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Abstract: We study fast/slow systems driven by a fractional Brownian motion B with
Hurst parameter H ∈ ( 13 , 1]. Surprisingly, the slow dynamic converges on suitable
timescales to a limiting Markov process and we describe its generator. More precisely,
if Y ε denotes a Markov process with sufficiently good mixing properties evolving on a
fast timescale ε � 1, the solutions of the equation

dXε = ε
1
2−H F(Xε,Y ε) dB + F0(X

ε,Y ε) dt

converge to a regular diffusion without having to assume that F averages to 0, provided
that H < 1

2 . For H > 1
2 , a similar result holds, but this time it does require F to average

to 0.We also prove that the n-point motions converge to those of a Kunita type SDE. One
nice interpretation of this result is that it provides a continuous interpolation between
the time homogenisation theorem for random ODEs with rapidly oscillating right-hand
sides (H = 1) and the averaging of diffusion processes (H = 1

2 ).
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1. Introduction

The setting considered in this article is as follows. Consider a particle in a rapidly
evolving random medium, so that it is governed by a stochastic differential equation
of the type dxt = A(xt , t/ε) dt + σ(xt , t/ε) dB1 for a small parameter ε > 0. The
situation we are interested in is where, in the “static” case (i.e. when A and σ have no
explicit time dependence), the system is either super- or subdiffusive. This is the case
if the driving noise B is modelled by fractional Brownian motion (fBM) with Hurst
parameter H �= 1

2 . Recall that fractional noises (i.e. the time derivative of fBM) can be
obtained as scaling limits in statistical mechanics models [11,38,65] and that fBM with
Hurst parameter H is a Gaussian process with stationary increments and self-similarity
exponent H . It is therefore characterised (up to an irrelevant global shift) by the fact
that E(Bt − Bs)

2 = |t − s|2H , so that it is superdiffusive for H > 1
2 and subdiffusive

for H < 1
2 . The covariance of its increments, E(Bt+1 − Bt )(Bs+1 − Bs), decays at rate

|t− s|2H−2 for large |t− s| and therefore exhibits long-range dependence when H > 1
2 .

We furthermore assume that the rapid time evolution of the environment is described
by a hidden Markov variable, thus leading to the model

xε
t = x0 +

∫ t

0
F(xε

s , y
ε
s ) dBs +

∫ t

0
F0(x

ε
s , y

ε
s ) ds, (1.1)

with B an fBM with Hurst parameter H ∈ (0, 1) in Rm and F(x, y) ∈ L(Rm,Rd).
The stochastic integral appearing in the first term is problematic when H < 1

2 : one

should really interpret this equation as xε
t = limδ→0 x

ε,δ
t with xε,δ

t driven by a smooth
approximation Bδ to B with relevant timescale δ � ε � 1, see Sect. 1.1 below.
Regarding the fast Markov variable, a prototypical situation is that of a system of the
type

dyε
t = σ(xε

t , y
ε
t )

dWt√
ε

+ b(xε
t , y

ε
t )

dt

ε
, (1.2)

whereW is aWiener processes independent of the fBM B appearing in (1.1). This allows
for the case where the variable x feeds back into the evolution of y, but for most of this
article we assume that there is no x-dependence in (1.2). We also assume that yt admits
a unique invariant probability measure μ. In the case with feedback, we have a family
of invariant measure μx obtained by “freezing” the value of the variable x in (1.2).

1 Following the tradition of probability theory, the subscript t denotes dependence on the time parameter,
not differentiation.
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It was recently shown by the authors in [31] that in the case H > 1
2 the process xε

converges in probability to the solution to

dx = F̄(x) dB + F̄0(x) dt, (1.3)

where the average of any function h is given by h̄(x) = ∫
h(x, y) μx (dy). The aim of

the present article is to investigate the two cases left out by the aforementioned analysis,
namely what happens when either H < 1

2 or when H > 1
2 but F̄ = 0 in (1.3)?

1.1. Description of the model. It turns out that the effect of the rapid oscillatory motion
described by the fast variable y is to slow down the motion of x in the superdiffusive
case and to speed it up in the subdiffusive case. This can be explained by the following
heuristics. For times of order t � ε, the process Y doesn’t evolve much so that, by
the scaling property of the driving fBM, one expects the process x to move by about
εH in a time of order ε. On large times t � ε on the other hand we will see that the
limiting process is actually Markovian, even in the case with long-range dependence.
This suggests that over times of order t the process x performs about t/ε steps of a
random walk with step size εH and therefore moves by about εH

√
t/ε. This suggests

that one should multiply F by ε
1
2−H in order to obtain a non-trivial limit.

As a consequence, the equations we actually study in this article are of the form:

dXε = ε
1
2−H Fi (X

ε,Y ε) dBi + F0(X
ε,Y ε) dt, Y ε(t) = Y (t/ε), (1.4)

(summation over i is implied), where B is a fractional Brownian motion with Hurst
parameter H ranging from 1

3 to 12, and Y is an independent stationary Markov process
with values in some Polish space Y , invariant measure μ and generator −L3. At the
moment, we are unfortunately unable to cover the case when X feeds back into the
dynamics of Y . When H > 1

2 , we furthermore assume that
∫
Fi (x, y) μ(dy) = 0 for

every i �= 0 and every x .
Our main result is that, as ε → 0, solutions to (1.4) converge in law to a limiting

Markov process and we provide an expression for its generator. In fact, we have an
even stronger form of convergence, namely we show that the flow generated by (1.4)
converges to the one generated by a limiting stochastic differential equation of Kunita
type (i.e. driven by an infinite-dimensional noise).

Remark 1.1. Of course, (1.4) is not quite the same as (1.2) which was our start-
ing point. One way of relating them more directly is to perform a time change and
set Xε = xε(ε

1−2H t) with xε solving (1.2). Then Xε solves the equation dXε =
ε̃

1
2−H Fi (Xε,Y ε̃) dBi + ε̃

1
2H −1F0(Xε,Y ε̃) dt where we have set ε̃ = ε2H . When H < 1

2 ,
this then converges to the same limit as (1.4), but of course with F0 in (1.4) set to 0.When
H > 1

2 , then one would need to take Fi centred in (1.2) in order to obtain a non-trivial
limit and our results imply that one again converges to the same limit as (1.4), at least
in the case F0 = 0.

2 We could probably deal with H ∈ ( 14 , 1
3 ] with our techniques, but this would obscure some of the

arguments for relatively little gain. For H ≤ 1
4 , there exists no solution theory even in the absence of Y .

3 The convention of adding a minus sign to the generator simplifies our expressions later on.
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The special case when F0 = 0 and the Fi are independent of the x-variable yields
a functional central limit theorem for stochastic integrals against fractional Brownian
motion. This already appears to be new by itself and might be of independent interest.

As already hinted at, the map t �→ Fi (·,Y ε
t ) is too irregular to fit into the standard

theory of differential equations driven by a fractional Brownian motion, especially when
H < 1

2 , so that it is not even completely clear a priori how to interpret (1.4) for fixed
ε > 0. These questions will be addressed in more detail in Sect. 2 below. Let us put
these aside for the moment and consider the following ordinary differential equation

Ẋε,δ
s = δH−1√

ε
v
( s

εδ

)
F(Xε,δ

s ,Y ε
s ) + F0(X

ε,δ
s ,Y ε

s ), (1.5)

where v is a smooth stationary Gaussian random process with covariance C such that
C(t) ∼ |t |2H−2 for |t | large. When H < 1

2 we furthermore assume that
∫
C(t) dt = 0

and, when H = 1
2 , we assume that C decays exponentially and satisfies

∫
C(t) dt = 1.

One way of obtaining such a process v is to set v = φ ∗ Ḃ for φ a Schwartz test function
integrating to 1 (and ∗ denoting convolution in time). This in particular shows that, at
least in law, one has (εδ)H−1v

( t
εδ

) = (φεδ ∗ Ḃ)(t), where we set φε(t) = ε−1φ(t/ε).
Since this converges in law to Ḃ as εδ → 0, we can view (1.5) as an approximation to
(1.4).

It is then possible to show that the limit Xε = limδ→0 Xε,δ exists and our results
hold with Xε interpreted in this way. Furthermore, we will see that all our results hold
uniformly over δ ∈ (0, 1] as ε → 0. This in particular shows that the converse limit
obtained by first sending ε → 0 and then δ → 0 is the same, as are all limits obtained
by other ways of jointly sending ε, δ → 0.

1.2. Description of the main results. We now give a precise formulation of our main
results, albeit with a simplified set of assumptions. The reason is that while the simplified
assumptions are straightforward to state, they are very stringent regarding the Markov
process Y . The more realistic set of assumptions used in the remainder of the article
however is quite technical to formulate. We first recall the following standard definition
of the fractional powers of the generator of the process Y .

Definition 1.2. We write H = L2(μ) with μ the invariant measure of Y and 〈·, ·〉μ for
its scalar product. For α ∈ (0, 1), we then say that f ∈ Dom(Lα) if, for every g ∈ H,
the integral

1

�(−α)

∫ ∞

0
t−α−1〈Pt f − f, g〉μdt < ∞,

converges and determines a bounded functional onH (which we then call Lα f ). Recall
that the generator of the process Y is −L, so that L is indeed a positive operator in the
reversible case and Lα does then coincide with the definition using functional calculus.

Similarly, for α ∈ (−1, 0), we write Lα for the operator given by

Lα f = 1

�(−α)

∫ ∞

0
t−α−1Pt f dt.

Since t �→ t−α−1 is locally integrable, it follows from the first point of Assumption 1.3
below that Lα is a bounded operator on the subspace of Lip(Y) consisting of mean zero
functions.
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Assuming that Xε takes values inRd , we then define the d×d matrix-valued function

�(x, x̄) = 1

2
�(2H + 1)

m∑
k=1

∫
Fk(x, y)⊗

(
L1−2H Fk

)
(x̄, y) μ(dy), (1.6)

whereL acts on the second argument of Fk . As wewill see in Remark 1.7, the expression
(1.6) is naturally interpreted as the limit δ → 0 of a “local” Green–Kubo formula
associated to the fluctuations of (1.5).

Note that the condition F̄k = 0 is necessary in the case H > 1
2 since the neg-

ative power of L appearing in this expression does not make sense otherwise, see
also Remark 2.5 below. We shall assume mixing conditions and Hölder continuity of
the Y variable, see Assumptions 2.1–2.3 below, as well as a regularity condition on
x �→ F(x, ·) (and also F0) as spelled out in Assumption 2.7. A simpler set of conditions
is as follows, the first of which is a strengthening of Assumptions 2.1 and 2.3, the second
is a strengthening of Assumption 2.2, and the last is just a restatement of Assumption 2.7
in this context.

Assumption 1.3 (Simplified Assumptions). The functions Fi appearing in (1.4) as well
as the Markov process Y satisfy the following.

1. The Markov semigroup associated to the process Y is strongly continuous and has a
spectral gap in Lip(Y), the space of bounded Lipschitz continuous functions on Y .

2. In the case H < 1/2 we assume that, for any α < H, the process t �→ Yt admits
α-Hölder continuous trajectories and its Hölder seminorm (over intervals of length
1 say) has bounded moments of all orders.

3. When H > 1
2 , we also assume that

∫
Fi (x, y) μ(dy) = 0 for every i �= 0 and every x.

4. There exists κ > 0 such that, for every i ≥ 0, x �→ Fi (x, ·) is C4 with values in
Lip(Y) and its derivatives of order at most 4 are bounded by C(1 + |x |)−κ for some
C > 0.

Remark 1.4. Recall that a Markov semigroup (Pt )t≥0 admits a spectral gap in any given
Banach space E ⊂ L2(μ) if Pt : E → E is a bounded linear operator for every t and if
there exist constants c,C > 0 such that ‖Pt f − μ( f )‖E ≤ Ce−ct‖ f ‖E for all f ∈ E .
For this definition to make sense, E of course needs to contain all constant functions.

