Skip to main content
Log in

\({\widehat{Z}}\) at Large N: From Curve Counts to Quantum Modularity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Reducing a 6d fivebrane theory on a 3-manifold Y gives a q-series 3-manifold invariant \({\widehat{Z}}(Y)\). We analyse the large-N behaviour of \(F_K={\widehat{Z}}(M_K)\), where \(M_K\) is the complement of a knot K in the 3-sphere, and explore the relationship between an a-deformed (\(a=q^N\)) version of \(F_{K}\) and HOMFLY-PT polynomials. On the one hand, in combination with counts of holomorphic annuli on knot complements, this gives an enumerative interpretation of \(F_K\) in terms of counts of open holomorphic curves. On the other, it leads to closed form expressions for a-deformed \(F_K\) for \((2,2p+1)\) torus knots and an order-by-order construction for other cases. They both suggest a further t-deformation based on superpolynomials, which can be used to obtain a t-deformation of ADO polynomials, expected to be related to categorification. Moreover, studying how \(F_K\) transforms under natural geometric operations on K indicates relations to quantum modularity in a new setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A simple class of 3-manifolds for which the modular properties of \({\widehat{Z}} (M_3)\) have not yet been explicitly identified consists of surgeries on the figure-8 knot [GM19].

  2. Here we are using the reduced normalisation. For the unreduced normalisation, we should have, for instance,

    $$\begin{aligned} \lim _{q\rightarrow 1}F_K(x,q^N,q) = \left( \frac{x^{1/2}-x^{-1/2}}{\Delta _K(x)}\right) ^{N-1}, \end{aligned}$$
  3. In this “deformation” the m-th term is multiplied by \(x^m-x^{-m}\). Another version, that appears e.g. in [Par20b], is when the m-th term is multiplied just by \(x^m\); it gives a genuine deformation of the \(\eta \)-function, in which the latter is recovered by taking \(x \rightarrow 1\) and is related to the invariant \(F_K (x,q)\) by further anti-symmetrisation with respect to \(x \rightarrow x^{-1}\).

  4. [GM19] uses the unreduced normalisation. In the reduced normalisation, used in the major part of this paper, (22) reads \(F_K(x,q=e^{\hbar }) = \sum _{j\ge 0}\frac{p_j(x)}{\Delta _K(x)^{2j+1}}\frac{\hbar ^j}{j!}.\)

  5. To be more precise, it is a \(GL(N,\mathbb {C})\) connection, but the dynamics of the \(GL(1,\mathbb {C})\) sector is different from that of the \(SL(N,\mathbb {C})\) sector and can be decoupled.

  6. Strictly speaking, here \(A_{K}\) denotes the augmentation polynomial, which is however conjectured to coincide with the A-polynomial. For details and checks of the conjecture see [AV12, FGS13, FGS13, AEN14, GKS16, KS16, AMM14].

  7. Formula (73) differs from [FGS13] by the rescaling of \({\hat{x}}\) by q mentioned earlier, and of \({\hat{y}}\) by a/q due to the omitted prefactor.

  8. Note that there is a minor technicality when \(\Delta _{K}(x)\) is not monic as in that case we should get \(\frac{\Delta _{K}(x)}{a}\) where a is the leading coefficient. However this case doesn’t occur as when \(\Delta _{K}(x)\) is not monic the abelian branch should be degenerate.

  9. Again we rescale \({\hat{x}}\) by q, \({\hat{y}}\) by a/q and remove common factors of aq. The A-polynomial we use corresponds to the reduced normalisation.

  10. The prefactor \(x^{\frac{\log a}{\hbar }-1}\) is omitted.

  11. In general, we cannot simply set \(f_0=1\); it should be determined by means other than recursion.

  12. The prefactor \(x^{\frac{\log a}{\hbar }-1}\) is omitted.

  13. In this refined case we rescale \({\hat{y}}\) by \(-at/q\), \({\hat{x}}\) by q and then we remove common factors of aqt.

  14. Actually it is interesting for non-fibered amphichiral knots too, as it will give us a q-series which is invariant under \(q\leftrightarrow q^{-1}\).

