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Abstract: Laptev and Safronov (CommunMath Phys 292(1):29–54, 2009) conjectured
an inequality between the magnitude of eigenvalues of a non-self-adjoint Schrödinger
operator on R

d , d ≥ 2, and an Lq norm of the potential, for any q ∈ [d/2, d].
Frank (Bull Lond Math Soc 43(4):745–750, 2011) proved that the conjecture is true
for q ∈ [d/2, (d + 1)/2]. We construct a counterexample that disproves the conjecture
in the remaining range q ∈ ((d + 1)/2, d]. As a corollary of our main result we show
that, for any q > (d + 1)/2, there is a complex potential in Lq ∩ L∞ such that the dis-
crete eigenvalues of the corresponding Schrödinger operator accumulate at every point
in [0,∞). In some sense, our counterexample is the Schrödinger operator analogue of
the ubiquitous Knapp example in Harmonic Analysis. We also show that it is adapt-
able to a larger class of Schrödinger type (pseudodifferential) operators, and we prove
corresponding sharp upper bounds.

1. Introduction

Consider a Schrödinger operator HV = −� + V on L2(Rd) with a complex-valued
potential V . The Laptev–Safronov conjecture [30] stipulates that in d ≥ 2 dimensions
any non-positive eigenvalue z of HV satisfies the bound

|z|γ ≤ Dγ,d

∫
Rd

|V (x)|γ+ d
2 dx (1)

for 0 < γ ≤ d/2, and with Dγ,d independent of V and z. It is known that the condition
γ ≤ d/2 is necessary, see [5]. The inequality (1) is known to be true if d = 1 and
γ = 1/2 or if d ≥ 2 and γ ≤ 1/2. The one-dimensional bound (with the sharp constant
D1/2,1 = 1/2) is due to Abramov-Aslanyan-Davies [1], and the higher dimensional
bound is due to Frank [13]. Originally, these bounds were stated for z ∈ C \ R+, but it
was later realized by Frank and Simon [15] that embedded eigenvalues z ∈ R+ can also
be accommodated. In fact, Frank and Simon “almost disproved" the Laptev–Safronov
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conjecture by constructing a counterexample (based on an earlier example of Ionescu
and Jerison [24]) that prohibits (1) for z ∈ R+ whenever d ≥ 2 and γ > 1/2. Here
we prove that the Laptev–Safronov conjecture is false in the form originally stated.
Although a counterexample can be be constructed by perturbing the Frank–Simon ex-
ample in a suitable nontrivial way (see Sect. 3.1) our main construction (Sect. 2) is
non-perturbative. Moreover, in contrast to the Frank–Simon example, our potentials
have compact supports. The construction is far from obvious and uses a combination
of soft and hard analysis. The standard approach of defining the potential in terms of a
putative eigenfunction (as in the classical Wigner–von Neumann example [43]) does not
work for complex eigenvalues since the eigenfunction will generally not be in L2. Our
approach is more abstract and works without knowing the eigenfunction. What happens
to embedded eigenvalues of self-adjoint Schrödinger operators under perturbations by
complex-valued potentials remains an open question. One of our results (Proposition
15), which has applications beyond the Laptev–Safronov conjecture, identifies a single
potential that perturbs the embedded eigenvalue off the essential spectrum. Real-valued
potentials fall under the scope of Fermi’s Golden Rule, which says that embedded eigen-
values are unstable and generically disappear (they become resonances) under small per-
turbations [2,34]. This is particularly relevant for multi-particle Schrödinger operators
where embedded eigenvalues indeed exist in physically relevant situations (the simplest
example being the Helium atom). In multi-particle scattering the potential does not de-
cay along certain hyperplanes. Tomodel the complicatedmulti-particle geometryYafaev
[44] studied (one-particle) Schrödinger operators with anisotropic short-range potentials
and proved that asymptotic completeness may fail. Ionescu–Schlag [25] proved that it
holds for V ∈ Lq(Rd), q ≤ (d +1)/2, and Koch–Tataru [28] proved the absence of em-
bedded eigenvalues under this condition, which is sharp in view of the Ionescu–Jerison
example. It is an open question whether one can have singular continuous spectrum for
q > (d + 1)/2.

In the following we write q = γ +d/2. For any ε > 0, let χε be the indicator function
of

{x = (x1, x
′) ∈ R × R

d−1 : |x1| < ε−1, |x ′| < ε−1/2}.
We construct potentials Vε, ε > 0, with |Vε| ≤ Cεχε for an ε-independent constant C
and such that zε = 1 + iε is an eigenvalue of HVε . This allows us to disprove the
conjecture.

Theorem 1. Let d ≥ 2 and q > (d + 1)/2. Then

lim sup
ε→0

|zε|q− d
2

‖Vε‖qq
= +∞.

Actually, our counterexample shows more, namely that the following substitute of (1)
for “long-range" potentials (i.e. q > (d + 1)/2), due to Frank [14],

dist(z,R+)
q− d+1

2 |z| 12 ≤ Cq,d‖V ‖qq , (2)

is sharp (in the sense that the exponent of dist(z,R+) cannot be made smaller while
preserving scale-invariance).

Theorem 2. Let d ≥ 2 and q ≥ (d + 1)/2. Then

lim inf
ε→0

dist(zε,R+)
q− d+1

2 |zε| 12
‖Vε‖qq

> 0.
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In addition, the same example saturates the recent bound of the second author [9, Th.
1.1], which states that

|z| 12 ≤ Cd sup
y∈Rd

∫
Rd

|V (x)| d+12 exp(−E |x − y|)dx, (3)

with E = Im
√
z > 0, and generalizes the one-dimensional analog of Davies and Nath

[10] to higher dimensions. Note that estimating the right hand side of (3) from above
by the same expression with E = 0 results in the endpoint estimate (1) with γ = 1/2
(or equivalently q = (d + 1)/2). Hence the endpoint case in Theorem 2 already implies
that (3) is optimal in some sense. The exponential factor in (3) effectively localizes
the integration to a ball B(y,C/E). Moreover, the right hand side of (3) may be much
smaller than that of (2). There are estimates similar to (3) for any q ∈ (d/2, (d + 1)/2],
see [9]. We do not state these here but remark that our counterexample also shows that
an analog of [9, Th. 1] cannot hold for q > (d + 1)/2. For brevity, we denote the right
hand side of (3) by FV (E).

Theorem 3. Let d ≥ 2. There exists C ′
d > 0 such that for all L ≥ 1

lim inf
ε→0

|zε| 12
FV (L Im

√
zε)

≥ C ′
d L .

These three theorems show that the bounds (1),(2),(3) provide a rather complete picture of
sharp eigenvalue inequalities for Schrödinger operators with complex potentials. Some
refinements for singular potentials are known, see e.g. [6,13,31,32], but we focus here on
the long-range aspects of the potential. This is reflected by the fact that the construction
of our counterexample is local in Fourier space, similar to the examples for embedded
eigenvalues in [8], where a connection between the aforementioned Ionescu–Jerison
example and the “Knapp example" in Fourier restriction theory (see e.g. [12,16,33,39]
for textbook presentations) was made. The examples in [8] are based on superpositions
of infinitely many Knapp wavepackets, while our example here is based on a single such
wavepacket.

