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Abstract: We investigate the notion of real form of complex Lie superalgebras and
supergroups, both in the standard and graded version. Our functorial approach allows
most naturally to go from the superalgebra to the supergroup and retrieve the real forms
as fixed points, as in the ordinary setting. We also introduce a more general notion of
compact real form for Lie superalgebras and supergroups, and we prove some exis-
tence results for Lie superalgebras that are simple contragredient and their associated
connected simply connected supergroups.

1. Introduction

The study of real forms of complex contragredient Lie superalgebras was initiated by
V. G. Kac in his foundational work [14] and then carried out by M. Parker in [19]
and V. Serganova in [21], where also symmetric superspaces were accounted for. Later
on, Chuah in [6] gave another thorough classification of such real forms using Vogan
diagrams and Cartan automorphisms. In fact, as it happens for the ordinary setting,
we have a one to one correspondence between real structures on a contragredient Lie
superalgebra g , and its Cartan automorphisms aut2,4(g) , that is automorphisms that are
involutions on the even part and whose square is the identity on the odd part of g . This
translates to a bijection between the antilinear involutions aut2,2(g) of g and the linear
automorphisms aut2,4(g) . In the ordinary setting, that is for g = g0̄ , this correspondence
is explicitly obtained through the Cartan antiinvolution ω0̄ , whose fixed points give the
compact form of g0̄ . In the supersetting, as we shall see, such antiinvolution is replaced
by an antilinear automorphism ω ∈ aut2,4(g) . This prompts for amore general treatment
of real structures and real forms of superspaces and superalgebras, together with their
global versions, where we consider both cases aut2,s(g) and aut2,s(g) , for s = 2, 4 .
We shall refer to such real structures and real forms as standard and graded; they were
introduced in [20,21].
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The paper is organized as follows. Section 2 contains preliminaries that help to
establish our notation. In Sect. 3, we begin by defining the notion of standard and graded
real structure on a superspace V as a pair (V, φ) with φ ∈ aut2,2(g) or aut2,4(g) ,
respectively. We obtain two categories, (smod)st

C
and (smod)gr

C
, that we compactly

denote (smod)•
C

whenever there is no need to remark the difference; similarly, we
define the corresponding categories of superalgebras (salg)•

C
. As expected, given a real

structure, the associated real form is given by the fixed points of the antiautomorphism,
however in the graded case, the functorial point of view is most fruitful, because such
points cannot be seen over the complex field. After establishing the terminology and
definitions, we can then give naturally the notion of real structures and real forms of
Lie superalgebras, following and extending the work [20]. These real structures and
real forms do integrate: thus, in Sect. 4, we obtain the category of complex supergroups
with standard or graded real structures, that we denote with (sgrps)st

C
and (sgrps)gr

C
,

or more compactly (sgrps)•
C
. We also briefly discuss the super Harish-Chandra pairs

(sHCp) approach in this context (see also [3,11,17]). Our main result for this part is the
following (see Theorem 3.12).

Theorem A. If
(
G,�

) ∈ (sgrps)•
C
, the real form G� of G , given by the fixed points

of � , is

G�(A) =
(
G�+

+ × A
0 |d1
•,C

)
(A), ∀ A ∈ (salg)•

C

where G�+
+ is the ordinary underlying real form of G+ and A

0 |d1
•,C

is a real form of a

purely odd affine superspace. In particular, the supergroup functor G� is representable.

In the remaining part of the paper, we discuss compact real forms of contragredient
complex Lie superalgebras and the corresponding supergroups, using the results detailed
above.

In the ordinary setting, a real Lie algebra is compact if it is embedded into some
orthogonal or equivalently unitary Lie algebra. For a Lie superalgebra g , many authors
(see [2,4,6]) replace this notionwith the requirement that g = g0 and the latter compact.
We take a more general approach, allowing g to have odd elements. For this reason, in
Sect. 5, we need to examine super Hermitian forms, in the standard and graded context,
and the corresponding unitary Lie superalgebras. In our Sect. 6.1, we retrieve in our
language the physicists’ definition of unitary Lie superalgebra (see [21] and references
therein), but also a graded version of it, obtained as fixed points of the superadjoint—that
is, the supertranspose complex conjugate. We regard this example very significant and
natural, since it is obtained via an antilinear morphism in aut2,4(gl(m|n)) , which has a
categorical motivation (see [10], Ch. 1, and also [20,21]).

In Sect. 6, we formulate our notion of compact Lie superalgebra as one admitting an
embedding into a unitary Lie superalgebra for a suitable positive definite superHermitian
form. We shall call this super-compact. Then, we are finally able to introduce ω ∈
aut2,4(g) , generalizing the Cartan antiinvolution ω0̄ mentioned above, and to prove the
correspondence between aut2,4(g) and aut2,2(g) and between aut2,2(g) and aut2,4(g) .
Our main result for this part is the following (see Theorems 5.10 and 5.11):

Theorem B. Let g be a simple complex contragredient Lie superalgebra. Then:

(a) g admits a graded, super-compact real form, given via ω ∈ aut2,4(g) ;
(b) if g is of type 1, then g admits a standard, compact real form;
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(c) if g is of type 2, then g has no standard, compact real form.
In all cases, such super-compact or compact forms are unique up to inner automor-
phisms.

We end our treatment giving a global version of the previous results (see Theorems
6.4, 6.5).

Theorem C. Let G be a complex supergroup with g = Lie(G) being simple contra-
gredient. Then G admits a graded, super-compact real form, which is unique up to inner
automorphisms.

If g is of type 1, then G admits a standard, compact real form, unique up to inner
automorphisms. If g is of type 2, then G has no standard, compact real form.

2. Real Structures of Superspaces and Superalgebras

Let our ground field k = C . For notation and basic facts on supergeometry, see [1,8,16].

2.1. Real structures of super vector spaces.

Definition 2.1. Let V be a complex super vector space. We call (generalized) real
structure, of standard or graded type respectively, on V any C–antilinear super vector
space morphism φ : V −→ V such that

(1) φ2
∣∣
V0̄

= idV0̄ ,

(2.s) φ2
∣∣
V1̄

= + idV1̄ (standard real structure),

(2.g) φ2
∣∣
V1̄

= − idV1̄ (graded real structure).

Note that giving a real structure on V is the same as giving on it a C–antilinear action
of the cyclic group Z4 which on the even part V0̄ factors through its quotient Z2 . The
action factors through Z2 on all of V if and only if the corresponding real structure is
standard.

We call the subspace V φ of fixed points standard or graded real form of V . This V φ

is a real form of V in the usual sense if and only if φ is an involution, i.e. in the standard
case.

If in addition V is a Lie superalgebra, we require φ to be a Lie superalgebra (anti-
linear) morphism, i.e. to preserve the Lie (super)bracket of V . Similarly, we require
the analogous property when φ is an associative superalgebra, a superbialgebra, a Hopf
superalgebra, etc.

Definition 2.2. Wedefine the categories (smod)st
C
and (smod)gr

C
ofC–supermoduleswith

standard or graded real structure as follows. The objects are pairs (V, φ), where V is any
C–supermodule with φ as its real structure (standard or graded). The morphisms from
an object

(
V ′, φ′) to an object

(
V ′′, φ′′)—both either standard or graded—are those

morphisms of C–supermodules f : V ′ −→ V ′′ such that f ◦ φ′ = φ′′ ◦ f ; in short,
any such f preserves the Z4–action. We use notation (smod)•

C
to denote either one of

these categories, with • ∈ {st, gr} .
If (V, φ) ∈ (smod)•

C
and V ′ ⊆ V is a super vector subspace of V , with φ(V ′) =

V ′ ,we say that the real structure (V ′, φ|V ′) is inducedby (V, φ) andwewrite (V ′, φ|V ′)⊆
(V, φ).

We can similarly define the categories (salg)st and (salg)gr of all unital associative
commutative superalgebras with a standard or graded real structure and the categories
(sLie)st and (sLie)gr of all Lie C–superalgebras with a standard or graded real structure.



940 R. Fioresi, F. Gavarini

As customary with superalgebras—cf. [20]—for A ∈ (salg)•
C

we denote the real
structure with the notation a �→ ã , and we call such map standard or graded conjuga-
tion.

Remark 2.3. By its very construction, (smod)•
C
is a subcategory of the category (smod)Z4

C

of supervector spaces with a Z4–action. Moreover, the latter is also a tensor category,
and then (smod)•

C
is actually a tensor subcategory: namely, if

(
V ′, φ′),

(
V ′′, φ′′) ∈

(smod)•
C
, then φ′ ⊗ φ′′ is a real structure—of the correct type, i.e. either standard or

graded—on V ′ ⊗ V ′′ .

2.2. Real structures and real forms of functors. We now want to express functorially
the notion of (generalized) real structure described in the previous section. Assume that
V is a complex super vector space and consider the functor

hV : (salg)C −−−−→ (smod)C, A �→ (
A ⊗ V

)
0̄ = A0̄ ⊗ V0̄ + A1̄ ⊗ V1̄

(the definition on the morphisms being clear), the Z2–grading being given by
(
hV (A)

)
z:= Az ⊗ Vz for each z ∈ Z2 . This in fact is identified with the functor of points of

the affine superspace A(V )—see [1], Ch. 10. When in addition V = g ∈ (sLie)C is a
complex Lie superalgebra, the associated functor hg is actually valued in the category
(Z2–Lie)C of complex, Z2–graded Lie algebras, i.e. it is a functor hg : (salg)C −−−−→
(Z2–Lie)C.

Definition 2.4. Let V a complex super vector space. For • ∈ {st, gr} , let LV := R ◦
hV ◦ F where F : (salg)•

C
−→ (salg)C is the obvious forgetful functor and R :

(smod)C −→(smod)R is the obvious functor of scalar restriction. We call real structure
on LV any natural transformation ϕ : LV −−→ LV such that for each A ∈ (salg)•

C
the

map ϕA : LV (A) −−→ LV (A) is

(1) conjugate A0̄–linear, i.e. ϕA(a1X1 + a2X2) = ã1 ϕA(X1) + ã2 ϕA(X2) for all ai ∈
A0̄ , Xi ∈ LV (A) ,

(2) parity-preserving, i.e. ϕA
(
Aa ⊗ Va

) ⊆ Aa ⊗ Va ,
(3) involutive, i.e. ϕ 2

A = 1 .

Such a ϕ is called standard, resp. graded, if • = st , resp. • = gr .
If in addition V = g ∈ (sLie)C is a Lie superalgebra, we define a real structure onLg

as above, but adding the further condition that each ϕA be a morphism of (Z2–graded)
Lie algebras, i.e.

