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Abstract: Weprove that cluster observables of level-sets of theGaussian freefield on the
hypercubic lattice Zd , d ≥ 3, are analytic on the whole off-critical regimeR\ {h∗}. This
result concerns in particular the percolation density function θ(h) and the (truncated)
susceptibility χ(h). As an important step towards the proof, we show the exponential
decay in probability for the capacity of a finite cluster for all h �= h∗, which we believe to
be a result of independent interest. We also discuss the case of general transient graphs.

1. Introduction

Motivation and main results. We consider the level-set percolation for the Gaussian
free field (GFF) on a connected, locally finite, transient graph G = (V, E). Of particular
interest is the case of the hypercubic lattice Z

d in dimensions d ≥ 3. The Gaussian
free field ϕ = (ϕx )x∈V is defined as the centered Gaussian process with covariance
E(ϕxϕy) = g(x, y) for all x, y ∈ V , where g(·, ·) stands for the Green function of
the simple random walk on G. Given h ∈ R, we are interested in the excursion set
{ϕ ≥ h} := {x ∈ V : ϕx ≥ h} seen as a random subgraph of G (with the induced
adjacency). As h varies, this defines a percolation model for which one may expect to
see a phase transition in h from a percolative regime—where {ϕ ≥ h} contains an infinite
connected component—to a non-percolative regime—where all the clusters of {ϕ ≥ h}
are finite. Consider the percolation density function defined by

θ(h) :=P[|Co(h)| = ∞],
where Co(h) denotes the connected component (or cluster) of a fixed origin o ∈ V in
{ϕ ≥ h}. We can then define the percolation critical point h∗ given by

h∗(G) := sup{h ∈ R : θ(h) > 0}.
The first and most fundamental question in percolation theory is the existence of a

non-trivial phase transition, which in our case corresponds to −∞ < h∗ < +∞. A
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soft argument due to Bricmont et al. [BLM87] shows that the GFF percolates above
any negative level, i.e. h∗(Zd) ≥ 0 (> −∞) for all d ≥ 3—see also [AS18] for a
proof that h∗(G) ≥ 0 for every transient graph G. The strict inequality h∗(Zd) > 0
has been recently proved [DPR18a] in the case of Zd for all d ≥ 3. The opposite
inequality h∗ < +∞ is a bit more delicate. In the special case G = Z

d , d ≥ 3, this
was proved by Rodriguez and Sznitman [RS13]—the case d = 3 had already been
obtained in [BLM87]. It is also known that h∗ < +∞ for regular trees [Szn16] and
graphs of polynomial growth satisfying certain regularity properties [DPR18b, Remark
7.2 1)], but this remains open for more general transient graphs. Remarkably, this is
in contrast with the classical Bernoulli percolation, for which proving the existence of
a percolative regime is in general much harder than proving the existence of a non-
percolative regime—see [DCGR+20].

Once the existence of a phase transition is established, the next important question
concerns the uniqueness of the critical point, i.e. whether h∗ defined above is the only
value at which one can see a qualitative change in the large-scale behavior of the model.
This immediately raises the question of whether there are critical points at other values
of h and how to define them. There are two main approaches to this question.

From a percolation theory perspective, a natural approach consists in defining alter-
native critical parameters h̄ and h∗∗, which characterize a strongly percolative and a
strongly non-percolative regime, respectively. In the last decade, this approach has been
successfully implemented in the case G = Z

d : definitions appeared inmanyworks—see
e.g. [RS13,PR15,DRS14,Szn15]—and more recently it has been proved by Duminil-
Copin, Goswami, Rodriguez & Severo [DCGRS20] that indeed h̄ = h∗ = h∗∗. This
equality is often referred to as “sharpness” of phase transition and is also expected
to hold for other transient graphs, but this remains open. The corresponding result for
Bernoulli percolation on Z

d was obtained in the highly influential works of Aizenman
& Barsky [AB87] and Menshikov [Men86] (on the subcritical phase) and Grimmett &
Marstrand [GM90] (on the supercritical phase).

From the point of view of statistical physics, a classical approach consists in con-
sidering a function (such as θ ) describing the macroscopic behavior of the model, and
define the critical points to be the singularities of that function. Uniqueness of the crit-
ical point then corresponds to the analyticity of this function on R \ {h∗}, which is
precisely the main result of the present article. Let us mention that the corresponding
result for Bernoulli percolation onZd has been proved on the subcritical phase byKesten
[Kes81] and on the supercritical phase byGeorgakopoulos and Panagiotis [GP]. Hermon
and Hutchcroft [HH21] also proved a corresponding result for Bernoulli percolation on
non-amenable transitive graphs.

In order to state our main result, we need to introduce some notation. Let X denote
the family of all finite subsets of V . We say that a cluster observable F : X → C has
subexponential growth if |F(S)| ≤ eo(cap(S)) as cap(S) → ∞. Here cap(S) denotes
the (harmonic) capacity of S, the (vertex) closure of S—see Sect. 2 for definitions.
Finally, for a cluster observable F : X → C and a subset X ∈ X , consider the function

F
X : R → C defined by

F
X
(h) :=E[F(CX (h))1|CX (h)|<∞],

where CX (h) denotes the union of all clusters in {ϕ ≥ h} intersecting X .
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Theorem 1.1. Let G = Z
d , d ≥ 3. Then for every observable F : X → C of subex-

ponential growth and every X ∈ X , the function F
X

is well-defined and analytic on
R \ {h∗}.

Notice that the analyticity of the percolation density θ on R \ {h∗} follows from

Theorem 1.1 by taking F ≡ 1, for which F
{o} = 1 − θ . Besides θ , other functions of

interest are the (truncated) susceptibility

χ(h) :=E[|Co(h)|1|Co(h)|<∞],
the (finite) open clusters per vertex

κ(h) :=E[|Co(h)|−11|Co(h)|<∞],
the truncated k point function

τ
f

X (h) :=P[CX (h) connected, |CX (h)| < ∞]
and the (non-truncated) k point function

τX (h) :=P[CX (h) connected],
where X ∈ X with |X | = k. The following is a corollary of Theorem 1.1.

Corollary 1.2. Let G = Z
d , d ≥ 3. Then all the functions θ(h), χ(h), κ(h), τ

f
X (h) and

τX (h), X ∈ X , are analytic on R \ {h∗}.
The only function for which Corollary 1.2 does not follow readily from Theorem 1.1

is the (non-truncated) k point function τX (h). In order to deduce its analyticity, simply
notice that by the uniqueness of the infinite cluster (see e.g. [RS13, Remark 1.6]) and
the inclusion–exclusion principle, we can write

τX (h) = τ
f

X (h) + 1− P
[ ⋃

x∈X

{|Cx (h)| < ∞}]

= τ
f

X (h) + 1−
∑

∅�=Y⊂X

(−1)|Y |+1
P[|CY (h)| < ∞].

We remark that the analyticity of τX (h) may break down on the supercritical phase if
uniqueness of infinite cluster does not hold. Indeed, for Bernoulli percolation there are
examples [HH21] of transitive non-amenable graphs for which τ has a discontinuity at
the uniqueness critical point pu , which in this case satisfies pc < pu < 1.

Our proof of analyticity of F
X
makes crucial use of the following convenient series

decomposition. For every integer N ≥ 0 and h ∈ R, consider the event

AX
N (h) := {|CX (h)| < ∞} ∩ {N ≤ cap(CX (h)) < N + 1}.

We can then write

F
X
(h) =

∞∑

N=0

E[F(CX (h))1AX
N (h)]. (1.1)
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With the series (1.1) in hands, it is enough to show that each term F
X
N (h) :=

E[F(CX (h))1AX
N (h)] can be analytically extended to a domain of C containing R \ {h∗}

on which the series converges locally uniformly. A crucial step to establish such a con-
vergence is proving that P[AX

N (h)] decays exponentially in N and locally uniformly
in h �= h∗. This is the content of the following theorem, which we believe to be of
independent interest.

Theorem 1.3. Let G = Z
d , d ≥ 3. Then for every ε > 0 and X ∈ X , there exists

c = c(X, ε, d) > 0 such that P[AX
N (h)] ≤ e−cN for every N ≥ 0 and every h ∈ R with

|h − h∗| ≥ ε.

It is easy to prove that there exists c′ = c′(d) > 0 such that cap(K ) ≥ c′|K | d−2
d for

every subset K ⊂ Z
d . The following corollary thus follows readily from Theorem 1.3.

Corollary 1.4. Let G = Z
d , d ≥ 3. Then for every ε > 0 and X ∈ X , there exists

c = c(X, ε, d) > 0 such that P[N ≤ |CX (h)| < ∞] ≤ exp{−cN
d−2

d } for every N ≥ 0
and every h ∈ R with |h − h∗| ≥ ε.

The order of exponential decay in the upper bounds provided by Theorem 1.3 and
Corollary 1.4 are believed to be the correct ones. Optimizing on the constant c governing
the rate of exponential decay is more challenging and beyond the scope of this article,
but we believe that our techniques might shed some light on this problem as well.

In recent years, large deviation problems for GFF percolation events have attracted
considerable attention—see e.g. [Szn15,NS20,Nit18,Szn19b,GRS21]. A common fea-
ture in these problems is a deep connection with potential theory and in particular the
notion of capacity. Typically, the exponential rate of decay is given by the solution of
a constrained optimization problem involving the Dirichlet energy and, in some cases,
the percolation density θ as well—see e.g. [Szn19a,Szn20,Szn21] for results in that
direction for the closely related model of random interlacements. It is therefore relevant
to understand the regularity of θ in order to study these optimization problems. Moti-
vated by this, it has been recently proved [Szn19c] that for the vacant set of random
interlacements, θ is C1 on an interval of the parameter space, which is conjectured to
coincide with the supercritical phase. We expect that the techniques developed in the
present article may be helpful to study similar questions for the random interlacements
and other strongly correlated models as well. The proof of Theorem 1.3 is based on a
coarse graining argument which is very much in the spirit of the works cited above.
However, we would like to highlight a key new aspect of our work: we use a coarse
graining procedure that involves, at the same time, multiple scales instead of only one.
We describe this multi-scale coarse graining scheme in more details in the end of this
section.

We now discuss the case of general transient graphs. First, we observe that the (uni-

form) exponential decay forP[AX
N (h)] always implies the analyticity of F

X
—see Propo-

sition 2.2. By a simple shift-argument, one can show that such exponential decay holds
for all negative values of h on any transient graph—see Proposition 2.3. This implies the
following theorem. Recall that h∗(G) ≥ 0 is known to hold [BLM87] for every transient
graph G.

Theorem 1.5. For every transient graph G, every observable F : X → C of subex-

ponential growth and every X ∈ X , the function F
X

is well-defined and analytic on
(−∞, 0).
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Underweaker assumptions on the decay ofP[AX
N (h)], we can prove that F

X
is smooth

for observables F : X → C of (at most) polynomial growth, i.e. satisfying |F(S)| ≤
C |cap(S)|C for all S ∈ X and some constant C ∈ (0,∞). We say that a sequence
(cN )N≥0 of positive real numbers decays super-polynomially fast if limN→∞ log(cN )

log N =
−∞. We define

h̃ := sup

⎧
⎨

⎩
h ∈ (−∞, h∗)

∣∣∣∣
∣∣

for everyX ∈ X there exists(cN )N≥0
decaying super-polynomially fast such
thatP[AX

N (h′)] ≤ cN for everyh′ ≤ h

⎫
⎬

⎭
.

We also define an analogous parameter in the subcritical phase

ĥ := inf

⎧
⎨

⎩
h ∈ (h∗,+∞)

∣∣∣
∣∣∣

for everyX ∈ X there exists(cN )N≥0
decaying super-polynomially fast such
thatP[AX

N (h′)] ≤ cN for everyh′ ≥ h

⎫
⎬

⎭
.

Theorem 1.6. For every transient graph G, every observable F : X → C of (at most)

polynomial growth and every X ∈ X , F
X

is well-defined and C∞ on R \ [̃h, ĥ].
The parameters h̃ and ĥ defined above can be seen, respectively, as an alternative

definition of the classical parameters h̄ and h∗∗ mentioned above—see [DCGRS20] for
the precise definitions. Indeed, for the caseG = Z

d , one canprove that finite clusters have
stretched exponential tails for h > h∗∗ and h < h̄, therefore h̄ ≤ h̃ ≤ h∗ ≤ ĥ ≤ h∗∗,
which in turn implies h̃ = h∗ = ĥ as the equality h̄ = h∗∗ is known in this case
[DCGRS20]. It is natural to expect that the equality h̃ = h∗ = ĥ holds in great generality,
but sharpness of phase transition remains open beyond Z

d . It is also natural to expect
that, independently of sharpness, one might be able to bootstrap the decay of P[AX

N (h)]
from super-polynomial to exponential via a coarse graining argument, thus proving that
θ is analytic on R \ [̃h, ĥ]. This is essentially what we do in the proof of Theorem 1.3
for the case G = Z

d : we start from a sub-optimal decay provided by the assumption
h ∈ R \ [h̄, h∗∗] (= R \ {h∗} by [DCGRS20]) and enhance it to the desired exponential
decay through a coarse graining argument—see the discussion below for more details.
On general graphs though, developing a coarse graining argument is more challenging
due to a poorer understanding of their geometry.

About the proof. As mentioned above, our proof makes crucial use of the series
(1.1). We first use a shift-argument based on the Cameron–Martin formula to naturally

construct an analytic extension of the function F
X
N = E[F(CX (h))1AX

N (h)] to the whole
complex planeC for every N ≥ 0. This construction provides a simpleway to effectively
estimate the growth of this entire function along the imaginary direction.More precisely,

we prove in Proposition 2.1 that F
X
N (h + i t) ≤ exp{ 12 t2(N + 1)}|F |XN (h) for every

N ≥ 0 and h, t ∈ R. Due to this result, it is not difficult to deduce the locally uniform
convergence (and therefore analyticity) of the series (1.1) from the (uniform) exponential
upper bound for P[AX

N (h)] on the real line—see Proposition 2.2. This exponential bound
is then provided in the case G = Z

d by Theorem 1.3, which is the most technical part
of this article.