As in [8], the locality in Fourier space affords the flexibility to adapt the counterex-
ample to a large class of Schrödinger type operators of the form

HV = h0(D) + V (x), (4)

where h0 is a tempered distribution on R
d , smooth in a neighborhood of some point

ξ0 ∈ R
d and such that λ := h0(ξ0) is a regular value of h0. This means that the

isoenergy surface

Sλ = {ξ ∈ R
d : h0(ξ) = λ} (5)

is a smooth nonempty hyersurface near ξ0. Here h0(D) f = F−1(h0 f̂ ) is the Fourier
multiplier corresponding to h0 and F−1 is the inverse Fourier transform. It is well
known that upper bounds for the resolvent (H0 − z)−1, for z close to λ, crucially depend
on curvature properties of Sλ, see e.g. [7,18,41]. For the Laplacian H0 = −�, i.e.
h0(ξ) = ξ2, the surface Sλ = √

λSd−1 has everywhere nonvanishing Gauss curvature
if λ > 0. This fact lies at the heart of the Stein–Tomas theorem as well as the uniform
resolvent estimates of Kenig–Ruiz–Sogge [26] that are behind the upper bound (1) for
γ ≤ 1/2.Wewill prove generalizations of (2), (3) in Sect. 5 for operators of the form (4)
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(we actually allow V to be a pseudodifferential operator). Our counterexamples show
that these upper bounds are sharp. To simplify the exposition we state the result for the
fractional Laplacian H0 = (−�)s . We remark that part (i) of the following theorem was
already proved in [7, Th. 6.1] (see also [23] for related resolvent estimates).

Theorem 4. Let d ≥ 1, s > 0 and q ≥ qs, where

qs :=

⎧⎪⎨
⎪⎩
d/s if s < d,

1+ if s = d,

1 if s > d.

Let HV = (−�)s/2 + V . Then then any eigenvalue z ∈ C of HV satisfies the following.

(i) If q ≤ (d + 1)/2, then

|z|q− d
s ≤ Dd,s,q‖V ‖qq .

(ii) If q > (d + 1)/2, then

dist(z,R+)
q− d+1

2 |z| d+12 − d
s ≤ Dd,s,q‖V ‖qq .

(iii) For any natural number N,

|z| d+12 − d
s ≤ Cd,s,N sup

y∈Rd

∫
Rd

(1 + | Im z(x − y)|)−N |V (x)| d+12 dx .

The estimate in (iii) corresponds to (3). Using explicit formulas for the resolvent kernel
of the fractional Laplacian in terms of special functions one could probably replace
the rapid decay by an exponential one. However, our proof only uses stationary phase
estimates and works for more general constant coefficient operators H0. In practice,
the difference between (3) and (iii) is not significant; only the decay scale | Im z|−1 is.
Observe that if s < 2d/(d + 1) (this condition appears in [7,23]), then one is always in
the long-range case (ii) since (d +1)/2 < qs . The proof of (ii), (iii) could be obtained by
closely following the arguments in [14] and [9], respectively. However, our main point
here is to show that all the statements of Theorem 4 follow from the general results of
Propositions 20 and 24 below in the special case h0(ξ) = |ξ |s .

As a further consequence of our counterexample to the Laptev–Safronov conjecture,
one can modify the construction of [5, Th. 1], valid for q > d, to q > (d + 1)/2. Here,
σp(HV ) denotes the set of eigenvalues.

Theorem 5. Let d ≥ 2, q > (d + 1)/2 and ε > 0. Then there exists V ∈ L∞(Rd) ∩
Lq(Rd) withmax{‖V ‖∞, ‖V ‖q} ≤ ε such that σp(HV )\R+ accumulates at every point
in R+.

To conclude the introduction we give some comments on the idea behind the coun-
terexample to the Laptev–Safronov conjecture. A key difference to the constructions in
[8,15,24] (for embedded eigenvalues) is that the potential here is not explicit, but de-
pends on an (unknown) eigenfunction of a compact operator K (see the proof of Lemma
9 for details). In [8,15,24] one starts with a putative eigenfunction of HV and determines
V from the eigenvalue equation. The strategy we adopt here more closely follows the
standard approach to prove upper bounds, the so-called Birman–Schwinger principle
[4,37]. In its simplest form, this principle says that z is an eigenvalue of HV if and only
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if−1 is an eigenvalue of the compact operator
√|V |(H0− z)−1

√
V . A simplified sketch

of the proof of (1) for d ≥ 2 and γ ≤ 1/2 then goes as follows,

1 ≤ ‖√|V |(H0 − z)−1
√
V ‖ ≤ ‖V ‖q‖(H0 − z)−1‖p→p′ ≤ (Dγ,d |z|−γ )1/q‖V ‖q ,

(6)

where p−1 + (p′)−1 = q−1 and we recall that q = γ +d/2. The second inequality above
is simply Hölder’s inequality, while the last inequality follows from the work of Kenig–
Ruiz–Sogge [26] (and is due to Frank [13] in its rescaled version). This inequality is
closely related to the Stein–Tomas theorem for the Fourier restriction operator FS f :=
f̂ � S, where S = √

λSd−1 if z = λ + iε. The Knapp example shows that p =
2(d +1)/(d +3) (corresponding to q = (d +1)/2) is the best (largest) possible exponent
in the inequality ‖ f̂ ‖L2(Sd−1) ≤ Cp‖ f ‖L p(Rd ). The same is true for the p → p′ resolvent
estimate since

Im(H0 − (λ + iε))−1 = − ε

(H0 − λ)2 + ε2
(7)

and the right hand side converges to a constant times F∗
S FS , as ε → 0. Similarly to

the previous argument, the proof of (2) for q > (d + 1)/2 (γ > 1/2) in [14] uses the
non-uniform bound

‖(H0 − z)−1‖p→p′ � dist(z,R+)
d+1
2q −1

(|z| = 1),

which is also sharp [29, Prop. 1.3]. In our construction the potential V is adapted to
the Knapp example, making the second (Hölder) and third inequality in (6) optimal
simultanously. The only possible loss of optimality thus comes from the first inequality,
and this may happen if the spectral radius of

√|V |(H0 − z)−1
√
V is much smaller than

its norm.We avoid this problem by working with (7) instead of the full resolvent. It turns
out that one can redefine V (without making it larger in Lq norm) in such a way that z
becomes an eigenvalue of HV .

Organization of the paper. In Sect. 2 we construct the counterexample to the Laptev–
Safronov conjecture and prove Theorems 1–3 and 5. In Sect. 3 we give an alternative
(non compactly supported) counterexample that is a perturbation of the Frank–Simon
example for embedded eigenvalues. In Sect. 4 we prove an almost sharp quantitative
lower bound on the norm of the compact operator K (which implies an upper bound on
the potential) and generalize the counterexample to generalized Schrödinger operators
of the form (4). Corresponding upper bounds for such operators (in particular, a proof
of Theorem 4) are collected in Sect. 5.