  15. One way to see this is to consider a simple example, e.g. a solid torus \(\cong S^3 {\setminus } \text {unknot}\), and realise the parity transformation as a sign change of one of the coordinates along the boundary.

  16. Since \({{\hat{y}}}\)-coefficients of \({{\hat{A}}}_K ({{\hat{x}}}, {{\hat{y}}},a,q)\) are rational functions of \({{\hat{x}}}\), a, and q, in the quantum A-polynomial one can also simply replace \(({{\hat{x}}}, a, q) \mapsto ({{\hat{x}}}^{-1}, a^{-1}, q^{-1})\).

References

  1. Aganagic, M., Ekholm, T., Ng, L., Vafa, C.: Topological strings, D-model, and knot contact homology. Adv. Theor. Math. Phys. 18(4), 827–956 (2014). arXiv:1304.5778

    Article  MathSciNet  MATH  Google Scholar 

  2. Awata, H., Gukov, S., Sulkowski, P., Fuji, H.: Volume conjecture: refined and categorified. Adv. Theor. Math. Phys. 16(6), 1669–1777 (2012). arXiv:1203.2182

    Article  MathSciNet  MATH  Google Scholar 

  3. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). hep-th/0305132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Arthamonov, S., Mironov, A., Morozov, A., Morozov, A.: Link polynomial calculus and the AENV conjecture. J. High Energy Phys. 4, 2014 (2014). arXiv:1309.7984

    ADS  Google Scholar 

  5. Andersen, J., Petersen, W.: Asymptotic expansions of the Witten–Reshetikhin–Turaev invariants of mapping tori I. Trans. Am. Math. Soc. 372(8), 5713–5745 (2019). arXiv:1803.09510

    Article  MathSciNet  MATH  Google Scholar 

  6. Aganagic, M., Shakirov, S.: Refined Chern–Simons theory and topological string (2012). arXiv:1210.2733

  7. Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots (2012). arXiv:1204.4709

  8. Bringmann, K., Mahlburg, K., Milas, A.: Higher depth quantum modular forms and plumbed 3-manifolds (2019). arXiv:1906.10722

  9. Bringmann, K., Mahlburg, K., Milas, A.: Quantum modular forms and plumbing graphs of 3-manifolds. J. Combin. Theory Ser. A 170, 105145 (2020). arXiv:1810.05612

    Article  MathSciNet  MATH  Google Scholar 

  10. Bar-Natan, D., Garoufalidis, S.: On the Melvin–Morton–Rozansky conjecture. Invent. Math. 125(1), 103–133 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cheng, M.C.N., Chun, S., Ferrari, F., Gukov, S., Harrison, S.M.: 3d modularity. JHEP 10, 010 (2019). arXiv:1809.10148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties of \(3\)-manifolds. Invent. Math. 118(1), 47–84 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cheng, M.C.N., Ferrari, F., Sgroi, G.: Three-manifold quantum invariants and mock theta functions. Philos. Trans. R. Soc. Lond. 378(2163), 20180439 (2019). arXiv:1912.07997

    ADS  MathSciNet  MATH  Google Scholar 

  14. Chun, S., Gukov, S., Park, S., Sopenko, N.: 3d-3d correspondence for mapping tori (2019). arXiv:1911.08456

  15. Chung, H.-J.: BPS invariants for Seifert manifolds. JHEP 03, 113 (2020). arXiv:1811.08863

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Diogo, L., Ekholm, T.: Augmentations, annuli, and Alexander polynomials (2020). arXiv:2005.09733

  17. Dunfield, N.M., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006). arXiv:0505662 [math]

    Article  MathSciNet  MATH  Google Scholar 

  18. Donaldson, S.K.: Polynomial invariants for smooth four-manifolds. Topology 29(3), 257–315 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The Geometric Universe (Oxford, 1996). Oxford University Press, Oxford, pp. 31–47 (1998)

  20. Ekholm, T., Kucharski, P., Longhi, P.: Multi-cover skeins, quivers, and 3d \({\cal{N} }=2\) dualities. JHEP 02, 018 (2020). arXiv:1910.06193