Before discussing the ideas involved in the proof of Theorem 1.3, we would like
to highlight some key differences between GFF level-sets and Bernoulli percolation.
Kesten’s proof [Kes81] of analyticity for Bernoulli percolation on the subcritical phase
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is based on a series expansion similar to (1.1), but in terms of the cluster size N = |CX |.
Since in the subcritical phase the cluster size decays exponentially in probability [AB87,
Men86] and the expansion in the imaginary direction also grows (at most) exponentially
in N , one can prove that the series converges locally uniformly near the real line and is
therefore analytic. This strategydoes notwork in the supercritical phase though:while the
expansion in the imaginary direction is still exponential in N , the decay of the cluster
probabilities is exponential in its boundary size [KZ90], which is typically of order

N
d−1

d = o(N ). Motivated by this issue, Georgakopoulos & Panagiotis [GP] considered
a series decomposition in terms of the size of (multi-)interfaces instead, in which case
both the expansion in the imaginary direction and the decay on the real line are of the
same exponential order. For theGFF level-sets though, none of these decompositions can
work as the decay on the real line is subexponential in both the volume and boundary
sizes. Nevertheless, we observe that both the imaginary expansion and the decay of
cluster probability (in both subcritical and supercritical phases!) are exponential in the
capacity of the cluster, thus allowing us to make effective use of the series expansion
(1.1). This fact is due to an entropic repulsion phenomenon that emerges from the strong
(non-integrable) correlations of the GFF, which in turn are deeply related to the potential
theory attached to the random walk.

Wewill now outline themain ideas present in the proof of Theorem 1.3. Asmentioned
above, a quite substantial multi-scale coarse graining argument takes place in the proof.
We start by discussing the more natural single-scale coarse graining approach with the
hope of making the need for a multi-scale argument more apparent. This single-scale
approach would consist in choosing an appropriate scale L and observe that on the event
AX

N (h) one can find a family F of L-boxes on which an unlikely event (so called bad
event) happens. Then one can hope to prove that, for every given F , the probability that
all of these boxes are bad is at most e−cN , while keeping the combinatorial complexity
(i.e. the number of possible families F) of order eo(N ). In order to prove the desired
exponential upper bound, one can use the harmonic decomposition of GFF on each
box of F into the sum of a local and a global field and then consider two cases: either
most boxes of F are globally bad—which corresponds to the global (harmonic) field
deviating from 0—ormany boxes are locally bad—which corresponds to the occurrence
of an unlikely percolation event for the local field. By applying a large deviation result of
Sznitman [Szn15], one canprove that the probability of thefirst case decays exponentially
in the capacity, i.e. it is smaller than e−cN , as desired. In the second case though, one
can use independence to show that its probability is smaller than p|F |

L , where pL is the
probability of a single L-box being locally bad. On the one hand, since the available a
priori bound on pL is only stretched exponential in L and the geometry ofF is completely
arbitrary, one quickly notices that in order for the desired inequality p|F |

L ≤ e−cN to hold
uniformly in F , it is necessary to choose L not too large. On the other hand, because
of the arbitrary geometry of F again, it is necessary to take L sufficiently large in order
to have a combinatorial complexity of order eo(N ). As a consequence, choosing such a
scale L becomes impossible, suggesting the need of a multi-scale approach.

Our multi-scale coarse graining construction goes roughly as follows. For each con-
figuration ϕ ∈ AN (h) we construct a set of bad (and very-bad) boxes F consisting
of multiple scales. We do so inductively in the scales, starting by a sufficiently large
scale L such that the combinatorial complexity is of order eo(N ). We then look at all
the boxes where something unlikely happens—these boxes are called bad—and we add
to F all those boxes where something “very unlikely” happens—these boxes are called
very-bad. Here “very unlikely” corresponds to an event depending on a box B ∈ F for
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which an improved a priori upper bound of type qL ≤ e−c cap(B) holds. If these boxes
have capacity of order N , we are done. Otherwise, we can go down to a smaller scale
L ′ < L and inspect the bad L ′-boxes contained in the remaining L-boxes (i.e. bad but
not very-bad) and add to F those L ′-boxes which are very-bad. By continuing this pro-
cess, we eventually obtain either a family of very-bad boxes with capacity of order N
or a very large number of bad boxes of the smallest scale L0. We can then prove that the
probability of both cases is smaller than e−cN . Since each time we go down one scale
we look only inside certain boxes of the previous scale, it turns out that we can do so by
keeping the combinatorial complexity of order eo(N ), as desired. For this construction to
work though, one has to define the notions of bad and very-bad boxes in a very careful
way so that a certain propagation property holds—see item (iii) of Definition 3.2.

Organization of the paper. In Sect. 2 we review the potential theory attached
to the simple random walk and describe the shift-argument used to extend each term
of the series (1.1) to an entire function. We then prove Theorems 1.5 and 1.6 and also
deduce Theorem1.1 fromTheorem1.3, towhich the remaining sections are dedicated. In
Sect. 3,we describe the large deviation argument used to proveTheorem1.3. In Sect. 4we
prove the (deterministic) multi-scale coarse graining theorem stated in Sect. 3. Finally,
in Sects. 5 and 6 we prove the decay in probability for the notions of bad and very-bad
boxes introduced in Sect. 3.

2. Potential Theory and Analytic Extension

We start by introducing some notation. For any pair x, y ∈ V we write x ∼ y if
{x, y} ∈ E . Given S ∈ X , we may consider its (inner) boundary ∂S := {x ∈ S : ∃y ∈
V \S, x ∼ y}, its outer boundary ∂out S := {x ∈ V \S : ∃y ∈ S, x ∼ y} and its closure
S := S ∪ ∂out S.

We now recall some potential theory attached to simple random walk (SRW) on the
graph G = (V, E), which is assumed to be locally finite, connected and transient for
the SRW. We denote by Px the canonical law of the discrete-time SRW on G starting
at x ∈ V and write (Xn)n≥0 for the corresponding process. We let g(·, ·) stand for the
Green function of the walk,

g(x, y) := 1

d(y)

∞∑

n=0

Px [Xn = y], for x, y ∈ V, (2.1)

where d(y) denotes the degree of y. It is well known that the Green function is finite (as
G is transient), symmetric and positive-definite. Therefore, we can effectively define the
GFF ϕ = (ϕx )x∈V as the centered Gaussian field with covariance matrix g. In the case
of Zd , d ≥ 3, it is well known that g(x, y) � ‖x − y‖2−d∞ .

Given a finite and non-empty K ⊂ V , we write

gK (x, y) := 1

d(y)

∞∑

n=0

Px [Xn = y, n < TK ], for x, y ∈ V . (2.2)

for the Green function of simple random walk killed on the boundary of K , where
TK := inf{n ≥ 0 : Xn ∈ V \K }. For x ∈ V , consider the equilibrium measure
eK (x) := d(x)Px [H̃K = ∞]1x∈K , where H̃K := min{n ≥ 1 : Xn ∈ K }. The capacity
of K is defined as its total mass,

cap(K ) :=
∑

x∈K

eK (x). (2.3)
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The capacity is an increasing and sub-additive function, i.e. cap(A) ≤ cap(A ∪ B) ≤
cap(A) + cap(B) for every A, B ⊂ V . The following variational characterization of the
capacity is useful for obtaining lower bounds:

cap(K ) = (
inf
ν

E(ν)
)−1

, (2.4)

where E(ν) := ∑
x,y ν(x)ν(y)g(x, y) and the infimum ranges over all probability mea-

sures ν supported on K . As a direct consequence, one has the following inequality

|K |
supx∈K

∑
y∈K g(x, y)

≤ cap(K ) ≤ |K |
infx∈K

∑
y∈K g(x, y)

. (2.5)

In the special case of the box BL = [0, L)d on Z
d , one can conclude that

cap(BL) � Ld−2 for all L ≥ 1. (2.6)

The optimizing measure in (2.4) is precisely the normalized equilibrium measure
eK (x) := eK (x)/cap(K ). Further, for every K ⊂ K ′ ⊂⊂ Z

d one has the sweeping
identity

cap(K ) =
∑

x∈K ′
eK ′(x)Px [HK < ∞], (2.7)

where HK := min{n ≥ 0 : Xn ∈ K }. Consider the Dirichlet inner product defined as

E( f, g) := −
∑

x∈V


 f (x)g(x) (2.8)

for every pair of functions f, g : V → R for which the sum converges (for instance, if
either
 f or g has finite support), where
 f (x) := ∑

y∼x ( f (y)− f (x)) is the Laplacian
of f . One also has the following variational characterization of capacity in terms of the
Dirichlet energy

cap(K ) = inf
f
E( f, f ), (2.9)

where the infimum ranges over all functions f such that E( f, f ) is well defined and
f (x) ≥ 1 for every x ∈ K . The optimizing function in (2.9) is called the harmonic
potential of K and is given by

fK (x) := Px [HK < ∞].
In fact, fK takes value 1 on K and is harmonic on V \K , i.e. 
 fK (x) = 0 for all
x ∈ V \K .

Given a function f : V → C for which the Laplacian 
 f (x) has finite support, we
introduce the complex measure

P̃ f (dϕ) := exp
{− 1

2E( f, f ) − E( f, ϕ)
}
P(dϕ). (2.10)

Notice that when f takes real values, the Cameron–Martin formula implies that P̃ f is a
probability measure and furthermore, the law of ϕ under P̃ f coincides with the law of(
ϕx − f (x)

)
under P. This observation will allow us to extend the probability of local

events to the complex plane.
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Proposition 2.1. Let F be a cluster observable such that for every N ≥ 1 there is M > 0
for which |F(S)| ≤ M for every S ∈ X with cap(S) ≤ N. For every X ∈ X and N ≥ 0,

the function F
X
N (h) = E[F(CX (h))1AX

N (h)] extends to an entire function such that for
every h, t ∈ R,

|F X
N (h + i t)| ≤ exp

{
1
2 t2(N + 1)

}
|F |XN (h), (2.11)

where |F |XN (h) = E[|F(CX (h))|1AX
N (h)].

Proof. Let S ∈ X . We start by extending h �→ P[CX (h) = S] to the complex plane. For
every z ∈ C, we define

θ X
S (z) := P̃z fS

[CX (0) = S] = E[exp
{
− 1

2 z2E( fS, fS) − zE( fS, ϕ)
}
1CX (0)=S]

= exp{− 1
2 z2cap(S)}

∞∑

k=0

E[(−E( fS, ϕ)
)k

1CX (0)=S]
k! zk .

(2.12)

First notice that since the event {CX (0) = S} only depends on ϕ restricted to S and
h fS = h on S, it follows from the Cameron–Martin formula that θ X

S (h) is indeed equal
to P[CX (h) = S] for h ∈ R. In order to prove that θ X

S (z) is analytic on C it suffices to
show that the series in (2.12) converges locally uniformly. Indeed, this follows directly
from the fact that for all n ≥ 0,

∣∣∣∣∣

n∑

k=0

(−E( fS, ϕ)
)k

k! zk

∣∣∣∣∣
≤

∞∑

k=0

∣∣E( fS, ϕ)
∣∣k

k! |z|k = exp
{|zE( fS, ϕ)|} ,

and E[exp {|zE( fS, ϕ)|}] is finite for every z ∈ C as E( fS, ϕ) is a Gaussian random
variable.

We will now obtain a bound for θ X
S (h + i t) in terms of θ X

S (h) for h, t ∈ R. By the
Cameron–Martin formula, we have

θ X
S (h + i t) = P̃i t fS

[CX (h) = S] = E[exp
{
1
2 t2cap(S) − i tE( fS, ϕ)

}
1CX (h)=S].

Since |exp {−i tE( fS, ϕ)
}| = 1 a.s., we obtain

|θ X
S (h + i t)| ≤ exp{ 12 t2cap(S)}P[CX (h) = S]. (2.13)

Finally, for every z ∈ C, we define

F
X
N (z) :=

∑

S∈AN

F(S)θ X
S (z). (2.14)

HereAN denotes the family of all sets S ∈ X such that N ≤ cap(S) < N +1. By (2.13)
and our assumption on F ,

∑

S∈AN

|F(S)θ X
S (z)| ≤ exp{ 12 |Im(z)|2N } sup

S∈AN

|F(S)| < ∞.

We can then apply the Weierstrass M-test to conclude that the series in (2.14) converges

locally uniformly and therefore F
X
N is indeed analytic onC. The inequality (2.11) follows

readily from (2.13). ��
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With Proposition 2.1 in hands, we can now easily obtain a sufficient condition for

the analyticity of F
X
.

Proposition 2.2. Let X ∈ X . If there exists a constant t > 0 such thatP[AX
N (h)] ≤ e−t N

for every N ≥ 0 and h ∈ (a, b), then F
X

is analytic on (a, b) for every cluster observable
F of subexponential growth.

Proof. By Proposition 2.1 and our assumption on the decay of P[AX
N (h)], we obtain that

|F X
N (z)| ≤ exp{− 1

2 t (N −1)} supS∈AN
|F(S)| for every z ∈ (a, b)× (−√

t,
√

t). By the

subexponential growth of F it follows that the series F
X
(z) = ∑∞

N=0 F
X
N (z) converges

uniformly on (a, b) × (−√
t,
√

t), hence it is analytic on that set. ��
Notice that Theorem 1.1 follows directly from Proposition 2.2 and Theorem 1.3,

whose proof is presented in the following sections. Theorem 1.5 follows from Proposi-
tion 2.2 and the following simple result. Recall that {ϕ ≥ h} is known to percolate for
every h < 0 on any transient graph [BLM87].

