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Abstract: In this paper, we discuss index theory for Toeplitz operators on a discrete
quarter-plane of two-variable rational matrix function symbols. By using Gohberg–
Kreı̆n theory for matrix factorizations, we extend the symbols defined originally on a
two-dimensional torus to some three-dimensional sphere and derive a formula to express
their Fredholm indices through extended symbols. Variants for families of (self-adjoint)
Fredholm quarter-plane Toeplitz operators and those preserving real structures are also
included. For some bulk-edge gapped single-particle Hamiltonians of finite hopping
range on a discrete lattice with a codimension-two right angle corner, topological invari-
ants related to corner states are provided through extensions of bulk Hamiltonians.

1. Introduction

Topological corner states have attracted much interest in condensed matter physics as
a characteristic of higher-order topological insulators. Aimed at studies of topologi-
cal corner states, we discuss index theory for some Toeplitz operators on a discrete
quarter-plane. Index theory for quarter-plane Toeplitz operators has been investigated
by Simonenko, Douglas–Howe [16,43], and a necessary and sufficient condition for
these operators to be Fredholm is obtained in terms of the invertibility of two associated
half-plane Toeplitz operators. Index formulas for Fredholm quarter-plane Toeplitz op-
erators are obtained by Coburn–Douglas–Singer, Dudučava, Park [15,17,36]. Coburn–
Douglas–Singer derived their formula by showing that there is a deformation to some
quarter-plane Toeplitz operators of a standard form preserving Fredholm indices [15].
Dudučava employed Gohberg–Kreı̆n theory for the factorization of some matrix func-
tions on a circle [14,21,46] and obtained a formula by using a construction of parametrix
[17]. Park obtained an index formula by a construction of a cyclic cocycle and using a
pairing between K -theory and cyclic cohomology [36].

A characteristic feature of topological insulators is the existence of topological edge
states. Although the bulk is gapped (insulating), edge states exist that account for the
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metallic properties of the boundary of the system. This appearance of edge states is
known to originate from a topological invariant for the gapped bulk, called the bulk-
edge correspondence [22,23]. A typical example is the integer quantum Hall system
in which the bulk topological invariant is known to be the first Chern number of a
complex vector bundle (Bloch bundle) over a two-dimensional torus (Brillouin torus).
Bellissard investigated the quantum Hall effect through noncommutative geometry [9],
and Kellendonk–Richter–Schulz-Baldes gave a proof of the bulk-edge correspondence
based on index theory for Toeplitz operators [29]. K -theory was employed for the clas-
sification of topological insulators [18,32] (see also [39] and the references therein). We
note that matrix factorizations are also used in recent physical studies of (first-order)
topological insulators [1].

For higher-order topological insulators [10,24,31,41], an actively studied topic in
condensed matter physics, the bulk-edge correspondence is greatly generalized to in-
clude corner states. For two-dimensional second-order topological insulators, for ex-
ample, the bulk and two edges whose intersection form a codimension-two corner are
gapped, though there exist topological corner states. There are many physical studies of
higher-order topological insulators in various directions: classifications of higher-order
topological insulators [19,30,35], topological invariants characterizing them as nested
Wilson loops [10], symmetry indicators [38], multipole chiral numbers [11], relations
between some gapped topology and corner/hinge states [3,47,49]. Experimental real-
izations are also reported [37].

In [25], a mathematical approach to topological corner states is proposed based on
index theory for quarter-plane Toeplitz operators, where topological invariants for bulk-
edge gapped Hamiltonians are defined as elements of a K -group of some C∗-algebra
and its relation with hinge states is proved. Although this shows a relation between
some gapped topology and corner states, gapped invariants are defined abstractly and
much more geometric understanding is required, in order both for investigation from
the physical point of view and its computation. For this purpose, we investigate fur-
ther index theory for quarter-plane Toeplitz operators, especially Dudučava’s idea of
using matrix factorizations [17] from a topological point of view.We consider Fredholm
quarter-plane Toeplitz operators of two-variable rational matrix function symbols. For
each of them, there are two associated invertible half-plane Toeplitz operators having
the same symbol. In Sect. 3, we investigate the geometric implications of this invert-
ibility condition. Through the Fourier transform in a direction parallel to the boundary,
a half-plane Toeplitz operator corresponds to a one-parameter family of Toeplitz op-
erators, and the problem reduces to a study of invertible Toeplitz operators. For an
invertible Toeplitz operator of a rational matrix function symbol, Gohberg–Kreı̆n theory
states that there is a decomposition of the symbol as a product of two matrix-valued
functions such that each factor of the decomposition can be analytically continued to
a disk. By using analytic continuation, we see that the symbol of the quarter-plane
Toeplitz operator defined originally on a two-dimensional torus can be extended as a
continuous nonsingular matrix-valued function over some three sphere. This extension
is shown to be independent of the choice of the factorization, therefore is canonically
associated with our operator. We then show in Sect. 4 that the Fredholm index of the
quarter-plane Toeplitz operator is given through the three-dimensional winding num-
ber of the extended symbol (Corollary 4.10). Note that a part of its proof is based on
Coburn–Douglas–Singer’s idea [15]. Our formula can be extended to Fredholm quarter-
plane Toeplitz operators which are self-adjoint, preserving real structures and families
of them, and these variants are proved in a parallel way. In this paper, we mainly discuss
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families of (self-adjoint) Fredholm quarter-plane Toeplitz operators for which we use
complex K -theory (Theorem 4.1), and the results for those operators preserving real
structures are contained in Sect. 5. Necessary results about quarter-plane Toeplitz opera-
tors andGohberg–Kreı̆n theory formatrix factorizations used in this paper are collected in
Sect. 2.

Applications to topological corner states are discussed in Sect. 6. We consider trans-
lation invariant single-particle Hamiltonians of finite hopping range on the lattice Z

d in
each of the ten Altland–Zirnbauer classes [2], and discuss its restrictions onto (Z≥0)

2 ×
Z
d−2 assuming the Dirichlet boundary condition. When the bulk Hamiltonian and its

compressions onto two half-spaces Z × Z≥0 × Z
d−2 and Z≥0 × Z × Z

d−2 are gapped,
we associate a nonsingular matrix function (over some three sphere for two-dimensional
systems) through the matrix factorization which is an extension of the bulk Hamiltonian.
We define a topological invariant for such a bulk-edge gapped Hamiltonian as a K -class
in some topological K -theory group of this extended bulk Hamiltonian (Definition 6.1).
A relation between this gapped topological invariant and corner/hinge states is given
in Theorem 6.2, which provides a geometric formulation for the relation between the
abstractly defined gapped topological invariant and corner states in [25]. In order to
construct extensions of bulk Hamiltonians, we need to take matrix factorizations. For
matrix factorizations of rational matrix functions on the unit circle in the complex plane,
an algorithm is known [14,20,21] and the finite hopping range condition is assumed cor-
respondingly. In [27], a classification of topological invariants related to corner states
in each of the Altland–Zirnbauer classes is proposed based on index theory, where
Boersema–Loring’s formulation of KO-theory for real C∗-algebras [12] is employed.
Since topological corner states are one motivation of this work, some parts of the dis-
cussions in this paper are organized in this framework. For example, the real symmetries
discussed in Sect. 5 are taken from Boersema–Loring’s picture. Note that the integration
formula for our gapped topological invariants, like the integration of the Berry curvature
for the first Chern number, is still missing since our three sphere is not smooth, although
our formulation provides a way to understand gapped topological invariants related to
corner states in a geometric way. For example, for a two-dimensional class AIII system,
the gapped topological invariant is given by the three-dimensional winding number of
the extension of the bulk Hamiltonian (Example 6.3). For a three-dimensional class A
system, it is provided as a topological invariant for an extension of the Bloch bundle
(Example 6.4).

Topological corner states provide contact with index theory for quarter-plane Toeplitz
operators and higher-order topological insulators [26,34]. Through it, interesting ques-
tions are posed for our index theory such as relationswith invariants introduced in studies
of higher-order topological insulators, developments of the theory to support robustness
of (topological) corner states against disorder. For example, for two-dimensional class
AIII systems with codimension-two corners, integer-valued multipole chiral numbers
are defined in [11] in real space. For this class, we investigate integer-valued invariants
in [26] in momentum space, and their relationship is not clear. In this paper, we add a
geometric picture for the gapped K -class invariants in [25–27] restricted to bulk periodic
systems with codimension-two right angle corners or hinges, as the Bloch bundle for
the first Chern number in first-order topological insulators, for further investigations.

2. Preliminaries

In this section, we collect the necessary results and notations used in this paper.
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2.1. Quarter-plane Toeplitz operators. Let T be the unit circle in the complex plane
equipped with the normalized Haar measure. For f ∈ C(Tn), we write M f for the
bounded linear operator on l2(Zn) corresponding to the multiplication operator on
L2(Tn) generated by f through the Fourier transform L2(Tn) ∼= l2(Zn). For an in-
teger k, we write Z≥k for the set of integers greater than or equal to k. Let δn be the
characteristic function of a point n ∈ Z and let l2(Z≥0) be the closed subspace of l2(Z)

spanned by {δn | n ≥ 0}. Let P be the orthogonal projection of l2(Z) onto l2(Z≥0). For
f ∈ C(T), the operator on l2(Z≥0) defined by T f ϕ = PM f ϕ for ϕ ∈ l2(Z≥0) is called
the Toeplitz operator of continuous symbol f . Let T be the C∗-algebra generated by
those Toeplitz operators. We have the following Toeplitz extension:

0 → K → T σ→ C(T) → 0, (1)

where K is the compact operator algebra and σ is a ∗-homomorphism that maps T f to
its symbol f .

Let δm,n be the characteristic function of the point (m, n) in Z
2, and let H0, H∞

and H0,∞ be closed subspaces of l2(Z2) spanned by {δm,n | n ≥ 0}, {δm,n | m ≥ 0},
and {δm,n | m ≥ 0 and n ≥ 0}, respectively. Let P0, P∞ and P0,∞ be the orthogonal
projection of l2(Z2) ontoH0,H∞ andH0,∞, respectively. Note thatH0,∞ = H0 ∩H∞
and P0,∞ = P0P∞ = P∞P0. For f ∈ C(T2), the operators T 0

f on H0 and T∞
f on

H∞ defined by T 0
f ϕ = P0M f ϕ for ϕ ∈ H0 and T∞

f ϕ = P∞M f ϕ for ϕ ∈ H∞,

respectively, are called half-plane Toeplitz operators. The operator onH0,∞ defined by
T 0,∞
f ϕ = P0,∞M f ϕ for ϕ ∈ H0,∞ is called the quarter-plane Toeplitz operator. Let T 0

andT ∞ be theC∗-algebras generated by half-planeToeplitz operators of the form T 0
f and

T∞
f , respectively, and let T 0,∞ be the C∗-algebra generated by quarter-plane Toeplitz

operators. Note that T 0 ∼= C(T)⊗T and T ∞ ∼= T ⊗C(T) by the Fourier transform in a
direction parallel to the boundary of half-planes. Corresponding to these isomorphisms,
let σ 0 = 1C(T) ⊗ σ and σ∞ = σ ⊗ 1C(T) which are ∗-homomorphisms from T 0 and
T ∞ to C(T2). Let S0,∞ be the pullback C∗-algebra of these two ∗-homomorphisms,

S0,∞ p∞
��

p0

��

T ∞

σ∞
��

T 0 σ 0
�� C(T2)

therefore, the C∗-algebra S0,∞ consists of pairs (T 0, T∞) ∈ T 0 ⊕ T ∞ satisfying
σ 0(T 0) = σ∞(T∞), Maps p0 and p∞ are ∗-homomorphisms sending (T 0, T∞) to
T 0 and T∞, respectively. Let σS = σ 0 ◦ p0 = σ∞ ◦ p∞. The following short exact
sequence of C∗-algebras is known [36]:

0 → K → T 0,∞ γ→ S0,∞ → 0, (2)

where the mapK → T 0,∞ is the inclusion and γ is a ∗-homomorphism that maps T 0,∞
f

to (T 0
f , T

∞
f ) for f ∈ C(T2).
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2.2. Matrix factorizations. In this subsection, we collect necessary results about the
Gohberg–Kreı̆n theory for factorizations of rational matrix functions in cases on the unit
circle in the complex plane. For details, we refer the reader to [14,20,21].

Let us consider the Riemann sphere Ĉ = C ∪ {∞}. The unit circle T is contained
in Ĉ and Ĉ\T consists of two connected components. Let D+ = {z ∈ C | |z|< 1}
and D− = {z ∈ C | |z|> 1} ∪ {∞} which are open disks. We write D

2 for the closed
unit disk T ∪ D+ in the complex plane. Let f : T → GLn(C) be a nonsingular rational
matrix function, that is a nonsingular matrix function of entries consisting of rational
functions, with poles offT. We have the following decomposition, called a (right) matrix
factorization:

f = f−� f+, (3)

where f−, � and f+ are rational matrix functions on T satisfying the conditions below.

