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Abstract: We study multiplicative statistics for the eigenvalues of unitarily-invariant
Hermitian randommatrixmodels.Weconsider one-cut regular polynomial potentials and
a large class of multiplicative statistics. We show that in the large matrix limit several
associated quantities converge to limits which are universal in both the polynomial
potential and the family of multiplicative statistics considered. In turn, such universal
limits are described by the integro-differential Painlevé II equation, and in particular
they connect the random matrix models considered with the narrow wedge solution to
the KPZ equation at any finite time.
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1. Introduction

Random matrix theory has proven over time to be a powerful modern tool in mathe-
matics and physics. With widespread applications in different areas such as engineering,
statistical mechanics, probability, number theory, to mention only a few, its theory is rich
and has been under intense development in the past thirty or so years. In a sense, much
of the success of random matrix theory has been due to its exact solvability, or integra-
bility, turning them into touchstones for predicting and confirming complex phenomena
in nature.

One of themost celebrated results in randommatrix theory is the convergence of fluc-
tuations of the largest eigenvalue towards the Tracy–Widom law FGUE. This result was
first obtained by Tracy and Widom [71] for matrices from the Gaussian Unitary Ensem-
ble (GUE), who also showed that FGUE is expressible in terms of a particular solution
to the Painlevé II equation (shortly PII). Their findings sparked numerous advances in
mathematics and physics, which began from the extension to several othermatrixmodels
but shortly afterwards widespread beyond the realm of random matrices.

Starting with the celebrated Baik–Deift–Johansson Theorem [5], the distribution
FGUE has been identified as the limiting one-point distribution for the fluctuations of a
wide range of different probabilistic models. One of the most ubiquitous of such models
is the KPZ equation, introduced in the 1980s by Kardar, Parisi and Zhang. Despite
numerous developments surrounding it, exactly solving it remained an outstanding open
problem until the early 2010s, when four different groups of researchers [2,29,49,70]
independently found an exact solution for its so-called narrow wedge solution. Amongst
these works, Amir et al. [2] found the one-point distribution for the height function of the
KPZ solution, showing that it relates to a distribution found a little earlier by Johansson
in a grand canonical Gaussian-type matrix model [57], and further characterizing it in
terms of the integro-differential Painlevé II equation. The latter is an extension of the
PII differential equation, and almost as an immediate consequence the authors of [2]
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also obtained that this one-point distribution, in the large time limit, converges to FGUE
itself.

In much inspired by [5,56] and later by [2,29,49,70], it has been realized that several
stochastic growth models share an inherent connection with statistics of integrable point
processes, in what is formally established as an identity between a transformation of the
growthmodel and statistics for the point process. Toour knowledge, the veryfirst instance
of such relation appears in the work of Borodin [16] which connects higher spin vertex
model with Macdonald measures. By taking appropriate limit of such connection, it was
later found that the KPZ equation is connected to the Airy2 point process [20], ASEP is
related to the discrete Laguerre Ensemble, stochastic six vertex model is connected in
the same way to the Meixner ensemble, or yet the Krawtchouk ensemble [21].

As a common feature to these connections, the underlying correspondences estab-
lish that the so-called q-Laplace transform of the associated height function coincides
with some multiplicative statistics of the point process. The latter, in turn, admits exact
solvability, and it is widely believed that a long list of new insights on the growth mod-
els can be obtained by studying the corresponding multiplicative statistics of the point
processes.

This program has already been taken to a great start for the KPZ equation, and
exploring its connection with the Airy2 point process Corwin and Ghosal [37] were able
to obtain bounds for the lower tail of the KPZ equation. Shortly afterwards, such bounds
were improved by Cafasso and Claeys [27] with Riemann–Hilbert methods common in
random matrix theory.

Our major goal is to take on the program of understanding multiplicative statistics
for random particle systems, and carry out its detailed asymptotic analysis for one of the
most inspiring models, namely eigenvalues of random matrices.

Statistics of eigenvalues of randommatrices have been extensively studied in the past,
notably in the context of the so-called linear statistics. In more recent times, statistics
associated to Fisher-Hartwig singularities came to the spotlight, in particular due to
their implications in connection with Gaussian Multiplicative Chaos, and are deeply
understood to a quite high level of generality and precision; we refer the reader to
[1,6,9,30,35,44,48,72–74] for a non-exhaustive list of accomplishments in different
directions. We consider a different type of statistics, inspired by the works in stochastic
growth models and which motivate us to refer to them as multiplicative. Among other
distinct features our family of multiplicative statistics has the key property that infinitely
many singularities of its symbol are approaching the edge of the eigenvalue spectrum in
a critical way.

In more concrete terms, we consider the Hermitian matrix model with an arbitrary
one-cut regular polynomial potential V , and associate to it a general family of multi-
plicative statistics on its eigenvalues, indexed by a function Q satisfying certain natural
regularity conditions. Our findings show that when the number of eigenvalues is large
such multiplicative statistics become universal: in the large matrix limit they converge
to a multiplicative statistics of the Airy2 point process which is independent of V and
Q. This limiting statistics admits a characterization in terms of a particular solution to
the integro-differential Painlevé II equation, and it is the same quantity that connects the
KPZ equation and the Airy2 point process. So, in turn, we find that randommatrix theory
can recast the narrowwedge solution to KPZ equation for finite time in an universal way.

The random matrix statistics that we study are associated to a deformed orthogonal
polynomial ensemble, also indexed by Q, which we analyze. As we learn from earlier
work of Borodin and Rains [22] which was recently rediscovered and greatly extended
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by Claeys and Glesner [36] (and which we also briefly explain later on), this deformed
ensemble is a conditional ensemble of amarked process associated to the original random
matrix model. We show that the correlation kernel for this point process converges to
a kernel constructed out of the same solution to the integro-differential PII equation
that appeared in [2]. This kernel is again universal in both V and Q, and turns out to
be the kernel of the induced conditional process on the marked Airy2 point process.
Naturally, there are orthogonal polynomials and their norming constants and recurrence
coefficients associated to this deformed ensemble. With our approach we also obtain
similar universality results for such quantities, showing that they are indeed universal in
V and Q and also connect to the integro-differential PII in a neat way.

Beyond the concrete results, with this work we also hope to shed light into the
rich structure underlying multiplicative statistics for eigenvalues of random matrices
with singular symbols beyond the Fisher-Hartwig type. Much of the recent relevance
of Painlevé equations is due to its appearance in random matrix theory, see [50] for an
overview of several of these connections. There has been a growing recent interest in
integro-differential Painlevé-type equations [24,26,28,32,58,64], and our results place
the integro-differential PII as a central universal object in random matrix theory as well.

We scale the multiplicative statistics to produce a critical behavior at a soft edge
of the matrix model, and consequently the core of our asymptotic analysis lies within
the construction of a local approximation to all the quantities near this critical point.
Our main technical tool is the application of the Deift-Zhou nonlinear steepest descent
method to the associated Riemann–Hilbert problem (shortly RHP), and the mentioned
local approximation is the so-called construction of a local parametrix. In our case, a
novel feat is that this local parametrix construction is performed in a two-step way, first
with the construction of a model problem varying with large parameter, and second with
the asymptotic analysis of this model problem. In the latter, a RHP recently studied by
Cafasso and Claeys [27] (see also the subsequent works [28,32]) which is related to the
lower tail of the KPZ equation shows up, and it is this RHP that ultimately connects all
of our considered quantities to the integro-differential PII.

The choice of scaling of our multiplicative statistics is natural, illustrative but not
exhaustive. As we point out later, with our approach it becomes clear that other scalings
could also be analyzed, say for instance scaling around a bulk point, or yet soft/hard
edge points with critical potentials, and indicate that other integrable systems extending
the integro-differential PII may emerge.

2. Statement of Main Results

Let �(n) ..= (λ1 < . . . < λn) be a n-particle system with distribution

1

Zn

∏

1≤ j<k≤n

(λk − λ j )
2

n∏

j=1

e−nV (λ j ) dλ1 . . . dλn, (2.1)

where Zn is the partition function

Zn
..=
∫

Rn

∏

1≤ j<k≤n

(λk − λ j )
2

n∏

j=1

e−nV (λ j ) dλ1 . . . dλn . (2.2)

The distribution (2.1) is the eigenvalue distribution of the unitarily-invariant random
matrix model with potential function V [42,66].
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We associate to �(n) the multiplicative statistics

LQ
n (s) ..= E

⎛

⎝
n∏

j=1

1

1 + e−s−n2/3Q(λ j )

⎞

⎠

= 1

Zn

∫

Rn

∏

1≤ j<k≤n

(λk − λ j )
2

n∏

j=1

σn(λ j ) e
−nV (λ j ) dλ1 . . . dλn = ZQ

n (s)
Zn

, s > 0,

(2.3)

where ZQ
n (s) is the partition function for the deformed model

ZQ
n (s) ..=

∫

Rn

∏

1≤ j<k≤n

(λk − λ j )
2

n∏

j=1

σn(λ j ) e
−nV (λ j ) dλ1 . . . dλn (2.4)

and we denoted

σn(z) = σn(z | s) ..=
(
1 + e−s−n2/3Q(z)

)−1
.

When Q is linear, with a straightforward change of parameters LQ
n reduces to

E

(
∏

x∈X

1

1 + ζqx

)
, (2.5)

where the expectation is over the set X of configurations of points (that is, for us X =
�(n)) and q ∈ (0, 1) should be viewed as a parameter of the model and, in general,
ζ ∈ C is a free parameter. The expression (2.5) may be viewed as a transformation of the
point process, where ζ ∈ C becomes the spectral variable of this transformation, and the
matching ζ = e−s motivates the distinguished role of s in (2.3). In the context of random
particle systems, this particular multiplicative statistics is associated to the notion of a
q-Laplace transform [17,19–21] that we already mentioned in the Introduction, and it
has been one of the key quantities in several outstanding recent progresses in asymptotics
for random particle systems [27,37,55].

We work under the following assumptions.

Assumption 2.1. (i) The potential V is a nonconstant real polynomial of even degree
and positive leading coefficient, and its equilibriummeasureμV is one-cut regular, we
refer to Sect. 8.1 below for the precise definitions. Performing a shift on the variable,
without loss of generality we assume that the right-most endpoint of suppμV is at
the origin, so that

suppμV = [−a, 0],
for some a > 0.

(ii) The function Q is real-valued over the real line, and analytic on a neighborhood of the
real axis. We also assume that it changes sign at the right-most endpoint of suppμV ,
with

Q(x) > 0 on (−∞, 0), Q(x) < 0 on (0,∞), (2.6)

with x = 0 being a simple zero of Q. A particular role is played by the negative value
Q′(0), so we set

t ..= −Q′(0) > 0. (2.7)
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Although t in Assumption 2.1-(ii) will have the interpretation of time, we stress that
in this paper it will be kept fixed within a compact of (0,+∞) rather than being made
large or small.

For our results and throughout the whole work, we also talk about uniformity of sev-
eral error terms with respect to t in the sense that we now explain. Because Q is analytic
on a neighborhood of the real axis, analytic continuation shows that it is completely
determined by its derivatives Q(k)(0), k ≥ 0. When we say that some error is uniform in
t within a certain range, we mean uniform when we vary Q as a function of −Q′(0) = t
while keeping all other derivatives Q(k)(0), k ≥ 2, fixed.

The condition in Assumption 2.1-(i) is standard in randommatrix theory and they are
known to hold when, say, V is a convex function [69]. The one-cut assumption is made
just for ease of presentation, as it simplifies the Riemann–Hilbert analysis at the technical
level considerably. On the other hand, the regularity condition is used substantially in our
arguments, but is standard in RandomMatrix Theory literature and holds true generically
[62]. Most of our results are of local nature near the right-most endpoint of suppμV and
could be shown to hold true for multi-cut potentials near regular endpoints as well, with
appropriate but non-essential modifications.

Assumption 2.1-(ii) should be seen as specifying enough regularity on the multi-
plicative statistics, here indexed by this factor Q. Because of condition (ii), we have the
pointwise convergence

σn(x)
n→∞→

{
0, x > 0,
1, x < 0,

(2.8)

which means that the introduction of the factor σn in the original weight e−nV has
the effect of producing an interpolation between this original weight and its cut-off
version χ(−∞,0) e−nV , where from here onward χJ is the characteristic version of a set
J . Comparing the Euler-Lagrange conditions on the equilibrium problem induced by the
weights e−nV and χ(−∞,0) e−nV , the observation we just made heuristically indicates
that the factor σn does not change the global behavior of eigenvalues. This may also
be rigorously confirmed as an immediate consequence of our analysis, but we do not
elaborate on this end.

On the other hand, introducing a local coordinate u near the origin via the relation
z = −u/n2/3, the approximation

e−s−n2/3Q(z) ≈ e−(tu+s)

goes through, and we see that there is a competition between the term s and Q(z) that
affects the local behavior of the weight at the scale O(n−2/3) near the origin, which
is the same scale for nontrivial fluctuations of eigenvalues around the same point. The
main results that we are about to state concern obtaining the asymptotic behavior as
n → ∞ of several quantities of the model, and in particular they showcase how this
term Q affects the local scaling regime of the eigenvalues near the origin and leads to
connections with the integro-differential Painlevé II equation as already mentioned.

A central object in this paper is the multiplicative statistics

LAi(s, T ) ..= E

⎛

⎝
∞∏

j=1

1

1 + eT
1/3(s+a j )

⎞

⎠ , (2.9)

where the expectation is over the Airy2 point process with random configuration of
points {a j } [68]. Expectations of the Airy2 with respect to other meaningful symbols
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have been considered in the recent past, see for instance [25,31,34]. The quantity LAi

admits two remarkable characterizations, which are also of particular interest to us. The
first is the formulation via a Fredholm determinant, namely

LAi(s, T ) = det
(
I − K

Ai
T

) ∣∣
L2(−s,∞)

,

where K
Ai
T is the integral operator on L2(−s,∞) acting with the finite temperature (or

fermi-type) deformation of the Airy kernel KAi
T , defined by

KAi
T (u, v) ..=

∫ ∞

−∞
eT

1/3ζ

1 + eT 1/3ζ
Ai(u + ζ )Ai(ζ + v)dζ, u, v ∈ R.

The term ‘temperature’ stems from the connection between the KPZ equation and the
random polymer models. Despite the name finite temperature, the parameter T here
corresponds to the time in theKPZequation, see (2.12) below.TheFredholmdeterminant
det

(
I − K

Ai
T

)
appeared for the first time in the work of Johansson [57] as the limiting

process of a grand canonical (that is, when the number of particles/size of matrix is
also random) version of a Gaussian random matrix model, and interpolates between
the classical Airy kernel when T → +∞ and the Gumbel distribution when T → 0+

with s scaled appropriately. In [57, Remark 1.13] Johansson already raises the question
on whether a related classical (that is, not grand canonical) matrix model has limiting
local statistics that interpolate between Gumbel and Tracy–Widom, as a feature similar
to det

(
I − K

Ai
T

)
. Since then, other works have found det

(
I − K

Ai
T

)
to be the limiting

distribution for fluctuations around the largest particle of a point process [11,39,41,64].
In common, these works consider specific models rather than obtaining det

(
I − K

Ai
T

)

as the universal limit for a whole family of particle systems. Finite-temperature type
distributions extending det

(
I − K

Ai
T

)
have also appeared in the past, see for instance

[18,38,54].
Another characterization of LAi is via a Tracy–Widom type formula that relates it to

the integro-differential PII. It reads

logLAi(−ST1/3,T−2) = − 1

T

∫ ∞

S
(v − S)

(∫ ∞

−∞
�(r | v,T)2

e−r

(1 + e−r )2
dr − v

2

)
dv,

(2.10)
where � solves the integro-differential Painlevé II equation

∂2S�(ξ | S,T) =
(

ξ +
S
T
+
2

T

∫ ∞

−∞
�(r | S,T)2

e−r

(1 + e−r )2
dr

)
�(ξ | S,T) (2.11)

with boundary value

�(ξ | S,T) ∼ T1/6 Ai(T2/3ξ + ST−1/3), as ξ → ∞ with | arg ξ | < π − δ,

for any δ > 0. This characterization has been obtained in the already mentioned work
by Amir et al. [2], in connection with the narrow wedge solution to the KPZ equation,
and following the work [20] by Borodin and Gorin has the interpretation that we now
describe. For H(X, T ) being the Hopf-Cole solution to the KPZ equation with narrow
wedge initial data at the space-time point (X, T ), introduce the rescaled random variable

ϒT = H(0, 2T ) + T
12

T 1/3 .
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Based on the previous works [2,29,49,70], in [20] the identity

EKPZ

(
e− eT

1/3(ϒT +s)
)

= LAi(s, T ) (2.12)

between the height function of the KPZ equation and the multiplicative statistics
LAi(s, T ) is identified. This is an instance of matching formulas relating growth pro-
cesses with determinantal point processes that we already mentioned at the Introduction.
One of the key aspects of this representation is that the Airy2 point process is determi-
nantal, and consequently its statistics can be studied using techniques from exactly
solvable/integrable models. Indeed Eq. (2.12) is the starting point taken by Cafasso and
Claeys [27], who then connected LAi(s, T ) to a RHP that will also play a major role
for us. Recently, Cafasso et al. [28] also obtained an independent proof of the repre-
sentation (2.10), extending it to more general multiplicative statistics of the Airy2 point
process. Other proofs and extensions of this integro-differential equation have also been
recently found in related contexts [24,26,58]. Also, by exploring (2.12) the tail behavior
of the KPZ equation has become rigorously accessible in various asymptotic regimes
[27,28,32,37].

As a first result, we prove that the multiplicative statistics LAi is the universal limit
of LQ

n (s).

Theorem 2.2. Suppose that V and Q satisfy Assumptions 2.1 and fix s0 > 0 and t0 ∈
(0, 1). For a constant cV > 0 that depends solely on V , and any ν ∈ (0, 2/3), the
asymptotic estimate

log LQ
n (s) = logLAi

(
−cV s

t
,
t3

c3V

)
+O(n−ν), n → ∞ (2.13)

holds true uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

The constant cV can be determined from (8.2) and (8.5) below, albeit in an implicit
form as it depends on the associated equilibrium measure for V . It is the first derivative
of a conformal map near the origin, which is constructed out of the equilibrium measure
for V . Ultimately, we make a conformal change of variables of the form ζ ≈ cV zn2/3,
which in turn identifies

1

1 + e−s−n2/3Q(z)
≈ 1

1 + e−s+tζ/cV
.

In light of (2.9), this explains the evaluation s = −scV /t and T = t3/c3V on the right-
hand side of (2.13).

Findings on random matrix theory surrounding the Tracy–Widom distribution have
inspired an enormous development in the KPZ universality theory. One of the major
developments surrounding the KPZ equation can be phrased by saying that the fluctu-
ations of the height function for the narrow wedge solution coincide, in the large time
limit, with the β = 2 Tracy–Widom law from random matrix theory. Theorem 2.2 is
saying that the connection between random matrix theory and the KPZ equation can be
recast already at any finite time, and not only for Gaussian models but also universally
in V and Q. Similar connection exists [8] between the solution of the KPZ equation in
half-space under the Robin boundary condition and Airy1 point process which, in turn,
in the large time limit relate this KPZ solution to GOE matrices.
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We emphasize that the error term in (2.13) is not in sharp form. In Sect. 3.1 we explain
how this term arises from our techniques. We do not have indications regarding whether
the true optimal error would be O(n−2/3) (or of any polynomial order) or if it should
involve, say, logarithmic corrections.

Our next results concern limiting asymptotic formulas for the matrix model under-
lying LQ

n , starting with the partition function ZQ
n from (2.2). The quantities Zn and ZQ

n
are Hankel determinants associated to the symbols e−nV and σn e−nV . As mentioned
earlier, a great deal of fine asymptotic information is known for a large class of symbols
with so-called Fisher-Hartwig singularities. This class includes symbols with singular-
ities of root type and jump discontinuities, and greatly extends the symbol e−nV . We
briefly review such results in a moment. However, the perturbation σn produces a wildly
varying term in the symbol σn e−nV ; in fact, as n → ∞ there are infinitely many simple
poles of σn accumulating on the real axis, and to our knowledge not much is known of
Hankel determinants associated to such symbols.

Under certain technical conditions, Bleher and Its [15] obtained a full asymptotic
expansion for log Zn in inverse powers of n2, computing explicitly the very first high
order terms, see also [10,13,14,23,51] for important early work obtaining similar results
under different technical conditions. Thanks to several recent contributions valid in
various degrees of generality [9,30,52,72], amuchmore detailed information than (2.14)
is known. In particular, to our knowledge a detailed asymptotic analysis of Zn for general
regular one-cut potentials without any further tehcnical assumptions has been completed
by Berestycki, Webb andWong [9], including lower order terms up to the constant. This
asymptotic formula can also be read off from a more general result by Charlier [30,
Theorem 1.1 and Remark 1.4], which under our conditions coincide with the result of
[9] and reads as

Zn = exp

(
eV1 n

2 + eV2 n − 1

12
log n + eV4

)(
1 +O

(
log n

n

))
, (2.14)

where the constants eV1 , eV2 and eV4 depend on V in an explicit manner.
As an immediate corollary to Theorem 2.2 we obtain some terms in the asymptotic

expansion of the deformed partition function (2.4).

Corollary 2.3. Suppose V and Q satisfy Assumptions 2.1 and fix s0 > 0 and t0 > 0.
For any ν ∈ (0, 2/3), the deformed partition function ZQ

n admits an expansion of the
form

ZQ
n (s)=exp

(
eV1 n

2+eV2 n− 1

12
log n+eV4

)
LAi

(
−scV

t
,
t3

c3V

)
(
1+O(n−ν)

)
, n → ∞

(2.15)

which is valid uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0, and the coefficients eV1 , eV2 and
eV4 are as in (2.14).

Proof. Follows from the expansion (2.14), Theorem 2.2 and (2.3). 
�
The order of error (2.15) is not O(log n/n) as in (2.14) but weaker and not sharp. This
phenomenon can be traced back to the fact thatσn has infinitelymany poles accumulating
on the real axis as n → ∞, see the discussion in Sect. 3.1 below. A similar error order
was obtained in [15, Theorem 9.1 and Equation (9.68)], in a transitional regime from a
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one-cut to two-cut potential, and where the role played here by LAi is replaced by the
GUE Tracy–Widom distribution itself.