Proposition 2.3. For every transient graph G, X ∈ X , h < 0 and N ≥ 0, we have

P[AX
N (h)] ≤ exp{− 1

2h2N }.
Proof. Let h < 0 and S ∈ AN . Recall that by the Cameron–Martin formula,

P[CX (h) = S] = P̃h fS
[CX (0) = S]

= exp
{
− 1

2h2E( fS, fS)
}
E[exp {−hE( fS, ϕ)

}
1CX (0)=S].

Notice that on the event {CX (0) = S}, we have ϕx ≤ 0 for every x ∈ ∂out S ⊃ ∂S.
Moreover, 
 fS(x) = 0 for every x ∈ V \ ∂S and 
 fS(x) ≤ 0 for every x ∈ ∂S. It
follows that exp{−hE( fS, ϕ)} ≤ 1 on the event {CX (0) = S}. Furthermore, E( fS, fS) =
cap(S) ≥ N . Overall we obtain

P[CX (h) = S] ≤ exp
{
− 1

2h2N
}
P[CX (0) = S]

and the desired inequality follows by summing over S. ��
We finish this section by proving Theorem 1.6.

Proof of Theorem 1.6. Let us write D(h, R) for the closed disk in the complex plane that
is centred at h and has radius R. Consider some h ∈ R \ [h̃, ĥ] and let R = (N +1)−1/2.

By Proposition 2.1 and the Cauchy estimate, we can bound the kth derivative of F
X
N as

follows

|∂k F
X
N (h)| ≤ k!MR

Rk
,

where MR = supz∈D(h,R) |F X
N (z)|. The inequality (2.11) implies that

MR ≤ e1/2 sup
S∈AN

|F(S)| sup
h′∈[h−R,h+R]

P[AX
N (h′)].
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Thus, by the (at most) polynomial growth of F and the superpolynomial decay of

P[AX
N (h′)], it follows that |∂k F

X
N (h)| decays to 0 super-polynomially fast and uniformly

on compact subsets of R \ [h̃, ĥ]. We can now conclude that the sum
∑∞

N=0|∂k F
X
N (h)|

converges uniformly on compact subsets ofR\[h̃, ĥ], hence the kth derivative of F
X
(h)

exists and is equal to
∑∞

N=0 ∂k F
X
N (h). ��

3. Exponential Decay of Capacity on Z
d

In this section, we will introduce some definitions and state the technical results needed
for the proof of Theorem 1.3. Since the capacity is sub-additive, there is always some

(random) u ∈ X such that cap(Cu(h)) ≥ cap(CX (h))
|X | . By the transitivity of Zd and a union

bound, we can assume without loss of generality that X = {o} and henceforth omit X
from the notation.

3.1. Markov decomposition and harmonic deviations. We start by introducing some
notation. Given an integer L ≥ 1, let BL = [0, L)d , UL = [−L , 2L)d , DL =
[−3L , 4L)d and KL = [−100L , 101L)d . We will write BL(z) = z + BL , UL(z) =
z +UL , DL(z) = z + DL and KL(z) = z + KL for their translates with respect to a vertex
z ∈ LZd . We will view LZd both as a graph that is naturally isomorphic to Z

d and as
the collection of all the boxes BL(z). Given a box B = BL(z), we consider the Gaussian
fields

ξ B
x := Ex

[
ϕXTK

] =
∑

y

Px [XTK = y]ϕy, ψ B
x :=ϕx − ξ B

x , for x ∈ Z
d , (3.1)

where K = KL(z). One then has the decomposition

ϕx = ψ B
x + ξ B

x , ∀x ∈ Z
d .

It is clear that ξ B
x = ϕx (and therefore ψ B

x = 0) for every x ∈ Z
d \ K . The Markov

property implies that ψ B is independent of σ(ϕx , x ∈ Z
d\K ), hence it is independent

from ξ B . Moreover, ξ B is harmonic in K and the covariance matrix of ψ B is equal to
the Green function gK for simple random walk killed on the boundary of K . The fields
ξ B and ψ B are often called harmonic and local fields, respectively. The aforementioned
decomposition of ϕ is of great importance for large deviation results as it will allow
us to distinguish local contributions (driven by ψ) from global ones (driven by ξ ). In
this subsection we focus on estimating the global contributions, which correspond to
deviations of ξ and are governed by the capacity.

Let ε > 0 and L ≥ 1. We say that the box B = BL(z) ∈ LZd is (ξ, ε)-good if

|ξ B
x | < ε for every x ∈ D,

where D = DL(z). If B is not (ξ, ε)-good, we will call it (ξ, ε)-bad. Sznitman [Szn15]
obtained a precise estimate for the probability that many boxes of the same scale are
(ξ, ε)-bad. For our purposes, a multi-scale version of Sznitman’s result is necessary.
To formally state this new version, we will need the following definition. Consider
a family F containing at least one box from each of L1Z

d , L2Z
d , . . . , LrZ

d , where
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1 ≤ L1 < L2 < . . . < Lr are integers. We say that F is well-separated if for every
pair of distinct boxes BLi (z), BL j (w) ∈ F , the boxes KLi (z) and KL j (w) are disjoint,
where 1 ≤ i ≤ j ≤ r . We remark that for a well-separated family F , the local fields
ψ B , B ∈ F , are independent from each other, which will be useful in the following
sections in estimating the probability of certain events. Finally, we define

� = �(F) :=
⋃

B∈F
B.

The following is a slight modification of Sznitman’s result.

Lemma 3.1. There is a constant c0 > 0 such that the following holds. For every ε > 0
there is a constant δ > 0 such that for every well-separated collection F with |F | ≤
δcap(�), we have

P(Bis(ξ, ε) − bad ∀B ∈ F) ≤ exp
(
−c0ε

2cap(�)
)

.

Proof. It suffices to prove that for some constant c′ > 0, we have

P[
⋂

B∈F
{sup

D
ξ B ≥ ε}] ≤ exp

(
−c′ε2cap(�)

)
. (3.2)

Indeed, notice that ξ B are centered and either �(F−) or �(F+) has capacity at least
cap(�)/2 by the sub-additivity of the capacity, where F− := {B ∈ F : infD ξ B ≤
−ε} and �(F+) := {B ∈ F : supD ξ B ≥ ε}. Moreover, there are 2|F | ≤ 2δcap(�)

possibilities for F±, so it is enough to take δ > 0 sufficiently small.
The proof of (3.2) is essentially the same as in [Szn15, Corollary 4.4]. We will point

out the necessary changes. The resultsmentioned throughout this proof are from [Szn15].
We attach to F the collection F of functions f from F into Zd such that f (B) ∈ D.

Let ν be the equilibrium measure of � and λ(B) = ν(B)/cap(�). Define

Z f =
∑

B∈F
λ(B)ξ B( f (B))

and

Z = sup
f ∈F

Z f .

We need to show that there exists a constant C = C(d) > 0 such that

var(Z f ) ≤ C

cap(�)
(3.3)

for every f ∈ F and

E[Z ] ≤ C

( |F |
cap(�)

)1/2

. (3.4)

The first inequality can be obtained by arguing as in the proof of [Szn15, Theorem
4.2]. Due to the fact that boxes in F have in general different scales, we need to slightly
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modify the argument from [Szn15, Theorem 4.2] in order to obtain the second inequality.
Indeed, following the proof of [Szn15, Lemma 4.3] we get

E[(Z f − Zk)
2]

≤ C ′ ∑

B,B ′∈F
λ(B)λ(B ′)‖ f (B) − k(B)‖∞‖ f (B ′) − k(B ′)‖∞

L L ′ E[ξ B( f (B))ξ B ′
( f (B ′))]

(3.5)

for every f, k ∈ F , where C ′ is a constant, L denotes the scale of B and L ′ denotes the
scale of B ′. It follows from (3.5), (3.3) and the fact that ‖ f (B) − k(B)‖∞ ≤ 7 L that

E[(Z f − Zk)
2] ≤ 49C ′

E(Z2
f ) ≤ C ′′

cap(�)
,

where C ′′ = 49CC ′. Setting Z̃ f = √
cap(�)Z f we obtain

E[(Z̃ f − Z̃k)
2]1/2 ≤ √

C ′′.

Now given x ∈ (0,
√

C ′′], for every L ≥ 1 we pick the largest integer l such that
l ≤ 7x L/

√
C ′′ and for each box B ∈ F of scale L , we partition D into disjoint boxes,

each having ‖ · ‖∞-diameter at most l. If f, k ∈ F are such that for every B ∈ F , f (B)

and k(B) lie in the same box of D, then it follows from (3.5) thatE[(Z̃ f − Z̃k)
2]1/2 ≤ x .

Arguing as in page 1820 of [Szn15] we obtain (3.4). We can now use the Borell-TIS
inequality as in the proof of [Szn15, Corollary 4.4] to obtain

P[
⋂

B∈F
{sup

D
ξ B ≥ ε}] ≤ exp

{
− 1

2σ 2 (ε − |E(Z)|)+
}

with σ 2 = supF var(Z f ). With (3.3) and (3.4) in hands, the desired result follows once
we choose δ > 0 so that C

√
δ ≤ ε/2 and δ is much smaller than c′. ��

Notice that by applying Lemma 3.1 to a single box B ∈ LZd and recalling (2.6), we
have

P(Bis(ξ, ε) − bad) ≤ exp
(
−cε2Ld−2

)
. (3.6)

3.2. Bad Boxes and Multi-scale Coarse Graining. Our aim now is to set up the abstract
multi-scale coarse graining scheme used to prove Theorem 1.3. This is encapsulated
in Theorem 3.3 below, which is purely deterministic and whose proof is postponed to
Sect. 4. In the next subsections, we deduce the desired exponential decay of capacity in
the subcritical and supercritical phases separately by applying Theorem 3.3 with well
chosen notions of “bad” and “very-bad” events.

Let us start by giving some definitions and introducing some notations. For every
integer L ≥ 1 and h ∈ R, let Co(h, L) be the set of boxes of LZd that contain a vertex
of Co(h). We recall that the inner vertex boundary ∂Co(h, L) of Co(h, L) is defined as
the set of boxes in Co(h, L) that have a neighbour in LZd \ Co(h, L).

Wewill introduce a general framework thatwill allowus to studyboth the supercritical
and the subcritical regime. To this end, we consider a family of “bad events” indexed by
boxes B = BL(z) ∈ LZd , satisfying certain properties. In what follows, the diameter is
measured with respect to the graph metric of Zd .
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Definition 3.2 (Admissible bad events). Given L ≥ 1, we say that a family of events
E i

B with B = BL(z) ∈ LZd , i ∈ {b, vb}, is h-admissible if it satisfies the following
properties:

(i) Eb
B and Evb

B are disjoint for every B,
(ii) if L ≤ diam(Co(h)) < ∞, then EB := Eb

B ∪ Evb
B happens for every B ∈ ∂Co(h, L),

(iii) item:prop if a pair B, B ′ of neighbouring boxes lies in Co(h, L) and Eb
B happens,

then EB′ happens.

For our purposes, both Eb
B and Evb

B will be chosen to be unlikely events, with Evb
B in

particular being extremely unlikely, in the sense that its probability decays exponentially
in cap(B). Item (ii) can be thought of as an initiation property that ensures that the union
of the boxes B ∈ Co(h, L) for which EB happens, has capacity at least cap(Co(h)). Item
(iii) can be thought of as a propagation property. Ideally, we would like the event Evb

B
to happen for most boxes in ∂Co(h, L). If this is not the case, then we have many boxes
B ∈ ∂Co(h, L) for which Eb

B happens. In this case, item (iii) ensures that for many boxes
in Co(h, L) that are adjacent to ∂Co(h, L), the event EB happens. Continuing in this way
we explore more and more boxes for which EB happens.

With such events in hand, we will associate to Co(h) an interface I such that for
each box B of I, EB happens. An interface I is a finite collection of disjoint boxes of
L1Z

d , L2Z
d , . . . LkZ

d for an integer k > 0 and 1 ≤ L1 < L2 < . . . < Lk . For most
of the I we will consider, o will be contained in a bounded component of Zd \ I (thus
the term “interface”), but it will be more convenient for us not to add this condition in
the definition. When EB happens for each box B of I, we will say that I occurs. There
are two subsets of I that play an important role. The first one, denoted B, is the set of
boxes B ∈ I such that Eb

B happens. The second one, denoted VB, is the set of all boxes
B ∈ I such that Evb

B happens.
In the following theorem, we construct a family of interfaces IN of small cardinality

such that whenever AN (h) happens, some interface I ∈ IN occurs for which either VB
has large capacity or B has large cardinality. To avoid any confusion, we remark that the
notation B ⊂ L1Z

d means that all boxes in B are of scale L1.

Theorem 3.3 (Multi-scale coarse graining). Let E i
B , i ∈ {b, vb}, B ∈ LZd , L ≥ 1, be a

family of events which are h-admissible for each L ≥ 1. For every ρ > 0 and δ > 0, there
exist constants 0 < t = t (d, ρ, δ) < 1, L0 = L0(d, ρ, δ) > 0, N0 = N0(d, ρ, δ) > 0
such that for every N ≥ N0, there is a family IN of interfaces such that the following
hold:

(a) |IN | ≤ eδt N ,
(b) for every I ∈ IN , we have L0 ≤ L1 and |I| ≤ δt N ,
(c) on the event AN (h), some I ∈ IN occurs with Lk ≤ diam(Co(h)) and B ⊂ L1Z

d ,
and one of the following holds:

(c1) cap
(⋃

B∈VB B
) ≥ N/4d,

(c2) |B|Lρ
1 ≥ t N .