The reasonwhywe are aiming for amore general result at the expense of amuchmore
technical set of assumptions is that having a spectral gap in Lip(Y) is a very restrictive
condition which is not even satisfied for the Ornstein–Uhlenbeck process.4

Theorem 1.5. Let H ∈ ( 13 , 1) and let Assumption 1.3 hold. For fixed ε > 0, α < H,
and T > 0, the process Xε,δ converges in law in Cα([0, T ]) as δ → 0 to a limit Xε

which we interpret as the solution to (1.4).
The solution flow of (1.4) converges in law to that of the Kunita-type stochastic

differential equation written in Itô form as

dXt = W (Xt , dt) + G(Xt ) dt + F̄0(Xt )dt, (1.7)

4 But on the other hand it is satisfied for systems with superlinear dissipation. This even includes the Allen–
Cahn equation on the torus in dimension d ≤ 3 driven by space-time white noise, as can be deduced from the
results in [35–37,56,69]!
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where F̄0(x) =
∫
F0(x, y)μ(dy), Gi (x) = (∂

(2)
j � j i )(x, x), W is a Gaussian random

field with correlation

E(Wi (x, t)Wj (x̄, t̄)) = (t ∧ t̄)
(
�i j (x, x̄) + � j i (x̄, x)

)
, (1.8)

and where ∂
(2)
j denotes differentiation in the j th direction of the second argument.

Proof. As already suggested, this is a special case of ourmain result, Theorem2.8 below.
The fact that Assumptions 2.1–2.3 and 2.7 are implied by Assumption 1.3 is immediate.
(Take En = Lip(Y) for every n.) ��

As a consequence, we also have the following functional CLT.

Corollary 1.6. Let H ∈ ( 13 , 1) and let Assumption 1.3 hold (or let Assumptions 2.1–2.3
hold and when H > 1

2 , let
∫
Fi (y) μ(dy) = 0 for every i ≥ 1.)

Then the stochastic process Z ε
t =

√
ε
∫ t/ε
0 F(Yr ) dBr converges to a Wiener process

W, weakly in Cα([0, T ]) for any α < 1
2 ∧ H. Furthermore, defining the random smooth

function Z ε,δ
t = √

ε
∫ t/ε
0 F(Yr ) dBδ

r with Bδ = φδ ∗ B, its iterated integral satisfies

lim
ε→0

lim
δ→0

∫ t

s

(
Z ε,δ
r − Z ε,δ

s

)⊗ dZ ε,δ
r =

∫ t

s
(Wr −Ws)⊗ dWr + �(t − s),

where the matrix � is given by (1.6) (which is independent of x, x̄ in this case).

Remark 1.7. Theorem 1.5 characterises limε→0 limδ→0 Xε,δ and shows that it is a
Markov process with generator A given by

(Ag)(x) =
d∑

i, j=1
∂ j

(
� j i (x, ·)∂i g

)
(x) +

d∑
i=1

F̄ i
0(x)∂i g(x). (1.9)

Our proof actually carries over with minor modifications to the case when ε → 0 for
fixed δ (but with convergence bounds that are uniform in δ!), in which case the limit is
given by the same expression (1.7), but with the matrix � given by

�δ(x, x̄) =
m∑

k=1

∫ ∞

0
Rδ(t)

∫
Fk(x, y)⊗

(
Pt Fk

)
(x̄, y) μ(dy) dt, (1.10)

where Rδ(t) = δ2H−2Ev(0)v(t/δ) and Pt = e−Lt denotes the Markov semigroup for
Y . We will derive this formula in Sect. 1.3 where we will also see that, for frozen values
of x , it is a special case of the Green–Kubo formula [42,45,61]. Note that (1.7)–(1.10)
(in particular the convergence of the flow) is also consistent with [22, Theorem 4.3]
where a somewhat analogous situation is considered. It follows from Definition 1.2 that
�δ → � as δ → 0, so that the two limits commute (in law).

Remark 1.8. There has recently been a surge in interest in the study of slow/fast systems
involving fractional Brownian motion. We already mentioned the averaging result [31]
which considers the case H > 1

2 but with F̄ �= 0. The work [60] considers the case
H ∈ ( 13 , 1) like the present article, but with the very strong assumption that F is
independent of the fast variable, in which case only F0 exhibits rapid fluctuations and
one essentially recovers classical averaging results. In [2], the authors consider the case
H > 1

2 , but with F independent of the slow variable x and, as in [31], not necessarily
averaging to zero. They obtain a description of the fluctuations for (a generalisation of)
such systems in the regime where there is an additional small parameter in front of F .



Generating Diffusions with Fractional Brownian Motion 97

Formula (1.6) holds for the continuum of parameters H ∈ ( 13 , 1). There are two
special cases that were previously known. The case H = 1

2 reduces of course to the
classical stochastic averaging results [17,30,66,67] which state that the generator of the
limiting diffusion is obtained by averaging the generator for the slow diffusion with the
x variable frozen against the invariant measure for the fast process. Note that for this
to match (1.9) one needs to interpret the stochastic integral in (1.4) in the Stratonovich
sense. This is natural given that this is the interpretation that one obtains when replacing
B by a smooth approximation, which is consistent with Remark 1.7. The fact that one
also has convergence of flows however (in the case without feedback considered here)
appears to be new even in this case.

Another set of closely related classical results deals with “time homogenisation”,
also known as the Kramers–Smoluchowski limit or diffusion creation [44,61]. There,
one considers random ODEs of the type

dXε
t

dt
= 1√

ε
F(Xε

t ,Y
ε
t ) + F0(X

ε
t ,Y

ε
t ), (1.11)

with F averaging to zero against the stationary measure μ for the fast process Y . In this
case, one also obtains a Markov process in the limit ε → 0 and its generator coincides
with (1.9) if one sets H = 1. This can be understood by noting that, at least formally,
fractional Brownian motion with Hurst parameter H = 1 is given by B(t) = ct with c a
normal random variable, so that (1.4) reduces to (1.11), except for the random constant
c, which then appears quadratically in (1.9) and therefore disappears when averaged out.

The standard proofs of averaging/homogenisation results found in the literature tend
to fall roughly into two groups. The first contains functional analytic proofs based on
general methods for studying singular limits of the form exp(tLε) forLε = ε−1L0 +L1.
This of course requires the full process (slow plus fast) to be Markovian and completely
breaks down in our situation. The second group consists of more probabilistic argu-
ments, which typically rely on using corrector techniques to construct sufficiently many
martingales to be able to exploit the well-posedness of the martingale problem for the
limitingMarkov process. The latter are in principlemore promising in our situation since
the limiting process is still Markovian, but the lack of Markov property makes it unclear
how to construct martingales from our process. (But see Sect. 5.3 for a construction that
does go in this direction.)

Instead, our proof relies on rough paths theory [15,53], which has recently been
used to recover homogenisation results (formally corresponding to the case H = 1),
for example in [40]. See also [1,7,12,14] for more recent results with a similar flavour.
In the case when the fast dynamics is non-Markovian and solves an equation driven
by a fractional Brownian motion, a collection of homogenisation results were obtained
in [23–26], while stochastic averaging results with non-Markovian fast motions are
obtained in [51,52] for the case H > 1

2 . The former group of results are proved using
rough path techniques, but there is of course an extensive literature on functional limit
theorems based on either central or non-central limit theorems, see for example [3,5,6,
10,54,62,63].

Finally, note that many physical systems can be regarded as a slow/fast systems, this
includes secondorderLangevin equations and taggedparticles in a turbulent randomfield
[4,8,16,41,42,61,68]. They also arise in the context of perturbed completely integrable
Hamiltonian systems [20,49] and geometric stochastic systems [21,48,50,59]. See also
[13,47,70] for some review articles/monographs.
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Remark 1.9. It may be surprising that, when H < 1
2 , even though Xε is driven by a

fractional Brownian motion and F(x, y) isn’t assumed to be centred in the y variable,
the limit X̄ is a regular diffusion. This is unlike the case H > 1

2 [31,52] where a non-
centred F leads to an averaging result with a process driven by fBm in the limit. This
change in behaviour can be understood heuristically as follows. With η as in (3.5), the
covariance of t �→ f (Y ε

t )Ḃt is given by ζε(t − s) = η′′(t − s)g((t − s)/ε) for some
function g(t) = 〈 f, Pt f 〉, that would typically converge quite fast to a non-zero limit.
The scaling properties of η then show that

∫
R

η′′(t)g(t/ε) dt = ε2H−1
∫
R

η′′(t)g(t) dt = Cgε
2H−1,

for some constant Cg which has no reason to vanish in general. As a consequence,
ε1−2H ζε converges pointwise to 0 while its integral remains constant, suggesting that

ε
1
2−H f (Y ε

t )Ḃt indeed converges to a white noise. When H > 1
2 however, η′′ is not

absolutely integrable at infinity and one needs to assume that g vanishes there, which
leads to a centering condition. A similar transition from diffusive to super-diffusive
behaviour at H = 1

2 was observed in a different context in [41].

Remark 1.10. As explained, our result implies more, namely that the (random) flow
induced by the SDE (1.4) converges in law to that induced by the Kunita-type SDE [46]

dxi = Wi (x, dt) +
(
∂

(2)
j � j i

)
(x, x) dt + F̄ i

0(x) dt. (1.12)

In other words, the flows ψε
s,t , where ψε

s,t (x) denotes the solution at time t to the x-
component of (1.4) with initial condition x at time s, converge to a limit ψs,t which is
Markovian in the sense that ψs,t and ψu,v are independent whenever [s, t)∩ [u, v) = ∅.
This remark appears to be novel even when H = 1

2 , but it is unclear whether it extends
to the case when x feeds back into the dynamic of y as in (1.2).

Remark 1.11. The term ∂
(2)
j � j i appearing in (1.12) looks “almost” like an Itô-Stratono-

vich correction. In fact, whenL is self-adjoint on L2(μ), one has�i j (x, x̄) = � j i (x̄, x)
in which case (1.12) is equivalent to dxi = Wi (x, ◦ dt) + F̄ i

0(x) dt .

1.3. Heuristics for general slow/fast random ODEs. We now show how to heuristically
derive (1.10). Consider a random ODE of the form

dXε
t

dt
= 1√

ε
F̂(Xε

t , Z
ε
t ), (1.13)

where Z ε
t = Z(t/ε) for some stationary (but not necessarily Markovian!) stochastic

process Z and F̂(x, ·) is assumed to be centred with respect to the stationary measure of
Z . In the case when F̂(x, z) = F̂(z) does not depend on x , it follows from the Green–
Kubo formula [42,45,61] that, at least when Z has sufficiently nice mixing properties,
Xε converges as ε → 0 to a Wiener process with covariance � + ��, where

� =
∫ ∞

0
E

(
F̂(Z0)⊗ F̂(Zt )

)
dt.
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This suggests that a natural quantity to consider in the general case is

�(x, x̄) =
∫ ∞

0
E

(
F̂(x, Z0)⊗ F̂(x̄, Zt )

)
dt, (1.14)

and that the limit of Xε as ε → 0 is a diffusion with generator of the form

(
Ag

)
(x) = �i j (x, x)∂

2
i j g(x) + bi (x)∂i g(x), (1.15)

for some drift term b.
To derive the correct expression for the drift b, we note that one expects

E
(
Xε
t+δt − Xε

t |Ft
) ≈ δt b(Xε

t ),

in the regime ε � δt � 1. The left-hand side of this expression is given by

1√
ε

∫ t+δt

t
E

(
F̂(Xε

s , Z
ε
s ) |Ft

)
ds. (1.16)

To lowest order, one can approximate this expression by replacing Xε
s by Xε

t , but the
resulting expression vanishes rapidly for s � t + ε due to the centering condition on F̂ .
To the next order, one has

E
(
F̂(Xε

s , Z
ε
s ) |Ft

) ≈ E
(
F̂

(
Xε
t +

1√
ε

∫ s

t
F̂(Xε

t , Z
ε
r ) dr, Z

ε
s

) ∣∣∣Ft

)