ϕA
([
X1, X2

]) = [
ϕA(X1), ϕA(X2)

] ∀ X1, X2 ∈ Lg(A)

Theorem 2.5. For every g ∈ (sLie)C, there exists a canonical, bijection between stan-
dard, resp. graded, real structures on Lg and standard, resp. graded, real structures
on g . Furthermore, this bijection induces an equivalence between the category of func-
tors Lg with standard, resp. graded, real structures and (sLie)st

C
, resp. (sLie)gr

C
—and

similarly for LV and (smod)st
C
, resp. (smod)gr

C
.

Proof. If ϕ is a real structure onLV , we have a corresponding real structure φ : V → V
on V defined by φ(v) := ϕC(v) . Conversely, if φ is a real structure on V , for each
A ∈ (salg)•

C
we define a corresponding ϕA by ϕA(a ⊗ v) := ã ⊗ φ(v) . Details can be

found in [20], Theorem 2.6. 
�
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We now turn to examine generalized real forms in the functorial language.

Definition 2.6. Let V be a complex super vector space with real structure φ , and ϕ the
corresponding real structure on the functor LV , as in Theorem 2.5. We define real form
(standard or graded) of LV as being the functor Lϕ

V : (salg)•
C

−→ (smod)R given on
objects by

Lϕ
V (A) := LV (A)ϕA = {

x ∈ LV (A)
∣∣ϕA(x) = x

} ∀ A ∈ (salg)•
C

—in other words, Lϕ
V (A) is the submodule of ϕA–invariants, i.e. the fixed points of ϕA ,

in LV (A)—and in the obvious way on morphisms. Note also that if V = g ∈ (sLie)C

is in fact a complex Lie superalgebra, and φ is a real structure in the Lie sense, then
each Lϕ

g (A) is automatically a Z2–graded real Lie subalgebra in Lg(A) , so that Lϕ
g

is actually a functor from (salg)•
C
to (Z2–Lie)R , the category of Z2–graded real Lie

algebras.

Proposition 2.7. With notation as above, assume V is finite dimensional. Then the func-
tor Lϕ

V is representable and it is represented by the symmetric superalgebra S(V ∗) ∈
(salg)•

C
.

Proof. It is immediate by the following chain of equalities:

Lϕ
V (A)= (A ⊗ V )

ϕA

0̄
= (A ⊗ V )

Z4

0̄
= Hom

(
V ∗, A

)Z4

=
(
Hom (salg)C

(
S(V ∗), A

))Z4 = Hom (salg)•
C

(
S(V ∗), A

)


�
Remarks 2.8. The following are alternative, equivalent ways to introduce the notion of
“real structure” on the functor LV for any V ∈ (smod)C :

(a) Let V be the complex-conjugate of V , that is V itself as real vector space endowed
with the conjugate complex structure. Let F : (salg)•

C
−→ (salg)C be the forgetful

functor considered above, and C : (salg)•
C

−→(salg)•
C
be the functor given onobjects

by C(A) := A and on morphisms by C( f ) := f ; then, setting L′
V := hV ◦F and

L′
V

:= hV ◦ F we have hV = hV ◦ C and L′
V

= L′
V ◦ C . Using this language,

giving a real structure on LV is equivalent to giving a pair of natural transformations
ϕ′
+ : L′

V −−→ L′
V
and ϕ′− : L′

V
−−→ L′

V that are parity preserving and such that
ϕ′− ◦ ϕ′

+ = idL′
V
and ϕ′

+ ◦ ϕ′− = idL′
V
.

(b) If ϕ is a real structure on LV , then ϕA : LV (A) −−→ LV (A)—for each A ∈
(salg)•

C
—is a real structure, in classical sense, on the Z2–graded complex vector

space LV (A) , which is conjugate A0̄–linear and preserves the Z2–grading. Now,
let (Z2–mod)rs

C
be the category of Z2–graded complex vector spaces with a con-

jugate A0̄–linear, Z2–graded real structure, and (Z2–mod)rs
C

F∗−−→ (Z2–mod)C the
obvious forgetful functor. Then, just rephrasing the Definition 2.4, we can quickly
find that giving a real structure on LV is actually equivalent to giving a functor
L̇ : (salg)•

C
−−−→ (Z2–mod)rs

C
such that F∗ ◦ L̇ = LV ◦ F .

Indeed, roughly speaking the condition F∗ ◦ L̇ = LV ◦ F means that “L̇ coincides
with LV up to forgetting any real structure”, hence we can say that, in a nutshell, any
such functor L̇ is (sort of) “LV endowed with a pointwise real structure”.
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2.3. Real affine superspaces. Let V be a complex super vector space of finite (super)
dimension r |s ; its associated affine superspace A(V ) is the complex superspace de-
scribed by the functor LV : (salg)C −→ (smod)C , which is represented by the complex
commutative superalgebra S(V ∗) . If in addition φ is a real structure on V , we define
the real affine superspace A(V, φ) associated to (V, φ) as the “superspace with real
structure” whose functor of points is Lϕ

V (as in Proposition 2.7 above), represented by
the symmetric superalgebra S(V ∗) with real structure canonically induced by that of
V . We will also write A

d0|d1
•,C

:= A(V, φ) if d0
∣∣d1 is the superdimension of V , with •

denoting the type of φ .
Now observe that for any graded real structure φ on a finite-dimensional complex

superspace V , from φ
∣∣2
V1̄

= −idV1̄ it easily follows that V1̄ has a C–basis
{
u1, . . . , uδ,

w1, . . . , wδ

}
such that φ(ui ) = +wi , φ(wi ) = −ui , for all i = 1, . . . , δ . In particular,

d1 := dim(V1̄) = 2 δ is even, and φ
∣∣
V1̄

is described—as a C–linear map from V1̄ to

V 1̄ , that is V1̄ endowed with the conjugate complex structure—by the 2×2 blockmatrix(
0 −Iδ

+Iδ 0

)
.

In particular, if V is a complex super vector space which is entirely odd, i.e. V =
V1̄ , V0̄ = 0 , with graded real structure φ , then S(V ∗) is isomorphic to the complex
Grassmann algebra �C

(
ξ+1 , . . . , ξ+δ , ξ−

1 , . . . , ξ−
δ

)
in 2 δ = d1̄ odd indeterminates—

where δ := d1
/
2 = dim(V1̄)

/
2—with graded real structure given by φ

(
ξ±
i

) := ±ξ∓
i

for all i = 1, . . . , δ . Note that the A–points—for any A ∈ (salg)gr
C
—of A

0|d1
gr,C :=

A(V, φ) are given by

A
0|d1
gr,C(A) =

{(
α+
i , α−

i

)
i=1,...,δ

∣∣∣α±
i ∈ A1̄, α̃±

i = ±α∓
i , ∀ i

}

or

A
0|d1
gr,C(A) =

{(
α+
i ,+α̃+

i

)

i=1,...,δ

∣
∣∣α+

i ∈ A1̄, ∀ i = 1, . . . , δ
}

=
{(

−α̃−
i , α−

i

)

i=1,...,δ

∣
∣∣α−

i ∈ A1̄, ∀ i = 1, . . . , δ
}

When a real structure ϕ on LV is standard, we have the following characterization
of Lϕ

V :

Proposition 2.9. Let ϕ be a standard real form on LV , and φ the corresponding real
structure on V . Then

(a) Lϕ
V (A) := (A ⊗ V )

ϕA

0̄
= (

Are ⊗ V φ
)
0̄ , with Are = {

a ∈ A
∣
∣ a = ã

} ∀ A ∈
(salg)st

C
;

(b) Lϕ
V (R ⊗ C) = Hom (salg)st

C

(
C[V ], R ⊗ C

) = Hom (salg)R

(
R
[
V φ
]
, R
) ∀ R ∈

(salg)R .

Proof. (a) Definitions give (A ⊗ V )
ϕA

0̄
= {

a ⊗ v + ϕA(a ⊗ v)
∣∣ |a| = |v| } . Let a =

a1 + i a2 , v = v1 + i v2 , so that ã = a1 − i a2 and φ(v) = v1 − i v2 . Then

(a1 + ia2) ⊗ (v1 + iv2) + (a1 − ia2) ⊗ (v1 − iv2)

= 2a1 ⊗ v1 − 2a2 ⊗ v2 ∈ (Are ⊗ V φ
)
0̄
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(b) By Proposition 2.7 we have

Lϕ
V (R ⊗ C) = (

(R ⊗R C) ⊗C V
)ϕR⊗C

0̄
= Hom (smod)st

C

(
V ∗, R ⊗R C

) =
= Hom (salg)st

C

(
S(V ∗), R ⊗R C

) = Hom (salg)st
C

(
C[V ], R ⊗R C

)

On the other hand, by claim (a) we have

Lϕ
V (R ⊗ C) = (

(R ⊗R C) ⊗C V
)ϕR⊗C

0̄
= (

(R ⊗R C)re ⊗R V φ
)
0̄ =

= (
R ⊗R V φ

)
0̄ = Hom (smod)R

(
(V φ)

∗
, R
) = Hom (salg)R

(
R
[
V φ
]
, R
)


�
Notice that, by claim (b) of the previous proposition, we have that Lϕ

V (A) =
hV φ (Are) because in the standard case we have A = Are⊗C ; therefore we can identify
Lϕ
V with the functor hV φ representing the real super vector space V φ .

Observations 2.10. (a) If V ′ ⊆ V is a super vector subspacewith real structure induced
by (V, φ) , then Lϕ

V ′(A) ⊆ Lϕ
V (A) for all A ∈ (salg)•

C
.

(b) If V ′ ⊆ V is a super vector subspace with standard real structure induced by (V, φ) ,
then (V ′)φ ⊆ V φ as real super vector spaces.

3. Real Structures and Real Forms of Supergroups

We now want to define the notion of real structure and real form of a supergroup, from
different points of view. Let (sgrps)C denote the category of complex supergroups.

3.1. Real structures on supergroups. We shall give our definition of real structure using
both the sHCp’s and the functor of points approach. We first record a couple of auxiliary
observations.

Observation 3.1. Let G be a complex supergroup, and Lie(G) its Lie superalgebra.
Let F : (salg)•

C
−→ (salg)C be the obvious forgetful functor, and R : (smod)C −→

(smod)R be the obvious functor of scalar restriction. Thinking of G as a functor defined
on (salg)C , we use notation G• := G ◦ F . Then in particular we have—with notation
of Definition 2.4—LLie(G) := R ◦ hLie(G) ◦ F = R ◦ LLie(G•) .

Similarly, for the complex conjugate supergroup G we have a parallel functor G• .

Lemma 3.2. Let G be a complex supergroup and Lie(G) its Lie superalgebra, and
consider any natural transformation � : G• −−→ G•—which loosely speaking can be
equivalently seen as � : G• −−→ G•. Then the following are equivalent (notations as
in Observation 3.1 above):

(a) R(Lie(�)
) : LLie(G) −−→ LLie(G) is a real structure for LLie(G) .