We stress that the constants t, L0 and N0 in the above theorem depend only on d, ρ
and δ and not on the choice of Eb

B and Evb
B . We also remark that for our applications,

EB will be chosen in such a way that its probability decays stretched exponentially with
exponent the constant ρ appearing in the statement of the theorem.
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3.2.1. Exponential decay in the supercritical regime Wewill split the proof of Theorem
1.3 into two parts, depending on whether h belongs to the supercritical or the subcritical
regime. We will first handle the supercritical regime. Our aim is to choose Eb

B and Evb
B

appropriately and then apply Theorem 3.3.
To this end, consider an integer L > 1 and a box B ∈ LZd . We define L0 =

�L/M� ≈ L
1

d−1 log(L), where M =
⌊

L
d−2
d−1 / log(L)

⌋
. A connected subgraph of B is

called dense if it intersects at least 3
4 K ≈ 3

4 Md boxes of L0Z
d contained in B, where

K is the number of boxes of L0Z
d contained in B, and has diameter at least L/5—the

latter follows immediately for any connected subgraph that intersects at least 3
4 K boxes

contained in B, provided that L is large enough, but we will not need this fact. Note that
if M divides L , then B contains Md boxes of L0Z

d but it contains fewer boxes if M
does not divide L .

Fix h′ < h∗ and ε0 := (h∗ − h′)/2. For any h ≤ h′, let Eb
B be the intersection of the

events

(b1) for every B ′ which is either B or a neighbour of B, {ϕ ≥ h} ∩ B ′ contains a dense
cluster,

(b2) {ϕ ≥ h} ∩ B contains a dense cluster that is not contained in Co(h),
(b3) B is (ξ, ε0)-good,

and Evb
B be the union of the events

(vb1) for some B ′ which is either B or a neighbour of B, {ϕ ≥ h}∩ B ′ does not contain
a dense cluster,

(vb2) all dense clusters of {ϕ ≥ h}∩B are contained inCo(h), but for some neighbouring
box B ′ of B, {ϕ ≥ h} ∩ B ′ contains a dense cluster that is not contained in Co(h),

(vb3) B is (ξ, ε0)-bad.

We shall verify that the family of events E i
B is h-admissible. It is straightforward

to verify that Eb
B and Evb

B are disjoint for every B, so that (i) holds. Let us verify (ii).
Consider a box B ∈ ∂Co(h, L). If Evb

B happens, then there is nothing to show. If Evb
B does

not happen, then the non occurrence of (vb1) and (vb3) directly implies the occurrence of
(b1) and (b3), respectively. It remains to check that (b2) holds. Let B ′ ∈ LZd\Co(h, L)

be a neighbour of B. Since (b1) happens, {ϕ ≥ h}∩ B ′ contains a dense cluster, which in
turn is not contained in Co(h) as B ′ is disjoint from it. From this and our assumption that
(vb2) does not happen, we can conclude that (b2) happens, as we wanted. Finally, let us
verify (iii). Consider two neighboring boxes B, B ′′ ∈ Co(h, L) such that Eb

B happens.
If Evb

B′′ happens, then there is nothing to show. Otherwise, (b1) and (b3) clearly happen
for B ′′ in place of B. It is not hard to see that property (b2) happens for B ′′, since (b2)
happens for B and (vb2) does not happen for B ′′.

The events appearing in (b2), (vb1) and (vb2) are unlikely to happen. However, it
will be convenient for us to work with events that, in addition to being unlikely, are
independent on different boxes that are far away from each other. For this reason, we
will now introduce certain local bad and very-bad events. In what follows, given a box
B = BL(z), U stands for UL(z) and D stands for DL(z).

We say that B is (ψ, h, ε)-good if for every function g : D → R which is harmonic
in D and |g(x)| < ε for all x ∈ D, the following happen:

• {ψ B + g ≥ h} ∩ U contains a cluster of diameter at least L/5,
• for every pair C1, C2 of clusters of {ψ B + g ≥ h} ∩U of diameter at least L/5, there
is a path in {ψ B + g ≥ h} ∩ D connecting C1 to C2.
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If B is not (ψ, h, ε)-good, we will call it (ψ, h, ε)-bad. It is not hard to see that if Eb
B

happens for some B ∈ Co(h, L) and L ≤ diam(Co(h)), then B is (ψ, h, ε0)-bad (with
the choice g = ξ B), since Co(h) ∩ U contains a cluster of diameter at least L/5. The
following result will be proved in Sect. 5.

Proposition 3.4 (Decay of badness). For every h′ < h∗ and 0 < ε < h∗ − h′, there
exist constants c1 = c1(h′, ε) > 0 and ρ = ρ(d) > 0 such that for every h ≤ h′ and
L ≥ 1,

P[BLis(ψ, h, ε) − bad] ≤ e−c1Lρ

.

We now define another local event. We say that B is (ψ, h, ε)-very-good if for every
function g : D → Rwhich is harmonic in D and |g(x)| < ε for all x ∈ D, the following
happen:

• for every B ′ which is either B or some neighbour of B, {ψ B + g ≥ h} ∩ B ′ contains
a dense cluster,

• for every neighbour B ′′ of B and every pair of dense clusters of {ψ B + g ≥ h} ∩ B
and {ψ B + g ≥ h} ∩ B ′′, respectively, there is a path in {ψ B + g ≥ h} ∩ D visiting
both dense clusters.

If B is not (ψ, h, ε)-very-good, we will call it (ψ, h, ε)-very-bad. It is not hard to see
that if Evb

B happens and B is (ξ, ε0)-good, then B is (ψ, h, ε0)-very-bad. The following
result will be proved in Sect. 6.

Proposition 3.5 (Decay of very-badness). For every h′ < h∗ and 0 < ε < h∗ − h′,
there exist a constant c2 = c2(h′, ε) > 0 such that for every h ≤ h′ and L ≥ 1 large
enough,

P[BLis(ψ, h, ε) − very-bad] ≤ e−c2Ld−2
.

Assuming Theorem 3.3 and Propositions 3.4 and 3.5, we are now in position to prove
Theorem 1.3 for h in the supercritical regime.

Proof of Theorem 1.3. for h < h∗. Consider some h ≤ h′ < h∗ and let ρ > 0 be the
exponent of Proposition 3.4. Consider also a constant δ > 0 which will be chosen along
the way to be sufficiently small. We start by applying Theorem 3.3 for the choice of
events Eb

B and Evb
B mentioned above to obtain a family IN as in the statement of the

theorem. For each I ∈ IN , we will prove an exponential upper bound for the probability
that I occurs satisfying either (c1) or (c2) and then apply a union bound over all I ∈ IN .

First, let us fix I ∈ IN and a pair of subsets I1, I2 ⊂ I such that I1 satisfies
cap

(⋃
B∈I1 B

) ≥ N/4d and I2 satisfies I2 ⊂ L1Z
d (where L1 is the smallest scale

of I) and |I2|Lρ
1 ≥ t N . We will bound separately the probability that VB = I1 and

B = I2. We start with the latter. Let I ′
2 be a well-separated subset of I2 that is maximal

with respect to this property. By the maximality of I ′
2, for every BL1(z) ∈ I2, there is

some BL1(w) ∈ I ′
2 such that KL1(z) ∩ KL1(w) �= ∅, hence |I ′

2| ≥ 201−d |I2|. Notice
that the local fieldsψ B , B ∈ I ′

2 are independent of each other (sinceI ′
2 iswell-separated)

and each box in I ′
2 is (ψ, h, ε0)-bad (since the boxes of I have scale smaller than the

diameter of Co(h)). Therefore, by Proposition 3.4 and independence, we have

P[I occurs with B = I2] ≤ exp{−201−dc1t N }.
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We shall now bound the probability that VB = I1. First, we restrict I1 to a well-
separated subset with capacity of order N . Let L1 < L2 < . . . < Lk be the scales of
I1. Let Ik

1 be a subset of I1 ∩ LkZ
d which is well-separated and maximal with respect

to this property. Proceeding inductively, for each i ∈ {1, 2, . . . , k}, let I i
1 be a subset of

I1∩LiZ
d such that

⋃k
j=i I j

1 is well-separated and I i
1 is amaximal set with respect to this

property. Finally, let I ′
1 = ⋃k

j=1 I j
1 . It follows from the maximality of the construction

that for every B ∈ I1 of scale Li there exists B ′ ∈ I ′
1 of scale L j ≥ Li such that the

‖ · ‖∞-distance between B and B ′ is at most 201L j . In this case, for every x ∈ B we
have that Px [HB′ < ∞] ≥ q, where q = q(d) > 0 is a constant depending only on the
dimension d—see e.g. [Law91, Proposition 2.2.2]. It then follows from the sweeping
identity (2.7) that cap(�(I ′

1)) ≥ qcap(�(I1)) ≥ q N/4d.
Notice that each box in I ′

1 is either (ξ, ε0)-bad or (ψ, h, ε0)-very-bad. Let �(I ′
1)

be the (random) union of the boxes in I ′
1 that are (ξ, ε0)-bad and let �(I ′

1) be the
(random) union of the boxes in I ′

1 that are (ψ, h, ε0)-very-bad. By the sub-additivity of
the capacity,

either cap(�(I ′
1)) ≥ q N

8d
or cap(�(I ′

1)) ≥ q N

8d
.

Applying Lemma 3.1 and a union bound over all possibilities for �(I ′
1) we obtain

P

[
I occurs with VB = I1 and cap(�(I ′

1)) ≥ q N

8d

]
≤
∑

J
exp

{
−c0ε

2
0cap(J )

}

≤ 2δt N exp

{
−c0ε20q N

8d

}

,

where the sum ranges over all possible J such that cap(J ) ≥ q N
8d . Recall that |J | ≤

|I ′
1| ≤ |I| ≤ δt N , so that we can indeed guarantee that J satisfies the hypothesis of

Lemma 3.1 by decreasing the value of δ if necessary. The term 2δt N above accounts for
the number of possible J . For the second case, notice that

cap(�(I ′
1)) ≤

∑

BLi (z)∈�(I ′
1)

cap(BLi (z)) ≤ C
∑

BLi (z)∈�(I ′
1)

Ld−2
i

by the sub-additivity of the capacity and (2.6). Hence by Proposition 3.5, we have

P

[
I occurs with VB = I1 and cap(�(I ′

1)) ≥ q N

8d

]
≤
∑

J
exp

⎧
⎨

⎩
−c2

∑

BLi (z)∈J
Ld−2

i

⎫
⎬

⎭

≤ 2δt N exp

{
−c2q N

8Cd

}
,

where the sum ranges over all possible J for �(I ′
1) such that cap(J ) ≥ q N

8d .
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Since |IN | ≤ eδt N , applying a union bound over all I ∈ IN and all possible I1, I2 ⊂
I, and decreasing δ even further, if necessary, we obtain that

P[AN (h)] ≤ exp{δt N }2δt N

×
(

exp{−201−dc1t N } + 2δt N exp

{
−cε20q N

8d

}

+ 2δt N exp

{
−c2q N

8Cd

})

≤ exp{−c′N }
for some constant c′ > 0 depending only on h′ and d, as desired. ��

3.2.2. Exponential decay in the subcritical regime We now move on to the proof of
Theorem 1.3 for h in the subcritical regime. We will implement a strategy similar to the
one we used for the supercritical regime.

First, we need to choose suitably the events Eb
B and Evb

B . Given h ≥ h′ > h∗,
ε0 = (h′ − h∗)/2 and a box B ∈ LZd , let EB be the event that {ϕ ≥ h} ∩ U contains a
cluster of diameter at least L/5, and let Eb

B := EB ∩{Bis(ξ, ε0)−good} and Evb
B := EB ∩

{Bis(ξ, ε0)− bad}. It is straightforward to see that this family of events is h-admissible
when Co(h) has diameter at least L , since then for every box B ∈ Co(h, L), the event
EB happens.

Notice that when the event Eb
B happens, {ψ B ≥ h − ε0} ∩ U contains a cluster of

diameter at least L/5. The latter happens with probability decaying stretched exponen-
tially.

Proposition 3.6. For every h′ > h∗, there exist constants c3 = c3(h′, d) > 0 and
ρ = ρ(d) > 0 such that for every h ≥ h′ and L ≥ 1,

P[{ψ B ≥ h} ∩ U contains a cluster of diameter at leastL/5] ≤ e−c3Lρ

.

Proof. This is a simple consequence of the (subcritical) sharpness of GFF percolation
on Z

d (i.e. h∗ = h∗∗) mentioned in the introduction. Indeed, by the main result of
[DCGRS20], for every h > h∗, there exist ρ = ρ(d) ∈ (0, 1) and c = c(d, h) such that
for every N ≥ 1,

P[o ↔ []ϕ ≥ h∂ BN ] ≤ e−cNρ

, (3.7)

where {o ↔ []ϕ ≥ h∂ BN } denotes the event that o is connected to ∂ BN in {ϕ ≥ h}.
Assume that {ψ B ≥ h} ∩ D contains a cluster of diameter at least L/5 and let ε0 =
(h′ − h∗)/2. Up to a probability decaying exponentially in Ld−2, B is (ξ, ε0)-good by
(3.6). When this happens, {ϕ ≥ h − ε0} ∩ D contains a cluster of diameter at least
L/5. The latter event has probability decaying stretched exponentially in the subcritical
regime by (3.7). ��

Assuming Theorem 3.3 and Proposition 3.6, we are now in position to prove Theo-
rem 1.3 for h in the subcritical regime.

