, the words
involved in relation 4 above) so

Hlsg =
〈{
∏

i

(
gMli
i

)
Jbl : l ∈ [m]

}〉Glsg

. (3.28)

Using these definitions, an equivalent statement of Theorem 3.4 is:

Theorem 3.5 (Restatement of Theorem 3.4). The linear system game associated to the
system of equations Mx = b has a perfect value commuting operator strategy iff J /∈
Hlsg.

We can compare the above theorem and Theorem 2.1 directly. We list, and briefly
discuss, the key differences:

i) The group G contains an element for every question player combination, while Glsg
only contains an element for every question. In a commuting operator (or tensor
product) strategy for an XOR game, different players can measure completely dif-
ferent observables when sent the same question and so we need a different group
element to correspond to each player-question combo.13 Conversely, in linear sys-
tems games there is a close relationship between Alice and Bob’s measurements
given the samequestion, and both playersmeasurement operators can be constructed
from representations (right and left actions) of the same group elements.

ii) Generators of Glsg commute with each other if they appear in the same equation
(relation 3 above). Generators of G satisfy no such relation. This difference reflects
a difference between linear system games and XOR game strategies. In a linear
systems game a single player must make simultaneous measurements of all the
operators corresponding to a question in the game. This never happens in XOR
games. From an algebraic point of view, these extra relations place a restriction on
elements of Glsg that is not placed on elements of G.

iii) The group Hlsg is a normal subgroup of Glsg , while H is not a normal subgroup
of G. This has an algebraic consequence: asking if J ∈ Hlsg is an instance of the
word problem (mod out by the generators of Hlsg , then ask if J equals the identity),
while asking if σ ∈ H is an instance of the subgroup membership problem. The
word problem is in a sense “easier" than the subgroup membership problem: there
are groups with solvable word problem but undecidable subgroup membership
problem [25]. Still, both problems are undecidable in general. This difference also
has consequences for game strategies. In a linear systems game, an identity of the
form

∏

i

(
gMli
i

)
Jbl = 1 (3.29)

13 Put (informally) in slightly different terms: XOR games can be very far from synchronous, as defined in
[20].
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holds in the group, hence holds as an operator identity on the strategy observables
as well. In an XOR game, the operator identities codified in H only need hold acting
on the state |ψ〉 and there are games (for example, the GHZ game) where products
of strategy observables act as the identity on |ψ〉, but the operators themselves do
not multiply to the identity.

We should also point out that a linear systems game can be defined for any system of
equations of the form Mx = b, while XOR games require equations of a special form:
exactly one variable corresponding to each player is involved in each equation. It is
possible to define a slightly more general form of kXOR games with a subset of players,
as opposed to all players, queried on each question but those are not considered here.

Theorem 2.7, in combination with [32] shows that there cannot exist a mapping
which is computable in finite time and transforms linear systems games into XOR games
while preserving the commuting operator value of the game. (Or else this mapping, in
combination with Theorem 2.7, would give a finite time algorithm for deciding whether
or not a linear systems game has perfect commuting-operator value. This is impossible
by [32].) The question of finding a natural map in the other direction remains open.

3.3. Connectivity of the clause graph. In Sect. 3.1.2 we introduced the clause graph
G123—a graphical representation of the clause structure of a 3XOR game. In this section
we consider 3XOR games whose associated clause graph is not connected. Given such a
gamewe can always define smaller games, each involving only the clauses corresponding
to a single connected component of the clause graph. Here, we show a 3XOR game has
ω∗co = 1 iff each of these smaller games has a perfect commuting operator strategy.

This result is easy to prove from a strategies point of view. Recall that a clause
x (1)
ai x (2)

bi
x (3)
ci corresponds to a question vector (ai , bi , ci ) that could be sent to the players

in a round of the game. If a game has a disconnected clause graphG123, players will never
be sent a question vector asking them to make measurements from different connected
components of the graph. Thus, players can consider themeasurements in each connected
component of G123 independently when coming up with a strategy for the game. If they
come up with strategies that win for each connected component of clauses they can
always combine them (given a question, a player follows the strategy corresponding to
the connected component that question came from) to create a strategy that wins on the
larger game.

Below, we prove the result using algebraic techniques. The proof is considerably less
natural in this setting, but provides a useful exercise in proving results about XOR games
using the groups formalism.

Theorem 3.6. Let G be a 3XOR game with clause set S, clause group H, and clause
graph G123. Then σ ∈ H iff there exists a subset of clauses S′ ⊆ S corresponding to all
the edges in a connected component of G123 with σ ∈ 〈S′〉.
Proof. First note that if the clause graph G123 is connected Theorem 3.6 is trivial, since
the only subset of S corresponding to a connected component of G123 is S itself. Also
note that one direction of the above claim is immediate by the observation that 〈S′〉 < 〈S〉
and so σ ∈ 〈S′〉 �⇒ σ ∈ 〈S〉 = H .

To deal with the converse direction, consider a game G with clause group H � σ

and a disconnected clause graph G123. Let S1, S2, ..., Sl be subsets of S corresponding
to all the edges in the connected components of the clause graph; note that sets S1, ..., Sl
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partition the S. For all i ∈ [l], define a map ρi which acts on the generators of H as14

ρi (h j ) =
{
h j if h j ∈ Si
1 otherwise

(3.30)

Wehavebyassumption thatσ ∈ H . Then there exists a sequenceof clauseshr1hr2 ...hrt =
σ . We prove two claims:

1. For all α ∈ {1, 2, 3}, i ∈ [l] we have : ϕα(ρi (hr1)ρi (hr2)...ρi (hrt )) = 1.
2. For some i ′ ∈ [l], we have ρi ′(hr1)ρi ′(hr2)...ρi ′(hrt ) = σ .

To prove the first, define the set Vi to consist of all generators x (α)
j corresponding to

vertices in the connected component of G123 containing clauses Si . Then, for all α ∈
{1, 2, 3}, define V (α)

i = Vi ∩ Gα to be the subset of generators in Vi corresponding
to player α. Finally, we define the homomorphism πi : G → G by its action on the
generators of G:

πi (x
(α)
j ) =

{
x (α)
j if x (α)

j ∈ Vi
1 otherwise

and πi (σ ) = 1. (3.31)

Routine calculation shows that πi preserves the relations of G, and thus, is a valid
homomorphism. Now, to prove Claim 1 we show

ϕα(ρi (hr1)ρi (hr2)...ρi (hrt )) = ϕα(πi (hr1hr2 ...hrt )) = ϕα(πi (σ )) = 1. (3.32)

The second equality follows becausewe assumed hr1hr2 ...hrt = σ , and the third equality
holds by definition of ϕα . All that remains to show is the first, but this is straightforward
since

ϕ1(ρi (hr j )) = ϕ1(πi (hr j )) = x (1)
ar j

(3.33)

if hr j ∈ Si and

ϕ1(ρi (hr j )) = ϕ1(πi (hr j )) = 1 (3.34)

otherwise, since hr j /∈ Si �⇒ ϕ1(hr j ) /∈ Vi by definition of Vi .
Now, to prove the second claim, note Claim 1 in combination with Eq. (3.18) gives

ρi (hr1)ρi (hr2)...ρi (hrt )

= ϕσ (ρi (hr1)ρi (hr2)...ρi (hrt ))
∏

α∈[3]
ϕα(ρi (hr1)ρi (hr2)...ρi (hrt )) (3.35)

= ϕσ (ρi (hr1)ρi (hr2)...ρi (hrt )). (3.36)

If ϕσ (ρi (hr1)ρi (hr2)...ρi (hrt )) = σ for any i ∈ [l] the above equation proves Claim 2.
Assume for contradiction that ϕσ (ρi (hr1)ρi (hr2)...ρi (hrt )) = 1 for all i ∈ [l]. Then we
have

ϕσ (hr1hr2 ...hrt ) = ϕσ (hr1)ϕσ (hr2)...ϕσ (hrt ) (3.37)

14 Somewhat surprisingly, we cannot extend this map to a homomorphism on H (because it’s action on σ

may be undefined).
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= ϕσ

⎛

⎝
∏

i∈[l]
ρi (hr1)

⎞

⎠ϕσ

⎛

⎝
∏

i∈[l]
ρi (hr2)

⎞

⎠ ...ϕσ

⎛

⎝
∏

i∈[l]

(
hrt
)
⎞

⎠ (3.38)

=
∏

i∈[l]
ϕσ

(
ρi (hr1)ρi (hr2)...ρi (hrt )

) = 1 (3.39)

Where we used the fact that σ commutes with all elements of G to reorder elements
and get from the second line to the third, and our assumption for the sake of contradic-
tion on the final line. But, by our assumption at the start of this section we also have
ϕσ (hr1hr2 ...hrt ) = σ . The contradiction proves Claim 2.

Finally, to complete the proof we note

ρi ′(hr1)ρi ′(hr2)...ρi ′(hrt ) = ϕσ (ρi ′(hr1)ρi ′(hr2)...ρi ′(hrt )) (3.40)

= σ (3.41)

by Eq. (3.18), Claim 1, and Claim 2, and ρi ′(hr1)ρi ′(hr2)...ρi ′(hrt ) ∈ Si ′ by definition
of ρi ′ . Thus the claim holds with S′ = Si ′ . ��

To prove the strongest form of Theorem 2.6, we also need a version of Theorem 3.6
that applies to words σ ∈ HE (mod K ). We give that theorem next. The proof is very
similar to the proof of Theorem 3.6, with a few more technical details.15

Theorem 3.7. Let G be a 3XOR game with clause set S, clause group H, and clause
graph G123. For any subset of clauses S′ ⊆ S, define HS′ =

〈
S′
〉
to be the clause group

generated by just the clauses in S′, and define H E
S′ analogously. Then σ ∈ HE (mod K )

iff there exists a subset of clauses S′ ⊆ S corresponding to all the edges in a connected
component of G123 with σ ∈ HE

S′ (mod K ).

Proof. As with the proof of Theorem 3.6, the case where G123 is connected and the
direction σ ∈ HE

S′ (mod K )⇒ σ ∈ HE (mod K ) are immediate.
To deal with the remaining case, let G be an XOR game with disconnected clause

graph G123 and σ ∈ HE (mod K ). Let S1, S2, ..., Sl be subsets of S corresponding to
all edges in the connected components of the clause graph. For each Si , we pick some
representative clause ĥi ∈ Si . Then, define a map ρ̃i which acts on the generators of H
as

ρ̃i (h j ) =
{
h j if h j ∈ Si
ĥi otherwise.

(3.42)

Note that for any generator of h j h j ′ of the even clause group HE we have

ρ̃i (h j )ρ̃i (h j ′) ∈ HE
Si . (3.43)

As in the proof of Theorem 3.6, define the subset of generators Vi to be the x (α)
i corre-

sponding to vertices in the same connected component as the edges in Si . Then define
the projector π̃i which acts on the generators of G as

π̃i (x
(α)
i ) =

{
x (α)
i if x (α)

i ∈ Vi
ϕα(ĥi ) otherwise

and π̃i (σ ) = 1. (3.44)

15 Actually, Theorem 3.7 in combination with Theorem 2.6 provide an alternate proof of Theorem 3.6. Here
we proved Theorem 3.6 directly both because the proof serves as a good warm up to the proof of Theorem
3.7, and to enphasize the result can be proved independtly from Theorem 2.6.
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An important observation is that π̃i maps commutators of even pairs of generators to
commutators of even pairs of generators (or the identity) so π̃i (K ) ⊆ K .

By assumptionwehaveσ ∈ HE (mod K ). Then there exists an even length sequence
of clauses hr1hr2 ...hrt = w with w = σwk and wk ∈ K . We claim:

1. For all i ∈ [l], α ∈ {1, 2, 3} we have : ϕα(ρ̃i (hr1)ρ̃i (hr2)...ρ̃i (hrt )) = ϕα(π̃i (wk)) ∈
wk .

2. There exists an i ′ ∈ [l] satisfying ϕσ (ρ̃i ′(hr1)ρ̃i (hr2)...ρ̃i (hrt )) = σ.

The proof of the first equality in Claim 1 follows identically to the proof of Claim 1 in
Theorem 3.6. The second inequality holds because π̃i (K ) ⊆ K .