(b)
(
�A[ε] ◦ G•(va)

)
(z) = (

G•(v ã) ◦ �A[ε]
)
(z) for A ∈ (salg)•

C
, a ∈ A0 , z ∈

Lie(G)•(A) , with va : A[ε] −−→ A[ε] given by va(x + ε y) := x + ε a y .

Proof. By definition ofG•(va)—see [1], §11.3—we have G(va)(z) = a . z for all z ∈
Lie
(
G•)(A) , that is G•(va) gives the action of a ∈ A0 onto Lie

(
G•)(A) . Moreover,

by [1], Ch. 11, we have �A[ε](z) = Lie(�)A(z) for all z ∈ Lie
(
G•)(A) . But then

the condition in (b) reads Lie(�)A(a . z) = ã .Lie(�)A(z) which (applying R) is
equivalent to the conditions in (a). 
�
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The following definition is inspired by [20]:

Definition 3.3. (a) LetG be a complex supergroup and Lie(G) its Lie superalgebra. We
call (generalized) real structure onG any natural transformation � : G• −−→ G• such
that

(a.1) � is an involution, i.e. �2 = idG• ,

(a.2) R(Lie(�)
) : LLie(G) −−→ LLie(G) is a real structure for LLie(G).

(b) The pairs (G,�) consisting of a complex supergroup with a real structure on
it, along with all morphisms among them that respect the real structures on both sides,
form a category that we denote hereafter by (sgrps)•

C
; moreover, we also denote by

F : (sgrps)•
C

−−→ (sgrps)C, slightly abusing the notation, the natural forgetful functor,
see Observation 3.1(b).

As complex supergroups correspond to sHCp’s (via a category equivalence), we
introduce the notion of generalized real structure for the latter.

Definition 3.4. Let (G+, g) be a complex sHCp. We call (generalized) sHCp real struc-
ture on (G+, g) any pair (�+, φ) such that

(a) �+ is a real structure (in the classical sense) on the complex algebraic group G+ ;
(b) φ is a real structure on the complex Lie superalgebra g ;
(c)
(
Lie(�+)

)
1G+

= φ
∣∣
g0̄
.

Then, we can define the category of standard or graded real sHCp’s (sHCp)•
C
, ac-

cording to the type of φ , whose morphisms are morphisms of sHCp’s which preserve the
real structures on either side; in addition, once more we have a natural forgetful functor
F : (sHCp)•

C
−−→ (sHCp)C, again with a small abuse of notation—see Observation

3.1(b).

Remark 3.5. Just like a real structure on a complex vector superspace V can be thought
of as a special C–linear map from V to its complex-conjugate V , or viceversa, similarly
a real structure on a complex supergroup G can be seen as a special morphism from
G• to its complex-conjugate, denoted by G• . In the same way, a real structure on
a complex sHCp (G+, g) can be seen as a particular morphism from (G+, g) to its
complex-conjugate (G+, g)—see [3,8] for more details.

We show now that the two notions of real structure, that we have introduced, are
indeed equivalent, through the above mentioned correspondence between supergroups
and sHCp’s.

Proposition 3.6. LetG be a complex supergroups and (G+, g) a complex sHCp that cor-
respond to each other. Then there is a one-to-one correspondence between real structures
on G and real structures on (G+, g) . This induces an equivalence of the correspond-
ing categories (sgrps)•

C
and (sHCp)• , which is consistent—via the natural forgetful

functors—with the equivalence between supergroups and sHCp’s: in other words, the
following diagram of functors (whose horizontal arrows are the above mentioned equiv-
alences) is commutative
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(sgrps)C

� �� (sHCp)C

(sgrps)•
C

F

��

� �� (sHCp)•
C

F

��

Proof. One way it is clear: if we have a real structure � on G then via the equivalence

(sgrps)C

∼=−−−→ (sHCp)C we define the pair (�+, φ) := (�|G+ ,Lie(�)
)
.

In the reverse direction, for a real structure (�+, φ)on (G+, g)wedefine� : G• −−→
G• via the reverse equivalence (sHCp)C

∼=−−−→ (sgrps)C. Using the explicit form of
such an equivalence provided in [11] or [12], we only need to define �A—for each A ∈
(salg)•

C
—on special elements in G•(A) := G(A) of the form (1+ ξ X) , with ξ ∈ A1̄ ,

X ∈ g1̄ ; then the recipe in [11,13] for them prescribes �(1 + ξ X) := 1 + ξ̃ φ(X) . 
�
In the next result we explain real structures for supergroups described as super-ringed

spaces.

Proposition 3.7. Let G = (|G|,OG
)
, be a complex algebraic supergroup, G+ =(|G|,OG/J ) its reduced subgroup, and �+ a real structure on G+ . Then there ex-

ists a bijection between

(i) real standard, resp. graded, structures � on G such that �
∣∣
G+

= �+ ;

(ii) antilinear sheaf morphisms
{OG

(
�−1

+ (U )
)−→ OG(U )

}
which are involutions on

the even part and whose square is plus the identity, resp. minus the identity, on the
odd part.

In particular, when G is affine, a real structure on G is equivalently given by an an-
tilinear morphism C[G] −→ C[G] , where C[G] is the superalgebra of global sections
on G , which reduces to �∗

+ on the reduced algebra C[G]/J .
Proof. Wegive just a sketch of the argument (for more details, see [3,8]). By Proposition
3.6, G corresponds to the sHCp (G+, g)—where g = Lie(G) as usual—and any real
structure � on G as in (i) corresponds to a real structure (�+, φ) on the sHCp (G+, g) .
In this setup, the structure sheaf OG of G can be described (cf. [2]) as

OG(U ) = Hom U(g0)

(
U(g),OG+(U )

)
for all openUin G+ (1)

Now, starting from a real structure � on G as in (i), hence from a real structure (�+, φ)

on (G+, g) , note that the antilinear morphism φ : g −→ g extends uniquely to an anti-
linear morphism U(φ) : U(g) −→ U(g) . For each openU inG+ , this gives a map f �→(
�∗

+

)
U ◦ f ◦ U(φ) from OG(U ) := Hom U(g0)

(
U(g),OG+(U )

)
to OG

(
�−1

+ (U )
) :=

Hom U(g0)

(
U(g),OG+

(
�−1

+ (U )
))
—where

{(
�∗

+

)
U : OG+(U ) −→ OG+

(
�−1

+ (U )
)}

U
is

the built-in, antilinear sheaf morphism.
The construction of the inverse map is left to the reader. 
�
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Remark 3.8. Let G be an affine complex (algebraic or Lie) supergroup, and let C[G] be
the corresponding Hopf superalgebra. Then Proposition 3.7 guarantees that any (gen-
eralized) real structure on G , say � , bijectively corresponds to a (generalized) real
structure on the Hopf superalgebra C[G]—cf. Definition 2.1; we denote this last struc-
ture by ϕ−1 : C[G] −−→ C[G].

As now G is affine, its functor of points is representable, and we can describe it in
detail. Identifying G with its functor of points, and the real structure � with a natural

transformation
{
G•(A)

�A−−→G•(A)
}
A∈(salg)•

C

, the real structure C[G] ϕ−−→ C[G] =
C
[
G
]
corresponding to � is given by ϕ := �C[G]

(
idC[G]

)−1 . Conversely, given

C[G] ϕ−−→ C[G] = C
[
G
]
, the corresponding real structure � on G is given (as a

natural transformation) by �A := (−) ◦ ϕ−1 , i.e.

�A : G•(A) = G(A) := Hom (salg)C

(
C[G], A) −−→ Hom (salg)C

(
C
[
G
]
, A
)

=: G(A) = G•(A)

gA
|−−−−−−−−−−−−−−−−→ �A(gA) := gA ◦ ϕ−1

for all A ∈ (salg)C , taking into account—cf. Remark 3.5—that any real structure onG
can be seen as a special supergroup morphism from G• to G• (the complex-conjugate
of G• ).

Now we modify the natural transformation � := {
�A
}
A∈(salg)•

C

: G• −−→ G•

above, by setting �•
A := (̃ )A ◦ �A for all A ∈ (salg)•

C
, that is in detail

�•
A(gA) := (̃ )A ◦ gA ◦ ϕ−1 ∀ gA ∈ G•(A) := Hom (salg)C

(
C[G], A) (2)

since G•(A) := G(A) . Note that �•
A(gA) ∈ Hom (salg)C

(
C[G] , A

) =: G•(A) since
each �•

A(gA) is now C–linear, so �•
A is a group morphism from G•(A) to G•(A) . All

these �•
A’s define a natural transformation �• := {

�•
A

}
A∈(salg)•

C

from G• to itself: in

the following, whenever G is affine by real structure on G• we shall mean exactly this
supergroup endomorphism �• : G• −−→ G•.

3.2. Real forms of supergroups. We now turn to the definition of (generalized) real
forms for supergroups.

Definition 3.9. Let (G,�) be a complex supergroup with real structure, and G• :=
G◦F as above.We define (generalized) real form functor (“standard/graded”, according
to �) of (G,�) , or “real form functor of G with respect to �”, the subgroup functor
G� of G• defined by

G� : (salg)•
C

−→ (grps), A �→ G�(A) := G•(A)
�•
A , G�( f ) := f

∣∣
G•(A)

�•
A

—for every A, B ∈ (salg)•
C
, f ∈ Hom (salg)•

C
(A , B )—where we denote by

G•(A)
�•
A := {

g∈G•(A)
∣∣�•

A(g) = g
}

the subgroup of �•
A–invariants. Hereafter we are tacitly identifying—as it is always

possible, bygeneral theory—the abstract groups G•(A) := G(A) and G•(A) := G(A) .
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Proposition 3.10. Let G be an affine complex supergroup with (generalized) real struc-
ture � . Then the functor G� is representable.

Proof. AsG is affine, let C[G] ∈ (salg)C be the Hopf superalgebra representing it, as a
functor from (salg)C to (grps) : then by Proposition 3.7, there exists a real structure ϕ :
C[G] −−→ C[G]—which corresponds uniquely to �—so that

(
C[G], ϕ) ∈ (salg)•

C
.