• f+ (resp. f−) admits a continuous extension onto T ∪ D+ = D
2 (resp. T ∪ D−) as

a nonsingular matrix function and is analytic on D+ (resp. D−). We write f e+ (resp.
f e−) for the extension.• � is the diagonal matrix function of the form �(z) = diag(zκ1, . . . , zκn ) with
nonincreasing sequence of integers κ1 ≥ · · · ≥ κn called partial indices.

Among the many results known for matrix factorizations, we note the following:

• The partial indices κ1, . . . , κn are uniquely determined by f .
• The Toeplitz operator T f is invertible if and only if all of the partial indices are zero.
In this case, factorization (3) is called a canonical factorization.

• Ifwe have two canonical factorizations f = f− f+ = g−g+, there exists an invertible
matrix B ∈ GLn(C), considered a constant matrix function, satisfying f+ = Bg+
and f− = g−B−1.

Remark 2.1. There is known a general class of Banach algebras of continuous functions
on the circle that admits matrix factorizations (inverse closed decomposing Banach
algebras containing rational functions [14,20]). One example is the Wiener algebra over
the circle consisting of all complex-valued functions on the circle admitting an absolutely
convergent Fourier series. The results in this paper are also valid for such continuous
functions admitting matrix factorizations. Note that the algebra C(T) of continuous
functions is not decomposing. In this paper, we mainly discuss rational functions on the
unit circle in view of our applications discussed in Sect 6.

3. Extension of Symbols Through Matrix Factorizations

Let f : T
2 → GLn(C) be a continuous map. The associated quarter-plane Toeplitz

operator T 0,∞
f is Fredholm if and only if the half-plane Toeplitz operators T 0

f and
T∞
f are invertible [16, Corollary in p.209]. In this section, we discuss the geometric

implication of this condition when the symbol f is a rational matrix function for both of
the two variables of T

2. By using matrix factorizations, we provide a way to extend f to
a nonsingular matrix-valued continuous function on a three sphere (Sect. 3.1). We also
discuss its variants for families of them (Sect. 3.2) and the cases when matrix functions
take value in (skew-)hermitian matrices (Sect. 3.3).
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3.1. Extension of nonsingular matrix functions of trivial partial indices. Let f be a
nonsingular rational matrix function on the circleTwith poles offT, and assume that the
associated Toeplitz operator T f is invertible. Let f = f− f+ be a canonical factorization
of f . Let f e+ and f e− be the associated extensions of f+ and f− onto T∪ D+ and T∪ D−,
respectively. For two disks D

2 = T ∪ D+ and T ∪ D−, we consider the following
identification:

I : T ∪ D+ → T ∪ D−, I (z) = z̄−1,

where we set I (0) = ∞. By using this identification, we associate the following non-
singular matrix-valued continuous map for a canonical factorization:

f e = (I ∗ f e−) · f e+ : D
2 → GLn(C). (4)

Explicitly, f e(z) = f e−(z̄−1) f e+ (z) for z ∈ D
2. Since z̄−1 = z for z ∈ T, f e coincides

with f on T and is its continuous extension onto D
2.

Lemma 3.1. f e is independent of the choice of canonical factorization.

Proof. For two canonical factorizations f = f− f+ = g−g+, there exists B ∈ GLn(C)

satisfying f+ = Bg+ and f− = g−B−1. Note that f e+ = (Bg+)e = Bge+ and f e− =
ge−B−1, which follow from the uniqueness of analytic continuation. Therefore, for z ∈
D
2,

f e−(z̄−1) · f e+ (z) = ge−(z̄−1)B−1 · Bge+(z) = ge−(z̄−1) · ge+(z).
�

By Lemma 3.1, for a nonsingular rational matrix function with poles off T, f : T →
GLn(C), whose associated Toeplitz operator T f is invertible, there is a canonically
associated extension f e onto the disk D

2. For a non-negative real number t , we write
Tt = {z ∈ C | |z| = t}. For 0 ≤ t ≤ 1, let mt : T → Tt be the map defined by
mt (z) = t z. We take the pullback m∗

t ( f
e|Tt ) of f e|Tt onto T by mt . Let us consider the

Toeplitz operator Tt := Tm∗
t ( f e|Tt ) associated with this matrix function. In other words,

we consider D
2 to be a family of circles of radius 0 ≤ t ≤ 1 and consider the associated

family of Toeplitz operators. For these operators, the following holds:

Lemma 3.2. Let f be a nonsingular rational matrix function on T with poles off T

of trivial partial indices, and consider its extension f e : D
2 → GLn(C) in (4). For

0 ≤ t ≤ 1, the Toeplitz operator Tt is invertible.

Proof. The invertibility of T1 = T f is included in our assumption. When t = 0, the
Toeplitz operator T0 is associated with nonsingular constant matrix function and is
invertible. Let us consider the case in which 0 < t < 1. For z ∈ T, we have

m∗
t ( f

e|Tt )(z) = f e(t z) = f e−((t z)−1) f e+ (t z) = f e−(t−1z) f e+ (t z).

Therefore, we have the following decomposition for the symbol of Tt :

m∗
t ( f

e|Tt ) = m∗
t−1( f

e−|Tt−1 ) · m∗
t ( f

e
+ |Tt ). (5)

Each component of equation (5) is a rational matrix function on T. Let D+,t = {z ∈
C | |z| < t} and D−,t−1 = {z ∈ C | |z| > t−1} ∪ {∞}. Let us consider the maps
m+,t : D+ → D+,t , z �→ t z, and m−,t−1 : D− → D−,t−1 , z �→ t−1z. Since f e− and f e+
are extensions of f− and f+ that are analytic on D− and D+, pullbacks of their restrictions
m∗

−,t−1( f
e−|D−,t−1 ) and m∗

+,t ( f
e
+ |D+,t ) onto D− and D+ also provide such extensions of

m∗
t−1( f

e−|Tt−1 ) and m∗
t ( f

e
+ |Tt ). Therefore, equation (5) is a canonical factorization of

m∗
t ( f

e|Tt ), and the associated Toeplitz operator Tt is invertible. �
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3.2. Extensionof families ofmatrix functions. Wenext extend thediscussions inSect. 3.1
to families of rational matrix functions of trivial partial indices. Matrix factorizations
for such families are studied by Šubin [46].

Lemma 3.3. Let X be a topological space. Let f : T × X → GLn(C) be a continuous
map such that for each x ∈ X, f (x) is a rational matrix function on T of trivial partial
indices. Through the matrix factorization, there is a canonically associated continuous
map f e : D

2 × X → GLn(C) that extends f .

Proof. Following [46], for each x0 ∈ X , there exists an open neighborhood U ⊂ X
of x0 and continuous matrix functions f+ and f− on T × U such that for x ∈ U ,
f (x) = f−(x) f+(x) is a canonical factorization. By using this factorization, we obtain
a continuous extension f e : D

2×U → GLn(C)of f as in equation (4).As inLemma3.1,
this f e is independent of the choice of canonical factorization. We cover X by such open
sets {Uα}α∈J . When Uα ∩ Uβ �= ∅, we may consider two extensions of f |T×(Uα∩Uβ)

onto D
2 × (Uα ∩Uβ) corresponding to extensions onto D

2 ×Uα and D
2 ×Uβ , and they

coincide by Lemma 3.1. Therefore, we obtain the desired extension onto D
2 × X . �

We next consider families of two-variable rational matrix functions whose associated
quarter-plane Toeplitz operators are Fredholm. Let

S̃
3 := ∂(D2 × D

2) = T × D
2 ∪
T2

D
2 × T,

which is topologically a three-dimensional sphere. Since D
2 ⊂ C, we consider S̃

3 as a
subspace of C

2 and use complex variables (z, w) ∈ C
2 to parametrize S̃

3.

Proposition 3.4. Let X be a topological space. Let f : T
2 × X → GLn(C) be a contin-

uous map such that for each x ∈ X, f (x) is a two-variable rational matrix function for
which the associated quarter-plane Toeplitz operator T 0,∞

f (x) is Fredholm. Throughmatrix

factorization, there is a canonically associated continuousmap f E : S̃
3×X → GLn(C)

that extends f .

Proof. For each x ∈ X , since T 0,∞
f (x) is Fredholm, both of the associated half-plane

Toeplitz operators T 0
f (x) and T∞

f (x) are invertible [16]. Through a Fourier transform

in a direction parallel to the boundary, the invertible half-plane Toeplitz operator T 0
f (x)

corresponds to a family of invertible Toeplitz operators {T f (z,·,x)}z∈T parametrized by the
circle. Therefore, by Lemma 3.3, there is a canonically associated continuous extension
f e : T × D

2 × X → GLn(C) of f through matrix factorization. By the invertibility of
T∞
f (x), we also obtain an extension of f onto D

2 × T × X through matrix factorization.

Combined with them, we obtain an extension f E of f as a nonsingular matrix-valued
continuous function on S̃

3 × X . �

3.3. Hermitian and Skew-Hermitian matrix functions. In this subsection, we discuss the
case in which the nonsingular rational matrix functions in Sect. 3.1 and 3.2 take values
in hermitian or skew-hermitian matrices. Let GLn(C)sa (resp. GLn(C)sk) be the space
of n-by-n hermitian (resp. skew-hermitian) invertible matrices.
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Lemma 3.5. Let I be GLn(C)sa or GLn(C)sk . Let X be a topological space and f : T×
X → I be a continuous map such that, for each x ∈ X, f (x) is a rational matrix
function on T with trivial partial indices. Then the extension f e of f in Lemma 3.3 is
also a hermitian or skew-hermitian matrix function; that is, f e : D

2 × X → I.

Proof. Weconsider hermitianmatrix functions, that is, the case inwhichI = GLn(C)sa.
By Lemma 3.3, it is sufficient to show that f e(x) for each x ∈ X is a hermitian matrix-
valued function. Therefore, it is sufficient to consider the case when X is one point
set and we assume this condition. Let f = f− f+ be a canonical factorization of f .
Since f is hermitian, we have f− f+ = f = f ∗ = f ∗

+ f ∗−. The equation f = f ∗
+ f ∗− is

also a canonical factorization since ( f e+ )∗ ◦ I−1 (resp. ( f e−)∗ ◦ I ) provides a continuous
extension of f ∗

+ onto T ∪ D− (resp. f ∗− onto T ∪ D+), which is analytic on D− (resp.
D+). Therefore, there exists B ∈ GLn(C) such that f ∗

+ = f−B−1 and f ∗− = B f+. The
uniqueness of analytic continuation leads to the relations ( f e+ )∗◦ I−1 = ( f ∗

+ )e = f e−B−1

and ( f e−)∗ ◦ I = ( f ∗−)e = B f e+ . Therefore, for z ∈ D
2,

( f e(z))∗ = ( f e−(z̄−1)· f e+ (z))∗ = ( f e+ (z))∗( f e−(z̄−1))∗ = f e−(z̄−1)B−1B f e+ (z) = f e(z).

The result for skew-hermitian matrix functions is proved in a similar manner. �
By Proposition 3.4 and Lemma 3.5, we obtain the following result:

Proposition 3.6. Let I be GLn(C)sa or GLn(C)sk . Let X be a topological space. Let
f : T

2 × X → I be a continuous map such that, for each x ∈ X, f (x) is a two-variable
rational matrix function for which the associated quarter-plane Toeplitz operator T 0,∞

f (x)
is Fredholm. Through matrix factorization, there is a canonically associated continuous
map f E : S̃

3 × X → I that extends f .

4. Index Theorem for Quarter-Plane Toeplitz Operators via Extended Symbols

In this section, we give a formula to express family indices for (self-adjoint) Fredholm
quarter-plane Toeplitz operators of two-variable rational matrix function symbols by
using extended symbols obtained through the matrix factorizations in Sect. 3. The main
theorem in this section is Theorem 4.1 which is formulated by using complex K -theory
and we start from the preliminaries of K -theory.