Notation. For a, b ≥ 0 the statement a � b means that a ≤ Cb for some universal
constant C . The expression a � b means a � b and b � a. If the estimate depends on
a parameter τ , we indicate this by writing a �τ b. In particular, if τ = N , we always
mean that the estimate is true for any natural number N , with a constant depending on N .
The expression a � bκ+ (κ ∈ R) means a �δ bκ+δ for any δ > 0, and similarly for κ−.
The dependence on the dimension and on other fixed quantities is always suppressed.
An assumption a 
 b means that there is a small constant c such that if a ≤ cb,
then the ensuing conclusion holds. We also use c as a generic positive constant in
estimates involving exponentials, as in (3). The big oh notation a = O(b)means |a| � b
(here we are not assuming a ≥ 0). For an integral operator K on R

d we denote by
‖K‖r→s its Lr → Ls operator norm. If r, s = 2, then we just write ‖K‖. Similarly,
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we denote the Lr norm of a function f by ‖ f ‖r and write ‖ f ‖ if r = 2. We denote by
σ(T ) = {z ∈ C : T − z not bijective} the spectrum of a closed linear operator T . We
write 〈x〉 = (1+x2)1/2, where x2 = x ·x for x ∈ R

d . If nothing else is indicated, integrals
are always understood to be overRd . The indicator function of a set A is denoted by 1A.
If we speak of a bump function we mean a smooth, compactly supported, real-valued
function with values in [0, 1].

2. Counterexample to the Conjecture

The counterexample to the Laptev–Safronov conjecture is based on Lemmas 9 and 11
below. In the following we use the notation

δλ,ε(H0) := ε

(H0 − λ)2 + ε2
,

where λ ∈ R and ε > 0. We abbreviate this by δε(H0) if λ = 1.
Let H0 = h0(x, D) be a self-adjoint, elliptic pseudodifferential operator on L2(Rd)

with domain

D(H0) := {u ∈ L2(Rd) : H0u ∈ L2(Rd)}.
Here h(x, D) is the Kohn–Nirenberg quantization of a symbol h ∈ Smρ,δ (the standard
Hörmander classes, see e.g. [42]) where 0 ≤ δ < ρ ≤ 1 and m > 0. Hence,

h0(x, D)u(x) = (2π)−d
∫
Rd

eix ·ξh(x, ξ)û(ξ)dξ,

where û is the Fourier transform of a Schwartz function u. We will write H0 ∈ OPSmρ,δ .
We assume that H0 is elliptic, i.e. |h0(x, ξ)| � |ξ |m for |ξ | ≥ C . By [42, Prop. 5.5], we
have D(H0) = Hm(Rd). We also assume that H0 is real, i.e. commutes with complex
conjugation. On the symbol level, this means that h0(x, ξ) = h0(x,−ξ). Note that this
is the case for the Laplacian, for which h0(ξ) = ξ2.

Let U ⊂ R
d be a nonempty open, precompact set, and let χ = 1U be its indicator

function. In the following we will consider the operator K := χδλ,ε(H0)χ .

Lemma 6. K is compact.

Proof. Let � = (1 − �)1/2 and write

K = χ�−m(�mδλ,ε(H0)�
m)�−mχ.

By the Kato–Seiler–Simon inequality [38, Theorem 4.1], χ�−m is in the Schatten class
Sp for any p > d/m (and p ≥ 2). In particular, it is compact, and so is its adjoint
�−mχ . It remains to show that �mδλ,ε(H0)�

m is L2 bounded. By Beal’s theorem [3,
Theorem 3.2] it follows that δλ,ε(H0) ∈ OPS−2m

ρ,δ , and by the L2 boundedness of zero
order pseudodifferential operators (see e.g. [42, Theorem 5.3] for the symbol classes
considered here), �mδλ,ε(H0)�

m is bounded. ��
We next state an analog of the Birman–Schwinger principle for the operator K . The

proof is a straightforward verification. Here we do not need to assume χ = 1U .
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Lemma 7. Let μ ∈ C \ {0}. Then μ is an eigenvalue of K if and only if the operator
(H0 − λ)2 + ε2 − (ε/μ)χ2 has nontrivial kernel. Moreover,

δλ,ε(H0)χ : ker(K − μ) → ker((H0 − λ)2 + ε2 − (ε/μ)χ2)

is a linear isomorphism with inverse μ−1χ .

The following lemma is a standard elliptic regularity result, but we provide a proof
for completeness.

Lemma 8. Let μ ∈ C \ {0}. Then ker(K − μ) ⊂ C∞(U ).

Proof. By Lemma 7 it suffices to prove that if u ∈ D(H2
0 ),

(H0 − λ)2u + ε2u − (ε/μ)χ2u = 0,

then u ∈ C∞(U ). It is clear that the above equation takes the form Pu = f with
P ∈ OPS2mρ,δ elliptic and u, f ∈ L2(Rd). Let Q ∈ OPS2mρ,δ be a parametrix for P (see
e.g. [42, Ch. 1, Sect. 4]). Then, modulo smooth functions, we have QPu = u and hence
u = Q f ∈ H2m(Rd) by [42, Prop. 5.5]. To bootstrap this, we localize near a point
x0 ∈ U and let χ j be a sequence of bump functions in U such that χ j = 1 near x0 and
χ jχ j−1 = χ j . Then, againmodulo smooth functions, u j = χ j u satisfies Pu j = f j with
f j = [P, χ j ]u = [P, χ j ]u j−1 ∈ H j (ρ−δ)(Rd) (again by [42, Prop. 5.5] and since the
commutator reduces the order by ρ − δ, see [42, (3.24)]). Applying the previous elliptic
regularity estimate successively yields u j ∈ H2m+ j (ρ−δ)(Rd). By Sobolev embedding,
u j ∈ Ck(Rd) for 2m + j (ρ − δ) > d/2 + k. This shows that u is smooth at x0. ��
Lemma 9. There exists V ∈ L∞(Rd) such that z = λ + iε is an eigenvalue of HV and
|V | ≤ ‖K‖−1χ .

Proof. Since K is a nonnegative compact operator, its largest eigenvalue equals ‖K‖.
Hence, there is a nontrivial φ ∈ L2(Rd) such that Kφ = ‖K‖φ. Since K is real we may
and will assume that φ is real-valued. Using this together with the identity

δλ,ε(H0) = Im(H0 − z)−1 = 1

2i
((H0 − z)−1 − (H0 − z)−1),

the eigenvalue equation takes the form

(H0 − z)ψ = ‖K‖−1χ Imψ,

where ψ := (H0 − z)−1φ and where we used that χφ = φ since χ2 = χ . Here, Imψ

denotes the imaginary part of a function, in distinction to the meaning of Im above for
the imaginary part of an operator. Let N := {x ∈ U : ψ(x) = 0} be the nodal set of
ψ , and set V := −‖K‖−11U\N Imψ

ψ
. Note that the nodal set is well defined since φ is

smooth in U , by Lemma 8, and hence ψ is smooth in U , by the pseudolocal property
[42, page 6]. Here we are again using Beal’s theorem to assert that (H0 − z)−1 is a
pseudodifferential operator. Then

(H0 − z)ψ + Vψ = ‖K‖−11N Imψ = 0

and V satisfies the claimed bound. ��
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Remark 10. In the case of the Laplacian, H0 = −�, the setU \N has positive Lebesgue
measure. This can be most easily seen a posteriori: Since φ is nontrivial, ψ is nontrivial
as well. If U \ N had zero measure, then we would have −�ψ = zψ , but this has no
H2 solution, as a consequence of Rellich’s theorem [35].

The Lq -norm of V is estimated by

‖V ‖q ≤ ‖K‖−1‖χ‖q , (8)

so it remains to estimate ‖K‖ from below and ‖χ‖q from above.
To avoid technicalities at this stage we restrict attention to the Laplacian H0 = −�,

i.e. h0(ξ) = ξ2. Without loss of generality (scaling) we restrict ourselves to λ = 1. For
ε > 0 let Tε be an ε−1 × ε−1/2 tube centred at the origin, with long side pointing in the
x1 direction, i.e.