≈ E
(
F̂(Xε

t , Z
ε
s ) |Ft

)
+

1√
ε

∫ s

t
E

(
DF̂(Xε

t , Z
ε
s )F̂(Xε

t , Z
ε
r ) |Ft

)
dr

≈ √
ε

∫ ∞

0
E

(
DF̂(Xε

t , Zu)F̂(Xε
t , Z0) |Ft

)
du, (1.17)

where the last identity follows from the substitution u = (s − r)/ε combined with the
fact that, provided that Z is sufficiently rapidly mixing, we expect the main contribution
from this integral to come from |u| ≈ 1,while typical values of s are such that (s−t)/ε ≈
δt/ε � 1. Combining this with (1.16) eventually yields the expression

b(x) =
∫ ∞

0
DF̂(x, Zs)F̂(x, Z0) ds.

Comparing this with (1.14), we conclude that

bi (x) =
(
∂ j� j i (x, ·)

)
(x),

(summation over repeated indices is implied) so that (1.15) can be written as

(
Ag

)
(x) = ∂ j

(
� j i (x, ·)∂i g

)
(x),

which does coincide with the expression (1.9) as desired.
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In order to link this calculation with the setting of the previous section, we note
that (1.5) (with F0 = 0 for simplicity) can be coerced into the form (1.13) by setting
Zt = (δH−1v(t/δ),Yt ) as well as F̂(x, (v, y)) = F(x, y)v. In this case, one has

E
(
F̂(x, Z0)⊗ F̂(x̄, Zt )

) = δ2H−2R(t/δ)
m∑

k=1
E

(
Fk(x,Y0)⊗ Fk(x̄,Yt )

)

= Rδ(t)
m∑

k=1

∫
Fk(x, y)⊗

(
Pt Fk

)
(x̄, y) μ(dy),

so that one does indeed recover the expression (1.10) for any fixed δ.

Remark 1.12. The eagle-eyed reader will have spotted that since the stationary measure
of Z isN (0,C)⊗μ for some multiple C of the identity matrix and since F̂(x, (v, y)) is
linear in v, the centering condition for F̂ is always satisfied, independently of the choice
of F . This explains why our main result does not require any centering condition when
H ≤ 1

2 . When H > 1
2 however, the covariance function R decays too slowly for the

heuristic derivation just given to apply. The centering condition for F then guarantees
that correlations decay sufficiently fast to justify the second step in (1.17).

The remainder of this article is structured as follows. In Sect. 2 we introduce the
assumptions on the nonlinearities Fi aswell as the fast process Y , we discuss a few exam-
ples, and we give provide the statement of our main result. In Sect. 3 we then show that
solutions to (1.5) converge as δ → 0, which yields in particular a precise interpretation of
what wemean by (1.4) when H < 1

2 . The strategy of proof is as follows. Given a smooth
mollification Bδ of B, we first show convergence of

∫ t
s

∫ r
s f (u) Ḃδ(u)du g(r) Ḃδ(r)dr

as δ → 0 for any deterministic H -Hölder continuous functions f, g. While we are able
to reduce this to existing criteria for canonical rough path lifts of Gaussian processes
[9,18] in the case where the two fractional Brownian motions appearing in this expres-
sion are independent, the case where they are equal requires a bit more care and relies
on a simple trick given in Proposition 3.4, which is of independent interest. This then
allows us to build an infinite-dimensional rough path Zε (taking values in a space of
vector fields on Rd ) associated to (1.4) in a similar way as in [40, Sec. 1.5] (see also
the “nonlinear rough paths” of [58] and [26]) and to reformulate (1.4) as an RDE driven
by Zε with nonlinearity given by point evaluation. Section 3.2 provides details of the
construction of Zε, while Sect. 3.3 then uses it to formulate our main technical result,
namely Theorem 3.14 which shows that Zε converges to a certain rough path lift of an
infinite-dimensional Wiener process with covariance function given by �. The remain-
der of the article is devoted to the proof of this convergence statement. Section 4 shows
tightness of the family {Zε}ε≤1, while we identify its limit in Sect. 5. In both sections,
the cases H < 1

2 and H > 1
2 are treated in a completely different way.

The fact thatwehave convergenceof the full infinite-dimensional roughpath allowsus
to conclude that we do not just have convergence of solutions for fixed initial conditions,
but of the full solution flow. One point of note is that there are two separate sources of
randomness, namely the Markov process Y and the fractional Brownian motion B. Our
convergence result is “annealed” in the sense that our convergence in law requires both
sources, but a number of intermediate results are “quenched” in the sense that they hold
for almost every realisation of Y . It is an open question whether our final convergence
result also holds in the quenched sense.
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2. Precise Formulation and Results

In this section, we collect the precise assumptions on the functions Fi as well as the
Markov process Y .

Convention. We write A � B as shorthand for A ≤ K B with a constant K that will
differ from statement to statement.

2.1. Technical assumptions on the fast variable Y. Throughout the article we fix H ∈
( 13 , 1) as well as a sequence (En)n≥0 of Banach spaces such that En ⊂ En+1 and
En ⊂ L1(Y, μ) for every n ≥ 0, and such that pointwise multiplication is a continuous
operation from E0 × En into En+1 for every n ≥ 0. We also write simply E instead of
E0 and assume E contains constant functions. See Sect. 2.2 below for two classes of
examples showing what type of spaces we have in mind here.

First, we impose that Y has “nice” ergodic properties in the following sense, which
in particular implies that μ is its unique invariant measure on Y .

Assumption 2.1. Let N = ∞ for H > 1
2 and N = 2 for H ∈ ( 13 ,

1
2 ]. For every

n ∈ [1, N ), the semigroup Pt extends to a strongly continuous semigroup on En and
there exist constants C and c > 0 (possibly depending on n) such that, for every f ∈ En
with

∫
Y f dμ = 0, one has

‖Pt f ‖En ≤ Ce−ct‖ f ‖En . (2.1)

In the low regularity case, we also assume that the process Y has some sample path
continuity when composed with a function in E2.

Assumption 2.2. For H ∈ ( 13 ,
1
2 ) there exists p� > max{4d, 12/(3H − 1)} such that

for every f ∈ E2

‖ f (Yt )− f (Y0)‖L p� ≤ c‖ f ‖E2(t
H ∧ 1) ∀t ≥ 0, (2.2)

for some constant c > 0.

We also need some integrability.

Assumption 2.3. For H ≥ 1
2 , one has En ⊂ L2(Y, μ) for every n ≥ 0. For H < 1

2 ,
one has E2 ⊂ L2(Y, μ) and E ⊂ L p� (Y, μ).

Remark 2.4. When combining it with the inclusion of the product, Assumption 2.3
implies that E ⊂ ⋂

p≥1 L p(Y, μ) for H ≥ 1
2 .

Another consequence of these assumptions is as follows.

Remark 2.5. As a consequence of Assumption 2.2, we conclude that if f ∈ E2 and
H < 1

2 , then

‖Pt f − f ‖2μ = E
∣∣E(

f (Yt )− f (Y0) | Y0
)∣∣2 ≤ E| f (Yt )− f (Y0)|2

≤ ‖ f ‖2E2

(
t2H ∧ 1

)
.

Recalling the definition of Lα from Definition 1.2, it follows that E2 ⊂ Dom(Lα) for
every α < H so that (1.6) is indeed well defined provided that Fk(x, ·) ∈ E2 for every
x . This will be guaranteed by Assumption 2.7 below.
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2.2. Examples of fast variables . One possible concrete framework is as follows. Fix
two weights V : Y → [1,∞] and W : Y → (0,∞) and a metric d on Y generating
its topology with the property that there exists C > 0 such that, for all x, y ∈ Y with
d(x, y) ≤ 1, one has

V (x) ≤ CV (y), W (x) ≤ CW (y). (2.3)

For n ≥ 1, we then let BV,W be the Banach space of functions f : Y → R such that

‖ f ‖V,W
def= sup

x∈Y
| f (x)|
V (x)

+ sup
x,y∈Y

d(x,y)≤1

| f (x)− f (y)|
d(x, y)W (x)V (x)

< ∞.

One choice of scale of function spaces that is suitable for a large class of Markov
processes is to take En = BV,W for every n ≥ 1 (and suitably chosen V and W ), while
E0 is chosen be the space of bounded Lipschitz continuous functions, namely B1,1.

This framework is relatively general since it allows for a wide variety of choices of
V , W , and of distance functions on Y , see [33,36]. For example, it was shown in [32,
Thm. 1.4] that the 2D stochastic Navier–Stokes equations exhibit a spectral gap in such
spaces under extremely weak conditions on the driving noise. More precisely, for every
η small enough there exist constants C and γ such that

∥∥∥Pt f −
∫

f dμ

∥∥∥
η
≤ Ce−γ t‖ f ‖η,

for every Fréchet differentiable function f for every t ≥ 0, where

‖ f ‖η = sup
x

e−η|x |2(| f (x)| + |Df (x)|). (2.4)

This at first sight appears to fall outside our framework, but one notices that if one sets

d(x, y) = inf
γ :x→y

∫ 1

0
(1 + |γ (t)|)|γ̇ (t)| dt, (2.5)

then the norm ‖ · ‖V,W with V (x) = exp(η|x |2) and W (x) = 1/(1 + |x |) is equivalent
to the norm (2.4). The reason for the choice of d as in (2.5), which is then “undone” by
our choice of W , is to guarantee that (2.3) holds for V , which would not be the case for
|x − y| ≤ 1 in the Euclidean distance.

To verify Assumption 2.2 one can then for example make use of the following.

Lemma 2.6. Suppose that
∫ (

V (x)(1+W (x))
)p� μ(dx) < ∞ and there exists a constant

c such that, for some α0 > 1− 2H,

‖d(Yt ,Y0)‖L p� ≤ c
(
tα0 ∧ 1

) ∀t ≥ 0. (2.6)

Let f ∈ BV,W and 2p ≤ p�, then

‖ f (Yt )− f (Y0)‖L p � ‖ f ‖V,W (1 ∧ tα0).

In particular, on any fixed time interval, we have E‖ f (Y·)‖pCα < ∞ provided that
p(α0 − α) > 1.
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Proof. For f ∈ E with ‖ f ‖E ≤ 1 and for p ≤ 1
2 p�, one has

∥∥ f (Yt )− f (Y0)‖L p ≤ ‖W (Y0)V (Y0)d(Yt ,Y0) + 1d(Yt ,Y0)>1‖ f ‖E
(
V (Y0) + V (Yt )

)∥∥
L p

� ‖(1 +W (Y0))V (Y0)‖L2p

(
(1 ∧ tα) + P(d(Yt ,Y0) > 1)

1
2p

)

� 1 ∧ tα,

where we combined (2.6) with Markov’s inequality in the last step. ��
When H ≥ 1

2 , Assumption 2.2 is empty, so only integrability conditions are required
on the spaces En . This allows for example to use Harris’s theorem [29,34,55] to verify
Assumption 2.1 for spaces of functions with weighted supremum norms.More precisely,
one would then take E to be the space of all bounded Borel measurable functions and
En = BV , the Banach space of functions f : Y → R such that

‖ f ‖V def= sup
x∈Y

| f (x)|
V (x)

< ∞.

In order to verify our assumptions, it then suffices that V is a square integrable Lyapunov
function for the Markov process Y and that the sublevel sets of V satisfy a ‘small set’
condition for the transition probabilities of Y [55].

2.3. Main results. One final assumption we need is that the nonlinearities F and F0
appearing in (1.4) are sufficiently nice E-valued functions of their first argument. More
precisely, we assume the following.

Assumption 2.7. The map x �→ F(x, ·) is of class C4 with values in E and there exists
an exponent κ > 16d

p�
with p� as in Assumption 2.2 (and simply κ > 0 when H > 1

2 )
such that, for every multi-index � of length at most 4,

‖D�
x F(x, ·)‖E � (1 + |x |)−κ .