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ekholm, T., Kucharski, P., Longhi, P.: Physics and geometry of knots-quivers correspondence. Commun. Math. Phys. 379(2), 361–415 (2020). arXiv:1811.03110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ekholm, T., Ng, L.: Higher genus knot contact homology and recursion for colored HOMFLY-PT polynomials (2018). arXiv:1803.04011

  23. Ekholm, T., Shende, V.: Skeins on branes (2019). arXiv:1901.08027

  24. Fuji, H., Gukov, S., Sulkowski, P.: Super-\(A\)-polynomial for knots and BPS states. Nucl. Phys. B 867, 506 (2013). arXiv:1205.1515

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Fuji, H., Gukov, S., Sulkowski, P., Stosic, M.: 3d analogs of Argyres–Douglas theories and knot homologies. JHEP 01, 175 (2013). arXiv:1209.1416

    Article  ADS  Google Scholar 

  26. Garoufalidis, S.: On the charactersitic and deformation varieties of a knot. Geom. Topol. Monogr. 7, 291–304 (2004). (( math/0306230))

    Article  MATH  Google Scholar 

  27. Gukov, S., Hsin, P.-S., Nakajima, H., Park, S., Pei, D., Sopenko, N.: Rozansky–Witten geometry of Coulomb branches and logarithmic knot invariants (2020). arXiv:2005.05347

  28. Garoufalidis, S., Kucharski, P., Sulkowski, P.: Knots, BPS states, and algebraic curves. Commun. Math. Phys. 346(1), 75–113 (2016). arXiv:1504.06327

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gukov, S., Manolescu, C.: A two-variable series for knot complements (2019). arXiv:1904.06057

  30. Gukov, S., Marino, M., Putrov, P.: Resurgence in complex Chern–Simons theory (2016). arXiv:1605.07615

  31. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS spectra and 3-manifold invariants (2017). arXiv:1701.06567

  32. Gukov, S., Putrov, P., Vafa, C.: Fivebranes and 3-manifold homology. JHEP 07, 071 (2017). arXiv:1602.05302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gukov, S., Stosic, M.: Homological algebra of knots and BPS states. Proc. Symp. Pure Math. 85, 125–172 (2012). arXiv:1112.0030

    Article  MathSciNet  MATH  Google Scholar 

  34. Gukov, S., Sulkowski, P.: A-polynomial, B-model, and quantization. JHEP 02, 070 (2012). arXiv:1108.0002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gukov, S., Schwarz, A.S., Vafa, C.: Khovanov–Rozansky homology and topological strings. Lett. Math. Phys. 74, 53–74 (2005). arXiv:0412243 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun. Math. Phys. 255, 577–627 (2005). arXiv:0306165 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gopakumar, R., Vafa, C.: M-theory and topological strings-II (1998). arXiv:9812127 [hep-th]

  38. Graber, T., Zaslow, E.: Open-string Gromov–Witten invariants: calculations and a mirror “theorem”. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Volume 310 of Contemp. Math., pp. 107–121. American Mathematical Society, Providence (2002)

  39. Hoste, J., Ocneanu, A., Millett, K., Freyd, P.J., Lickorish, W.B.R., Yetter, D.N.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12(2), 239–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 10, 069 (2009). hep-th/0701156

    Article  ADS  MathSciNet  Google Scholar 

  41. Katz, S.H., Gromov-Witten, G.-V.: Donaldson–Thomas invariants of Calabi–Yau threefolds. In: Snowbird Lectures on String Theory. Proceedings, Joint Summer Research Conference, Snowbird, USA, June 5–11, 2004, pp. 43–52 (2004). arXiv:0408266 [math]

  42. Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(8), 869–885 (2007). (( math/0510265))

    Article  MathSciNet  MATH  Google Scholar 

  43. Katz, S., Liu, C.-C.M.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys 5(1), 1–49 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kucharski, P., Reineke, M., Stosic, M., Sulkowski, P.: BPS states, knots and quivers. Phys. Rev. D 96(12), 121902 (2017). arXiv:1707.02991