Proof of Theorem 1.3. for h > h∗. The proof is similar to that of the case h < h∗
presented in Sect. 3.2.1. Consider some h ≥ h′ > h∗, and let ρ > 0 be the exponent of
Proposition 3.6. Consider also a small enough constant δ > 0.We can apply Theorem3.3
to obtain a family IN satisfying the conclusion of the theorem. Fix I ∈ IN and a pair
of subsets I1, I2 ⊂ I as in the proof of the case h < h∗. If B = I2 happens, then we
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restrict to a maximal well-separated subset I ′
2 of I2. Arguing as in the previous section

and using Proposition 3.6 and independence, we deduce that

P[I occurs with B = I2] ≤ exp{−201−dc3t N }.
If VB = I1 happens, then we restrict to a well-separated subset I ′

1 of I1 defined as in
the proof of the case h < h∗ for which we have cap(�(I ′

1)) ≥ qcap(�(I1)) ≥ q N/4d.
Then we apply Lemma 3.1 to conclude that

P[I occurs with VB = I1] ≤ exp

{

−c0ε20q N

4d

}

.

A union bound over all I ∈ IN and over all possible subsets I1, I2 of I gives

P[AN (h)] ≤ 2δt N exp{δt N }
(

exp{−201−dc3t N } + exp

{

−c0ε20q N

4d

})

≤ exp{−c′N }

for some constant c′ > 0 depending only on h′ and d, as desired. ��

4. Multi-scale Coarse Graining Construction

We will now proceed with the proof of Theorem 3.3. In order to prove the theorem
we need to introduce some notation. For every integer L ≥ 1, let B(L) and VB(L)

be the set of boxes B ∈ Co(h, L) such that Eb
B and Evb

B happens, respectively. Finally,
define I(L) := B(L) ∪ VB(L). Notice that by properties (i)–(iii) of Definition 3.2,
we know that if diam(Co(h)) ≥ L then B(L) ∩ VB(L) = ∅, ∂Co(h, L) ⊂ I(L) and
∂outB(L) ∩ Co(h, L) ⊂ VB(L).

The following lemma will be used in the proof of Theorem 3.3. For simplicity, we
may henceforth identify any set of boxes F with its union �(F) = ⋃

B∈F B.

Lemma 4.1. If the event AN (h) happens and in addition diam(Co(h)) ≥ L, then we
have cap

(VB(L) ∪ (
∂Co(h) ∩ B(L)

)) ≥ N/2d.

Remark 4.2. In general, ∂Co(h) is not contained entirely in I(L). See Fig. 1.

Proof. We will show that X :=VB(L) ∪ (
∂Co(h) ∩ B(L)

)
is a separating set of Co(h),

namely that for every x ∈ Co(h), any infinite path starting from x must visit eventually
X .

We first partition Co(h) into Co(h) ∩ VB(L), Co(h) ∩ B(L) and Co(h) \ I(L). It is
clear that X is a separating set of Co(h)∩VB(L). Let us show that X is also a separating
set of Co(h) ∩ B(L). Indeed, each box of ∂outB(L) lies either in LZd \ Co(h, L) or in
Co(h, L), and in the latter case, it must lie in VB(L) by property (iii) of Definition 3.2.
With this observation in mind, consider an infinite path γ starting from some vertex in
Co(h)∩B(L). If γ eventually visits VB(L), then there is nothing to show. If γ does not
visit VB(L), then consider the subpath γ ′ of γ up to the first vertex u ∈ ∂Co(h) that γ

visits. Then γ ′ visits only vertices in Co(h, L) and by our assumption, it does not visit
any vertices in ∂outB(L) because ∂outB(L) ∩ Co(h, L) ⊂ VB(L). Thus all vertices of
γ ′ lie in B(L). In particular, this holds for u, hence u ∈ B(L) ∩ ∂Co(h) ⊂ X .

It remains to consider Co(h) \ I(L). First, notice that for every component S of
Co(h, L)\I(L), we have ∂out S ⊂ I(L) because ∂Co(h, L) ⊂ I(L). Moreover, ∂out S ∩
B(L) = ∅ because otherwise some box of S would belong to I(L) by property (iii) of
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Fig. 1. An illustration of an interface I(L). Each box of Co(h, L) is depicted by a square. Red boxes belong
to B(L), blue boxes belong to VB(L) and uncoloured boxes belong to Co(h, L)\I(L). The two curves depict
∂Co(h)

Definition 3.2. Thus ∂out S ⊂ VB(L), which implies that VB(L) is a separating set of
Co(h, L) \ I(L), hence it is a separating set of Co(h)\I(L), as desired.

We can now easily deduce that cap(X) ≥ cap(Co(h)). Notice that

cap(Co(h)) ≥ cap(∂outCo(h))/2d ≥ N/2d

because when we start a simple random walk from some x ∈ ∂Co(h), one way to never
visit Co(h) again is to first visit a given neighbour y ∈ ∂outCo(h) and from there to never
visit Co(h) ∪ ∂outCo(h) again. ��

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Our aim is to construct an occurring multi-scale interface I for
every configuration on the event AN (h). We will construct I by starting from I(2k) for a
certain choice of 2k and then adding boxes of smaller and smaller scales. We will divide
the definition of I into segments. At each step of the first segment we will add at most

N

f (N )
boxes, at each step of the second segment we will add at most

N

f ( f (N ))
boxes,

and so on, where f (N ) = logb(N ), b = 3(d − 2)/ρ. The process will stop once we
reach a scale of size roughly L or if it happens that (c1) or (c2) is satisfied before we
reach that scale.

It suffices to prove the theorem for ρ ≤ 1. Consider an integer L ≥ 1 and let N ≥ N0,
where N0 is a large enough constant that will be determined along the way. Assume that
the event AN (h) happens and let

k1,1 := max

{
0 ≤ k ≤ log2(diam(Co(h))) : |I1,1(2k)| ≥ N

f (N )

}
,

where I1,1(2k) := I(2k). Notice that k1,1 is well-defined, since |I1,1(1)| ≥ |∂Co(h)| ≥
cap(Co(h)) ≥ N/2d, provided that N0 is large enough. By further increasing the value
of N0, we can assume that 2k1,1 ≤ r := 1

2diam(Co(h)) because |Co(h, �r )| ≤ 6d . By
definition,

|I1,1(L1,1)| <
N

f (N )
,
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Fig. 2. An illustration of I′
1,1 on the top and I′

1,2 on the bottom. The boxes of B′
1,1 and B′

1,2 are depicted

as red and the boxes of VB′
1,1 and VB′

1,2 are depicted as blue. Uncoloured boxes are not included in I′
1,1 or

I′
1,2

where L1,1 := 2k1,1+1 ≤ diam(Co(h)).
We now define an interface I ′

1,1 as follows. If |I1,1(L1,1)| ≥ N
2d f (N )

, then we let

I ′
1,1 := I1,1(L1,1). Otherwise, the number of boxes of L1,1Z

d that contain a box of

I1,1(2k1,1) is at least

|I1,1(2k1,1)|
2d

≥ N

2d f (N )
.

We choose
N

2d f (N )
− |I1,1(L1,1)| boxes of I1,1(2k1,1) that are disjoint from I1,1(L1,1)

in an arbitrary way and we add them to I1,1(L1,1) to obtain an interface I ′
1,1. In both

cases we have
N

2d f (N )
≤ |I ′

1,1| <
N

f (N )
.

We then naturally define VB′
1,1 := (VB(L1,1) ∪ VB(2k1,1)

) ∩ I ′
1,1 and B′

1,1 :=(B(L1,1) ∪ B(2k1,1)
) ∩ I ′

1,1. For the set VB′
1,1 we have

either cap(VB′
1,1) ≥ N/4d or cap(VB′

1,1) < N/4d.
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In the first case, the process stops because (c1) is satisfied, and we let I = VB′
1,1. In

the second case, we would like to check whether (c2) is satisfied. For that purpose, we
consider two cases according to whether

|B′
1,1| ≥

N

2d f (N )
or |B′

1,1| <
N

2d f (N )
.

In the first case, we stop the first segment of our process. In the second case, we move
on to the second step of the first segment. We remark that along the way of the second
and every subsequent step, we will define some integers ki, j , Li, j and some collections
I ′

i, j of 2ki, j -boxes and Li, j -boxes, where Li, j = 2ki, j+1. To avoid repetition, let us

mention that we will use the notation VB′
i, j := (VB(Li, j ) ∪ VB(2ki, j )) ∩ I ′

i, j and

B′
i, j := (B(Li, j ) ∪ B(2ki, j )) ∩ I ′

i, j .
For the second step, we will require N to be large enough so that f (N ) ≥ 4d. Now

let

k1,2 = max{k ≥ 0 : |I1,2(2k)| ≥ N

f (N )
},

where I1,2(2k) is the set of boxes of I(2k) that lie in some box of B′
1,1. To see that k1,2

is well-defined, notice first that

cap
(
∂Co(h) ∩ B′

1,1

)
> N/4d (4.1)

Indeed, as VB(L1,1) ⊂ VB′
1,1, we obtain that cap

(
VB′

1,1 ∪ (
∂Co(h) ∩ B′

1,1

)) ≥ N/2d

by Lemma 4.1. The sub-additivity of capacity gives

cap
(VB′

1,1 ∪ (
∂Co(h) ∩ B′

1,1

)) ≤ cap(VB′
1,1) + cap

(
∂Co(h) ∩ B′

1,1

)
.

Inequality (4.1) follows now from our assumption that cap(VB′
1,1) < N/4d. Hence

I1,2(1), which contains ∂Co(h)∩B′
1,1, has size at least N/4d. Moreover, by our assump-

tion that |B′
1,1| <

N

2d f (N )
, we obtain that k1,2 < k1,1. This proves that k1,2 is well-

defined.
Let now L1,2 := 2k1,2+1. Arguing as in the first step, we obtain an interface I ′

1,2 such
that

N

2d f (N )
≤ |I ′

1,2| <
N

f (N )
,

that is obtained from I1,2(L1,2) by adding enough 2k1,2 -boxes of I1,2(2k1,2) that are
disjoint from the boxes of I1,2(L1,2). At this point, we take cases according to whether

cap
( 2⋃

j=1

VB′
1, j

)
≥ N/4d or cap

( 2⋃

j=1

VB′
1, j

)
< N/4d.

As before, if the first case happens, the process stops and we define I = ⋃2
j=1 VB′

1, j ,
while if the second case happens, then we check whether

|B′
1,2| ≥

N

2d f (N )
or |B′

1,2| <
N

2d f (N )
.
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Similarly, if the first case happens, we end the first segment. If the second case happens,
then we continue to the third step. At this point, we need a generalisation of Lemma 4.1
which will ensure that |I1,3(1)| ≥ N/4d and more generally that |Ii, j (1)| ≥ N/4d for
the subsequent steps. This is proved in Lemma 4.3.

Continuing in this manner, we obtain a sequence of interfaces (I ′
1, j ) j≥1, where I ′

1, j
is contained in B′

1, j−1. We claim that eventually for some integer j1 ≥ 1,

cap
( j1⋃

i=1

VB′
1,i

)
≥ N/4d or

N

2d f (N )
≤ |B′

1, j1 | <
N

f (N )
.

Indeed, if cap
(⋃ j

i=1 VB′
1,i

)
< N/4d for all j ≥ 1, then by Lemma 4.3 and the sub-

additivity of the capacity we have cap(I ′
1, j ) > N/4d. On the other hand, by (2.6) and

the sub-additivity of capacity again, we have

cap(I ′
1, j ) ≤ C |I ′

1, j |Ld−2
1, j ≤ C N Ld−2

1, j

f (N )
.

We thus conclude that

L1, j ≥
( f (N )

4dC

) 1
d−2

. (4.2)

However, it follows from the definitions that (L1, j ) j≥1 is a strictly decreasing sequence,
and so (4.2) cannot hold for arbitrary large j .

We end the first segment as soon as we reach a step j1 as above. We shall now decide
whether we start the second segment or not. If it happens that

cap
( j1⋃

j=1

VB′
1, j

)
≥ N/4d or

N

2d f (N )
≤ |B′

1, j1 | <
N

f (N )
and L1, j1 ≥ f (N )

1
ρ ,

(4.3)

then our process stops. In the first case, we simply set I = ⋃ j1
j=1 VB′

1, j . In the second

case though, we set I = B(L1, j1) ∩ I ′
1, j1

if |B(L1, j1) ∩ I ′
1, j1

| ≥ |B(2k1, j1 ) ∩ I ′
1, j1

|
and I = B(2k1, j1 ) ∩ I ′

1, j1
otherwise. In other words, I contains only one of the sets

B(L1, j1)∩ I ′
1, j1

and B(2k1, j1 )∩ I ′
1, j1

, namely that of larger size. If (4.3) is not satisfied,
then we move on to the second segment.

Arguing in a similar manner, we obtain a sequence of occurring interfaces (I ′
2, j ) j≥1

such that |I ′
2, j | < N/ f ( f (N )) for all j ≥ 1, where each I ′

2, j lies in I ′
1, j1

. The segment
ends when we reach a certain step j2 such that either

cap
( 2⋃

i=1

ji⋃

j=1

VB′
i, j

)
≥ N/4d or

N

2d f ( f (N ))
≤ |B′

2, j2 | <
N

f ( f (N ))
.
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The process stops at the end of the second segment if

cap
( 2⋃

i=1

ji⋃

j=1

VB′
i, j

)
≥ N/4d or

N

2d f ( f (N ))
≤ |B′

2, j2 | <
N

f ( f (N ))
and L2, j2 ≥ f ( f (N ))

1
ρ .

In that case, we setI = ⋃2
i=1

⋃ ji
j=1 VB′

i, j , I = B(L2, j2)∩I ′
2, j2

or I = B(2k2, j2 )∩I ′
2, j2

,
as appropriate.