The same is assumed to hold true for F0. When H > 1
2 , we further assume that∫

Fi (x, y) μ(dy) = 0 for every i �= 0 and every x.

The condition F ∈ C4 is of course suboptimal and could probably be lowered to
F ∈ Cβ for β > max{H−1, 2} and F0 ∈ Cβ for β > 1, at least if enough integrability
is assumed in Assumption 2.3. We also now fix a Schwartz function φ integrating to 1
and set φδ(t) = 1

δ
φ(t/δ). We then write Bδ for the convolution of B with this mollifier,

namely

Bδ(t) = 1

δ
(φδ ∗ B)(t) = 1

δ

∫
R

φ
( t − s

δ

)
B(s) ds.

With this notation, the solutions to (1.5) are equal in law to the process given by

Ẋε,δ
t = ε

1
2−H F(Xε,δ

t ,Y ε
t ) Ḃεδ + F0(X

ε,δ
t ,Y ε

t ). (2.7)

Since Bεδ is smooth, this equation should be interpreted as an ordinary differential
equation that just happens to have random coefficients. With all these preliminaries at
hand, our main result is the following.
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Theorem 2.8. For H ∈ ( 13 , 1] and under Assumptions 2.1–2.3, and 2.7, the conclusions
of Theorem 1.5 hold.With Xε,δ defined in (2.7), the convergence Xε,δ → Xε furthermore
holds in probability.

Proof. The convergence in probability of the flow Xε,δ → Xε is the content of Propo-
sition 3.2 below. The proof of the conclusion of Theorem 1.5, namely the convergence
in law of the flow for (1.4) as ε → 0 is the content of Corollary 3.15. ��

3. Convergence of Smooth Approximations

We first address the question of the convergence in probability of solutions to (1.5) to
those of (1.4) as δ → 0 for ε > 0 fixed. In fact, we will directly provide an interpre-
tation of (1.4) and show that this interpretation is sufficiently stable to allow for the
approximation (1.5).

Our convergence proof relies on the theory of rough paths; we refer to [15] for
an introduction. The main insight of this theory is that even though, for H ≤ 1

2 , the
solution map B �→ X for equations of the type (1.4) isn’t continuous when viewing B as
an element of any classical function space large enough to contain typical sample paths
of fractional Brownian motion, it does become continuous when enhancing B with its
iterated integrals B = ∫

B⊗ dB and endowing the space of pairs (B,B) with a suitable
topology.

For this, consider for any x ∈ Rd the processes

Z ε,δ
s,t (x) = ε

1
2−H

∫ t

s
F(x,Y ε

r ) dBδ(r), Z̄ ε
s,t (x) =

∫ t

s
F0(x,Y

ε
r ) dr. (3.1)

Here, the first integral is interpreted as a Wiener integral which makes sense also when
δ = 0 and, when δ > 0, coincides with the Riemann–Stieltjes integral. Recall that
the Wiener integral of a deterministic (or independent) integrand against any Gaussian
process B is well-defined provided that the integrand belongs to the reproducing kernel
Hilbert space HB of B and provides an isometric embedding HB  f �→ ∫

f d B ∈
L2(�,P). In the case of fractional Brownian motion, it is known that L2 ⊂ HB when
H ≥ 1

2 while for H < 1
2 one has Cα ⊂ HB for every α > 1

2 − H . The fact that for fixed
x and ε > 0, t �→ F(x,Y ε

t ) belongs toHB for all H > 1
3 is then a simple consequence

of Assumptions 2.2 and 2.3 combined with Kolmogorov’s continuity criterion (when
H < 1

2 ).
Write B = C3b(Rd ,Rd) and Bk = C3b(Rd·k, (Rd)⊗k), so that one has canonical

inclusions of the algebraic tensor product Bk ⊗0 B� ⊂ Bk+� with the usual identification
( f ⊗ g)(x, y) = f (x)g(y) thanks to the fact that ‖ f ⊗ g‖Bk+�

≤ ‖ f ‖B�
‖g‖Bk . Given a

final time T > 0 and α ∈ ( 13 ,
1
2 ), we define the space C

α([0, T ],B ⊕ B2) of α-Hölder
rough paths in the usual way [15, Def. 2.1], but with all norms of level-2 objects in B2.
Recall that anα-Hölder roughpath (X,X) is a pair of functionswhere X ∈ C α([0, T ],B)

with X0 = 0 and X : �T → B2 where �T := {(s, t) : 0 ≤ s ≤ t ≤ T } is the

two-simplex with |X|2α := sup(s,t)∈�T

‖Xs,t‖B2
|t−s|2α < ∞. In addition, Chen’s relation is

imposed, namely Xs,t − Xs,u − Xu,t = Xs,u ⊗ Xu,t .
We define the second-order processes Zε,δ and Z̄

ε by

Z
ε,δ
s,t (x, x̄) =

∫ t

s
Z ε,δ
s,r (x) dZ

ε,δ
s,r (x̄), Z̄

ε
s,t (x, x̄) =

∫ t

s
Z̄ ε
s,r (x) d Z̄

ε
s,r (x̄),
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(the differentials are taken in the r variable) and we define Zε,δ = (Z ε,δ,Zε,δ), Z̄ε =
(Z̄ ε, Z̄ε). Note here that r �→ Z ε,δ

s,r (x) is smooth and r �→ Z̄ ε
s,r (x) is Hölder continuous

for any exponent strictly less than 1, so these integrals should be interpreted as regular
Riemann–Stieltjes integrals. In Sect. 3.2 below we will give a proof of the following
result.

Proposition 3.1. Let H ∈ ( 13 , 1], let α ∈ ( 13 , H ∧ 1
2 ) and β ∈ (1 − α, 1), and let

Assumptions 2.1–2.3, and 2.7 hold. Then, Zε,δ and Z̄ε admit versions that are random
elements inC α([0, T ],B⊕B2) andC β([0, T ],B⊕B2) respectively. Furthermore,Zε,δ

converges in probability in C α([0, T ],B ⊕ B2) as δ → 0 to the random rough path Zε

characterised in Proposition 3.11 below. (In particular, the first order component Zε of
Zε is given, for any fixed x, by the Wiener integral (3.1) with δ = 0.)

For now, we take this result as granted. With this result in place, we obtain the
following convergence result as δ → 0.

Proposition 3.2. The second claim of Theorem 2.8 holds.

Proof. With the space B as above, let δ : Rd → L(B,Rd) be the function given by
δ(x)( f ) = f (x). We then claim that, for any ε, δ > 0, (2.7) can be rewritten as the
rough differential equation (RDE) driven by the infinite-dimensional rough paths Zε,δ

and Z̄ε defined above and given by

dX = δ(X) dZε,δ + δ(X) dZ̄ε. (3.2)

Note that since α + β > 1, there is no need to specify cross-integrals between Zε,δ and
Z̄ε since they can be defined in a canonical way using Young integration [72].

To check that this RDE is well-posed for any rough paths Zε,δ and Z̄ε belonging to
C α([0, T ],B⊕ B2) and C β([0, T ],B⊕ B2) respectively, we note first that one readily
verifies that the map δ is Fréchet differentiable, and actually even C3b . Its differential
Dδ at x ∈ Rd in the direction of y ∈ Rd is given by (Dδ)x (y)(h) = (Dh)x (y) where
h ∈ L(B,Rd). Morerover |(Dδ)x (h)| ≤ |h|B. In particular we may consider the map
Dδ · δ : Rd → L(B ⊗ B,Rd) which for h = h1 ⊗ h2 ∈ B2 is given by(

Dδ · δ)(x)h = (Dδ)x
(
δ(x)(h1)

)
(h2) = (Dδ)x

(
h1(x)

)
(h2)

= (Dh2)x (h1(x)) = (tr D(2)h)(x, x), (3.3)

for a suitable partial trace tr. This shows that Dδ·δ extends continuously to a C2b map from
Rd into L(B2,Rd). (Since B2 differs from the projective tensor product of B with itself,
this doesn’t automatically follow from the fact that δ itself is C3b .) Retracing the standard
existence and uniqueness proof for RDEs, [15, Sec. 8.5] then shows that (3.2) admits
unique (global) solutions for every initial condition and every driving path. Furthermore,
if the sample path t �→ Y (t) is given by any continuous Y-valued function then, under
the stated regularity conditions on F, F0, it is straightforward to verify that the solutions
to (3.2) coincide with those of (2.7).

Since the RDE solution is a jointly locally Lipschitz continuous function of both
the initial data x0 and the driving paths Zε,δ and Z̄ε into Cα(R+,Rd), the claim that
Xε,δ → Xε in probability then follows immediately from Proposition 3.1. ��
Remark 3.3. This shows that it is consistent to define solutions to (1.4) in the general
case as simply being a shorthand for solutions to (3.2) driven by the pair of rough paths
Zε and Z̄ε. This is the interpretation that we will use from now on. The fact that in the
special case H = 1

2 this coincides with the Stratonovich interpretation of the equation
follows as in [15, Thm 9.1].
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3.1. Preliminary results. In this section we present a few general results that will be
used in the proof of Proposition 3.1. We start with the following elementary property of
the second Wiener chaos.

Proposition 3.4. Let H ⊂ E be an abstract Wiener space and let B, B̃ be two i.i.d.
Gaussian random variables on E with Cameron–Martin spaceH. Let K δ : E × E → R
be continuous bilinear maps such that the limit K̃ = limδ→0 K δ(B, B̃) exists in L2.
Then, the limit

K = lim
δ→0

(
K δ(B, B)− EK δ(B, B)

)
(3.4)

exists in L2. Furthermore, the limit in (3.4) depends only on the limit K̃ and not on the
approximating sequence K δ and one has the bound EK 2 ≤ 2EK̃ 2.

Proof. The Gaussian probability space generated by the pair (B, B̃) has Cameron–
Martin space H ⊕ H̃ where H̃ is a copy of H. Since K δ is bilinear and K δ(B, B̃) has
vanishing expectation, it belongs to the second homogeneousWiener chaos, so that there
exists K̂δ ∈ (H⊕H̃)⊗s (H⊕H̃)with K δ(B, B̃) = I2(K̂δ), where Ik denotes the usual
isometry between kth symmetric tensor power and kth homogeneous Wiener chaos, see
[57].

Note now that, interpreting K̂δ as a Hilbert–Schmidt operator onH⊕ H̃, there exists
Kδ ∈ H̃⊗H such that K̂δ = ιKδ , where ι : H̃⊗H → (H⊕ H̃)⊗s (H⊕ H̃) is given
by

ιK = 1

2

(
0 τK
K 0

)
,

with the obvious matrix notation and τ : H̃⊗H → H⊗ H̃ the transposition operator.
This is because the first diagonal block is obtained by testing against 〈k, (B, B̃)〉

where k = ( f, 0)⊗s (g, 0) with f, g ∈ H, yielding

E
(
K δ(B, B̃)

(〈 f, B〉〈g, B〉 − 〈 f, g〉)) = 0.

The second diagonal block vanishes for the same reason with the roles of B and B̃
exchanged. (Here we denote by x �→ 〈x, f 〉 the unique element of L2(E) which is
linear on a set of full measure containing H and coincides with 〈 f, ·〉 there. In fact,
〈x, f 〉 = f ∗(x) when f ∗ ∈ E∗ and 〈B, f 〉 = f ∗ ◦ B. )

On the other hand, one has

K δ"(B, B)
def= K δ(B, B)− EK δ(B, B) = 1

2
I2(Kδ + τKδ),

where this time I2 refers to the isometry between H ⊗s H and the second chaos gen-
erated by B only. Since I2 and τ are both isometries, it immediately follows that
E(K δ"(B, B))2 ≤ ‖Kδ‖2 = 2‖ιKδ‖2 = 2E(K δ(B, B̃))2, and similarly for differences
K δ − K δ′ , so that the claim follows. ��
Remark 3.5. It follows immediately from (3.4) that if we replace K δ by the same
sequence of bilinear maps, but with their two arguments exchanged, the limit one obtains
is the same.
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Before we turn to the precise statement, we introduce the following notation which will
be used repeatedly in the sequel. We write η for the distribution on R given by

〈η, φ〉 =
∫
R
|t |2Hφ(t) dt, (3.5)

and η′′ for its second distributional derivative. For a < 0 < b, we will then make the
abuse of notation

∫ b
a η′′(t) φ(t) dt as a shorthand for limε→0〈η′′, φ1ε[a,b]〉, where 1ε[a,b]

denotes a mollification of the indicator function 1[a,b]. The following is elementary.