Now Definition 3.9 together with Remark 3.8 yield—for every A ∈ (salg)•
C
—

G(A)�
•
A := {

g ∈ G•(A)
∣∣�•

A(g)= g
}= {

g ∈ G•(A)
∣∣ (̃ )A ◦ g ◦ ϕ−1= g

}

= {
g ∈ G•(A)

∣
∣ g̃(u) = g

(
ϕ(u)

)
, ∀ u ∈ C[G]} = Hom (salg)•

C

(
C[G], A )

because the condition g̃(u) = g
(
ϕ(u)

)
—for u ∈ C[G]—means that the superalgebra

morphism g : C[G] −−→ A preserves the real structure on both sides, hence g ∈
Hom (salg)•

C

(
C[G], A) . 
�

Observation 3.11. Let us consider a standard real structure � on a complex affine
supergroup G , i.e. (G,�) ∈ (sgrps)st

C
, and let ϕ be the corresponding real structure

on C[G] . As � is standard, the same is true for ϕ as well: then each f ∈ C[G] has a
unique splitting as f = f+ + i f− with ϕ( f±) = f± . Using this, the relation (2) and—

for all A ∈ (salg)st
C
—the identity Hom (salg)st

C

(
C[G], A ) = Hom (salg)C

(
C[G], A )�•

A

and Proposition 3.10, one finds that

G�
(
C ⊗R R

) := Hom (salg)st
C

(
C[G], C ⊗R R

) = Hom (salg)R

(
C[G]ϕ, R

)

for all R ∈ (salg)R . This gives us a description of the real supergroup functor R �→
G�
(
C ⊗R R

)
—for all R ∈ (salg)R —which is the real form G� (of G ) when seen as

a real supergroup.
This is the analog, in some sense, of Proposition 2.9 for super vector spaces.

3.3. Functor of points of real forms. In this section we describe in detail the real form
of a supergroup, using the functor of points approach. To begin with, we shortly recall
the following.

For the standard functor K : (sgrps)C −−−→ (sHCp)C we choose a specific quasi-
inverse functorH : (sHCp)C −−−→ (sgrps)C, namely the second one described in [12],
therein denoted by �e. Via the latter, for every G ∈ (sgrps)C and A ∈ (salg)C the
group G(A) is described as

G(A) = G+(A0̄) · exp(A1̄⊗C g1̄
) ∼=

(
G+ × A

0|d1̄
C

)
(A) (3)

where exp
(
A1̄⊗C g1̄

) := { exp(Y)
∣∣Y ∈ A1̄⊗C g1̄

}
, d1̄ := dim(g1̄) , and the symbol

“∼= ” on the right just means thatG and G+ × A
0 |d1̄
C

are isomorphic as supermanifolds.
In particular, formula (3) means that each g ∈ G(A) has a unique expression of the
form

g = g+ · exp(Y) (4)

for some unique g+ ∈ G+(A) and Y ∈ A1̄⊗Cg1̄ . Now, let� be the chosen real structure
on G , and

(
�+, φ

)
its corresponding real structure on

(
G+, g

)
; then the action of �
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on g ∈ G(A) reads—through (4), and setting ϕA := (̃−) ⊗ φ (cf. Theorem 2.5)—as
follows:

�(g) = �+(g+) · exp(ϕA(Y)
)

(5)

We are now ready for the main result in this section, which is Theorem A in Sect. 1.

Theorem 3.12. Let
(
G,�

) ∈ (sgrps)•
C
. Then the real form G� of G is explicitly

described as

G�(A) = G�+
+ (A0̄) · exp

(
(A1̄⊗C g1̄)

(̃−)⊗φ
)

∀ A ∈ (salg)•
C

(6)

Moreover, the factorization is direct: each g ∈ G(A) has a unique factorization of the
form

g = g+ · exp(Y) with g+ ∈ G�+
+ (A0̄) and Y ∈ (A1̄⊗C g1̄)

(̃−)⊗φ

In particular we have G� ∼= G�+
+ × A

0 |d1
•,C

(cf. § 2.3), hence the functor G� is repre-
sentable.

Proof. Given g ∈ G(A) , with factorization g = g+ · exp(Y) as in (4), by (5) we have

g ∈ G�(A) ⇐⇒ �(g) = g ⇐⇒ �+(g+) · exp(ϕA(Y)
) = g+ · exp(Y)

and the rightmost condition is equivalent to �+(g+) = g+ together with exp
(
ϕA(Y)

) =
exp(Y) , i.e. �+(g+) = g+ and ϕA(Y) = Y , which means g+ ∈ G�+

+ (A) and Y ∈
(A1̄⊗C g1̄)

ϕA . Then

g = g+ · exp(Y) ∈ G�(A) ⇐⇒
{

g+ ∈ G�+
+ (A)

Y ∈ (A1̄⊗C g1̄)
ϕA

as claimed. Moreover, the factorization g = g+ · exp(Y) is unique by construction. 
�
We end this section with a remark regarding the more general setting of supermani-

folds, that we shall not pursue directly in this paper.

Remark 3.13. The sheaf theoretic characterization of standard and graded real forms of
a supergroup as in Proposition 3.7 can be extended, almost immediately, to give a well
posed more general definition of real forms (standard and graded) of supermanifolds.

4. Hermitian Forms and Unitary Lie Superalgebras

We introduce now a suitable notion of unitary Lie superalgebra, which is a special real
form of gl(V ) associated with a Hermitian form on the superspace V .
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4.1. Super Hermitian Forms. We begin with the definition of super Hermitian form on
a complex super vector space V : this is a map B : V × V −−→ C which is C–linear in
the first entry, C–antilinear in the second entry, and such that

B(x, y) = (−1)|x ||y| B(y, x) ∀ x, y ∈ (V0̄ ∪ V1̄
)

In addition, we say that B is consistent if B(x, y) = 0 for any homogeneous x and y
of different parity (see [21], pg. 112, for more details). From now on we assume B to be
consistent.

We can write any consistent super Hermitian form B as B = B0̄ + i B1̄ , where each

Bz := (−i)z B
∣∣∣
Vz×Vz

is an Hermitian form (in the classical, non-super sense) on the

vector space Vz , for z ∈ Z2 . Notice then that B ′ = B0̄ − i B1̄ is also another super
Hermitian form on V .

We say that B is non degenerate if both the Bz’s are non degenerate; similarly, B is
positive definite if both the Bz’s are positive definite: in this case we write B > 0 . If
instead B0̄ > 0 and B1̄ < 0 , then B ′ (as defined above) is a positive definite super
Hermitian form, instead of B .

Example 4.1. Let V := C
m|n . We can define on V two super Hermitian forms, say B+

V
and B−

V , given by

B±
V

(
(z, ζ ),

(
z′, ζ ′ )) := z · z′ ± i ζ · ζ ′ (7)

where z, z′ ∈ C
m , ζ, ζ ′ ∈ C

n , while z · z′ and ζ · ζ ′ are the usual scalar products in
C
m and C

n .

We recall also the notion of supersymmetric (bilinear) formon a complex super vector
space V : it is a C–bilinear map 〈 , 〉 : V × V −→ C such that

〈x, y〉 = (−1)|x ||y| 〈y, x〉 ∀ x, y ∈ (V0̄ ∪ V1̄
)

Again, we say that the form 〈 , 〉 is consistent if 〈x, y〉 = 0 for any homogeneous x
and y of different parity. From now on we assume any such form 〈 , 〉 to be consistent.

Now letφ be a real structure on V and 〈 , 〉 be anyC–bilinear form on V .We say that
the form 〈 , 〉 is φ–invariant—or just invariant—if it is a morphism of superspaces with
real structures (i.e. of Z4–modules), that is 〈 v ,w 〉 = 〈

φ(v) , φ(w)
〉
for all v,w ∈ V .

Then we have the following link with Hermitian forms on V , which follows by direct
computation:

Proposition 4.2. Let (V, φ) ∈ (smod)•
C

and let 〈 , 〉 be a φ–invariant, consistent,
supersymmetric, C–bilinear form on V . Then

B±
φ (x, y) := (±i )νφ |x | |y| 〈x, φ(y)

〉
with νφ :=

{
0̄ ifφ is standard
1̄ ifφ is graded

(8)

defines two consistent super Hermitian forms B+
φ and B−

φ on V (which coincide if φ is
standard).
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Observation 4.3. When φ is graded, we can write the super Hermitian form B±
φ in (8)

as

B±
φ (x, y) = 〈

x0 , φ(y0)
〉± i

〈
x1 , φ(y1)

〉 = B0(x0, y0)± i B1(x1 , y1)

where B0(x0, y0) := 〈
x0 , φ(y0)

〉
and B1(x1, y1) := 〈

x1 , φ(y1)
〉
are ordinary Hermi-

tian forms (in the classical, non-super sense) on V0 and V1 both considered as plain
complex vector spaces—i.e. forgetting their super structure. Similarly, if φ is standard
we can write Bφ := B±

φ as

Bφ(x, y) = 〈
x0 , φ(y0)

〉
+ i
(− i

〈
x1 , φ(y1)

〉) = B0(x0, y0) + i B1(x1 , y1)

where B0(x0, y0) := 〈
x0 , φ(y0)

〉
and B1(x1, y1) := −i

〈
x1 , φ(y1)

〉
are both ordinary

Hermitian forms on V0 and V1 respectively (now seen as plain complex vector spaces).

We end this section with some examples of real structures in C
m|n , to be used later

on.

Examples 4.4. Let V := C
m|n = C

m|2t with n = 2 t ∈ 2N+ ; we consider on it the
standard and graded real structures φgr defined by

φst : C
m|n −−−→ C

m|n , (z , ζ ) �→ φst(z, ζ ) := ( z, ζ ) (9)

φgr : C
m|2t −−−−−−−−−−−−→ C

m|2t

(z , ζ+ , ζ−) �→ φgr(z , ζ+ , ζ−) := ( z,+ζ−,−ζ+
) (10)

Now we fix in C
m|2t the bilinear form 〈 , 〉V : C

m|2t × C
m|2t −−→ C defined by

〈
(z , ζ+ , ζ−),

(
z′, ζ ′

+ , ζ ′−
)〉
V := z · z′ + ζ+ · ζ ′− − ζ−· ζ ′

+

(notation as before). Amoment’s check shows that the form 〈 , 〉V fulfills the following:
— (1) it is supersymmetric,
— (2) 〈x, y〉V = 〈

φ(x), φ(y)
〉
V for all x, y ∈ V , for both φ ∈ {φst, φgr

}
.

According to Proposition 4.2, there exist two pairs of super Hermitian forms on
V := C

m|2t associated with the form 〈 , 〉V and the real structures φst and φgr , namely
• Standard case (the sign being irrelevant):

B±
φst

(
(z, ζ+, ζ−),

(
z′, ζ ′

+, ζ
′−
)) = z · z′ + ζ+ · ζ ′− − ζ− · ζ ′

+ (11)

• Graded case:

B±
φgr

(
(z, ζ+, ζ−),

(
z′, ζ ′

+, ζ
′−
)) = z · z′ ∓ i

(
ζ+ · ζ ′

+ + ζ−· ζ ′−
)

(12)

Note that, using the compact notation ζ := (ζ+, ζ−) , we can re-write the forms B±
φgr

as

B±
φgr

(
(z , ζ ),

(
z′, ζ ′ )) = z · z′ ∓ i ζ · ζ ′

which looks like (7) in the standard case, up to switching signs.