From the general theory of unitarily invariant randommatrix models, it is known that
the density appearing in (2.3) admits a determinantal form. Setting

ωn(z)=ωQ
n (z | s) ..= σn(z) e

−nV (z), where we recall σn(z) =
(
1+e−s−n2/3Q(z)

)−1
,

(2.16)
this means that the identity

1

Zn(s)

∏

1≤ j<k≤n

(λk − λ j )
2

n∏

j=1

σn(λ j ) e
−nV (λ j ) = 1

n! det
(
ωn(λ j )

1/2KQ
n (λ j , λk)ωn(λk)

1/2
)n
j,k=1

holds true for a function of two variables KQ
n (x, y) satisfying certain properties, known

as the correlation kernel of the eigenvalue density on the left-hand side. The correlation
kernel is not unique, but in the present setup itmay be taken to be theChristoffel-Darboux
kernel for the orthogonal polynomials for the weight ωn , as we introduce in detail in
(9.3), and whenever we talk about KQ

n we mean this Christoffel-Darboux kernel. In
particular, KQ

n = KQ
n (· | s) does depend on both Q and s.

Our second result proves universality of the kernelKQ
n , showing that its limit depends

solely on s and t = −Q′(0), but not on other aspects on Q, and relates to the integro-
differential PII. For its statement, it is convenient to introduce the new set of variables

T = t−3/2 and S = st−3/2. (2.17)

With �(ξ) = �(ξ | S,T) being the solution to the integro-differential Painlevé II
equation in (2.11) and the variables s, t and S,T related by (2.17), we set

φ1(ζ | s, t)=�(ξ(ζ ) | S,T), φ2(ζ | s, t) = (∂S�)(ξ(ζ ) | S,T), ξ(ζ ) ..= −s + tζ,

and introduce the kernel

K∞(u, v | s, t) ..= φ1(v | s, t)φ2(u | s, t) − φ1(u | s, t)φ2(v | s, t)
u − v

, u, v ∈ R.

Theorem 2.4. Assume that V and Q satisfy Assumptions 2.1 and fix s0 > 0 and t0 ∈
(0, 1). With

un ..= u

cV n2/3
, vn

..= v

cV n2/3
, (2.18)

the estimate

e− n
2 (V (un)+V (vn))

cV n2/3
KQ
n (un, vn | s) = K∞(u, v | s, t/cV )+O(n−1/3), n → ∞, (2.19)

holds true uniformly for u, v in compacts of R, and uniformly for s ≥ −s0 and t0 ≤ t ≤
1/t0.
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In the recentwork [36], Claeys andGlesner developed a general framework for certain
conditional point processes, which in particular yields a probabilistic interpretation of
the kernel KQ

n as we now explain. For a point process �, we add a mark 0 to a point
λ ∈ � with probability σn(λ) and a mark 1 with complementary probability 1− σn(λ).
This induces a decomposition of the point process � = �0 ∪�1, where � j is the set of
eigenvalues with mark j . We then consider the induced point process �̂ obtained from
� upon conditioning that �1 = ∅, that is, that all points have mark 0.

When applied to the eigenvalue point process � = �(n) induced by the distribution
(2.1), the theory developed in [36] shows that �̂(n) is a determinantal point process with
correlation kernel proportional to ωn(x)1/2ωn(y)1/2K

Q
n (x, y) which, in turn, generates

the same point process as the left-hand side of (2.19), see [36, Sections 4 and 5]. A
comparison of theRHP that characterizes the kernelK∞ (seeSect. 5.1 below, in particular
(5.16)) with the discussion in [36, Section 5.2] shows that K∞ is a (renormalized)
correlation kernel for the marked point process {̂ak} of the Airy2 point process {ak} with
themarking function (1+e−s+tλ)−1. So Theorem 2.4 assures that the conditional process
on the marked eigenvalues converges, at the level of rescaled correlation kernels, to the
conditional process on the marked Airy2 point process.

We also obtain asymptotics for the norming constant γ
(n,Q)
n−1 (s) for the (n − 1)-th

monic orthogonal polynomial for the weight ωn(x | s) (see (9.2) for the definition),
showing that its first correction term depends again solely on s, t, and also relates to the
integro-differential Painlevé II equation.

Theorem 2.5. Suppose that V and Q satisfy Assumptions 2.1 and fix s0 > 0 and t0 ∈
(0, 1). The norming constant has asymptotic behavior

γ
(n,Q)
n−1 (s)2 = a

4π
e−2n�V

(
1

2
− 1

n1/3
c1/2V

t1/2

(
p(s, t/cV ) − s2c3/2V

4t3/2

)
+O(n−2/3)

)
, n → ∞,

(2.20)
uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0, where p(s, t) = P(S,T), and the function P
relates to the solution � from (2.11) via

∂SP(S,T) = S
2T

+
1

T

∫ ∞

−∞
�(r | S,T)2

e−r

(1 + e−r )2
dr. (2.21)

Our approach also yields asymptotic formulas for the orthogonal polynomials and
their recurrence coefficients, and relate them to the integro-differential Painlevé II equa-
tion as well, but for the sake of brevity we do not state them.

3. About our Approach: Issues and Extensions

3.1. Issues to be overcome. Our main tool for obtaining all of our results is the Fokas–
Its–Kitaev [53] Riemann–Hilbert Problem (RHP) for orthogonal polynomials (shortly
OPs) that encodes the correlation kernel KQ

n , the norming constants γ
(n,Q)
n−1 (s)2 and

ultimately also the multiplicative statistics LQ
n , and its asymptotic analysis via the Deift-

Zhou nonlinear steepest descent method [45,47]. The overall arch of this asymptotic
analysis is the usual one, summarized in the diagram in Fig. 1, and we now comment on
its major steps.

Starting with the RHP for OPs that we name Y, in the first step we transform Y �→ T
with the introduction of the g-function (or, equivalently, the φ-function), and this is done
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Y

RHP for OPs

introduction of
g-function

T

opening
of lenses

S

local parametrix near z = 0
P(z) = En(z)Φn(n2/3ψ(z))

global parametrix
G(z)

independent step
Φn(ζ) → Φ0(ζ)

R

Fig. 1. Schematic diagram for the steps in the asymptotic analysis of the RHP for orthogonal polynomials.
There is also an Airy local parametrix used near z = −a which we omit in this diagram

so with the help of the equilibrium measure for V that accounts only for the part e−nV

of the weight ωn . In the second step, we open lenses with a transformation T �→ S as
usual.

The third step is the construction of the global parametrix G. In our case, in this
construction we also have to account for the perturbation σn of the weight e−nV , so a
Szegö function-type construction is used.

The fourth step is the construction of local parametrices at the endpoints z = −a, 0 of
suppμV , with the goal of approximating all the quantities locally near these endpoints.
This is accomplished by, first, considering a change of variables z �→ ζ = n2/3ψ(z) after
the conformal mapψ chosen appropriately for each endpoint and, then, constructing the
solution to amodel RHP�(ζ ) in the ζ -plane. Following these steps, the local parametrix
at the left edge z = −a of suppμV is standard and utilizes Airy functions.

The construction of the local parametrix at the right edge z = 0 is, however, a lotmore
involved. As we mentioned earlier, the factor σn affects asymptotics of local statistics
near the origin. In fact, the weight σn has singularities at the points of the form

s
tn2/3

+
π i(2k + 1)

tn2/3
+O(n−4/3), k ∈ Z.

This means that for |s| � n2/3 there are infinitely many poles of σn accumulating near
the real axis. As such, in this case for large n the perturbed weight ωn fails to be analytic
in any fixed neighborhood of the origin. If we were to consider only s → +∞ fast
enough, one could still push the standard RHP analysis further with the aid of Airy local
parametrices, at the cost of a worse error estimate. However, when s = O(1) we have
poles accumulating too fast to the real axis, and a different asymptotic analysis has to
be accomplished, in particular a new local parametrix is needed.

When changing coordinates z �→ ζ near z = 0, the model problem� = �n obtained
is then n-dependent. This is so because the jump of the local parametrix involves σn ,
and consequently in the process of changing variables the resulting model problem
has a jump that involves a transformation of σn itself. This is in contrast with usual
constructions with, say, Airy, Bessel or Painlevé-type parametrices, where the jumps
can be turned into piecewise constant, or homogeneous, in the z-plane and, hence, also
remain piecewise constant in the ζ -plane. As we learned after finishing the first version
of this paper somewhat similar issues have occurred for instance in [40,60], although
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we handle this issue here in a different and independent manner. Another feature of the
RHP for the model problem �n is that its jump is not analytic on the whole plane, and
instead it is analytic only in a growing (with n) disk, and for a fixed n we can only ensure
that its jump matrix is C∞ in a neighborhood of the jump contour.

All in all, this means that carrying out the asymptotic analysis of�n(ζ ) as n → ∞ is
also needed. As we said, the jump for �n involves a transformation of σn , so ultimately
also depends on the function Q from (2.16). But it turns out that as n → ∞, we have
the convergence �n → �0 in an appropriate sense, where �0 is independent of Q. This
limiting �0 is the solution to a RHP that appeared recently in connection with the KPZ
equation [27] and which was later shown to connect with the integro-differential PII in
the recent work of Claeys et al. [28,32]. For this reason we term it the id-PII RHP.

With the construction of the global and local parametrices, the asymptotic analysis
is concluded in the usual way, by patching them together and obtaining a new RHP for
a matrix function R. This matrix R, in turn, solves a RHP whose jump is asymptotically
close to the identity, and consequently R can be found perturbatively.

After concluding this asymptotic analysis, we undress the transformations R �→
· · · �→ Y and obtain asymptotic expressions for the wanted quantities. For the kernel
KQ
n and the norming constant γ

(n,Q)
n−1 (s)2, after this undressing Theorems 2.4 and 2.5

follow in a standard manner.
However, to obtain (2.13) quite some extra work is needed. When dealing with

statistics of matrix models via OPs, one of the usual approaches is to extract the needed
information via the partition function and its relation with the norming constants via a
product formula, see for instance (9.6) below. Usually this is accomplished via some
differential identity or with careful estimate of each term in the product formula, see
for instance the works [4,13,15,59] and their references for explorations along these
lines. In virtue of the relation (2.3) this was in fact our original attempt, but several
technical issues arise. Instead, at the end we express LQ

n directly as a weighted double
integral of KQ

n (x, x | s) in the variables in x and s, this is done in Proposition 9.1
below. The x-integral takes place over the whole real line, which means that when we
undress R �→ Y we obtain a formula for LQ

n involving global and all local parametrices.
The integral in s extends to +∞, which is one of the main reasons why in our main
statements we also keep track of uniformity of errors when s → +∞. We then have to
estimate the double integral, accounting for exponential decays of most of the terms but
also exact cancellations of some other terms. Ultimately, the whole analysis leads to a
leading contribution coming solely from a portion of the integral that arises from the
model problem �n . With a further asymptotic analysis of the latter integral we obtain
an integral solely of �0 which then yields Theorem 2.2.

The convergence �n → �0 is treated as a separate issue, and to achieve it we need
several information about this id-PII parametrix �0. As a final outcome, we obtain that
�n is close to �0 with an error term of the form O(n−ν), for any ν ∈ (0, 2/3). But, in
much due to the non-analyticity of the jump matrix for �n , we are not able to achieve
a sharp order O(n−2/3) unless further conditions were placed on Q. This non-optimal
error explains the appearance of the same error order in (2.13). In the course of this
asymptotic analysis we rely substantially in [28]. Among other needed info, we also
borrow from the same work the connection of �0 with the integro-differential PII. In
the same work, the authors actually show that �0 relates to particular solutions to the
KdV equation that reduce to the integro-differential PII. As such, Theorems 2.4 and 2.5
could be phrased in terms of a solution to the KdV rather than to the integro-differential
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PII. We opt to phrase them with the latter because this formulation encodes that all
self-similarities have already been accounted for.

If we were to assume that the jump matrix for �n were piecewise analytic on the
whole plane and not merely C∞, we could deform �n to a family of RHPs considered
in [28]. With this in mind, the analysis of the convergence �n → �0 is inspired by
several aspects in this just mentioned work but, as we already said, here we are forced
to work under different conditions on the jump matrix. In particular, one could adapt
the methods in [28] to actually prove that �n does too relate to an n-dependent solution
to the integro-differential PII. Consequently, with a careful inspection of our work one
could show that Theorems 2.2, 2.4 and 2.5 admit versions with n-dependent leading
terms. For instance, relating the norming constant γ

(n,Q)
n−1 (s)2 with the model problem

�n one could obtain an asymptotic formula of the form

γ
(n,Q)
n−1 (s)2 = a

4π
e−2n�V

(
1

2
− 1

n1/3
c1/2V

t1/2

(
pn(s, t/cV ) − s2c3/2V

4t3/2

)
+O(n−2/3)

)
, n → ∞,

where the n-dependent function pn is obtained from �n and relates to a n-dependent
solution �n to the integro-differential PII. In fact, with standard arguments one could
improve the formula above to a full asymptotic expansion in powers of n−1/3, with
bounded but n-dependent coefficients. Underlying our arguments there is the statement
that pn = p + O(n−ν) for any ν ∈ (0, 2/3), which then yields Theorem 2.5. But as a
drawback, although one could potentially improve (2.20) and also obtain the term of
order n−2/3 explicitly, it is not possible to obtain the O(n−1) term in (2.20) unless one
improves the error O(n−ν) in the convergence �n → �0 to a sharp error O(n−2/3).

3.2. Possible extensions. Most of our approach may be extended to potentials V for
which the equilibrium measure μV is critical, and also under different conditions on Q
as we now explain.

Apart from technical adaptations in several steps of the RHP for OPswhich are nowa-
days well understood, our analysis carries over to potentials V for which the equilibrium
measure μV is regular but multicut, with the same conditions on Q when μV has the
origin as its right-most endpoint.

When, say, the densityμV vanishes to a higher power at a soft edge and/or Q changes
sign with an arbitrary odd vanishing order at the same soft edge, we need to replace the
power n2/3 in σn by another appropriate power to modify the local statistics near this
point in a non-trivial critical manner. Once this is done, the asymptotic analysis of the
RHP for OPs that we perform carries over mostly with minor modifications, and the
only major issue to overcome is in the construction of a new local parametrix �̃n near
this soft edge point and its corresponding asymptotic analysis. In this case, we expect
that �̃n → �̃0 for a new function �̃0. It is relatively simple to write a RHP that should
be satisfied by this �̃0, and we expect it to be related to the KdV hierarchy [33] but
with nonstandard initial data. It would be interesting to see if the particular solutions
obtained this way reduce to integro-differential hierarchies of Painlevé equations, in the
same spirit of the recent works [26,58].

One could also consider similar statistics to (2.3) with a Q that vanishes at a bulk
point of suppμV . We do expect that most of our work carries through to this situation,
at least when we impose V to be again one-cut regular and Q to vanish quadratically
at a point inside suppμV . The main issue that should arise is again on the construction
of the local parametrix near this point, and its corresponding asymptotic analysis. This
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model should lead to multiplicative statistics of the Sine kernel (and the higher order
generalizations of it). Similar considerations go through to hard-edge models, leading
to multiplicative statistics of the Bessel process. To our knowledge, such multiplicative
statistics of Bessel and Sine have not been considered in the literature so far. However,
finite temperature versions of the Sine and Bessel kernels do have appeared, see for
instance [11,12,39,57].

3.3. Organization of the paper. The paper is organized in two parts. In the first part,
we deal with a family of RHPs �τ that contains the model RHP �n needed in the
asymptotic analysis of OPs. In Section 4 we introduce �τ formally. In Sects. 5 and
6 we discuss the RHP �0, which is a particular case of �τ , and review several of its
properties, translating results from [27,28] to our notation and needs. In Sect. 7 we prove
the convergence �τ → �0 and of related quantities in the appropriate sense. The latter
section contains all the needed results for the asymptotic analysis of the RHP for OPs,
and concludes the first part of this paper.

The second part of the paper is focused on the asymptotic analysis of the RHP for
OPs. In Sect. 8 we discuss several aspects that relate to the equilibrium measure. In
Sect. 9 we introduce the Christoffel-Darboux kernel KQ

n and related quantities, and
display how they relate to the RHP for OPs. In particular, in Proposition 9.1 we write LQ

n

directly as an integral of the kernel KQ
n , a result which may be of independent interest.

In Sect. 10 we perform the asymptotic analysis of the RHP for the OPs. In Sect. 11
we use the conclusions from Sects. 10 and 7 and prove Theorems 2.4 and 2.5. Also
from the results from Sects. 10 and 7 and assuming additional technical estimates, the
proof of Theorem 2.2 is given in Sect. 11. Such remaining technical estimates are also
ultimately a consequence of the RHP analysis, but their proofs are rather cumbersome
and postponed to Sect. 12.

For the remainder of the paper it is convenient to denote

e1 ..=
(
1
0

)
, e2 ..=

(
0
1

)
, E jk

..= e jeTk , (3.1)

so E jk is a 2 × 2 matrix with the ( j, k)-entry equals 1 and all other entries zero. With
this notation, the Pauli matrices, for instance, take the form

I ..= E11 + E22, σ 1
..= E12 + E21, σ 2

..= −iE12 + iE21, σ 3
..= E11 − E22. (3.2)

In particular, for any reasonably regular scalar function f , the spectral calculus yields

f (z)σ 3 =
(
f (z) 0
0 1/ f (z)

)
. (3.3)

These notations will be used extensively in the coming sections.

4. A Model Riemann–Hilbert Problem

In this section we discuss a model Riemann–Hilbert Problem that will be used in the
construction of a local parametrix in the asymptotic analysis for the orthogonal poly-
nomials. As such, this model problem plays a central role in obtaining all our major
results.
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R

iR

Σ0

Σ1

Σ2

Σ3

2π
3

Fig. 2. The contours �0, �1, �2 and �3 in (4.1) that constitute �

4.1. The model problem. Set

�0
..=[0,+∞), �1

..=[0, e2π i/3), �2
..=(−∞, 0], �3

..=[0, e−2π i/3), � ..=
3⋃

j=0

� j ,

(4.1)
orienting �0 from the origin to ∞, and the remaining arcs from ∞ to the origin, see
Fig. 2.

The model RHP we are about to introduce depends on a function h : � → C used
to describe its jump. For the moment we assume

h ∈ C∞(�), h(z) ∈ R for z ∈ R, and lim inf
z→∞
z∈�

Re h(z)

|z| > 0.

These conditions are present only to ensure the RHP below is well posed and are far from
optimal, but enough for our purposes. Later on we will impose more conditions on this
function h, these conditions will be tailored to our later needs regarding the asymptotic
analysis of OPs.

The associated RHP asks for finding a 2 × 2 matrix-valued function � with the
following properties.

�-1. The matrix � = �(· | h) : C\� → C
2×2 is analytic.

�-2. Along the interior of the arcs of � the function � admits continuous boundary
values �± related by �+(ζ ) = �−(ζ )J�(ζ ), ζ ∈ �, with

J�(ζ ) ..=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I +
1

1 + e−h(ζ )
E12, ζ ∈ �0,

I + (1 + e−h(ζ ))E21, ζ ∈ �1 ∪ �3,

1

1 + e−h(ζ )
E12 − (1 + e−h(ζ ))E21, ζ ∈ �2.

(4.2)
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�-3. As ζ → ∞,

�(ζ ) =
(

I +
1

ζ
�(1) +O(1/ζ 2)

)
ζ σ 3/4U−1

0 e− 2
3 ζ 3/2σ 3, (4.3)

where

U0
..= 1√

2

(
1 i
i 1

)
(4.4)

and �(1) = �(1)(h) is a matrix that depends on the choice of function h but it is
independent of ζ .

�-4. The matrix � remains bounded as ζ → 0.

Given h, it is not at all obvious that the RHP above has a solution and how to describe
it.We study thismodel problemwhenh = hτ depends on an additional large parameter τ ,
in a way that appears naturally in the asymptotic analysis of the orthogonal polynomials
mentioned earlier. For large values of τ , we then prove that the solution � exists and is
asymptotically close to a model RHP that appeared recently [27] and that we discuss in
a moment.

4.2. The model RHP with admissible data. For us, we need to consider the model prob-
lem� = �(· | h)with functions h = hτ satisfying certain properties which are formally
introduced in the next definition.

Definition 4.1. We call a function hτ : � → C admissible if it is of the form

hτ (ζ ) = hτ (ζ | s) = s + τH
(

ζ

τ

)
, ζ ∈ �, τ > 0, s ∈ R,

where H is defined on a neighborhood S of � and satisfies the following properties.

(i) The function H is independent of τ and s, of class C∞ on S and real-valued along
R.

(ii) H is analytic on a disk Dδ(0) ⊂ S centered at the origin, and its unique zero on Dδ(0)
is at ζ = 0, with

t ..= −H′(0) > 0.

(iii) There exist constants η, η̂ > 0 for which

ReH(w) > η|w| for w ∈ �1 ∪ �2 ∪ �3,

and

−η̂w3/2−ε < H(w) < −ηw for w ∈ �0,

for some ε ∈ (0, 1/2].
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Conditions (i)–(ii), and also the bounds in (iii) involving η, are natural in our setup.
The bound H(w) > −η̂w3/2−ε is present for technical reasons, and it plays a role
only for the proof of Lemma 7.4, allowing us to write certain estimates in a cleaner
matter. It could be removed, at the cost of slightly more complicated error terms in the
mentioned Lemma. For our purposes, namely to use� = �(· | hτ ) as a local parametrix
with an appropriate hτ , this condition is satisfied anyway (this will be accomplished in
Proposition 8.3), so we include it in our definition here as well, as it simplifies our
analysis.

In the course of the analysis for the RHP for the orthogonal polynomials discussed
in Sect. 9, the function H will be a transformation of the function Q appearing in the
deformed weight (2.16), and the parameter t that we defined here will play the same role
as the one in the definition (2.7).

Given an admissible hτ , we denote

�τ (ζ ) ..= �(ζ | h = hτ (· | s)). (4.5)

We are interested in the asymptotic analysis for �τ as τ → +∞ and s ≥ −s0, for any
s0 > 0, and t > 0 kept fixed within a compact of the positive axis.

We now explain in an ad hoc manner the appearance of a RHP for the integro-
differential equation, which also relates to the KPZ equation. Definition 4.1-(ii) gives
that H has an expansion of the form

H(ζ ) = −tζ(1 +O(ζ )), |ζ | ≤ δ,

This means that any admissible function hτ satisfies

hτ (ζ ) = s − tζ
(
1 +O(ζ τ−1)

)
, |ζ | ≤ δτ.

In particular, the convergence

hτ (ζ ) → h0(ζ ) = h0(ζ | s, t) ..= s − tζ, (4.6)

holds true uniformly in compacts as τ → ∞. This indicates that the solution �τ should
converge to the solution

�0
..= �(· | h = h0) (4.7)

of the model problem obtained from h0. The RHP-�0 relates to the integro-differential
PII and is a rescaled version of an RHP that appears in the description of the narrow
wedge solution to the KPZ equation, as we discuss in the next section in detail.