Lemma 3.6. Let a < 0 < b and H ∈ ( 13 ,
1
2 ). Setting αH = H(1−2H) and φ0 = φ(0),

the limit above is given by

∫ b

a
η′′(t) φ(t) dt = −2αH

∫ b

a
|t |2H−2 (

φ(t)− φ0
)
dt + 2Hφ0

(|a|2H−1 + |b|2H−1),
(3.6)

independently of the choice of mollifier, thus justifying the notation. For a = 0, we set

∫ b

0
η′′(t) φ(t) dt = −2αH

∫ b

0
|t |2H−2 (

φ(t)− φ0
)
dt + 2Hφ0|a|2H−1,

which can be justified in a similar way, provided that the mollifier one uses is symmetric.
(This in turn is the case if we view η as the limit of covariances of smooth approximations
to fractional Brownian motion.)

For H = 1
2 , one similarly has

∫ b
a η′′(t) φ(t) dt = φ0 and

∫ b
0 η′′(t) φ(t) dt = 1

2φ0,
while for H ∈ ( 12 , 1), η

′′ is given by the locally integrable function t �→ −2αH |t |2H−2.
��

We now show that for any fixed ε > 0, the processes Z ε satisfy a suitable form of
Hölder regularity. To keep notations shorter, we define the collection of processes

Z f
s,t

def=
∫ t

s
f (r) dBi (r) =

m∑
i=1

∫ t

s
〈 f (r), ei 〉RmdBi

r , (3.7)

indexed by Rm-valued functions f that belong to the reproducing kernel space of the
fractional Brownian motion B. Here {ei } is an o.n.b. of Rm and Br = (B1

r , . . . , Bm
r ).

We start our analysis with some preliminary result for the irregular case H < 1
2 .

Lemma 3.7. Let H ∈ ( 13 ,
1
2 ) and let f ∈ Cβ([0, 1],Rm) for some β > (1 − 2H) ∨ 0.

The processes Z f satisfy the Coutin–Qian conditions [9,18, Def. 14] in the sense that

E
(
Z f
s,t (x)

2) � ‖ f ‖∞‖ f ‖Cβ |t − s|2H ,∣∣E(
Z f
s,s+h(x) Z

f
t,t+h(x)

)∣∣ � ‖ f ‖2∞|t − s|2H−2h2,

for all 0 < s < t < 1 and all h ∈ (0, t − s].
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Proof. Themixed second order distributional derivative ofE(Bδ
s B

δ
t ) is given by

1
2η

′′
δ (s−

t), the convolution of 1
2η

′′ with a symmetric mollifier at scale δ. Mollifying B and taking
limits shows that we have the identity

E(Z f
s,t )

2 = lim
δ→0

∫ t

s

∫ t

s
E(Ḃδ

u Ḃ
δ
v) f (u) f (v) du dv

= 1

2

∫ t

s

∫ t

s
η′′(x − y) f (x) f (y) dx dy,

(with summation over the components of f implied). For H < 1
2 , this yields the bound

E(Z f
s,t )

2 = 1

4

∫ t−s

s−t
η′′(v)

∫ 2t−|v|

2s+|v|

(
f
(u + v

2

)
f
(u − v

2

))
du dv

= −1

2
αH

∫ t−s

s−t
|v|2H−2

∫ 2t−|v|

2s+|v|

(
f
(u + v

2

)
f
(u − v

2

)
− f

(u
2

)2)
du dv

+
αH

1− 2H

∫ t−s

0
u2H−1

(
f
(
t − u

2

)2
+ f

(
s +

u

2

)2)
du

� ‖ f ‖Cβ‖ f ‖∞|t − s|2H+β + ‖ f ‖2∞|t − s|2H , (3.8)

as required.
Regarding the covariance, we have

∣∣E(
Z f
s,s+h Z

f
t,t+h

)∣∣ � ‖ f ‖2∞
∫ h

0

∫ h

0
|t − s + v − u|2H−2 du dv

� ‖ f ‖2∞h2|t − s|2H−2,
when 0 < h ≤ t − s so the intervals overlap only at most one point, as required. ��

If B̃ is an independent copy of B, we can combine this result with those of
[18] to conclude that there is a canonical rough path associated with the path( ∫

f (r) dB(r),
∫
g(r) d B̃(r)

)
for any f, g ∈ Cβ([0, 1],Rm). We now show that there

also exists a canonical lift for (Z f , Zg), where the integrals are defined with respect to
the same fractional Brownian motion B. With this notation, we then have the following
result.

Proposition 3.8. For H ∈ ( 13 ,
1
2 ), we set α = H and U = Cβ([0, 1],Rm) for some

β ∈ ( 13 , H). For H ∈ [ 12 , 1), we fix p > 3/(3H − 1) and set α = H − 1
p and

U = L p([0, 1],Rm).
Then, for any finite collection { fi }i≤N ⊂ U, there is a “canonical lift” of

Z f = (Z f1 , . . . , Z fN )

given by (3.7) to a geometric rough path Z f = (Z f ,Z f ) on RN such that

sup
s �=t

|t − s|−qαE
(
|Z f

s,t |q + |Z f
s,t |

q
2

)
�

∑
i

‖ fi‖qU , (3.9)

for every q ≥ 1. This is obtained by taking the limit as δ → 0 of the canonical lift of the
smooth paths Z δ, f defined as in (3.7) but with B replaced by Bδ .
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Remark 3.9. As usual, “geometric” here means that Z f is the limit of canonical lifts of
smooth functions. Indeed, for Bδ the convolution of B with a mollifier at scale δ > 0,
Z

f is given by

(Z
f
s,t )i j = lim

δ→0

∫ t

s

∫ r

s
fi (u) Ḃδ(u)du f j (r) Ḃ

δ(r)dr,

and this limit is independent of the choice of mollifier (and therefore “canonical”).

Proof. We only need to show (3.9) for q = 2 since Z and Z belong to a Wiener chaos
of fixed order. (Recall that the fi are considered deterministic here.)

We start with the case H ∈ ( 13 ,
1
2 ). Let B̃ denote an independent copy of the fractional

Brownian motion B and let Z̃ f,g = (Z f , Z̃ g) where Z̃ g is defined like Zg but with B
replaced by B̃. By Lemma 3.7, for any f, g ∈ Cβ , we can then apply [18, Thm 35] to
construct a second-order process Z̃ f,g

s,t satisfying the Chen identity

Z̃
f,g
s,t − Z̃

f,g
s,u − Z̃

f,g
u,t = Z f

s,u Z̃
g
u,t .

It furthermore coincides with the Wiener integral

Z̃
f,g
s,t =

∫ t

s
Z f
s,r d Z̃

g
s,r =

∫ t

s

∫ r

s
f (u) dB(u) g(r) d B̃(r), (3.10)

which makes sense since the Coutin–Qian condition guarantees that r �→ Z f
s,r belongs

to the reproducing kernel space of Zg . It is furthermore such that smooth approximations
to (3.10) (replace B and B̃ by Bδ and B̃δ , obtained by convolution with a mollifier at
scale δ → 0) converge to it in L2. In particular, Z̃ f,g belongs to the secondWiener chaos
generated by (B, B̃) and is of the form of the limits considered in Proposition 3.4.

We now want to replace B̃ by B. For an approximation Bδ as mentioned above,
setting

Z
δ, f,g
s,t =

∫ t

s

∫ r

s
f (u) dBδ(u) g(r) dBδ(r), (3.11)

we have

EZδ, f,g
s,t = 1

2

∫ t

s

∫ r

s
f (u)g(r) η′′δ (u − r) du dr, (3.12)

where ηδ is an even δ-mollification of t �→ |t |2H , so that in particular ∫∞
0 η′′δ (s) ds = 0,

since η′δ(0) = 0. Similarly to (3.8), we can then rewrite (3.12) as

EZδ, f,g
s,t = 1

2

∫ t

s
g(r)

∫ r

s

(
f (u)− f (r)

)
η′′δ (r − u) du dr

− 1

2

∫ t

s
g(r)

∫ s

−∞
f (r)η′′δ (r − u) du dr.



110 M. Hairer, X.-M. Li

It follows immediately that one has

lim
δ→0

EZδ, f,g
s,t = H(2H − 1)

∫ t

s
g(r)

∫ r

s

(
f (u)− f (r)

)|r − u|2H−2 du dr

− H
∫ t

s
g(r) f (r)|r − s|2H−1 dr, (3.13)

which is bounded by some multiple of

‖ f ‖Cβ‖g‖∞|t − s|2H+β + ‖ f ‖∞‖g‖∞|t − s|2H .

Combining this with Proposition 3.4, we conclude that

Z
f,g
s,t = lim

δ→0
Z

δ, f,g
s,t , (3.14)

exists in probability, is independent of the choice ofmollification, and satisfies the bound

|EZ f,g
s,t | � ‖ f ‖Cβ‖g‖∞|t − s|2H+β + ‖ f ‖∞‖g‖∞|t − s|2H . (3.15)

It now suffices to set Z f,i j
s,t = Z

fi , f j
s,t . Both the fact that Chen’s relation holds and the

fact that the resulting rough path is geometric follow at once from the fact that these
properties hold for the smooth approximations.

Combining (3.15) with the fact that the rough path obtained from [18, Thm 35]
satisfies the bound (3.9) with α = H as a consequence of Lemma 3.7, the claim follows.

We now turn to the case H = 1
2 where it is well known that Zδ, f,g

s,t defined in (3.11)
converges to the Stratonovich integral

∫ t
s

∫ r
s f (u) dB(u) g(r) ◦ dB(r), so that

Z
f,g
s,t =

∫ t

s

∫ r

s
f (u) dB(u) g(r) dB(r) +

1

2

∫ t

s
〈 f (u), g(u)〉 du.

A simple consequence of Hölder’s inequality then leads to the bounds

E|Z f
s,t |2 � ‖ f ‖L p |t − s|1− 2

p , E|Z f,g
s,t |2 � ‖ f ‖L p‖g‖L p |t − s|2− 4

p ,

where ‖ f ‖L p = ‖ f ‖L p([0,1]). This shows again that the bound (3.9) holds, this time
with α = 1

2 − 1
p (and q arbitrary), and our condition on p guarantees that this is greater

than 1
3 .

For H > 1
2 , the first identity in (3.8) above combined with the positivity of the

distribution −η′′ and Hölder’s inequality yields the bound

E(Z f
s,t )

2 � |t − s|1− 2
p ‖ f ‖2L p

∣∣∣
∫ t−s

s−t
η′′(v) dv

∣∣∣ � ‖ f ‖2L p |t − s|2H− 2
p .

Similarly, again as a consequence of the positivity of −η′′, we have the bound

E(Z
f,g
s,t )2 ≤ E

(
(Z | f |s,t )

2(Z |g|s,t )
2) ≤ 3E(Z | f |s,t )

2E(Z |g|s,t )
2 � ‖ f ‖2L p‖g‖2L p |t − s|4H− 4

p ,

which shows again that (3.9) holds. ��
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3.2. Construction and convergence of the rough driver as δ → 0. The aimof this section
is to construct the rough path Zε (this is the content of Proposition 3.11) and to show
that this construction enjoys good stability properties. This is done by stitching together
the “canonical” rough path lift for the collection {Z ε(x)}x∈Rd obtained in Proposition
3.8. For H > 1

2 , this is just iterated Young integrals. For H = 1
2 the iterated integrals

are considered in the Stratonovich sense and, thanks to the independence of Y and B,
the first order process can be interpreted indifferently as either an Itô or a Stratonovich
integral.