Proceeding inductively, we define sequences of occurring interfaces (I ′
1, j )

j1
j=1,

(I ′
2, j )

j2
j=1, . . . such that |I ′

i, j | < N/ f ◦i (N ) for all i and j , where f ◦i denotes the
i-fold composition of f . At the end of an arbitrary kth segment, we either have

cap
(⋃k

i=1
⋃ ji

j=1 VB′
i, j

)
≥ N/4d or

N

2d f ◦k(N )
≤ |B′

i, ji
| <

N

f ◦k(N )
. Let m =

m(N , L) be the largest integer such that f ◦m(N ) > M := d2dC Ld−2. Notice that m is
well-defined for every N such that f (N ) > M . If the desired conditions are not satisfied
at the end of the i th segment for every i ≤ m, we move on to the (m + 1)th segment.
This segment plays a special role, as we are defining each I ′

m+1, j in such a way that

N

2d M
≤ |I ′

m+1, j | <
N

M
.

At the end of the (m + 1)th segment we have cap
(⋃m+1

i=1
⋃ ji

j=1 VB′
i, j

)
≥ N/4d or

N

2d M
≤ |B′

m+1, jm+1
| <

N

M
. Finally, we set I = ⋃m+1

i=1
⋃ ji

j=1 VB′
i, j , I = B(Lm+1, jm+1)∩

I ′
m+1, jm+1

or I = B(2km+1, jm+1 ) ∩ I ′
m+1, jm+1

, as appropriate.
It is not hard to see that if (c1) is not satisfied, then (c2) is satisfied for

t = Lρ

2d+1M
. (4.4)

Indeed, if the process stops at the end of the i th segment for some i ≤ m, then the

smallest scale L1 of I (which is either Li, ji or
1
2 Li, ji ) is at least

1
2 Li, ji ≥ 1

2 f ◦i (N )
1
ρ and

|B| ≥ |B′
i, ji

|
2

≥ N

2d+1 f ◦i (N )
(here we use the notation introduced above the statement

of Theorem 3.3). Thus |B|Lρ
1 ≥ 2−ρ−d−1N . On the other hand, if the process stops at

the end of the (m + 1)th segment, then we can argue as in the proof of (4.2) to deduce
that

Lm+1, jm+1 ≥
( M

4dC

) 1
d−2 = 2L .

Thus the smallest scale L1 of I (which is either Lm+1, jm+1 or 1
2 Lm+1, jm+1 ) is at least

1
2 Lm+1, jm+1 ≥ L and |B| ≥ |B′

m+1, jm+1
|

2
≥ N

2d+1M
, which implies that |B|Lρ

1 ≥ t N .

Since t ≤ 2−ρ−d−1, the desired assertion follows in both cases.
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The above construction gives us a family of interfaces IN satisfying all the properties
claimed in Theorem 3.3. The only properties that do not follow immediately from the
construction are that |IN | ≤ eδt N and that |I| ≤ δt N for every I ∈ IN . In order to prove
these inequalities, we will treat each segment separately. We start with the first segment.
To determine I ′

1, j , j = 1, 2, . . . , j1, we need to first determine the sequence (L1, j )
j1
j=1.

Recall that by construction we have L1,1 ≤ diam(Co(h)). As we mentioned above
Corollary 1.4, a cluster of capacity atmost N has volume (and therefore diameter) atmost

C1N
d

d−2 ≤ C1N 3, thus L1,1 ≤ diam(Co(h)) ≤ C1N 3. Therefore, (L1, j )
j1
j=1 is simply a

strictly decreasing sequence of powers of 2 with exponents atmost log2(C1N 3), which in
turn implies that there are at most 2log2(C1N3) = C1N 3 possibilities for (L1, j )

j1
j=1. Once

the scales (L1, j )
j1
j=1 are fixed, we should bound the possibilities for I ′

1, j , 1 ≤ j ≤ j1.

Notice that for all j = 1, 2, . . . , j1, each box of I ′
1, j is at distance at most C1N 3 from

the origin and furthermore |I ′
1, j | ≤ N1 := �N/ f (N ) . Hence, for each 1 ≤ j ≤ j1, the

number of possibilities for I ′
1, j given L1, j is at most

N1∑

k=1

(
N ′
1

k

)
,

where N ′
1 = C2N 3d is an upper bound for the number of boxes of L1, jZ

d and
L1, j
2 Z

d

at distance at most C1N 3 from the origin, and the sum accounts for the possible values
of |I ′

1, j |. Using the inequality
(n

k

) ≤ ( n
k

)k
ek and the monotonicity of the combinatorial

coefficient
(n

k

)
for k ≤ n/2 we obtain that

N1∑

k=1

(
N ′
1

k

)
≤ N1

(
N ′
1

N1

)N1

eN1 ≤ exp

{
3N1 log

(
N ′
1

N1

)}

for every N large enough so that N1 ≤ N ′
1
2 . Overall, there at most

C1N 3

(
N1∑

k=1

(
N ′
1

k

))log2(C1N3)

≤ exp

{
C3

N log2(N )

f (N )

}
(4.5)

possibilities for the first segment. By increasing C3 if necessary, the term inside the
exponential in (4.5) is also an upper bound for the number of boxes of the first segment
contained in I.

Moving on to the second segment, first notice that all scales (L2, j )
j2
j=1 are powers

of 2 smaller than f (N )
1
ρ (recall that (4.3) does not hold). Therefore, there are at most

f (N )
1
ρ possibilities for (L2, j )

j2
j=1. Since L1, j1 < f (N )

1
ρ and every box of the second

segment is contained in I ′
1, j1

, which in turn contains at most N1 boxes, we deduce
that for every j = 1, 2, . . . , j2, the boxes of I ′

2, j are chosen from a set of at most

N1 f (N )
d
ρ ≤ C4N� f (N ) d

ρ
−1 =: N ′

2 boxes. Hence for each 1 ≤ j ≤ j2 the number of
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possibilities for I ′
2, j given L2, j is at most

N2∑

k=1

(
N ′
2

k

)
≤ exp

{
3N2 log

(
N ′
2

N2

)}
,

where N2 = �N/ f ( f (N )) . Overall, there are at most

f (N )
1
ρ

(
N2∑

k=1

(
N ′
2

k

))log2
(

f (N )
1
ρ
)

≤ exp

{
C3

N log2( f (N ))

f ( f (N ))

}

possibilities for the second segment, where for the last inequality, we increase the value
of C3 if necessary.

Setting g0(N ) := N , gi (N ) := f ◦i (N ) for 1 ≤ i ≤ m and gm+1(N ) := M (recall
that M = d2dC Ld−2), we see that for the boxes of an arbitrary i th segment, there are
at most

exp

{
C3

N log2(gi−1(N ))

gi (N )

}

possibilities. Overall, we deduce that

|IN | ≤ exp

{

C3N
m+1∑

i=1

log2(gi−1(N ))

gi (N )

}

. (4.6)

Furthermore, the term inside the exponential in (4.6) is an upper bound for |I|.
Therefore, it remains to prove that

C3

m+1∑

i=1

log2(gi−1(N ))

gi (N )
≤ δt, (4.7)

provided that L and N are large enough (recall from (4.4) that t = Lρ

2d+1M
). We start by

bounding the (m + 1)th term. By the definition of m, we have f ◦(m+1)(N ) ≤ M , which

implies gm(N ) = f ◦m(N ) ≤ eM
1
b . Since gm+1(N ) = M , we have

log2(gm(N ))

gm+1(N )
≤ M−1+ 2

b . (4.8)

Now, let us handle the sum up to the mth term. First notice that for all i ≤ m,
log2(gi−1(N ))

gi (N )
= log2−b(gi−1(N )). Now, recall that b = 3(d −2)/ρ > 2 and observe that

log2−b(x) ≤ 2−1 log2−b( f (x)) for all x ≥ C5. Since gi−1(N ) ≥ gm(N ) ≥ C5 for all L
and N that are large enough, one readily deduces

log2−b(gi−1(N )) ≤ 2−1 log2−b(gi (N )).

Iterating the last inequality, we obtain that log2−b(gi−1(N )) ≤ 2i−m log2−b (gm−1(N )),
which in turn implies

m∑

i=1

log2(gi−1(N ))

gi (N )
≤ 2 log2−b (gm−1(N )) . (4.9)
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By the definition of m we know that f ◦m(N ) ≥ M , which implies gm−1(N ) =
f ◦(m−1)(N ) ≥ eM

1
b . Plugging this in (4.9) gives

m∑

i=1

log2(gi−1(N ))

gi (N )
≤ 2M−1+ 2

b . (4.10)

Combining (4.8) and (4.10), we deduce that

C3

m+1∑

i=1

log2(gi−1(N ))

gi (N )
≤ 3C3M−1+ 2

b .

Recalling the definitions of M and t , we see that t = C6M−1+ ρ
d−2 . Since by definition

b = 3(d−2)/ρ, the desired inequality (4.7) follows readily as long as δ ≥ 3C3
C6

M− ρ
3(d−2) ,

which can be guaranteed by making L sufficiently large. This completes the proof. ��
For 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ ji , let

VBi, j =
⎛

⎝
i−1⋃

k=1

jk⋃

l=1

VB′
k,l

⎞

⎠ ∪
⎛

⎝
j⋃

l=1

VB′
i,l

⎞

⎠ .

We now prove the lemma mentioned in the proof of the above theorem. We recall that
for convenience we identify sets of boxes with the corresponding subsets of Zd .

Lemma 4.3. For every i, j ≥ 1 we have cap
(VBi, j ∪

(
∂Co(h) ∩ Bi, j

)) ≥ N/2d.

Proof. As in the proof of Lemma 4.1, the desired result will follow once we show that
Xi, j = VBi, j ∪

(
∂Co(h)∩Bi, j

)
is a separating set of Co(h). Recall the definitions of I ′

i, j
andIi, j (Li, j ).Wewill prove that Xi, j is a separating set ofCo(h) in the special casewhere
I ′
1,1 = I1,1(L1,1), I ′

1,2 = I1,2(L1,2), . . . , I ′
i, j = Ii, j (Li, j ). The general case follows

easily by removing
(
I ′
1,1\I1,1(L1,1)

)
∪
(
I ′
1,2\I1,2(L1,2)

)
∪ . . . ∪

(
I ′

i, j\Ii, j (Li, j )
)

from Xi, j .
It is clear that Xi, j is a separating set of Co(h) ∩ VBi, j . We claim that

every box in∂outBi, j lies either inVBi, jor inLi, jZ
d \ Co(h, Li, j ), (4.11)

which implies that Xi, j is a separating set of Co(h) ∩ Bi, j by arguing as in the proof of
Lemma 4.1. Indeed, for (i, j) = (1, 1), the claim follows from property (iii). Proceeding
inductively, assume that the statement holds for an arbitrary (i, j). Let (k, l) be the next
pair of indices, i.e. (k, l) = (i, j + 1) if j < ji or (k, l) = (i + 1, 1) if j = ji . Clearly,
every box in ∂outBk,l lies either in Lk,lZ

d \ Co(h, Lk,l), in which case there is nothing
to show, or in Co(h, Lk,l). So let us consider a box B ∈ ∂outBk,l ∩ Co(h, Lk,l). Then B
has a neighbour B ′ ∈ Bk,l ⊂ Bi, j , which implies that B is contained entirely in Bi, j or
in ∂outBi, j .

If B is contained in Bi, j , then B ∈ VBk,l ⊂ VBk,l because of our assumption
that B ∈ ∂outBk,l ∩ Co(h, Lk,l). Let us now assume that B is contained in some box
B ′′ ∈ ∂outBi, j . It follows from our inductive hypothesis that B ′′ lies either in VBi, j or
in Li, jZ

d\Co(h, Li, j ). Notice that Li, jZ
d\Co(h, Li, j ) ⊂ Lk,lZ

d\Co(h, Lk,l), since any
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box B1 ∈ Lk,lZ
d is contained in a box B2 ∈ Li, jZ

d and if B1 intersects Co(h), then so
does B2. Thus B lies either in VBk,l or in Lk,lZ

d\Co(h, Lk,l). This proves the inductive
statement and the claim follows.

It remains to handle Co(h)\Yi, j , where Yi, j = VBi, j ∪Bi, j . Let Zi, j = Co(h, Li, j )\
Yi, j . Then we claim that ∂out Zi, j is contained in VBi, j which implies that VBi, j is a
separating set of Co(h) \ Yi, j . We will prove the claim inductively. For (i, j) = (1, 1),
this follows from the proof of Lemma 4.1 where it is shown that for every component S
of Co(h, L1,1) \ I(L1,1), we have ∂out S ⊂ VB(L1,1).

Assume that the statement holds for some (i, j). We will prove it for the next pair
of indices (k, l). Let S be a component of Zk,l . Although S ⊂ Zk,l , it is possible that
some box of S is contained in Bi, j . Let us assume that this is the case. Then by the
connectivity of S and (4.11), all boxes of S are contained in Bi, j . Notice that ∂out S lies
in Co(h, Lk,l) because otherwise some box B of S lies in ∂outCo(h, Lk,l) ∩ Bi, j , hence
B is contained in Yk,l , which contradicts the definition of Zk,l . From this we deduce that
∂out S ⊂ Yk,l . Moreover, no box of ∂out S lies in Bk,l because otherwise some box of S
lies in Ik,l ⊂ Yk,l by our assumption that S is contained in Bi, j . Therefore, ∂out S lies in
VBk,l .

Let us now assume that no boxes of S are contained in Bi, j . Then S lies entirely in
Co(h, Li, j ) \Yi, j , since Yk,l contains VBi, j . We can now apply the induction hypothesis
to deduce that ∂out S is contained in VBi, j ⊂ VBk,l . This completes the inductive proof.