5. The RHP for the Integro-Differential RHP

For the choice
h(KPZ)(ζ ) = h(KPZ)(ζ | s, T ) ..= −T 1/3(s + ζ ) (5.1)

the corresponding solution of the RHP–�

�(KPZ)(ζ ) = �(KPZ)(ζ | s, T ) ..= �(ζ | h = h(KPZ)(· | s, T ))

appeared for the first time in the work of Cafasso and Clayes [27] (this is the RHP-� in
Section 2 therein) in connection with the narrow wedge solution to the KPZ equation as
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we explain in a moment, in Sect. 5.1. To avoid confusion with the related quantities that
we are about to introduce, we term it the KPZ RHP. In virtue of the identity

h0(ζ | s, t) = h(KPZ)(ζ | s = −s/t, T = t3)

which follows from (4.6) and (5.1), we also have the correspondence

�0(ζ | s, t) = �(KPZ)(ζ | s = −s/t, T = t3), (5.2)

and we refer to �0 as the id-PII RHP. For the record, we state the existence of �0
formally as a result.

Proposition 5.1. For any s ∈ R and any t > 0, the solution �0 exists and is unique.
Furthermore, for any fixed s0 > 0 and t0 ∈ (0, 1), the solution�0,+(ζ ) remains bounded
for ζ in compacts of R and s ≥ −s0, t0 ≤ t ≤ 1/t0.

Proof. It is a consequence of [27, Section 2] that the solution �(KPZ)(· | s, T ) exists and
is unique, for any s ∈ R and T > 0, and from the correspondence (5.2) the existence
and uniqueness of �0 is thus granted.

For the boundedness, we start from the representation

�0(ζ ) = I +
1

2π i

∫

�

�0,−(s)(J�0(s) − I)
s − ζ

ds, ζ ∈ C\�,

which follows from the L p theory of RHPs (see [43]). The jump matrix admits an
analytic continuation to any neighborhood of the real axis, and this analytic continuation
remains bounded in compacts, also uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0 (see for
instance (5.9) for the exact expression). With these observations in mind, the claimed
boundedness follows from standard arguments. We skip additional details, but refer to
the proof of Theorem 7.1, in particular (7.16) et seq., for similar arguments in a more
involved context. 
�

In this section we collect several results on �0 that were obtained in [27,28] and
which will be needed later.

But before proceeding, a word of caution. As we said, the RHP–�(KPZ) appeared first
in [27], but was also studied in the subsequent work [28]. The meanings for the variables
s, x and t in these two works are not consistent, but we need results from both of them.
Comparing to the work [27] by Cafasso and Claeys, the correspondence is

sCC = −s
t

and TCC = t3. (5.3)

This correspondence is consistent with (5.2). On the other hand, when comparing to
the subsequent work [28] by Cafasso, Claeys and Ruzza, the correspondence between
notations is

tCCR = 1

t3/2
, xCCR = − s

t3/2
, that is xCCR = −S, tCCR = T, (5.4)

where T,S are as in (2.17).
In our asymptotic analysis, the most convenient choice of variables to work with is

the choice (s, t) and the correspondence (S,T) from (2.17) that we have already been
using, and which leads to the RHP �0 as we introduced. Nevertheless, we will need
to collect results from both mentioned works, and when the need arises we refer to the
correspondences of variables (5.3)–(5.4).

On the other hand, when making correspondence with integrable systems, in partic-
ular the integro-differential Painlevé II equation, it is more convenient to work with the
variables S and T as in (2.17).
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5.1. Properties of the id-PII parametrix. In this sectionwe describemany of the findings
from [27,28], in a way suitably adapted to our notation and needs. In particular the
connection of �0 introduced in (4.7) with the integro-differential Painlevé II equation
is described in this section.

For

�(KPZ)(ζ ) = �(KPZ)(ζ | s, T ) ..=
{

I, ζ > 0,

I + (1 + eT
1/3(ζ+s))E21, ζ < 0,

(5.5)

the identity

∂s logLAi(s, T ) = T 1/3

2π i

∫ ∞

−∞
eT

1/3(x+s)

(1 + eT 1/3(x+s))2

[
(�(KPZ)(x)−1�(KPZ)

+ (x)−1(�(KPZ)

+ �(KPZ))′(x)
]

21
dx,

(5.6)
was shown in [27, Theorem 2.1] and will also be useful for us.With (5.2) we now rewrite
this identity in terms of �0. With the principal branch of the argument, set

�0(ζ ) = �0(ζ | s, t) ..=
{

I, | arg ζ | < 2π
3 ,

I + (1 + e−s+tζ )E21, | arg ζ | > 2π
3 .

(5.7)

This function relates to �(KPZ) in (5.5) via

�0,+(ζ ) = �(KPZ)(ζ | s = −s/t, T = t3), ζ ∈ R,

and (5.6) rewrites as

∂s logLAi(s = −s/t, T = t3) = t
2π i

∫ ∞

−∞
etx−s

(1 + etx−s)2

[
(�0(x)

−1�0,+(x)
−1(�0,+�0)

′(x)
]

21
dx .

(5.8)
For further reference, it is now convenient to state the RHP for �0 explicitly.

�0-1. The matrix �0 : C\� → C
2×2 is analytic.

�0-2. Along the interior of the arcs of � the function �0 admits continuous boundary
values �0,± related by �0,+(ζ ) = �0,−(ζ )J�0(ζ ), ζ ∈ �, with

J�0(ζ ) ..=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I +
1

1 + e−s+tζ E12, ζ ∈ �0,

I + (1 + e−s+tζ )E21, ζ ∈ �1 ∪ �3,

1

1 + e−s+tζ E12 − (1 + e−s+tζ )E21, ζ ∈ �2.

(5.9)

�0-3. As ζ → ∞,

�0(ζ ) = (I +O(1/ζ )) ζ σ 3/4U−1
0 e− 2

3 ζ 3/2σ3 , (5.10)

where we recall that U0 is given in (4.4) and the principal branch of the roots are
used.

�0-4. The matrix �0 remains bounded as ζ → 0.
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To compare with [28] we perform a transformation of this RHP. All the calculations
that follow already take into account the correspondence (5.4) between the notation in
the mentioned work and our notation.

With �0 as in (5.7) and introducing

ξ = ξ(ζ ) = −s + tζ, with inverse ζ = ζ(ξ) = ξ + s
t

,

we transform

�0(ξ) =
(

I +
is2

4t3/2
E12

)
tσ 3/4�0(ζ(ξ)) ×

{
�0(ζ(ξ)), Im ξ > 0, arg(ζ(ξ)) �= 2π/3,

�0(ζ(ξ))−1, Im ξ < 0, arg(ζ(ξ)) �= −2π/3.
(5.11)

Then �0 satisfies the following RHP.

�0-1. The matrix �0 : C\R → C
2×2 is analytic.

�0-2. Along R the function �0 admits continuous boundary values �0,± related by

�0,+(ξ) = �0,−(ξ)

(
I +

1

1 + eξ
E12

)
, ξ ∈ R.

�0-3. For any δ ∈ (0, 2π/3), as ξ → ∞ the matrix �0 has the following asymptotic
behavior,

�0(ξ) = (I +O(1/ξ)) ξσ 3/4U−1
0 e

−t−3/2
(
2
3 ξ3/2+sξ1/2

)
σ3

×
{

I, | arg ξ | ≤ π − δ,

I ± E21, π − δ < ± arg ξ < π.
(5.12)

This RHP is the same RHP considered in [28, page 1120] (in fact, the keen reader
will notice a sign difference between the last term in the right-hand side of (4.3) and
the corresponding term in [28, page 1120], but the latter is a typo) with the choice
σ(r) = (1 + e−r )−1 therein and the correspondence of variables (5.4).

As a consequence, and with the change of variables (s, t) �→ (S,T) from (2.17), we
obtain that for some functions Q = Q(S,T),R = R(S,T),P = P(S,T) and

q = q(s, t) = Q(S,T), r = r(s, t) = R(S,T), p = p(s, t) = P(S,T), (5.13)

the asymptotic behavior (5.12) improves to

�0(ξ) =
(

I +
1

ξ

(
q −ir
ip −q

)
+O(ξ−2)

)
ξσ 3/4U−1

0

× e
−t−3/2

(
2
3 ξ3/2+sξ1/2

)
σ3 ×

{
I, | arg ξ | ≤ π − δ,

I ± E21, π − δ < ± arg ξ < π,
ξ → ∞.

(5.14)

Stressing that the correspondence (5.4) is in place, the functions P and Q satisfy the
relation [28, Equation (3.14)]

∂SP(S,T) = 2Q(S,T) + P(S,T)2.
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Furthermore, from [28, Equations (3.12),(3.16), Theorem 1.3 and Corollary 1.4] we see
that �0 takes the form

�0(ξ | s, t) = √
2π e− π i

4 σ 3 (I − p(s, t)E12)

(−∂S�(ξ | S,T) ∗
−�(ξ | S,T) ∗

)
e

π i
4 σ 3 , (5.15)

where � = �(ξ | S,T) solves the NLS equation with potential 2∂SP,

∂2S�(ξ | S,T) = (ξ + 2∂SP(S,T))�(ξ | S,T).

In addition, P and � are related through the identity (2.21) which, in turn, implies that
� is the solution to the integro-differential Painlevé II equation in (2.11).

It is convenient to write some quantities of�0 directly in terms of the just introduced
functions. The first identity we need for later is

[
(�0(ζ(v) | s, t)�0(ζ(v) | s, t))−1 �0(ζ(u) | s, t)�0(ζ(u) | s, t)

]

21,+

= −2π i (�(u | S,T)(∂S�)(v | S,T) − �(v | S,T)(∂S�)(u | S,T)) (5.16)

which follows from (5.11) and (5.15) after a straightforward calculation, accounting also
that det�0 = det�0 ≡ 1.

The second relation we need is an improvement of the asymptotics of �0 in (5.10).
With the coefficients

c1 = c1(s, t) ..= − s2

4t3/2
, c2 = c2(s, t) ..= s4

32t3
, c3 = c3(s, t) ..= −s3(s3 − 16t3)

384t9/2
,

and the functions q, r,p in (5.13), introduce

�
(1)
0

..= 1

t

⎛

⎝
−s
4
+ q + c2 − c1p − c21 it−1/2

(
−r − 2qc1 +

s
2
c1 + pc21 + c1c2 − c3

)

it1/2(p + c1)
s
4

− q + pc1 + c2

⎞

⎠ .

(5.17)
After some cumbersome but straightforward calculations, the asymptotics (5.14)
improves (5.10) to

�0(ζ ) =
(

I +
�

(1)
0

ζ
+O(ζ−2)

)
ζ σ 3/4U−1

0 e− 2
3 ζ 3/2σ 3 , ζ → ∞.

6. Bounds on the id-PII RHP

We need to obtain certain asymptotic bounds on �0 in different regimes. These bounds
will be used later to show that the model problem �τ converges, as τ → +∞, to
�0 as already indicated in (4.5) et seq. We split these necessary estimates in the next
subsections, depending on the regime we are in.

In what follows, for a matrix-valued function M = (M jk) and a contour � ⊂ C, we
also use the pointwise matrix norm

|M(ζ )| ..= max
j,k

|M j,k(ζ )|, (6.1)
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and the matrix L p norm (possibly also with p = ∞)

‖M‖L p(�)
..= max

j,k
‖M j,k‖L p(�), (6.2)

where the measure is always understood to be the arc-length measure. In particular, for
any two given matrices M1 and M2 the inequality

‖M1M2‖L∞(�) ≤ 2‖M1‖L∞(�)‖M2‖L∞(�)

is satisfied. Similar straightforward inequalities involving L1, L2 and L∞ and the point-
wise norm (6.1) also hold, and will be used without further mention. Sometimes we also
write

‖M‖L p∩Lq (�)
..= max

{‖M‖L p(�), ‖M‖Lq (�)

}
, (6.3)

to identify that possible convergences are taking place in various norms simultaneously.

6.1. The singular regime. The first asymptotic regime we consider is

s ≥ s0 and t0 ≤ t ≤ 1

t0
,

where t0 ∈ (0, 1) is any given value, and s0 = s0(t0) > 0 will be made sufficiently large
depending on t0 > 0, but independent of t within the range above. With (5.4) in mind,
this is a particular case of the singular regime in [28].

For this asymptotic regime, we need the following result.

Proposition 6.1. For any t0 ∈ (0, 1) there exists s0 = s0(t0) > 0, M = M(t0) > 0 and
η = η(t0) > 0 such that the inequalities

∣∣∣�0,+(ζ )E12�0,+(ζ )−1
∣∣∣ ≤ M e−ηRe(ζ 3/2), ζ ∈ �0,

∣∣∣�0,+(ζ )E21�0,+(ζ )−1
∣∣∣ ≤ M e−ηRe(ζ 3/2), ζ ∈ �1 ∪ �3, and

∣∣∣�0,+(ζ )E22�0,+(ζ )−1
∣∣∣ ≤ M |ζ |1/2, ζ ∈ �2,

hold true for any s ≥ s0 and any t ∈ [t0, 1/t0].
The proof of Proposition 6.1 is a recollection of the analysis in [28], so before going

into the details we need to review some further notions from their work.
Introduce

�Ai(ζ ) ..= −√
2π ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Ai′(ζ ) − e2π i/3 Ai′(e−2π i/3 ζ )

i Ai(ζ ) −i e−2π i/3 Ai(e−2π i/3 ζ )

)
, Im ζ > 0,

(
Ai′(ζ ) e−2π i/3 Ai′(e2π i/3 ζ )

i Ai(ζ ) i e2π i/3 Ai(e2π i/3 ζ )

)
, Im ζ < 0.

(6.4)

This is thematrix appearing in [28, Equation (2.5)].With the correspondence of variables
(5.4) in mind, when we combine our identity (5.11) with [28, Equation (2.8)], we obtain
the equality

�0(ζ ) = Y(ζ )�Ai(ζ ) ×
{

I, −2π/3 < arg ζ < 2π/3,
I ∓ (1 + e−s+tζ )E21, 2π/3 < ± arg ζ < π.

(6.5)
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The exact form of the matrix Y is not important for us, but we can interpret this last
equality as a defining identity for Y. What is important for us is that Y is analytic off
the real axis, with a jump matrix JY on R which admits an analytic continuation to a
neighborhood of the axis.

The small norm theory for Y in our regime of interest was carried out in [28,
Lemma 5.1 and Section 5.2]. As a consequence, we obtain that for any t0 > 0 there exist
M = M(t0) > 0, s0 = s0(t0) > 0, η = η(t0) > 0 such that the inequalities

‖JY − I‖L∞∩L1(R) ≤ M e−ηs, and ‖Y± − I‖∩L∞∩L1(R) ≤ M e−ηs

hold for any s ≥ s0 and any t ∈ [t0, 1/t0]. Also as a consequence of the small norm
theory, we obtain the expression

Y(ζ ) = I +
1

2π i

∫

R

Y−(x)(JY(x) − I)
x − ζ

dx, ζ ∈ C\R.

We combine this last identity with the fact that JY admits an analytic continuation in a
neighborhood of R, and learn that there exists M = M(t0) > 0 for which

|Y(ζ )±1| ≤ M, (6.6)

for every ζ ∈ C, s ≥ s0 and t ∈ [t0, 1/t0].
Proof (Proof of Proposition 6.1). For ζ ∈ �0 = (0,∞), we use (6.5) and the definition
of �Ai in

�0,+(ζ )E12�0,+(ζ )−1 = 2πY+(ζ )

(−i Ai(ζ )Ai′(ζ ) Ai′(ζ )2

Ai(ζ )2 i Ai(ζ )Ai′(ζ )

)
Y+(ζ )−1

Using the bound (6.6), the continuity and the known asymptotics as ζ → ∞ of the Airy
function and its derivative, the claim along �0 follows.

The claim for ζ ∈ � j with j = 1, 2, 3 follows in exactly the same explicit manner,
we skip the details. 
�

6.2. The non-asymptotic regime. In the non-asymptotic regime, we fix any t0 ∈ (0, 1)
and s0 > 0 and seek for bounds of certain entries of�0 which are valid uniformly within
the range

|s| ≤ s0 and t0 ≤ t ≤ 1

t0
.

For the next result, we recall the matrix norm introduced in (6.1).

Proposition 6.2. Fix any values t0 ∈ (0, 1) and s0 > 0. There exist M = M(s0, t0) > 0
and η = η(s0, t0) > 0 for which the estimates

∣∣∣�0,+(ζ )E12�0,+(ζ )−1
∣∣∣ ≤ M e−ηRe(ζ 3/2), ζ ∈ �0,

∣∣∣�0,+(ζ )E21�0,+(ζ )−1
∣∣∣ ≤ M e−ηRe(ζ 3/2), ζ ∈ �1 ∪ �3, and

∣∣∣�0,+(ζ )E22�0,+(ζ )−1
∣∣∣ ≤ M |ζ |1/2, ζ ∈ �2.

hold true uniformly for |s| ≤ s0 and t0 ≤ t ≤ t−1
0 .
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Proof. The asymptotic behavior as ζ → ∞ in the RHP–�0 is valid uniformly up to
the boundary values �0,± as well, and also uniformly when the parameters s and t vary
within compact sets, implying that

|�0,+(ζ )E12�0,+(ζ )−1| ≤ e− 4
3 Re(ζ

3/2) |ζ σ 3/4U−1
0 E12U0ζ

−σ 3/4|(1 +O(ζ−1)), ζ → ∞.

Combined with the continuity of the boundary value �0,+ with respect to both ζ

and also s, t, the first estimate follows. The remaining estimates are completely
analogous. 
�

7. Asymptotic Analysis for the Model Problem with Admissible Data

We now carry out the asymptotic analysis as τ → +∞ of �τ introduced in (4.5). For
that, we fix s0 > 0 and t0 ∈ (0, 1) and work under the assumption that

τ → +∞ with s ≥ −s0 and t0 ≤ t ≤ 1

t0
. (7.1)

During this section, hτ always denotes an admissible function in the sense of Defini-
tion 4.1, and �τ is the solution to the associated RHP.

We also talk about uniformity of error terms in the parameter t ranging on a compact
interval K ⊂ (0,∞), and by this we mean the following. The solution �τ depends on
the parameter t via the derivative H′(0) = −t, see Definition 4.1. We view H = Ht
as varying with t while keeping all the remaining derivatives H(k)(0), k �= 1 fixed.
By analyticity this determines H uniquely at Dδ(0), but not outside this disk. We then
consider Ht outside Dδ(0) to be any extension from Dδ(0) that satisfies Definition 4.1
with the additional requirement that the constants η, η̂ and ε in (iii) may depend on K but
are independent of t ∈ K . Of course, for each Ht extended this way there corresponds a
solution �τ of the associated RHP. By uniformity in t ∈ K we mean that the error may
depend on K and the corresponding values η, η̂ and ε, but is valid for any �τ obtained
with an extension Ht constructed with the explained requirement.

The asymptotic analysis itselfmakes use of somewhat standard arguments and objects
in the RHP literature. Some consequences of this asymptotic analysis will be needed
later, and we now state them.

The first such consequence is the existence of a solution with asymptotic formulas
relating quantities of interest with the corresponding quantities in the id-PII RHP.

Theorem 7.1. Fix an admissible function hτ in the sense of Definition 4.1. There exists
τ0 = τ0(s0, t0) > 0 for which for any τ ≥ τ0 and any s, t as in (7.1), the RHP for
�(· | hτ ) admits a unique solution � = �τ as in (4.5).

Furthermore, for any κ ∈ (0, 1), the coefficient �(1) = �
(1)
τ in the asymptotic

condition (4.3) satisfies

�(1)
τ = �

(1)
0 +O(τ−κ), τ → +∞, (7.2)

where �
(1)
0 is as in (5.17) and the error term is uniform for s, t as in (7.1). Also, still for

κ ∈ (0, 1) the asymptotic formula

�τ,+(x) =
(

I +O
(

1

τκ(1 + |x |)
))

�0,+(x), τ → +∞ (7.3)

holds true uniformly for x ∈ � with |x | ≤ τ (1−κ)/2, and uniformly for s, t as in (7.1).
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The second consequence connects the solution �τ directly with the statistics Q. For
its statement, set

�τ (x) ..= I + (1 + e−hτ (x))χ(−∞,0)(x)E21, x ∈ R.

Theorem 7.2. Fix a, b > 0, s0 > 0 and t0 ∈ (0, 1). For any κ ∈ (0, 1), the estimate

1

2π i

∫ ∞

s

∫ τb

−τa

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dxdu

= − log LAi(−s/t, t3) +O(τ−κ)

holds as τ → +∞, uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

For the proof of these results, we compare�τ with the solution�0 of the id-PII RHP
via the Deift-Zhou nonlinear steepest descent method. The required asymptotic analysis
itself is carried out Sect. 7.1, and the proofs of Theorems 7.1 and 7.2 are completed in
Sect. 7.2.

7.1. Asymptotic analysis. For �0 as introduced in (5.2) and whose properties were
discussed in Sect. 5.1, we perform the transformation

�τ (ζ ) = �τ (ζ )�0(ζ )−1, ζ ∈ C\�. (7.4)

Then �τ satisfies the following RHP.

�τ -1. The matrix �τ : C\� → C
2×2 is analytic.

�τ -2. Along the interior of the arcs of � the function �τ admits continuous boundary
values �τ,± related by �τ,+(ζ ) = �τ,−(ζ )J�τ

(ζ ), ζ ∈ �. With

λ0(ζ ) ..= 1

1 + e−h0(ζ )
, λτ (ζ ) ..= 1

1 + e−hτ (ζ )
,

where h0 is as in (4.6), the jump matrix J�τ
is

J�τ (ζ ) ..=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I + (λτ (ζ ) − λ0(ζ )) �0,+(ζ )E12�0,+(ζ )−1, ζ ∈ �0,

I +
(

1

λτ (ζ )
− 1

λ0(ζ )

)
�0,+(ζ )E21�0,+(ζ )−1, ζ ∈ �1 ∪ �3,

λτ (ζ )

λ0(ζ )
�0,+(ζ )E11�0,+(ζ )−1 +

λ0(ζ )

λτ (ζ )
�0,+(ζ )E22�0,+(ζ )−1, ζ ∈ �2.

(7.5)

�τ -3. For �
(1)
τ and �

(1)
0 the residues at ∞ of �τ and �0, respectively, the matrix �τ

has the asymptotic behavior

�τ (ζ ) = I +
1

ζ
(�(1)

τ − �
(1)
0 ) +O(1/ζ 2) as ζ → ∞. (7.6)

�τ -4. The matrix �τ remains bounded as ζ → 0.