Remark 4.5. It is worth stressing that not all Hermitian forms can be realized as Bφ as in
Proposition 4.2; in fact, for any such Bφ the odd part of the superspace V must be even
dimensional. So, for example, the forms in (7) on C

m|n for odd n cannot be realized as
a Bφ .

Nevertheless, we will have a particular interest for Hermitian forms on gl(m|n) : note
that for this superspace the odd part has dimension 2m n .
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4.2. Functorial Hermitian forms. We introduce now the functorial counterpart of the
notion of super Hermitian form.

Definition 4.6. Given (V, φ) ∈ (smod)•
C
—for any • ∈ { st, gr}—recall that the func-

tor LV : (salg)•
C

−→ (smod)R has values into the category (smod)R of real super vector
spaces with Z2–grading given by

(LV (A)
)
z := Az ⊗C Vz —for each z ∈ Z2 ; for this

grading, we denote with [v] := z the degree of a homogeneous vector v ∈ (LV (A)
)
z .

We call functorial Hermitian form (or just Hermitian form) B on LV : (salg)•
C

−→
(smod)R any natural transformation B : LV × LV −→ LC such that

1. B is A0̄–linear on the left, i.e. it is left-additive and such that
B(a X,Y ) = a B(X,Y ) for all a ∈ A0̄ , X,Y ∈ LV (A) , A ∈ (salg)•

C
;

2. B is A0̄–antilinear on the right, i.e. it is right-additive and such that
B(X, a Y ) = ã B(X,Y ) for all a ∈ A0̄ , X,Y ∈ LV (A) , A ∈ (salg)•

C
;

3. B(X,Y ) =
{

(−1)[X ] [Y ] B̃(Y, X) ifφ is standard

B̃(Y, X) if φ is graded
for all X,Y ∈ LV (A) ,

A ∈ (salg)•
C
. In short, using notation as in (8) we can write

B(X,Y ) = (−1)( 1̄−νφ) [X ] [Y ] B̃(Y, X) for any φ .

In addition, we say that B is consistent if B(Y, X) = 0 for all homogeneous X , Y
with different parity, i.e. [X ] �= [Y ] .
Lemma 4.7. Let (V, φ) ∈ (smod)•

C
, and let BV : V × V −→ C be a consistent

super Hermitian form on the super vector space V . Then the natural transformation
BL : LV × LV −−−→ LC defined on objects—for A ∈ (salg)•

C
and homogeneous

a ∈ Az , x ∈ Vz , b ∈ As , y ∈ Vs —by

BLV

(
a x, b y

) := i |x ||y| a b̃ BV (x, y) (13)

is a consistent Hermitian form for LV .

Proof. The proof is a matter of sheer computation. 
�
Proposition 4.8. Let (V, φ) ∈ (smod)•

C
. Then formula (13) realizes a bijection between

(a) the set of all consistent super Hermitian forms on V ,
(b) the set of all consistent Hermitian forms for LV .

Proof. After Lemma 4.7, we only need to show that if a formBLV as in (b) is given, then
we can find a unique BV on V satisfying (13). Indeed, such a BV is defined as follows.
Consider A ξ+,ξ− := C

[
ξ+, ξ−

] ∈ (salg)C : this superalgebra has a “canonical” standard
real structure defined by ξ± �→ ξ̃± := ξ∓ , and a “canonical” graded one given by
ξ± �→ ξ̃± := ±ξ∓ . Then alsoBLV : LV

(
A ξ+,ξ−

)×LV
(
A ξ+,ξ−

) −−−−−→ LC

(
A ξ+,ξ−

)

is defined, taking values in LC

(
A ξ+,ξ−

) = C⊕C ξ+ ξ− , which has C–basis {1, ξ+ ξ−} ;
thus we can use (13) with respect to A ξ+,ξ− to define BV on V , and then easily verify
that it has all the required properties. 
�
Definition 4.9. We say that an Hermitian form BLV for LV is non degenerate, or that it
is positive definite, if its associated BV is.
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Observation 4.10. Let (V, φ) ∈ (smod)•
C
and let 〈 , 〉 be a consistent supersymmetric

bilinear form on V . Then we can associate to it a natural transformation

〈 , 〉LV : LV × LV −−−−→ LC ,
〈
a x, b y

〉
LV

:= a b 〈x, y〉 (14)

where a, b ∈ Az and x, y ∈ Vz , for all z ∈ Z2 . By Proposition 4.2, there exist two
super Hermitian forms B±

V associated to 〈 , 〉 , and by Lemma 4.7 there exists a unique
B±
LV

associated to B±
V . Therefore we can writeB±

LV
directly from 〈 , 〉LV , namely (with

notation as in (8))

B±
LV

(X,Y ) = i ( 1± νφ) [X ] [Y ] 〈X, ϕA(Y )
〉
LV

∀ X,Y ∈ LV (A), A ∈ (salg)•
C
(15)

4.3. Unitary Lie superalgebras. In this section we introduce a general notion of unitary
superalgebras; in the subsequent subsection then we will also present some relevant
examples.

Definition 4.11. Let (V, φ) ∈ (smod)•
C
, and let B be a non-degenerate, consistent

Hermitian form on LV : (salg)•
C

−→ (smod)R . We define the adjoint (w.r.t. B ) of
M ∈ (End (V )

)
(A) as the unique M� ∈ (End (V )

)
(A) defined by

B(x, M�(y)
) =

{
(−1)[x] [M] B(M(x), y

)
if • = st

B(M(x), y
)

if • = gr
(16)

for all x, y ∈ V (A) , M ∈ (End(V )
)
(A)—which in the standard case are taken homo-

geneous with respect to theZ2–grading whose degree is denoted by “ [ ] ”, cf. Definition
4.6.Likebefore, the condition (16) reads B(x, M�(y)

) = (−1)( 1̄− νφ) [x] [M] B(M(x), y
)

with notation as in (8).

The key properties of the adjoint are the following, proved by straightforward check:

Lemma 4.12. With notation as in Definition 4.11 above, we have

(a M)� = ã M�, M�� = M, (−M )� = −M�, (M + N )� = M� + N �

(M N )� = N � M�, [ M, N ]� = (−1)( 1̄− νφ) [M] [N ][N �, M�
]
,

(
J−1)� = (

J �
)−1

for all a ∈ A0̄ , all M, N ∈ (End (V )
)
(A) and all J ∈ (GL(V )

)
(A) .

Proposition 4.13. Let the notation be as above, and identify
(Lgl(V )

)
(A) = (End (V )

)

(A). Then the natural transformation � : Lgl(V ) −−→ Lgl(V ) defined on objects by

M �→ M� :=
{

−M� if [M] = 0̄
i M� if [M] = 1̄

in the standard case (17)

and by

M �→ M� := −M� for all M in the graded case (18)

is a real structure on the functor Lgl(V ) , hence—via Theorem 2.5—defines a real struc-
ture on the complex Lie superalgebra gl(V ) .
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Proof. By Definition 2.4, we have to verify properties (1)–(3) therein and also that �
preserves the Lie bracket. All this follows easily from direct calculations that use Lemma
4.12. 
�
Definition 4.14. LetB be a non-degenerate, consistentHermitian formonLV .Wedefine
the unitary Lie superalgebra uB(V ) as the functor of fixed points of � : Lgl(V ) −−−→
Lgl(V ), hereafter denoted L�

gl(V )
—in the sense of Definition 2.6—given on objects by

uB(V )(A) := {M ∈ Lgl(V )(A)
∣∣M� = M

}

=
{
M ∈ Lgl(V )(A)

∣
∣∣∣
B
(
M(x),y

)
+ (−1)(1̄−νφ)[M][x] B

(
x,M(y)

)
= 0

∀ x,y∈V (A)

}
(19)

Note then thatuB(V )(A) is aZ2–gradedLie algebra—for all A ∈ (salg)•
C
—just because

Lgl(V )(A) is a Z2–graded Lie algebra, cf. Definition 2.6.

Remark 4.15. ByProposition 2.7, the functor uB(V ) is always representable. In addition,
in the standard case, i.e. when (V, φ) ∈ (smod)st

C
, by Proposition 2.9 the representable

functor uB(V ) is represented by the super vector space of all m ∈ gl(V ) such that (see
[21], pg. 111):

B
(
m(x) , y

)
+ (−1)|x ||u| B

(
x , m(y)

) = 0, ∀ x, y ∈ V

Observation 4.16. Let uB(V ) be a unitary Lie superalgebra as in Definition 4.14; let
also B be the consistent super Hermitian form on V which corresponds to B via Propo-
sition 4.8, which we write as B = B0̄ + B1̄ as in Sect. 4.1. For each s ∈ Z2 , let uBs (Vs)
be the classical unitary Lie algebra associated to Vs with the non-degenerate Hermitian
form Bs . Then the even part of uB(V ) is the functor of points of the direct sum Lie
algebra uB0̄(V0̄) ⊕ uB1̄(V1̄) .

4.4. Examples of unitary Lie superalgebras. We provide now some examples of real
structures, super Hermitian forms and associated unitary Lie superalgebras.

4.17 Standard real structures on glm|n . Let V := C
m|n be endowed—like in

Example 4.1 — with the standard real structure φst : C
m|n −−→ C

m|n given by
φst(z, ζ ) := ( z , ζ

)
, and the two super Hermitian forms given by

B±
V

(
(z , ζ ) ,

(
z′, ζ ′ )) := z · z′ ± i ζ · ζ ′ (20)

Following Lemma 4.7 , the super Hermitian forms B±
V on V := C

m|n correspond to
Hermitian forms B±

LV
on LV , defined through (13): in detail, these read explicitly

B±
LV

(
(x , ξ ) ,

(
x ′, ξ ′ )) = x · x̃ ′ ∓ ξ · ξ̃ ′ (21)

Now, according toDefinition4.11wecan consider the adjoint of any u ∈ Lgl(V )(A) =
gl(m|n)(A) with respect to either B+

LV
or B−

LV
, that we will denote by u�

+ and u�− ,
respectively. After Proposition 4.13, we also have corresponding real structures �± on
Lgl(V ) : in turn, by Definition 4.14 these will define two unitary real forms of Lgl(V ) ,
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hence of gl(V ) = gl(m|n) as well. They are given as follows. The explicit form of the
adjoint maps is

u =
(
a β

γ d

)
�→ u�± =

(
a�± β�±
γ �± d�±

)
=
(

ã t ∓ γ̃ t

∓ β̃ t d̃ t

)

from which we infer the explicit formula of the associated real structures, namely

u =
(
a β

γ d

)
�→ u�± =

( − ã t ∓ i γ̃ t

∓ i β̃ t − d̃ t

)
(22)

With these real structures, the associated unitary real forms—cf. Definition 4.14—are

uB±
V
(V )(A) =

{(
a β

γ d

)
∈ gl(m|n)(A)

∣∣
∣∣
a = − ã t , β = ∓ i γ̃ t

γ = ∓ i β̃ t , d = − d̃ t

}
(23)

Notice that the real structures considered above were defined for the functor of points
Lgl(V ) . If instead we look at the Lie superalgebra gl(V ) = gl(m|n) as a superspace,
then the real structures (22) onLgl(V ) corresponds to the real structures ∗± on gl(V ) =
gl(m|n) given by

M =
(
a b
c d

)
�→ M∗± =

( − a t ∓ i c t

∓ i b
t − d

t

)
(24)

which have been previously introduced in [21], §3.4.
Similarly, the unitary Lie (sub)superalgebra of gl(m|n) associated with the real form

in (23) , and representing the functor uB±
V
(V ) , is

uB(m|n) =
{(

a b
∓ i b

t
d

) ∣∣∣
∣ a = − a t , d = − d

t
}

4.18 Graded real structures on glm|n . Let again V := C
m|n but consider now its

associated functor LV as being defined on commutative superalgebras with a graded
real structure, hence LV : (salg)gr

C
−−→ (smod)C—just like in Definition 4.6. Then

we have two natural, consistent, non-degenerate Hermitian forms on LV , denoted B±
gr ,

which are defined on objects by

B±
gr

(
(x , ξ ) ,

(
x ′, ξ ′ )) = x · x̃ ′ ∓ ξ · ξ̃ ′ (25)

Note that (25) looks exactly like (21)—where the functor is defined (salg)st
C
instead.