Proving Claim 2 requires a little more work. The complicating issue is that we can
encounter a case where ϕσ (ρ̃i (h j )) = σ even if h j /∈ Si . Thus the equation

ϕσ (h j ) = ϕσ

(
∏

i

ρ̃i (h j )

)

(3.45)

might not hold, and we can’t simply copy the proof of Claim 2 in Theorem 3.6. How-
ever, copying the proof of Claim 2 does give us that there exists an i ′ ∈ [l] for which
ϕσ (ρi ′(hr1)ρi ′(hr2)...ρi ′(hrt )) = σ , that is, the claim holds when the map ρ̃i is replaced
by the map ρi defined in the proof of Theorem 3.6. Let ni ′ be the number of clauses in
the sequence hr1hr2 ...hrt not contained in Si ′ , that is

ni ′ =
∣∣{ j ∈ [l] : rr j /∈ Si ′ }

∣∣ . (3.46)

We claim ni ′ is even. To see this, note that any word w ∈ K contains each generator
x (α)
i an even number of times, since the even commutators contain the generators x (α)

i

an even number of times, and the x (α)
i are self-inverse. Then the number of occurrences

of all the x (1)
i /∈ Vi ′ in the word hr1hr2 ...hrt must be even (the 1 here is arbitrary, all that

matters is that we fix a player). But this is equal to ni ′ mod 2, and we conclude ni ′ is
even. Finally, we note that

ϕσ (ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt ))

= ϕσ (ρi ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt ))(ϕσ (ĥi ′))
ni ′ (3.47)

= ϕσ (ρi ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt )) = σ, (3.48)

since ni ′ is even and σ has order two.
Combining Claims 1 and 2 with Eq. (3.18) gives

ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt ) = ϕσ

(
ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt )

)

∏

α

ϕα

(
ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt )

)
(3.49)

= σ
∏

α

ϕα

(
ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt )

)
(3.50)

with ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt ) ∈ HE
Si ′ and

∏
α ρ̃i ′(hr1)ρ̃i ′(hr2)...ρ̃i ′(hrt ) ∈ K . ��
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To close this section we observe that Theorem 3.7 implies that we can prove Theorem
2.6 for all 3XOR games by proving it in the special case of games whose clause graph
G123 is connected. To seewhy, consider a 3XORgameGwith clause set S, a disconnected
clause graph and σ ∈ HE (mod K ). Theorem 3.7 says that we can find a connected
subset of clauses S′ ⊂ S with σ ∈ HE

S′ (mod K ). Then, we restrict to the 3XOR game
G ′ defined only on these clauses and note is has a fully connected clause graph. Theorem
2.6 then says σ ∈ 〈S′〉, which implies σ ∈ 〈H〉 for the original game G as well. For this
reason, we assume the clause graph G123 is connected in Sect. 3.4.

3.4. Proof of Theorem 2.6. The proof is involved, and we will build up to it slowly over
the course of many lemmas. First, we recap the theorem and give an outline of the first
stages of the proof. Note that notation, particularly the w,w′ and w̃, in this outline is
simplified, and does not match the notation used in the remainder of this section.

Theorem 2.6 (Repeated). Let σ, HE , K be defined relative to an kXOR game as de-
scribed in Sect. 2.1.3 and define [σ ]K , [HE ]K as in Sect. 2.1.3. Then

[σ ]K ∈ [HE ]K ⇐⇒ σ ∈ HE . (3.51)

Proof Outline (Part 1) of Theorem 2.6. The forwards direction is immediate from the
discussion in Sect. 2.2.2. The backwards direction takes work.

Our starting point is the observation that [σ ]K ∈ [HE ]K iff there exists some h ∈ HE

satisfying h = σw, with w ∈ K . Our goal, given such an h is to show that σ ∈ HE .
To do this we modify the word h by right multiplying by words in HE until we have
removed thew portion, producing a word σ ∈ HE . We refer to this process as “clearing"
the word w from the word h. To begin, we break w into three words: since G1,G2 and
G3 group elements all commute with each other we can separate them out and write
w = w1w2w3 with each wα ∈ GE

α ∩ K . Then we clear the word w one wα at a time.
In Sect. 3.4.1 we show how to clear the w1 part of the word w. To do this we define

a homomorphism ϕ∗1 which maps any word v1 ∈ G1 to a word in h ∈ H with the
G1 portion of the word h equal to v1. Applying this homomorphism to w1 produces a
word ϕ∗1 (w1) = w1w̃2w̃3 ∈ HE , where words w̃2 ∈ GE

2 ∩ K and w̃3 ∈ GE
3 ∩ K are

arbitrary. Now hϕ∗1 (w1)
−1 is a word of the form w′σ = w′2w′3σ with w′2 ∈ GE

2 ∩ K and
w′3 ∈ GE

3 ∩ K . Importantly w′ contains no terms in the G1 subgroup, that is, we have
successfully cleared the G1 portion of the word w.

Our next step is to right multiply by a word which will clear the w′2 term, while
not introducing any new terms in the G1 subgroup. We do this by constructing another
homomorphism ϕ∗2,1, which takes a word v2 in GE

2 and produces a word in HE which
equals v2 in the G2 subgroup and projects to the identity in the G1 subgroup whenever
possible. Details are given in Sect. 3.4.2.

Section3.4.3 performs the process of removing the w1 and w2 words from h. The
final result is a word

w′′ = ϕ∗2,1
(
w′2
)−1

w′ = w′′3σ ∈ HE , (3.52)

where w′′3 ∈ GE
3 ∩ K .

Finally, we want to clear the wordw′′3 without introducing any words in the G1 or G2
subgroups.Unlike previous sections,we do not do this by constructing a homomorphism.
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Instead, in Sects. 3.4.4 and 3.4.5 we construct a series of gadget words designed to make
a word easier to clear. Then, in Sect. 3.4.6 we right multiply the word w′′3 by the gadget
words, and clear the word with the gadgets introduced. This procedure is elaborated on
in Part2 of this proof outline, in Sect. 3.4.4. ��

We now begin the proof in earnest.

3.4.1. Projectors and a simple right inverse We start with some useful notation. Recall
the projector ϕα : G → Gα onto group elements corresponding to player α defined in
Sect. 3.1.2 . It is a homomorphism, defined by

ϕα(x (β)
i ):=

{
x (β)
i if α = β

1 otherwise
(3.53)

and

ϕα(σ ) = 1. (3.54)

We also defined a projector onto the σ subgroup, ϕσ : G → {σ, 1} which satisfies

ϕσ (x ( j)
i ) = 1 and ϕσ (σ ) = σ. (3.55)

Because the map ϕ is many to one, there are many choices of right inverse: in the course
of the paper we will define several. We use the notation ϕ∗, with various subscripts,
when referring to right inverses of ϕ.

We first define the simple right inverse ϕ∗α : Gα → H which maps each x (α)
i to a

single clause in S. For ease of notation, we give the definition when α = 1. ϕ∗1 is a
homomorphism which acts on the generators of G1 by

ϕ∗1 (x
(1)
i ) = h j (3.56)

where j ∈ [m] is chosen so that ϕ1(h j ) = x (1)
i . Note that some clause x (1)

i x (2)
j x (3)

k σ l

must exist in S or else the question x (1)
i is never asked, and the group element x (1)

i can
be removed from the game group (this can be viewed as a special case of the proof
given in Sect. 3.3 that we can assume the game group is connected). If there are multiple
clauses which contain the element x (1)

i , we pick one arbitrarily. To verify ϕ∗1 is indeed a
homomorphism, we can check

ϕ∗1 (x
(1)
i )2 = h2j (3.57)

= x (1)
a j

x (2)
b j

x (3)
c j σ s j x (1)

a j
x (2)
b j

x (3)
c j σ s j (3.58)

=
(
x (1)
a j

)2 (
x (2)
b j

)2 (
x (3)
c j

)2 (
σ s j
)2 = 1. (3.59)

ϕ∗α for general α is defined similarly.
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3.4.2. Identity preserving right inverse The next right inverse we define, ϕ∗α,β , acts as a
right inverse to ϕα while also producing a word h ∈ H satisfying ϕβ(h) = 1 whenever
such a mapping is possible. In order to define ϕ∗α,β as a homomorphism, we restrict it’s

action to the subgroup of even length words GE
α .

Now we give a “trick” we will use repeatedly to construct homomorphisms on the
even subgroups.

Lemma 3.8. Let f : Gα → H be an arbitrary map. Define f̃ : GE
α → HE by its action

on the generators of GE
α

f̃ (x (α)
i x (α)

j ) = f (x (α)
i ) f (x (α)

j )−1, (3.60)

and extend it to act on elements in GE
α in the natural way, so for any word

wα =
∏

l

x (α)
il

x (α)
jl
∈ GE

α . (3.61)

we have

f̃

(
∏

l

x (α)
il

x (α)
jl

)

=
∏

l

f̃
(
x (α)
il

x (α)
jl

)
(3.62)

Then f̃ is a homomorphism.

Proof. By Lemma 3.3 the only thing we need to show is that f̃ respects the relations of
GE

α . By Lemma 3.2 GE
α has only two families of relations, namely that

(1) x (α)
i x (α)

j x (α)
j x (α)

k = x (α)
i x (α)

k for all i, j, k ∈ [N ], and that

(2) x (α)
i x (α)

j x (α)
j x (α)

i = 1 for all i, j ∈ [N ].
We check that f̃ satisfies these through straightforward computation. Noting that

f̃ (x (α)
i x (α)

j x (α)
j x (α)

k ) = f (x (α)
i ) f (x (α)

j )−1 f (x (α)
j ) f (x (α)

k )−1 = f̃ (x (α)
i x (α)

k ) (3.63)

shows f̃ satisfies relation (1), while noting that

f̃ (x (α)
i x (α)

j x (α)
j x (α)

i ) = f (x (α)
i ) f (x (α)

j )−1 f (x (α)
j ) f (x (α)

i )−1 = 1 (3.64)

shows f̃ satisfies relations (2). ��
Now we turn to introducing an important homomorphism ϕ∗a,b. Our organization is

unusual in that we give its properties first as Lemma 3.9 and then define it and its key
ingredients, Eqs. (3.69) to (3.71), during the proof of the lemma. We alert the reader that
these objects will be re-used in future proofs.

Lemma 3.9. For each α, β ∈ [3], with α �= β there exists a homomorphism ϕ∗α,β :
GE

α → HE satisfying

A1. ϕα(ϕ∗α,β(w)) = w for all w ∈ GE
α .

A2. ϕβ

(
ϕ∗α,β(w)

)
= 1 whenever there exists an h ∈ HE satisfying ϕα(h) = w and

ϕβ(h) = 1.
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x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 x

(2)
6

Fig. 3. Sample graphG12 for a gamewith alphabet size N = 6 andm = 11 clauses. Themiddle component for

example corresponds to clauses x(1)
3 x(2)

4 x(3)
k1

σ l1 and x(1)
4 x(2)

4 x(3)
k2

σ l2 , where k1, k2 ∈ [N ] and l1, l2 ∈ {0, 1}
are arbitrary

An important consequence of Property A2 is thatϕβ

(
ϕ∗α,β (ϕα(h))

)
= 1 for any h ∈ HE

satisfying ϕβ(h) = 1.

Proof. For ease of notation, we prove the result when α = 1, β = 2. The proof is
identical for other α, β.

Recall the (multi)graphG12, defined in Sect. 3.1.2.G12 has 2N vertices, labeled by the
group elements x (1)

1 , x (1)
2 , ..., x (1)

N , x (2)
1 , x (2)

2 , ..., x (2)
N . We identify vertices in the graph

with generators of game group G, and abuse notation slightly by referring to the two
objects interchangeably. Edges in the graph correspond to clauses; the graph has one
edge (x (1)

i , x (2)
j ) for every clause x (1)

i x (2)
j x (3)

k σ (l) in S. (k ∈ [N ] and l ∈ {0, 1} are
arbitrary.) Then G12 is bipartite, with the vertices x (1)

i for i ∈ [N ] forming one half of

the graph and x (2)
j for j ∈ [N ] forming the other. See Fig. 3 for an example. Recall that,

sequences of edges in G12 (and in particular, paths) can be identified with words in H .

Now, consider a word P
(
x (1)
i1

, x (2)
jt

)
corresponding to a path in G12 from a vertex

associated with player 1 to a vertex associated with player 2. Note the path has odd

length because G12 is bipartite, so the word P
(
x (1)
i1

, x (2)
jt

)
consists of an odd sequence

of clauses. All generators in G1, G2 other than x (1)
i1

and x (2)
jt

are repeated adjacent to

each other in the word P
(
x (1)
i1

, x (2)
jt

)
. These generators cancel, and so

P
(
x (1)
i1

, x (2)
jt

)
= x (1)

i1
x (2)
j1
x (3)
k1

σ l1x (1)
i2

x (2)
j1
x (3)
k2

σ l2x (1)
i2

x (2)
j2
x (3)
k3

σ l3 ...x (1)
it

x (2)
jt
x (3)
k2t+1

σ l2t+1

(3.65)

= x (1)
i1

x (2)
jt
x (3)
k1

x (3)
k2

...x (3)
k2t+1

σ l1+l2+...l2t+1 . (3.66)

Hence,

ϕ1

(
P(x (1)

i1
, x (2)

jt
)
)
= x (1)

i1
(3.67)

and

ϕ2

(
P(x (1)

i1
, x (2)

jt
)
)
= x (2)

jt
. (3.68)
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x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 x

(2)
6

Fig. 4. Sample graph repeated from Fig. 3 with a choice of representative vertices in G2 indicated in red.