In order to make use of Proposition 3.8, we use the following lemma, where Y ε
t

denotes the Markov process from Sect. 2.1.

Lemma 3.10. Let U be as in Proposition 3.8 and let Assumption 2.2 hold for some p�.
When H < 1

2 , we further assume E ⊂ L p� and β < H − 1
p�
, where U = Cβ . Then,

given f ∈ E and setting f̂ (t) = f (Y ε
t ), one has for every p < p� the bound

E‖ f̂ ‖pU � ‖ f ‖pE ,

uniformly over E. (Here we use the convention p� = ∞ when H > 1
2 .)

Proof. For H ∈ ( 13 ,
1
2 ), the assertion follows immediately from Kolmogorov’s conti-

nuity test, using Assumption 2.2 and E ⊂ L p. For H ≥ 1
2 , it suffices to note that if

f ∈ L p(Y, μ), then for any fixed ε > 0 the map f̂ : t �→ f (Y ε
t ) belongs to L p([0, 1])

almost surely and E‖ f̂ ‖pL p ≤ ‖ f ‖pL p . ��
We now show how to collect these objects into one “large” Banach space-valued

rough path. The process itself will take values in B = C3b(Rd ,Rd), with the second
order processes taking value in B2 = C3b(Rd ×Rd , (Rd)⊗2). Our aim is then to define a
B⊕B2-valued rough path (Z ε,Zε)which is the canonical lift (in the sense of Proposition
3.8 for any finite collection of x’s) of

(Z ε
s,t )(x) = ε

1
2−H

∫ t

s
F(x,Y ε

r ) dB(r). (3.16)

Let { f ε
i,x }i≤d be the collection of maps from R+ to Rm determined by

〈 f ε
i,x (t), e〉 = (F(x,Y ε

t )e)i , ∀e ∈ Rm .

With this notation at hand and recalling the construction of Z f and Z f,g as in the proof
of Proposition 3.8, it is then natural to look for a B ⊕ B2-valued rough path (Z ε,Zε)

such that, for every x, x̄ ∈ Rd , the identities

(
Z ε
s,t (x)

)
i = ε

1
2−H Z

f ε
i,x

s,t ,
(
Z

ε
s,t (x, x̄)

)
i j

def= ε1−2HZ
f ε
i,x , f

ε
j,x̄

s,t , (3.17)

hold almost surely. (Provided that F(x, ·) ∈ E for every x , the right-hand sides make
sense by combining Lemma 3.10 with Proposition 3.8.) We claim that this does indeed
define a bona fide infinite-dimensional rough path

Recall also that a rough path Z = (Z ,Z) is weakly geometric if the identity

Zs,t ⊗ Zs,t = Zs,t + Z
�
s,t , (3.18)

holds, where the transposition map (·)� : B ⊗ B → B ⊗ B swapping the two factors is
continuously extended to B2. With these notations, we have the following.
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Proposition 3.11. Let Assumptions 2.2, 2.3, and 2.7 hold and let α ∈ ( 13 , H − 1
p�

) if

H < 1
2 and α ∈ ( 13 ,

1
2 ) otherwise. Then, for any ε > 0, there exists a random rough

path Zε = (Z ε,Zε) in C α([0, T ],B ⊕ B2) that is weakly geometric and such that, for
every x, (3.17) holds almost surely.

Proof. Since the Chen relations and (3.18) are obviously satisfied for smooth approxi-
mations as in (3.11), we only need to show that the analytic constraints hold. In other
words, for any fixed T > 0 and ε > 0, we look for an almost surely finite random
variable Cε such that

‖Z ε
s,t‖B ≤ Cε|t − s|α, ‖Zε

s,t‖B2 ≤ Cε|t − s|2α,

holds uniformly over all 0 ≤ s < t ≤ T . By the Kolmogorov criterion for rough paths
[15, Thm 3.1], it suffices to show that, for some β > 0 and p ≥ 1 such that γ − 1

p > α,
one has the bounds

E‖Z ε
s,t‖pB ≤ Cε,p|t − s|pγ , E‖Zε

s,t‖p/2B2
≤ Cε,p|t − s|pγ . (3.19)

By Lemma A.1 below, it suffices to show that

sup
x∈Rd

(1 + |x |)κpE|D�Z ε
s,t (x)|p � |t − s|pγ , (3.20a)

sup
x,x̄∈Rd

(1 + |x | + |x̄ |) κp
2 E|Dk

x D
�
x̄Z

ε
s,t (x, x̄)|

p
2 � |t − s|pγ , (3.20b)

for k + � ≤ 4 and some p such that p > (4d/κ) ∨ (γ − α)−1.
Since for � ≤ 4 we have D�

x F
∗
i (x, ·) ∈ E with ‖D�

x F
∗
i (x, ·)‖E � (1 + |x |)−κ

by Assumption 2.7, it follows immediately from Proposition 3.8 combined with
Lemma 3.10 that the bound (3.20a) holds for γ = H and p ≤ p� when H < 1

2
and for any γ < H and p ≥ 1 when H ≥ 1

2 . The bound (3.20b) follows in the same
way. (These arguments are somewhat formal, but can readily be justified by taking limits
of smooth approximations.) ��

In order to prove Proposition 3.1, we make use of the following variant “in probabil-
ity” of the usual tightness criterion for convergence in law.

Proposition 3.12. Let (Z, d) be a complete separablemetric space and let {Lk : k ∈ N}
be a countable collection of continuous maps Lk : Z → R that separate elements of Z
in the sense that, for every x, y ∈ Z with x �= y there exist k such that Lk(x) �= Lk(y).

Let {Zn}n≥0 and Z∞ be Z-valued random variables such that the collection of
their laws is tight and such that Lk(Zn) → Lk(Z∞) in probability for every k. Then,
Zn → Z∞ in probability.

Proof. Let d̂ : Z2 → R+ be the continuous distance function given by

d̂(x, y) =
∑
k≥0

2−k
(
1 ∧ |Lk(x)− Lk(y)|

)
,

and note first that our assumption implies that d̂(Zn, Z∞) → 0 in probability. Given
ε > 0, tightness implies that there exists Kε ⊂ Z compact such that P(Zn �∈ Kε) ≤ ε

for every n ∈ N ∪ {∞}. Furthermore, the set {(x, y) ∈ Kε × Kε : d(x, y) ≥ ε} is
compact, so that d̂ attains its infimum δ on it. Since d̂ only vanishes on the diagonal,
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one has δ > 0 and, since d̂(Zn, Z∞) → 0 in probability, we can find N > 0 such that
P(d̂(Zn, Z∞) ≥ δ) ≤ ε for every n ≥ N .

It follows that, for every n ≥ N one has

P(d(Zn, Z∞) ≥ ε) ≤ P(Zn �∈ Kε) + P(Z∞ �∈ Kε) + P(d̂(Zn, Z∞) ≥ δ) ≤ 3ε,

which implies the claim. ��
Regarding tightness itself, the following lemma is a slight variation of well known

results.

Lemma 3.13. Let B̂ ⊂ B and B̂2 ⊂ B2 be compact embeddings of Banach spaces such
that B̂ ⊗ B̂ ⊂ B̂2 with ‖v ⊗ w‖B̂2

� ‖v‖B̂‖w‖B̂. Let A be a collection of random

B̂ ⊕ B̂2-valued rough paths such that for some α0 > 1
3 and every Z = (Z ,Z) ∈ A,

E
(‖Zs,t‖pB̂ + ‖Zs,t‖p/2B̂2

) ≤ |t − s|pα0 , (3.21)

for some p > 3/(3α0−1). Then, the laws of theZ’s inA are tight inC α([0, T ],B⊕B2)

for any T > 0 and α ∈ ( 13 , α0 − 1
p ).

Proof. Write G for the metric space given by B ⊕ B2 endowed with the metric

d(a ⊕ b, ā ⊕ b̄) = ‖ā − a‖B ∨
∥∥b̄ − b − 1

2 (ā + a)⊗ (ā − a)
∥∥1/2B2

.

Recall then that C α([0, T ],B ⊕ B2) can be identified with the usual space of α-Hölder
functions with values in G by identifying Z = (Z ,Z) with the function t �→ Zt

def=
Z0,t ⊕ Z0,t and noting that, thanks to Chen’s relations,

d
(
Zs,Zt

) = ‖Zs,t‖B ∨ ‖Zs,t + 1
2 Zs,t ⊗ Zs,t‖1/2B2

.

(See [19, Sec. 7.5] for more details andmotivation.) Since d generates the same topology
on G as that given by the Banach space structure of B⊕B2, balls of B̂⊕ B̂2 are compact
in G. The claim then follows at once from Kolmogorov’s continuity test, combined with
the fact that, given a compact metric space (X , d) and a compact subset K of a Polish
space (Y, d̄), the set Cβ(X ,K) is compact in Cα(X ,Y) for any β > α. ��
Proof of of Proposition 3.1. We apply Proposition 3.12 with the metric space Z given
by C α([0, T ],B ⊕ B2), Zn = Zε,δn for any given sequence δn → 0, and Z∞ = Zε

as constructed in Proposition 3.11. The continuous maps Lk appearing in the statement
are given by the collection of maps (Z ,Z) �→ Zt (x) and (Z ,Z) �→ Zs,t (x, x̄) for a
countable dense set of times s and t and elements x, x̄ ∈ Rd .

It follows from (3.20) and LemmaA.1 that the bound (3.21) holds forZε,δ , uniformly
in δ (but with ε fixed), so that the required tightness condition holds by Lemma 3.13. For
any fixed ε > 0, the convergences in probability Z ε,δ

t (x)i → Z ε
t (x)i andZ

ε,δ
s,t (x, x̄)i j →

Z
ε
s,t (x, x̄)i j were shown in Proposition 3.8. (It suffices to apply it with the choices
f = f ε

i,x and g = f ε
j,x̄ .) ��
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3.3. Formulation of the main technical result. The main technical result of this article
can then be formulated in the following way.

Theorem 3.14. Let H ∈ ( 13 , 1), let Assumptions 2.1–2.3, and 2.7 hold, and let α and
Zε be as in Proposition 3.11. Then, as ε → 0, Zε converges weakly in the space of
α-Hölder continuous (B,B2)-valued rough paths to a limit Z. Furthermore, there is a
Gaussian random field W as in (1.8) such that

Zs,t (x) = W (x, t)−W (x, s), Zs,t (x, x̄) =W
Itô
s,t (x, x̄) + �(x, x̄)(t − s),

where WItô
s,t (x, x̄) =

∫ t
s Zs,r (x)⊗ W (x̄, dr), interpreted as an Itô integral and � is as

in (1.6).

The proof of this result will be given in Sects. 4 and 5 below, see Proposition 5.1
which is just a slight reformulation of Theorem 3.14. We first show in Sect. 4 that the
family {Zε}ε≤1 is tight in a suitable space of rough paths and then identify its limit in
Sect. 5.

Corollary 3.15. Under the assumptions of Theorem 3.14, the solution flow of (1.4)
converges weakly to that of the Kunita-type SDE (1.7).

Proof. Define the B-valued process

Z0,ε
s,t (x) =

∫ t

s
F0(x,Y

ε
r ) dr.

It follows from Assumption 2.7 that, for k ≤ 4 and p ≤ p�,

‖Dk Z0,ε
s,t (x)‖L p ≤

∫ t

s
‖DkF0(x,Y

ε
r )‖L p dr � |t − s|(1 + |x |)−κ ,

uniformly over ε. This shows that the family {Z0,ε}ε≤1 is tight in Cβ([0, 1],B) for every
β < 1.