��

5. Decay of Badness

In this section, we will prove Proposition 3.4. We will make use of the (supercritical)
sharpness of phase transition for GFF percolation [DCGRS20] (i.e. h = h∗). We say
that a box B = BL(z), z ∈ LZd , is (ϕ, h)-good if there exists a connected component in
{ϕ ≥ h}∩ B with diameter at least L/5 and furthermore any two clusters in {ϕ ≥ h}∩U
having diameter at least L/10 are connected to each other in {ϕ ≥ h} ∩ D. By the main
result of [DCGRS20], for every h′ < h∗ there exist ρ = ρ(d) ∈ (0, 1) and c = c(d, h′)
such that for every h ≤ h′ and L ≥ 1,

P[BL is(ϕ, h) − good] ≥ 1− e−cLρ

. (5.1)

Our aim is to express the event that a box is (ψ, h, ε)-bad in terms of events depending
on ϕ, so that we can use (5.1). For this purpose, we will make use of the following
classical fact about discrete harmonic functions. For any function f : DN → R which
is harmonic in DN , we have that

| f (x) − f (y)| ≤ C ′ ‖ f ‖∞ /N (5.2)

for neighbouring x and y in [−2N , 3N )d , where C ′ = C ′(d) > 0 is a universal
constant—see [Law91, Theorem 1.7.1]. We shall apply this result for f = ξ B and
B being a (ξ, ε)-good box for a certain value of ε > 0. We first need to introduce some
definitions.

Consider an integer N ≥ 1 and let L = �N/M ≈ N
1

α+2 , where α = (2d + 1)2 and

M = N
α+1
α+2 . We say that a connected subgraph C of DN is very dense if C ∩UN contains

a connected subgraph of diameter at least N/5 and for every box B = BL(z), z ∈ LZd

contained in DN , C ∩ B contains a connected subgraph of diameter at least L/5.
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Given 0 < ε < h∗ − h, we say that a strong local uniqueness happens in BN
if {ϕ ≥ h + ε} ∩ DN contains a very dense cluster and furthermore, for every k ∈
{− �εLα� , . . . , �εLα�}, every box B = BL(z), z ∈ LZd contained in DN is (ϕ, h −
r L−α)-good, where r = k − 1 − 7dC ′ε and C ′ is the constant appearing in (5.2). We
denote by NSLU(h, ε, N ) the event that strong local uniqueness does not happen in BN .

Lemma 5.1. For every h′ < h∗, there exist constants c = c(h′, d, ε) > 0, ρ = ρ(d) > 0
such that for every h ≤ h′ and N ≥ 1,

P[NSLU(h, ε, N )] ≤ e−cNρ

.

Consider now the boxes of L2
Z

d contained in DN . Given such a box B, we define
Conf(h, ε, B) as the event that there are a set S ⊂ D of cardinality |S| ≥ L and an
integer k ∈ {− �εLα� , . . . , �εLα�} such that h − kL−α ≤ ϕx < h − r L−α for every
x ∈ S, where r = k−1−7dC ′ε. In other words, when the event Conf(h, ε, B) happens,
ϕx is confined for at least L vertices in D. Finally, we define

Conf(h, ε, N ) :=
⋃

B

Conf(h, ε, B),

where the union is taken over all boxes of L2
Z

d contained in DN .

Lemma 5.2. For every h′ < h∗ and every 0 < ε < h∗ − h′, there exist constants
c = c(h′, ε, d) > 0, ρ = ρ(d) > 0 such that for every h ≤ h′ and N ≥ 1,

P[Conf(h, ε, N )] ≤ e−cNρ

.

Proposition 3.4 follows readily by applying the following (deterministic) lemma for
δ = (h∗ − h′ − ε)/2 together with (3.6) and Lemmas 5.1 and 5.2 above.

Lemma 5.3. Let h < h∗, 0 < ε < h∗ − h and δ < h∗ − h − ε. For every N ≥ 1
large enough, if the box BN is (ψ, h, ε)-bad, then one of the events {BN is(ξ, δ)− bad},
NSLU(h, ε + δ, N ) or Conf(h, ε + δ, N ) happens.

We now turn to the proof of each of the above lemmas.

Proof of Lemma 5.3. If BN is (ξ, δ)-bad or the event Conf(h, ε + δ, N ) happens, then
there is nothing to prove, so let us assume that BN is (ξ, δ)-good and Conf(h, ε + δ, N )

does not happen. We need to show that NSLU(h, ε + δ, N ) happens. To this end, if
{ϕ ≥ h + ε + δ} ∩ DN does not contain a very dense cluster, then NSLU(h, ε + δ, N )

happens, so let us assume that {ϕ ≥ h + ε + δ} ∩ DN does contain a very dense cluster
C1.

We claim that for some function f : DN → Rwhich is harmonic in DN and satisfies
| f (x)| < ε + δ for every x ∈ DN ,

{ϕ + f ≥ h} ∩ UN contains a clusterC2of diameter at leastN/5which is not

connected to C1in{ϕ + f ≥ h} ∩ DN . (5.3)

Indeed, BN is (ψ, h, ε)-bad, so it follows from the decomposition of ϕ that there is a
function f as above for which either {ϕ + f ≥ h} ∩ UN does not contain a cluster of
diameter at least N/5or (5.3) happens.However,C1 contains a cluster of {ϕ+ f ≥ h}∩UN
of diameter at least N/5, which implies that (5.3) happens.
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Fix now a box B = BL2(z) ∈ L2
Z

d that intersects C2. We assume that N is large
enough so that D = DL2(z) is contained in [−2N , 3N )d . Notice that

ϕx + max
u∈D

f (u) ≥ ϕx + f (x) ≥ h for x ∈ C2 ∩ D (5.4)

and

ϕx + min
u∈D

f (u) ≤ ϕx + f (x) < h for x ∈ ∂outC2 ∩ D. (5.5)

Since f is harmonic in DN and | f (x)| < ε + δ for every x ∈ DN , we have that
| f (x)− f (y)| ≤ C ′(ε + δ)/N for neighbouring x and y in [−2N , 3N )d by (5.2). Since
D has diameter at most 7d L2, we conclude that

max
u∈D

f (u) −min
u∈D

f (u) ≤ 7dC ′(ε + δ)L2/N ≤ 7dC ′(ε + δ)L−α.

Consider the smallest k ∈ {− �(ε + δ)Lα� , . . . , �(ε + δ)Lα�} such that maxu∈D f (u) ≤
kL−α . Then maxu∈D f (u) > (k − 1)L−α , hence

min
u∈D

f (u) ≥ max
u∈D

f (u) − 7dC ′(ε + δ)L−α > (k − 1− 7dC ′(ε + δ))L−α. (5.6)

We can now deduce from (5.4) and (5.5) that

ϕ ≥ h − kL−α on C2 ∩ D (5.7)

and

ϕ < h − r L−α on ∂outC2 ∩ D, (5.8)

where r = k − 1− 7dC ′(ε + δ).
Now as Conf(h, ε + δ, N ) does not happen and (5.7) holds, for all but at most L − 1

vertices x of C2 ∩ D we have ϕx ≥ h − r L−α . We claim that {ϕ ≥ h − r L−α} ∩ C2 ∩ D
contains a cluster of diameter at least L . Indeed, notice that C2∩ D contains a connected
set of diameter at least 3L2 because the graph distance between B and ∂ D is 3L2.
Consider a path γ in C2 ∩ D connecting two vertices u and v with graph distance
d(u, v) ≥ 3L2. Then we have that

3L2 ≤
j−1∑

i=1

d(xi , xi+1),

where x0 = u, x j = v and x1, . . . , x j−1 are the vertices of γ in between u and v such
that h − kL−α ≤ ϕxi < h − r L−α , ordered in turn of appearance in γ as we move
from u to v. As γ can have at most L − 1 vertices x such that h − kL−α ≤ ϕx <

h − r L−α , we can deduce that j ≤ L , hence for some i ∈ {0, 1, . . . , j −1}we have that
d(xi , xi+1) ≥ 3 L2

j ≥ 3 L . The subpath γ ′ of γ in between xi and xi+1 has thus diameter

at least 3L − 2 ≥ L and ϕx ≥ h − r L−α for every x ∈ γ ′. Consider the cluster C3 of
{ϕ ≥ h − r L−α} ∩ D ∩ UN containing γ ′. We will show that C2 contains C3, which
proves the claim. To this end, recall that C2 is a cluster of {ϕ + f ≥ h} ∩UN . Notice that
for every x ∈ D, ϕx + f (x) ≥ ϕx + minu∈D f (u) > ϕx + r L−α by (5.6), hence

{ϕ ≥ h − r L−α} ∩ D ⊂ {ϕ + f ≥ h} ∩ D. (5.9)
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Since C2 and C3 overlap at γ ′, we deduce that C2 contains C3.
Consider a box BL(w) ∈ LZd lying in B that intersectsC3.Wewill show that BL(w) is

(ϕ, h−r L−α)-bad, which implies that NSLU(h, ε+δ, N ) happens, as desired. Recalling
the definition of a very dense cluster, we see that BL(w) intersects C1 as well. Notice
that both C3∩UL(w) and C1∩UL(w) contain a cluster of diameter at least L/5 because
both C3 and C1 have diameter at least L/5. On the other hand, C3 is not connected to
C1 in {ϕ ≥ f + h} ∩ DL(w) by (5.3) and the fact that C3 ⊂ C2. Using (5.9), we can
deduce that C3 is also not connected to C1 in {ϕ ≥ h − r L−α} ∩ DL(w). Thus BL(w) is
(ϕ, h − r L−α)-bad. ��
Proof of Lemma 5.1. Let us start by constructing a very dense cluster. Let R = �L/100�
and let F be the set of boxes B ∈ RZd such that D is contained in DN . If every box in F
is (ϕ, h + ε)-good, then {ϕ ≥ h + ε} ∩ DN contains a cluster C such that C ∩ B contains
a cluster of diameter at least R/5 for every B ∈ F . This is because for every pair of
neighbouring boxes B and B ′ in F , both {ϕ ≥ h + ε}∩ B and {ϕ ≥ h + ε}∩ B ′ contain a
cluster of diameter at least R/5, and these two clusters are connected in {ϕ ≥ h +ε}∩ D.
Provided that N is large enough, it follows that for every box B ∈ LZd contained in
DN , C ∩ B contains a cluster of diameter at least L/5 and furthermore, C has diameter
at least N/5. In other words, C is a very dense cluster.

If for every k ∈ {− �εLα� , . . . , �εLα�}, all boxes of LZd contained in DN are
(ϕ, h − r L−α)-good, then we have strong local uniqueness. Increasing the value of N ,
if necessary, we can assume that h − r L−α < h∗ for k = −�εLα�, hence for every
k ∈ {− �εLα� , . . . , �εLα�} as well. Since we are considering at most C Md boxes in
total (the boxes of LZd contained in DN and the boxes of F) and we are considering
2 �εLα� + 2 different level-sets (with the h + ε level-set included), we can apply (5.1) to
obtain that

P[NSLU(h, ε, N )] ≤ (2
⌈
εLα

⌉
+ 2)C Mde−cRρ ≤ e−c′Nρ′

for some constants c′ = c′(h′, d) > 0 and ρ′ = ρ′(d) > 0, as desired. ��
Proof of Lemma 5.2. Wewill show that the probability ofConf(h, ε, B)decays stretched
exponentially for every B ∈ L2

Z
d . Then the desired result will follow from a union

bound over all B ∈ L2
Z

d lying in DN and the fact that there are polynomially many
choices for B.

In order to prove the aforementioned result, consider a subset S of D of cardinality
L and an integer k ∈ {− �εLα� , . . . , �εLα�}. We will estimate the probability that
h − kL−α ≤ ϕx < h − r L−α for all x ∈ S and then apply a union bound over all
possible S and k. Let us set h1 := h − kL−α and h2 := h − r L−α . Choose a subset S′ of
S such that for every x, y ∈ S′ we have d(x, y) ≥ 2, and S′ is a maximal subset of S
with respect to this property. Then |S′| ≥ L

2d+1 . Now conditioning on ϕy for y ∈ Z
d \ S′,

we obtain

P[h1 ≤ ϕx < h2,∀x ∈ S′] = E

[
P

[
h1 ≤ ϕx < h2,∀x ∈ S′ | σ(ϕy, y ∈ Z

d \ S′)
]]

=

E

[
∏

x∈S′
P

[
h1 ≤ ϕx < h2 | σ(ϕy, y ∈ Z

d \ S′)
]]

≤ (h2 − h1)
|S′| ≤ (h2 − h1)

L
2d+1 .

For the second equality,we used that conditionally on allϕy , y /∈ S′, the randomvariables
ϕx , x ∈ S′ are pairwise independent. For the first inequality, we used that

P[h1 ≤ ϕx < h2 | σ(ϕy, y ∈ Z
d \ S′)] ≤ h2 − h1
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which follows from the fact that conditionally on σ(ϕy, y ∈ Z
d\S′), ϕx is a normal

random variable with variance 1 (the value of the mean is not important), hence its
probability density function is bounded by 1.

On the other hand, D contains (7L2)d vertices, hence there are at most (7L2)d L

possible subsets of D of cardinality L . A union bound over the 2 �εLα� + 1 possible
values of k and the subsets of D of cardinality L implies that

P[Conf(h, ε, B)] ≤ (
2
⌈
εLα

⌉
+ 1

)
(7L2)d L(h2 − h1)

L
2d+1 .

By our choice of α,

(
2
⌈
εLα

⌉
+ 1

)
(7L2)d L(h2 − h1)

L
2d+1 = exp

{
2d L log(L) +

−α

2d + 1
L log(L) + O(L)

}

= exp {−L log(L) + O(L)} .

This completes the proof. ��

6. Decay of Very-Badness

In this section, we will prove Proposition 3.5. First, we need to express the event that B
is (ψ, h, ε)-very-bad in terms of ϕ and ξ .

We say that a box B is (ϕ, h, ε)-very-good if for every function g : D → R which
is harmonic in D and |g(x)| < ε for all x ∈ D, the following happen:

• for every B ′ which is either B or some neighbour of B, {ϕ + g ≥ h} ∩ B ′ contains
a dense cluster,

• for every neighbour B ′′ of B and every pair of dense clusters of {ϕ + g ≥ h} ∩ B
and {ϕ + g ≥ h} ∩ B ′′, respectively, there is a path in {ϕ + g ≥ h} ∩ D visiting both
dense clusters.