As an example of our notation, consider the first connected component and note that r (1)→(2)
1,2 (x(1)

2 ) =
r (1)→(2)
1,2 (x(1)

1 ) = x(2)
1 and that r (2)→(2)

1,2 (x(2)
1 ) = r (2)→(2)

1,2 (x(2)
2 ) = r (2)→(2)

1,2 (x(2)
3 ) = x(2)

1

We note that we can construct a path with the above properties between any two vertices
x (1)
i1

, x (2)
jt

in the same connected component of the multigraph G12.
Next we develop some notation related to these connected components of G12. Arbi-

trarily pick a pair of vertices x (1)
j1
∈ G1 and x (2)

j2
∈ G2 from each component. Call x (1)

j1

and x (2)
j2

representative vertices. Then define the maps

r (α)→(β)
1,2 : Gα → Gβ for α, β ∈ {1, 2} (3.69)

to take each generator of Gα (vertices in G12) to the unique representative vertex in Gβ

in the same component as that generator. Each function r (α)→(β)
1,2 maps generators which

square to the identity to generators which square to the identity, so can be extended
to a homomorphism acting on words in Gα . Note that the homomorphism r (α)→(β)

1,2

constructed in this way necessarily satisfies r (α)→(β)
1,2 (1) = 1 for any α, β.

Next for each x (1)
i ∈ G1 fix a path, denoted

P1,2

(
x (1)
i , r (1)→(2)

1,2

(
x (1)
i

))
, (3.70)

between the vertex x (1)
i and the (connected) representative vertex (see Fig. 5).16 Define

the homomorphism ϕ∗1,2 : GE
1 → HE by its action on the generators of GE ,

ϕ∗1,2
(
x (1)
i x (1)

j

)
:=P1,2

(
x (1)
i , r (1)→(2)

1,2

(
x (1)
i

))
P1,2

(
x (1)
j , r (1)→(2)

1,2

(
x (1)
j

))−1
.

(3.71)

Recall the conflation of notation defined above, so P1,2

(
x (1)
i , r (1)→(2)

1,2

(
x (1)
i

))
defines

both a path in the graph G12 and a word in H . The function ϕ∗1,2 is a valid homomorphism
by Lemma 3.8.

16 We emphasize that the path P1,2

(
x(1)
i , r (1)→(2)

1,2

(
x(1)
i

))
can be chosen arbitrarily.
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x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 x

(2)
6

Fig. 5. Sample graph with representative vertices indicated in red and the path P1,2

(
x(1)
2 , r (1)→(2)

1,2

(
x(1)
2

))

= P1,2

(
x(1)
2 , x(2)

1

)
indicated in blue. This path corresponds to a word

(
x(1)
2 x(2)

2 x(3)
k1

σ l1
) (

x(1)
1 x(2)

2 x(3)
k2

σ l2
) (

x(1)
1 x(2)

1 x(3)
k3

σ l3
)

= x(1)
2 x(2)

1 x(3)
k1

x(3)
k2

x(3)
k3

σ l1σ l2σ l3 , where

k1, k2, k3 ∈ [N ] and l1, l2, l3 ∈ {0, 1} are arbitrary

It remains to show ϕ∗1,2 satisfies Properties A1 and A2. Property A1 requires that

ϕ1(ϕ
∗
1,2(w)) = w for all w ∈ GE

1 . To prove this property we show ϕ∗1,2 acts as desired
on the generators of GE

1 . This follows from Eq. (3.67), which gives

ϕ1

(
ϕ∗1,2(x

(1)
i x (1)

j )
)
= x (1)

i (x (1)
j )−1 = x (1)

i x (1)
j . (3.72)

Property A2 requires that ϕ2

(
ϕ∗1,2(w)

)
= 1 whenever there exists an h ∈ HE

satisfying ϕ1(h) = w and ϕ2(h) = 1. To show this we first show that

ϕ2(ϕ
∗
1,2(ϕ1(h))) = r (2)→(2)

1,2 (ϕ2(h)) = r (1)→(2)
1,2 (ϕ1(h)) (3.73)

for any h ∈ HE (we only need the first equality to prove Property A2, but the second
equality is an easy consequence and will be useful to us later). The equality can be
verified by checking the action of the two maps on generators hi h j of HE :

ϕ2(ϕ
∗
1,2(ϕ1(hi h j ))) = ϕ2(ϕ

∗
1,2(ϕ1(x

(1)
ai x (2)

bi
x (3)
ci x (1)

a j
x (2)
b j

x (3)
c j σ si+s j ))) (3.74)

= ϕ2(ϕ
∗
1,2(x

(1)
ai x (1)

a j
)) (3.75)

= ϕ2

(
P1,2

(
x (1)
ai , r (1)→(2)

1,2 (x (1)
ai )
)
P1,2

(
x (1)
a j

, r (1)→(2)
1,2 (x (1)

a j
)
)−1)

(3.76)

= r (1)→(2)
1,2

(
x (1)
ai

)
r (1)→(2)
1,2

(
x (1)
a j

)
(3.77)

= r (2)→(2)
1,2

(
x (2)
bi

)
r (2)→(2)
1,2

(
x (2)
b j

)
(3.78)

= r (2)→(2)
1,2 (ϕ2(hi h j )) (3.79)

Line (3.76) follows by definition of ϕ∗1,2 while Line (3.77) follows from Eq. (3.68).
The key observation comes in line (3.78); because ai and bi are both in the clause hi ,
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they are in the same connected component in the graph G12. Then they have the same
representative vertex and

r (1)→(2)
1,2

(
x (1)
ai

)
= r (2)→(2)

1,2

(
x (2)
bi

)
. (3.80)

Line (3.78) follows. This argument proves both equalities in Eq. (3.73).
Now any h ∈ H satisfying ϕ2(h) = 1 must have even length, so h ∈ HE and we

have

ϕ2(ϕ
∗
1,2(ϕ1(h))) = r (2)→(2)

1,2 (ϕ2(h)) = r (2)→(2)
1,2 (1) = 1. (3.81)

Using the fact that r (2)→(2)
1,2 is a homomorphism in the last two equalities. This proves

Property A2, and completes the proof. ��
The next lemma proves that right inverses ϕ∗α and ϕ∗α,β map within the K subgroup.

That is, they map words in K ∩ GE
α to words in K ∩ HE .

Lemma 3.10. Let v ∈ K ∩ GE
α be arbitrary. Then

ϕ∗α(v) ∈ K ∩ HE (3.82)

and

ϕ∗α,β(v) ∈ K ∩ HE (3.83)

for all β �= α.

Proof. For notational convenience we prove the result when α = 1, β = 2.
The proof is mechanical: any word v ∈ K ∩ GE

1 can be written

v =
∏

i

ui
[
x (1)
ai1

x (1)
ai2

, x (1)
ai3

x (1)
ai4

]
u−1i . (3.84)

with ui ∈ G1 arbitrary. We pick labels bi1 , ..., bi4 , ci1 , ..., ci4 ∈ [N ] and si1 , ..., si4 ∈{0, 1} so that
ϕ∗1
(
x (1)
ai j

)
= x (1)

ai j
x (2)
bi j

x (3)
ci j

σ
si j (3.85)

for all xai j . Then

ϕ∗1 (v) =
∏

i

ϕ∗1 (ui )
[
ϕ∗1 (x (1)

ai1
)ϕ∗1 (x (1)

ai2
), ϕ∗1 (x (1)

ai3
)ϕ∗1 (x (1)

ai4
)
]
ϕ∗1 (ui )

−1 (3.86)

=
∏

i

ϕ∗1 (ui )
[
x (1)
ai1

x (1)
ai2

, x (1)
ai3

x (1)
ai4

] [
x (2)
bi1

x (2)
bi2

, x (2)
bi3

x (2)
bi4

]

[
x (3)
ci1

x (3)
ci2

, x (3)
ci3

x (3)
ci4

]
ϕ∗1 (ui )

−1 ∈ K . (3.87)

noting that any factors of σ cancel in the commutator.
A similar argument shows ϕ∗1,2(v) ∈ K . To start assume v ∈ K ∩ GE and write

ϕ∗1,2(v) =
∏

i

ϕ∗1,2 (ui )
[
ϕ∗1,2(x

(1)
i1

x (1)
i2

), ϕ∗1,2(x
(1)
i3

x (1)
i4

)
]
ϕ∗1,2 (ui )

−1 (3.88)
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=
∏

i

ϕ∗1,2 (ui )

(
3∏

α=1

[
ϕα

(
ϕ∗1,2(x

(1)
i1

x (1)
i2

)
)

, ϕα

(
ϕ∗1,2(x

(1)
i3

x (1)
i4

)
)])

ϕ∗1,2 (ui )
−1

(3.89)

Then note the words ϕα

(
ϕ∗1,2(x

(1)
i1

x (1)
i2

)
)
and ϕα

(
ϕ∗1,2(x

(1)
i3

x (1)
i4

)
)
are in GE

α for each α.

Repeatedly applying the commutator identities

[x, yz] = [x, y] y−1 [x, z] y (3.90)

and [xy, z] = y−1 [x, z] y [y, z] (3.91)

shows those words are in K . The full argument is given in an appendix (Lemma A.1). ��
An important consequence of Lemma 3.10 is the following corollary.

Corollary 3.11. Let v ∈ K ∩ GE
α be arbitrary and α �= β. Then

ϕσ (ϕ∗α(v)) = ϕσ (ϕ∗α,β(v)) = 1. (3.92)

Proof. First observe that, because σ is central and not contained in any generators of K ,
we have ϕσ (k) = 1 for all k ∈ K (a detailed proof of this fact is given in Lemma A.4).
Then, by Lemma 3.10 ϕ∗α(v) ∈ K . Hence

ϕσ

(
ϕ∗α (v)

) = 1 (3.93)

The proof for ϕσ

(
ϕ∗α,β (v)

)
is identical. ��

3.4.3. Clearing the G1 and G2 subgroups The next lemma makes critical use of right
inverses ϕ∗α and ϕ∗α,β . It should be be thought of as a “pre-processing” step, that puts
words in a convenient form to prove Theorem 2.6.

Lemma 3.12. If there exists a word w ∈ HE satisfying w = σ (mod K ), then there
exists a word w′ in H E satisfying:

1. w′ = σ (mod K )

2. ϕ1(w
′) = ϕ2(w

′) = 1.