The next step is to verify that the jumpmatrix decays to the identity in the appropriate
norms. The terms in the jump that come from �0 are precisely the ones we already
estimated in Sects. 6.1 and 6.2, so it remains to estimate the terms involving the λ-
functions. The basic needed estimate is the following lemma.
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Lemma 7.3. Fix ν ∈ (0, 1/2) and t0 ∈ (0, 1). The estimate

eh0(ζ )−hτ (ζ ) = 1 +O(ζ 2/τ), τ → ∞,

holds true uniformly for |ζ | ≤ τ ν and uniformly for t0 ≤ t ≤ 1/t0, where the error term
is independent of s ∈ R.

Proof. The Definition 4.1 of admissibility of hτ ensures that for τ sufficiently large, we
can expand the term H(ζ/τ) in power series near the origin and obtain the expansion

hτ (ζ ) = s − tζ +O(ζ 2/τ), τ → +∞,

valid uniformly for |ζ | ≤ τ ν , t0 ≤ t ≤ 1/t0, and with error independent of s ∈ R.
Recalling that h0(ζ ) = s − tζ , the proof is complete. 
�

We are now able to prove the appropriate convergence of J�τ
to the identity matrix.

We split the analysis into three lemmas, corresponding to different pieces of the contour
�. In the results that follow we use the matrix norm notations introduced in (6.1)–(6.3).

Lemma 7.4. Fix t0 ∈ (0, 1), s0 > 0 and ν ∈ (0, 1/2). There exist τ0 = τ0(t0, s0, ν) >

0, M = M(t0, s0, ν) > 0 and η = η(t0, s0, ν) > 0 for which the inequality

‖J�τ
− I‖L1∩L∞(�0)

≤ M e−smax
{
τ−1+2ν, e−ητ 3ν/2

}

holds true for any τ ≥ τ0, s ≥ −s0 and t ∈ [t0, 1/t0].
Proof. Because both hτ and h0 are real-valued along the real line, the inequality

|λτ (ζ ) − λ0(ζ )| = | e−hτ (ζ ) − e−h0(ζ ) |
(1 + e−hτ (ζ ))(1 + e−h0(ζ ))

≤ | e−hτ (ζ ) − e−h0(ζ ) |

is immediate. For 0 ≤ ζ ≤ τ ν , we then use Lemma 7.3 and the explicit expression for
h0 in (4.6) and obtain

|λτ (ζ ) − λ0(ζ )| = O
(
e−s+tζ

τ 1−2ν

)
. (7.7)

For ζ ≥ τ ν , we instead use that both hτ and h0 are real-valued along the positive axis
and write

|λτ (ζ ) − λ0(ζ )| ≤ |λτ (ζ ) − 1| + |λτ (ζ ) − 1|
= e−s+tζ

1 + e−s+tζ +
e−s−τH(ζ/τ)

1 + e−s−τH(ζ/τ)
≤ e−s

(
etζ + e−τH(ζ/τ)

)
.

From Definition 4.1-(iii) we bound e−τH(ζ/τ) ≤ eη̂ζ 3/2−ε
and simplify the last inequality

to

|λτ (ζ ) − λ0(ζ )| ≤ e−s eη̃ζ α

, ζ ≥ τ ν, α ..= max{1, 3/2 − ε} <
3

2
, (7.8)

for a new value η̃ > 0.
Recall that J�τ

was given in (7.5). We use (7.7) and (7.8) in combination with
Propositions 6.1 and 6.2 to get the existence of a value τ0 > 0 for which

|J�τ
(ζ ) − I| ≤ M e−s e−ηζ 3/2

(
χ(0,τ ν )(ζ )

etζ

τ 1−2ν + eη̃ζ α

χ(τν ,+∞)(ζ )

)
, τ ≥ τ0,

(7.9)
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where η > 0, M > 0 may depend on s0, t0 and ν ∈ [0, 1/2), but are independent of
s ≥ −s0 and t0 ≤ t ≤ 1/t0. After appropriately changing the values of η̃, η, M , and
having in mind that α < 3/2, the result follows from this inequality. 
�

Next, we prove the equivalent result along the pieces of � which are not on the real
line.

Lemma 7.5. Fix t0 ∈ (0, 1),s0 > 0 and ν ∈ (0, 1/2). There exist τ0 = τ0(t0, s0, ν) > 0,
M = M(t0, s0, ν) > 0 and η = η(t0, s0, ν) > 0, for which the inequality

‖J�τ
− I‖L1∩L∞(�1∪�3)

≤ M e−smax
{
τ−1+2ν, e−ητ 3ν/2

}

holds true for any τ ≥ τ0, s ≥ −s0 and t ∈ [t0, 1/t0].
Proof. Write

1

λτ (ζ )
− 1

λ0(ζ )
= e−hτ (ζ ) − e−h0(ζ ) = − e−s+tζ (1 − eh0(ζ )−hτ (ζ )).

From Lemma 7.3, we estimate for 0 ≤ |ζ | ≤ τ ν ,

1

λτ (ζ )
− 1

λ0(ζ )
= O

(
e−s+tRe ζ

τ 1−2ν

)
, τ → ∞,

where the implicit error term is independent of s and uniform for t ∈ [t0, 1/t0]. On the
other hand, from the explicit form of h0 and Definition 4.1-(iii),

∣∣∣∣
1

λτ (ζ )
− 1

λ0(ζ )

∣∣∣∣ ≤ e−s
(
etRe ζ + e−η|ζ |) .

We combine this inequality with Propositions 6.1 and 6.2 and use them on (7.5). The
conclusion is that there exist M > 0, η1, η2 > 0 and τ0 > 0, depending on ν, t0, s0, for
which the inequality

∣∣J�τ (ζ ) − I
∣∣ ≤ M e−s e−η1 Re ζ 3/2+η2 Re ζ

(
1

τ 1−2ν χ{|ζ |≤τν }(ζ ) + χ{|ζ |≥τν }(ζ )

)
, ζ ∈ �1 ∪ �3,

(7.10)
is valid for every τ ≥ τ0, s ≥ −s0 and t ∈ [t0, 1/t0]. The definition (4.1) of the contours
�1 and �3 assure us that Re ζ 3/2 > 0 and Re ζ < 0 on these contours. After possibly
changing the values of the constants η1, η2 and M , the result follows. 
�

Finally, we now handle the jump on the negative axis.

Lemma 7.6. Fix t0 ∈ (0, 1), s0 > 0 and ν ∈ (0, 1/2). There exist τ0 = τ0(t0, s0, ν) >

0, M = M(t0, s0, ν) > 0 and η = η(t0, s0, ν) > 0 for which the inequality

‖J�τ
− I‖L1∩L∞(�2)

≤ M e−smax
{
τ−1+2ν, e−ητν

}

holds true for any τ ≥ τ0, s ≥ −s0 and t ∈ [t0, 1/t0].
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Proof. The initial step is to rewrite the last line of (7.5) as

J�τ
(ζ ) − I =

(
λτ (ζ )

λ0(ζ )
− 1

)
I +

(
λ0(ζ )

λτ (ζ )
− λτ (ζ )

λ0(ζ )

)
�0,+(ζ )E22�0,+(ζ )−1, ζ ∈ �2.

(7.11)
The identities

λτ (ζ )

λ0(ζ )
− 1 = e−h0(ζ ) − e−hτ (ζ )

1 + e−hτ (ζ )
,

λ0(ζ )

λτ (ζ )
− 1 = −e−h0(ζ ) − e−hτ (ζ )

1 + e−h0(ζ )
,

are trivial, and because h0 and hτ are real-valued along �2 = (−∞, 0), these equalities
give

∣∣∣∣
λτ (ζ )

λ0(ζ )
− 1

∣∣∣∣ +
∣∣∣∣
λ0(ζ )

λτ (ζ )
− 1

∣∣∣∣ ≤ 2
∣∣∣e−h0(ζ ) − e−hτ (ζ )

∣∣∣ , ζ < 0.

For |ζ | ≤ τ ν we use Lemma 7.3 and estimate
∣∣∣∣
λτ (ζ )

λ0(ζ )
− 1

∣∣∣∣ +
∣∣∣∣
λ0(ζ )

λτ (ζ )
− 1

∣∣∣∣ = O
(
e−s−t|ζ |

τ 1−2ν

)
, τ → +∞, −τ ν ≤ ζ ≤ 0,

whereas for ζ ≤ −τ ν we use instead the definition of h0 in (4.6) and Definition 4.1-(iii)
and write

∣∣∣∣
λτ (ζ )

λ0(ζ )
− 1

∣∣∣∣ +
∣∣∣∣
λ0(ζ )

λτ (ζ )
− 1

∣∣∣∣ ≤ 2 e−s−(t+η)|ζ | .

We combine these two inequalities with Propositions 6.1 and 6.2, and apply them to
(7.11). As a result, we learn that there exist M > 0, η > 0, τ0 > 0 for which the
estimate

∣∣J�τ
(ζ ) − I

∣∣ ≤ M |ζ |1/2 e−s−η|ζ |
(

1

τ 1−2ν χ(−τν ,0](ζ ) + χ(−∞,−τν)(ζ )

)
, ζ ≤ 0,

(7.12)
is valid for any s ≥ −s0, t ∈ [t0, 1/t0], τ ≥ τ0. After possibly changing the values of
η, M , the result follows from standard arguments. 
�

Now that we controlled the asymptotic behavior for the jump matrix J�τ
, we are

ready to obtain small norm estimates for �τ itself. We summarize these estimates in the
next result. For that, we recall the matrix norm notations introduced in (6.1), (6.2), (6.3).

Theorem 7.7. Fix t0 ∈ (0, 1) and s0 > 0. There exists τ0 = τ0(t0, s0) > 0 for which the
solution�τ uniquely exists for any τ ≥ τ0 and any s ≥ −s0, t ∈ [t0, 1/t0]. Furthermore,
it satisfies the following asymptotic properties.

Its boundary value �τ,− exists along �, and satisfies the estimate

‖�τ,− − I‖L2(�) = O (
τ−κ

)
, τ → +∞,

for any κ ∈ (0, 1), where the error term, for a given κ , is uniform for s ≥ −s0 and
t ∈ [t0, 1/t0].

For τ sufficiently large, the solution �τ admits the representation

�τ (ζ ) = I +
1

2π i

∫

�

�τ,−(w)(J�τ
(w) − I)

w − ζ
dw, ζ ∈ C\�. (7.13)
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Still for τ sufficiently large, �τ satisfies

�τ (ζ ) = I+�(1)
τ

1

ζ
+O(ζ−2), ζ → ∞, with �(1)

τ
..= − 1

2π i

∫

�

�τ,−(ξ)(J�τ (ξ)− I)dξ. (7.14)

Proof. The small norm estimates provided by Lemmas 7.4, 7.5 and 7.6 allow us to apply
the small norm theory for Riemann–Hilbert problems (see for instance [43,47]), and the
claims follow with standard methods. We stress that for this statement we only need the
L2 and L∞ estimates from the aforementioned lemmas, but the L1 estimates provided
by them will be useful later. 
�

7.2. Proof of main results of the section. We are ready to prove the main results of this
section.

Proof of Theorem 7.1. During the whole proof we identify ν = (1 − κ)/2.
The matrix �0 always exists, whereas Theorem 7.7 provides the existence of �τ for

τ sufficiently large. From the relation (7.4) we obtain the claimed existence of �τ .
Comparing (7.6) with (7.14) we obtain the identity

�(1)
τ = �

(1)
0 + �(1)

τ .

Writing

�(1)
τ = − 1

2π i

∫

�

(�τ,−(ξ) − I)(J�τ
(ξ) − I)dξ − 1

2π i

∫

�

(J�τ
(ξ) − I)dξ, (7.15)

and using Cauchy-Schwarz,

|�(1)
τ | ≤ ‖�τ,− − I‖L2(�)‖J�τ

− I‖L2(�) + ‖J�τ
− I‖L1(�),

and from Lemmas 7.4, 7.5, 7.6 and Theorem 7.7, the right-hand side above is O(τ−κ),
for any κ ∈ (0, 1) and uniformly for s, t as in (7.1), proving (7.2).

To prove the asymptotic formula (7.3) we follow arguments presented in [61, The-
orem 3.1] and [3, Lemma 2], with minor modifications to handle the uniformity on the
unbounded set |x | ≤ τ−ν as claimed.

First off, the jumpmatrix J�τ
isC∞ on�, in particular Hölder continuous, implying

that �τ extends continuously to its boundary values �τ,±. Accounting also for the
behavior of �τ at ∞ and combining with the maximum principle,

‖�τ‖L∞(C\�) ≤ Mτ
..= max

{‖�τ,+‖L∞(�), ‖�τ,−‖L∞(�)

}
, (7.16)

where the constant Mτ is finite. For a point x ∈ �\{0} and ε > 0, we consider the arcs
C±

ε (x) of the disk centered at x and radius ε which are on the ± side of �. We then set

�± ..= (�\Dε(x)) ∪ C±
ε (x),

with the orientation induced from �. We deform contour in the integral representation
(9.4) and then send z → x , obtaining that

�τ,±(x) = I +
1

2π i

∫

�∓
�τ,−(s)(J�τ

(s) − I)
s − x

ds. (7.17)
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From standard estimates and using (7.16), the just written equation yields

|�τ,±(x)| ≤ 1 +
1

πε
‖�τ,−‖L∞(�∓)‖J�τ

− I‖L1(�∓) ≤ 1 +
1

πε
Mτ‖J�τ

− I‖L1(�∓),

and therefore

Mτ ≤
(
1 − 1

πε
‖J�τ

− I‖L1(�∓)

)−1

. (7.18)

Lemmas 7.4, 7.5 and 7.6 provide L p estimates for J�τ
− I along �. Exploring that

�± is obtained from � after a small deformation around the point x = O(τ−ν), it is
straightforward to see that the same estimates hold in �±, which can be summarized as

|J�τ
(ζ ) − I| ≤ M e−ηmin{|ζ |,|ζ |3/2}

(
1

τκ
χ{|ζ |≤τν }(ζ ) + χ{|ζ |>τν }(ζ )

)
, ζ ∈ �±,

(7.19)
for some constants η, M > 0 which may depend on s0, t0, τ0 but are independent of
s ≥ s0, t ∈ [t0, 1/t0], τ ≥ τ0, see (7.9), (7.10) and (7.12). Combining with (7.18), we
conclude in particular thatMτ ≤ 2, for s, t, τ in the same range of values. Having inmind
(7.4), this bound on Mτ applied to (7.17) is enough to ensure that �τ,± − I = O(τ−ν),
but to obtain the decay in x for the error claimed in (7.3) a little more care is needed as
follows.

First off, we split the integral in (7.17) into two, namely along

Jx ..= {ζ ∈ �− | |ζ − x | ≥ |x |/2} and �−\Jx .
For the integral over Jx , we estimate as
∣∣∣∣
∫

Jx

�τ,−(s)(J�τ
(s) − I)

s − x
ds

∣∣∣∣ ≤ 2Mτ sup
ζ∈Jx

1

|ζ − x | ‖J�τ
− I‖L1(Jx ) = O(τ−κ |x |−1),

where we used (7.19), the fact that x = O(τ−κ) and again the boundMτ ≤ 2. Observing
that |ζ − x | ≥ ε along the remaining piece, a similar argument yields

∣∣∣∣
�τ,−(s)(J�τ

(s) − I)
s − x

∣∣∣∣ ≤ 4

ε

∣∣J�τ
(s) − I

∣∣ , s ∈ �−\Jx ,

and again from (7.19) we see that the right-hand side above decays exponentially in x
when x → ∞ and is O(τ−κ) when τ → ∞. From (7.17) we thus obtain

∣∣�τ,+(x) − I
∣∣ = O

(
1

(1 + |x |)τ κ

)
, τ → ∞,

uniformly for x ∈ �, |x | ≤ τ−ν , and uniformly for s ≥ −s0, t0 ≤ t ≤ 1/t0. In virtue of
(7.4), this proves (7.3). 
�
Remark 7.8. For admissible functions hτ , the asymptotics (4.3) as ζ → ∞ of �τ is
valid uniformly in τ, t and s, in the sense that for any t0 ∈ (0, 1) and any s0 > 0, there
exist K > 0 and R > 0 such that
∣∣∣�τ (ζ ) e

2
3 ζ 2/3σ 3 U0ζ

σ 3/4 − I
∣∣∣ ≤ K

|ζ | , whenever |ζ | ≥ R, s ≥ −s0, t0 ≤ t ≤ 1/t0,
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and we emphasize that K and R are independent of s, t. To see that this is true, in virtue
of (7.4) it is enough to show that the asymptotics (5.10) and (7.6) are uniform in the
same sense, we indicate the proof for the latter and the former is analogous.

Using the trivial identity 1/(w − ζ ) = s/(s(s − ζ )) − 1/ζ , we express (7.13) as

�τ (ζ ) = I − 1

2π iζ

∫

�

�τ,−(w)(J�τ (w) − I)dw +
1

2π iζ

∫

�

w�τ,−(w)(J�τ (w) − I)
w − ζ

dw.

Because �τ,− ∈ I + L1(�) and J�τ
− I decays pointwise exponentially fast (and

uniformly in s, t as claimed), the two integrals can be bounded uniformly in ζ, τ, s as
claimed, and the uniform decay for �τ as claimed follows.

To finish this section, it remains to prove Theorem 7.2, and to that end we first
establish a lemma.

Lemma 7.9. Fix s ∈ R and t0 ∈ (0, 1). For any ν ∈ (0, 1/2), there exists η = η(ν) > 0
independent of s, t, τ for which the estimates

∫

|x |≥τ ν

etx−u

(1 + etx−u)2

∣∣∣
[
(�0(x | u, t)−1�0,+(x | u, t)−1(�0,+�0)

′(x | u, t)
]

21

∣∣∣ dx = O(e−u−ητν

)

(7.20)
and

∫

|x |≥τ ν

ehτ (x |u)

(
1 + ehτ (x |u)

)2
∣∣∣
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21

∣∣∣ dx = O(e−u−ητν

) (7.21)

are valid as τ → ∞, uniformly for u ≥ s and t0 ≤ t ≤ 1/t0. In particular, both
integrands are integrable over R.

Proof. We prove (7.21) which is slightly more technical because the integrand depends
on τ , the estimate (7.20) follows in a similar manner.

Having in mind Remark 7.8, we use the expansion (4.3) to estimate

�τ,+(x)�τ (x) = (
1 +O(x−1)

)
xσ 3/4U−1

0

(
I + χ(−∞,0)(x) e

4
3 x

3/2
+ (1 − e−hτ (x))E21

)
e− 2

3 x
3/2
+ σ 3 , x ∈ Eτ .

Observe that the factor χ(−∞,0)(x) e
4
3 x

3/2
+ (1 − e−hτ (x)) is bounded, thanks to the facts

that x3/2+ ∈ iR and Re H > 0 for x < 0 (see Definition 4.1-(iii)). The identity above can
be differentiated, and using it we obtain the crude bound
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
= e− 4

3 x
3/2
+ O(|x |3), x ∈ Eτ ,

which is non-optimal in x , but will be enough for the coming estimates, and which is
valid uniformly for u ≥ −s0, t ∈ [t0, 1/t0] as τ → ∞. Thus, to conclude the result it is
enough to estimate each of the integrals

I− ..=
∫ −τν

−∞
|x |3 ehτ (x |u)

(1 + ehτ (x |u))2
dx and I+ ..=

∫ +∞

τν

|x |3 e
− 4

3 x
3/2

ehτ (x |u)

(1 + ehτ (x |u))2
dx .

To estimate I−, we use the inequalities v/(1 + v) ≤ 1 and 1/(1 + v) ≤ 1/v, valid for
v > 0, to estimate

ehτ (x |u)

(1 + ehτ (x |u))2
≤ e−hτ (x |u),
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and using now the inequality from Definition 4.1-(iii) along �2 = (−∞, 0), we obtain

I− ≤ e−u
∫ −τν

−∞
|x |3 e−η|x | dx = O(e−u−η̃τ ν/2)

for some η̃ > 0. In a similar manner, we also obtain that

I+ ≤ e−u
∫ +∞

τν

|x |3 e− 4
3 x

3/2+η̂x2/3−ε

dx = O(e−u−τ 3ν/2
),

where now for the last equality we used Definition 4.1-(iii) along �0 = (0,∞). 
�
Proof of Theorem 7.2. As in the previous proof, we identify κ ∈ (0, 1) from Theo-
rem 7.1 with ν = (1 − κ)/2 ∈ (0, 1/2). Thanks to (7.21),

∫ bτ

−aτ

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dx

=
∫ τν

−τν

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dx +O(e−u−ητν

),

valid as τ → ∞ and uniformly for u ≥ s and t0 ≤ t ≤ 1/t0. Next, we use Lemma 7.3
and (7.3) to ensure that

∫ τν

−τν

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dx

= (1 +O(τ−κ ))

∫ τν

−τν

eh0(x)

(1 + eh0(x))2

[
(�0(x | u, t)−1�0,+(x | u, t)−1(�0,+�0)

′(x | u, t)
]

21
dx .

With the help of the calculation

eh0(x)

(1 + eh0(x))2
= 1

(1 + eh0(x))(1 + e−h0(x))
= e−h0(x)

(1 + e−h0(x))2
= etx−u

(1 + etx−u)2

we recognize the integrand from (7.20), and then conclude that

∫ bτ

−aτ

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dx

= (1 +O(τ−κ ))

∫ ∞

−∞
etx−u

(1 + etx−u)2

[
(�0(x | u, t)−1�0,+(x | u, t)−1(�0,+�0)

′(x | u, t)
]

21
dx

+O(e−u−ητν

).

Finally, with arguments very similar to the ones used in the proof of Lemma 7.9, we see
that this remaining integral on the right-hand side is O(e−u). Everything combined, we
just proved that

∫ τb

−τa

ehτ (x |u)

(
1 + ehτ (x |u)

)2
[
�τ (x | u)−1�τ,+(x | u)−1 (�τ,+�τ

)′
(x | u)

]

21
dx

=
∫ ∞

−∞
etx−u

(1 + etx−u)2

[
(�0,+(x | u, t)�0(x | u, t))−1(�0,+�0)

′(x | u, t)
]

21
dx

+O(τ−κ e−u), τ → +∞.
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We now integrate in u ∈ [−s,+∞) and use Eq. (5.8) and the limit

lim
s→−∞ LAi(s, T ) = 1,

which is valid by dominated convergence since |1 + eα |−1 ≤ 1 for every α ∈ R, to
conclude the proof. 
�

8. The Underlying Equilibrium Measure and Related Quantities

As we mentioned earlier, one of the main objects we will analyze is the RHP for the
orthogonal polynomials associated to (2.3)–(2.4). In this analysis, the model problem
we discussed in the last few sections plays a central role, and another important quantity
is the associated equilibrium measure and related objects that we discuss in this section.