Let n0 = 2 and n1 = 1. Let M (0)
n (C) = M2n(C)sa, that is, the set of 2n-by-2n

hermitian matrices, and M (1)
n (C) = Mn(C). For i = 0, 1, let GL(i)

n (C) be the subspace
of M (i)

n (C) consisting of invertible matrices, therefore, GL(0)
n (C) = GL2n(C)sa and

GL(1)
n (C) = GLn(C). Let I (0) = diag(1,−1) and I (1) = 1. We write I (i)

m for the nim-
by-nim diagonal matrix diag(I (i), . . . , I (i)). For a unital C∗-algebra A, let GL(0)

n (A)

be the set of self-adjoint invertible elements in M2n(A), and let GL(1)
n (A) be the set of

invertible elements in Mn(A). For i = 0, 1, let U (i)
n (A) be the subspace of GL(i)

n (A)

consisting of unitary elements. The K -group Ki (A) for i = 0, 1 is defined as Ki (A) =
∪∞
n=1GL(i)

n (A)/ ∼i , where the equivalence relation ∼i is generated by homotopy and
stabilization by I (i). For a compact Hausdorff space X , complex topological K -groups
are defined as K−i (X) = Ki (C(X)). For a locally compact Hausdorff space Y , we
denote K−i

cpt(Y ) for the compactly supported K -group of Y . For these K -groups, we
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have Bott periodicity isomorphisms K−i
cpt(Y ) ∼= K−i

cpt(R
2 × Y ), which is given by the

composite of the following maps:

K 0
cpt(R

2 × Y ) ∼= K−1
cpt (R × Y ) ↪→ K−1

cpt (T × Y )
∂T→ K 0

cpt(Y ),

where, the first isomorphism is the suspension isomorphism, the second inclusion is
given by identifying T with the one-point compactification of R and the third map ∂T

is the boundary map associated with the Toeplitz extension (1). That for other degrees
follow by using suspension isomorphisms. Therefore, the push-forward map through
Toeplitz operators provides the Bott periodicity isomorphism (see [6, Section 7]). In this
paper, we reduce the problem to a study of families of Toeplitz operators and use its
relation with the Bott periodicity in the discussion. For the basics of K -theory used in
this paper, we refer the reader to [5,6,8,12,28,40].

Let i = 0 or 1, and let X be a compact Hausdorff space. Let f : T
2× X → GL(i)

N (C)

be a continuous map, such that for each x ∈ X , f (x) is a two-variable rational matrix
function, and the associated quarter-plane Toeplitz operator T 0,∞

f (x) is Fredholm. When

i = 1, {T 0,∞
f (x) }x∈X is a family of Fredholm operators which defines an element of the

even complex K -group K 0(X). When i = 0, {T 0,∞
f (x) }x∈X is a family of self-adjoint

Fredholm operators. In this case, we may stabilize f if necessary (i.e., take a direct sum
with I (0)) and assume that the essential spectrum of T 0,∞

f (x) is not contained in the set of
positive real numbers R>0 or the set of negative real numbers R<0 for any x ∈ X . Under
this assumption, {T 0,∞

f (x) }x∈X defines an element of the odd complex K -group K 1(X).

In both of these cases, we write [T 0,∞
f ] for the K -class of the family of (self-adjoint)

Fredholm1 quarter-plane Toeplitz operators. By using matrix factorization, there is an
associated continuous extension f E of f onto S̃

3 × X that takes values in hermitian
invertible matrices (when i = 0; see Proposition 3.6) or invertible matrices (when i = 1;
see Proposition 3.4). This matrix function f E defines an element [ f E ] of the K -group
K 0(S̃3 × X) when i = 0, or K−1(S̃3 × X) when i = 1. Let us consider the following
isomorphism,

K−i (S̃3 × X) ∼= K−i (X) ⊕ K−i
cpt(R

3 × X) ∼= K−i (X) ⊕ K−i−3(X). (6)

We write β : K−i (S̃3 × X) → K−i+1(X) for the composite of the projection K−i (S̃3 ×
X) → K−i−3(X) through the above decomposition and the square of theBott periodicity
isomorphism K−i−3(X) ∼= K−i+1(X). The following is the main theorem in this paper.

Theorem 4.1. Let X be a compact Hausdorff space. Let f : T
2 × X → GL(i)

N (C) be
a continuous map such that for each x ∈ X, f (x) is a two-variable rational matrix
function, and the associated quarter-plane Toeplitz operator T 0,∞

f (x) is Fredholm. Let

f E : S̃
3 × X → GL(i)

N (C) be the extension of f through matrix factorization in the
hermitian case of Proposition 3.6 (when i = 0) or Proposition 3.4 (when i = 1). Then,
[T 0,∞

f ] = β([ f E ]) in the K -group K−i+1(X).

1 Self-adjoint Fredholm operators when i = 0 and Fredholm operators when i = 1. In this section, the
term (self-adjoint) should be read when i = 0.
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For the f in Theorem 4.1, the associated family of half-plane Toeplitz operators
{T 0

f (x)}x∈X and {T∞
f (x)}x∈X are (self-adjoint) invertible and define an element [(T 0

f , T
∞
f )]

of the K -group Ki (S0,∞ ⊗ C(X)). Let

∂qT : Ki (S0,∞ ⊗ C(X)) → Ki−1(C(X)) ∼= K−i+1(X)

be the boundary map of the six-term exact sequence for K -theory of C∗-algebras asso-
ciated with the following extension obtained by taking a tensor product of the sequence
(2) with C(X),

0 → K ⊗ C(X) → T 0,∞ ⊗ C(X)
γ⊗1−→ S0,∞ ⊗ C(X) → 0. (7)

Note that ∂qT([(T 0
f , T

∞
f )]) = [T 0,∞

f ], since T 0,∞
f is a (self-adjoint) lift of (T 0

f , T
∞
f )

(see [12,40], Theorem 3 of [26], for example). Let us consider the following diagram:

K−i (T × X) ⊕ K−i (T × X)

∂pair

��

∂T⊕−∂T

�����
����

����
����

����

K−i+1([−2, 2] × T × X, {±2} × T × X)
α �� K−i+1(X)

(8)

where ∂T is the boundary map associated with the Toeplitz extension (1) and ∂pair is the
boundary map of the six-term exact sequence of topological K -theory associated with
the pair ([−2, 2] × T × X, {±2} × T × X). Maps ∂T ⊕ −∂T and ∂pair are surjective,
and the kernel of ∂pair is the diagonals that are contained in the kernel of ∂T ⊕ −∂T.
Therefore, the horizontal map α making the diagram commutative is induced. To show
Theorem 4.1, we will construct the following key diagram:

Ki (S0,∞ ⊗ C(X))

ψ

��

∂qT

������
�����

�����
�����

�����
��

K−i+1([−2, 2] × T × X, {±2} × T × X)
/
Ker(α)

ᾱ �� K−i+1(X)

K−i (S̃3 × X)

φ

��

β

����������������������������

(9)

The map α is surjective and the induced homomorphism ᾱ in the above diagram is an
isomorphism. Note that there is the following isomorphism,

K−i+1([−2, 2] × T × X, {±2} × T × X) ∼= K−i (T × X) ∼= K−i (X) ⊕ K−i−1(X).

Through this decomposition, Ker(α) ∼= K−i (X) and we have the isomorphism,

K−i+1([−2, 2] × T × X, {±2} × T × X)/Ker(α) ∼= K−i−1(X). (10)

Through this isomorphism, the map ᾱ corresponds to the Bott periodicity isomorphism
K−i−1(X) ∼= K−i+1(X).
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4.1. Construction of the map ψ . In this subsection, we construct the homomorphism ψ

in the diagram (9). For its construction, Coburn–Douglas–Singer’s idea to use homotopy
lifting property for some fibrations plays a key role, and we introduce them first.

LetUn(T ) andUn(C(T)) be subspaces of Mn(T ) and Mn(C(T)), respectively, con-
sisting of unitary elements, let Un(T )sa and Un(C(T))sa be subspaces of self-adjoint
unitaries. The map σ in (1) induces the following maps, which we also denote as σ :

σ : Un(T ) → Un(C(T)). (11)

σ : Un(T )sa → Un(C(T))sa. (12)

The map (11) is a Hurewicz fibration, which is used in [15]. We also have its variants
(Lemma 4.2 and Proposition 5.5) which will be well-known [8,50], though we briefly
contain its proof since, as in [15], they will play a key role in our discussion. The proof
of Lemma 4.2 is simply an application of discussions around Proposition 4.1 of [8] to
the Toeplitz extension. For a space Y and its element y, we write Yy for the connected
component of Y containing y. For a Banach algebra A, its subset S ⊂ A and an R-linear
operator s on A of order two, we write Ss and S−s for the subsets of S that are pointwise
fixed by s and −s, respectively.

Lemma 4.2. The map (12) is a Hurewicz fibration.

Proof. Since Un(C(T))sa is a paracompact Hausdorff space, it is sufficient to show
that (12) is a fiber bundle [44, Corollary 14 in p.96]. Let u be a self-adjoint unitary in
Mn(C(T)). There exists a self-adjoint invertible lift x ∈ Mn(T ) of u since a self-adjoint
Fredholm operator can be perturbed to a self-adjoint invertible operator by a self-adjoint
compact operator. Then, the self-adjoint unitary x |x |−1∈ Mn(T ) satisfies σ(x |x |−1) =
u, and the map σ : Un(T )sa → Un(C(T))sa is surjective. It is now sufficient to show
that, for any s ∈ Un(T )sa, the map σ : Un(T )sas → Un(C(T))saσ(s) is a fiber bundle.
Note that the map σ : Mn(T ) → Mn(C(T)) has a continuous linear section given
by compression, that is, mapping f to T f . Let k = s − Tσ(s) which is a self-adjoint
compact operator, and let l : Mn(C(T)) → Mn(T ) be a map given by l( f ) = T f + k.
This map l preserves self-adjoint elements and satisfies l(σ (s)) = s. Combined with
the map d : GLn(T ) → Un(T ), d(T ) = T |T |−1, we obtain a continuous local section
of the map σ : Un(T )sas → Un(C(T))saσ(s) in a neighborhood of σ(s) that maps σ(s)
to s. Let s be an operator on Mn(T ) given by the conjugation of s. Then, as in [50],
the quotient map GLn(T )1 → (GLn(T )/(GLn(T ))s)1 has a continuous local section
which follows from Corollary 7.3 of [33]. Combined with the map d, we obtain a
continuous local section of the quotient map Un(T )1 → (Un(T )/Un(T )s)1. Let us
consider the map Un(T ) → Un(T )sa given by T �→ T sT ∗, that comes from the
action of unitaries to self-adjoint unitaries by conjugation. Its stabilizer subgroup at s
is Un(T )s. As in Lemma 4.1 of [50], each orbit of this action is open and induces a

homeomorphism (Un(T )/Un(T )s)1
∼=−→ Un(T )sas . Let t be an operator on Mn(C(T))

given by the conjugation of σ(s). We consider similar discussion for the algebra C(T)

and obtain the following diagram,
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Un(T )sas
σ �� Un(C(T))saσ(s)

loc. sect.
��

Un(T )1 ��
� �

��

(Un(T )/Un(T )s)1

loc. sect.
		

σ̄ ��
� �

��

∼= conj.

��

(Un(C(T))/Un(C(T))t)1

∼=conj.

��

GLn(T )1 ��

d

��

(GLn(T )/(GLn(T ))s)1

loc. sect.





where σ̄ is the map induced by σ . Therefore, Un(T )1 → (Un(C(T))/Un(C(T))t)1 has
a continuous local section and the result follows (see Sect. 7.4 of [45]). �

Let i = 0 or 1, and let (T 0, T∞) be an element in GL(i)
N (S0,∞ ⊗ C(X)) for some

N ∈ N, and let [(T 0, T∞)] ∈ Ki (S0,∞ ⊗ C(X)) be its K -class. Let f = (σ 0 ⊗
1C(X))(T 0) = (σ∞ ⊗ 1C(X))(T∞), which is an element in C(T2 × X,GL(i)

N (C)). Let
π : T

2 × X → X be the projection.

Lemma 4.3. For a sufficiently large integer N ′ ≥ N, there exists a continuous map
g : X → GL(i)

N ′(C) such that f ⊕ I (i)
N ′−N is homotopic to π∗g in C(T2 × X,GL(i)

N ′(C)).

We take a path {gt }0≤t≤1 from g0 = f ⊕ I (i)
N ′−N to g1 = π∗g in C(T2 × X,GL(i)

N ′(C)).

Then, there also exists a path {(T 0
t , T∞

t )}0≤t≤1 in GL(i)
N ′(S0,∞ ⊗ C(X)) satisfying the

following conditions:

(i) (T 0
0 , T∞

0 ) = (T 0 ⊕ I (i)
N ′−N , T∞ ⊕ I (i)

N ′−N ).

(ii) (σ 0 ⊗ 1C(X))(T 0
t ) = (σ∞ ⊗ 1C(X))(T∞

t ) = gt for 0 ≤ t ≤ 1.

(iii) There exist K ∈ N and a continuous map t0 : T × X → GL(i)
K N ′(C) such that for

(z, x) ∈ T × X, T 0
1 (z, x) = t0(z, x) ⊕ g(x) as an operator on l2(Z≥0; C

ni N ′
) ∼=

C
ni K N ′ ⊕ l2(Z≥K ; C

ni N ′
).