Proof. We construct w′ by right multiplying w by ϕ∗1
(
ϕ1
(
w−1

))
to clear the G1 sub-

group elements, then multiplying by ϕ∗2,1
(
ϕ2

((
wϕ∗1

(
ϕ1
(
w−1

)))−1))
to clear the G2

subgroup. Formally:

w′ = wϕ∗1
(
ϕ1

(
w−1

))
· ϕ∗2,1

(
ϕ2

((
wϕ∗1

(
ϕ1

(
w−1

)))−1))
. (3.94)

First, we show that ϕ∗2,1
(
ϕ2

((
wϕ∗1

(
ϕ1
(
w−1

)))−1))
is well defied, and thatw′ = σ

(mod K ). By assumption, w = σ (mod K ). Equivalently, w = kσ , for some k ∈ K .
Then

ϕ1(w) = ϕ1(kσ) = ϕ1(k) ∈ K ∩ GE
1 , (3.95)
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since ϕ1 maps words in K to words inside K and words in HE to words in GE
1 . The map

ϕ1 is a homomorphism, so we also have ϕ1(w
−1) ∈ K ∩ GE

1 . Then, by Lemma 3.10,

ϕ∗1
(
ϕ1(w

−1)
)
∈ K ∩ HE . (3.96)

A similar argument shows ϕ2(w) ∈ K ∩ GE
2 . From this, and Eq.3.96 it follows that

ϕ2

((
wϕ∗1

(
ϕ1

(
w−1

)))−1) ∈ K ∩ GE
2 . (3.97)

Then, by Lemma 3.10

ϕ∗2,1
(

ϕ2

((
wϕ∗1

(
ϕ1

(
w−1

)))−1)) ∈ K ∩ HE . (3.98)

Putting this all together gives

w · ϕ∗1
(
ϕ1

(
w−1

))
· ϕ∗2,1

(
ϕ2

((
wϕ∗1

(
ϕ1

(
w−1

)))−1)) = w · 1 · 1 (mod K )

(3.99)

= σ (mod K ), (3.100)

as desired.
To show ϕ1(w

′) = ϕ2(w
′) = 1, set h = wϕ∗1

(
ϕ1
(
w−1

))
and note

ϕ1 (h) = ϕ1 (w) ϕ1

(
ϕ∗1
(
ϕ1

(
w−1

)))
(3.101)

= ϕ1(w) ϕ1

(
w−1

)
(3.102)

= 1. (3.103)

Also note w ∈ HE by assumption and ϕ∗1
(
ϕ1
(
w−1

)) ∈ HE because �(ϕ∗1 ) ∈ HE .
Then h ∈ HE and, by Property A2 of the map ϕ∗2,1 and Eq. (3.103), we have

ϕ1
(
ϕ∗2,1 (ϕ2 (h))

) = 1. (3.104)

The maps ϕα, ϕ∗α, and ϕ∗α,β are all homomorphisms, so we also have

ϕ1

(
ϕ∗2,1

(
ϕ2

(
h−1
)))

= 1. (3.105)

Then we put this all together to see

ϕ1(w
′) = ϕ1

(
h ϕ∗2,1

(
ϕ2

(
h−1
)))

(3.106)

= ϕ1 (h) ϕ1

(
ϕ∗2,1

(
ϕ2

(
h−1
)))

(3.107)

= 1, (3.108)

using Eqs. (3.103) and (3.105) in the last line.
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Additionally, property A1 of the map ϕ∗2,1 gives

ϕ2(w
′) = ϕ2

(
h ϕ∗2,1

(
ϕ2

(
h−1
)))

(3.109)

= ϕ2 (h) ϕ2

(
ϕ∗2,1

(
ϕ2

(
h−1
)))

(3.110)

= ϕ2 (h) ϕ2

(
h−1
)

(3.111)

= 1. (3.112)

Equation (3.100), (3.108) and (3.112) complete the proof. ��

3.4.4. Gadgets for processing words in G3 We are now almost ready to prove Theorem
2.6. Before we do this, we introduce two final homomorphisms f1, f2 : GE

3 → HE .17

As in Lemma 3.9 we introduce the properties of these homomorphisms in the following
lemma, then define the homomorphisms in the lemma’s proof.

Lemma 3.13. There exist homomorphisms fα for α ∈ {1, 2} which map GE
3 → HE

and satisfy:

B1. If ϕα

(
ϕ∗3,α(v)

)
= 1, then ϕα ( fα(v)) = 1

B2. ϕβ ( fα(v)) = ϕβ

(
ϕ∗3,α(v)

)
,provided β ∈ {1, 2} and β �= α

B3. ϕα

(
ϕ∗3,α (ϕ3 ( fα(v)))

)
= 1

B4. ϕβ

(
ϕ∗3,β (ϕ3 ( fα(v)))

)
= ϕβ

(
ϕ∗3,β(v))

)
,provided β ∈ {1, 2} and β �= α

for any v ∈ GE
3 .

Remark 3.14. Properties B1, B2 and B4 are all satisfied if the homomorphism fα is
replaced by ϕ∗3,α . Property B3 is not, but it is satisfied by fα in the special case that the
graph G3α is connected. Thus, the homomorphism fα can be thought of as producing
words similar to those produced by the map ϕ∗3,α , with the additional feature that they
also behave as if the graph G3α is connected and hence satisfy Property B3. A motivated
reader can also check that (with appropriately chosen conventions) the construction of
fα given later satisfies fα = ϕ∗3,α when G3α is connected.

Lemma 3.13 is the last major result needed to prove Theorem 2.6. Before proving
the Lemma we build intuition for it’s significance by sketching how Properties B1 to B4
are used in the proof of Theorem 2.6.

Proof Outline (Part 2) of Theorem 2.6. Recall that Lemma 3.12 (as foreshadowed in
Part1 of this proof outline) shows that existence of a word u ∈ HE with u = σ (mod K )

implies existence of a word u′σ ∈ HE with u′ ∈ GE
3 ∩ K . We now show how Lemma

3.13 lets us argue that u′σ ∈ HE implies that σ ∈ HE . For simplicity,18 we consider
the case where u′ has the very basic form u′ = [v1, v2] with v1 and v2 in GE

3 . However,
the intuition given here applies more generally.

Properties B1 and B2 are used to reason about words w ∈ GE
3 ∩ HE . They show

that (up to a factor of σ ) existence of a word w ∈ GE
3 ∩ HE implies that the words

17 We could define analogues of f mapping from any Gα . We only need the maps from G3, so we give the
more specific construction for notational simplicity.
18 This can be compared with the general case given in Eq. (3.197).
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ϕ3( fα(w)) are inGE
3 ∩HE forα ∈ {1, 2}. To understandwhy, note for anyw ∈ GE

3 ∩HE

we have ϕ3(w) = w and ϕ2(w) = 1, so ϕ2(ϕ
∗
3,2(w)) = 1 by Property A2. Then

ϕ2( f2(w)) = ϕ2(ϕ
∗
3,2(w)) = 1 by Property B1 and ϕ1( f2(w)) = ϕ1(ϕ

∗
3,2(w)) by

Property B2. Thus,

ϕ1((ϕ
∗
3,2(w))−1 f2(w)) = ϕ2((ϕ

∗
3,2(w))−1 f2(w)) = 1. (3.113)

Now, define w′ = w(ϕ∗3,2(w))−1 f2(w). Since f2 and ϕ∗3,2 both map into HE and w ∈
HE , we have w′ ∈ HE . We have ϕ1(w

′) = ϕ2(w
′) = 1 by definition of w and

Eq. (3.113). Furthermore,

ϕ3(w
′) = ϕ3(w)ϕ3

(
ϕ∗3,2(w)−1

)
ϕ3( f2(w)) (3.114)

= ww−1ϕ3( f2(w)) = ϕ3( f2(w)) (3.115)

by Property A1. We conclude that, up to a potential factor of σ ,

w ∈ GE
3 ∩ HE �⇒ ϕ3( f2(w)) = w′ ∈ GE

3 ∩ HE . (3.116)

A similar argument applies to the homomorphism f1 and proves

w ∈ GE
3 ∩ HE �⇒ ϕ3( f1(w)) ∈ GE

3 ∩ HE . (3.117)

Property B3 gives us a powerful tool for working with words of the form ϕ3( fα(w)).
Recall that we want to show that a word [v1, v2]σ ∈ HE with v1, v2 ∈ GE

3 implies that
σ ∈ HE . Similar logic as used to show Eq. (3.116) can show

[v1, v2] σ ∈ HE �⇒ [ϕ3( f1(v1)), ϕ3( f2(v2))] σ ∈ HE . (3.118)

Now we define

q:= [ϕ∗3,1(ϕ3( f1(v1))), ϕ
∗
3,2(ϕ3( f2(v2)))

]
(3.119)

and note that q ∈ HE (because ϕ∗3,1 and ϕ∗3,2 map into HE ). Using Property B3 we see

ϕ1 (q) = [1, ϕ1
(
ϕ∗3,2(ϕ3( f2(v2)))

)] = 1 (3.120)

and

ϕ2 (q) = [ϕ2
(
ϕ∗3,1(ϕ3( f1(v1)))

)
, 1
] = 1 (3.121)

while Property A1 of the maps ϕ∗3,α gives

ϕ3 (q) = [ϕ3( f1(v1)), ϕ3( f2(v2))] (3.122)

and direct computation gives

ϕσ (q) = [ϕσ

(
ϕ∗3,1(ϕ3( f1(v1)))

)
, ϕσ

(
ϕ∗3,2(ϕ3( f2(v2)))

)] = 1 (3.123)

Thus, checking the action of each projection on ϕα on the word we see

σ = q−1 [ϕ3( f1(v1)), ϕ3( f2(v2))] σ ∈ HE , (3.124)

which is the containment needed to prove Theorem 2.6.
For technical reasons in the full proof of Theorem 2.6 we do not apply the homomor-

phisms f1 and f2 to separate parts of a wordw ∈ GE
3 , but instead chain them together as

ϕ3( f1(ϕ3( f2(w)))).19 Property B4 is a technical result that tells us this chaining together
of maps fα behaves as desired. ��
19 In the full proof, this composition is defined in Eq. (3.198).
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3.4.5. Proof of Lemma 3.13 Now we turn to the proof of Lemma 3.13. To prepare, we
construct “gadget" words which will be used in the definition of fα . These words depend
on the representative vertices chosen from the connected components of G13 and G12
when constructing the right inverses ϕ∗3,1 and ϕ∗3,2.

To work with these representative vertices we define, for α, β ∈ {1, 3}, the functions
r (α)→(β)
3,1 analogously to Eq. (3.69). These functions map a vertex x (α)

i in Gα to the
representative vertex of Gβ in the connected component of multigraph G13 containing
x (α)
i . We also define the functions r (α)→(β)

3,2 , analogously for α, β ∈ {2, 3}. Next, recall
the hypergraph G123 defined in Sect. 3.1.2. Vertices are identified with elements x (α)

i ,

with i ∈ [N ], α ∈ {1, 2, 3}. G123 contains a hyperedge (x (1)
i , x (2)

j , x (3)
k ) for each clause

x (1)
i x (2)

j x (3)
k σ l ∈ S, where l has value 0 or 1. By the arguments of Sect. 3.3, we can

assume this hypergraph is connected. Then there exist paths in G123 between any two
vertices.

Now for each pair of vertices x (α)
i , x (β)

j let Q(x (α)
i , x (β)

j ) denote some fixed minimal
length path between these vertices. Then we fix some arbitrary vertex in G3, wlog
chosen to be x (3)

1 , and for each representative vertex r (β)→(α)
3,α (x (β)

i ) with α ∈ {1, 2}
and β ∈ {3, α} consider the minimal length path Q

(
r (β)→(α)
3,α (x (β)

i ), x (3)
1

)
from the

representative vertex to x (3)
1 . Each path corresponds to a sequence of clauses, and we can

identify sequences of clauses with words in H . A sample hypergraph G123 is introduced
in Fig. 6, and a sample path is illustrated in Fig. 8.

Next, given a sequence of clauses h p1 , h p2 , ..., h ps corresponding to a path in G123,
define the subsequence of clauses sβ(h p1, h p2 , ..., h ps ) to be the sequence including
only pairs consisting of adjacent clauses which are connected through the Gβ vertices.
That is, sβ(h p1 , h p2 , ..., h ps ) includes only adjacent clauses h pi h pi+1 which satisfy

ϕβ(h pi ) = ϕβ(h pi+1). (3.125)

Note sβ(h p1 , h p2 , ..., h ps ) need not be a path.
Finally, define words

γ1

(
x (α)
i , x (3)

1

)
:=s2

(
Q
(
r (α)→(1)
3,1

(
x (α)
i

)
, x (3)

1

))
for α ∈ {1, 3} (3.126)

and

γ2

(
x (α)
i , x (3)

1

)
:=s1

(
Q
(
r (α)→(2)
3,2

(
x (α)
i

)
, x (3)

1

))
for α ∈ {2, 3}. (3.127)

20 The full sequence of steps involved in the construction of γ2 is visualized in Figs. 6
to 9. We alert the reader that we will most frequently use these gadget words with the
fixed index α = 3, but will occasionally require this more general definition.

The following lemma summarizes the important properties of the gadget words

γ2

(
x (3)
i , x (3)

1

)
and γ1

(
x (3)
i , x (3)

1

)
.

20 The x(3)
1 entry in the definition of the words γβ

(
x(α)
i , x(3)

1

)
is fixed, so nonessential. We keep it in the

notation only to remind ourselves that the words correspond to a subsequence chosen from a sequence of

clauses which corresponds to a path terminating at vertex x(3)
1 .
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Fig. 6. Sample hypergraph G123 for a game with alphabet size N = 6 and 11 clauses.