8.1. The equilibrium measure. Amajor role in our calculations is played by the equilib-
rium measure for the polynomial potential V , which is the unique probability measure
μV on R for which the quantity

∫∫
log

1

|x − y|dμ(x)dμ(y) +
∫

V (x)dμ(x)

attains its minimum over all Borel probability measures μ supported on R. Its existence
and uniqueness is assured by standard results, see for instance [69], and its regularity
that we now discuss is of particular relevance.

The measure μV is supported on a finite union of bounded intervals and is absolutely
continuous with respect to the Lebesgue measure [46]. Following Assumption 2.1-(i),
we assume that μV is one-cut, that is, it is supported on a single interval that we take to
be of the form

suppμV = [−a, 0], a > 0,

and regular, meaning that the density of μV vanishes as a square-root at a neighborhood
of the endpoints, does not vanish on (−a, 0), and the Euler-Lagrange equations are valid
with strict inequality outside the support,

∫
log

1

|x − y|dμV (y) +
1

2
V (x) + �V

{
> 0, x ∈ R\ suppμV ,

= 0, x ∈ suppμV ,
(8.1)

for some constant �V ∈ R. The notions just introduced are consistent with the notions
and notations that we already introduced and used in Sect. 2.

A transformation of the equilibrium measure of particular interest is its Cauchy
transform,

CμV (z) ..=
∫

dμV (x)

x − z
, z ∈ C\ suppμV .

Using the Euler-Lagrange identity, it can be shown that CμV satisfies an algebraic equa-
tion of the form

(
CμV (z) +

V ′(z)
2

)2

= 1

4
z(z + a)hV (z)2, z ∈ C\ suppμV , (8.2)
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for some polynomial hV which does not vanish on [−a, 0] [63,65].
We also associate to the equilibrium measure its φ function

φ(z) ..=
∫ z

0

(
CμV (s) +

1

2
V ′(s)

)
ds, z ∈ C\(−∞, 0]. (8.3)

The next result summarizes some properties of φ that will be needed later.

Proposition 8.1. The function φ has the following properties.

(i) The function φ is analytic on C\(−∞, 0].
(ii) For x ∈ (−a, 0),

φ+(x) + φ−(x) = 0, and φ+(x) − φ−(x) = −2π iμV ((x, 0)).

(iii) For x ∈ (−∞,−a),

φ+(x) − φ−(x) = −2π i.

(iv) For x ∈ R\[−a, 0],
Re φ+(x) = Re φ−(x) > 0.

(v) As z → ∞ and some constant φ∞,

φ(z) = V (z)

2
+ �V − log z +

φ∞
z

+O(z−1),

where �V is as in (8.1).
(vi) The function φ satisfies the estimate

φ(z) = 1

3
hV (0)a1/2z3/2(1 +O(z)), z → 0. (8.4)

Proof. The proof is standard using the properties of the equilibrium measure, see for
instance [42]. 
�

8.2. The conformal map. Finally, using φ we construct a conformal map ψ , introduced
formally with the next result.

Proposition 8.2. The function

ψ(z) ..=
(
3

2
φ(z)

)2/3

,

is a conformal map from a neighborhood of the origin to a disk D2δ(0), with U0
..=

ψ−1(Dδ(0)), and admits an expansion of the form

ψ(z) = cV z(1 +O(z)), z → 0, cV ..= 2−2/3hV (0)2/3a1/3 > 0. (8.5)

Proof. The proof is also standard, and follows essentially from Proposition 8.1-(iv). We
omit the details. 
�
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In the previous proposition, the factor 2δ instead of δ is chosen just for later conve-
nience, for the statement of Proposition 8.3. Later on, we use ψ only over the smaller
neighborhood Dδ(0).

As it is customary in RHP analysis, at a later stage we will need to glue the model
problem as a local parametrix for the original RHP for orthogonal polynomials. This
gluing procedure is done, in our case, using the conformal mapψ . In usual situations, the
jump matrices of the model local problem are piecewise constant or yet homogeneous,
and as such this procedure of using the conformal map does not significantly alter them.
However, in our situation the jump involves the function Q, and consequently the jump
will be altered by the conformal map in a nontrivial way.

With the next result we introduce the necessary quantities needed to keep track of
this transformation. Recall the half rays � j , j = 0, 1, 2, 3, which were introduced in
(4.1). For the next statement, we talk about neighborhoods of � j , by which we mean
open connected sets that contain � j\{0} in their interior.
Proposition 8.3. There exist neighborhoods S j of � j and a function

HQ : S → C, S ..=
3⋃

j=0

S j

with the following properties.

(i) For the value δ > 0 in Proposition 8.2, the inclusions

Dδ(0) ⊂ S and S j ∩ Sk ⊂ Dδ(0),

hold true for any j �= k.
(ii) The function HQ is C∞ on S, and is an extension of Q ◦ ψ−1 from Dδ(0), that is,

HQ(w) = Q(ψ−1(w)), |w| < δ. (8.6)

(iii) The function HQ is analytic on Dδ(0), extends continuously up to the boundary of
Dδ(0) and satisfies

HQ(w) = −cHw +O(w), cH ..= t
cV

, (8.7)

uniformly for |w| ≤ δ, where we recall that t and cV are as in (2.7) and (8.5),
respectively.

(iv) For some constants η̂ > η > 0, the function HQ satisfies the estimates

−η̂|w| ≤ ReHQ(w) ≤ −η|w| for every w ∈ S0\Dδ(0),

and

ReHQ(w) ≥ η|w| for every w ∈ (S1 ∪ S2 ∪ S3) \Dδ(0).

Proof. We construct the set S j as tubular neighborhoods of � j away from the origin,
and as disks near the origin, namely

S j = S j (δ
′) =

{
w ∈ C | inf

w′∈� j

|w − w′| < δ′
}

∪ Dδ(0).
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By choosing δ′ > 0 sufficiently small, in particular smaller than δ > 0, property (i) is
immediate.

The function

HQ(w) ..= Q(ψ−1(w)), |w| < δ,

is obviously analytic on Dδ(0), satisfies (iii) and admits an extension to the larger open
set D2δ(0). A standard argument using partitions of unity allows us to extend it to the
sets S j ’s as claimed by (ii), also making sure that it satisfies (iv). 
�

9. Associated Orthogonal Polynomials

The first and arguablymajor step towards understanding LQ
n (s) is to study several quanti-

ties related to the orthogonal polynomials for the varying weight (2.16), as we introduce
next.

9.1. Orthogonal polynomials and related quantities. Denote by Pk = P(n,s)
k the monic

orthogonal polynomial of degree k for the weight ωn in (2.16),

P(n,s)
k (x) = xk +(lower degree terms),

∫

R

P(n,s)
k (x)x jωn(x)dx = 0, j = 0, . . . , k−1. (9.1)

These polynomials depend on ωn , so ultimately also on Q, but we refrain from stress-
ing this dependence in the notation. We also denote by γ

(n,Q)
k = γ

(n,Q)
k (s) > 0 the

corresponding norming constant, determined by

1

γ
(n)
k (s)2

=
∫

R

P(n,s)
k (x)2ωn(x)dx . (9.2)

We associate to the orthogonal polynomials their Christoffel-Darboux kernel,

KQ
n (x, y) = KQ

n (x, y | s) ..=
n−1∑

k=0

γ
(n)
k (s)2P(n,s)

k (x)P(n,s)
k (y), (9.3)

stressing that we are not including the weight ωn in this definition. In particular, the
identity ∫ ∞

−∞
Kn(x, x | s)ωn(x | s)dx = n (9.4)

holds true for any s ∈ R and follows immediately from (9.2).
In a similar manner, we introduce the related quantities for the undeformed weight

e−nV . The partition function Zn already appeared in (2.2), the orthogonal polynomials
Pk = P(n)

k are determined by

P(n)
k (x) = xk + (lower degree terms),

∫

R

P(n)
k (x)x j e−nV (x) dx = 0, j = 0, . . . , k − 1,

and the norming constants and Christoffel-Darboux kernel are determined from

1

(γ
(n)
k )2

=
∫

R

P(n)
k (x)2 e−nV (x) dx, Kn(x, y) ..=

n−1∑

k=0

(γ
(n)
k )2P(n)

k (x)P(n)
k (y).
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The orthogonal polynomialsP(n,s)
k vary continuously with s, which is a consequence

of Heine’s formula [42, Equation (3.10)]. In particular, when taking the limit s → +∞
we have that xkωn(x) → xk e−nV both uniformly in compacts and also in L1, and
|x |kωn(x) ≤ |x |k e−nV (x). Thus, dominated convergence then gives that all the just
introduced undeformed quantities are recovered from their deformed versions in the
limit s → +∞. This means, for instance, that the Christoffel-Darboux kernel Kn and
the partition function Zn are recovered via

Kn(x, y) = Kn(x, y | s = +∞) and Zn = Zn(s = +∞). (9.5)

The next result will be key into transforming asymptotics for the orthogonal polynomials
to asymptotics for LQ

n (s) itself.

Proposition 9.1. The identity

logLQ
n (s) = −

∫ ∞

s

∫ ∞

−∞
KQ
n (x, x | u)

ωn(x | u)

1 + eu+n2/3Q(x)
dx du (9.6)

holds true for every s ∈ R.

Remark 9.2. While we were finishing this manuscript, the work [36] was posted to the
ArXiv. Therein, they also derive the formula (9.6) in more general terms, using the
underlying RHP for IIKS-type integrable operators, see the first displayed formula in
page 28 therein. Similar formulas play a fundamental role in the recent works [27,28],
see for instance (5.6) above. Our proof of (9.6) relies solely on orthogonality properties,
so we decided to present it nevertheless.

Proof. The equality

ZQ
n (s) = n!

n−1∏

k=0

γ
(n)
k (s)−2

is standard in random matrix theory. From this identity, (9.2) and the orthogonality
relations we derive the deformation formula

∂s logZQ
n (s) = −

∫

R

∂sKQ
n (x, x | s)ωn(x | s)dx,

which in fact is valid for general weights depending on an additional parameter s. To
our knowledge, this last identity was first observed by Krasovsky [59, Equation (14)].
We fix constants L > s > 0 and integrate the identity above,

logZQ
n (s) = logZQ

n (L) +
∫ L

s

∫ ∞

−∞
(∂sKQ

n )(x, x | u)ωn(x | u)dxdu. (9.7)

We want to interchange the order of integration in the above. The derivative ∂sK
Q
n is

a polynomial of degree at most 2n − 2 in x , and from Heine’s formula for orthogonal
polynomials we see that the polynomial coefficients of Kn are continuous functions of
s. Therefore, for given s, L there exists a constant M = M(s, L) > 0 for which the
pointwise bound

∣∣∣(∂sKQ
n )(x, x | u)

∣∣∣ ≤ M sup
0≤k≤2n−2

|x |k, x ∈ R,
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is valid for every u ∈ [s, L]. Together with the inequalities 0 ≤ ωn(x) ≤ e−nV (x), this
bound ensures that we can interchange order of integration in (9.7). After integration by
parts, we then obtain

logZQ
n (s) = logZQ

n (L) +
∫ ∞

−∞
KQ
n (x, x | L)ωn(x | L)dx −

∫ ∞

−∞
KQ
n (x, x | s)ωn(x | s)dx

−
∫ ∞

−∞

∫ L

s
KQ
n (x, x | u)

ωn(x | u)

1 + eu+n2/3Q(x)
dudx

From the identity (9.4) the two single integrals cancel one another. The integrand of
the double integral is positive, so by Tonelli’s Theorem we can interchange order of
integration. After this interchange, we take the limit L → +∞ and use (9.5) and (2.3)
to conclude the proof. 
�

9.2. The Riemann–Hilbert Problem for orthogonal polynomials. We are ready to intro-
duce theRHP for orthogonal polynomials for theweightωn in (2.16).During this section,
we keep using the matrix notation that was already used in previous sections, recall for
instance (3.1), (3.2) and (3.3).

The RHP for orthogonal polynomials for the weight (2.16) asks for finding a 2 × 2
matrix-valued function Y with the following properties.

Y-1. The matrix Y : C\R → C
2×2 is analytic.

Y-2. The function Y has continuous boundary values

Y±(x) ..= lim
ε↘0

Y(x ± iε), x ∈ R,

which are related by the jump condition Y+(x) = Y−(x)JY(x), x ∈ R, with

JY(x) ..= I + ωn(x)E12.

Y-3. As z → ∞,

Y(z) =
(

I +O(z−1)
)
znσ 3 .

Observe that Y = Y(n)(· | s, Q) depends on the index n and also on s and Q,
although we do not make this dependence explicit in our notation. As shown by Fokas,
Its and Kitaev [53], for each n the RHP above has a unique solution, which is explicitly
given by

Y(z) =

⎛

⎜⎜⎜⎝

P(n,s)
n (z)

1

2π i

∫

R

P(n,s)
n (x)

x − z
ωn(x)dx

−2π iγ(n,Q)
n−1 (s)2P(n,s)

n−1 (z) −γ
(n,Q)
n−1 (s)2

1

2π i

∫

R

P(n,s)
n−1 (x)

x − z
ωn(x)dx

⎞

⎟⎟⎟⎠ ,

where γ
(n,Q)
k (s) and P(n,s)

k are as in (9.1) and (9.2).
In particular, from this identity we obtain the relation

γ
(n,Q)
n−1 (s)2 = − 1

2π i

(
Y(n,1)

)

21
, (9.8)
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where Y(n,1) = Y(n,1)(s, Q) is the matrix determined from the more detailed expansion

Y(z) = Y(n)(z) =
(

I +
1

z
Y(n,1) +

1

z2
Y(n,2) +O(z−3)

)
znσ 3 , z → ∞. (9.9)

Also, the Christoffel-Darboux kernel (9.3) can be recast directly fromY from the identity

KQ
n (x, y | s) = 1

2π i

1

x − y
eT2Y+(y)

−1Y+(x)e1, x, y ∈ R, x �= y. (9.10)

In the confluent limit x = y, this formula yields

KQ
n (x, x | s) = 1

2π i
eT2Y+(x)

−1Y′
+(x)e1, x ∈ R. (9.11)

The remainder of this paper is dedicated to applying the Deift-Zhou method for this
RHP and collecting its consequences, analysis which will ultimately lead to the proofs
of our main results.

10. The RH Analysis for the Orthogonal Polynomials

With all the preliminary work completed, we are finally at the stage of performing the
asymptotic analysis for the RHP-Y for orthogonal polynomials that was introduced
in Sect. 9. Most of the transformations are standard, so we go over them quickly and
without much detail. Care will be taken in the construction of the parametrices, which
are the steps where the introduction of the factor σn plays a major role. We also remind
the reader that the function V and Q are always assumed to satisfy Assumptions 2.1.

The function σn = σn(z | s, Q) depends on s ∈ R and Q, and as such in all the steps
below several quantities will also depend on these parameters. Nevertheless, in most of
the work that follows the parameter s and the function Q do not play a major role so we
omit them in our notations unless when needed to avoid confusion.

10.1. First transformation: normalization at infinity. Recall the function φ introduced
in (8.3). The first transformation,which has the effect of normalizing theRHPas z → ∞,
takes the form

T(z) ..= e−n�V σ 3 Y(z) e
n
(
φ(z)− 1

2 V (z)
)
σ 3

, z ∈ C\R. (10.1)

From theRHP forY and the properties fromProposition 8.1, we obtain thatT satisfies
the following RHP.

T-1. The matrix T : C\R → C
2×2 is analytic.

T-2. For z ∈ R, it satisfies the jump T+(z) = T−(z)JT(z), with

JT(z) ..=
(
en(φ+(z)−φ−(z)) σn(z) e−n(φ+(z)+φ−(z))

0 e−n(φ+(z)−φ−(z))

)
, z ∈ R.
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T-3. As z → ∞,

T(z) = I +
1

z
T1 +O(z−2),

where the coefficient T1 is

T1
..= e−n�V σ 3 Y(n,1) en�V σ 3 +φ∞σ 3,

and we recall that Y(n,1) and φ∞ were introduced in (9.9) and in Proposition 8.1–
(v), respectively.

From the properties (ii) of Proposition 8.1, the jump matrix for T simplifies in con-
venient ways. For −a < z < 0,

JT(z) =
(
e2nφ+(z) σn(z)

0 e−2nφ+(z)

)

=
(

I +
1

σn(z)
e−2nφ+(z) E21

)(
σn(z)E12 − 1

σn(z)
E21

)(
I +

1

σn(z)
e2nφ+(z) E21

)

=
(

I +
1

σn(z)
e2nφ−(z) E21

)(
σn(z)E12 − 1

σn(z)
E21

)(
I +

1

σn(z)
e2nφ+(z) E21

)
,

and for z ∈ R\[−a, 0],
JT(z) = I + σn(z) e

−2nφ+(z) E12.

10.2. Second transformation: opening of lenses. From the identities just written for JT
and Proposition 8.1-(ii), it follows that the diagonal entries of JT are highly oscillatory
on (−a, 0) as n → ∞. In the second transformation of the RHPwe perform the so-called
opening of lenses, which has the effect of moving this oscillatory behavior to a region
where it becomes exponentially decaying.

Define regions G± on the ±-side of (−a, 0) (the lenses, see Fig. 3), assuming in
addition that for U0 as in Proposition 8.2 these regions satisfy

ψ(∂G± ∩U0) ⊂ (0, e±2π i/3 ∞) ∪ (0,∞), (10.2)

which can always be achieved because ψ is conformal from a neighborhood of U0 to a
neighborhood of Dδ(0).

The function σn has no zeros and may have singularities, but these are all poles due
to the analyticity of Q in a neighborhood of the real axis. Therefore, the fraction 1/σn
is analytic on a neighborhood of the real axis. We use this fraction to transform

S(z) ..=
⎧
⎨

⎩
T(z)

(
I ∓ 1

σn(z)
e2nφ(z) E21

)
, z ∈ G±,

T(z), elsewhere.

With

�S
..= R ∪ ∂G+ ∪ ∂G−,

and using the jump properties of φ listed in Proposition 8.1, the matrix S satisfies the
following RHP.
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−a 0
G+

G−

Fig. 3. The regions used for the opening of lenses in the transformation T �→ S

S-1. The matrix S : C\�S → C
2×2 is analytic.

S-2. For z ∈ �S, it satisfies the jump S+(z) = S−(z)JS(z), with

JS(z) ..=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σn(z)E12 − 1

σn(z)
E21, −a < z < 0,

I +
1

σn(z)
e2nφ(z) E21, z ∈ ∂G±\R,

I + σn(z) e
−2nφ+(z) E12, z ∈ R\(−a, 0).

S-3. As z → ∞,

S(z) = I +
S1

z
+O(z−2), with S1

..= T1.

S-4. The matrix S remains bounded near the points z = −a, 0.

Before moving to the construction of the mentioned parametrices, we conclude this
section with the needed estimate for the jump matrix JS away from [−a, 0]. For that,
recall the matrix norm notation introduced in (6.1), (6.2), (6.3).

Proposition 10.1. For U0 as in Proposition 8.2, introduce the set

�ε
..= �S\ ([−a, 0] ∪U0 ∪ Dε(−a))

For some ε > 0, and possibly reducing U0 if necessary, there is an η > 0 such that

‖JS − I‖L1∩L2∩L∞(�ε)
= O(e−ηn),

as n → ∞.

Proof. From Proposition 8.1-(iv) we obtain that for any ε > 0 there is a constant η′ > 0
for which

Re φ+(x) ≥ η′, for every x ∈ (−a − ε, ε).

On the other hand, the jump conditions on Proposition 8.1-(ii) combined with Cauchy-
Riemann equations imply in a standard way that Re φ ≤ −η along the lipses of the
lenses and away from the endpoints −a and 0, as long as the lens stay within a positive
but small distance from the interval [−a, 0]. From these pointwise estimates, the growth
of Re φ as z → ±∞ and the fact that σn remains bounded on R and 1/σn grows at most
withO(ecn

2/3
) on compacts of C, the claimed L p estimates follow in a standard manner.


�
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10.3. Global parametrix. The global parametrix problem, obtained after neglecting the
jumps of S that are exponentially close to the identity, is the following RHP.

G-1. G : C\[−a, 0] → C
2×2 is analytic.

G-2. For z ∈ (−a, 0), it satisfies the jump

G+(z) = G−(z)

(
σn(z)E12 − 1

σn(z)
E21

)
.

G-3. As z → ∞,

G(z) = I +O(z−1).

G-4. G has square-integrable singularities at z = −a, 0.

The construction of the global parametrix follows standard techniques. First, one
introduces a function that we denote q(z), with the aim at transforming the RHP for
G to a RHP with constant jumps. Then, by diagonalizing the resulting jump matrix,
we further reduce the problem to two scalar-valued RHPs. With the help of Plemelj’s
formula, we then solve these scalar RHPs, and by tracing back all the transformations
we recover the matrix G itself.

The procedure just described is standard in RHP literature, see for instance [7,
Appendix A.1], so we refrain from completing it in detail and instead only describe
the final form of the solution.

The function σn does not vanish and is real and positive over the real axis, so its real
logarithm over the real axis is well defined. With this in mind, introduce

q(z) ..= ((z + a)z)1/2

2π

∫ 0

−a

log σn(x)√|x |(x + a)

dx

x − z
, z ∈ C\[−a, 0],

where (·)1/2 stands for the principal branch of the square root and √· is reserved for the
standard positive real root of positive real numbers. This function q depends on n but we
do not make this dependence explicit for ease of notation. It is analytic on C\[−a, 0],
and it is chosen to satisfy the jump condition

q+(x) + q−(x) = − log σn(x), −a < x < 0.