If B is not (ϕ, h, ε)-very-good, we will call it (ϕ, h, ε)-very-bad.
We shall now introduce another event that will be used to handle the non-uniqueness

of a dense cluster. We define H(h, ε, B) to be the event that there are

• a function g : D → R which is harmonic in D and |g(x)| < ε for all x ∈ D, and
• a pair C1, C2 of clusters of {ϕ + g ≥ h} ∩ U of diameter at least L/5,

forwhich there is no path in {ϕ+g ≥ h}∩D connectingC1 withC2. It is not hard to see that
if H(h, ε, B) happens and B is (ξ, δ)-good for some δ > 0, then B is (ψ, h, ε + δ)-bad.

Recall that the definition of a dense cluster involves considering the boxes of L0Z
d

that are contained in BL . In order to construct a dense cluster, we will need to work with
the columns of this collection of L0-boxes. To define them precisely, let {e1, e2, . . . , ed}
be the standard basis of Zd . Given a collection F of boxes of RZd for some R ≥ 1, the
columns ofF parallel to ei , i ∈ {1, 2, . . . , d} are defined as follows. For every sequence
of integers (y j )

d
j=1, j �=i , the set of boxes BR(z) ∈ F , z = (z1, z2, . . . , zd) with z j = y j

for every j �= i , will be called a column of F parallel to ei .
We will now prove Proposition 3.5.

Proof of Proposition 3.5. Notice that if BL is (ψ, h, ε)-very-bad and (ξ, δ)-good for
some δ > 0, then it is (ϕ, h, ε + δ)-very-bad. Applying this observation for δ = (h∗ −
h′ − ε)/2 and using Lemma 3.1 to handle the case that B is (ξ, δ)-good, we see that
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(after redefining ε) it suffices to prove that for every h′ < h∗ and 0 < ε < h∗ − h′ there
is a constant c = c(h′, ε, d) > 0 such that for every h ≤ h′

P[BL is(ϕ, h, ε) − very-bad] ≤ e−cLd−2
.

Recall that L0 = �L/M�, where M =
⌊

L
d−2
d−1 / log(L)

⌋
. For simplicity, we will

assume that M divides L , so that L/M is an integer. The general case can be treated
similarly.

We will first focus on the existence of a dense cluster. Consider the boxes of L0Z
d

contained inUL and notice that they form a partition ofUL . Wewill show that when only
a few columns of this partition contain a (ϕ, h + ε)-bad box, {ϕ ≥ h + ε} ∩ B ′

L contains
a dense cluster, where B ′

L is either BL or a neighbouring box of BL . The latter easily
implies that {ϕ + g ≥ h} ∩ B ′

L contains a dense cluster for every function g : DL → R

which is harmonic in DL and |g(x)| < ε for all x ∈ DL . Then we will proceed to show
that the probability of having many columns that contain a (ϕ, h + ε)-bad box decays
exponentially in Ld−2.

Among the columns of the partition of UL that are parallel to ei , i = 1, 2, . . . , d,
consider those that contain a box which is (ϕ, h + ε)-bad. We let �i be the event that
there are at least Md−1

10(2d−1)! such columns. When the event
⋃d

i=1 �i does not happen, we
will show that {ϕ ≥ h + ε} ∩ B ′

L contains a dense cluster. To this end, since the dense
cluster needs to lie in B ′

L , we need to restrict to the collection of boxes BL0(z) such that
DL0(z) is contained in B ′

L . Let us assume that L is large enough so that this collection
is non-empty. This collection forms a partition of a smaller box B ′′

L that is contained in
B ′

L . Notice that the number of boxes in each column of B ′′
L is M − 6. Let � be the set

of boxes of the partition of B ′′
L that are (ϕ, h + ε)-good. Then for every ei , � contains at

least

(M − 6)d−1 − Md−1

10(2d − 1)! ≥
(
1− 1

5(2d − 1)!
)

(M − 6)d−1

columns parallel to ei , provided that L is large enough so that

Md−1

2
≤ (M − 6)d−1.

By Lemma 6.1 below, a connected componentF of� contains at least 45 (M −6)d boxes.
Increasing the value of L , if necessary, we can assume that 4

5 (M − 6)d ≥ 3
4 Md , so that

F contains at least 3
4 Md boxes. For each pair of neighbouring boxes B = BL0(z), B ′ in

F , both {ϕ ≥ h +ε}∩ B and {ϕ ≥ h +ε}∩ B ′ contain a cluster of diameter at least L0/5,
hence there is a path in {ϕ ≥ h + ε} ∩ D visiting both clusters, where D = DL0(z).
By combining all these clusters, we obtain that {ϕ ≥ h + ε} ∩ B ′

L contains a cluster C
visiting all boxes of F .

To show that C is dense, it remains to estimate its diameter. Since F contains at least
3
4 Md boxes, it must intersect a column Col(B ′′

L , �) of B ′′
L which is contained entirely in

�. SinceF is a connected component of �, it must contain Col(B ′′
L , �) entirely. In other

words, C contains a vertex from the first and the last box of Col(B ′′
L , �), which implies

that C has diameter at least (M − 8)L0. We have that (M − 8)L0 = L − 8L0 ≥ L/5,
provided that L is large enough. Thus C is a dense cluster.
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We will now estimate P[⋃d
i=1 �i ]. To this end, let i = 1, 2, . . . , d and S be a set

of Md−1

10(2d−1)! boxes that lie in different columns of UL parallel to ei . We will first count
the possibilities for S and then estimate the probability that for a fixed S as above, all
its boxes are (ϕ, h + ε)-bad. Notice that there are Ad−1 columns parallel to ei , where
A = 3 M , and each column contains A boxes. Hence there are at most

2Ad−1
AAd−1 = exp

{
Ad−1 log(2A)

}
≤ exp

{
C

Ld−2

logd−2(L)

}

possibilities for S, since we can construct S by first choosing a set of columns and then
picking a box from each column of this set.

Moving on to the probabilistic estimate, let S′ be a subset of S which is well-separated
and is maximal with respect to this property. Then it is not hard to see that |S′| ≥
201−d |S|. Let ε0 = (h∗ − h′ − ε)/2. We will now consider two cases. Either at least
|S′|/2 boxes of S′ are (ξ, ε0)-good or at least |S′|/2 boxes of S′ are (ξ, ε0)-bad. In the
first case, because we have assumed that all boxes of S are (ϕ, h +ε)-bad, we can deduce
that at least |S′|/2 boxes of S′ are (ψ, h+ε, ε0)-bad. Applying Proposition 3.4 and using
a union bound over the subsets of S′ we obtain

P[at least|S′|/2boxes ofS′are(ψ, h + ε, ε0) − bad] ≤ 2|S′| exp{−c1|S′|Lρ
0 /2} ≤ exp{−c2Ld−2},

where in the last inequality we used that

|S′| ≤ Md−1 ≤ Ld−2

logd−1(L)
(6.1)

and

|S′|Lρ
0 ≥ c3

Ld−2Lρ
0

logd−1(L)
.

On the other hand, if the second case holds, we can argue as follows. Let T be the set of
boxes of S′ that are (ξ, ε0)-bad. Applying Lemma 6.2 below, we see that cap(�(T )) ≥
r Ld−2 for some constant r > 0. We shall now apply Lemma 3.1 and for this reason we
need to check that |T | ≤ δr Ld−2, where δ is the constant of Lemma 3.1. This inequality
follows from (6.1) by choosing L to be large enough. Hence a union bound over the
subsets of S′ implies that

P[at least|S′|/2boxes ofS′are(ξ, ε0) − bad] ≤ 2|S′| exp{−crε20Ld−2} ≤ exp{−c4Ld−2}.
Overall, we obtain that

P[∪d
i=1�i ] ≤ exp

{
C

Ld−2

logd−2(L)

}(
exp{−c2Ld−2} + exp{−c4Ld−2}

)
≤ exp{−c5Ld−2}.

Let B ′
L be a neighbouring box of BL . We shall now consider the event that for some

function g : D → R which is harmonic in D and |g(x)| < ε for all x ∈ D, and a
pair C1, C2 of dense clusters of {ϕ + g ≥ h} ∩ BL and {ϕ + g ≥ h} ∩ B ′

L , respectively,
there is no path in {ϕ + g ≥ h} ∩ DL connecting C1 to C2. Let i = 1, 2, . . . , d be such
that B ′

L = BL ± Lei . Notice that for every L0-box B intersecting C j , j = 1, 2, C j ∩ U
contains a cluster of diameter at least L0/5. Hence each column of BL ∪ B ′

L parallel
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to ei that intersects both C1 and C2 must contain a box B ∈ L0Z
d such that H(h, ε, B)

happens, since otherwise, C1 and C2 are connected in {ϕ + g ≥ h} ∩ DL . We will show
that many columns are intersected by both clusters. Indeed, it follows from the definition
of a dense cluster that each of C1 and C2 intersects at least 3Md−1/4 columns parallel to
ei . In particular, at least Md−1/2 columns parallel to ei are intersected by both C1 and
C2, and all of them contain a box B ∈ L0Z

d such that H(h, ε, B) happens.
To estimate the probability of the event that at least Md−1/2 columns contain a box

B ∈ L0Z
d such that H(h, ε, B) happens, we consider two cases. Either at least Md−1/4

columns contain a (ξ, ε0)-bad box or at least Md−1/4 columns contain a box B such that
H(h, ε, B) happens and B is (ξ, ε0)-good. When H(h, ε, B) happens and B is (ξ, ε0)-
good, B is (ψ, h, ε + ε0)-bad. In both cases, we can argue as above to obtain the desired
decay. ��

Wewill now prove the two lemmas mentioned above. In what follows, columns refer
to the usual lines of Zd (of width 0, opposed to union of boxes as considered above).

Lemma 6.1. Let d ≥ 2 and 0 < x < 1
(2d−1)! . Consider a subset � of BL such that for

every direction ei , � contains at least (1− x)Ld−1 columns of BL parallel to ei . Then
� contains a connected set of size at least (1− (2d − 1)!x)Ld.

Proof. Wewill prove inductively on the dimension that the statement of the lemma holds
for all � (as in the statement) and all 0 < x < 1

(2d−1)! .
For d = 2, the statement holds because any pair of vertical and horizontal columns

shares a common vertex. Let us assume that it holds for some d ≥ 2. We will prove it for
d + 1. Consider a subset � of the (d + 1)-dimensional box BL as in the statement of the
lemma. For each i = 2, 3, . . . , d + 1, let mi be the number of k ∈ {0, 1 . . . , L − 1} such
that � ∩ ({k} × [0, L)d

)
contains at most (1 − y)Ld−1 columns of the d-dimensional

box {k} × [0, L)d parallel to ei , where y = 2dx . Notice that � contains at most

mi (1− y)Ld−1 + (L − mi )Ld−1 = Ld − mi yLd−1

columns parallel to ei , because for the remaining L−mi elements of the set {0, 1 . . . , L−
1}, � ∩ ({k} × [0, L)d

)
contains at most Ld−1 columns. Hence Ld − mi yLd−1 ≥ (1−

x)Ld , which implies that mi ≤ Lx
y = L

2d .

Consider one of the remaining L − ∑d+1
i=2 mi ≥ L/2 sets � ∩ ({k} × [0, L)d

)
and

notice that it satisfies the assumption of our inductive hypothesis for x replaced by y.
Hence � ∩ ({k} × [0, L)d

)
contains a connected set S of size at least (1− z)Ld , where

z = (2d − 1)!y = (2d)!x . To find a connected set of the desired cardinality, consider
some l �= k, l ∈ {0, 1, . . . , L − 1} and notice that among the at least (1− x)Ld columns
of BL parallel to el that lie in �, S meets at least (1− x − z)Ld ≥ (1− (2d + 1)!x)Ld

of them. The union of S with the columns that it meets forms a connected set of size at
least (1− (2d + 1)!x)Ld+1. This completes the proof. ��
Lemma 6.2. For every 0 < r < 1, there is c = c(r, d) > 0 such that the following
holds. For every � ⊂ BL that contains one vertex from at least r Ld−1 columns parallel
to e1, cap(�) ≥ cLd−2.

Proof. Wewill assumewithout loss of generality that any column parallel to e1 intersects
� at 0 or exactly 1 vertex. Let F1 be the face of BL intersecting all columns of BL parallel
to e1 and let �′ be the projection of � to F1. We claim that cap(�) ≥ tcap(�′) for some
constant t = t (d) > 0. Indeed, recall the variational characterization of the capacity
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(2.4). Let ν′ be the probability measure supported on �′ such that cap(�′) = E(ν′)−1

and define ν to be the probabilitymeasure supported on� such that ν(x) = ν′(x ′), where
x ′ is the projection of x to F1. Then cap(�) ≥ E(ν)−1. Notice that by projecting � onto
F1, the distance between its vertices decreases. Since the Green’s function g(x, y) is
asymptotically decreasing in the distance ‖x − y‖, we have E(ν′) ≥ t (d)E(ν) and the
claim follows.

Wewill now lower bound the capacity of�′ by applying (2.5). To this end, notice that
�′ contains at least r Ld−1 vertices and consider some vertex x ∈ �′. Since the number
of vertices in F1 that are at ‖ · ‖∞-distance k from x is of order kd−2, it is not hard to see
that there are constants t1 = t1(d, r) > 0 and t2 = t2(d, r) > 0 such that for at least t1L
values of k ∈ {0, 1, . . . , L − 1}, �′ contains at least t2kd−2 vertices at distance k from
x . The desired lower bound on cap(�′) follows now from (2.5). ��
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