Tε = {|x1| < ε−1, |x ′| < ε−1/2}. (9)

Let χε be the indicator function of the tube Tε . We then have the following (qualitative)
lower bound for Kε = χεδε(H0)χε . In Lemma 17 below we will prove a quantitative
(almost optimal) lower bound.

Lemma 11. Let H0 = −�, λ = 1 and χε as above. For 0 < ε 
 1 the operator norm
ε‖Kε‖ is bounded below by a positive constant, independent of ε.

Proof. We conjugate Kε by eix1 and rescale (y1, y′) = (εx1, ε1/2x ′). The resulting
operator is isospectral to εKε and given by

K ′
ε = χ1δ1(H

′
ε)χ1 (10)

where χ1 is the indicator function of T1 and H ′
ε = −2i∂y1 − �y′ − ε∂2y1 . In the limit

ε → 0 the operator K ′
ε converges strongly to K

′
0. Since this is not the zero operator, there

exists an L2-normalized function f such that ‖K ′
0 f ‖ > 0. Now the strong convergence

implies that for 0 < ε 
 1 we have ‖K ′
ε f ‖ ≥ ‖K ′

0 f ‖/2. This implies that

ε‖Kε‖ = ‖K ′
ε‖ ≥ ‖K ′

ε f ‖ ≥ ‖K ′
0 f ‖/2

and thus proves the claim. ��
Remark 12. Laptev and Safronov based their conjecture on the famous Wigner–von
Neumann example [43] (see also [34]), which is a potential decaying like 1/|x | with
embedded eigenvalue at λ = 1. The potential is in Lq for any q > d, corresponding to
γ > d/2 in (1). Had they been aware of the Ionescu–Jerison example [24] they might
have conjectured the smaller range γ ≤ 1/2, for which (1) indeed holds [13]. To prove
the weaker statement with q > d in Theorem 1 one can replace the tube (9) by the ball
{|x | < ε−1}. Then the operator (10) (under the scaling y = εx) is independent of ε and
becomes

K ′ = χ1δ1(−�y)χ1.

One can repeat the argument in the proof of Lemma 11 (i.e. K ′ �= 0) and combine the
result with Lemma 9 to conclude Theorem 1 for q > d since now ‖Vε‖q � ε1−d/q .
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Remark 13. A straightforward adaptation of the proof of Lemma 11 yields the same
conclusion for the Laplacian H0 = −�g where g is a short range perturbation of the
Euclidean metric, gi j (x)−δi j (x) = O(|x |−2−) as |x | → ∞. This shows that the results
of Guillarmou, Hassell and Krupchyk [20, Theorem 4] are optimal for such metrics. The
upper bounds in [20] are proved for the more general case of nontrapping asymptotically
conic manifolds of dimension d ≥ 3. Of course, scaling is not available in this situation,
and the mentioned modification of Lemma 11 only shows optimality for λ in a bounded
interval.

2.1. Proofs of Theorems 1–3. Combining Lemmas 9 and 11 we obtain a sequence of
potentials Vε and a sequence zε = 1 + iε of eigenvalues of −� + Vε , 0 < ε 
 1, such
that

‖Vε‖q � ε
1− d+1

2q .

This follows from (8) and the fact that ‖χε‖q = |Tε |1/q (where | · | denotes Lebesgue
measure). Theorems 1 and 2 follow immediately since |zε | � 1, dist(z,R+) = ε.
Theorem 3 follows from the same counterexample. We use in addition that, in the limit
ε → 0, Im

√
zε/ε → 1/2, and then the substitution (x1, x ′) = (ε−1y1, ε−1/2y′) yields

FV (L Im
√
zε) � ε

d+1
2

∫
Tε

exp(−L Im
√
zε |x |)dx �

∫
T1
exp(−L|y1|/2)dy � L−1.

2.2. Proof of Theorem 5. As explained in [5, Rem. 1], a counterexample to the Laptev–
Safronov conjecture for a q > (d + 1)/2 allows one to modify the construction in [5,
Th. 1] to hold for this particular q. The only modification in the proof is to find a class
of potentials satisfying the claim of [5, Lem. 1], now for q > (d + 1)/2, which is done
in the following result.

Lemma 14. Let d ≥ 2, λ ∈ R+ and q > (d + 1)/2. For any ε0, δ0, r0 > 0 there exists
V ∈ L∞(Rd) ∩ Lq(Rd) with ‖V ‖q < ε0, ‖V ‖∞ < δ0 and such that there exists a
non-real eigenvalue of HV in the ball B(λ, r0).

Proof. If λ = 1, we use Lemmas 9 and 11 to obtain a sequence of potentials Vε and a

sequence zε = 1 + iε of eigenvalues of −� + Vε , 0 < ε 
 1, such that ‖Vε‖q � ε
1− d+1

2q

and ‖Vε‖∞ � ε. Then the claim follows by taking ε sufficiently small. If λ �= 1, the
claim follows by scaling to the previous case. ��

Now the proof of Theorem 5 is completely analogous to the one of [5, Th. 1], using
Lemma 14 instead of [5, Lem. 1]. Note that in [5] the eigenvalues are constructed in
the lower complex half-plane whereas here we constructed eigenvalues in the upper
complex half-plane; one could take the adjoint operator to transform one case into the
other one.
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3. Perturbation of Embedded Eigenvalues

In this section we provide an alternative counterexample to the Laptev–Safronov con-
jecture that is closer to that suggested by Frank and Simon [15]. We continue to make
the same assumptions on H0 and U as in Lemma 9.

Proposition 15. Let λ ∈ σ(H0) and f ∈ D(H0) with ‖ f ‖ = 1. Assume that ‖(1 −
χ) f ‖ ≤ 1/4. Then, for any ε ≥ 2‖(H0 − λ) f ‖, there exists V ∈ L∞(Rd) such that
z = λ+ iε is an eigenvalue of H0 +V and |V | ≤ 4εχ . In particular, if λ is an eigenvalue
and (H0 − λ) f = 0, then the conclusion holds for all ε ≥ 0.

Proof. We set X = (H0−λ) and write εδλ,ε(H0) = 1−X2/(X2 +ε2). By the Peter Paul
inequality, ε‖X/(X2 + ε2)‖ ≤ 1/2. Since ‖X f ‖ ≤ ε/2, this yields ‖X2/(X2 + ε2) f ‖ ≤
1/4, and hence (using ‖X2/(X2 + ε2)‖ ≤ 1 and ‖χ‖ ≤ 1)

‖χX2/(X2 + ε2)χ f ‖ ≤ ‖X2/(X2 + ε2) f ‖ + ‖X2/(X2 + ε2)‖‖(1 − χ) f ‖ ≤ 1

2
.

We have also used ‖(1 − χ) f ‖ ≤ 1/4 in the last inequality. Using this once more, we
obtain

ε‖χδλ,ε(H0)χ f ‖ ≥ ‖χ f ‖ − 1

2
≥ 1

4
.

Thus ε‖K‖ ≥ 1/4 and Lemma 9 implies the claim. ��
Remark 16. Recall that the self-adjointness of H0 implies that for every λ ∈ σ(H0)

there exists a normalized sequence ( fn)n∈N ⊂ D(H0) with ‖(H0 − λ) fn‖ → 0. Thus
we can always find a normalized function for which ‖(H0−λ) f ‖ is as small as we want.
However, we need to make sure thatU is so large that the assumption ‖(1−χ) f ‖ ≤ 1/4
is satisfied.