(iv) There exist L ∈ N and a continuous map t∞ : T × X → GL(i)
LN ′(C) such that for

(w, x) ∈ T× X, T∞
1 (w, x) = t∞(w, x)⊕ g(x) as an operator on l2(Z≥0; C

ni N ′
) ∼=

C
ni LN ′ ⊕ l2(Z≥L ; C

ni N ′
).

In (iii), we consider T 0
1 ∈ GL(i)

N ′(T 0 ⊗C(X)) ∼= GL(i)
N ′(C(T)⊗T ⊗C(X)) as a family

of Toeplitz operators parametrized by T × X, and similarly for (iv).

Proof. We first take the deformation retraction of invertible elements T 0 and T∞ to
unitaries; that is, for 0 ≤ t ≤ 1

3 and j ∈ {0,∞}, let Q j
t = (1 − 3t)T j + 3tT j |T j |−1

and ft = (σ 0 ⊗ 1C(X))(Q0
t ) = (σ∞ ⊗ 1C(X))(Q∞

t ). We next consider the following
two homomorphisms,

(σS ⊗ 1C(X))∗ : Ki (S0,∞ ⊗ C(X)) → Ki (C(T2 × X)) ∼= K−i (T2 × X),

π∗ : K−i (X) → K−i (T2 × X). (13)
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Note that Ki (S0,∞) = Z for i = 0, 1, and that the map (σS ⊗ 1C(X))∗ is computed by
using the Künneth theorem [36,42]. The images of the above two maps coincide. Since

[ f ] = (σS ⊗ 1C(X))∗([T 0, T∞]) ∈ Im((σS ⊗ 1C(X))∗) = Im(π∗),

there exist g : X → U (i)
N ′ (C) for some N ′ satisfying [ f ] = [ f 1

3
] = π∗[g] in K−i (T2 ×

X). Note that π∗ is injective, and the K -class [g] of g is uniquely determined. Since
the equivalence relation used to define the K -group K−i (T2 × X) is generated by
homotopy and stabilization, if we take N ′ to be sufficiently large, there also exists a
homotopy in C(T2 × X,U (i)

N ′ (C)) from f 1
3

⊕ I (i)
N ′−N to π∗g. Let T 0

t = Q0
t ⊕ I (i)

N ′−N ,

T∞
t = Q∞

t ⊕ I (i)
N ′−N and gt = ft ⊕ I (i)

N ′−N for 0 ≤ t ≤ 1
3 , and for 1

3 ≤ t ≤ 2
3 , let gt be

this homotopy from f 1
3

⊕ I (i)
N ′−N to π∗g. By the homotopy lifting property of fibration

(11), there exists a homotopy T 0
t : T× X → U (i)

N ′ (T ) for 1
3 ≤ t ≤ 2

3 that lifts gt starting

from T 0
1
3

= Q0
1
3
⊕ I (i)

N ′−N . Note that σ
0(T 0

2
3
(x))(z) = g 2

3
(z, x) = g(x) is independent of

z ∈ T. By a similar discussion for T∞, we obtain a homotopy T∞
t : T × X → U (i)

N ′ (T )

for 1
3 ≤ t ≤ 2

3 starting from T∞
1
3

= Q∞
1
3

⊕ I (i)
N ′−N and lifts gt . Since σ 0(T 0

t (x)) =
σ∞(T∞

t (x)) and σ 0(T 0
1 (x))(z) = σ∞(T∞

1 (x))(w) = g(x), we obtain the following:

• (T 0
t , T∞

t ) ∈ GL(i)
N ′(S0,∞ ⊗ C(X)) for 0 ≤ t ≤ 2

3 ,
• T 0

2
3
(z, x) = g(x) + k0(z, x), where k0(z, x) is a compact operator,

• T∞
2
3

(w, x) = g(x) + k∞(w, x), where k∞(w, x) is a compact operator.

For 2
3 ≤ t ≤ 1, let gt = g 2

3
. We perturb k0 and k∞ to families of (self-adjoint) finite rank

operators to obtain homotopies T 0
t and T∞

t for 2
3 ≤ t ≤ 1 in the space of (self-adjoint)

invertible half-plane Toeplitz operators and obtain the desired result. �
For simplicity, in what follows, we assume that our representative (T 0, T∞) of the

K -class [(T 0, T∞)] in Ki (S0,∞ ⊗ C(X)) is sufficiently stabilized to take N = N ′ in
Lemma 4.3. Under this assumption, we take a continuous map g, a homotopy {gt }0≤t≤1

from f to π∗g in C(T2 × X,GL(i)
N (C)), a homotopy {(T 0

t , T∞
t )}0≤t≤1 and continuous

maps t0 and t∞ that satisfy the conditions in Lemma 4.3. t0 and t∞ provide elements
[t0] and [t∞] in K−i (T × X). Let r : Z × Z≥0 → Z≥0 × Z be the map defined by
r(m, n) = (n,−m) and r∗ : l2(Z≥0 × Z, C

ni N ) → l2(Z × Z≥0, C
ni N ) be the induced

Hilbert space isomorphism. For an operator T ∈ Mni N (T ∞), we write

T̃ = r∗ ◦ T ◦ (r∗)−1 ∈ Mni N (T 0). (14)

By taking this transformation for T∞
1 (w, x) = t∞(w, x) ⊕ g(x) in Lemma 4.3, we

obtain T̃∞
1 (z, x) = t̃∞(z, x) ⊕ g(x) where t̃∞ : T × X → GL(i)

LN ′(C). Then, we have
∂T([t̃∞]) = −∂T([t∞]) in K−i+1(X) since the orientation of T is reversed through (14).
For these elements, the following holds [15]:

Proposition 4.4. ∂qT([(T 0, T∞)]) = (∂T ⊕ −∂T)([t0], [t̃∞]).
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Fig. 1. Schematic picture for the quarter-plane Toeplitz operator A(x)

Proof. We decompose the Hilbert space l2(Z≥0 ×Z≥0, C
ni N ) into a direct sum of three

closed subspaces,
l2(Z≥0 × Z≥0, C

ni N ) = H1 ⊕ H2 ⊕ H3,

whereH1 = l2(Z≥0 × {0, . . . , K − 1}, C
ni N ),H2 = l2({0, . . . , L − 1} × Z≥K , C

ni N )

and H3 = l2(Z≥K × Z≥L , C
ni N ). We consider the following family of quarter-plane

Toeplitz operators:

A(x) =

⎧
⎪⎨

⎪⎩

Tt0(x) onH1 ∼= l2(Z≥0, C
ni K N ),

Tt∞(x) onH2 ∼= l2(Z≥0, C
ni LN ),

g(x) onH3,

where x ∈ X (see Fig. 1). A is a family of (self-adjoint) Fredholm operators that satisfies
γ (A) = (T 0

1 , T∞
1 ). Since g(x) onH3 is (self-adjoint) invertible, the following equality

holds in the K -group K−i+1(X).

(∂T ⊕ −∂T)([t0], [t̃∞]) = ∂T([t0]) + ∂T([t∞]) = [Tt0 ] + [Tt∞] = [Tt0 ] + [Tt∞] + [g]
= [A] = ∂qT([(T 0

1 , T∞
1 )]) = ∂qT([(T 0, T∞)]).

�

Let {at }0≤t≤1 (resp. {bt }0≤t≤1) be a path from t0 (resp. t̃∞) to

K (resp. L)
︷ ︸︸ ︷
g ⊕ · · · ⊕ g in C(T ×

X, M (i)
ni K N (C)) (resp. C(T × X, M (i)

ni LN
(C))). These paths exist since M (i)

n (C) is con-
tractible. We now consider the family of Toeplitz operators F : [−2, 2] × T × X →
Mni N (T ) defined by

F(s, z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T 0
s+2(z, x), − 2 ≤ s ≤ −1,

as+1(z, x) ⊕ g(x), − 1 ≤ s ≤ 0,

b1−s(z, x) ⊕ g(x), 0 ≤ s ≤ 1,

T̃∞
2−s(z, x), 1 ≤ s ≤ 2.

Note that F(0, z, x) = g(x) is (self-adjoint) invertible and independent of z ∈ T. F is a
family of (self-adjoint) Fredholm operators on [−2, 2] × T × X , which is invertible on
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([−2,−1]  [1, 2]) × T × X , therefore, it defines the following element of the relative
K -group,

[F] ∈ K−i+1([−2, 2] × T × X, ([−2,−1]  [1, 2]) × T × X).

We write

[[F]] ∈ K−i+1([−2, 2] × T × X, ([−2,−1]  [1, 2]) × T × X)
/
Ker(α)

for the class of [F] in the quotient group, and we define

ψ : Ki (S0,∞⊗C(X)) → K−i+1([−2, 2]×T×X, ([−2,−1][1, 2])×T×X)
/
Ker(α)

by ψ([(T 0, T∞)]) = [[F]].
Proposition 4.5. ψ is a well-defined group homomorphism.

Proof. We show that the element [[F]] depends only on the K -class [(T 0, T∞)] in
Ki (S0,∞ ⊗ C(X)). By the excision property of topological K -theory, we can remove
components of F corresponding to subspaces [−2,−1) and (1, 2] of [−2, 2]. That is,
the inclusion i : [−1, 1] ↪→ [−2, 2] induces an isomorphism

(i × idT×X )∗ : K−i+1([−2, 2] × T × X, ([−2,−1]  [1, 2]) × T × X)

∼=−→ K−i+1([−1, 1] × T × X, {±1} × T × X),

and satisfies (i × idT×X )∗[F] = [F |[−1,1]×T×X ]. We identify these two K -groups by
this map. For simplicity of description, we take K and L in Lemma 4.3 sufficiently large
and assume K = L . Let us consider the map F̃ : [−1, 1] × T × X → M (i)

ni K N (C) given
by

F̃(s, z, x) =
{
as+1(z, x), − 1 ≤ s ≤ 0,

b1−s(z, x), 0 ≤ s ≤ 1.

Then, F |[−1,1]×T×X= F̃ ⊕ g, and [F |[−1,1]×T×X ] = [F̃ ⊕ g] = [F̃ ⊕ I (i)
N ] in the group

K−i+1(([−1, 1], {±1}) × T × X) by Kuiper’s theorem. Since F̃(s = −1) = t0 and
F̃(s = 1) = t̃∞, F̃ is a (self-adjoint) lift of t0  t̃∞ : {±1} × T × X → GL(i)

K N (C)

through the restriction map,

res : Mni K N (C([−1, 1] × T × X)) → Mni K N (C({±1} × T × X)).

Therefore, we have ∂pair([t0], [t̃∞]) = [F |[−1,1]×T×X ]. By the definition of the map ᾱ

and Proposition 4.4, we have

ᾱ([[F]]) = (∂T ⊕ −∂T)([t0], [t̃∞]) = ∂qT([(T 0, T∞)]).
Since ∂qT([(T 0, T∞)]) depends only on the K -class [(T 0, T∞)] and ᾱ is an isomor-
phism, the element [[F]] is independent of the choice made to construct F , and depends
only on the K -class [(T 0, T∞)]. �
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4.2. Construction of the map φ. In this subsection, we construct the following group
homomorphism φ in the diagram (9).

Let f : S̃
3×X → GL(i)

N (C) be a continuousmap that represents [ f ] ∈ K−i (S̃3×X),
and let fr = f |T2×X . The inclusion T

2 × X ↪→ S̃
3 × X induces the homomorphism

K−i (S̃3 × X) → K−i (T2 × X), and the image of this map is the same as that of π∗ in
(13). Therefore, as in the proof of Lemma 4.3, there exists N ′ ≥ N , a continuous map
g : X → GL(i)

N ′(C) and a homotopy {gt }0≤t≤1 from g0 = fr ⊕ I (i)
N ′−N to g1 = π∗g

in C(T2 × X,GL(i)
N ′(C)). As in Sect. 4.1, we assume that the representative f of the

K -class [ f ] is sufficiently stabilized to take N ′ = N for simplicity.
Let R : T

2 → T
2 be an orientation-preserving homeomorphism given by R(z, w) =

(w, z̄). Corresponding to the notation (14) for half-plane Toeplitz operators, we write
k̃ = (R×idX )∗k for amatrix-valued continuous function k onT

2×X ; that is k̃(z, w, x) =
k(w, z̄, x). By using this notation, letG : [−2, 2]×T

2×X → GL(i)
N (C) be a continuous

map defined as follows:

G(s, z, w, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (z, (2 + s)w, x), − 2 ≤ s ≤ −1,

g1+s(z, w, x), − 1 ≤ s ≤ 0,

g̃1−s(z, w, x) = g1−s(w, z̄, x), 0 ≤ s ≤ 1,

f̃ (z, (2 − s)w, x) = f ((2 − s)w, z̄, x), 1 ≤ s ≤ 2.