Representative vertices in the image of the map r (3)→(2)
3,2 are indicated in red. The hy-

pergraph is generated by clause set (σ terms omitted since they don’t affect the graph):

S = {x(1)
1 x(2)

1 x(3)
1 , x(1)

1 x(2)
2 x(3)

1 , x(1)
2 x(2)

2 x(3)
2 , x(1)

1 x(2)
3 x(3)

3 , x(1)
2 x(2)

3 x(3)
4 , x(1)

3 x(2)
4 x(3)

4 , x(1)
4 x(2)

4

x(3)
3 , x(1)

5 x(2)
4 x(3)

4 , x(1)
5 x(2)

6 x(3)
5 , x(1)

5 x(2)
5 x(3)

5 , x(1)
6 x(2)

6 x(3)
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x
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1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 x

(2)
6

x
(3)
1 x

(3)
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(3)
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4 x

(3)
5 x

(3)
6

Fig. 7. Graph G23 corresponding to the same set of clauses as used to generate the hypergraph in Fig. 6.
Representative vertices in G2 are indicated in red

Lemma 3.15. The words γ2

(
x (3)
i , x (3)

1

)
and γ1

(
x (3)
i , x (3)

1

)
, defined as in Eq. (3.127),

satisfy the following properties:

C1. ϕ1

(
γ2

(
x (3)
i , x (3)

1

))
= 1 and ϕ2

(
γ1

(
x (3)
i , x (3)

1

))
= 1.

C2. ϕ2

(
ϕ∗3,2

(
ϕ3

(
γ2

(
x (3)
i , x (3)

1

))))
= ϕ2

(
ϕ∗3,2

(
x (3)
i x (3)

1

))
and

ϕ1

(
ϕ∗3,1

(
ϕ3

(
γ1

(
x (3)
i , x (3)

1

))))
= ϕ1

(
ϕ∗3,1

(
x (3)
i x (3)

1

))
.



3XOR Games with Perfect Commuting Operator Strategies 771

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 x

(2)
6

x
(3)
1 x

(3)
2 x

(3)
3 x

(3)
4 x

(3)
5 x

(3)
6

1

x
(2)
1

x

1)

x
(

x3

1) ( )

x
(2)
3

x4

(1)1)

x
(2)
5

x55

1)( )

x

x1

(((

x1

( )(1) 1)

(2)

x2

(1)

x
(2
2

(1)

(2)

x4x4

(1)

x

x3x3

x
(2
4

( ))

x

x5

( )(1

x5

(1) (1)

(2)

x6

x
(2
6

Fig. 8. Hypergraph repeated from Fig. 6. A choice of path Q(x(2)
5 , x(3)

1 ) is indicated in teal
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Fig. 9. Hypergraph repeated from Fig. 6. The path Q(x(2)
5 , x(3)

1 ) is indicated in teal. The hyperedges making

up γ2(x
(2)
5 , x(3)

1 ) are outlined

Proof. We show the γ2 case. The proof in the γ1 case is identical up to a change of index.

To begin the proof, we note the word Q
(
r (3)→(2)
3,2 (x (3)

i ), x (3)
1

)
corresponds to a

minimal-length path and so there are never more than two adjacent clauses contain-
ing the same element in the G1 subgroup. (If there were three or more adjacent hy-
peredges containing the same element in G1, the middle hyperedges could be deleted
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and the path would remain connected, contradicting minimality). Additionally, recall
that each hyperedge in G123 is of the form (x (1)

i , x (2)
j , x (3)

k ), i.e. the hyperedge contains
exactly one vertex in each Gα for α ∈ {1, 2, 3}. For these reasons the subsequence

s1
(
Q
(
r (3)→(2)
3,2 (x (3)

i ), x (3)
1

))
consists of pairs of hyperedges hy j , hz j which overlap on

some vertex in G1. Thus we can write

γ2

(
x (3)
i , x (3)

1

)
= hy1hz1 hy2hz2 ... hyL hzL (3.128)

where ϕ1
(
hy j hz j

) = 1. This shows Property C1.
Next, we prove property C2. We start by numbering all clauses in the path Q(

r (3)→(2)
3,2 (x (3)

i ), x (3)
1

)
, so

Q
(
r (3)→(2)
3,2 (x (3)

i ), x (3)
1

)
= h p1h p2 ....h pR . (3.129)

Consider two adjacent hyperedges h pr h pr+1 in the path. Since these hyperedges appear
in sequence they overlap on at least one vertex.

a) If this vertex is contained in G1, then this pair of hyperedges is contained in the word

γ2

(
x (3)
i , x (3)

1

)
and, using the notation of Eq. (3.128), we have h pr h pr+1 = hy j hz j for

some j .
b) Otherwise these hyperedges overlap on a vertex corresponding to a generator of either

G2 or G3 (equivalently, these hyperedges overlap on a vertex contained in the graph
G23). In that case ϕ3(h pr ) and ϕ3(h pr+1) are in the same connected component in the

graph G23 so r (3)→(2)
3,2 (ϕ3(h pr )) = r (3)→(2)

3,2 (ϕ3(h pr+1)). Consequently,

ϕ2
(
ϕ∗3,2(ϕ3(h pr h pr+1))

) = r (3)→(2)
3,2 (ϕ3(h pr h pr+1)) = 1. (3.130)

The first equality holds by Eq. (3.73).

Nowconsider a contiguous stringof hyperedges of the formhz j , h pr+1 , h pr+2 ..., h pr+r ′ ,

hy j+1 contained in the path (3.129). Here hz j and hy j+1 belong to the path γ2

(
x (3)
i , x (3)

1

)
,

but h pr+1 ...h pr+r ′ do not. By definition of the subsequence γ2

(
x (3)
i , x (3)

1

)
, no adjacent

hyperedges between hz j and hy j+1 overlap on a vertex in the G1 subspace, else they

would be contained in the subsequence γ2

(
x (3)
i , x (3)

1

)
, a contradiction. Now that the

intermediate clauses h pr+1 , ..., h pr+r ′ are introduced we apply the observation of the
previous paragraph inductively to see

ϕ2
(
ϕ∗3,2(ϕ3(hz j h pr+1))

) = ϕ2
(
ϕ∗3,2(ϕ3(h pr+1h pr+2))

)

= ... = ϕ2
(
ϕ∗3,2(ϕ3(h pr+r ′ hy j+1))

) = 1 (3.131)

Multiplying these terms together and noting adjacent clauses cancel shows

ϕ2
(
ϕ∗3,2(ϕ3(hz j hy j+1))

) = 1. (3.132)

for any j < L . Now we use this observation inductively, and compute

ϕ2

(
ϕ∗3,2

(
ϕ3

(
γ2

(
x (3)
i , x (3)

1

))))
= ϕ2

(
ϕ∗3,2

(
ϕ3
(
hy1hz1hy2hz2 , ..., hyL hzL

)))

(3.133)
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= ϕ2
(
ϕ∗3,2

(
ϕ3
(
hy1hzL

)))
(3.134)

= ϕ2

(
ϕ∗3,2

(
x (3)
i x (3)

1

))
(3.135)

where we used on the last line the fact that ϕ3(hy1)was in the same connected component

in G23 as x (3)
i and that ϕ3(hzL ) = x (3)

1 , so

ϕ2
(
ϕ∗3,2

(
ϕ3
(
hy1hzL

))) = r (3)→(2)
3,2

(
ϕ3(hy1)

)
r (3)→(2)
3,2

(
ϕ3(hzL )

)
(3.136)

= r (3)→(2)
3,2

(
x (3)
i

)
r (3)→(2)
3,2

(
x (3)
1

)
(3.137)

= ϕ2

(
ϕ∗3,2

(
x (3)
i x (3)

1

))
. (3.138)

by definition of r (3)→(2)
3,2 and Eq. (3.73). This proves Property C2. ��

In addition to the gadget words defined above, we will need to recall the properties
of the paths Pα,β , defined analogously to the path P1,2 defined at Eq. (3.70); they are
used to construct the homomorphisms ϕ∗α,β . In particular, we care about the properties
of those paths when α is 3 and β is 1 or 2. We recall the properties of those paths in the
following lemma.

Lemma 3.16. For β ∈ {1, 2} and x (3)
i ∈ G3, the path P3,β

(
x (3)
i , r (3)→(β)

3,β (x (3)
i )
)

satisfies the following properties

D1. ϕ3

(
P3,β

(
x (3)
i , r (3)→(β)

3,β (x (3)
i )
))
= x (3)

i

D2. ϕβ

(
P3,β

(
x (3)
i , r (3)→(β)

3,β (x (3)
i )
))
= r (3)→(β)

3,β (x (3)
i )

D3. P3,β

(
x (3)
i , r (3)→(β)

3,β (x (3)
i )
)
P3,β

(
x (3)
j , r (3)→(β)

3,β (x (3)
j )
)−1 = ϕ∗3,β(x (3)

i x (3)
j )

Proof. Properties D1 and D2 follow from the properties of paths in the graph G3,β , as
discussed in the proof of Lemma 3.9. Property D3 is just the definition of ϕ∗3,β , analogous
to Eq. (3.71). ��

Now we use the gadget words γ1(x
(3)
i , x (3)

1 ) and γ2(x
(3)
i , x (3)

1 ) along with the paths
P3,β to prove Lemma 3.13.

Proof (Lemma 3.13). Recall that Lemma 3.13 claimed the existence of homomorphisms
f1 and f2 which map GE

3 → HE and satisfy certain desiderata (Properties B1 to B4).
We will now give an explicit construction of these homomorphisms.

Define the homomorphism f1 : GE
3 → HE by its action on the basis elements

f1(x
(3)
i x (3)

j )

:=P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
)

γ1

(
x (3)
i , x (3)

1

)

(
P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)

γ1

(
x (3)
j , x (3)

1

))−1
(3.139)

= P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
)

γ1

(
x (3)
i , x (3)

1

)
γ1

(
x (3)
j , x (3)

1

)−1

P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)−1

, (3.140)
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with f2 defined similarly. Both maps are homomorphisms by Lemma 3.9. It remains to
show they satisfy Properties B1 to B4. We will show explicitly that the homomorphism
f1 satisfies these properties; the reader can see that the argument for f2 is identical.

Property B2 applied to homomorphism f1 requires that

ϕ2 ( f1(v)) = ϕ2
(
ϕ∗3,1(v)

)
(3.141)

for any v ∈ GE
3 . We prove this by checking the action of f1 on the generators of GE

3 .
Direct calculation gives

ϕ2

(
f1(x

(3)
i x (3)

j )
)

= ϕ2

(
P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
)

γ1

(
x (3)
i , x (3)

1

)
γ1

(
x (3)
j , x (3)

1

)−1

P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)−1)

(3.142)

= ϕ2

(
P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
)
P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)−1)

(3.143)

= ϕ2

(
ϕ∗3,1

(
x (3)
i x (3)

j

))
, (3.144)

where we used Property C1 of the words γ1(x
(3)
i , x (3)

1 ) to go from the second line to the
third, and Property D3 of the words P3,1. to go from the third line to fourth.

Property B1 applied to homomorphism f1 requires that

ϕ1 ( f1(v)) = 1 (3.145)

for any v ∈ GE
3 with ϕ1

(
ϕ∗3,1(v)

)
= 1. The proof of this is similar to the proof of

Property A2 of the map ϕ∗α,β . Recall the function r
(α)→(1)
3,1 , defined to map a vertex x (α)

i

in Gα with α ∈ {1, 3} to the representative vertex x (1)
j in the connected component of

graph G13 containing x (α)
i . Define the homomorphism λ1 : GE

1 → GE
1 by extending

λ1(x
(1)
i x (1)

j ) = r (1)→(3)
3,1

(
x (1)
i

)
ϕ1

(
γ1

(
x (1)
i , x (3)

1

)) (
r (1)→(3)
3,1

(
x (1)
j

)
ϕ1

(
γ1

(
x (1)
j , x (3)

1

)))−1

(3.146)

as in Lemma 3.8.
Then we claim

λ1(ϕ1(h)) = ϕ1 ( f1 (ϕ3 (h))) (3.147)

for any h ∈ HE . As in the proof of Property A2, we check this claim directly on the
generators of HE :

ϕ1
(
f1
(
ϕ3
(
hi h j

)))

= ϕ1

(
f1
(
ϕ3

(
x (1)
ai x (2)

bi
x (3)
ci x (1)

a j
x (2)
b j

x (3)
c j σ si+s j

)))
(3.148)

= ϕ1

(
f1
(
x (3)
ci x (3)

c j

))
(3.149)
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= ϕ1

(
P3,1

(
x (3)
ci , r (3)→(1)

3,1 (x (3)
ci )
)

γ1

(
x (3)
ci , x (3)

1

)
γ1

(
x (3)
c j , x (3)

1

)−1
P3,1

(
x (3)
c j , r (3)→(1)

3,1 (x (3)
c j )
)−1)

(3.150)

= r (3)→(1)
3,1

(
x (3)
ci

)
ϕ1

(
γ1

(
x (3)
ci , x (3)

1

) (
γ1

(
x (3)
c j , x (3)

1

))−1)(
r (3)→(1)
3,1

(
x (3)
c j

))−1
(3.151)

= r (1)→(1)
3,1

(
x (1)
ai

)
ϕ1

(
γ1

(
x (1)
ai , x (3)

1

) (
γ1

(
x (1)
a j

, x (3)
1

))−1)(
r (1)→(1)
3,1

(
x (1)
a j

))−1
(3.152)

= λ1

(
x (1)
ai

)
λ1

(
x (1)
a j

)−1
(3.153)

= λ1(ϕ1(hi h j )) (3.154)

Note to get line (3.151) we used Property D2 of the paths P3,1. The key argument comes
in getting to line 3.152 where we used the fact that x (1)

ai and x (3)
ci are both contained in

the clause hi , so the vertices corresponding to x (1)
ai and x (3)

ci are in the same connected
component of G13 and consequently,

r (3)→(1)
3,1

(
x (3)
ci

)
= r (1)→(1)

3,1

(
x (1)
ai

)
(3.155)

and

γ1

(
x (3)
ci , x (3)

1

)
= γ1

(
x (1)
ai , x (3)

1

)
. (3.156)

Since λ1, ϕ1, f1, and ϕ3 are all homomorphisms, this proves the claim.