3.1. Alternative counterexample to Laptev–Safronov conjecture. Let q > (d + 1)/2.
Consider the sequence of potentials Vn ∈ C∞(Rd), n ∈ N, in [15, Theorem 2.1]
where λ = 1 is an embedded eigenvalue of −� + Vn for each n. The potentials satisfy
|Vn(x)| � (n + |x1| + |x ′|2)−1. In particular, ‖Vn‖q → 0 and ‖Vn‖∞ → 0 as n → ∞.
Nowfix n ∈ N. Denote by fn a normalized eigenfunction corresponding to the embedded
eigenvalue. LetUn ⊂ R

d be a compact subset that is so large that ‖(1−1Un ) fn‖ ≤ 1/4.
Then, by Proposition 15, for all ε > 0 there exist potentials Wn,ε ∈ L∞(Rd) such
that zε = 1 + iε ∈ σp(−� + Vn + Wn,ε) with |Wn,ε| ≤ 4ε1Un . Let (εn)n be such that
εn = o(|Un|−1/q) as n → ∞. Then

‖Wn,εn‖q ≤ 4εn|Un|1/q = o(1).

This disproves the Laptev-Safronov conjecture since zεn → 1, ‖Vn + Wn,εn‖q → 0 in
the limit n → ∞. Note that this construction is similar to the one in the previous section,
as one can take εn = 1/n and Un = Tc0/n for a small positive constant c0. However,
due to the additional Vn , the potentials here don’t have compact supports.
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4. Quantitative Lower Bounds

The aim of this section is to optimize the lower bound on ε‖Kε‖ in Lemma 11. Since
the proof relied on soft arguments it did not provide a quantitative lower bound. The
trivial upper bound is ε‖Kε‖ ≤ 1. By stretching the tube Tε in (9), we are able to prove
an almost sharp lower bound. More precisely, let χε be the indicator function of Tε/M ,
where M � 1.

Lemma 17. Let χε be as above. Then

ε‖Kε‖ ≥ 1 − O(M−2+). (11)

Proof. To prove the lower bound in (11) we first write

Kε = δε(H0) − (1 − χε)δε(H0) − χεδε(H0)(1 − χε).

We will treat δε(H0) as a main term and the other terms as errors. Since ‖χε‖∞ ≤ 1,

‖Kε f ‖ ≥ ‖δε(H0) f ‖ − ‖(1 − χε)δε(H0) f ‖ − ‖δε(H0)(1 − χε) f ‖
for any f ∈ L2(Rd). We take

f̂ε(ξ) := η0((c0ε)
−1(ξ1 − 1), (c0ε)

−1/2ξ ′),

where ξ = (ξ1, ξ
′) ∈ R×R

d−1,η0 ∈ C∞
0 (B(0, 2)) is a nonnegative bump function equal

to 1 on B(0, 1), and c0 is a small positive constant, to be chosen later. We mention that f
is known as a ’Knapp example’ in harmonic analysis, see e.g. [12, Example 1.8]. For ξ

in the support of f̂ε , we have |ξ2 − 1| = O(c0ε), which means that εδε(ξ) ≥ 1−O(c20)
there. Here and in the following δε(ξ) = ε

(ξ2−1)2+ε2
. By Plancherel, we conclude that

ε‖δε(H0) fε‖ ≥ (1 − O(c20))‖ fε‖. (12)

Note that εδε(ξ) ≤ 1 and is smooth on the scale of fε ; in other words, we can write

(δε f̂ε)(ξ) = ε−1η((c0ε)
−1(ξ1 − 1), (c0ε)

−1/2ξ ′)

for some bump function η, similar to η0. More precisely, by η we really mean a family
of such bump functions, with smooth norms bounded uniformly in ε. Thus, both fε and
δε(H0) fε are Schwartz functions decaying rapidly away from Tc0ε ; in particular,

‖(1 − χε) fε‖ �N (c0M)−N‖ fε‖, ‖(1 − χε)δε(H0) fε‖ �N ε−1(c0M)−N‖ fε‖,

where we used that ‖ fε‖2 � (c0ε)
d+1
2 and χε = 1 on Tε/M . Together with (12) and the

fact that εδε(ξ) ≤ 1, this yields

ε‖Kε fε‖ ≥ (1 − O(c20) − ON ((c0M)−N ))‖ fε‖.
Choosing c0 = M−1+ and taking N sufficiently large yields the lower bound in (11). ��
Remark 18. In view of ε‖Kε‖ ≤ 1 the bound (11) is optimal in the limit M → ∞. If
we choose e.g. M = log(1/ε), then we obtain from (11) that for all q > (d + 1)/2,

lim
ε→0

ε‖Kε‖ = 1, lim
ε→0

‖Vε‖q = 0.
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4.1. Lower bounds for constant-coefficient operators. Here we supplement Lemma 11
with quantitative bounds. We consider more general constant-coefficient operators than
the Laplacian, that is we allow H0 = h0(D). For instance, for the fractional Laplacian
(Theorem 4) we have h0(ξ) = |ξ |s . For the lower bound we only assume that h0 is
a tempered distribution, smooth in a neighborhood of some ξ0 ∈ R

d and such that
λ := h0(ξ0) is a regular value of h0. If the hypersurface {h0(ξ) = λ} has everywhere
nonvanishing Gauss curvature, then local versions of (1), (2) hold (see Sect. 5). If the
Gauss curvature vanishes at some point, then the upper bound will be worse, but the
following example still provides a lower bound. One could improve the example if more
is known about the local geometry of the isoenergy surface.

The following example is very close to that of Lemma 17 and is based on the factor-
ization

h0(ξ) − λ = e(ξ)(ξ1 − a(ξ ′)),

which holds locally near ξ0, with e nonvanishing there. We suppress the dependence
of e, a on λ. By a linear change of coordinates we assume, as we may, that a(0) = 0
and ∂ξ ′a(0) = 0. Then a(ξ ′) = O(|ξ ′|2). We take a Knapp example f whose Fourier
support is contained in the cap

κε := {|ξ1| < c0ε, |ξ ′| < (c0ε)
1/2}.

Clearly, κε is contained in an ε neighborhood of the isoenergy surface {ξ1 = a(ξ ′)},
hence

εδε(ξ) = ε2

(h0(ξ) − λ)2 + ε2
≥ 1 − O(c20).

Now the same argument as for the Laplacian shows that (11) holds, for exactly the same
function χε .

5. Upper Bounds

In this section we prove a generalization of the bounds (1), (2) for Schrödinger type
operators of the form

HV = h0(D) + V (x, D). (13)

We first consider the classical Schrödinger operator HV = −� + V (x) to explain what
types of estimates we will prove. By homogeneity, the estimates (1), (2) may by reduced
to |z| = 1 and by elliptic regularity to a small neighborhood of z = 1. Hence these
bounds can collectively be expressed as

dist(z, σ (H0))
(q−(d+1)/2)+ � ‖V ‖qq (14)

for q > d/2 (or q = 1 if d = 1), while (3) reads as

1 � sup
y∈Rd

∫
Rd

|V (x)| d+12 exp(−c| Im z||x − y|)dx (15)

for some constant c > 0 (we used that Im
√
z � | Im z| for |z − 1| small). Here, σ(H0)

denotes the spectrum of H0. The bounds (14)–(15) are universal in the sense that they are
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essentially independent of the specific form of h0, in a sense that we will make precise
now.