Furthermore, standard calculations show that

q(z) = O(1), z → −a, 0, and q(z) = q0 +
q1
z

+O(z−2), z → ∞,

with coefficients given by

q0 = q0(n) ..= − 1

2π

∫ 0

−a

log σn(x)√|x |(x + a)
dx and

q1 = q1(n) ..= − 1

2π

∫ 0

−a

x log σn(x)√|x |(x + a)
dx +

aq0
2

. (10.3)

Next, set

U0
..= 1√

2

(
1 i
i 1

)
, m(z) ..= z

z + a
, (10.4)
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which is consistent with (4.4), and introduce

M(z) ..= U0m(z)σ 3/4U−1
0 = 1

2

⎛

⎜⎜⎝
m(z) +

1

m(z)
−i

(
m(z) − 1

m(z)

)

i

(
m(z) − 1

m(z)

)
m(z) +

1

m(z)

⎞

⎟⎟⎠ (10.5)

This matrix M satisfies

M+(z) = M−(z) (E12 − E21) , −a < z < 0, and M(z) = I − a

4z
σ 2 +O(z−2),

where σ 2 is the second Pauli matrix (recall (3.2)).
Then the solution to the global parametrix RHP-G is

G(z) = e−q0σ 3 M(z) eq(z)σ 3 , z ∈ C\[−a, 0]. (10.6)

This solution G satisfies

G(z) = I +
G1

z
+O(z−2), z → ∞, with G1

..=
⎛

⎜⎝
q1

ia

4
e−2q0

− ia

4
e2q0 −q1

⎞

⎟⎠ . (10.7)

Recall that U0 denotes the neighborhood of the origin given in Proposition 8.2. We
will also need some control on q inside U0.

For the next result, set

Fβ(s) ..=
∫ ∞

0
vβ log(1 + e−s−v)dv,

q(1)
0 = q(1)

0 (s, t) ..= t1/2

2πa1/2
F−1/2(s),

q(1)(z) = q(1)(z | s, t) ..= t1/2

2πa1/2m(z)1/2
F−1/2(s),

(10.8)

which are n-independent quantities. The index β does not have any specific meaning
for what comes later, but it arises naturally from the asymptotic analysis resulting in the
following result.

Lemma 10.2. For any fixed s0 > 0, the estimate

q0 = 1

n1/3
q(1)
0 +O(n−2/3), n → ∞,

is valid uniformly for s ≥ −s0. In addition, the estimates

q(z) = 1

n1/3
q(1)(z) +O(n−2/3), and q′(z) = O(n−1/3),

are valid uniformly for z on compacts ofC\[−a, 0] (in particular on ∂U0) and uniformly
for s ≥ −s0, and carry through to boundary values q±(x) for x along R\{−a, 0}.

Finally,

M(z) =
(

I +
1

n1/3

(
q(1)
0 σ 3 − q(1)(z)M(z)σ 3M(z)−1

)
+O(n−2/3)

)
G(z), n → ∞,

uniformly for z ∈ ∂U0 and s ≥ −s0.
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Proof. The estimate for q0(n) follows immediately from an application of Proposi-
tion A.2. The estimates for q(z) and q′(z) also follow from Proposition A.2, once we
observe that the integrals defining them can be slightly deformed to the upper/lower half
plane in a neighborhood of the unique point in the intersection ∂U0 ∩ (−a, 0).

Finally, using the first part of the statement and the fact thatM is bounded for z ∈ ∂U0
and independent of n, we expand the exponentials in series and write

M(z)G(z)−1 = M(z) e−q(z)σ 3 M(z)−1 eq0σ 3

=
(

I − q(z)M(z)σ 3M(z)−1 +O(n−2/3)
) (

I + q0σ 3 +O(n−2/3)
)

,

and the last claim follows after rearranging the terms in this expansion. 
�

10.4. Local parametrix near −a. The local parametrix P = P(a) near z = −a is
constructed in a neighborhood of z = −a which without loss of generality can be taken
to be the disk Dδ(−a) of radius δ around a, and it is the solution to the following RHP.

P(a)-1. The matrix P(a) : Dδ(−a)\�S → C
2×2 is analytic.

P(a)-2. For z ∈ �S ∩ ∂Dδ(−a), it satisfies the jump P(a)
+ (z) = P(a)

− (z)JS(z).
P(a)-3. Uniformly for z ∈ ∂Dδ(−a),

P(a)(z) = (I + o(1)) G(z), n → ∞.

P(a)-4. The matrix P(a) remains bounded as z → −a.

The asymptotic condition P(a)-3. above will be improved to (10.13) below.
From the conditions on Q, we know that there exists a value η > 0 for which

Re Q(z) ≥ 2η, |z + a| < δ.

This value is uniform for t ∈ [t0, 1/t0], for any t0 ∈ (0, 1) fixed, and it is independent of
s ∈ R. In particular, once we fix s0 > 0 and assume that s ≥ −s0, from this inequality
we obtain

| e−s−n2/3Q(z) | ≤ e−n2/3η, |z + a| < δ, for large enough n.

This way, for n > 0 sufficiently large the function σn admits an analytic continuation
to the whole disk Dδ(−a), and this continuation does not have zeros on the same disk.
Thus, a branch of log σn is well defined in a neighborhood of z = −a, and the just
mentioned estimate also shows that

log σn(z) = O(e−ηn2/3), n → ∞, (10.9)

uniformly for z in a neighborhood of z = −a and s ≥ −s0.
With this in mind, the parametrix P(a) can be constructed explicitly out of Airy func-

tions in a standard way, see for instance [42, Section 7.6]. Since it involves a somewhat
nonstandard matching analytic prefactor that accounts for σn , we briefly go over this
construction.

Recall the contour � introduced in (4.1). With appropriate Airy functions, we con-
struct a 2 × 2 matrix �Ai, which is analytic on C\� and satisfies

�Ai,+(ζ ) = �Ai,−(ζ ) ×

⎧
⎪⎨

⎪⎩

I − E12, ζ ∈ �0,

I − E21, ζ ∈ �1 ∪ �3,

−E12 + E21, ζ ∈ �2,
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and

�Ai(ζ ) = ζ σ 3/4U0

(
I +O(ζ−3/2)

)
e− 2

3 ζ 3/2σ 3, ζ → ∞. (10.10)

In fact, �Ai can be obtained with a modification of the matrix �Ai which we previously
used in (6.4). We will not need its explicit form, so we do not write it down explicitly.

Using the properties of φ we construct a conformal map ϕ from a neighborhood of
−a to a neighborhood of the origin, with

ϕ(−a) = 0, ϕ′(−a) < 0 and
2

3
ϕ(z)3/2 = φ(z) + 2π iZ, z ∈ Dδ(−a)\�S.

With standard arguments (see for instance the proof of Proposition 10.5 below for similar
arguments), one shows that the matrix

F(a)(z) ..= G(z) e
1
2 log σn(z)σ 3 U−1

0 (n2/3ϕ(z))−σ 3/4 (10.11)

is analytic on a neighborhood of z = −a. The local parametrix then takes the form

P(a)(z) = F(a)(z)�Ai(n
2/3ϕ(z)) e− 1

2 log σn(z)σ 3 enφ(z)σ 3, z ∈ Dδ(−a)\�S. (10.12)

As a result, the error term in fact takes on the stronger form

P(a)(z) = G(z)
(

I +O(n−1)
)

, n → ∞, (10.13)

which is valid uniformly for z ∈ ∂Dδ(−a) and uniformly for s ≥ −s0 and t ∈ [t0, 1/t0],
for any s0 > 0 and t0 ∈ (0, 1) fixed.

10.5. Local parametrix near the origin. The local parametrix near the origin requires
the model problem from Sect. 4.

Recall the neighborhood U0 of the origin introduced in Proposition 8.2. The initial
local parametrix we seek for should be the solution to the following RHP.

P(0)-1. The matrix P(0) : U0\�S → C
2×2 is analytic.

P(0)-2. For z ∈ �S ∩U0, it satisfies the jump P(0)
+ (z) = P(0)

− (z)JS(z).
P(0)-3. Uniformly for z ∈ ∂U0,

P(0)(z) = (I + o(1)) G(z), n → ∞.

P(0)-4. P(0) remains bounded as z → 0.

To construct the solutionP(0) required above, somework is needed. Aiming at remov-
ing φ from the jump of P(0), we change this RHP-P with the transformation

L(z) = P(0)(z) e−nφ(z)σ 3 , z ∈ U0\�S. (10.14)

Then the matrix L, should it exist, must satisfy the following RHP.

L-1. The matrix L : U0\�S → C
2×2 is analytic.
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L-2. For z ∈ �S ∩U0, it satisfies the jump L+(z) = L−(z)JL(z), with

JL(z) ..=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σn(z)E12 − 1

σn(z)
E21, z ∈ U0 ∩ (−a, 0),

I +
1

σn(z)
E21, z ∈ ∂G± ∩U0,

I + σn(z)E12, z ∈ U0 ∩ (0,∞).

(10.15)

L-3. Uniformly for z ∈ ∂U0,

L(z) = (I + o(1)) G(z) e−nφ(z)σ 3 , n → ∞.

L-4. The matrix L remains bounded as z → 0.

Based on the usual way of matching the local parametrix with a model problem, one
is tempted to moving the non-constant part of the jump - namely σn - to the behavior at
∂U0 as well. This would be done so including a term of the form σ

σ 3/2
n = eσ 3 log σn/2

into the transformation P �→ L, in much the same way we did in (10.12). However, as
we discussed in Sect. 3.1, for any s ∈ R fixed there are poles of σn accumulating too
fast near the origin, so σn fails to be analytic in any small neighborhood of the origin
and we have to stick to the non-constant jumps as above.

The RHP-L has a solution if, and only if, RHP-P(0) has a solution. Such solutions
need not be unique, as one could possibly improve on the asymptoticmatching conditions
on ∂U0. The goal of the rest of this section is to describe a solution L, and consequently
a solution P(0) related by (10.14), with a more explicit control of the error term in
RHP-L-3. For that, we use the model problem thoroughly studied in Sects. 4 and 7.

The construction that follows needs several quantities that appeared before. These
are the conformal map ψ appearing in Proposition 8.2, the functionHQ introduced with
the help of Proposition 8.3, the model RHP solution � = �(· | h) introduced in Sect. 4
and further discussed in Sect. 7, and the constant q0 and matrices U0 and M(z) from
(10.3)–(10.5). With all these quantities at hand, we set

L(z) ..= Fn(z)�n(z), z ∈ U0\�S, with the choices

�̂n(ζ ) = � (ζ | h = hn) , hn(ζ ) ..= s + n2/3HQ(ζ/n2/3),

�n(z) ..= �̂n

(
ζ = n2/3ψ(z)

)
,

Fn(z) ..= M(z)U0(n
2/3ψ(z))−σ 3/4 = U0m(z)σ 3/4(n2/3ψ(z))−σ 3/4.

(10.16)

With the identification τ = n2/3 and thanks to Proposition 8.3, the function hn becomes
admissible in the sense of Definition 4.1, so the notation for the corresponding solution
�n = �(· | hn) chosen above is consistent with the solution �τ (ζ )

∣∣
τ=n2/3 in (4.5). For

later reference, we keep track of the expansion

hn(ζ ) = s − cHζ +O(ζ−2), ζ → 0, where we recall that cH = t
cV

, (10.17)

compare (8.7) with Definition 4.1-(ii).
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Proposition 10.3. Fix s0 > 0 and t0 ∈ (0, 1). There exists n0 = n0(s0, t0) for which for
any s ≥ −s0 and any t ∈ [t0, 1/t0] the matrix �n exists for every n ≥ n0. This matrix
satisfies the jump

�n,+(z) = �n,−(z)JL(z), z ∈ U0 ∩ �S.

Furthermore, for the matrix

�(1)
n

..= �(1)(h = hn), with �(1)(h) as in (4.3),

the asymptotic expansion

�n(z) =
(

I +
1

n2/3
1

ψ(z)
�(1)

n +O(n−4/3)

)
(n2/3ψ(z))σ 3/4U−1

0 e−nφ(z)σ 3 , n → ∞,

holds true uniformly for z ∈ ∂U0 and uniformly for s ≥ −s0 and t ∈ [t0, 1/t0].
Proof. The existence of �n is granted by the first claim of Theorem 7.1. The jumps
for �n,+ follow from the jumps in (4.2), the definition of hn taken in (10.16), the cor-
respondence (8.6) and the conformality of the change of variables ζ = n2/3ψ(z). The
asymptotic expansion for �n is immediate from (4.3) 
�

The introduction of the additional notation �̂n , which plays the role of the local
parametrix in the variable ζ , is convenient for later calculations. At that moment, some
of its properties will be needed, and we keep track of these properties with the next
result. For the formal statement, we recall that �(ξ | S,T) is the solution to the integro-
differential PII that already appeared in (2.11) and (5.15), and �

(1)
0 is the residue matrix

from (5.17) that collects the functions P(S,T) and Q(S,T) which, in turn, are related
to � as explained in (5.13) et seq..

Proposition 10.4. Fix s0 > 0 and t0 ∈ (0, 1) and ν ∈ (0, 2/3), and let cH be as in (8.7).
The following asymptotic formulas hold true uniformly for s ≥ −s0 and t ∈ [t0, 1/t0].

The matrix �
(1)
n from Proposition 10.3 satisfies

(
�(1)

n

)

21
= i

c1/2H

(
p(s, cH) − s2

4c3/2H

)
+O(n−ν), n → ∞. (10.18)

Furthermore, for �0 being the solution to the RHP in (5.9)–(5.10), the estimate

�̂n,+(ζ ) = (I +O(n−ν))�0,+(ζ | s, cH), n → ∞, (10.19)

holds true uniformly for ζ ∈ � with |ζ | ≤ n
1
3− 1

2 ν .

Proof. It is immediate from the identification τ = n2/3, Eq. (10.16) and
Theorem 7.1. 
�

Next, we now verify that L given as in (10.16) indeed solves the RHP-L.

Proposition 10.5. The matrix L solves the RHP-L.
Furthermore, setting

L1(z) ..=
(
�

(1)
n

)

21

ψ(z)1/2
M(z)U0E21U−1

0 M(z)−1, z ∈ ∂U0, (10.20)
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the condition L-3. is improved to

L(z) =
(

I +
1

n1/3
L1(z) +O(n−2/3)

)
M(z) e−nφ(z)σ 3 , n → ∞, (10.21)

uniformly for z ∈ ∂U0 and s ≥ −s0, t ∈ [t0, 1/t0], for any s0 > 0, t0 ∈ (0, 1).

Proof. First we prove that F is analytic. For that, notice that a jump for it may come only
from the factors M and ψ1/4, and therefore only possibly in the interval (−a, 0) ∩ U0.
However, along this interval it is simple to compute that (ψ1/4)± = e±π i/4 |ψ |1/4, and
also that

U−1
0 JM(x)U0 = iσ 3,

from which we obtain

F−(x)−1F+(x) = nσ 3/6|ψ |σ 3/4 e−π iσ 3/4 iσ 3 e
−π iσ 3/4 |ψ |−σ 3/4n−σ 3/6 = I,

so F is indeed analytic across (−a, 0) ∩U0. In principle, F may have an isolated singu-
larity at 0, but because

M(z),ϕ(z)1/4 = O(z1/4) as z → 0,

we see that z = 0 is a removable singularity. In virtue of the definition of L in (10.16)
and the jump for �n from Proposition 10.3, the analyticity of F is enough to conclude
that L satisfies RHP.L-1.

Knowing that F is analytic, the jump for L is precisely the same as the jump for �n ,
and by Proposition 10.3 we thus have that L satisfies RHP.L-2.

Finally, to the asymptotic condition (10.20). For that, we use the asymptotic condition
for �n given by Proposition 10.3 and the definition of F and write

L(z) = M(z)U0n
−σ 3/6ψ(z)−σ 3/4

(
I +

1

n2/3ψ(z)
�(1)

n +O(n−4/3)

)

×nσ 3/6ψ(z)σ 3/4U−1
0 e−nφ(z)σ 3, n → ∞,

andwhere the error is uniform for z ∈ ∂U0 and s, t as claimed. Since ∂U0 remains within
a positive distance from the unique zero z = 0 ofψ , the function |ψ1/4| remains bounded
from below away from zero, so the corresponding conjugation of the error by the term
ψσ 3/4 does not change the order of the error. Next, the conjugation by nσ 3/6 contributes
at most to an error of order n1/3, and only in the (2, 1)-entry. The remaining term M is
bounded along ∂U0, so it can be commuted with the error term above without changing
its order, leading to (10.21). And (10.21) is indeed an improvement of the asymptotic
condition RHP.L-3, because from Lemma 10.2 we know that M = (I + O(n−1/3))G
uniformly as claimed. 
�

We now trace back the transformation L �→ P(0) and construct the latter as

P(0)(z) ..= Fn(z)�n(z) e
nφ(z)σ 3 , z ∈ U0\�S, (10.22)

keeping track that�n andFn are introduced in (10.16).With this construction and thanks
to Lemma 10.2 and (10.21), the matching condition RHP.P(0)-3 is

P(0)(z) =
(

I +
1

n1/3

(
L1(z) + q(1)

0 σ 3 − q(1)(z)M(z)σ 3M(z)−1
)
+O(n−2/3)

)
G(z), n → ∞,

(10.23)
and the errors are uniform for s ≥ −s0 and t0 ≤ t ≤ 1/t0.
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10.6. Final transformation. The final transformation combines the local and global
parametrices to remove the non-decaying jumps from S.

Set

U ..= U0 ∪ Dδ(−a),

orienting ∂U0 and ∂Dδ(−a) in the clockwise direction. With P(a) being the local
parametrix near−a,P(0) the local parametrix near the origin andG the global parametrix,
we introduce a last parametrix P with unified notation as

P(z) =

⎧
⎪⎨

⎪⎩

P(a)(z), z ∈ Dδ(−a)\�S,

P(0)(z), z ∈ U0\�S,

G(z), elsewhere on C\(�S ∪ ∂U ).

The final transformation S �→ R is then

R(z) ..= S(z)P(z)−1, z ∈ C\(�S ∪ ∂U ).

With this transformation, the jumps that S has in common with the parametrices G and
P get canceled, and we remain with jumps only away from [−a, 0] and U . With

�R
..= ∂U ∪ �S\ ([−a, 0] ∪U ) ,

the matrix R satisfies the following RHP.

R-1. The matrix R : C\�R → C
2×2 is analytic.

R-2. For z ∈ �R, it satisfies the jump R+(z) = R−(z)JR(z), with

JR(z) ..=

⎧
⎪⎨

⎪⎩

G(z)JS(z)G(z)−1, z ∈ �R\∂U,

P(0)(z)G(z)−1, z ∈ ∂U0,

P(a)(z)G(z)−1, z ∈ ∂Dδ(−a),

(10.24)

R-3. With R1
..= S1 − G1,

R(z) = I +
1

z
R1 +O(1/z2), z → ∞. (10.25)

To conclude that R is asymptotically close to the identity, we control its jumps. We
use the matrix norm notation introduced in (6.1)–(6.3).

Proposition 10.6. Fix s0 > 0 and t0 ∈ (0, 1). There is η > 0 for which the jump matrix
for R satisfies the estimates

‖JR − I‖L1∩L2∩L∞(�R\∂U ) = O(e−ηn)

and

‖JR − I‖L1∩L2∩L∞(∂U0)
= O(n−1/3), ‖JR − I‖L1∩L2∩L∞(∂Dδ(−a)) = O(n−1)

as n → ∞, uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.
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Proof. The function G remains uniformly bounded away from the interval [−a, 0], and
the first claimed decay then follows from (10.24) and Proposition 10.1.

Using (10.13) and (10.24),weobtain the uniformestimate of the jumpalong ∂Dδ(−a)

directly. Since ∂Dδ(−a) is bounded, the L1 and L2 estimates also follow. Finally, esti-
mate for the jump along ∂U0 follows similarly, once we recall (10.23). 
�

With Proposition 10.6 at hand, the small norm theory of Riemann–Hilbert problems
yields

Theorem 10.7. Fix s0 > 0 and t0 > 0. The matrix R satisfies

R(z) = I +O(n−1/3), R′(z) = O(n−1/3) and R(w)−1R(z) = I +O
(
z − w

n1/3

)
, n → ∞,

and the residue matrix R1 satisfies

R1 = − 1

2π i

∫

∂U0

R−(s)(JR(s) − I)ds +O(n−1), (10.26)

where the error terms are all uniform for z, w on the same connected components of
C\�R, and they are also uniform for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

Proof. The arguments are standard, so we only sketch them. The small norm theory for
RHPs ensures the representation

R(z) = I +
1

2π i

∫

�R

R−(s)(JR(s) − I)
s − z

ds, z ∈ C\�R. (10.27)

This ensures the estimates for R and R′ away from �R and, because the jump matrix is
analytic on a neighborhood of �R, we are able to extend these estimates also to �R. To
obtain the estimate involving z andw, we then write, with the help of Cauchy’s formula,

R(w)−1R(z) = I+R(w)−1 (R(w) − R(z)) = I+R(w)−1w − z

2π i

∮
R(s)

(s − w)(s − z)
ds,

(10.28)
where the integral is over a contour on C\�R encircling both w and z. The right-hand
side is now I +O((w − z)n−1/3) by the estimate on R already proven.

Finally, the estimate for R1 follows expanding (10.27) as z → ∞, and then using
that the jump matrix decays to the identity at least as O(n−1) away from ∂U0. 
�

Later on, we also need the first term in the asymptotic expansion for R, we state it as
a separate result.

Proposition 10.8. Fix s0 > 0 and t0 > 0. Setting

R̂1(z) ..= 1

2π i

∫

∂U0

(
(�̂

(1)
n )21

ψ(s)1/2m(s)1/2
E21 − q(1)(s)σ 3

)
ds

s − z
+ q(1)

0 σ 2, z ∈ U0,

(10.29)
the matrix R has the expansion

R(z) = I +
1

n1/3
U0R̂1(z)U

−1
0 +O(n−2/3), n → ∞ (10.30)

where the error term is uniform for z ∈ U0, and it is also uniform for s ≥ −s0 and
t0 ≤ t ≤ 1/t0.
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Proof. Starting from the representation (10.27), we write

R(z) − I = 1

2π i

∫

∂U0

R−(s)(JR(s) − I)
s − z

ds +O(n−1) = 1

2π i

∫

∂U0

JR(s) − I
s − z

ds +O(n−2/3),

and the result follows combining (10.24) and (10.23) and performing straightforward
calculations. 
�

All the transformations Y �→ T �→ S �→ R involve only analytic factors in their
construction. As such, we can actually slightly deform the contour �R in all these steps,
so that in fact the estimates in the previous result are valid everywhere on C, interpreting
them as with boundary values when z, w ∈ �R. We will use this fact without further
warning.

With this theorem at hand, in the next sections we recover the needed asymptotic
formulas for the proof of our main results.

11. Proof of Main Results

The next step in the direction of concluding our asymptotic analysis is to unravel the
transformations R �→ S �→ T �→ Y. Introduce

�n(x) ..= I +
e2nφ+(x)

σn(x)
χ(−a,0)(x)E21 and �n(x) ..=

(
I +

χ(−a,0)(x)

σn(x)
E21

)
, x ∈ R,

which are related by

�n(x) e
−nφ+(x)σ 3 = e−nφ+(x)σ 3 �n(x).