Next, for any v ∈ GE
3 satisfying ϕ1

(
ϕ∗3,1(v)

)
= 1 we use Eq. (3.147) with h =

ϕ∗3,1(v) to conclude (recalling that v = ϕ3

(
ϕ∗3,1(v)

)
by Property A1):

ϕ1 ( f1(v)) = ϕ1
(
f1
(
ϕ3
(
ϕ∗3,1 (v)

)))
(3.157)

= λ1
(
ϕ1
(
ϕ∗3,1 (v)

))
(3.158)

= λ1(1) = 1 (3.159)

which proves property B1.
Property B4 applied to the homomorphism f1 requires that

ϕ2
(
ϕ∗3,2 (ϕ3 ( f1(v)))

) = ϕ2
(
ϕ∗3,2(v))

)
(3.160)

for any v ∈ GE
3 . This follows from Property C1 of the words γ1(x

(3)
i , x (3)

1 ) and Prop-
erty A2 of the map ϕ∗3,2. Property C1 gives

ϕ2

(
γ1(x

(3)
i , x (3)

1 )
)
= 1 (3.161)

and then Property A2 gives

ϕ2

(
ϕ∗3,2

(
ϕ3

(
γ1(x

(3)
i , x (3)

1 )
)))

= 1. (3.162)

The idea is that the gadget words inserted by the map f1 map to the identity under

ϕ2

(
ϕ∗3,2 (ϕ3)

)
andPropertyB4 follows.WeverifyPropertyB4algebraically by checking

that Eq. (3.160) holds on the generators of GE
3 :

ϕ2

(
ϕ∗3,2

(
ϕ3

(
f1(x

(3)
i x (3)

j )
)))

(3.163)
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= ϕ2

(
ϕ∗3,2

(
ϕ3

(
P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
))))

ϕ2

(
ϕ∗3,2

(
ϕ3

(
γ1

(
x (3)
i , x (3)

1

))))
ϕ2

(
ϕ∗3,2

(
ϕ3

(
γ1

(
x (3)
j , x (3)

1

)−1)))

ϕ2

(
ϕ∗3,2

(
ϕ3

(
P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)−1)))

(3.164)

= ϕ2

(
ϕ∗3,2

(
ϕ3

(
P3,1

(
x (3)
i , r (3)→(1)

3,1 (x (3)
i )
))))

ϕ2

(
ϕ∗3,2

(
ϕ3

(
P3,1

(
x (3)
j , r (3)→(1)

3,1 (x (3)
j )
)−1)))

(3.165)

= ϕ2

(
ϕ∗3,2

(
x (3)
i x (3)

j

))
. (3.166)

Where we used Eq. (3.162) to go from the second line to the third, and Property D1 of
the paths P3,1 to go from the third line to the fourth.

Finally, Property B3 applied to f1 requires that

ϕ1
(
ϕ∗3,1 (ϕ3 ( f1(v)))

) = 1 (3.167)

for any v ∈ GE
3 . This relies heavily on Property C2 of the words γ1(x

(3)
i , x (3)

1 ). Because
v has even length, we can write

v =
∏

i

x (3)
oi x (3)

ei . (3.168)

Then

f1(v) =
∏

i

(
P3,1

(
x (3)
oi , r (3)→(1)

3,1 (x (3)
oi )
)

γ1

(
x (3)
oi , x (3)

1

)

γ1

(
x (3)
ei , x (3)

1

)−1
P3,1

(
x (3)
ei , r (3)→(1)

3,1 (x (3)
ei )
)−1 )

(3.169)

and using Property C2 of the words γ1(x
(3)
i , x (3)

1 ) and Property D1 of the paths P3,1
gives

ϕ1
(
ϕ∗3,1 (ϕ3 ( f1(v)))

)

=
∏

i

ϕ1

(
ϕ∗3,1

(
ϕ3

(
P3,1

(
x (3)
oi , r (3)→(1)

3,1 (x (3)
oi )
)

γ1

(
x (3)
oi , x (3)

1

)

γ1

(
x (3)
ei , x (3)

1

)−1
P3,1

(
x (3)
ei , r (3)→(1)

3,1 (x (3)
ei )
)−1 )))

(3.170)

=
∏

i

ϕ1

(
ϕ∗3,1

(
x (3)
oi (x (3)

oi x (3)
1 )(x (3)

1 x (3)
ei )x (3)

ei

))
(3.171)

=
∏

i

1 = 1. (3.172)

This shows Property B3 and completes the proof of Lemma 3.13. ��
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One final nice property of themaps f1, f2 that we need to show is that theymapwords
inside the K subgroup to words inside the K subgroup. We show that in the following
lemma.

Lemma 3.17. For any v ∈ K ∩ GE
3 we have

f1(v), f2(v) ∈ K . (3.173)

Proof. By assumption, we can write

v =
∏

i

ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i . (3.174)

Then,

f1(v) =
∏

i

f1 (ui ) f1
([

x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

])
f1
(
u−1i

)
(3.175)

=
∏

i

f1 (ui )
[
f1
(
x (3)
ai1

x (3)
ai2

)
, f1

(
x (3)
ai3

x (3)
ai4

)]
f1
(
u−1i

)
(3.176)

We have f1
(
x (3)
ai1

x (3)
ai2

)
, f1

(
x (3)
ai3

x (3)
ai4

)
∈ GE , so (by Lemma A.1 in the appendix)

[
f1
(
x (3)
ai1

x (3)
ai2

)
, f1

(
x (3)
ai3

x (3)
ai4

)]
∈ K . (3.177)

But K is normal, so we also have

f1 (ui )
[
f1
(
x (3)
ai1

x (3)
ai2

)
, f1

(
x (3)
ai3

x (3)
ai4

)]
f1
(
u−1i

)
∈ K (3.178)

for all i , hence

f1(v) =
∏

i

f1 (ui )
[
f1
(
x (3)
ai1

x (3)
ai2

)
, f1

(
x (3)
ai3

x (3)
ai4

)]
f1
(
u−1i

)
∈ K . (3.179)

The proof for f2 is identical. ��
As a corollary, we note that the maps f1, f2 don’t introduce any undesired factors of

σ .

Corollary 3.18. For any word v ∈ K ∩ GE
3 , we have

ϕσ ( f1(v)) = ϕσ ( f2(v)) = 1 (3.180)

Proof. Similarly to the proof of Corollary 3.11, note that f1(v) ∈ K by Lemma 3.17,
so ϕσ ( f1(v)) = 1 by Lemma A.4. The proof for f2 is similar. ��
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3.4.6. Proof of Theorem 2.6 Finally, we are ready to prove Theorem 2.6.

Proof or Theorem 2.6.. It is immediate that

σ ∈ H �⇒ [σ ]K ∈ H (mod K ). (3.181)

To see the reverse direction, assume that [σ ]K ∈ H (mod K ). Then there exists some
w ∈ H satisfying w = σ (mod K ). By Lemma 3.12, there exists a word w′ ∈ H
satisfying ϕ1(w

′) = ϕ2(w
′) = 1 and w′ = σ (mod K ). Note that the last condition

implies that w′ = σk for some k ∈ K , hence

ϕ3(w
′) = ϕ3(σk) = k ∈ K ∩ GE

3 . (3.182)

We choose words ui ∈ GE
3 and indices ai1 , ..., ai4 ∈ [N ] so that

ϕ3(w
′) =

∏

i

ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i . (3.183)

Now we multiply gadgets onto w′. Consider the word

w′′ = w′ϕ∗3,1
(
ϕ3(w

′)
)−1

f1(ϕ3
(
w′
)
) (3.184)

Note that ϕ1(w
′) = 1, and w′ ∈ H . Hence

ϕ1
(
ϕ∗3,1

(
ϕ3(w

′)
)) = 1 and ϕ1

(
f1
(
ϕ3(w

′)
)) = 1, (3.185)

the first by Property A2 of the map ϕ∗3,1 and the second by property B1 of f1. Putting
this all together,

ϕ1
(
w′′
) = ϕ1

(
w′
)
ϕ1

(
ϕ∗3,1

(
ϕ3(w

′)
)−1)

ϕ1
(
f1(ϕ3

(
w′
)
)
) = 1. (3.186)

By Property B2 of the map f1 we have

ϕ2
(
w′′
) = ϕ2

(
w′
)
ϕ2

(
ϕ∗3,1

(
ϕ3(w

′)
)−1)

ϕ2
(
f1(ϕ3

(
w′
)
)
)

(3.187)

= ϕ2

(
ϕ∗3,1

(
ϕ3(w

′)
)−1)

ϕ2
(
ϕ∗3,1(ϕ3

(
w′
)
)
) = 1 (3.188)

Finally

ϕ3
(
w′′
) = ϕ3

(
f1(ϕ3

(
w′
)
)
)

(3.189)

by Property A1 of the map ϕ∗3,1. Also note that ϕ3
(
f1(ϕ3

(
w′
)
)
) ∈ K by Lemma 3.17

and the fact that ϕ3 maps words in K to words in K (Lemma A.5).
We summarize:

ϕ1(w
′′) = ϕ2(w

′′) = 1, (3.190)

and

ϕ3(w
′′) = ϕ3

(
f1(ϕ3

(
w′
)
)
) ∈ K . (3.191)

Now we again multiply gadgets onto w′′ with the 1 and 2 indices swapped. Recall

w′′ = w′ϕ∗3,1
(
ϕ3(w

′)
)−1

f1(ϕ3
(
w′
)
), (3.192)
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then define

w′′′ = w′′ϕ∗3,2
(
ϕ3(w

′′)
)−1

f2(ϕ3
(
w′′
)
) (3.193)

The same arguments as used to show Eqs. (3.190) and (3.191) then give

ϕ1(w
′′′) = ϕ2(w

′′′) = 1 (3.194)

and

ϕ3(w
′′′) = ϕ3

(
f2
(
ϕ3
(
w′′
)))

(3.195)

= ϕ3
(
f2
(
ϕ3
(
f1(ϕ3

(
w′
)
)
))) ∈ K . (3.196)

We have, by assumption,

ϕ3(w
′) =

∏

i

ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i . (3.197)

We define a composition of maps F : G3 → G3

F :=ϕ3 ◦ f2 ◦ ϕ3 ◦ f1. (3.198)

Then we have

ϕ3(w
′′′) = F

(
∏

i

ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i

)

(3.199)

=
∏

i

F
(
ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i

)
(3.200)

=
∏

i

F (ui )
[
F
(
x (3)
ai1

x (3)
ai2

)
, F
(
x (3)
ai3

x (3)
ai4

)]
F
(
u−1i

)
. (3.201)

where we used the fact that each word ui
[
x (3)
ai1

x (3)
ai2

, x (3)
ai3

x (3)
ai4

]
u−1i has even length on the

first line, and that each word ui has even length on the second.
Now

ϕ2

(
ϕ∗3,2

(
F
(
x (3)
j x (3)

k

)))
= ϕ2

(
ϕ∗3,2

(
ϕ3

(
f2
(
ϕ3

(
f1
(
x (3)
j x (3)

k

))))))
= 1 (3.202)

by Property B3. Next

ϕ1

(
ϕ∗3,1

(
F
(
x (3)
j x (3)

k

)))
= ϕ1

(
ϕ∗3,1

(
ϕ3

(
f2
(
ϕ3

(
f1
(
x (3)
j x (3)

k

))))))
(3.203)

= ϕ1

(
ϕ∗3,1

(
ϕ3

(
f1
(
x (3)
j x (3)

k

))))
= 1 (3.204)

where we used Property B4 and then Property B3 of the maps f2 and f1.
Finally, consider the word21

w
′′′′ =

∏

i

ϕ∗3 (F (ui ))
[
ϕ∗3,1

(
F
(
x (3)
ai1

x (3)
ai2

))
, ϕ∗3,2

(
F
(
x (3)
ai3

x (3)
ai4

))]
ϕ∗3
(
F
(
u−1i

))
.