With the same arguments as in §4.17 above, we find the following explicit form of the
adjoint maps

u =
(
a β

γ d

)
�→ u�± =

(
a�± β�±
γ �± d�±

)
=
(

ã t ±γ̃ t

∓β̃ t d̃ t

)

from which we get:

u =
(
a β

γ d

)
�→ u�± =

(−ã t ∓γ̃ t

±β̃ t −d̃ t

)
(26)
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With these real structures, the associated unitary real forms (via Definition 4.14) are
given by

uB±
V
(V )(A) =

{(
a β

γ d

)
∈ gl(m|n)(A)

∣∣∣∣
a = −ã t , β = ∓γ̃ t

γ = ±β̃ t , d = −d̃ t

}

which can be re-written as

uB±
V
(V )(A) =

{(
a β

±β̃ t d

)
∈ gl(m|n)(A)

∣∣∣∣
a = −ã t

d = −d̃ t

}

Finally, although we have introduced the real structures directly on the functor
Lgl(V ) , we can easily see that these structures �± on Lgl(V ) actually correspond to
the real structures ∗± : gl(V ) −−−→ gl(V ) on the Lie superalgebra gl(V ) = gl(m|n)

given by

M =
(
a b
c d

)
�→ M∗± =

(− a t ∓ c t

± b
t − d

t

)
(27)

In particular, ∗+ has a neat expression in terms of “supertranspose” as M∗+ = −M
st

commonly used by physicists (see [10] and also [20,21]).

4.19 Standard and graded real structures induced by a supersymmetric form.
For n = 2 t , let φst be the standard real structure on V := C

m|2t considered in
§4.17. For A ∈ (salg)st

C
, we write any element of V (A) = C

m|2t (A) = Am
0̄

×
A 2t
1̄

as a triple (x , ξ+ , ξ−) with x ∈ Am
0̄

and ξ± ∈ A t
1̄
. Accordingly, any u ∈

Lgl(V )(A) = gl(m| 2 t)(A)—for A ∈ (salg)st
C
—will be written as a block matrix

u =
⎛

⎝
a β+ β−
γ+ d+,+ d+,−
γ− d−,+ d−,−

⎞

⎠ where a and d±,± have entries in A0̄ and β± and γ± have them in

A1̄ ; in turn, wewill write its adjoint as u
�± =

⎛

⎝
a� β�

+ β�−
γ �
+ d�

+,+ d�
+,−

γ �− d�
−,+ d

�
−,−

⎞

⎠ .With these conventions,

the (unique!) Hermitian form B±
LV

on LV , that by Lemma 4.7—via (13)—correspond

to B±
φst

on V is given explicitly by

B±
φst

(
(x , ξ+ , ξ− ) ,

(
x ′, ξ ′

+ , ξ ′−
)) = x · x̃ ′ + i ξ+ · ξ̃ ′− − i ξ−· ξ̃ ′

+ (28)

(we still write a superscript “± ”, yet it is irrelevant). Using it, we compute the “adjoint”
u� := u�± (again unique!) applying the defining conditions (16) to the nine homogeneous

summands (that here we read as block-entries) of the matrix u =
⎛

⎝
a β+ β−
γ+ d+,+ d+,−
γ− d−,+ d−,−

⎞

⎠ .

The explicit calculations follow again the same arguments as in §4.17 above; eventually,
we find the following explicit form of the adjoint maps

u �→ u� =
⎛

⎝
a� β�

+ β�−
γ �
+ d�

+,+ d�
+,−

γ �− d�
−,+ d

�
−,−

⎞

⎠ =
⎛

⎝
ã t + i γ̃− t − i γ̃+

t

− i β̃−
t
+̃d−,−

t −d̃+,−
t

+ i β̃+
t −d̃−,+

t
+d̃+,+

t

⎞

⎠
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and then from the latter we deduce the the associated real structure—as in (17)—namely

u =
⎛

⎝
a β+ β−
γ+ d+,+ d+,−
γ− d−,+ d−,−

⎞

⎠ �→ u� :=
⎛

⎝
−ã t −γ̃− t +γ̃+

t

+β̃−
t −d̃−,−

t
+d̃+,−

t

−β̃+
t
+d̃−,+

t −d̃+,+
t

⎞

⎠ (29)

Finally, the unitary real form associated—by Definition 4.14—with this real structure
is

uB±
φst

(V )(A) =
⎧
⎨

⎩

⎛

⎝
a β+ β−

+β̃−
t
d+,+ d+,−

−β̃+
t
d−,+ −d̃+,+

t

⎞

⎠∈ gl(m|2t)(A)

∣∣∣∣∣
∣

a = − ã t

d±,∓ = d̃±,∓
t

⎫
⎬

⎭

Note that the map u �→ u� is the real structure for the functor of points Lgl(V ) . If
instead we look at the Lie superalgebra gl(V ) = gl(m| 2 t) as a superspace, then the
real structure (29) on Lgl(V ) corresponds to the real structure on gl(V ) = gl(m| 2 t)
described by

M =
⎛

⎝
a b+ b−
c+ d+,+ d+,−
c− d−,+ d−,−

⎞

⎠ �→ M∗ :=
⎛

⎝
− a t − c− t + c+ t

+ b−
t − d−,−

t
+ d+,−

t

− b+
t
+ d−,+

t − d+,+
t

⎞

⎠

Similarly, the unitary Lie (sub)superalgebra of gl(m| 2 t) associated with this real form,
and representing the functor uB±

φst
(V ) , is

uB±
φst

(m| 2 t) =
⎧
⎨

⎩

⎛

⎝
a b+ b−

+ b−
t
d+,+ d+,−

− b+
t
d−,+ − d+,+

t

⎞

⎠

∣∣
∣∣∣∣

a=− a t

d±,∓= d±,∓
t

⎫
⎬

⎭

Finally, a parallel construction starting from the graded real structure φgr : C
m|2t −−→

C
m|2t given by φgr(z, ζ+, ζ−) := (

z ,+ζ− ,−ζ+
)
provides again, in the first steps, the

Hermitian forms (25) of §4.18, hence the final outcome will be a special instance of
what we found therein.

5. Compact Real Forms

In this section we describe real forms of basic Lie superalgebras (see [19,21], we give a
new notion of “super compactness”, going beyond [4,6], and we describe the associated
real structures in the graded and standard case. We begin with some notation.

Definition 5.1. Let V be any complex super vector space. For any s ∈ {2 , 4} , let
aut R

2,s(V ) be the set of automorphisms ϑ of V as a real vector superspace such that
ϑ
∣∣
Vz

�= idVz for z ∈ Z2 , ϑ2
∣∣
V0̄

= idV0̄ and ϑ2
∣∣
V1̄

= + idV0̄ for s := 2 while

ϑ2
∣∣
V1̄

= − idV0̄ for s := 4 . Then we set:

(a) aut2,s(V ) := {
θ ∈ aut R

2,s(V )
∣∣ θ is C − −antilinear

}
;
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(b) aut2,s(V ) := {
σ ∈ aut R

2,s(V )
∣∣ σ is C − −linear

}
. If in addition V = A is a

complex associative superalgebra, resp. a complex Lie superalgebra, by aut2,s(A)

and aut2,s(A) we mean the similar objects defined as above but starting from the set
aut R

2,s(A) of automorphisms of A as a real (associative, resp. Lie) superalgebra with
the extra conditions specified above.

According to Definition 2.1, the elements of aut2,s(V ) are exactly the real structures
onV ;wewill presently show that these can also be classified by the elements of aut2,s(V )

as well.

5.1. Real structures of basic (simple) Lie superalgebras. Let g be a complex Lie super-
algebra which is contragredient, in the sense of [14], §2.5. Thus g is defined via a Cartan
matrix A := (

ai, j
)
i, j∈I —with I = {1, . . . , r}—with entries in C , a set of generators

x+i , x
−
i , hi (for all i ∈ I := {1, . . . , r} ), of parity |hi | := 0̄ ,

∣∣x±
i

∣∣ := 0̄ if i �∈ τ ,∣∣x±
i

∣∣ := 1̄ if i ∈ τ , for some fixed subset τ ⊆ I .
In addition, we shall say that the set of generators

{
x+i , hi , x

−
i

}
i∈I is distinguished

if |τ | = 1—in other words, there exists one and only one positive simple root which is
odd—cf. [6,14].

Proposition 5.2. Let g be contragredient, built out of a Cartan matrix A with entries
in R . Then there exists a unique ω ∈ aut2,4(g) such that

ω
(
h j
) = −h j ∀ j, ω

(
x±
i

) = −x∓
i ∀ i �∈ τ, ω

(
x±
i

) = ±x∓
i ∀ i ∈ τ

Proof. This is the “antilinear counterpart” of a well-known result which guarantees
the existence and uniqueness of a C–linear automorphism ω′ of g whose action on the
generators is the same as ω’s. One proves it along the same lines as in [18], Proposition
5.1.3 and 5.2.1. 
�

Note thatwhen g is a semisimpleLie algebra, thenω0̄ is the classical Cartan involution
corresponding to its compact form (see [15], VI, §1).

From now on, we assume our complex Lie superalgebra g to be simple of basic type,
hence—according to the classification g is of one of the following types:

A(m|n), B(m|m), C(n), D(m|n), D(2, 1; a), G(3), F(4) (30)

Moreover, for type D(2, 1; a) we assume that a ∈ R . In particular, our g is contragre-
dient, and Proposition 5.2 above applies.