(15)

Since g1(z, w, x) = g(x) does not depend on z andw, this familyG defines a continuous
map on [−2, 2] × T

2 × X . We consider a family of Toeplitz operators TG by using
second T parametrized byw for the symbols of Toeplitz operators; that is, for (s, z, x) ∈
[−2, 2] × T × X , we set

TG(s, z, x) = TG(s,z,·,x).
TG is a family of Toeplitz operators of invertible symbols and therefore a family of
Fredholm operators parametrized by [−2, 2] × T × X . When s = ±2, these Toeplitz
operators have constant invertible symbols and are invertible. This family TG provides
the element [TG] of the K -group K−i+1(([−2, 2], {±2}) × T × X). We define

φ : K−i (S̃3 × X) → K−i+1([−2, 2] × T × X, {±2} × T × X)
/
Ker(α)

by φ([ f ]) = [[TG]].
Proposition 4.6. φ is a well-defined group homomorphism.

Proof. We show that [[TG]] depends only on the K -class [ f ] in K−i (S̃3×X). The proof
is divided into three steps.

(i)We first fix f and g and show that [[TG]] is independent of the choice of homotopy
gt . For this purpose, we take another homotopy {ht }0≤t≤1 from h0 = fr to h1 = π∗g
in C(T2 × X,GL(i)

N (C)). As in (15), we define H : [−2, 2] × T
2 × X → GL(i)

N (C) by
using ht in place of gt , and we consider a family of Toeplitz operators TH defined as in
TG . In what follows, we show that

[[TG]] = [[TH ]] ∈ K−i+1([−2, 2] × T × X, {±2} × T × X)
/
Ker(α). (16)

Let q : [−2, 2] → [−2, 2] be the map given by q(s) = −s, and let H ′ = (q ×
idT2×X )∗(H). Note that (q×idT×X )∗(TH ) = TH ′ and the isomorphism (q×idT×X )∗ on
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Fig. 2. Schematic picture for matrix functions G and H ′. The signs of the subscripts of homotopies (e.g. gt
or h−t ) indicate that the orientation of the interval [−2, 2] is consistent with that for each homotopy (e.g., gt )
or not (e.g., h−t )

K−i+1(([−2, 2], {±2}) × T × X) is a multiplication by −1. Therefore, [TH ′ ] = −[TH ]
in K−i+1(([−2, 2], {±2}) × T × X). Let us consider the following map,

K−i+1(([−2, 2], {±2}) × T × X) × K−i+1(([−2, 2], {±2}) × T × X)

G−→ K−i+1(T2 × X),

which is constructed as follows:

• For spaces, two endpoints of two intervals [−2, 2] are connected (connect ±2 with
∓2) to construct the circle T.

• For two families of Fredholm operators that are invertible on {±2} × T × X , we
connect invertible operators on two endpoints correspondingly by a continuous path
of (self-adjoint) invertible families. This is possible and unique up to homotopy by
Kuiper’s theorem.

• We then obtain a family of Fredholm operators onT
2×X , which defines an element

of K−i+1(T2 × X).

Note that we have the following isomorphism:

K−i+1(T2 × X) ∼= K−i+1(T × X) ⊕ K−i+1([−2, 2] × T × X, {±2} × T × X)

∼= K−i+1(X) ⊕ K−i (X)⊕2 ⊕ K−i−1(X). (17)

Let ι : K−i+1([−2, 2] × T × X, {±2} × T × X) ↪→ K−i+1(T2 × X) be the inclusion
corresponding to the direct sum decomposition in (17). The map G is the same as the
composite of the addition of the group K−i+1(([−2, 2], {±2}) × T × X) followed by ι.
Let us consider the projection � : K−i+1(T2 × X) → K−i−1(X) corresponding to the
decomposition in (17). Up to the identification (10), [[TG]] and � ◦ ι([TG]) are equal.
Therefore, in order to show (16), it is sufficient to show that

� ◦ ι([TG]) = � ◦ ι([TH ]) ∈ K−i−1(X). (18)

Let us discuss the element G([TG], [TH ′ ]). The families of Toeplitz operators TG and
TH ′ have symbols G and H ′, respectively, which are shown in Fig. 2. Since these two
have the same matrix functions at the boundaries, we can glue G and H ′ as indicated in
Fig. 2, and obtain a continuous map T

3 × X → GL(i)
N (C) that defines an element of the
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Fig. 3. Schematic picture for a, B and D

group K−i (T3×X). Let ∂T : K−i (T3×X) → K−i+1(T2×X) be the push-forwardmap
through Toeplitz operators with respect to the last variable of T

3. Then, this K -group
element maps to G([TG], [TH ′ ]) through ∂T. On the two pairs of dashed areas in Fig. 2,
there are the same matrix functions with opposite parameter directions; therefore these
dashed areas can be cancelled by a homotopy, and this K -class is the same as the K -class
of the continuous map a : [−2, 2]/{±2} × T

2 × X → GL(i)
N (C) given by,

a(s, z, w, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g2+s(z, w, x), − 2 ≤ s ≤ −1,

g̃−s(z, w, x) = g−s(w, z̄, x), − 1 ≤ s ≤ 0,

h̃s(z, w, x) = hs(w, z̄, x), 0 ≤ s ≤ 1,

h2−s(z, w, x), 1 ≤ s ≤ 2,

as indicated in Fig. 3. In summary, we have

∂T([a]) = [Ta] = G([TG], [TH ′ ]) = ι([TG]) + ι([TH ′ ]) = ι([TG]) − ι([TH ]).
Let B, D : [−1, 1] × T

2 × X → GL(i)
N (C) be given as B = a|−1≤s≤1 and

D(s, z, w, x) =
{
h−s(z, w, x), − 1 ≤ s ≤ 0,

gs(z, w, x), 0 ≤ s ≤ 1.

As shown in Fig. 3, B and D correspond to two pieces obtained by cut a along s = ±1.
Both B and D have the same value at boundaries s = ±1 and reduce to the map on
[−1, 1]/{±1} × T

2 × X , for which we write b and d, respectively.

b, d : [−1, 1]/{±1} × T × T × X → GL(i)
N (C).

For B, D, b and d, we associate families of Toeplitz operators TB , TD , Tb and Td by taking
rightT for the symbols. These are families of (self-adjoint) Fredholmoperators, and since
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B(s = ±1) and D(s = ±1) are given by (the pull-back of) g, both TB(s = ±1) and
TD(s = ±1) are invertible. Therefore, they define the following elements of K -groups:

[TB], [TD] ∈ K−i+1([−1, 1] × T × X, {±1} × T × X),

[Tb], [Td] ∈ K−i+1([−1, 1]/{±1} × T × X).

Since a is obtained by gluing B and D, we have

[Ta] = G([TB], [TD]) = ι([TB]) + ι([TD]) = [Tb] + [Td].
Let us consider the homeomorphism q × R on [−1, 1]/{±1} × T

2 given by (q ×
R)(s, z, w) = (−s, w, z̄), and consider themap (q×R×idX )∗ on the K -group K−i (T3×
X). Then (q × R × idX )∗[d] = [b] holds. Furthermore, corresponding to the direct sum
decomposition

K−i (T3 × X) ∼= K−i (X) ⊕ K−i−1(X)⊕3 ⊕ K−i−2(X)⊕3 ⊕ K−i−3(X), (19)

the map (q × R × idX )∗ acts on the direct summand K−i−3(X) as multiplication by
−1. By the map ∂T, this direct summand K−i−3(X) in (19) maps isomorphically to the
direct summand K−i−1(X) in (17). Therefore, we have �([Tb]) = −�([Td]), which
leads to equation (18); that is,

� ◦ι([TG])−� ◦ι([TH ]) = � ◦G([TG], [TH ′ ]) = �([Ta]) = �([Tb])+�([Td]) = 0.

(ii)We next fix f and show that [[TG]] is independent of the choice of a representative
g of the K -class [g] in K−i (X) satisfying [ fr ] = π∗[g]. Note that the K -class [g] is
uniquely determined since π∗ is injective. Let g′ : X → GL(i)

N ′(C) be another represen-
tative; that is, [g] = [g′]. By taking N and N ′ sufficiently large, we assume that N = N ′
and that there exists a homotopy {kt }0≤t≤1 from k0 = g to k1 = g′ in C(X,GL(i)

N (C)).
Combined with the homotopies {gt }0≤t≤1 (from fr to π∗g) and {π∗kt }0≤t≤1, we obtain
a homotopy from fr to π∗g′ in C(T2 × X,GL(i)

N (C)). The associated family of Toeplitz

operators is expressed as TK , where K : [−2, 2]× T
2 × X → GL(i)

N (C) is a continuous
map given by

K (s, z, w, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (z, (2 + s)w, x), − 2 ≤ s ≤ −1,

g2+2s(z, w, x), − 1 ≤ s ≤ −1

2
,

π∗k1+2s(z, w, x) = k1+2s(x), − 1

2
≤ s ≤ 0,

π̃∗k1−2s(z, w, x) = k1−2s(x), 0 ≤ s ≤ 1

2
,

g̃2−2s(z, w, x),
1

2
≤ s ≤ 1,

f̃ (z, (2 − s)w, x), 1 ≤ s ≤ 2.

Within − 1
2 ≤ s ≤ 1

2 , this family K has kt of the opposite parameter direction, and it can
be collapsed by a homotopy to obtain G. This homotopy preserves s = ±2 and provides
a homotopy from TG to TK in the space of families of (self-adjoint) Fredholm operators
that are invertible at s = ±2; therefore, [TG] = [TK ].
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(iii) Finally, we show that [[TG]] is independent of the choice of a representative f
of the K -class [ f ] in K−i (S̃3 × X). Let f ′ : S̃

3 × X → GL(i)
N ′(C) be another repre-

sentative; that is, [ f ′] = [ f ]. As in (2), we assume N = N ′ and that there exists a
homotopy { ft }0≤t≤1 from f0 = f to f1 = f ′ in C(S̃3 × X,GL(i)

N (C)). In this case,

{( ft )r }0≤t≤1 provides a path from fr to f ′
r in C(T2 × X,GL(i)

N (C)). Combined with the
homotopy {gt }0≤t≤1, we obtain a homotopy from fr to π∗g, which provides the family
of Toeplitz operators TG ′ and a homotopy from TG to TG ′ . Explicitly, for 0 ≤ u ≤ 1, let
Gu : [−2, 2] × T

2 × X → GL(i)
N (C) be a continuous map defined as follows:

Gu(s, z, w, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fu(z, (2 + s)w, x), − 2 ≤ s ≤ −1,

f−2s+u−2(z, w, x), − 1 ≤ s ≤ −1 +
u

2
,

g 2
2−u s+1

(z, w, x), − 1 +
u

2
≤ s ≤ 0,

g̃ −2
2−u s+1

(z, w, x), 0 ≤ s ≤ 1 − u

2
,

f̃2s+u−2(z, w, x), 1 − u

2
≤ s ≤ 1,

f̃u(z, (2 − s)w, x), 1 ≤ s ≤ 2.

Then, the associated family of Toeplitz operators {TGu }u∈[0,1] provides a path of families
of (self-adjoint) Fredholm operators invertible at s = ±2 satisfying TG0 = TG and
TG1 = TG ′ ; therefore, [TG] = [TG ′ ]. �

The following lemma states that the diagram (9) commutes:

Lemma 4.7. ᾱ ◦ φ = β.

Proof. The map β is given through the decomposition (6) and the square of the Bott
periodicity isomorphism. The map ᾱ corresponds to the Bott periodicity isomorphism,
and we see a relation between the map φ and the Bott periodicity.

Let π ′ : S̃
3 × X → X be the projection. Through the decomposition (6), the direct

summand K−i (X) in K−i (S̃3 × X) is represented by [π ′∗g], where g : X → GL(i)
N (C)

for some N . π ′∗g is a continuous map on S̃
3 × X , which is constant with respect to S̃

3.
In this case, a homotopy {gt }0≤t≤1 to construct G in (15) can be taken to be constant
gt = π∗g, and the corresponding family TG of Toeplitz operators representingφ([π ′∗g])
to be a family of (self-adjoint) invertible operators. Therefore, φ([π ′∗g]) = 0, and the
direct summand K−i (X) maps to zero through φ.

We next consider the direct summand of K−i (S̃3×X) corresponding to K−i
cpt(R

3×X)

in (6). We consider S̃
3 as the one-point compactification of R

3, where the point at
infinity corresponds to the base point s0 = (1, 1) ∈ S̃

3. K -classes in this component are
represented by a continuousmaps f : S̃

3×X → GL(i)
N (C) satisfying f (s0, x) = I (i)

N for
any x ∈ X . Since S̃

3 \ {s0} ∼= R
3 is contractible, we can take a small three-dimensional

open ball B in S̃
3 and deform f to a continuous map which is I (i)

N on (S̃3 \ B) × X .