In the following, we always assume that the spectral parameter is z = λ + iε, with
λ ∈ σ(H0) and |ε| ≤ 1. Then dist(z, σ (H0)) = |ε|. One could use the Phragmén-
Lindelöf maximum principle to extend the results to the region |ε| ≥ 1 (see e.g. [7,
Appendix A], [20,36]), but we will not pursue this.

We assume that h0 is a tempered distribution that is smooth near the foliation (see
(5) for the definition of Sλ)

S =
⋃
λ∈I

Sλ = {ξ ∈ R
d : h0(ξ) ∈ I }. (16)

Here I ⊂ R is a fixed compact subset of the set

{λ ∈ R : ∇h0(ξ) �= 0 for all ξ ∈ R
d such that h0(ξ) = λ}

of regular values of h0.We assume that Sλ is compact and has everywhere non-vanishing
curvature for each λ ∈ I . The following lemma was proved e.g. in [7, Lemma 3.3]. It is
closely related to the Stein–Tomas theorem for the Fourier restriction operator.

Lemma 19. Let η be a bump function. Then

sup
λ∈I|ε|≤1

‖η(D)[h0(D) − (λ + iε)]−1‖p→p′ � 1.

The setup (13) generalizes (4) in that we allow V (x, D) to be a pseudodifferential
operator. We assume that its Kohn–Nirenberg symbol V (x, ξ) is smooth in the fibre
variable ξ , but we don’t assume smoothness in x . More precisely, assume that

Cq,�,N (V ) :=
∑

|α|≤N

sup
ξ∈�

‖∂α
ξ V (·, ξ)‖q < ∞ (17)

for some sufficiently large N (N > d would suffice) and some pre-compact subset
� ⊂ R

d such that S � �. The condition (17) is the natural generalization ofV ∈ Lq(Rd)

and reduces to the latter if V is a potential. The order of V (x, ξ) will not play a role
here since we will always localize in Fourier space. In fact, we place ourselves in the
following abstract setting: Let η be a bump function supported on�, and let η ∈ C∞(Rd)

be such that η(ξ)2 + η(ξ)2 = 1 for all ξ ∈ R
d . Define

Hη
V := H0 + η(D)Vη(D),

Hη
V := H0 + η(D)Vη(D),

defined onD(H0), where H0 = h0(D). In order to avoid imposing global conditions on
h0 and V in ξ we make the following assumption:

I ⊂ ρ(Hη
V ), cq,I := sup

λ∈I, |ε|≤1
‖[Hη

V − (λ + iε)]−1‖p→p′ < ∞. (18)

Here p is uniquely determined by q−1 = p−1 − (p′)−1, ρ(·) denotes the resolvent set
and ‖ · ‖p→p′ denotes the L p → L p′

norm. In most applications, (18) can easily be
proved by standard elliptic estimates (see Sect. 5.1 for an example). This usually requires
that q ≥ q0 for some q0 ≥ 1 depending on h0. We will ignore this and simply use (18)
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as a black box assumption. Hence, we only assume that q ≥ 1 in the following. In the
proofs of Theorems 20–24 below we will make use of the smooth Feshbach-Schur map
[19]. The latter is defined by (HV − z) �→ Fη(z), where

Fη(z) := Hη
V − z − ηVη[Hη

V − z]−1ηVη

is defined onD(H0). Here and in the following we abbreviate η = η(D) and η = η(D).
Theorem 1 in [19] (with V = Ran1�(D) there) asserts that HV − z is invertible if and
only if Fη(z) is invertible, and that

[HV − z]−1 = Q[Fη(z)]−1Q# + η[Hη
V − z]−1η,

where

Q := η − η[Hη
V − z]−1ηVη,

Q# := η − ηVη[Hη
V − z]−1η.

Proposition 20. Assume HV is as above and that (17), (18) hold. Then

dist(z, σ (H0))
(q−(d+1)/2)+ � Cq,�,N (V )q (19)

holds for every eigenvalue z = λ + iε of HV , λ ∈ I , |ε| ≤ 1, with implicit constant
depending on h0, d, q, I, |�|, but not on z, V .

Proof. By compactness of I , it suffices to prove (19) at Re z = λ for a single λ ∈ I .
We first consider the case q ≤ (d + 1)/2. Then (19) is equivalent to the statement that
if Cq,�,N (V ) is sufficiently small, then z is not an eigenvalue of HV . We will show that
HV − z is invertible using the smooth Feshbach-Schur map. We write

Fη(z) = h0(D) − z + ηṼzη, Ṽz := V − Vη[Hη
V − z]−1ηV . (20)

By Lemma 21 below and (18),

‖ηṼz‖p′→p � ‖ηV ‖p′→p + ‖[Hη
V − z]−1‖p→p′ ‖ηV ‖p′→p‖ηV ‖p′→p

�|�| Cq,�,N (V ) + cq,I Cq,�,N (V )2 =: DI,q,�,N ,

where the L p boundedness of η, η is a consequence of the Mikhlin multiplier theorem
[17, Th. 5.2.7]. By Lemma 19 we conclude that

‖ηṼzη[h0(D) − z]−1‖p→p ≤ ‖ηṼz‖p′→p‖η[h0(D) − z]−1‖p→p′ � DI,q,�,N ,

and hence, by a geometric series argument, that Fη(z) is boundedly invertible in L p(Rd)

if Cq,�,N (V ) 
 1. Since the spectrum is independent of p (see e.g. [11, Th. 14.3.10]1)
it follows that 0 is not in the L2 spectrum of Fη(z), or equivalently, that z is not in the
spectrum of HV .

1 The statement there is given in one dimension. However, the proof only uses general facts about L p

spaces, valid in any dimension.
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To prove the claim for q > (d + 1)/2 we follow [14] and interpolate the bound of
Lemma 19 (for q = (d + 1)/2) with the trivial estimate

‖[h0(D) − z]−1‖2→2 ≤ dist(z, σ (H0))
−1,

which yields

‖η[h0(D) − z]−1‖p→p′ � |ε| d+12q −1
.

Repeating the previous argument, we find that z cannot be an eigenvalue if the quantity

b := DI,q,�,N |ε| d+12q −1 is too small; in other words, if z is an eigenvalue, then we
must have b � 1. If we set a := Cq,�,N (V ), then this means that we must have

|ε|1− d+1
2q � a + cq,I a2. Since we are assuming |ε| ≤ 1, this is always satisfied if

a ≥ 1/cq,I . If a ≤ 1/cq,I , then the condition becomes |ε|1− d+1
2q � a, in which case (19)

holds. ��
In the above proof we used the following generalization of Hölder’s inequality.

Lemma 21. Assume that V satisfies (17) and η is a bump function supported on �.
Then, for N sufficiently large,

‖V (x, D)η(D)‖p′→p + ‖η(D)V (x, D)‖p′→p � |�|Cq,�,N (V )

whenever q−1 = p−1 − (p′)−1.

Proof. By duality it suffices to estimate the first summand on the left. The kernel of
V (x, D)η(D) (recall that we use the Kohn–Nirenberg quantization) is given by

k(x, x − y) = (2π)−d
∫
Rd

ei(x−y)·ξV (x, ξ)η(ξ)dξ.