We shall now collect a few technical results that we need later.

Lemma 5.3. Let g be simple of basic type as in (30) above, with a ∈ R for type
D(2, 1; a) . Then there exists a suitable positive system �+ and suitable root vectors
x±α

( ± α ∈ �± = �±
0̄

∪ �±
1̄

)
for which ω as in Proposition 5.2 gives

ω
(
x±α

) = −x∓α ∀ α even simple, ω
(
x±α

) = ±x∓α ∀ α odd simple .

Proof. Indeed, for g as in the claim it is known that we can select a distinguished Dynkin
diagram, as in [14], p. 56, Table VI. Accordingly, we have unique associated sets of
simple roots, of simple root vectors, and of positive/negative roots, as well as a unique
associated Cartan matrix. Then the claim follows as a special instance of Proposition
5.2. 
�
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Lemma 5.4. Any inner automorphism φ0̄ of g0̄ can be extended to an inner automor-
phism φ of g—i.e. one of the form φ = exp

(
ad(n)

)
with n ∈ g0̄ .

Proof. This is proved, in the standard case, by Proposition 2.1 in [19]. In short, given
φ0̄ = exp

(
ad(n)

)
on g0̄ (with n ∈ g0̄ ), we can take φ1̄ := exp

(
ad1̄(n)

)
, where ad1̄

denotes the adjoint action of g0̄ on g1̄ . In addition, by a straightforward analysis one
checks that the very same method actually applies to the graded case as well. 
�

The previous lemma has an immediate consequence, whose proof is straightforward.

Lemma 5.5. Let σ ∈ aut2,s(g)—or σ ∈ aut2,s(g)—s ∈ {2 , 4} , and let σ ′̄
0

∈ aut2(g0̄)—

or σ ′̄
0

∈ aut2(g0̄) , respectively. If σ ′̄
0

= φ0̄ ◦ σ0̄ ◦ φ−1
0̄

for an inner automorphism φ0̄

of g0̄ , then σ ′̄
0
extends to σ ′ = σ ′̄

0
+ σ ′̄

1
∈ aut2,s(g)—or to σ ′ = σ ′̄

0
+ σ ′̄

1
∈ aut2,s(g) ,

respectively—given by σ ′ := φ ◦ σ ◦ φ−1 , with φ = φ0̄ + φ1̄ as in Lemma 5.4 above.

When σ ′ = φ◦σ ◦φ−1 , with σ ∈ aut2,s(g) , s ∈ {2 , 4} , for an inner automorphism
φ, we will say that σ and σ ′ are inner-isomorphic, and we will write σ � σ ′ .
Lemma 5.6. Let σ, σ ′ ∈ aut2,s(g) , s ∈ {2 , 4} , with σ0̄ = σ ′̄

0
. Then:

(a) if g is of type 1, then σ ′ � σ0̄ ± σ1̄ ;
(b) if g is of type 2, then σ ′ = σ0̄ ± σ1̄ .

Proof. For the standard case, the claim is proved in Lemma 2.3 and Lemma 2.4 of [19].
The same arguments work in the graded case too. 
�
Lemma 5.7. Let θ, θ ′ ∈ aut2,s(g) with s ∈ {2 , 4} . If θ0̄ = θ ′̄

0
, then θ1̄ = ±θ ′̄

1
.

Proof. This is Proposition 2.3 of [7] for the standard case; the graded case is just an
exercise, where one replaces ± i therein with ± 1 . 
�

At last, we have an important result.

Proposition 5.8. Let g and ω ∈ aut2,4(g) be defined as in Proposition 5.2. Then there
exist mutually inverse bijections

aut2,4(g)
�∧

↪−−−−−� aut2,2(g) \ { θ
∣∣ θ |g0̄ = ω|g0̄

}

σ −−−−−−−−−−→ θσ := ω ◦ σ
(31)

and

aut2,4(g)
�∧�−−−−−↩ aut2,2(g) \ { θ

∣
∣ θ |g0̄ = ω|g0̄

}

ω−1◦ θ =: σ
θ

←−−−−−−−−− θ
(32)

and also mutually inverse bijections

aut2,2(g)
�∨

↪−−−−−� aut2,4(g) \ { ϑ
∣∣ϑ |g0̄ = ω|g0̄ ∨ ϑ |g1̄ = ω|g1̄

}

ς −−−−−−−−−−→ ϑς := ω ◦ ς
(33)

and

aut2,2(g)
�∨�−−−−−↩ aut2,4(g) \ { ϑ

∣∣ϑ |g0̄ = ω|g0̄ ∨ ϑ |g1̄ = ω|g1̄
}

ω−1◦ ϑ =: ς
ϑ

←−−−−−−−−− ϑ
(34)
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Proof. It is enough to show that the given maps are actually well-defined —namely,
their images do lie in the expected target set—since then they will clearly be pairwise
mutually inverse.

It follows from definitions and from the explicit description of aut2,s(g)—see [6]—
that ω commutes with every η ∈ aut2,s(g) and every γ ∈ aut2,s(g) . This implies (for
all z ∈ Z )

θ z
σ = (ω ◦ σ)z = ωz ◦ σ z, σ z

θ = (ω−1◦ θ
)z = ω−z◦ θ z

ϑ z
ς = (ω ◦ ς)z = ωz ◦ ς z, ς z

ϑ
= (ω−1◦ ϑ

)z = ω−z◦ ϑ z

Using these identities, a trivial check shows that

�∧
(
aut2,4(g)

) ⊆ aut2,2(g) \ { θ
∣∣ θ |g0̄ = ω|g0̄

}
,

�∧
(
aut2,2(g) \ { θ

∣∣ θ |g0̄
} ) ⊆ aut2,4(g)

�∨
(
aut2,2(g)

) ⊆ aut2,4(g) \ { ϑ
∣∣ϑ |g0̄ = ω|g0̄ ∨ ϑ |g1̄ = ω|g1̄

}

�∨
(
aut2,4(g) \ { ϑ

∣∣ϑ |g0̄ = ω|g0̄ ∨ ϑ |g1̄ = ω|g1̄
} ) ⊆ aut2,2(g)

which means that the maps �∧ , �∧ , �∨ and �∨ are well defined, q.e.d. 
�

5.2. Compact forms of basic Lie superalgebras. We want to define the notion of com-
pact real form of a (complex) Lie superalgebra. Our notion differs from [2,4,6], where
compact superalgebras are assumed to be even.

Definition 5.9. Let g be a complex Lie superalgebra with a real structure φ on it, and let
Lϕ
g—see Definition 2.6—be the associated real form (in functorial sense).

(a) We say thatLϕ
g is super-compact if there exists a suitable superspace V with a positive

definite, consistent Hermitian form B such that Lϕ
g ⊆ uB(V )—cf. Definition 4.14;

(b) We say that Lϕ
g is compact if its even part

(Lϕ
g

)
0̄ is compact in the classical sense,

that is—as
(Lϕ

g

)
0̄ is (always) represented by (g0̄)

φ = (gφ
)
0̄ —if the real Lie algebra

(g0̄)
φ = (gφ

)
0̄ is compact in the classical sense.

(c) We say that a (graded or standard) real structure φ on g is super-compact, resp. is
compact, if the associated real form

(Lϕ
g

)
0̄ of L

ϕ
g is super-compact, resp. is compact.

N.B.: it follows at once from Observation 4.16 that super-compactness implies com-
pactness.

The following existence result proves the key importance of the notion of graded
real structures. Theorem B in Sect. 1 consists of the statements of Theorem 5.10 and
Theorem 5.11.

Theorem 5.10. Let g be a simple complex Lie superalgebra of basic type, with the
additional assumption that a ∈ R if g is of type D(2, 1; a) . Then g has a graded,
super-compact real structure ω (hence a graded, super-compact real form Lω

g ) which
is unique up to inner automorphisms.

Proof. Let ω ∈ aut2,4(g) be given as in Proposition 5.2, and let κ be the Cartan-Killing
form of g (see [18], Sect. 6.1, Ch. 5): by Theorem 5.4.1 in [18], this κ is non-degenerate.
Using this and other properties of ω and κ , one easily checks that

κ(x, y) = κ
(
ω(x), ω(y)

) ∀ x, y ∈ g
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Thus the condition of Proposition 4.2 is satisfied, and therefore

B(x, y) := (−i )|x ||y| κ
(
x , ω(y)

)

is a consistent super Hermitian form, which in addition is also positive definite.
Now consider the associated Hermitian form (following Lemma 4.7)

B(a x, b y
) = i |x ||y| a b̃ B(x, y)

for all homogeneous a ∈ Az , x ∈ Vz , b ∈ As , y ∈ Vs and all A ∈ (salg)gr
C
; more

directly, according to (15) we can also write

B(X ,Y ) = κA
(
X , ωA(Y )

) ∀ X,Y ∈ Lg(A) (35)

Wewant to show that the functorLω
g embeds into uB(g) : this is equivalent to showing

that

B(U ·X , Y
)
+ B(X, U ·Y ) = 0 (36)

for all X,Y ∈ Lg(A) and U ∈ Lω
g(A) , where U·X := [U, X ] . Note that in the present

case the super vector space V of Definition 4.14 is just g itself. Now, thanks to (35) we
have

B(U ·X, Y ) = κA
([U, X ], ωA(Y )

) = −κA
(
X,
[
U, ωA(Y )

])

= −κA
(
X, ωA[U,Y ]) = −B(X,U ·Y )

since κ is ad–invariant and ωA(U ) = U by assumption; thus (36) is proved.
We now come to uniqueness. By the ordinary theory, a real structure φ0̄ on g0̄ giving

a compact real form of the latter is unique up to inner automorphism, i.e. we can write
any other real structure φ ′̄

0
on g0̄ yielding another compact form as φ ′̄

0
= ψ0̄ ◦φ0̄ ◦ψ−1

0̄
for some inner automorphism ψ0̄ . Thanks to this, if φ′ is any real structure on g giving
a compact form k′ , then Lemma 5.5 applies and we conclude our proof. 
�

We now turn our attention to the standard case.

Theorem 5.11. Let g be a simple complex Lie superalgebra of basic type. Then:

(a) if g is of type 1 (i.e., of type A or C ), then it admits a standard, compact real structure,
which is unique up to inner automorphisms;

(b) if g is of type 2 (i.e., of type B , D , F or G ), then it has no standard, compact real
structure.