(3.205)

21 Below we could have replaces the ϕ∗3 appearing in the term ϕ∗3 (F (ui )) with either ϕ∗3,1 or ϕ∗3,2 and the
proof would remain correct.
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We have

ϕ3(w
′′′′) =

∏

i

F (ui )
[
F
(
x (3)
ai1

x (3)
ai2

)
, F
(
x (3)
ai3

x (3)
ai4

)]
F
(
u−1i

)
= ϕ3(w

′′′). (3.206)

Equation (3.202) gives

ϕ2(w
′′′′) (3.207)

=
∏

i

ϕ2
(
ϕ∗3 (F (ui ))

) [
ϕ2

(
ϕ∗3,1

(
F
(
x (3)
ai1

x (3)
ai2

)))
, ϕ2

(
ϕ∗3,2

(
F
(
x (3)
ai3

x (3)
ai4

)))]

ϕ2

(
ϕ∗3
(
F
(
u−1i

)))
(3.208)

=
∏

i

ϕ2
(
ϕ∗3 (F (ui ))

) [
ϕ2

(
ϕ∗3,1

(
F
(
x (3)
ai1

x (3)
ai2

)))
, 1
]
ϕ2
(
ϕ∗3 (F (ui ))

)−1 = 1

(3.209)

A similar argument using Eq. (3.204) shows ϕ1(w
′′′′) = 1. Finally, elements in the image

of ϕσ commute with each other (by an argument similar to the proof of Lemma 3.18)
hence

ϕσ

(
w′′′′

)
(3.210)

=
∏

i

ϕσ

(
ϕ∗3 (F (ui ))

)
ϕσ

([
ϕ∗3,1

(
F
(
x (3)
ai1

x (3)
ai2

))
, ϕ∗3,2

(
F
(
x (3)
ai3

x (3)
ai4

))])

ϕσ

(
ϕ∗3
(
F
(
u−1i

)))
(3.211)

=
∏

i

ϕσ

(
ϕ∗3 (F (ui ))

) [
ϕσ

(
ϕ∗3,1

(
F
(
x (3)
ai1

x (3)
ai2

)))
, ϕσ

(
ϕ∗3,2

(
F
(
x (3)
ai3

x (3)
ai4

)))]

ϕσ

(
ϕ∗3
(
F
(
u−1i

)))
(3.212)

=
∏

i

ϕσ

(
ϕ∗3 (F (ui ))

)
ϕσ

(
ϕ∗3
(
F
(
u−1i

)))
= 1. (3.213)

To put this all together and complete the proof, consider the word w′′′w′′′′−1. Using
equations Eqs. (3.194) and (3.209)

ϕ2(w
′′′w′′′′−1) = ϕ2(w

′′′)ϕ2(w
′′′′−1) = 1 (3.214)

with a similar argument giving

ϕ1(w
′′′w′′′′−1) = ϕ1(w

′′′)ϕ1(w
′′′′)−1 = 1. (3.215)

Equation (3.206) gives

ϕ3(w
′′′w′′′′−1) = ϕ3(w

′′′)ϕ3(w
′′′′)−1 (3.216)

= ϕ3(w
′′′)ϕ3(w

′′′)−1 = 1. (3.217)

Finally, Eq. (3.213), Corollary 3.18, and Corollary 3.11 give

ϕσ (w′′′w′′′′−1) = ϕσ (w′′′) (3.218)
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= ϕσ (w′′ϕ∗3,2
(
ϕ3(w

′′)
)−1

f2(ϕ3
(
w′′
)
)) (3.219)

= ϕσ (w′′) (3.220)

= ϕσ

(
w′ϕ∗3,1

(
ϕ3(w

′)
)−1

f1(ϕ3
(
w′
)
)
)

(3.221)

= ϕσ

(
w′
)

(3.222)

= σ. (3.223)

We conclude σ ∈ HE and thus the proof is complete. ��
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A. Properties of K and Its Interactions

Here we prove several small facts used in the proof of Theorem 2.6 as well as some
which add perspective on K .

A.1. Properties of K .

Lemma A.1. Let u, v be two even length words in Gα . Then [u, v] ∈ K.

Proof. Let l(u) denote the length of u, with l(v) defined similarly.Define L = l(u)+l(v).
We prove by induction on L .
When L = 4, u and v must both have length 2, hence [u, v] is a generator of K . Then

the result is immediate.

http://creativecommons.org/licenses/by/4.0/


782 A. Bene Watts, J. W. Helton

Otherwise, we must have that either l(u) or l(v) is greater than 2. For now we assume
l(v) > 2. Then we can write

v = v′v′′ (A.1)

with v′ and v′′ both even length words. Note that

l(v′) + l(v′′) = l(v) (A.2)

so v′ and v′′ both have length less than v. Then we can write

[u, v] = [u, v′v′′
]

(A.3)

= [u, v′
]
v′−1

[
u, v′′

]
v′ (A.4)

where we have used the commutator identity

[x, yz] = [x, y] y−1 [x, z] y (A.5)

on the second line. l(u) + l(v′) and l(u) + l(v′′) are both less than L , so by the induction
hypothesis we have

[
u, v′

]
and

[
u, v′′

]
are both in K . Since K is normal, that also implies

v′−1
[
u, v′′

]
v′ ∈ K , (A.6)

and since K is a group

[x, y] y−1 [x, z] y ∈ K . (A.7)

The proof when l(u) > 2 is almost identical, except we use the commutator identity

[xy, z] = y−1 [x, z] y [y, z] (A.8)

��

A.1.1. Canonical form for monomials mod K Consider the game group G is defined for
k players and let ∼K denote the equivalence relation on G defined by modding out by
K . In this subsection we shall write down a canonical selection from the equivalence
classes. This is not used in the proofs here, but might be in other proofs and it is certainly
useful in computer experiments. WhileG is defined for k players modding out by K acts
independently on the variables x (α)

j j = 1, . . . , n associated with each player α. Thus,
without loss of generality we can take k = 1. Also G contains σ but we shall ignore it,
since σ has no impact on the canonical form.
The core observation is the following lemma.

Lemma A.2. Suppose G is the game group of a 1-XOR quantum qame. Monomials of
the form

wabcdq and wcbadq and wadcbq

are all equal mod K . Here a, b, c, d are generators of the G and w and q are arbitrary
monomials.
For degree 3 or more monomials this immediately implies that interchanging any two
even position variables or any two odd position variables in a monomial m produces a
monomial m̃ with m∼K m̃.
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Proof. We first show abcd ∼K adcb by noting

(adcb)−1 abcd = bcd bcd = bc dc cb cd ∼K 1. (A.9)

where the last equation is true by definition of K . The proof that the first and third
monomials are equivalent goes similarly.
If m has degree 3 write it as abc, then the property just proved for degree 4 gives

abc∼K abcxx ⇐⇒ cbaxx∼K cba (A.10)

as claimed. ��
Given an ordering on the generators of G, a canonical form of a monomial m is seen
easily from the lemma. We describe it in terms of an algorithm.

Algorithm K , Q

1. Find its even (resp, odd) part, namely the monomial whose entries are the variables
in the even (resp odd) locations of m. For example: take m = zgabcd f zz, then

even[m]:=gbd f z odd[m]:=zacez
2. Select a variable, say v, and count how many times, e, it appears in even[m] and o

times in odd[m].
If o ≤ e, then remove all variables v from the list odd[m] and also remove o of
the v’s from even[m]. If e ≤ o, then remove all v from the list even[m] and also
remove e of the v’s from odd[m]. The order of removal does not matter. Do this for
all variables (not just v) to get evQ[m] and oddQ[m].
Example revisited: take G to have generators equal to the alphabet a, . . . , z with
each generator having square equal to 1. e = 1 and o = 2 for the variable z. So
evQ[m] = gbd f and oddQ[m] = zace.

3. Order both lists. alph[even]:=bd f g, alph[odd]:=acez
4. Recombine these words to make one word. canon[m]:=abcde f zg

��
Application of Lemma A.2 proves the Algorithm succeeds as is formalized by the fol-
lowing.

Proposition A.3. For monomials of degree ≥ 3, we have that canon[m] is uniquely
determined and m∼K canon[m]. That is, canon[m] is a canonical form for m.

A.2. The interaction of ϕσ and ϕα with K .

Lemma A.4. For any k ∈ K,

ϕσ (k) = 1. (A.11)

Proof. We can write

k =
∏

i

ui
[
xαi
ai x

αi
bi

, xαi
ci x

αi
di

]
u−1i (A.12)

Then,
ϕσ (k) = ϕσ

(
∏

i

ui
[
xαi
ai x

αi
bi

, xαi
ci x

αi
di

]
u−1i

)

(A.13)
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=
∏

i

ϕσ (ui )
[
ϕσ

(
xαi
ai x

αi
bi

)
, ϕσ

(
xαi
ci x

αi
di

)]
ϕσ

(
u−1i

)
(A.14)

=
∏

i

ϕσ (ui )ϕσ

(
u−1i

)
= 1 (A.15)

where we used that �(ϕσ ) = {σ, 1} is a commutative group to show the commutator
terms were the identity. ��
Lemma A.5. For any k ∈ K, and α ∈ {1, 2, 3}:

ϕα(k) ∈ K . (A.16)

Proof. Define the set C to be all commutators of pairs, that is

C =
{[

xα
i x

α
j , x

α
k x

α
l

]
: i, j, k, l ∈ [n], α ∈ [3]

}
. (A.17)

Recall that K was defied to be the normal closure of C in GE , that is:

K = 〈C〉GE
. (A.18)

We first show that

ϕα (c) ∈ C (A.19)

for all c ∈ C . To see this, note

ϕα

([
x (β)
i x (β),

j , x (β)
k x (β)

l

])
=
[
x (α)
i x (α),

j , x (α)
k x (α)

l

]
∈ K (A.20)

for α = β, and

ϕα

([
x (β)
i x (β),

j , x (β)
k x (β)

l

])
= 1 ∈ K . (A.21)

for α �= β.
Then, since ϕα is a homomorphism mapping GE → GE

3 , and ϕα(C) ⊂ C , we have

ϕα : 〈C〉GE
↪→ 〈C〉GE

3 ⊂ K . (A.22)

The result follows. ��

A.3. Equivalence between a PREF and σ ∈ H (mod K ). In [35] an object called
a parity refutation was defined. A (paraphrased) version of that definition using the
language of Sect. 2.1.3 is repeated here. First, we define a parity preserving permutation.

Definition A.6. A parity preserving permutation of a sequence of generators (written
here as a product)

x (1)
a1 x (1)

a2 ...x (1)
al1

x (2)
b1

...x (2)
bl2

x (3)
c1 ...x (3)

cl3
σ s (A.23)

is a permutation P which satisfies

P(x (1)
ai ) = x (1)

a j
(A.24)

with i = j (mod 2), similar restrictions for P(x (2)
bi ′ ) and P(x (3)

ci ′′ ) and the condition
P(σ ) = σ .
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An equivalent definition of parity preserving permutations which will be useful to use
later are permutations P which can be decomposed into products of transpositions of
the form π

(α)
j, j+2 with α ∈ [3] and

π
(α)
j, j+2

(
x (α)
a1 x (α)

a2 ...x (α)
a j

x (α)
a j+1

x (α)
a j+2

...x (α)
al

)

= x (α)
a1 x (α)

a2 ...x (α)
a j+2

x (α)
a j+1

x (α)
a j

...x (α)
al (A.25)

Parity preserving permutations can be used to define an equivalence relation on thewords
g ∈ G

Definition A.7. Twowords g1, g2 ∈ G are parity permutation equivalent, written g1 ∼p
g2, if there is a sequence of generators

x (1)
a1 x (1)

a2 ...x (1)
al1

x (2)
b1

...x (2)
bl2

x (3)
c1 ...x (3)

cl3
σ s = g1 (A.26)

and a parity preserving permutation P acting on that sequence of generators satisfying

P(x (1)
a1 x (1)

a2 ...x (1)
al1

x (2)
b1

...x (2)
bl2

x (3)
c1 ...x (3)

cl3
σ s) = g2 (A.27)

Routine calculation (given in [35]) shows ∼p is an equivalence relation on elements of
G. Finally, we define a parity refutation (PREF).