Due to the cutoff η the integral is restricted to ξ ∈ �. Integration by parts shows that

|k(x, u)| �N 〈u〉−N
∫

�

∑
|α|≤N

|∂α
ξ V (x, ξ)|dξ,

and (17), together with Minkowski’s inequality, then provides the estimate

‖k(x, u)‖Lq
x

�N 〈u〉−N |�|Cq,�,N (V ). (21)

Changing variables from y to u = x− y and usingMinkowski’s and Hölder’s inequality,
we get

‖
∫

k(x, x − y) f (y)dy‖L p
x

≤
∫

‖k(x, u) f (x − u)‖L p
x
du ≤ ‖ f ‖p′

∫
‖k(x, u)‖Lq

x
du

and (21) yields the claimed inequality. ��
Remark 22. If V is a potential, then of course ‖Vη(D)‖p′→p � ‖V ‖q , i.e. the factor
|�| can be dispensed with. From this point of view, a more natural norm than (17) would
e.g. be

sup
ξ∈�

‖V (·, ξ)‖q +
∑

1≤|α|≤N

∫
�

‖∂α
ξ V (·, ξ)‖q dξ.

However, we view � as fixed, which justifies our use of the simpler norm (17).
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We now establish a more precise version of Lemma 19. In the following we denote
Rη,ζ

λ,ε = η(D)[h0(D) − (λ + iε)]−ζ and also write Rη,ζ
λ,ε (x − y) for its kernel.

Lemma 23. Let η be a bump function and ζ ∈ C, 0 ≤ Re ζ ≤ (d + 1)/2, ε ∈ [−1, 1].
Then we have the kernel bound

sup
λ∈I

|Rη,ζ
λ,ε (x)| �N eC| Im ζ |2〈x〉− d−1

2 +Re ζ 〈εx〉−N (22)

for some C > 0.

Proof. Again, it suffices to prove this for a fixed λ. We absorb λ into the symbol, i.e. we
consider p(ξ) = h0(ξ) − λ. By a partition of unity and a linear change of coordinates
we may assume that, locally near an arbitrary point of �, either p �= 0 or ∂p/∂ξ1 > 0.
In the case p �= 0 we get the stronger bound

|Rη,ζ
λ,ε (x)| �N 〈x − y〉−N .

We turn to the case ∂p/∂ξ1 > 0 and consider ζ = 1 first (i.e. the resolvent). By the
implicit function theorem, {p(ξ) = 0} is then the graph of a smooth function ξ1 = a(ξ ′),
and we have the factorization

(p(ξ) − iε)−1 = (ξ1 − a(ξ ′) − iεq(ξ))−1q(ξ) (23)

whereq(ξ) = (ξ1−a(ξ ′))/p(ξ) > 0, see e.g. [21, Section 14.2], [7, Lemma3.3] and [40,
Section 3.1]. There it is sufficient to work with the limiting distributions corresponding
to ε = 0±, which would yield (22) in this case. Here we need to keep ε fixed to
get the desired decay for nonzero ε. In the following we assume that ε > 0; the case
ε < 0 is similar. The factorization (23) does not work well for this since q depends on
ξ1. To remedy this problem, we follow the approach of Koch–Tataru [27], albeit in the
much simpler setting of constant coefficients. Lemma 3.8 in [27] provides the alternative
factorization

e(ξ)(p(ξ) − iε) = ξ1 + a(ξ ′) + iεb(ξ ′), (24)

where e is elliptic (e �= 0) and a, b are real-valued. This is a version of the Malgrange
preparation theorem [22, Th. 7.5.5] or the classical Weierstrass preparation theorem [22,
Th. 7.5.1] in the analytic case. We appeal to [27] because it makes the dependence on
ε explicit. Note that the imaginary part b is now independent of ξ1. The symbols e, a, b
can be found by iteratively solving a system of algebraic equations and using Borel
resummation of the resulting formal series (see [27, Lemma 3.9 and 3.10]). Moreover,
a, b have asymptotic expansions in powers of ε, while e has an asymptotic expansions
in powers of ε and ξ1. We will only need the constant term b0 in the expansion of b.
Changing variables ξ → ξ1 + a(ξ ′) we are reduced to p(ξ) = ξ1 + iεq(ξ) for some
real-valued function q. By the proof of [27, Lemma 3.9] we have b0 = 1/(1+q20 ), where
q0 = ∂ξ1q|ξ1=0. Therefore, b ≥ c on the closure of � for some constant c > 0 (we used
compactness and the smallness of ε). Since we have constant coefficients, the simple
parametrix (5.5) in [27], with (operator-valued) kernel K (x1 − y1), given by

K (x1) = 1x1<0 e
εx1b(D′)e−i x1a(D′), (25)
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is exact, i.e. (D1 + a(D′) + iεb(D′))K is the identity (we denote both the operator
and the kernel by K here). By the stationary phase estimate (for complex-valued phase
functions) [22, Th. 7.7.5],

|K (x)| � 〈x〉− d−1
2 e−c|εx | +ON (〈x〉−N ).

Using the factorization (24) and extending 1/e globally as a Schwartz function, we
obtain (22) in the case ζ = 1. The case ζ �= 1 requires only minor modifications. The
kernel in (25) is replaced by

Kζ (x1) = χ
ζ−1
− (x1)e

εx1b(D′)e−i x1a(D′),

where χw− (τ ) := 1τ<0|τ |w/�(w + 1), w ∈ C, where � is the usual Gamma function.
Then (D1 +a(D′)+iεb(D′))−ζ Kζ is the identity. This follows immediately by applying
the inverse Fourier transformation to the following identity (see [22], specifically the
explanation after Example 7.1.17)

F
(
τ �→ e−δτ χ

ζ
+ (τ

)
(ξ) = e−iπ(ζ+1)/2(ξ − iδ)−ζ−1, δ > 0, ζ ∈ C.

Again, by stationary phase,

|Kζ (x)| � eC| Im ζ |2(〈x〉− d−1
2 +Re ζ e−c|εx | +ON (〈x〉−N ))

for 0 ≤ Re ζ ≤ (d+1)/2. The growth estimate in | Im ζ | comes from a standard estimate
on the Gamma function (see e.g. [17, Appendix A.7]). ��

To state an analog of the estimate (15) for HV in (13) we assume

Cε,q,�,N (V ) :=
∑

|α|≤N

sup
ξ∈�

sup
y∈Rd

‖〈ε(x − y)〉−N ∂α
ξ V (x, ξ)‖Lq

x
< ∞ (26)

for some sufficiently large N (again, N > d would work). The norm (26) is the analog
of the right hand side of (15). We also replace (18) by the new black box assumption

I ⊂ ρ(Hη
V ), cq,I,V := sup

λ∈I, |ε|≤1
‖ηVη[Hη

V − (λ + iε)]−1‖p→p < ∞, (27)

where we recall that q−1 = p−1 − (p′)−1. Note that, in contrast to (18), the potential
still appears in (27) and thus we need a p → p norm here. In many applications of
interest (for instance, in the proof of Theorem 4), (27) can be estimated perturbatively
in terms of Hη

0 , with an effective constant cq,I,V in (27), i.e. a constant only depending
on Cε,q,�,N , but not on V itself (see Sect. 5.1).