    Article  ADS  MathSciNet  Google Scholar 

  45. Kucharski, P., Reineke, M., Stosic, M., Sulkowski, P.: Knots-quivers correspondence. Adv. Theor. Math. Phys. 23(7), 1849–1902 (2019). arXiv:1707.04017

    Article  MathSciNet  MATH  Google Scholar 

  46. Kontsevich, M., Soibelman, Y.: Motivic Donaldson–Thomas invariants: summary of results. In: Mirror Symmetry and Tropical Geometry, Volume 527 of Contemp. Math., pp. 55–89. American Mathematical Society, Providence (2010)

  47. Kucharski, P., Sulkowski, P.: BPS counting for knots and combinatorics on words. JHEP 11, 120 (2016). arXiv:1608.06600

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Kucharski, P.: Quivers for 3-manifolds: the correspondence, BPS states, and 3d \({\cal{N} }=2\) theories. JHEP 09, 25 (2020). arXiv:2005.13394

    MATH  Google Scholar 

  49. Li, J., Song, Y.S.: Open string instantons and relative stable morphisms. Adv. Theor. Math. Phys. 5(1), 67–91 (2001). arXiv:0103100 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  50. Melvin, P.M., Morton, H.R.: The coloured Jones function. Commun. Math. Phys. 169(3), 501–520 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006). arXiv:0312059 [math]

    Article  MathSciNet  MATH  Google Scholar 

  52. Nawata, S., Ramadevi, P., Zodinmawia, A., Sun, X.: Super-A-polynomials for twist knots. JHEP 11, 157 (2012). arXiv:1209.1409

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Okounkov, A., Reshetikhin, N., Vafa, C.: Quantum Calabi–Yau and classical crystals. Prog. Math. 244, 597 (2006). hep-th/0309208

    Article  MathSciNet  MATH  Google Scholar 

  54. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419–438 (2000). hep-th/9912123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Park, S.: Higher rank \({\hat{Z}}\) and \(F_K\). SIGMA 16(044), 5 (2020). arXiv:1909.13002

    Google Scholar 

  56. Park, S.: Large color R-matrix for knot complements and strange identities (2020). arXiv:2004.02087

  57. Przytycki, J.: Invariants of links of Conway type. Kobe J. Math. 4, 115–139 (1987)

    MathSciNet  MATH  Google Scholar 

  58. Rozansky, L.: A contribution of the trivial connection to the Jones polynomial and Witten’s invariant of 3d manifolds. I. Commun. Math. Phys. 175(2), 275–296 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Rozansky, L.: The universal R-matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial. Adv. Math. 134(1), 1–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zagier, D.: Quantum modular forms. In: Quanta of Maths, Volume 11 of Clay Math. Proc., pp. 659–675. American Mathematical Society, Providence (2010)

Download references

Acknowledgements

We would like to thank Sibasish Banerjee, Miranda Cheng, Luis Diogo, Boris Feigin, Francesca Ferrari, Sarah Harrison, Jakub Jankowski, Pietro Longhi, Ciprian Manolescu, Marko Sto\(\check{\text {s}}\)i\(\acute{\text {c}}\), Cumrun Vafa, and Don Zagier for insightful discussions and comments on the draft. The work of T.E. is supported by the Knut and Alice Wallenberg Foundation KAW2020.0307 and by the Swedish Research Council VR2020-04535. The work of S.G. is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award No. DE-SC0011632, and by the National Science Foundation under Grant No. NSF DMS 1664240. The work of P.K. is supported by the Polish Ministry of Science and Higher Education through its programme Mobility Plus (decision no. 1667/MOB/V/2017/0). The research of S.P. is supported by Kwanjeong Educational Foundation. The work of P.S. is supported by the TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund (POIR.04.04.00-00-5C55/17-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus Gruen.

Additional information

Communicated by H-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekholm, T., Gruen, A., Gukov, S. et al. \({\widehat{Z}}\) at Large N: From Curve Counts to Quantum Modularity. Commun. Math. Phys. 396, 143–186 (2022). https://doi.org/10.1007/s00220-022-04469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04469-9

Navigation