Then the result of the unfolding of the transformations is

Y+(z) = en�V σ 3 R+(x)P+(x)�n(x) e
−n(φ+(x)−V (x)/2)σ 3, x ∈ R. (11.1)

We split the proofs of our results in the next few sections.

11.1. Proof of Theorem 2.4. Thanks to (11.1) and Theorem 10.7, the expression (9.10)
reduces to the asymptotic formula

e−n(V (x)+V (y))/2 KQ
n (x, y) = e−n(φ+(x)+φ+(y))

2π i(x − y)
eT2�n(y)

−1P+(y)
−1

(
I +O

(
x − y

n1/3

))
P+(x)�n(x)e1, (11.2)

valid as n → ∞, x, y ∈ R and uniformly for s, t as in Theorem 10.7.
For the value cV > 0 introduced in (8.5), we scale x = un and y = vn as in (2.18),

where u, v are on any given compact of the real axis. For such values of u, for n large

enough the points un are always on the neighborhood U0 of the origin where P = P(0),
and from (10.22) we simplify

eT2�−1
n P−1

+ = enφ+ eT2�−1
n �−1

n,+F−1
n and P+�ne1 = Fn�n,+�ne1 enφ+ .
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where all the quantities above are evaluated at un . The next step is to plug these identities
into (11.2), when doing so we also use the estimates

Fn(un) = U0

(
I +O(n−2/3)

)
(cV a)−σ 3/4n−σ 3/6, n → ∞,

which follows from (10.16), (10.4) and (8.5), and its immediate consequence

Fn(vn)
−1Fn(un) = nσ 3/6

(
I +O

(
u − v

n2/3

))
n−σ 3/6 = I +O

(
u − v

n1/3

)
, n → ∞,

which is obtainedwith arguments similar to (10.28). These estimates are uniform for u, v

in compacts of R, and are also uniform for s ≥ −s0 and t ∈ [t0, 1/t0]. Equation (11.2)
then simplifies to

e−n(V (un)+V (vn))/2 KQ
n (un, vn)

= cV n2/3

2π i(u − v)
eT2�n(vn)

−1�n,+(vn)
−1
(

I +O
(
u − v

n1/3

))
�n,+(un)�n(un)e1.

Now, with the definition of �n in (10.16) at hand, the aid of (10.19) and the constant cH
appearing in (10.17), we get

�n,+(un) = �̂n,+(n
2/3ψ(un)) = (

I +O(n−ν)
)
�0,+(u | s, cH), n → ∞,

for any ν ∈ (0, 2/3), with the error being valid uniformly for u in compacts of R, and
also uniformly for s ≥ −s0, t0 ≤ t ≤ 1/t0. Also, thanks to Theorem 5.1 we know that
�0,+(u | s, cH)±1 remain bounded for u in compacts and s ≥ −s0, t0 ≤ t ≤ 1/t0.
Therefore,

�n,+(vn)
−1
(

I +O
(
u − v

n1/3

))
�n,+(un)=

(
I +O(n−ν)

)
�0,+(v | s, cH)−1�0,+(u | s, cH)+O

(
u − v

n1/3

)

as n → ∞. In addition, the estimate

1

σn(un)
= 1+e−s+tu/cV (1+O(n−2/3)) = 1+e−s+cHu(1+O(n−2/3)), n → ∞, (11.3)

is valid uniformly for u in compacts, uniformly for s ∈ R and t0 ≤ t ≤ 1/t0, and is
immediate from (2.16). Combining everything, and denoting χ+ = χ[0,∞), we obtained
the asymptotic formula

e−n(V (un )+V (vn ))/2

cV n2/3
KQ
n (un, vn) = 1 +O(n−ν)

2π i(u − v)
eT2
(
I − (1 + e−s+cHv)χ+(v)E21

)

×�0,+(v | s, cH)−1�0,+(u | s, cH)
(
I + (1 + e−s+cHu)χ+(u)E21

)
e1 +O(n−1/3), n → ∞,

which is valid uniformly for u, v in compacts of R, and also uniformly for s ≥ −s0 and
t0 ≤ t ≤ 1/t0. With �0 as in (5.7), this identity rewrites as

e−n(V (un )+V (vn ))/2

cV n2/3
KQ
n (un, vn) = 1 +O(n−ν)

2π i(u − v)

×
[
(�0(v | s, cH)�0(v | s, cH))−1 �0(u | s, cH)�0(u | s, cH)

]

21,+
+O(n−1/3), n → ∞,

and the proof of Theorem 2.4 is now completed using Eq. (5.16).
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11.2. Proof of Theorem 2.5. Now that the RHP asymptotic analysis is completed, the
proof of Theorem 2.5 follows standard steps. In our case, there is an additional cancella-
tion that has to be accounted for at a later step, in virtue of the presence of the factor q in
both the global and local parametrices, see (10.6) and (10.23). So we opt for presenting
the detailed calculation.

Starting from the representation (9.8), we unravel the transformations and obtain

−2π i
(
γ

(n,Q)
n−1

)2 = e−2n�V (R1 + G1)21

= e−2n�V

(
(R1)21 − ia

4
− 1

n1/3
t1/2a1/2

4π i
F−1/2(s) +O(n−2/3)

)
, (11.4)

with R1 as in (10.25), and where for the second identity we used the definition of G1 in
(10.7) and the estimate for q0 from Lemma 10.2.

It remains to estimate R1, which we do so starting from (10.26). Using Cauchy-
Schwartz, Propositions 10.6 and Theorem 10.7, we write

R1 = − 1

2π i

∫

∂U0

(JR(s) − I)ds +O(n−2/3), n → ∞.

Thematrix JR is in (10.24), and combining its explicit expression along ∂U0 with (10.23)
and (10.5), after a cumbersome but straightforward calculation we arrive at

(R1)21 = − 1

2π in1/3

∫

∂U0

(
iq(1)(s)(m(s) − 1)

2m(s)1/2
+ (L1(s))21

)
ds +O(n−2/3), n → ∞,

where we recall thatm, q(1) and L1 are given in (10.4), (10.8) and (10.20), respectively.
Using this explicit expression for L1, we see that

(L1(s))21 =
(
�

(1)
n

)

21

2m(s)1/2ψ(s)1/2
.

Both functionsm andψ are analytic in a neighborhood of the origin, and vanish linearly
therein. Combining in additionwith (8.5), we see that the productm(z)1/2ψ(z)1/2 admits
an analytic continuation near the origin, with the expansion

m(s)1/2ψ(s)1/2 = cV
a
s(1 +O(s)), s → 0.

Thus, computing residues
∫

∂U0

(L1(s))21ds = −π i
a

cV

(
�(1)

n

)

21
.

Similarly, using now (10.8) we obtain
∫

∂U0

iq(1)(s)(m(s) − 1)

2m(s)1/2
ds = −t1/2a1/2F−1/2(s)

Hence,

(R1)21 = 1

n1/3

(
a

2cV

(
�(1)

n

)

21
+
t1/2a1/2

4π i
F−1/2(s)

)
+O(n−2/3),
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and (11.4) updates to

(
γ

(n,Q)
n−1 (s)

)2 = e−2n�V

(
a

8π
− 1

n1/3
a

4π i

(
�(1)

n

)

21
+O(n−2/3)

)
, n → ∞,

uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0. We now need only to apply (10.18) with any
ν ≥ 1/3 to complete the proof.

11.3. Proof of Theorem 2.2. Unlike the already proven major results, the proof of Theo-
rem 2.2 is not a straightforward consequence of the steepest descent analysis concluded
with Theorem 10.7. It does rely substantially on Theorem 10.7, but several other inputs
are also needed along the way. Equipped with (9.10), the idea is to account for the
different approximations for KQ

n on the different components

R\(U0 ∪ Dδ(−a) ∪ (−a, 0)), R ∪U0, (−a,−δ,−a + δ) and (−a + δ, 0)\U0

that arise from the RHP, and integrate each such approximation. With Proposition 9.1
in mind, we are thus able to recover asymptotics for LQ

n itself. As one would expect, it
turns out that in this process the terms that arise away fromU0 become all exponentially
negligible, and only the contribution from U0 survives in the leading contribution. The
contribution that arrives this way involves�n , andwe further need to split it into different
parts and still account for some exact cancellations to arrive at the leading asymptotic
contribution. We postpone this analysis to the next section, where it is split into several
different lemmas, and summarize the outcome with the next result. For its statement, we
recall that hn and �̂n were introduced in (10.16), and we also set

�̂n(x) ..= I + (1 + e−hn(u))χ(0,+∞)(x)E21, x ∈ R. (11.5)

Proposition 11.1. Fix s0 > 0 and t0 ∈ (0, 1). There exists a function R(u) = R1(u | t)
satisfying

∫ ∞

s
R(u)du = O(n−1/3), n → ∞,

uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0, and for which the identity

∫ ∞

−∞
KQ
n (x, x | u)

ωn(x | u)

1 + eu+n2/3Q(x)
dx

= 1

2π i

∫ n2/3ζ1

n2/3ζ0

ehn(u)

(
1 + ehn(u)

)2
[
�̂n(x)

−1�̂n,+(x)
−1 (�̂n,+�̂n

)′
(x)

]

21
dx + R(u),

holds true for every u ≥ −s0 and every t ∈ [t0, 1/t0].
In words, Proposition 11.1 is saying that the major contribution to LQ

n comes from the
neighborhood U0, so from the local parametrix �̂n . But according to the developments
from the previous sections, this local parametrix is close to the id-PII parametrix �0,
and we are ready to conclude our last major result.
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Proof of Theorem 2.2. We combine Propositions 9.1 and (11.1) to obtain

logLQ
n (s)

= − 1

2π i

∫ ∞

s

∫ n2/3ζ1

n2/3ζ0

ehn (u)

(
1 + ehn(u)

)2
[
�̂n(x)

−1�̂n,+(x)
−1 (�̂n,+�̂n

)′
(x)

]

21
dxdu +O(n−1/3),

valid as n → ∞ and uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0. Next, with the
identifications (10.16)–(10.17) in mind, we estimate the integral on the right-hand side
with the help of Theorem 7.2 and conclude the proof. 
�

12. Technical Lemmas

It remains to prove Proposition 11.1, analysis which we split into several technical
lemmas in this section.

Our starting point is the integral representation for LQ
n from Proposition 9.1 with the

asymptotic information for KQ
n provided by the RHP analysis. For x ∈ R, set

A(x) ..= [
�n(x)

−1P+(x)
−1R+(x)

−1R′
+(x)P+(x)�n(x) + �n(x)

−1P+(x)
−1P′

+(x)�n(x)
]
21 .

(12.1)
Recalling (9.11), the unwrap of the transformations of the RHP yields the identity

KQ
n (x, x | u)

ωn(x | u)

1 + eu+n2/3Q(x)
= σn(x | u) e−2nφ+(x)

2π i(1 + eu+n2/3Q(x))

(
A(x) +

(
e2nφ+(x)

σn(x)

)′
χG+(x)

)

We now need to integrate each of the terms on the right-hand side above, first in x ∈ R

and then in u ∈ (s,+∞). Each term will be analyzed individually, also depending on
whether we integrate x in the bulk, each of the edges or away from the support [−a, 0] of
the equilibriummeasure. To simplify notation, it is convenient to introduce the additional
notation for each relevant integral, and for an arbitrary set J ⊂ R denote

I1(J ) ..=
∫

J

σn(x | u) e−2nφ+(x)

1 + eu+n2/3Q(x)
A(x)dx (12.2)

and

I2(J ) ..=
∫

J

σn(x | u) e−2nφ+(x)

1 + eu+n2/3Q(x)

(
e2nφ+(x)

σn(x)

)′
dx

=
∫

J

(
2nφn,+(x) − n2/3Q′(x)

1 + eu+n2/3Q(x)

)
1

1 + eu+n2/3Q(x)
dx,

(12.3)

which are functions of u ∈ R as well. With ε0, ε1 > 0 being determined by (−ε0, ε1) =
U0 ∩ R, the split

2π i
∫ ∞

−∞
KQ
n (x, x | u)

ωn(x | u)

1 + eu+n2/3Q(x)
dx = I1(−∞,−a − δ) + I1(−a − δ, a + δ)

+I1(a + δ,−ε0) + I1(−ε0, ε1) + I1(ε1,+∞) + I2(−a,−ε0) + I2(−ε0, 0) (12.4)

is immediate, and with the next series of lemmas we estimate each of the terms on the
right-hand side.
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Lemma 12.1. Fix s ∈ R and t0 ∈ (0, 1). There exists η > 0 for which the estimate

I1(−∞,−a − δ) + I1(−a + δ,−ε0) + I2(−a,−ε0) = O
(
e−u e−n2/3η

)

holds true uniformly for u ≥ s and t0 ≤ t ≤ 1/t0.

Proof. On the intervals (−∞,−a − δ) and (ε1,∞) the function �n is identically the
identity matrix. On the interval (a + δ,−ε0) the nontrivial entry of �n is e2nφ+ /σn and,
because Q < 0 and φ+ is purely imaginary in this interval, this quotient is bounded.
Also, away from the endpoints −a and 0 we have P ≡ G. Both P and G, and their
x-derivatives, decay as x → ±∞ and remain bounded as n → ∞, all uniformly in u
and t as claimed. All of these facts combined together, we obtain that for some constants
K > 0 and n0 ≥ 1

|A(x)| ≤ K , for all x ∈ R\ ((−a − δ,−a + δ) ∪ (−ε0, ε1)) , n ≥ n0, t0 ≤ t ≤ 1/t0, u ≥ s.
(12.5)

Next, we now use that Q ≥ 0 on the interval (−∞, 0) to bound

0 ≤ σn(x | u)

1 + eu+n2/3Q(x)
≤ 1

1 + eu+n2/3Q(x)
≤ e−u, x ≤ 0, (12.6)

which is valid for any n ≥ 1, u ∈ R, t > 0. Thus, combining everything we obtain

|I1(−∞,−a − δ)| ≤ K e−u
∫ −a−δ

−∞
e−2nφ+(x) dx,

and using Proposition 8.1-(iv), (v), this proves the bound for I1(−∞,−a − δ).
For the second integral, we term φ+ is oscillatory, so to obtain the exponential decay

in the x-integral we have to argue differently and as follows. The function

v �→ 1

1 + e−v

1

1 + ev
= e−v

(1 + e−v)2

is strictly increasing on (−∞, 0) and strictly decreasing on (0,+∞). Because Q > 0
on (−∞, 0) and Q(0) = 0, by reducing U0 if necessary we can assume without loss of
generality that Q(x) ≥ Q(−ε0) for every x ∈ [−a,−ε0]. This way, v = u+n2/3Q(x) ≥
v0

..= u + n2/3Q(−ε0) and, because u is assumed to be bounded from below, we can
make sure that v0 > 0 for every u. Therefore

0 ≤ σn(x | u)

1 + eu+n2/3Q(x)
≤ e−v0

(1 + e−v0)2
≤ e−u−n2/3Q(−ε0),

and upon integration and using Proposition 8.1-(ii), we obtain

|I2(−a + δ,−ε0)| ≤ (a − δ + ε0)K e−u−n2/3Q(−ε0) .

for every n ≥ n0 and t, u as claimed.
For the estimate for I2(−a,−ε0) we use again the last inequality in (12.6) and also

that both φ′
+ and Q′ are continuous, and hence bounded, on (−a,−ε0). This concludes

the proof. 
�
For the integral over (ε1,+∞), it is easier to actually estimate its u-integral directly.
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Lemma 12.2. Fix s0 > 0 and t0 ∈ (0, 1). There exists η > 0 for which the estimate
∫ ∞

s
I1(ε1,+∞)du = O (

e−nη
)

holds true uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

Proof. With the bound (12.5) we see that it is enough to estimate the integral

∫ ∞

s

∫ ∞

ε1

σn(x | u) e−2nφ(x)

1 + eu+n2/3Q(x)
dxdu =

∫ ∞

ε1

e−2nφ+(x)

1 + es+n2/3Q(x)
dx,

where for the equality we used Tonelli’s Theorem to interchange the order of integration,
and then integrated exactly. The term (1 + es+n

2/3Q(x))−1 is bounded by 1, and using
Proposition 8.1-(iv), (v) we see that the integral of e−2nφ is O(e−ηn) for some η > 0
independent of s and t, which concludes the proof. 
�

Next,we analyze the contribution coming fromaneighborhood of the endpoint z = a.

Lemma 12.3. Fix s ∈ R, t0 ∈ (0, 1). There exists η > 0 such that the estimate

I1(−a − δ,−a + δ) = O(e−u−ηn2/3), n → ∞,

is valid uniformly for u ≥ s and t0 ≤ t ≤ 1/t0.

Proof. On the neighborhood Dδ(−a) the function P = P(a) is the Airy local parametrix
(10.12), which involves the function�Ai evaluated at the argument ζ = n2/3ϕ(z). In the
ζ -plane, we fix R > 0 for which the asymptotic expansion (10.10) is valid for |ζ | > R,
and split the analysis into two cases, namely for |n2/3ϕ(z)| ≤ R and |n2/3ϕ(z)| ≥ R,
and for

An
..= {x ∈ (−a − δ,−a + δ) | |n2/3ϕ(x)| ≤ R}, Bn

..= (−a − δ,−a + δ)\An

we write

I1(−a − δ,−a + δ) = I1(An) + I1(Bn).

and now analyze each integral on the right-hand side separately.
For |n2/3ϕ(z)| ≤ R, the terms�Ai,+(ζ = n2/3ϕ(z)) and�′

Ai,+(ζ = n2/3ϕ(z)) consist
of continuous functions evaluated inside the compact interval [−R, R], and therefore
they are bounded. By the same reason, the expression (10.11) shows that F is bounded
for |n2/3ϕ(z)| ≤ R. On the other hand, without further analysis we obtain that F′ may
grow at most asO(n1/6). Finally, combining with (10.9) and the fact that the determinant
of P is identically 1, we conclude that for |n2/3ϕ(x)| ≤ R,

P+(x) = O(1) enφ+(x)σ 3 , P+(x)
−1 = e−nφ+(x)σ 3 O(1) and P′

+(x) = O(n) e−nφ+(x)σ 3

(12.7)
which is valid as n → ∞ and uniformly for x ∈ (−a − δ,−a + δ), also uniformly for
u ≥ s and t0 ≤ t ≤ 1/t0.

We use (12.7) back into (12.1), and combined with the fact that |σ−1
n | ≤ 2 for

x ≤ (−∞, 0) the result is that

A(x) =
[
�n(x)

−1 e−nφ+(x)σ 3 O(n) enφ+(x)σ 3 �n(x)
]

21
= e2nφ+(x) O(n), n → ∞,
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where the last error term is a scalar error, valid uniformly in x, u, t as before. Integrating,
we obtain that for some absolute constant K > 0,

|I1(An)| ≤ Kn
∫

An

σn(x | u)

1 + eu+n2/3Q(x)
dx ≤ Kn

∫

An

e−u−n2/3Q(x) dx = O(e−u−ηn2/3 ), n → ∞,

(12.8)
where for the second inequality we used that 0 < σn ≤ 1 and for the last estimate we
used that Q is strictly positive on (−a − δ,−a + δ) ⊃ An .

Next, we consider the case |n2/3ϕ(z)| ≥ R. In such situation, the asymptotics (10.10)
take place, and when combined with (10.11) they yield

P+(x) = G+(x) e
−σ 3 log σn(x)/2

(
I +O(n−1)

)
eσ 3 log σn(x)/2 = G+(x)

(
I +O(n−1)

)
.

(12.9)
where for the last equality we used (10.9).

The matrix P+ is bounded as x → 0, whereas G is not, but the cancellation that leads
to this boundedness of P is not captured by this asymptotics. Nevertheless, as we need
some uniform control over x , we now account for the behavior of x → 0 in a rough
manner as follows. We are assuming that |n2/3ϕ(x)| ≥ R, and because ϕ is conformal
with ϕ(0) = 0 this means that |x + a| ≥ c/n2/3, for some fixed c > 0. The function G
has a fourth-root singularity at x = 0, and therefore we arrive at the rough estimate

P+(x) = O(n1/6), n → ∞. (12.10)

The estimate (12.9) can be differentiated term by term. With arguments similar to the
ones we just applied, we arrive at the rough estimate

P′
+(x) = O(n7/6), n → ∞. (12.11)

These latter two estimates are valid uniformly for u ≥ s and t0 ≤ t ≤ 1/t0 as n → ∞.
Finally, on the interval (−a, 0) the factor φ+ is purely imaginary, implying that �±1

n
remains bounded therein. All combined, we obtained that

A(x) = O(n), n → ∞,

uniformly for x ∈ Bn and u, t as claimed. Proceeding as in (12.8) we obtain a bound for
I1(Bn) and complete the proof. 
�

It remains to analyze the two integrals I1(−ε0, ε1) and I2(−ε0, 0). Thehardest analysis
is the integral I1 which, as will turn out, contains both the leading contribution, a term to
cancel I2 and asymptotically negligible terms. For ease of presentation, we explore the
expression for A in (12.1) as a sum and split

I1(−ε0, ε1) = J1(−ε0, ε1) + J2(−ε0, ε1), (12.12)

where, for any measurable set J ⊂ R,

J1(J ) ..=
∫

J

[
�n(x)

−1P+(x)
−1R(x)−1R′(x)P+(x)�n(x)

]

21

σn(x | u) e−2nφ+(x)

1 + eu+n2/3Q(x)
dx,

J2(J ) ..=
∫

J

[
�n(x)

−1P+(x)
−1P′

+(x)�n(x)
]

21

σn(x | u) e−2nφ+(x)

1 + eu+n2/3Q(x)
dx,

(12.13)
and analyze each of these terms separately. For the estimation of J1, it is also easier to
perform the u-integral, just as we did in Lemma 12.2.
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Lemma 12.4. Fix s0 > 0 and t0 ∈ (0, 1). The estimate
∫ ∞

s
J1(−ε0, ε1)du = O(n−1/3) (12.14)

holds true uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

Proof. The idea is similar to the proof of Lemma 12.3. We fix a number R > 0 for
which the asymptotic expansion (4.3) for � = �̂n is valid for |ζ | ≥ R, uniformly in t, s
as claimed (see Remark 7.8). Then, introduce

Cn
..= {x ∈ (−ε0, ε1) | |n2/3ψ(x)| ≤ R}, Dn

..= (−ε0, ε1)\Cn . (12.15)

We now find bounds for the integrands, with separate arguments for each of Cn and Dn .
Recalling (10.22), on the interval (−ε0, ε1) the parametrix is P = P(0) =

Fn�n enφσ 3 , with Fn and �n as in (10.16). Using the definition of Fn in (10.16) and
Theorem 10.7, we express

F−1
n R−1R′Fn = F−1

n (R−1 − I)R′Fn − F−1
n R′Fn = −F−1

n R′Fn +O(n−1/3), n → ∞,

(12.16)
valid uniformly when evaluated at x ∈ Cn and also uniformly for s, t as claimed. Using
again the definition of Fn , the fact that ψ/m remains bounded near z = 0 and (10.30),

F−1
n R′Fn = 1

n1/3
ψσ 3/4m−σ 3/4nσ 3/6R̂′

1n
−σ 3/4mσ 3/4ψ−σ 3/4 +O(n−1/3).