Therefore, the K -class [ f ] is represented by a continuousmap f ′ : S̃
3×X → GL(i)

N (C),

which is I (i)
N on D

2 × T × X and T × {0} × X , where 0 is the origin of D
2 ⊂ C. Since

f ′
r = I (i)

N , we can take a homotopy {gt }0≤t≤1 to construct G in (15) as gt = I (i)
N . Then,
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Fig. 4. Schematic picture for G and TG in the proof of Lemma 4.7. A gray area in the left figure corresponds
to the small open ball B in S̃

3, and that in the right indicates its image

the map G : [−2, 2] × T
2 × X → GL(i)

N (C) is I (i)
N when s = −2 and −1 ≤ s ≤ 2, and

corresponding family of Toeplitz operators TG is also I (i)
N on s = −2 and −1 ≤ s ≤ 2.

Therefore, φ on K−i
cpt(R

3 × X) is simply the push-forward map through the Toeplitz
operators (see Fig. 4). Explicitly, the following diagram commutes:

K−i−3(X) ∼= K−i
cpt(R

3 × X)

∼=

��

ε

��

ε′

��
K−i
cpt(R × T

2 × X)

∂T

��

K−i (S̃3 × X)

φ

		

K−i+1
cpt (R × T × X)

/Ker(α)

��
K−i−1(X) ∼= K−i+1

cpt (R × T × X)/Ker(α)

In the above, the map ε is constructed as follows: we embed R
3 into R × T

2 as a small
open ball corresponding toB. A K -class in K−i

cpt(R
3× X) is represented by a continuous

map g from R
3 × X to GL(i)

N (C) for some N , which is I (i)
N outside of a compact set.

The image of the K -class [g] in K−i
cpt(R × T

2 × X) is represented by the extension of

g to R × T
2 × X by I (i)

N . In the same way, the map ε′ is constructed by identifying
R
3 with the open ball B in S̃

3. The composite of vertical arrows is the Bott periodicity
isomorphism, and the commutativity of the right hand side of the diagram follows from
the construction of φ (see Fig. 4). Therefore, φ on K−i

cpt(R
3 × X) is given by the Bott

periodicity isomorphism.
In summary, the composite ᾱ ◦ φ is a projection onto K−i

cpt(R
3 × X) followed by the

square of the Bott periodicity isomorphism, which is β. �

4.3. Proof of Theorem 4.1. Theorem 4.1 follows from the proposition below and the
commutativity of the diagram (9).
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Fig. 5. Families of Toeplitz operators and their symbols used to define ψ([(T 0
f , T

∞
f )]) (b, a) and φ([ f E ])

(d, c): a symbols of F , b family of Toeplitz operators F , c symbols G of TG , d family of Toeplitz operators
TG

Proposition 4.8. Let f : T
2 × X → GL(i)

N (C) be a continuous map such that for each
x ∈ X, f (x) is a two-variable rational matrix function such that the associated quarter-
planeToeplitz operator T 0,∞

f (x) is Fredholm. Let f
E : S̃

3×X → GL(i)
N (C) be the extension

of f through matrix factorization in the hermitian case of Proposition 3.6 (when i = 0)
or Proposition 3.4 (when i = 1). We then have ψ([(T 0

f , T
∞
f )]) = φ([ f E ]).

Proof. For the definition of ψ([(T 0
f , T

∞
f )]), we take a path {(T 0

t , T∞
t )}0≤t≤1 in

GL(i)
N ′(S0,∞ ⊗C(X)) in Lemma 4.3 and construct a family F of (self-adjoint) Fredholm

operators on [−2, 2] × T
2 × X representing the element ψ([(T 0

f , T
∞
f )]) ((b) in Fig. 5).

Note that T 0
f is identified with T f through the isomorphism T 0 ∼= C(T) ⊗ T and that

T̃∞
f is identified with T f̃ . Associated with the family {(T 0

t , T∞
t )}0≤t≤1, there is a path2

gt = σ 0(T 0
t ) = σ∞(T∞

t ) from f to π∗g in C(T2 × X,GL(i)
N (C)). We use this path

{gt }0≤t≤1 to define φ([ f E ]). Families of (self-adjoint) Fredholm Toeplitz operators TG
representing the K -group element φ([ f E ]) and their symbols G are indicated in (d) and
(c) of Fig. 5. Note that f Er = f E |T2×X= f in our setup. Since f E in Propositions 3.4
and 3.6 is the extension of f constructed through matrix factorization, the families of
Toeplitz operators TG are (self-adjoint) invertible on ([−2,−1]  [1, 2]) × T × X by
Lemma 3.2.

Let us compare F and TG . Let p : [−2, 2] → [−1, 1] be a map defined as follows:

p(s) =
⎧
⎨

⎩

s + 1, − 2 ≤ s ≤ −1,

0, − 1 ≤ s ≤ 1,

s − 1, 1 ≤ s ≤ 2,

2 We assume that f is sufficiently stabilized to take N ′ = N for simplicity.
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that is, collapsing the subinterval [−1, 1] in [−2, 2] to zero. We take a restriction of TG
onto −1 ≤ s ≤ 1 and extend {s = 0} to −1 ≤ s ≤ 1; that is, we consider

T ′
G = (p × idT×X )∗(TG |[−1,1]×T×X ).

Since TG is invertible when −2 ≤ s ≤ −1 and 1 ≤ s ≤ 2, T ′
G is also invertible when

s = ±2, and the K -class of T ′
G in K−i+1([−2, 2] × T × X, {±2} × T × X) is the same

as that of TG . Families F and T ′
G coincide at boundaries s = ±2, and on the interior,

these two are families of (self-adjoint) Fredholm Toeplitz operators of the same symbol.
Therefore, they differ by (self-adjoint) compact operators (see Fig. 5), and the linear
path (1 − t)F + tT ′

G for 0 ≤ t ≤ 1 provides a homotopy between F and T ′
G in the

space of (self-adjoint) Fredholm operators on [−2, 2] × T × X , which is invertible on
{±2} × T × X . We thus have,

[F] = [T ′
G] = [TG] ∈ K−i+1([−2, 2] × T × X, {±2} × T × X).

By taking a quotient by Ker(α), we obtain ψ([(T 0
f , T

∞
f )]) = φ([ f E ]). �

Proof of Theorem 4.1. By Proposition 4.8 and the commutativity of the diagram (9), we
have,

[T 0,∞] = ∂qT([(T 0
f , T

∞
f )]) = ᾱ ◦ ψ([(T 0

f , T
∞
f )]) = ᾱ ◦ φ([ f E ]) = β([ f E ]).

�
The following is an example of Theorem 4.1 when i = 1 and X = {pt}.

Example 4.9. Let f : T
2 → GL(2, C) be the two-variable rationalmatrix function given

by f (z, w) =
(
z −w−1

w z−1

)
. We first consider f as a family of rational matrix functions

on the circle T of variable z parametrized by w ∈ T. By applying an algorithm from
[20], we obtain a right factorization of the following form:

f (z, w) = f−(z, w) · f+(z, w) =
(

1 0
−wz−1 1

) (
z −w−1

2w 0

)
.

Since this is a canonical factorization, the half-plane Toeplitz operator T∞
f is invertible.

Our extended symbol f E in Proposition 3.4 is given as,

f E (z, w) = f−(z̄−1, w) · f+(z, w) =
(

z −w−1

−w|z|2+2w z̄

)
, (20)

for (z, w) ∈ D
2 ×T. We next consider z ∈ T as a parameter, and by a similar discussion

for rational matrix functions f with respect to w ∈ T, we also obtain a canonical
factorization. Therefore, the half-plane Toeplitz operator T 0

f is invertible and f E for

(z, w) ∈ T × D
2 is given as

f E (z, w) =
(−z|w|2+2z −w̄

w z−1

)
. (21)

For 0 ≤ t ≤ 1, let gt : S̃
3 → GL(2, C) be a continuous map given as follows: On

D
2 × T, we set gt as the replacement of the (2, 1) component of f E in (20) with
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tw(−|z|2+1) + w. On T × D
2 we set gt as the replacement of the (1, 1) component

of f E in (21) with t z(−|w|2+1) + z. This gt provides a homotopy between g1 = f E

and g0(z, w) =
(
z −w̄

w z̄

)
in C(S̃3,GL(2, C)). Therefore, [ f E ] = [g0] in K−1(S̃3).

Note that the map β : K−1(S̃3) → K 0({pt}) ∼= Z is the square of the Bott periodicity
isomorphism. Since g0 is the square of a Bott element, which is a generator of the K -
group K−1(S̃3) ∼= Z, we have β([ f E ]) = β([g0]) = 1. Since T 0

f and T
∞
f are invertible,

the quarter-plane Toeplitz operator T 0,∞
f is Fredholm, and its Fredholm index is 1 by

Theorem 4.1, which is also computed in [15,17] by different methods.

Let us consider the special case of Theorem 4.1 when i = 1 and X = {pt}. Our
extended symbol defines an element [ f E ] ∈ K−1(S̃3) and, through the isomorphism

β : K−1(S̃3)
∼=−→ Z, we obtain an integerW3( f E ) := β([ f E ]). This integer corresponds

to π3(GLn(C)) ∼= Z for n ≥ 2 and is the three-dimensional winding number. Therefore,
we obtain the following result.

Corollary 4.10. Let f : T
2 → GLN (C) be a nonsingular two-variable rational matrix

function with poles offT2 such that the associated quarter-plane Toeplitz operator T 0,∞
f

is Fredholm. Let f E : S̃
3 → GLN (C) be the extension of f through matrix factorization

in Proposition 3.4. Then the Fredholm index of T 0,∞
f is given by,

index(T 0,∞
f ) = W3( f

E ).

Remark 4.11. In Example 4.9, the matrix function f E is smooth both on D
2 × T and

T × D
2. If we apply the integration formula for three-dimensional winding numbers to

f E on D
2 ×T in (20), we obtain 1

24π2

∫
D2×T

Tr(( f E )−1d f E )3 = 1
2 . Similar integration

for f E on T × D
2 in (21) is also 1

2 . We see that their sum is 1, which is the same as the
three-dimensional winding number computed in Example 4.9, though we do not have a
general proof that the sum coincides with the three-dimensional winding number since
our three sphere S̃

3 is not smooth.

5. Quarter-Plane Toeplitz Operators Preserving Real Structures

In this section, we discuss a variant of Theorem 4.1 in real K -theory. For this purpose,
we use Atiyah’s K R-theory for spaces equipped with involutions [4] and Boersema–
Loring’s formulation for the KO-theory of real C∗-algebras [12]. Index theory for
quarter-plane Toeplitz operators preserving some real structures and application to topo-
logical corner states are discussed in [27], which we mainly follow.

5.1. Matrix functions preserving real or quaternionic structures. Let C be a real or a
quaternionic structure on C

n , that is, an antiunitary operator on C
n whose square is +1

or −1. Note that, when we consider a quaternionic structure, the positive integer n must
be even. We write AdC for a real linear automorphism of order two on Mn(C) given
by AdC(x) = CxC∗. We also write ∗ for the operation on Mn(C) taking the hermitian
conjugate of matrices. We write c for complex conjugation on C, that is, c(z) = z̄. Then,
(T, c) is a Z2-space, which is a Z2-subspace of (D2, c).
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Lemma 5.1. Let I be a Z2-space (i) (GLn(C),AdC) or (ii) (GLn(C),AdC ◦ ∗). Let
(X, ζ ) be a Z2-space and f : (T × X, c× ζ ) → I be a Z2-equivariant continuous map
such that for each x ∈ X, f (x) is a rational matrix function of trivial partial indices.
Then, its extension f e in Lemma 3.3 is a Z2-map f e : (D2 × X, c × ζ ) → I.

Proof. By Lemma 3.3, the map f e is continuous. We now show its Z2-equivalence. For
each x ∈ X , we take a canonical factorization f (x) = f−(x) f+(x).

(i) We first consider the case in which I = (GLn(C),AdC). By assumption, the
following equation holds for (z, x) ∈ T × X :

f−(z, x) f+(z, x) = f (z, x) = C f (z̄, ζ(x))C∗ = C f−(z̄, ζ(x))C∗ · C f+(z̄, ζ(x))C∗.
(22)

Let f e+ (x) and f e−(x) be continuous extensions of f+(x) and f−(x) onto T ∪ D+
and T ∪ D−, which are analytic on D+ and D−, respectively. The function z �→
C f+(z̄, ζ(x))C∗ is a rational matrix function on T and C f e+ (z̄, ζ(x))C∗ provides its con-
tinuous extension ontoT∪D+ which is analytic on D+ as a nonsingular matrix function.
A similar observation holds for C f−(z̄, ζ(x))C∗ and the equation (22) provides two
canonical factorizations of f (x). Therefore, for each x ∈ X , there exists B ∈ GLn(C)

such that B f+(z, x) = C f+(z̄, ζ(x))C∗ and f−(z, x)B−1 = C f−(z̄, ζ(x))C∗ for z ∈ T.
By the uniqueness of analytic continuation, we obtain

B f e+ (z, x) = C f e+ (z̄, ζ(x))C∗ for z ∈ T ∪ D+,

f e−(z, x)B−1 = C f e−(z̄, ζ(x))C∗ for z ∈ T ∪ D−.