Proposition 24. Assume that (26), (27) hold for some q ≤ (d + 1)/2. Then every eigen-
value z = λ + iε of HV , λ ∈ I , |ε| ≤ 1, satisfies

1 � Cε,q,�,N (V ) (28)

with implicit constant depending on h0, d, q, I, |�|, but not on z, V .
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Proof. We again use the smooth Feshbach–Schur map. Thus the claim (28) is equivalent
to the statement

Cε,q,�,N (V ) 
 1 �⇒ Fη(z) boundedly invertible,

where Fη(z) is given by (20). Again, by p-independence of the spectrum it suffices to
prove invertibility in L p, with q−1 = p−1 − (p′)−1, which would follow (by geometric
series) from

‖ηṼzη[h0(D) − z]−1‖p→p < 1,

and this in turn would follow from

‖Vη[h0(D) − z]−1‖p→p � Cε,q,�,N (V ) (29)

since then, by (20), (27), (29),

‖ηṼzη[h0(D) − z]−1‖p→p � (1 + ‖ηVη[Hη
V − z]−1η‖p→p)Cε,q,�,N (V )

� (1 + cq,I,V )Cε,q,�,N (V ).

To estimate (29), let k(x, x − y) be the kernel of Vη1 (where η1 is a bump function like
η, but with η1η = η) and let Rη

λ,ε(x − y) be the kernel of η[h0(D) − z]−1. Then the
kernel of K := Vη[h0(D) − z]−1 is

K (x, y) =
∫
Rd

k(x, x − u)Rη
λ,ε(u − y)du.

As a warmup, we consider first the easiest case where d = 1 and V is a potential. Then
k(x, x − y) = V (x)δ(x − y), and Lemma 23 (with ζ = 1) yields

‖K‖1→1 ≤ sup
y

∫
Rd

|K (x, y)|dx �N sup
y

∫
Rd

|V (x)|〈ε(x − y)〉−Ndx . (30)

Comparing to (26), the right hand side is bounded by Cε,1,�,N (V ), and hence if the
latter is small, then ‖K‖1→1 < 1. When V is no longer required to be a potential (but
still in d = 1), then the previous estimate is replaced by

sup
y

∫
Rd

|K (x, y)|dx � sup
y

∫ ∫
|k(x, u)|〈ε(x − u − y)〉−Ndxdu, (31)

where we first used the change of variables u → x − u and then Fubini. We insert
1 = 〈u〉N 〈u〉−N and estimate the double integral by

CN sup
y,u

∫
Rd

|k(x, u)|〈u〉N 〈ε(x − u − y)〉−Ndx

where CN = ∫ 〈u〉−Ndu. Then (21) and (26), together with the first inequality in (30),
yield ‖K‖1→1 � Cε,1,�,N (V ). Moving on to the general, higher-dimensional case, we
use Stein interpolation on the analytic family Kζ := V ζ η[h0(D) − z]−ζ to prove (29).
For Re ζ = 0, we have the trivial bound

‖Kζ ‖2→2 � ec| Im ζ | (Re ζ = 0).

For Re ζ = q, we use the estimate of Lemma 23 to get (31) for Kζ , i.e.

‖Kζ ‖1→1 � ec| Im ζ |Cε,q,�,N (V )q (Re ζ = q).

Interpolating the last two estimates gives ‖K1‖p→p � Cε,q,�,N (V ), which is just (29),
i.e. what we needed to prove. ��
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5.1. Proof of Theorem 4. By scaling, it suffices to prove the bounds for |z| = 1 only.
We only give a proof in the case Re z � 1, which is the most difficult one. Note that the
factor Im z(x − y) is dimensionless as it should be. Hence we can take I = [1− δ, 1+ δ]
in (16) and find that S = {1 − δ′ ≤ |ξ | ≤ 1 + δ′} for some small positive constants
δ, δ′. Recall that � ⊂ R

d was chosen such that S � � (see the paragraph after (17)).
This implies that |h0(ξ) − z| ≥ C� + 〈ξ 〉s for all ξ ∈ R

d \ � and hence, by Sobolev
embedding,

‖[Hη
0 − z]−1‖p→p′ � ‖[Hη

0 − z]−1‖
H− σ

2 →H
σ
2

� C
σ
s −1
�

for σ/d ≥ p−1 − (p′)−1 = q−1, where we denoted the L2 based Sobolev space
of order σ by Hσ and used Plancherel in the last inequality. We choose σ = d/qs .

If C
σ
s −1
� ‖V ‖q 
 1, then (18) holds by Hölder’s inequality and a geometric series

argument, and hence Proposition 20 yields (i), (ii).
Moving on to the proof of (iii), the claim would follow from Proposition 24 if we

could show (27). For brevity, we restrict our attention to the case s < d. Precisely, we
will show that cq,I,V < ∞ if

sup
y∈Rd

∫
Rd

〈x − y〉−N |V (x)|qdx 
 1, (32)

where N � 1 and q ≥ d/s. Let us abbreviate the constant cq,I,V by cV . We also set

c0 := ‖Vη[Hη
V − z]−1‖p→p (by compactness we can fix z). Without loss of generality

assume that the inverse Fourier transform of η is normalized in L1, so that η(D) is
an isometry in L p (and similarly for η). If we could prove c0 < 1, then a geometric
series argument would yield c ≤ c0/(1 − c0) and we would be done. The next lemma
establishes c0 < 1.

Lemma 25. Let s < d. If (32) holds with q ≥ d/s, then c0 < 1.

Proof. By the Mikhlin multiplier theorem [17, Th. 5.2.7] it suffices to prove this for
‖V�−s‖p→p in place of c0, where we recall that � = (1 − �)1/2. Standard estimates
for Bessel potentials (see e.g. [16, Prop. 6.1.5]) yield�−s(x− y) � |x− y|s−de−|x−y|/2.
Clearly, we may bound the exponential from above by 〈x − y〉−N for any N , which we
will do. In view of the elementary estimate

〈x − y〉−N �
∞∑
j=0

2−N j1|x−y|≤2 j

it would suffice to prove the following bound on c j := ‖V�s, j‖p→p, where �s, j has
kernel |x − y|s−d1|x−y|≤2 j :

c j � 2 j (d+s−d/q) sup
u∈Rd

‖V ‖Lq (B(u,2 j+1)).

By homogeneity it suffices to prove this for j = 0. Using |V (x)| ≤ ∑
u∈Zd |Vu(x)|,

with Vu(x) = V (x)1|x−u|≤2, we estimate

|〈V�s,0 f, g〉| ≤
∑
u∈Zd

∫ ∫
|Vu(x)||gu(x)|| f (y)||x − y|s−d1|x−y|≤1dxdy.
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Note that, by the triangle inequality,we can insert 1|y−u|≤3 for free into the integral. Then,
by Young’s inequality (or by the Hardy–Littlewood–Sobolev inequality if q = d/s) and
Hölder (once for integrals and once for sums),

|〈V�s,0 f, g〉| ≤
∑
u∈Zd

‖V ‖Lq (B(u,2))‖ f ‖L p(B(u,3))‖g‖L p′ (B(u,2))

≤ sup
u∈Zd

‖V ‖Lq (B(u,2))
( ∑
u∈Zd

‖ f ‖p
L p(B(u,3))

)1/p( ∑
u∈Zd

‖g‖p′
L p′ (B(u,2))

)1/p′

� sup
u∈Rd

‖V ‖Lq (B(u,2))‖ f ‖p‖g‖p′ .

This completes the proof. ��
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