A careful inspection on (10.29) shows that (R̂1(z))12 is independent of z, so R′ has zero
(1, 2)-entry. Therefore we conclude that

F−1
n R−1R′Fn = O(n−1/3),

stressing that this is valid for x ∈ Cn . Also, from (10.19) we learn that �n(x) = O(1)
uniformly on Cn . Everything we have so far combined yields that
[
�−1
n P−1

+ R−1R′P�n

]

21
=
[
�−1
n e−nφσ 3 O(n−1/3) enφ3σ 3 �n

]

21
= e−2nφ

[
�−1
n O(n−1/3)�n

]

21
.

Along (−a, 0) we have Q > 0 so that 1/σn remains bounded uniformly, and conse-
quently �n = O(1) in the same interval. Using this information in the last displayed
equation, we thus obtain that

J1(Cn) =
∫

Cn

O(n−1/3)
σn(x | u)

1 + eu+n2/3Q(x)
dx, n → ∞, (12.17)

uniformly for u ≥ s and t0 ≤ t ≤ 1/t0, and where the error term is uniform for x ∈ Cn .
Next, along Dn we now use the asymptotic expansion (4.3) for � = �̂n and the

definition of Fn and obtain that

P(x) = U0m+(x)
σ 3/4U−1

0

(
1 +O(n−1/3)

)
= U0

(O(1) 0
0 O(n1/6)

)
U−1
0

(
1 +O(n−1/3)

)
, x ∈ Dn,

and similarly

P(x) =
(
1 +O(n−1/3)

)
U0

(O(n1/6) 0
0 O(1)

)
U−1
0 , x ∈ Dn,
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all valid as n → ∞, uniformly for x ∈ Dn and uniformly in u, t as claimed
With the same arguments that we applied in (12.16), we obtain along Dn as well

P−1R−1R′P = O(n−1/3), so that J1(Dn) =
∫

Dn

O(n−1/3)
σn(x | u) e−2nφ+(x)

1 + eu+n2/3Q(x)
dx, n → ∞.

The factor φ+ is purely imaginary on (−a, 0) and positive on [0,+∞), so the term e−2nφ+

in the integrand above is bounded by a uniform constant. Combining with (12.17), we
conclude

J1(−ε0, ε1) = O(n−1/3)

∫ ε1

−ε0

σn(x | u)

1 + eu+n2/3Q(x)
dx

Finally, we now integrate in u and use Tonelli’s Theorem to interchange the order of
integration, obtaining just like in the proof of Lemma 12.2 that

∫ ∞

s

∫ ε1

−ε0

σn(x | u)

1 + eu+n2/3Q(x)
dxdu =

∫ ε1

−ε0

1

1 + es+n2/3Q(x)
dx ≤ ε1 + ε0,

which concludes the proof. 
�
Next, in our pursuit of analyzing (12.4), the final missing piece of the puzzle is the

term J2(−ε0, ε0) that arises from I1(−ε0, ε0). To state the rigorous results, we recall
once again that the conformal map ψ was introduced in Proposition 8.2, the function hn
is given in (10.16), the function �̂n is in (11.5) and in addition also set

ζ0
..= ψ(−ε0) < 0, ζ1

..= ψ(ε1) > 0.

Lemma 12.5. Fix s0 > 0 and t0 ∈ (0, 1). There exists a function R1(u) = Rn(u | t)
satisfying the estimate

∫ ∞

s
R(u)du = O(n−2/3), n → ∞,

uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0, and for which the identity

J2(−ε0, ε0) = −I2(−ε0, 0)

+
∫ n2/3ζ1

n2/3ζ0

ehn(u)

(
1 + ehn(u)

)2
[
�̂n(x)

−1�̂n,+(x)
−1 (�̂n,+�̂n

)′
(x)

]

21
dx + R1(u), (12.18)

holds true for every u ∈ R and every t > 0.

Proof. Recall that J2 was introduced in (12.13). In the interval (−ε0, ε1) the local
parametrix P = P(0) coincides with (10.22). A direct calculation from (10.16) shows
that the matrix Fn therein satisfies the identity

F′
n(z) = 1

4

(
m′(z)
m(z)

− ψ ′(z)
ψ(z)

)
Fn(z)σ 3.

With the help of this identity, we express

P−1
+ P′

+ = e−nφ+σ 3

[
1

4

(
m′

m
− ψ ′

ψ

)
�−1

n,+σ 3�n,+ + �−1
n,+�

′
n,+ + nφ′

+σ 3

]
enφ+σ 3 ,
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where both sides are evaluated at x ∈ (−ε0, ε1). Thus,

[
�−1

n P−1
+ P′

+�n

]

21

= −2n
φ′
+χ0 e2nφ+

σn
+ e2nφ+

[
�n�

−1
n,+�

′
n,+�n

]

21

+
e2nφ+

4

(
m′

m
− ψ ′

ψ

)[
�−1

n �−1
n,+σ 3�n,+�n

]

21

= −2n
φ′
+χ0 e2nφ+

σn
− e2nφ+

[
�−1

n �′
n

]

21
+ e2nφ+

[
�n�

−1
n,+

(
�n,+�n

)′]

21

+
e2nφ+

4

(
m′

m
− ψ ′

ψ

)[
�−1

n �−1
n,+σ 3�n,+�n

]

21
(12.19)

We now multiply this last expression by e−2nφ+ σn/(1 + eu+n
2/3Q) and integrate. A

direct calculation gives

σn

1 + eu+n2/3Q

(
2n

φ′
+χ0

σn
+
[
�−1

n �′
n

]

21

)

= σnχ0

1 + eu+n2/3Q

(
2n

φ′
+

σn
+

(
1

σn

)′)
= χ0σn e−2nφ+

1 + eu+n2/3Q

(
e2nφ+

σn

)′
,

which is the integrand of I2(−ε0, ε1) = I2(−ε0, 0), see (12.3). Thus, from (12.19) we
obtain

J2(−ε0, ε1) = −I1(−ε0, 0) +
∫ ε1

−ε0

σn(x)

1 + eu+n2/3Q(x)

[
�n(x)

−1�n,+(x)
−1 (�n,+(x)�n(x)

)′]

21
dx + R1(u)

(12.20)

where we have set

R1(u) ..= 1

4

∫ ε1

−ε0

(
m′(x)
m(x)

− ψ ′(x)
ψ(x)

)
σn(x)

1 + eu+n2/3Q(x)

[
�n(x)

−1�n,+(x)
−1σ 3�n,+(x)�n(x)

]

21
dx .

It is worth mentioning that both m and ψ have a simple zero at x = 0, so the first term
in the integrand of R remains bounded near x = 0.

Recalling (10.16), the integrand written explicitly in (12.20) is of the form

f1(n
2/3ψ(x))

[
f2(n2/3ψ(x))

(
f3(n2/3ψ(x))

)′]

21

= n2/3ψ ′(x) f1(n2/3ψ(x))
[
f2(n2/3ψ(x))f ′

3(n
2/3ψ(x))

]

21

with obvious choices of the functions f1, f2, f3, and performing the change of variables
u = n2/3ψ(x) we obtain the integral in the right-hand side of (12.18).

To conclude, it remains to show the bound for R. For that, we use again the sets Cn
and Dn from (12.15) and analyze the integral over each of these sets separately.
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Along Cn , the convergence (10.19) ensures �n,+ remains bounded uniformly, and
combined with the boundedness of all the other terms on the whole interval (−ε0, ε1)

we obtain
∫

Cn

(
m′(x)
m(x)

− ψ ′(x)
ψ(x)

)
σn(x)

1 + eu+n2/3Q(x)

[
�n(x)

−1�n,+(x)
−1σ 3�n,+(x)�n(x)

]

21
dx

= O(1)
∫

Cn

σn(x)

1 + eu+n2/3Q(x)
dx .

The function ψ is conformal, and consequently |z| ≤ cn−2/3 for z ∈ Cn and some
constant c independent of t, u, n. In particular, this ensures that n2/3Q(x) ≤ −c̃ for
every x ∈ Cn and a constant c̃ > 0, and therefore

σn(x)

1 + eu+n2/3Q(x)
≤ 1

1 + eu−c̃
≤ e−u+c̃ .

Still because ψ is conformal, we are sure that the Lebesgue measure of Cn isO(n−2/3).
Everything combined, we conclude the estimate

∫

Cn

(
m′(x)
m(x)

− ψ ′(x)
ψ(x)

)
σn(x)

1 + eu+n2/3Q(x)

[
�n(x)

−1�n,+(x)
−1σ 3�n,+(x)�n(x)

]

21
dx

= O(e−u n−2/3),

as n → ∞, which is valid uniformly for u, t as claimed by the Lemma.
Finally, on Dn we use the expansion (5.10) for � = �n , which provides

�n,+(x)
−1σ 3�n,+(x) = enφ+(x)σ 3

(
σ 2 +O(n−1/3)

)
e−nφ+(x)σ 3, n → ∞,

which is valid uniformly for x ∈ Dn and uniformly in the parameters u, t as required.
After some straightforward calculations, we thus arrive at

∫

Dn

(
m′(x)
m(x)

− ψ ′(x)
ψ(x)

)
σn(x)

1 + eu+n2/3Q(x)

[
�n(x)

−1�n,+(x)
−1σ 3�n,+(x)�n(x)

]
21 dx

=
∫

Dn

(
m′(x)
m(x)

− ψ ′(x)
ψ(x)

)
iσn(x) e−2nφ+(x)

1 + eu+n2/3Q(x)

[
1 +

χ0(x)

σn(x)2
+O(n−1/3)

]
dx, n → ∞,

with, as always, uniform error term in x ∈ Dn , u, t. Each of the terms (m′/m − ψ ′/ψ)

and χ0/σ
2
n is bounded on (−ε0, ε1), so to bound the integral above it is enough to

estimate
∫ ε1

−ε0

σn(x) e−nφ+(x)

1 + eu+n2/3Q(x)
dx =

∫ 0

−ε0

σn(x) e−nφ+(x)

1 + eu+n2/3Q(x)
dx +

∫ ε1

0

σn(x) e−nφ(x)

1 + eu+n2/3Q(x)
dx .

For the integral over (−ε0, 0), we know thatRe φ+ = 0, and then usingTonelli’s Theorem
to integrate first in u we obtain that

∫ +∞

s

∣∣∣∣∣

∫ 0

−ε0

σn(x) e−nφ+(x)

1 + eu+n2/3Q(x)
dx

∣∣∣∣∣ du ≤
∫ 0

−ε0

1

1 + es+n2/3Q(x)
dx .
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Changing variables v = n2/3Q in this last integral, it then follows that the right-hand
side above is O(n−2/3) uniformly for s ≥ −s0 and t0 ≤ t ≤ 1/t0.

Finally, for the integral over (0, ε1) we now have that φ ≥ 0 in this interval, and it is
independent of u, so once again interchanging order of integration we obtain

0 ≤
∫ ∞

s

∫ ε1

0

σn(x) e−nφ(x)

1 + eu+n2/3Q(x)
dxdu =

∫ ε1

0

e−nφ(x)

1 + es+n2/3Q(x)
dx ≤

∫ ε1

0
e−nφ(x) dx,

and now changing variables v = nφ (which is well defined in this interval because of
the local behavior (8.4)) we see that the integral on the right-most side is O(n−1). This
completes the proof. 
�

To conclude, it remains to prove Proposition 11.1.

Proof of Proposition 11.1. Recalling (12.4) and (12.12), the result is an immediate con-
sequence of Lemmas 12.1–12.5. 
�

Acknowledgements. P. G. wishes to thank Ivan Corwin and Alexandre Krajenbrink for many helpful conver-
sations and Alexei Borodin for comments on the earlier version of this manuscript. P.G.’s research is partially
supported by the NSF Grant DMS:2153661. G. S. is grateful to Jinho Baik, Tom Claeys, Mattia Cafasso, Lun
Zhang and Alfredo Deaño for inspiring conversations, Dan Betea for pointing us out to relevant references
and Arno Kuijlaars for comments on an earlier version of this manuscript. He also acknowledges his current
support by São Paulo Research Foundation (FAPESP) under Grants # 2019/16062-1 and # 2020/02506-2,
and by Brazilian National Council for Scientific and Technological Development (CNPq) under Grant #
315256/2020-6. This work was partially developed while the authors participated in the program Universality
and Integrability in Random Matrix Theory and Interacting Particle Systems, hosted by the Mathematical
Sciences Research Institute in Berkeley, California, during the Fall 2021 semester, supported by the National
Science Foundation under Grant No. DMS-1928930. We are grateful to the organizers for their effort in pro-
viding an excellent research atmosphere despite the uncertain times.

Funding Open Access funding provided by the MIT Libraries.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Laplace-Type Integrals

For smooth enough functions f, g, consider the Laplace-type integral

F(t) ..=
∫ a

0
g(x) log(1 + e−y−t f (x))dx, a ∈ (0,+∞].

We are interested in the asymptotic behavior of F(t) as t → +∞ while y also scales
with t . The first result we need is a version of the usual Watson’s Lemma.

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. Fix f (x) ≡ x. Suppose also that g ∈ L1(0, a), and for some δ > 0 and
κ ∈ [0, 1) it is of the form

g(x) = g̃(x)

xκ
, 0 < x < δ,

where g̃ is C∞ in a neighborhood of the origin. Assume that

y ≥ −M, (A.1)

for some M > 0 fixed. Then F(t) admits an expansion of the form

F(t) =
N∑

k=0

1

tk+1−κ
g̃(k)(0)Fk−κ(y) +O(t−N−2+κ), t → ∞,

for any N ≥ 1, where the error term is uniform for y satisfying (A.1), and the coefficients
Fβ(y) are given by

Fβ(y) ..=
∫ ∞

0
vβ log(1 + e−y−v)dv, β > −1. (A.2)

For y > 0 and any β > −1, Fβ admits the alternative expression in terms of the polylog
function Lis ,

Fβ(y) = −β�(β)Li2+β(− e−y).

Proof. The proof follows along the lines of the proof of the classical Watson’s Lemma
for Laplace transforms, see for instance [67], so we go over it without much detail.
First off,wefix δ > 0 forwhich g̃ admits aTaylor expansionof order N in a neighborhood
of the interval (−δ, δ), and write for some η > 0,

∫ a

0
g(x) log(1 + e−y−t x )dx =

∫ δ

0
g(x) log(1 + e−y−t x )dx +O(e−tη), t → ∞,

where the error term is obtained using that g ∈ L1(0,∞) and that the function x �→
log(1 + e−y−t x ) is increasing. The value η > 0 is independent of y, and the error is
uniform for y satisfying (A.1). For the integral on the right-hand side, we expand g̃ in
Taylor series and obtain

∫ δ

0
g(x) log(1 + e−y−t x )dx =

N∑

k=0

g̃(k)(0)

k!
∫ δ

0
uk−κ log(1 + e−y−tu)du + RN+1(t),

where the remainder satisfies

|RN+1(t)| ≤ 1

(N + 1)! sup
0≤x≤δ

|̃g(N+1)(x)|
∫ δ

0
uN+1−κ log(1 + e−y−tu)du

Performing the change of variables u = tv, we see that for Fβ(y) as defined,

∫ δ

0
uβ log(1 + e−y−tu)du = Fβ(y)

tβ+1
− 1

tβ+1

∫ ∞

tδ
vβ log(1 + e−y−v).
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Using (A.1) we see that the last integral is again O(e−ηt ) uniformly for y. Also, it is
immediate that under the restriction (A.1) each coefficient Fβ(y) is bounded in y, and
this concludes the proof of the asymptotic formula.
For the alternative representation of Fk(y) in terms of polylogs, we expand the log in
power series and express

Fβ(y) =
∞∑

k=1

(− e−y)k

k

∫ ∞

0
vβ e−kv dv,

where the change in order between the sum and the integral is justified because the power
series expansion of the log is uniform in e−v−y for v ≥ 0 and y ≥ δ, for any δ > 0
fixed. The proof is then completed using the change of variables kv = u and comparing
with the power series representations Lis(z) = ∑∞

k=1 z
k/(ks).


�
Next, we move to more general exponents.

Proposition A.2. Suppose that f is C∞ in a neighborhood of the origin, with a unique
global minimum on [0, a] at x = 0 with f (0) = 0, f ′(0) > 0, and that g is as in
LemmaA.1. In addition, suppose that y satisfies (A.1) for some M > 0 fixed. Then F(t)
admits an expansion of the form

F(t) =
N∑

k=0

1

tk+1−κ
ĝ(k)(0)Fk−κ(y) +O(t−N−2+κ), t → ∞,

for any N ≥ 1, where the error term is uniform for y satisfying (A.1), Fk’s are as in
Lemma A.1 and the function ĝ is C∞ and satisfies the identity

ĝ( f (x)) = f (x)κg(x), |x | sufficiently small.

Proof. Because f is assumed to be C∞ and to have a unique global minimum at x = 0,
by the Inverse Function Theorem it admits an inverse f −1 in a neighborhood of the
origin. With the change of variables

u = f (x), and setting u0 ..= f (δ), ĝ(x) ..= xκ g̃( f −1(x))

( f −1(x))κ
= xκg( f −1(x)),

for δ > 0 sufficiently small the integral is turned into

F(t) =
∫ δ

0
g(x) log(1 + e−y−t f (x))dx +

∫ a

δ

g(x) log(1 + e−y−t f (x))dx

=
∫ u0

0

1

xκ
ĝ(x) log(1 + e−y−tu)dx +O(e−ηt ),

for some η > 0. Applying Lemma A.1 to the remaining integral concludes the proof. 
�
Next we move to a different scaling regime on y.
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Lemma A.3. Let f and g be as in Proposition A.2. For any fixed constants M > 0 and
α ∈ [0, 1), assume that

−Mtα ≤ y ≤ − 1

M
. (A.3)

Then F(t) admits an expansion of the form

F(t) =
N∑

k=0

1

tk+1−κ
ĝ(k)(0)ϕk−κ(y) +O(t−N−2+κ |y|N+3−κ), t → ∞, (A.4)

for any N ≥ 1, where the error term is uniform for y satisfying (A.3), and the coefficients
ϕk(y) are of the form

ϕβ(y) ..= ϕ
(1)
β (y) + ϕ

(2)
β (y) + ϕ

(3)
β (y), with

ϕ
(1)
β (y) ..= 1

(β + 1)(β + 2)
|y|β+2,

ϕ
(2)
β (y) ..=

∫ ∞

0

(|y − u|β + |y + u|β) log(1 + e−u)du,

ϕ
(3)
β (y) ..= −

∫ ∞

|y|
|y + u|β log(1 + e−u)du,

and the function ĝ satisfies the identity

ĝ( f (x)) = f (x)κg(x), |x | sufficiently small.
To illustrate the previous result, assume κ = 0, write y = −Mtα and send t → ∞.
When α = 0 the three functions ϕ

( j)
k are all O(1). When 0 < α < 1, the function

ϕ
(3)
k decays exponentially fast, whereas ϕ

(1)
k = O(t (k+2)α) while ϕ

(1)
k = O(tkα). In

either case, the error term is O(t−(1−α)N+3α−2), which is in fact decaying only when
α < (N + 2)/(N + 3). In other words, for a given α the asymptotic formula (A.4) only
becomes truly useful (that is, with a small error) when N is chosen sufficiently large.

Proof. We prove the result for f (x) = x , the general case follows along the same lines
of the proof of Proposition A.2.
Fix δ > 0 so that g is C∞ on [0, δ]. By replacing g with gχ[0,a] we may assume that
a = +∞. We can then bound

∣∣∣∣
∫ ∞

δ

g(u) log(1 + e−y−tu)du

∣∣∣∣ ≤ ‖g‖L1(0,∞) e
−ηtα−tδ = O(e−δt/2),

as we are assuming that α < 1. Proceeding as in the proof of Proposition A.1, we obtain
∫ δ

0
g(x) log(1 + e−y−t x )dx

=
N∑

k=0

g̃(k)(0)

k!
∫ δ

0
uk−κ log(1 + e−y−tu)du + RN+1 +O(e−δt/2), (A.5)

with error term satisfying

|RN+1| ≤ 1

(N + 1)! ‖g̃
(k+1)‖L∞(0,δ)

∫ δ

0
uN+1−κ log(1 + e−y−tu)du. (A.6)
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The integrals appearing in the sum and in the bound for the error above are of the same
form, and now we study them. From (A.3) we see that by taking t large enough we can
always assume that the point ut ..= −y/t where the exponent y+ut changes sign belongs
to the interval (0, δ). We split the integrals on (0, δ) into the integrals over (0, ut ) and
(ut , δ). For the first one, we then express it as

∫ ut

0
uβ log(1 + e−y−tu)du = −

∫ ut

0
(y + tu)uβdu +

∫ ut

0
uβ log(1 + ey+tu)du

= 1

(β + 1)(β + 2)

|y|β+2
tβ+1

+
1

tβ+1

∫ |y|

0
|v + y|β log(1 + e−v)dv

= 1

tβ+1
ϕ

(1)
β (y) +

1

tβ+1

∫ y+tδ

0
|y + v|β log(1 + e−v)dv

− 1

tβ+1

∫ y+tδ

|y|
|y + v|β log(1 + e−v)dv,

where for the second equality we changed variables v = −y − tu. Likewise,

∫ δ

ut
uβ log(1 + e−y−tu)du = 1

tβ+1

∫ y+tδ

0
|y − v|β log(1 + e−v)dv,

and combining them

∫ δ

0
uβ log(1 + e−y−tu)du = 1

tβ+1
ϕ

(1)
β (y)

+
1

tβ+1

(∫ y+tδ

0
(|y − v|β + |y + v|β) log(1 + e−v)dv −

∫ y+tδ

|y|
|v + y|β log(1 + e−v)dv

)

Using that y + tδ → +∞ and the bounds (A.3), it is straightforward to see that the first
integral on the right-hand side is exponentially close to ϕ

(2)
k while the second integral

is exponentially close to ϕ
(3)
k . The result then follows using these relations back into

(A.5)–(A.6). 
�
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