Therefore, for z ∈ T ∪ D+ = D
2,

f e(z, x) = f e−(z̄−1, x) f e+ (z, x) = f e−(z̄−1, x)B−1 · B f e+ (z, x)

= C f e−(z−1, ζ(x))C∗ · C f e+ (z̄, ζ(x))C∗ = C f e(z̄, ζ(x))C∗.

(ii) We next consider the case of I = (GLn(C),AdC ◦ ∗). By assumption, we have

f−(z, x) f+(z, x) = f (z, x) = C f+(z̄, ζ(x))∗C∗ · C f−(z̄, ζ(x))∗C∗ (23)

for (z, x) ∈ T × X . The matrix function C f e+ (z−1, ζ(x))∗C∗ (resp. C f e−(z−1, ζ(x))∗C∗)
provides a continuous extension of C f+(z̄, ζ(x))∗C∗ (resp. C f−(z̄, ζ(x)∗C∗) ontoT∪D−
(resp. T ∪ D+), which is analytic on D− (resp. D+), and the right hand side of equation
(23) is also a canonical factorization of f . Therefore, as in the proof of (i), there exists
B ∈ GLn(C) satisfying,

B f e+ (z, x) = C f e−(z−1, ζ(x))∗C∗ for z ∈ T ∪ D+,

f e−(z, x)B−1 = C f e+ (z−1, ζ(x))∗C∗ for z ∈ T ∪ D−.

By these equations, for z ∈ T ∪ D+ = D
2,

f e(z, x) = f e−(z̄−1, x)B−1 · B f e+ (z, x) = C f e+ (z̄, ζ(x))∗C∗ · C f e−(z−1, ζ(x))∗C∗

= C( f e−(z−1, ζ(x)) f e+ (z̄, ζ(x)))∗C∗ = C f e(z̄, ζ(x))∗C∗.

�
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Lemma 5.2. Let I be a Z2-space (i) (GLn(C)sa,AdC) or (ii) (GLn(C)sa,−AdC). Let
(X, ζ ) be a Z2-space and f : (T × X, c× ζ ) → I be a Z2-equivariant continuous map
such that for each x ∈ X, f (x) is a rational matrix function of trivial partial indices.
Then, its extension f e in Lemma 3.5 is a Z2-map f e : (D2 × X, c × ζ ) → I.

Proof. (i) follows from the hermitian case of Lemma 3.5 and (i) of Lemma 5.1. For (ii),
note that a Z2-map f : (T × X, c × ζ ) → (GLn(C)sa,−AdC) provides, by multipli-
cation by the imaginary unit, a Z2-map

√−1 f : (T × X, c × ζ ) → (GLn(C)sk,AdC).
Therefore, the result follows from the skew-hermitian case of Lemma 3.5 and (i) of
Lemma 5.1. �

Let ν be an involution on S̃
3 given by the restriction of c2 = c × c on C

2 onto S̃
3.

By Proposition 3.4 and Lemmas 5.1 and 5.2, we obtain the following result.

Proposition 5.3. Let (X, ζ ) be a Z2-space, and let I be a Z2-space (GLn(C),AdC),
(GLn(C),AdC ◦ ∗), (GLn(C)sa,AdC) or (GLn(C)sa,−AdC). Let f : (T2 × X, c2 ×
ζ ) → I be a Z2-continuous map such that for each x ∈ X, f (x) is a two-variable
rational matrix function for which the associated quarter-plane Toeplitz operator T 0,∞

f (x)
is Fredholm. Then, through matrix factorization, there is a canonically associated Z2-
continuous map f E : (S̃3 × X, ν × ζ ) → I that extends f .

5.2. Index theorem: real cases. Let R be the antiunitary operator on C
n given by R =

diag(c, . . . , c), where c is the complex conjugation onC. Let j be an antiunitary operator
on C

2 given by j (x, y) = (−ȳ, x̄). When n is even, let J = diag( j, . . . , j) be a
quaternionic structure onC

n . Let A be a unitalC∗-algebra equippedwith a real structure3
r. Let τ be the antiautomorphism on A of order two given by τ(a) = r(a∗). We call τ

the transposition and write aτ for τ(a). The pair (A, τ ) is called C∗,τ -algebra in [12].
The transposition τ on A is extended to the transposition on the matrix algebra Mn(A)

by (ai j )τ = (aτ
j i ). Let � ⊗ τ be a transposition on M2(A) defined by

(
a11 a12
a21 a22

)�⊗τ

=
(

aτ
22 −aτ

12−aτ
21 aτ

11

)
,

which is extended to the transposition on M2n(A) by (bi j )�⊗τ = (b�⊗τ
j i ) where bi j ∈

M2(A) and 1 ≤ i, j ≤ n. For i = −1, 0, . . . , 6, let nr,i be a positive integer, R(i) be a
relation and I (i)

r be a matrix as indicated in Table 1. Let GL(i)
n (A, τ ) be the set of all in-

vertible elements in Mnr,i ·n(A) satisfying the relation R(i). Following Boersema–Loring

[12], we define4 the KO-group of (A, τ ) as KOi (A, τ ) = ∪∞
n=1GL(i)

n (A, τ )/ ∼i where

the equivalence relation ∼i is generated by homotopy and stabilization by I (i)
r . For a

finite Z2-CW complex (X, ζ ), we associate a (complex) C∗-algebra C(X) with a trans-
position5 τζ given by ( f τζ )(x) = f (ζ(x)). We define K R−i (X, ζ ) = KOi (C(X), τζ )

which are Atiyah’s Real K -groups [4] for the Z2-space (X, ζ ). Note that an element

3 An antilinear ∗-automorphism on A satisfying r2 = 1.
4 In [12], KO-groups are defined via unitaries though we can also define KO-groups through invertibles

preserving symmetries in [12] since deformation retraction from invertibles to unitaries preserves these sym-
metries. We discuss invertible elements since, in our application discussed in Sect. 6, Hamiltonians will be
expressed as multivariable nonsingular rational matrix functions, though not necessarily unitaries.

5 Correspondingly, the real structure on C(X) is given by rζ ( f )(x) = f (ζ(x)).
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Table 1. KO-theory via invertible elements (Boersema–Loring [12])

i nr,i R(i) I (i)r GL(i)
r,n(C)

− 1 1 xτ = x 1 (GLn(C),AdR ◦ ∗)

0 2 x = x∗, xτ = x∗ diag(1,− 1) (GL2n(C)sa,AdR)

1 1 xτ = x∗ 1 (GLn(C),AdR)

2 2 x = x∗, xτ = −x

(
0

√−1
−√−1 0

)
(GL2n(C)sa,−AdR)

3 2 x�⊗τ = x 12 (GL2n(C),AdJ ◦ ∗)

4 4 x = x∗, x�⊗τ = x∗ diag(12, −12) (GL4n(C)sa,AdJ )

5 2 x�⊗τ = x∗ 12 (GL2n(C),AdJ )

6 2 x = x∗, x�⊗τ = −x

(
0

√−1
−√−1 0

)
(GL2n(C)sa,−AdJ )

f ∈ GL(i)
n (C(X), τζ ) corresponds to a Z2-equivariant continuous map f : (X, ζ ) →

GL(i)
r,n(C) where GL(i)

r,n(C) is the Z2-space as indicated in Table 1. Following [4], let
R

p,q := R
q ⊕ iRp be the Z2-space whose involution is given by id on R

q and −id
on R

p, and let S
p,q be the unit sphere in R

p,q . Note that our Z2-space (S̃3, ν) is Z2-
equivariantly homeomorphic to S

2,2. The Bott periodicity for K R-theory is given as
K R−i (X, ζ ) ∼= K R−i

cpt(R
1,1 × (X, ζ )) whose isomorphism is given as in the complex

case.
On l2(Z2), we consider an antiunitary operator of order two given by the point-

wise operation of complex conjugation, for which we simply write c. Conjugation of
c provide real structures for the quarter-plane Toeplitz algebra T 0,∞ and the pull-back
C∗-algebra S0,∞. We write τ0,∞ and τS for corresponding transpositions on T 0,∞
and S0,∞, respectively. For i = −1, 0, . . . , 6, and a positive integer N , let GL(i)

r,N
be the Z2-space indicated in Table 1. Let (X, ζ ) be a finite Z2-CW complex, and let
f : (T2 × X, c2 × ζ ) → GL(i)

r,N (C) be a Z2-map such that for each x ∈ X , f (x) is
a two-variable rational matrix function and the associated quarter-plane Toeplitz op-
erator T 0,∞

f (x) is Fredholm. In this case, half-plane Toeplitz operators {T 0
f (x)}x∈X and

{T∞
f (x)}x∈X and quarter-plane Toeplitz operators {T 0,∞

f (x) }x∈X preserve some symmetry
corresponding to the Z2-equivalence of the map f . As in [26], pairs of invertible half-
plane Toeplitz operators (T 0

f , T
∞
f ) define an element [(T 0

f , T
∞
f )] of the KO-group

KOi (S0,∞ ⊗ C(X), τS ⊗ τζ ), and (self-adjoint, when i is even) Fredholm quarter-
plane Toeplitz operators define an element [T 0,∞

f ] of the K R-group K R−i+1(X, ζ ).

By Proposition 5.3, through the matrix factorization, there is an associated Z2-map f E

which defines an element [ f E ] of the K R-group K R−i (S̃3 × X, ν × ζ ). Let

∂qT : KOi (S0,∞ ⊗ C(X), τS ⊗ τζ ) → KOi−1(C(X), τζ ) ∼= K R−i+1(X, ζ ),

be the boundary map of the 24-term exact sequence for KO-theory associated with the
short exact sequence of C∗,τ -algebras,

0 → (K ⊗ C(X), τK ⊗ τζ ) → (T 0,∞ ⊗ C(X), τ0,∞ ⊗ τζ )

γ⊗1−→ (S0,∞ ⊗ C(X), τS ⊗ τζ ) → 0. (24)
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Then, we have ∂qT([(T 0
f , T

∞
f )]) = [T 0,∞

f ]. For (S̃3, ν), we take a Z2-fixed point s0 =
(1, 1) in S̃

3 as its base point, and obtain the following decomposition:

K R−i (S̃3 × X, ν × ζ ) ∼= K R−i (X, ζ ) ⊕ K R−i
cpt(R

2,1 × (X, ζ ))

∼= K R−i (X, ζ ) ⊕ K R−i+1(X, ζ ),

where the second isomorphism is given by the square of the Bott periodicity isomor-
phism. Let β : K R−i (S̃3× X, ν ×ζ ) → K R−i+1(X, ζ ) be the projection corresponding
to this decomposition.

Theorem 5.4. Let (X, ζ ) be a finite Z2-CW complex. Let f : (T2 × X, c2 × ζ ) →
GL(i)

r,N (C) be a Z2-map such that for each x ∈ X, f (x) is a two-variable rational

matrix function and the associated quarter-plane Toeplitz operator T 0,∞
f (x) is Fredholm.

Let f E : (S̃3×X, ν×ζ ) → GL(i)
r,N (C) be the extension of f throughmatrix factorization

in Proposition 5.3. Then, we have [T 0,∞
f ] = β([ f E ]) in K R−i+1(X, ζ ).

The proof of Theorem 4.1 concerns three parts: matrix factorizations, the homotopy
lifting property and K -theory. For Theorem 5.4, matrix factorizations are discussed in
Sect. 5.1. Here, we note the following result concerning the Z2-equivariant homotopy
lifting property. For C = R or J , let cT be an involution on Mn(T ) given by cT (T ) =
CTC∗, and let cT be an involution on Mn(C(T)) given by cT( f )(z) = C f (z̄)C∗ for
z ∈ T.

Proposition 5.5. The following are Serre Z2-fibrations:

(i) σ : (Un(T ), cT ) → (Un(C(T)), cT),
(ii) σ : (Un(T ), cT ◦ ∗) → (Un(C(T)), cT ◦ ∗),
(iii) σ : (Un(T )sa, cT ) → (Un(C(T))sa, cT),
(iv) σ : (Un(T )sa,−cT ) → (Un(C(T))sa,−cT).