Furthermore, by the ergodic theorem which holds under Assumption 2.1, for every
x ,

lim
ε→0

Z0,ε
s,t (x) = (t − s)

∫
Y
F0(x, y) μ(dy),

almost surely. Since we can choose β and α such that α + β > 1 and 2β > 1, it follows
that there is no need to control any cross terms between Z0,ε and either Z ε or Z0,ε itself
in order to be able to solve equations driven by both [27,53]. Furthermore, since the
limit of Z0,ε is deterministic, one deduces joint convergence from Theorem 3.14.

By the continuity theorem for rough differential equations, the solutions of (1.4)
written in the form (3.2) converge weakly to those of the rough differential equation

dXt = δ(Xt ) dZt + δ(Xt ) dZ0
t . (3.22)

It remains to identify solutions to this equation with those of (1.7).
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This is straightforward and follows as in [15, Sec 5.1] for example. Since theGubinelli
derivative x ′ of the solution X = (x, x ′) to (3.22) is given by δ(x), the integral∫ t
0 δ(Xs)dZs is obtained as limit of the compensated Riemann sum∑

[u,v]⊂P

(
δ(xu)Zu,v + (Dδ · δ)(xu)(WItô

u,v + (u − v)�)
)

=
∑

[u,v]⊂P

(
Zu,v(xu) + (u − v)G(xu)

)
+

∑
[u,v]⊂P

(Dδ · δ)(xu)WItô
u,v, (3.23)

whereP is a partition on [0, t] and Dδ ·δ is as in (3.3). Since x is continuous and adapted
to the filtration generated by W , the first term converges to∫ t

0
W (xu, du) +

∫ t

0
G(xu) du.

The last term on the other hand converges to 0 in probability since it is a discrete
martingale and its summands are centred random variables of variance O(|v − u|2). ��

4. Tightness of the Rough Driver as ε → 0

The content of this section is the proof of the following tightness result. Let {Zε}ε≤1 be
given as in Proposition 3.11.

Proposition 4.1. Let Assumptions 2.1–2.3, and 2.7 hold. For H ∈ ( 13 ,
1
2 ], there exists

α ∈ ( 13 , H) such that the family {Zε}ε≤1 is tight in C α([0, T ],B ⊕ B2).
For H ∈ ( 12 , 1), if in addition

∫
F(x, y) μ(dy) = 0 for every x, then the family of

rough paths Zε is tight in Cα for every α ∈ ( 13 ,
1
2 ).

It will be convenient to introduce the following notation. Given f, g ∈ E , we use the
shorthand

J ε
s,t ( f ) = ε

1
2−H Z

f (Y ε· )
s,t , J

ε
s,t ( f ) = ε1−2HZ f (Y ε· ),g(Y ε· )

s,t .

We then have the following tightness criterion.

Lemma 4.2. Let p > d + 1. Assume that for any f, g ∈ E, |s − t | ≤ 1, and ε ∈ (0, 1],
‖J ε

s,t ( f )‖L p ≤ C‖ f ‖E |t − s|α0 , ∥∥Jε
s,t ( f, g)

∥∥
L p ≤ C‖ f ‖E‖g‖E |t − s|2α0 ,

where p > 3/(3α0 − 1). Let furthermore Assumption 2.7 hold with κ > 8d
p . Then the

family {Zε}ε≤1 is tight in C α([0, T ],B ⊕ B2) for any α < α0 − 1/p.

Proof. Recall that with the above notations, one has from (3.17)(
Z ε
s,t (x)

)
i = J ε

s,t

(
F∗i (x, ·)), (

Z
ε
s,t (x, x̄)

)
i j = J

ε
s,t

(
F∗i (x, ·), F∗j (x̄, ·)

)
.

By the assumption for |�| ≤ 3 one has for |s − t | ≤ 1 and |x − x ′| ≤ 1,

‖D�Z ε
s,t (x)− D�Z ε

s,t (x
′)‖L p �

∑
i

∥∥J ε
s,t

(
D�
x F

∗
i (x, ·)− D�

x F
∗
i (x ′, ·))∥∥L p

� ‖D�
x F(x, ·)− D�

x F(x ′, ·)‖E |t − s|α0
� sup

y∈[x,x ′]
‖D�

x F(y, ·)‖E |x − x ′||t − s|α0

� (1 + |x |)−κ |x − x ′||t − s|α0 ,
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where we wrote [x, x ′] for the convex hull of {x, x ′}. Here, the last bound follows from
Assumption 2.7. It then follows from Lemma A.1 that, for B̂ as defined in the appendix,
E‖Z ε

s,t‖pB̂ � |t − s|pα0 . We choose ζ to be any number in (0, 1− d/p).

It similarly follows that for |k + �| ≤ 3 and |x − x ′| ≤ 1

‖Dk
x D

�
x̄Z

ε
s,t (x, x̄)− Dk

x D
�
x̄Z

ε
s,t (x

′, x̄)‖L p/2

�
∑
i, j

‖Jε
s,t

(
Dk
x F

∗
i (x, ·)− Dk

x F
∗
i (x ′, ·), D�

x F
∗
j (x̄, ·)

)‖L p/2

� sup
y∈[x,x ′]

‖Dk
x F(y, ·)‖E‖D�

x F(x̄, ·)‖E |x − x ′||t − s|2α0

� (1 + |x |)−κ(1 + |x̄ |)−κ |x − x ′||t − s|2α0 ,

(and analogously when varying x̄). Since κp/8 > d by assumption, we can again
apply Lemma A.1 with p/2, thus yielding E‖Zε

s,t‖p/2B̂2
� |t − s|pα0 . Since furthermore

p > 3/(3α0 − 1) by assumption, the conditions of Lemma 3.13 are satisfied and the
claim follows for any α < α0 − 1/p. ��
Proof of Proposition 4.1. The arguments are quite different for the different ranges of
H , but they will always reduce to verifying the assumptions of Lemma 4.2.

First let H ∈ ( 13 ,
1
2 ). The first assumption of Lemma 4.2 follows from Proposition 4.5

below with α0 = H and from the trivial bound

ε
1
2−α0 tα0 ∨

√
t � tα0 , ∀ε ≤ 1, t ≤ T,

while the second assumption follows from Proposition 4.7 below. Both hold for any
p ≤ p�/4 where p� > max{4d, 6

(3H−1) }, and the proofs of the propositions are the
content of Sect. 4.1.

The ingredients for showing tightness of Zε where H ∈ ( 12 , 1) are given in Sect. 4.2,
starting with a bound on J analogous to that of Proposition 4.5. Unlike in the proof
of that statement though, we do not show this by bounding the conditional variance
E

(|J ε
s,t ( f )|2 |FY

)
. This is because, as a consequence of the lack of integrability at

infinity of η′′ when H > 1
2 , it appears difficult to obtain a sufficiently good bound on

it, especially for H close to 1. (In particular, the best bounds one can expect to obtain
from a quantitative law of large numbers don’t appear to be sufficient when H > 3

4 .)
The required bounds are collected in Corollary 4.17 which yields the assumptions of
Lemma 4.2 with α0 = 1

2 and arbitrary p.

Finally we take α0 = 1
2 when H = 1

2 , then ‖J ε
s,t ( f )‖L p ≤

√∫ t
s | f (Y ε

r )|2dr �
C‖ f ‖E√|t − s| by Burkholder-Davies-Gundy inequality, and similarly the second
order processes satisfies the bound:

∥∥Jε
s,t ( f, g)

∥∥
L p =

∥∥∥
∫ t

0

∫ u

0
f (Y ε

v )g(Y ε
u )dBvdBu +

1

2

∫ t

0
f (Y ε

r )g(Y ε
s )

∥∥∥
L p

� ‖ f ‖E‖g‖E |t − s|,

allowing us to again apply Lemma 4.2 and concluding the proof. ��
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4.1. The low regularity case. This section consists of a number of a priori moment
bounds, which we then combine at the end to provide the proof of Proposition 4.7. These
uniform in ε moment bounds follow from the Hölder continuity of Y in a subspace of
L p∗ for a sufficiently large p∗, in particular ergodicity of Y does not play any role.

We will make repeated use of the following simple calculation, where we recall (3.5)
for the definition of the distribution η.

Lemma 4.3. Given t > 0 and H < 1
2 , let � : [0, t]2 → R be a continuous function

such that for some numbers ε > 0, β > −2H, γ, ζ > 1 − 2H, and C, Ĉ, C̄ ≥ 0 it
holds that

|�(r, r)| ≤ C |r |β, |�(s, r)−�(r, r)| ≤ Ĉ |r |β(
1 ∧ |s−r |γ

εγ

)
+ C̄εβ−ζ |s − r |ζ ,

(4.1)

for all s, r ∈ [0, t]. Then, one has the bound
∣∣∣
∫ t

0

∫ t

0
�(s, r)η′′(r − s) ds dr

∣∣∣ ≤ K
(
Ct2H+β + Ĉtβ+1ε2H−1 + C̄tζ+2Hεβ−ζ

)
,

(4.2)

with the proportionality constant K depending only on β, γ and ζ . The same bound
holds if the upper limit of the inner integral in (4.2) is given by r instead of t .

Proof. Let I be the double integral appearing in (4.2). As a consequence of Lemma 3.6,
we can rewrite it as

I = −2αH

∫ t

0

∫ t

0

(
�(s, r)−�(r, r)

)|r − s|2H−2 ds dr

+ 2H
∫ t

0
�(r, r)

(|t − r |2H−1 + |r |2H−1) dr def= I1 + I2.

We then have

|I1| � Ĉ
∫ t

0
rβ

∫ t

0

(
1 ∧ (|s − r |/ε)γ )|r − s|2H−2 ds dr

+ C̄εβ−ζ

∫ t

0

∫ t

0
|r − s|2H+ζ−2 ds dr

� Ĉε2H−1
∫ t

0
rβ

∫
R
(1 ∧ |u|γ )|u|2H−2 du dr + C̄εβ−ζ t2H+ζ

� Ĉε2H−1tβ+1 + C̄εβ−ζ t2H+ζ .

We used the conditioned imposed on β, γ and ζ . Regarding I2, we have the bound

|I2| � C
∫ t

0
|r |β(|t − r |2H−1 + |r |2H−1) dr

= Ct2H+β

∫ 1

0
|r |β(|1− r |2H−1 + |r |2H−1) dr,

and the claim follows. ��
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Note that replacing �(r, s) by �τ (r, s) = τ 2H�(τr, τ s) and t by t/τ , the left-hand
side of (4.2) is left unchanged. Regarding the bounds (4.1), such a change leads to the
substitutions C �→ Cτ 2H+β , ε �→ ε/τ , Ĉ �→ Ĉτ 2H+β , and C̄ �→ C̄τ 2H+β . All three
terms appearing in the right-hand side of (4.2) are invariant under these substitutions.

Remark 4.4. The proof of Lemma 4.3 works mutatis mutandis for � taking values in a
Banach space, for example L p. We also see that if � is upper bounded by a finite sum
of terms of the type (4.1) with different exponents β and γ , then the bound (4.2) still
holds with the corresponding sum in the right-hand side.

We perform a number of preliminary calculations. For this, it will be notationally
convenient to introduce the shortcuts

I ε
s,t ( f ) =

∫ t

s
f (Y ε

r ) dBr , J ε
s,t ( f ) = Z

f (Y ε· )
s,t = ε

1
2−H I ε

s,t ( f ),

for f ∈ E (with values in Rm).

Proposition 4.5. Let H ∈ ( 13 ,
1
2 ) and let Assumptions 2.2 and 2.3 hold for some p� ≥ 2.