Proof. (a) If g is of type A , then g = sl(m+1| n+1) or g = psl(m+1|m+1) . In both
cases, one easily sees that the standard structures in gl(m+1| n+1) described in §4.17
induce similar structures on g , and we are done. Finally, uniqueness follows as in the
proof of Theorem 5.10.
If g is of type C instead, we find an explicit σ ∈ aut2,2(C(n)) making explicit use of
Proposition 5.8, namely in the form σ := ω◦θ ; hereω is as in Proposition 5.2, while
θ ∈ aut2,4

(
C(n)

)
is chosen to be the identity onC(n)0̄ and such that θ(Xβ) := i Xβ

for β the odd simple root in a positive system with preferred simple system (i.e., a
simple system with one odd root, now denoted β). Once we describe g of type C(n)
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as the Lie superalgebra osp
(
2
∣∣2(n−1)

)
—see [14], p. 31—a straightforward analysis

yields the following explicit description of σ

σ

⎛

⎜
⎝

b 0 x y
0 −b z w

wt yt A B
−zt −xt C D

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

−b 0 −i w i z
0 b i y −i x

−i x t i zt −A
t −C

−i yt i wt −B
t

A

⎞

⎟
⎟
⎠ (37)

—where the above are block matrices with blocks of convenient sizes—from which
one can directly check that actually σ ∈ aut2,2(C(n)) , as required.

As to uniqueness, it follows again as in the proof of Theorem 5.10.
(b) In this case, the statement is discussed in detail in [5], where the condition of admissible

marking—see (1.4) in [5] —prescribes one even root to be non compact. For the reader
convenience we briefly recap here the argument. According to Theorem 5.8 a real form
corresponds to an automorphism θ ∈ aut2,4(g) , assigning the eigenvalue i to xβ ∈ gβ ,
with β a simple odd root in the simple system as in Proposition 5.2. Since the lowest
root ϕ = 2 β + . . . is even, the eigenvalue of ϕ is −1 , hence ϕ is non compact. Hence
g0 is non compact, consequently we cannot have a standard compact real form for g
(see also [5] Secc. 1, 2). 
�
Remark 5.12. In particular for g = osp

(
2
∣∣ 2(n − 1)

)
—i.e., of type C(n)—one easily

sees that the real form defined by the standard real structure σ in (37) —i.e., the real Lie
subsuperalgebra of fixed points of σ in g—is given by

osp
(
2
∣∣ 2(n−1)

)σ =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

i b 0 x y
0 −i b i y −i x

−i x t yt A B
−i yt −xt −B A

⎞

⎟
⎠ : b ∈ R, A = −A

t
, B = Bt

⎫
⎪⎬

⎪⎭

5.3. Cartan involutions and decomposition. If g0̄ is a complex semisimple Lie algebra,
we have a one to one correspondence between non compact real forms of g0̄ and invo-
lutions θ0̄ of g0̄ . Now θ0̄ restricts to a Cartan involution on the corresponding real form,
unique up to inner automorphism. We wish to extend this picture to the graded setting.

Let g be a contragredient basic Lie superalgebra, h a Cartan subalgebra and let
θ ∈ aut2,2(g) be equal rank, that is θ

∣∣
h

= idh . As in Proposition 5.8, we have that

σ = ω◦θ ∈ aut2,4(g) gives a graded real structure on g . Let k = gθ . Since θ commutes
with ω , we have that θ preserves this structure, hence

(
k, σ
∣∣
k

)
is a well defined graded

real structure on k .

Proposition 5.13. Let the notation be as above. Then
(
k, σ
∣∣
k

)
is super-compact.

Proof. By the arguments of Theorem 5.10, we immediately see that Lσ
k ⊆ u(κ) . 
�

Let p be the eigenspace of θ of eigenvalue −1 . Then we immediately have the
decomposition:

g = k ⊕ p , [k, k] ⊆ k, [k, p] ⊆ p (38)

This complex decomposition is preserved by the graded real structure σ and then
we shall call it the Cartan decomposition of the graded real form (g, σ ) . Notice that,
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by Lemmas 5.5 and 5.7, the Cartan automorphism θ and the corresponding Cartan
decomposition are unique up to inner automorphism.

We now turn to examine the standard case (see [6]). When g is of type 2, the lack
of compact forms (see Theorem 5.11) makes the case k = k0̄ studied in [4,6] most
relevant. We invite the reader to consult those references for more details. So we focus
on the case when g is of type 1.

Let θ ∈ aut2,4(g) be an equal rank automorphism. Let k0̄ , p0̄ be the eigenspaces of
eigenvalues ±1 for θ0̄ , let �k

0̄
the root system of the semisimple part of k0̄ . Choose a

distinguished simple system, that is one with only one odd root β . Define

k := k0̄ ⊕ ∑

α∈�k
0̄

g±(β+α) , p := p0̄ ⊕ ∑

α �∈�k
0̄

g±(β+α)

Then, most immediately we have the decomposition as above:

g = k ⊕ p , [k, k] ⊆ k, [k, p] ⊆ p (39)

An easy check shows that it is preserved by the standard real structure σ associated
with θ , hence we call it the Cartan decomposition of the standard real form (g, σ ) .
As before, we notice that by Lemmas 5.5 and 5.7 the Cartan automorphism θ and the
corresponding Cartan decomposition are unique up to inner automorphism.

6. Real Forms of Basic Supergroups

In this section, we shall provide a global version of the infinitesimal real forms con-
structed in the previous sections.

6.1. Unitary supergroups. Let (V, φ) ∈ (smod)•
C
be a complex super vector space with

(standard or graded) real structure, and B a consistent, non-degenerate, positive definite
super Hermitian form on it. Proposition 4.13 provides a real structure� : Lgl(V ) −−−→
Lgl(V ) on Lgl(V ) , which corresponds to a real structure on the Lie superalgebra gl(V ) .
By Proposition 3.6, there exists a unique real structure

�G : GL•(V ) −−−−→ GL•(V )

on the supergroup GL(V ) corresponding to it. In particular, on an element g = g+ ·
exp(Y) ∈ (GL(V )

)
(A)—as in (4)—using the exponential notation, we have

g�G = g
�G

0̄
+ · exp(Y �A

)
(40)

where �G

0̄
is the ordinary real structure on GL(V0̄) × GL(V1̄) , namely

g
�G

0̄
+ =

(
a 0
0 d

)�G
0̄ =

((
a 0
0 d

)� )−1

=
((

a−1
)�

0
0
(
d−1

)�

)

while, by Proposition 4.13 and Lemma 4.12,

Y �A =
(

+∞∑

n=1

(−1)n−1

n
X n

)�
= ε

+∞∑

n=1

(−1)n−1

n

(X �
)n = ε log

(
1 + X �

)
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—where ε := i or ε := −1 according to whether we are in the standard or the graded
case. So

exp
(Y �A

) = exp
(
ε
(
log
(
1 + X �

)) = (
1 + X �

)ε =
N∑

n=0

(
ε

n

)(X �
)n

where N is the least non-negative integer such that
(X �

)N+1 = 0 ∈ (
End(V )

)
(A) .

Therefore

g�G =
(
a β

γ d

)�G

=
((

a�
)−1 0

0
(
d�
)−1

)
·
((

1 a−1β

d−1γ 1

)� )ε

(41)

Note in addition that the graded case—when ε = −1—also reads

g�G =
(
a β

γ d

)�G

=
((

a β

γ d

)� )−1

=
((

a β

γ d

)−1
)�

(graded case) (42)

Definition 6.1. We define the unitary supergroup UB(V ) , with respect to the super
Hermitian form B , as the real form of GL(V ) corresponding to the real structure �G .
Explicitly, it is

UB(V )(A) :=
{
g ∈ (GL(V )

)
(A)

∣∣∣ g�G = g
}

∀ A ∈ (salg)•
C

N.B.: It follows at once fromObservation 4.16 that the even part of a unitary supergroup
is the direct product of two ordinary unitary groups.

Examples 6.2. (a) Let V := C
1|1 with the standard real structure given in §4.17. Then

the associated standard real structure �G on the supergroup GL(V ) = GL1|1 is
given explicitly as follows (see also [9]):

(
a β

γ d

)�G

=
(
ã−1
(
1 + ã−1β̃ d̃−1 γ̃

) ∓ i ã−1d̃−1 γ̃

∓ i d̃−1 ã−1β̃ d̃−1
(
1 + d̃−1 γ̃ ã−1β̃

)
)

(b) Let V := C
m|n with the graded real structure given in §4.18. Then the associated

graded real structure �G on the supergroup GL(V ) = GLm|n is given explicitly as
follows:

(
a β

γ d

)�G

=
(

ã t ± γ̃ t

∓ β̃ t d̃ t

)−1

6.2. Compact real forms of supergroups. Our notion of compact supergroup will be
modelled on the one of Lie superalgebras (cf. Definition 5.9), therefore, it is stronger than
the one commonly seen in the literature, which amounts to “topological compactness”
only (see [4,9]).

Definition 6.3. Let G be a complex Lie supergroups with a real structure � on it, and
let G�—see Definition 3.9—be the associated real form.

(a) We say thatG� is super-compact if there exists a suitable superspace V with a non-
degenerate, positive definite, consistentHermitian formB such that G� ≤ UB(V )

(see Definition 6.1).
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(b) We say thatG� is compact if its even part
(
G�
)
0̄ is compact in the classical sense.

(c) We say that a (graded or standard) real structure � on G is super-compact, resp.
is compact, if the associated real form G� is super-compact, resp. is compact.

N .B. : it is immediate to see that super-compactness implies compactness.

LetG be a complex supergroup, with tangent Lie superalgebra g := Lie(G) . We say
thatG is basic if g is simple of basic type. Now assume that a complex supergroupG is
connected and simply connected. Then, it is clear by Sect. 3.1 that any real structure on
g integrates to a real structure (of the same order) onG . In particular, ifG is also basic,
we have the following, direct consequence of Theorem 5.10:

Theorem 6.4. Let G be a connected, simply connected, basic, complex supergroup,
with a ∈ R if G is of type D(2, 1; a) . Then G admits a graded, super-compact real
structure�—hence a graded, super-compact real formG�—which is unique up to inner
automorphisms, whose associated real structure on g := Lie(G) is the real structure
ω of Theorem 5.10.

Similarly, we have the following, straightforward consequence of Theorem 5.11:

Theorem 6.5. Let G be a connected, simply connected, basic, complex supergroup.
Then:

(a) if Lie(G) is of type 1 (i.e., of type A or C ), then G admits a standard, compact real
structure, which is unique up to inner automorphisms;

(b) if Lie(G) is of type 2 (i.e., of type B, D, F or G ), then G has no standard, compact
real structure.

Observation 6.6. We can also immediately construct the real forms associated with the
real structures (g, σ ) of Sect. 5.3. It is not difficult to see that we have the standard and
graded global Cartan decompositions associated to the Cartan decompositions (39) and
(38), that is

G ∼= K · P
where K is the supergroup associated with the superalgebra k = gσ and P ∼= P0̄ ×
A
0|d1• , while P0̄ is the space appearing in the ordinary global Cartan decomposition

(see [15], Ch. VI). Clearly onG we have the real structure induced by σ , which restricts
also to K and to P .
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