Since (11) and (12) are Hurewicz fibrations and by Theorem 4.1 of [13], to show
Proposition 5.5, it is sufficient to show that the restrictions on the Z2-fixed point sets are
fibrations. (see also [48]).

Lemma 5.6. The following are Hurewicz fibrations:

(i) σ : Un(T )cT → Un(C(T))cT ,
(ii) σ : Un(T )cT ◦∗ → Un(C(T))cT◦∗,
(iii) σ : (Un(T )sa)cT → (Un(C(T))sa)cT ,
(iv) σ : (Un(T )sa)−cT → (Un(C(T))sa)−cT .

Proof. (i) and (iii) are real analogues of (11) and (12). (iv) follows from the skew-
adjoint analogue of (iii), since multiplication by

√−1 provides the homeomorphism
from (Un(T )sa)−cT to (Un(T )sk)cT .

For (ii), we put unitaries preserving these real structures in the framework of Wood
[50]. Let A = M2n(T ) and set U (A) = U2n(T ). Let

e =
(√−1 · 1n 0

0 −√−1 · 1n
)

, C̃ =
(

0 −C · 1n
C · 1n 0

)
,

and let c̃T : A → A be a real linear automorphism of order two given by c̃T (a) = C̃aC̃∗.
Its fixed point set Ac̃T is a unital real Banach ∗-algebra containing e. Let e be an operator
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on Ac̃T given by the conjugation of e. Let us consider the space (U (Ac̃T )sk)−e, that
is, the elements in A = M2n(T ) which are skew-adjoint unitary, commute with C̃ and
anti-commute with e. We have the following identification,

Un(T )cT ◦∗ ∼=−→ (U (Ac̃T )sk)−e, a �→
(
0 −a∗
a 0

)
.

Let u ∈ Un(T )cT ◦∗ and s =
(
0 −u∗
u 0

)
∈ (U (Ac̃T )sk)−e. We consider an operator s on

U (Ac̃T )e given by the conjugation of k. By Lemma 4.2 of [50], we have the following
homeomorphism,

(
U (Ac̃T )e/(U (Ac̃T )e)s

)
1

∼=−→ (U (Ac̃T )sk)−e
s

∼= Un(T )cT ◦∗
u ,

given by [T ] �→ T sT ∗. We also have a similar homeomorphism for the algebra C(T),
and as in the proof of Lemma 4.2, we obtain that the map

σ : Un(T )cT ◦∗
u → Un(C(T))

cT◦∗
σ(u)

is a fiber bundle and the result follows. �
For the proof of Theorem 5.4, we replace ni , I (i) and GL(i)

n (C) in the proof of The-
orem 4.1 with nr,i , I

(i)
r and GL(i)

r,n(C) in Table 1 and obtain the following commutative
diagram:

KOi (S0,∞ ⊗ C(X), τS ⊗ τζ )

ψ

��

∂qT

������
�����

�����
�����

����

K R−i+1(([−2, 2], {±2}) × T × X, id × c × ζ
)/

Ker(α)
ᾱ �� K R−i+1(X, ζ )

K R−i (S̃3 × X, ν × ζ )

φ

��

β

�������������������������

where the map ᾱ is induced from the map α, defined as the map that makes the following
diagram commutative:

K R−i (T × X, c × ζ ) ⊕ K R−i (T × X, c × ζ )

∂pair

��

∂T⊕−∂T

������
�����

�����
�����

�

K R−i+1
(
([−2, 2], {±2}) × T × X, id × c × ζ

) α �� K R−i+1(X, ζ )

Theorem 5.4 is proved in a parallel way as Theorem 4.1 by using real K -theory in place
of complex K -theory.
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6. Gapped Topological Invariants Related to Corner States

In this section, we discuss some bulk-edge gapped Hamiltonians on a lattice with a
codimension-two corner or hinge. By using Theorem 4.1 and Theorem 5.4, we provide
more geometric way to formulate a relation between topological invariants for such
gapped Hamiltonians and corner/hinge states than that in [25,27].

We consider a translation invariant Hamiltonian on the lattice Z
d of the following

form:
H : l2(Zd , C

N ) → l2(Zd , C
N ), H =

∑

finite

a j1··· jd S
j1
1 · · · S jd

d ,

where a j1··· jd ∈ MN (C), S j is the shift operator in the j-th direction and the subscript
finitemeans that a j1··· jd = 0 except for finitely many ( j1, . . . , jd) ∈ Z

d . We assume that
H is self-adjoint and consider such Hamiltonians in each of the ten Altland–Zirnbauer
classes. In classes A, AI and AII, we further assume that the spectrum of the bulk
Hamiltonian is not contained in R>0 and R<0. Through the Fourier transform, the bulk
Hamiltonian corresponds to a hermitian matrix-valued function H : T

d → MN (C)sa

on the d-dimensional Brillouin torus T
d . We write (z1, . . . , zd) for an element in T

d .
Corresponding to our finite hopping range condition, each entry of this matrix consists of
a d-variable Laurent polynomial; therefore, the bulk Hamiltonian H corresponds to a d-
variable rational matrix function onT

d . We next introduce our models for two edges and
the corner. Note that, for each z = (z3, . . . , zd) ∈ T

d−2, the matrix function H(z) onT
2

is a two-variable rational matrix function. Let H0(z) = T 0
H(z) and H∞(z) = T∞

H(z) be

the associated half-plane Toeplitz operators, and let H0,∞(z) = T 0,∞
H(z) be the associated

quarter-plane Toeplitz operator. That is, for models of two edges, we consider the restric-
tions of our bulk Hamiltonian onto half-spacesZ×Z≥0×Z

d−2 andZ≥0×Z×Z
d−2, and

for the model of codimension-two right angle corner, we consider the restriction onto the
lattice (Z≥0)

2 × Z
d−2, where we assume the Dirichlet boundary condition. We assume

that, for any z ∈ T
d−2, half-plane Toeplitz operators H0(z) and H∞(z) are invertible.

Under this assumption, H(z) is also invertible and H0,∞(z) is Fredholm. Therefore,
we assume that our model Hamiltonians for the bulk and two edges that makes the
corner are gapped. Under this assumption, we discuss a relation between some gapped
topological invariant and corner states. As in [27], the family of self-adjoint Fredholm
operators {H0,∞(z)}z∈Td−2 defines an element of the complex K -group K−i+1(Td−2)

for classes A and AIII, or the K R-group K R−i+1(Td−2, cd−2) for classes AI, BDI, D,
DIII, AII, CII, C and CI of some degree i corresponding to its Altland–Zirnbauer class
♠ as indicated in Table 2. We write I♠

Gapless(H) for this element of the K -group. If

I♠
Gapless(H) is non-trivial, there exist topological corner/hinge states. For classes AIII,

BDI, DIII, CII and CI where the Hamiltonians preserve chiral symmetry, a Hamiltonian
H anti-commute pointwise with the chiral symmetry operator � and can be represented

by the off-diagonal form H =
(
0 h∗
h 0

)
. This h is also a nonsingular d-variable rational

matrix function on T
d . As in [27], this H or h preserves the symmetries of Boersema–

Loring’s formulation of complex or real K -theory groups. Under our assumption, by
using matrix factorizations (Proposition 3.6 and Proposition 5.3), H or h on T

d is ex-
tended to a nonsingular matrix-valued continuous map HE : S̃

3 × T
d−2 → GLN (C)sa

or hE : S̃
3 × T

d−2 → GL N
2
(C). Corresponding to its Altland–Zirnbauer class, this

matrix function defines the following element of the complex or real K -group which is
a gapped topological invariant for our bulk-edge gapped system:
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Table 2. i andHE for each of the Altland–Zirnbauer classes ♠
♠ A AIII AI BDI D DIII AII CII C CI

i 0 1 0 1 2 3 4 5 6 −1
HE HE ⊕ 1N hE HE ⊕ 1N hE HE hE HE ⊕ 1N hE HE hE

Definition 6.1. In classes ♠ = A and AIII, we define,

I♠
Gapped(H) = [HE ] ∈ K−i (S̃3 × T

d−2).

In classes ♠ = AI, BDI, D, DIII, AII, CII, C and CI, we define,

I♠
Gapped(H) = [HE ] ∈ K R−i (S̃3 × T

d−2, ν × cd−2),

where i and HE are as indicated in Table 2.

As in [25,27], from the pair of invertible half-space operators H0 and H∞, we can
define an element of the K -group Ki (S0,∞⊗C(Td−2)) or KOi (S0,∞⊗C(Td−2), τS⊗
τcd−2), and I♠

Gapless(H) is the image of this element through the boundary map ∂qT of
the long exact sequence of K -theory for C∗-algebras or KO-theory for C∗,τ -algebras
associated with the extension (7) or (24). Therefore, by Theorem 4.1 and Theorem 5.4,
we obtain the following result.

Theorem 6.2. In classes ♠ = A and AIII, we have

β(I♠
Gapped(H)) = I♠

Gapless(H) ∈ K−i+1(Td−2),

In classes ♠ = AI,BDI,D,DIII,AII,CII,C and CI, we have,

β(I♠
Gapped(H)) = I♠

Gapless(H) ∈ K R−i+1(Td−2, cd−2),

where i and HE are as indicated in Table 2.

Theorem 6.2 provides a geometric formulation for a relation between a gapped topo-
logical invariant and corner states in [25,27], though, since our three sphere S̃

3 is not
smooth as the boundary of D

2 ×D
2, an integration formula for numerical gapped invari-

ants, like integration of the Berry curvature for the first Chern number, is still missing. At
this stage, we simply note the following understanding of numerical gapped invariants
for two-dimensional class AIII systems with a corner and three-dimensional class A
systems with a hinge.

Example 6.3. For a two-dimensional class AIII bulk-edge gapped Hamiltonian on the
latticeZ≥0×Z≥0, our extension of the (off-diagonal part of the) bulkHamiltonian defines
an element IAIII

Gapped(H) = [hE ] ∈ K−1(S̃3). By Corollary 4.10, the three-dimensional

winding number W3(hE ) of hE is the same as the Fredholm index indexT 0,∞
h =

Tr(�|KerH0,∞) = IAIII
Gapless(H) and accounts for topological corner states. The two-

variable rational matrix function f in Example 4.9 provides an example in this class
and corresponds to Benalcazar–Bernevig–Hughes’ two-dimensional model of a second-
order topological insulator [10] as discussed in [26]. In [26], the topological invariant
IAIII
Gapless(H) is computed by expressing Benalcazar–Bernevig–Hughes’ model in a spe-

cific way, though Example 4.9 demonstrates an alternative way of computing invariants
which is not restricted to the specific form.
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Example 6.4. For a three-dimensional class A bulk-edge gapped Hamiltonian on the
lattice Z≥0 × Z≥0 × Z, our gapped topological invariant is IA

Gapped(H) = [HE ⊕ 1N ] ∈
K 0(S̃3 × T). Since HE is a continuous family of self-adjoint invertible matrices, we
define a complex vector bundle E on S̃

3 × T whose fiber at (z, w, t) ∈ S̃
3 × T is

E(z,w,t) =
⋃

μ<0

Ker(HE (z, w, t) − μ).

This vector bundle E is an extension of the Bloch bundle since HE is an extension
of the bulk Hamiltonian H . By Theorem 4.1 and the results in [25], the minus of the
pairing of second Chern class of this extended Bloch bundle E with fundamental class of
S̃
3 × T is the same as the spectral flow of the family of self-adjoint Fredholm operators

{H0,∞(t)}t∈T, therefore accounts for the number of topological hinge states6.

Summarizing, we consider a gapped translation invariant single-particle Hamiltonian
of finite hopping range on the lattice Z

d in each of the ten Altland–Zirnbauer classes.
We use Gohberg–Kreı̆n theory to factorize the bulk Hamiltonian on the Brillouin torus
about two variables z1 and z2. For this purpose, there is a relevant algorithm since
our bulk Hamiltonian corresponds to a multivariable rational matrix function on the
torus T

d [14,20,21]. If all of the partial indices of right matrix factorizations are trivial
(equivalently, if compressions of the bulk Hamiltonian onto two half-spaces Z × Z≥0 ×
Z
d−2 and Z≥0 × Z × Z

d−2 are invertible), we define two topological invariants: One
is defined through the restriction of the bulk Hamiltonian onto the lattice (Z≥0)

2 ×
Z
d−2 assuming the Dirichlet boundary condition which provides a (family of) Fredholm

operator(s) and its K -class I♠
Gapless(H) account for topological corner/hinge states. The

other is defined as the K -class I♠
Gapped(H) of the extension of the bulk Hamiltonian

onto S̃
3 ×T

d−2 obtained through matrix factorizations, which is our gapped topological
invariant (Definition 6.1). There is a relation between these two topological invariants
(Theorem 6.2), therefore, corresponding to the gapped topological invariant I♠

Gapped(H),
corner states appear.
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