Definition A.8. A sequence of clauses hr1, hr2 , ..., hrl is called a parity refutation if
hr1hr2 ...hrl ∼p σ .

Existence of a parity refutation is exactly equivalent to a word σ ∈ H (mod K ), as we
show in the following theorem. (Actually, a stronger statement is true: the equivalence
relation ∼p is exactly the same as the equivalence relation on G induced by modding
out by K . Small modifications to the proof below give that result.)

Theorem A.9. A sequence of clauses hr1hr2 ...hrl is a parity refutation iff the word
hr1hr2 ...hrl ∈ H obtained by multiplying the clauses together satisfies

hr1hr2 ...hrl = σ (mod K ) (A.28)

Proof. Both directions of the proof are nontrivial. We first show that if a sequence of
clauses hr1hr2 ...hrl forms a parity refutation then hr1hr2 ...hrl = σ (mod K ). Recall
that any parity preserving permutation P can be decomposed into transpositions of the
form π

(α)
j, j+2, where

π
(α)
j, j+2

(
x (α)
a1 x (α)

a2 ...x (α)
a j

x (α)
a j+1

x (α)
a j+2

...x (α)
al

)

= x (α)
a1 x (α)

a2 ...x (α)
a j+2

x (α)
a j+1

x (α)
a j

...x (α)
al (A.29)

But we also have

K �
[
x (α)
a j+2

x (α)
a j+1

, x (α)
a j

x (α)
a j+1

]
= x (α)

a j+2
x (α)
a j+1

x (α)
a j

x (α)
a j+2

x (α)
a j+1

x (α)
a j

(A.30)

hence

x (α)
a j

x (α)
a j+1

x (α)
a j+2
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= x (α)
a j

x (α)
a j+1

x (α)
a j+2

x (α)
a j+2

x (α)
a j+1

x (α)
a j

x (α)
a j+2

x (α)
a j+1

x (α)
a j

(mod K ) (A.31)

= x (α)
a j+2

x (α)
a j+1

x (α)
a j

(mod K ). (A.32)

As a consequence, we also have

x (α)
a1 x (α)

a2 ...x (α)
a j

x (α)
a j+1

x (α)
a j+2

...x (α)
al

= x (α)
a1 x (α)

a2 ...x (α)
a j+2

x (α)
a j+1

x (α)
a j

...x (α)
al (mod K ) (A.33)

= π
(α)
j, j+2

(
x (α)
a1 x (α)

a2 ...x (α)
a j

x (α)
a j+1

x (α)
a j+2

...x (α)
al

)
(mod K ). (A.34)

Since the word x (α)
a1 x (α)

a2 ...x (α)
al was arbitrary and we could decompose P into products

of transpositions of the form π
(α)
j, j+2 we conclude

hr1hr2 ...hrl = x (1)
ar1

x (1)
ar2

...x (3)
crl

σ sr1+sr2+...srl (A.35)

= P(x (1)
ar1

x (1)
ar2

...x (3)
crl

σ sr1+sr2+...srl ) (mod K ) (A.36)

= σ (mod K ) (A.37)

Where line (A.36) follows from Eq. (A.34) and line (A.37) follows from the definition
of a parity refutation. This completes the proof in one direction.
It remains to show that if hr1hr2 ...hrl = σ (mod K ) we also have hr1hr2 ...hrl ∼p σ .
Our first step is to note that the equivalence relation ∼p respects multiplication by
construction – that is we have g1 ∼p g2 and g3 ∼p g4 implies g1g2 ∼p g3g4. We next

note that for any set of generators x (α)
i , x (α)

j , x (α)
s , x (α)

t and word w ∈ G we have

w
[
x (α)
i x (α)

j , x (α)
s x (α)

t

]
w−1 = wx (α)

i x (α)
j x (α)

s x (α)
t

(
x (α)
i x (α)

j

)−1 (
x (α)
s x (α)

t

)−1
w−1 (A.38)

∼p ww−1x (α)
i x (α)

j x (α)
s x (α)

t

(
x (α)
i x (α)

j

)−1 (
x (α)
s x (α)

t

)−1
(A.39)

∼p ww−1x (α)
i x (α)

j x (α)
s x (α)

t

(
x (α)
s x (α)

t

)−1 (
x (α)
i x (α)

j

)−1 = 1 (A.40)

since the permutations moving w−1 to the other side of
[
x (α)
i x (α)

j , x (α)
s x (α)

t

]
and swap-

ping
(
x (α)
i x (α)

j

)−1
and

(
x (α)
s x (α)

t

)−1
are both parity preserving permutations. It follows

that for any k ∈ K , k ∼p 1. Then, if hr1hr2 ...hrl = σ (mod K ) we must also have
hr1hr2 ...hrl k = σ for some k ∈ K , and hence

hr1 ...hrl = hr1 ...hrl kk
−1 ∼p σ(1) = σ (A.41)

where we used that ∼p respected multiplication hr1 ...hrl k = σ and k−1 ∼p 1 to obtain
the equivalence. This completes the proof. ��
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A.4. MERP as a mod K strategy. Recall from Definition 2.4 the MERP strategies are a
nice class of finite dimensional strategies which generalize the GHZ strategy. Here we
give a direct proof that MERP strategies are annihilated by the K relations.

Theorem A.10. The MERP strategy observables respect the mod K relations. That is,

[
X (α)
i X (α)

i ′ , X (α)
j X (α)

j ′
]
= 1 (A.42)

for all α, i, i ′, j, j ′ if the X (α)
i are MERP strategy observables as defined above.

Proof. The proof is computational, with some tricks about Pauli matrices. Let all the
X (α)
i be MERP strategy observables and note, for all indices

[
X (α)
i X (α)

i ′ , X (α)
j X (α)

j ′
]
= I⊗((α−1) ⊗

[
M(θ

(α)
i )M(θ

(α)

i ′ ), M(θ
(α)
j M(θ j ′)

(α)))
]
⊗ I⊗(k−α)

(A.43)

by the tensor product structure. Now, the Pauli matrices anti-commute, so

σxσz = −σzσx (A.44)

and

σx exp(iθσz) = exp(−iθσz)σx exp(iθσz)σx = σx exp(−iθσz) (A.45)

where the later equalities can be shown by the Taylor series expansion of exp(iθσz).
This lets us write our MERP strategy observables in a slightly simplier form, since

M(θ
(α)
i ) = exp(iθ(α)

i σz)σx exp(−iθ(α)
i σz) (A.46)

= exp(2iθ(α)
i σz)σx (A.47)

As a more more significant application of Eq. (A.45) we can show MERP strategy ob-
servables switch the sign on θ

(α)
i when they commute since

M(θ
(α)
i )M(θ

(α)
j ) = exp(2iθ(α)

i σz)σx exp(2iθ
(α)
j σz)σx (A.48)

= σx exp(−2iθ(α)
i σz) exp(2iθ

(α)
j σz)σx (A.49)

= σx exp(2iθ
(α)
j σz) exp(−2iθ(α)

i σz)σx (A.50)
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= exp(−2iθ(α)
j σz)σx exp(−2iθ(α)

i σz)σx (A.51)

= M(−θ
(α)
j )M(−θ

(α)
i ) (A.52)

using Eq. (A.45) on the second line. Now, repeatedly applying Eq. (A.52) gives

M(θ
(α)
i )M(θ

(α)

i ′ )M(θ
(α)
j )M(θ

(α)

j ′ ) = M(θ
(α)
j )M(−θ

(α)
i )M(−θ

(α)

i ′ )M(θ
(α)

j ′ ) (A.53)

= M(θ
(α)
j )M(θ

(α)

j ′ )M(θ
(α)
i )M(θ

(α)

i ′ ) (A.54)

Hence
[
M(θ

(α)
i )M(θ

(α)

i ′ ), M(θ
(α)
j )M(θ

(α)

j ′ )
]
= 1 (A.55)

and the result follows. ��

A.5. Some members of K ∩HE and possible kXOR generalizations. Here we give some
intuition for dealing with the subgroup K in relation to 3XOR. A major component of
our 3XOR analysis has been showing that the special word σ is in K ∩ HE . This
was difficult. For perspective, we ask a simpler question: is the intersection K ∩ HE

necessarily nonempty for a 3XOR game? The next lemma says yes.

Lemma A.11. Suppose a 3XOR game is nontrivial in the sense that it contains at least
two clauses which contain the same generator for x (1)

i for player 1, also two such
clauses for player 2, then K ∩ HE is not empty, indeed at least some generators of K
are necessarily contained in H E .

Proof. Consider a pair of clauses h1, h2 ∈ S corresponding to question vectors which
send the same question to the first player, so h1 = x (1)

a1 x (2)
b1

x (3)
c1 σ s1 , h2 = x (1)

a2 x (2)
b2

x (3)
c2 σ s2

and a1 = a2. Similarly, let clauses h3, h4 be clauses which agree on the question sent
to the second player so xb3 = xb4 .

22 We then consider the commutator

[h1h2, h3h4] =
[
x (1)
a1 x (1)

a2 , x (1)
a3 x (1)

a4

] [
x (2)
b1

x (2)
b2

, x (2)
b3

x (2)
b4

] [
x (3)
c1 x (3)

c2 , x (3)
c3 x (3)

c4

] [
σ s1+s2 , σ s3+s4

]

(A.56)

=
[
1, x (1)

a3 x (1)
a4

] [
x (2)
b1

x (2)
b2

, 1
] [

x (3)
c1 x (3)

c2 , x (3)
c3 x (3)

c4

] [
σ s1+s2 , σ s3+s4

]
(A.57)

=
[
x (3)
c1 x (3)

c2 , x (3)
c3 x (3)

c4

]
, (A.58)

where we have used the fact that group elements corresponding to different players

commute on the first line, that x (1)
a1 x (1)

a2 =
(
x (1)
a1

)2 = 1 on the second line, and that

[w, 1] = 1 for any w and σ commutes with anything on the third. The conclusion is that
[
x (3)
c1 x (3)

c2 , x (3)
c3 x (3)

c4

]
= [h1h2, h3h4] ∈ HE . (A.59)

We have just proved the set of all commutators of pairs of generators x (α)
i which lie in

HE is necessarily nonempty. Thus K ∩ HE is nonempty as well. ��
Our vague wish is that K ∩ HE be large, so we point out that the same argument

as above with any two pairs of clauses that cancel on two different players shows even
more generators are in K ∩ HE .

22 These pairs of clauses don’t need to exist, but XOR games where each question is asked only once are
particularly simple, with ω = 1, so we assume we are not in this case.
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A.5.1. Possible kXOR analogues of the subgroup K Now we discuss possible k player
generalizations of the arguments in this paper. To generalize the arguments of this paper
beyond 3 players, we would require a k-player analogue of Theorem 2.6. This would be
the statement that, for every clause group HE associated with a kXOR game and some
normal subgroup K ′ � GE ,

σ ∈ HE (mod K ′)⇐⇒ σ ∈ HE . (A.60)

The “123 Game” presented in [35] shows that the above statement is false for 6 player
games when K ′ = K . (The “123 Game” is a 6 player game with a perfect commuting
operator strategy, meaning σ /∈ HE , but no perfect MERP strategy, meaning σ /∈ HE

(mod K )).
The proof of Theorem 2.6 is involved, and it is unclear how it would generalize beyond

the 3 player case. However the intuition presented in Lemma A.11 does generalize
naturally to k-players. Following the same logic as used in the proof of Lemma A.11 we
see that for a non-trivial k player XOR game, elements of the form

[...[[[x (1)
c1 x (1)

c2 , x (1)
c3 x (1)

c4 ], x (1)
c5 x (1)

c6 ], ...], x (1)
c2k−1x

(1)
c2k ] (A.61)

are necessarily contained in the group HE . This observation encourages the speculation
that a k player analogue of Theorem 2.6 may hold with the subgroup K ′ equal to the k-th
entry in the lower central series of HE , i.e. the subgroup of HE generated by elements
of the form

[...[[[h1, h2], h3], ...], hk]. (A.62)

However, this intuition falls well short of proving the desired result.

B. Subgroup Membership

Theorem B.1. The subgroup membership problem is solvable in polynomial time for
any finitely generated abelian group.23

Proof. It reduces to linear algebra over the integers. We can write all the relations in
the group G and generators of the subgroup G̃ as products of generators of G, raised to
some power. When we multiply generators or apply a relation we just add or subtract
the multiplicities of the relevant generators. So the subgroup membership problem just
asks if a given vector (corresponding to the group element) is in the span of the vectors
corresponding to the relations and subgroup generators. ��
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