Then there exists a constant C such that, uniformly over s ≥ 0, t ≥ 0, and f ∈ E,

‖J ε
s,t ( f )‖L p� ≤ C‖ f ‖E

(
ε

1
2−H |t − s|H ∨√|t − s|). (4.3)

Proof. LetFY denote the σ -algebra generated by all point evaluations of the process Y ,
and FY

t the corresponding filtration. Write p for p� for brevity. Since B is independent
of FY and the L p norm of an element of a Wiener chaos of fixed degree is controlled
by its L2 norm, we have

‖I ε
s,t ( f )‖2L p = ∣∣E(

E
(
I ε
s,t ( f )

p |FY ))∣∣2/p ≤ c‖E(I ε
s,t ( f )

2 |FY )‖L p/2 , (4.4)

for some universal constant c depending only on p and on the degree of the Wiener
chaos, so that

‖I ε
s,t ( f )‖2L p �

∥∥∥
∫ t

s

∫ t

s
f (Y ε

r ) f (Y ε
r ′)η

′′(r − r ′) dr dr ′
∥∥∥
L p/2

. (4.5)

Since f ∈ E is in L p by Assumption 2.3, it follows from Assumption 2.2 that
∥∥ f (Y ε

u ) f (Y ε
u+v)− f (Y ε

u )2
∥∥
L p/2 � ‖ f ‖2E

(|v/ε|H ∧ 1
)
.

We can therefore apply Lemma 4.3 with γ = H and β = 0 so that, for ‖ f ‖E ≤ 1, one
has

‖I ε
s,t ( f )‖2L p � ε2H−1|t − s| + |t − s|2H , (4.6)

whence the desired bound follows. (The condition γ > 1−2H is satisfied since H > 1
3

by assumption.) ��
We now consider the second-order process J given by

J
ε
s,t ( f, g) = ε1−2HZ f (Y ε· ),g(Y ε· )

s,t = ε1−2H
∫ t

s

∫ v

s
f (Y ε

u ) dB(u) g(Y ε
v ) dB(v), (4.7)

and bound it in a similar way. Recalling that 〈 f, g〉μ = ∫
Y 〈 f, g〉dμ, we first obtain a

bound on its expectation.
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Proposition 4.6. Let H ∈ ( 13 ,
1
2 ), let Assumptions 2.2 and 2.3 hold for some p� ≥ 2,

and let f, g ∈ E. One has

‖E(
J
ε
s,t ( f, g) |FY )‖L p � ‖ f ‖E‖g‖E

(
ε1−2H |t − s|2H ∨ |t − s|),

provided that 2p ≤ p�.

Proof. It follows from (4.7) that we have the identity

E
(
J
ε
s,t ( f, g) |FY ) = ε1−2H

2

∫ t

s

∫ v

s
f (Y ε

u )g(Y ε
v ) η′′(u − v) du dv,

and we conclude from Lemma 4.3 and the bound
∥∥g(Y ε

u )( f (Y ε
u+w) − f (Y ε

u ))
∥∥
L p �

‖ f ‖E‖g‖E
(|w/ε|H ∧ 1

)
exactly as above. ��

Proposition 4.7. Let H ∈ ( 13 ,
1
2 ), let Assumptions 2.2 and 2.3 hold for some p� ≥ 2, let

f, g ∈ E, and let 2p ≤ p�. Then there exists a constant C such that
∥∥Jε

s,t ( f, g)
∥∥
L p ≤ C‖ f ‖E‖g‖E

(
ε1−2H |t − s|2H ∨ |t − s|).

If g is a constant, one obtains a stronger upper bound of the form

‖ f ‖E |g|
(
ε

1
2−H |t − s| 12 +H ∨ ε1−2H |t − s|2H )

.

Proof. By Proposition 4.6, it suffices to obtain a bound on
∥∥Jε

s,t ( f, g)− E(Jε
s,t ( f, g) |FY )

∥∥
L p .

As a consequence of Proposition 3.4 and (4.4), we have the bound
∥∥Jε

s,t ( f, g)− E(Jε
s,t ( f, g) |FY )

∥∥
L p ≤

√
2
∥∥J̃ε

s,t ( f, g)‖L p ,

where we set

J̃
ε
s,t ( f, g) = ε1−2H

∫ t

s

∫ v

s
f (Y ε

u ) dB(u) g(Y ε
v ) d B̃(v),

for a fractional Brownian motion B̃ independent of B (and Y ). We furthermore restrict
ourselves to the case s = 0 and m = 1 without loss of generality.

At this point we note that for every H > 1
3 , one has the identity

E
((
J̃
ε
0,t ( f, g)

)2 ∣∣∣FY
)
= 1

2

∫ t

0

∫ t

0
φε(s, s

′)η′′(s − s′) ds ds′, (4.8)

where we have set

φε(s, s
′) = ε2−4H

2
g(Y ε

s )g(Y ε
s′)

∫ s

0

∫ s′

0
f (Y ε

r ) f (Y ε
r ′) η′′(r − r ′) dr dr ′.

As a consequence of (4.4), we deduce from (4.8) the bound

‖J̃ε
0,t ( f, g)‖2L p �

∥∥∥
∫ t

0

∫ t

0
φε(s, s

′)η′′(s − s′) ds ds′
∥∥∥
L p/2

. (4.9)
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We now bound φε in such a way that Lemma 4.3 (combined with Remark 4.4) applies
with � = φε. In order to apply this result, we first verify that the first bound in (4.1)
holds. Applying Hölder’s inequality we obtain for 2p ≤ p�,

∥∥φε(s, s)
∥∥
L p/2 ≤ Cε2−4H‖g(Y ε

s )‖2L2p

∥∥∥
∫ s

0

∫ s

0
f (Y ε

r ) f (Y ε
r ′) η′′(r − r ′) dr dr ′

∥∥∥
L p

.

(4.10)

Since the last factor is the same expression as the right-hand side of (4.5), it is bounded
as in (4.6), thus yielding

∥∥φε(s, s)
∥∥
L p/2 � ε2−4H‖ f ‖2E‖g‖2E

(
s2H ∨ ε2H−1s

)
.

Regarding the second bound in (4.1), we note that, for s′ ≥ s and α > 1
3 , one has

φε(s, s
′) −φε(s, s) = ε2−4Hg(Y ε

s )g(Y ε
s′)

∫ s
0

∫ s′
s f (Y ε

r ) f (Y ε
r ′) |r − r ′|2H−2 dr dr ′

+ε2−4Hg(Y ε
s )

(
g(Y ε

s′)− g(Y ε
s )

) ∫ s
0

∫ s
0 f (Y ε

r ) f (Y ε
r ′) η′′(r − r ′) dr dr ′.

Since 2p ≤ p� and
∫ s
0

∫ s′
s |r − r ′|2H−2 dr dr ′ � |s′ − s|2H , the L p/2 norm of the first

term is of order ε2−4H‖ f ‖2E‖g‖2E |s′ − s|2H . By Hölder’s inequality, the second term is
bounded similarly to before by

ε2−4H‖g(Y ε
s )‖L2p‖g(Y ε

s )− g(Y ε
s′)‖L2p

∥∥∥
∫ s

0

∫ s

0
f (Y ε

r ) f (Y ε
r ′) η′′(r − r ′) dr dr ′

∥∥∥
L p

.

By Assumptions 2.2 and 2.3, the factors involving g are bounded by

‖g‖2E
(|s′ − s|Hε−H ∧ 1

)
,

while the remaining factor is the same is in (4.10), thus yielding a bound of the order

‖φε(s, s
′)− φε(s, s)‖L p/2 � ε2−4H‖ f ‖2E‖g‖2E

(
s2H ∨ ε2H−1s

)(|s′ − s|Hε−H ∧ 1
)
.

Applying Lemma 4.3 (and Remark 4.4) and inserting the resulting bound into (4.9),
eventually yields the bound

‖J̃ε
0,t ( f, g)‖2L p � ‖ f ‖2E‖g‖2E

(
ε2−4H |t |4H + ε1−2H |t |1+2H + |t |2), (4.11)

as desired. (Note that the second term is bounded by the first and the last one which is
why it was omitted in the statement.)

In case g is a constant, the second term in the expression for φε(s, s′) − φε(s, s)
vanishes identically. Since this is the term responsible for the summand proportional to
|t |2 in (4.11), the claim follows. ��
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4.2. The regular case H ∈ ( 12 , 1). For the case where the slow variables are driven by
a fractional Brownian motion of higher regularity, H > 1

2 , we exploit the ergodicity of
the fast motion even for proving tightness for the first order processes.

To prove the tightness of the processes Zε
t , we take a different strategy and estimate

higher order moments of the Z ε
s,t and Z

ε
s,t . This requires us to estimate the expectation

of multiple integrals of the form

∫ t

0
. . .

∫ t

0

2p∏
i=1

fi (Y
ε
ti ) dBt1 · · · dBt2p . (4.12)

For the second order processes, half of the upper limits of the integrals are given by one
of the ti ’s, but since we will not need to exploit any cancellations these integrals are
controlled by the bounds on the hypercube. For p = 1, it is easy to see that this integral
is of order ε2H−1t , but the case p = 2 is already more complicated:

E
∫ t

0
. . .

∫ t

0

4∏
i=1

fi (Y
ε
ti ) dBt1 · · · dBt4

= C
∫ t

0
. . .

∫ t

0
E

( 4∏
i=1

fi (Y
ε
ti )

)
|t2 − t1|2H−2|t4 − t3|2H−2 dt1 · · · dt4. (4.13)

If we look at the regime t1 < t2 < t3 < t4 say and write Pε
t = Pt/ε, the first factor is

given by

E
( 4∏
i=1

fi (Y
ε
ti )

)
=

∫
f1P

ε
t2−t1

(
f2P

ε
t3−t2( f3P

ε
t4−t3 f4)

)
dμ.

Since f3,4 = f3Pε
t4−t3 f4 is no longer centred, we unfortunately do not have very good

boundson this expression.One canhowever dobetter than exp(−c|t4−t3|/ε): subtracting
and adding the mean of f3,4, we can write the expression as∫

f1P
ε
t2−t1

(
f2P

ε
t3−t2( f3,4 − f̄3,4)

)
dμ + f̄3,4 f̄1,2, (4.14)

where now the first term is bounded by exp(−c|t4−t2|/ε) and the second term is bounded
by exp(−c|t4 − t3|/ε− c|t2 − t1|/ε). This is still not optimal: we note this time that we
can recenter f2,3,4 = f2Pε

t3−t2( f3,4 − f̄3,4) “for free” since f1 has mean zero, so the
first term is actually of order exp(−c|t4 − t1|/ε). It is then not too difficult to see that,
the contribution of the second term of (4.14) to the integral (4.13) is of order ε4H−2t2,
while the contribution of the first term is ε4H−1t , which is of lower order for t ≥ ε. Our
aim is to generalise such considerations to arbitrarily high moments.

In particular, the “correct” way of rewriting the factor E
( ∏2p

i=1 fi (Y ε
ti )

)
so that it

yields usable bounds is in terms of its cumulants. Given a collection {Xi }i∈I of random
variables and a subset A ⊂ I , we write XA as a shorthand for the collection {Xi }i∈A
and X A as a shorthand for

∏
i∈A Xi . Given a finite set A, we write P(A) for the set of

partitions of A. We also write EcX A for the joint cumulant, so that one has the identities

EX I =
∑

�∈P(I )

∏
A∈�

EcX A, EcX I =
∑

�∈P(I )

C�

∏
A∈�

EX A, (4.15)

where C� = (|�| − 1)!(−1)|�|−1.
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Proposition 4.8. Let Assumptions 2.1 and 2.3 hold for H > 1
2 . For any k ≥ 2 and any

s1, . . . , sk ∈ [0, t], there exist constants c,C > 0 such that the following holds. Let
f1, . . . , fk ∈ E with

∫
Y fi dμ = 0, let s1 < . . . < sk , and set Xi = fi (Ysi ). Then, one

has the bound

EcX[k] ≤ C exp
(
− c

∑
i, j≤k

|si − s j |
) ∏

i

‖ fi‖E

where [k] denotes the set {1, . . . , k}.
Proof. Note first that since c is allowed to depend on k, it actually suffices to show that
EcX[k] ≤ C exp

(− c supi<k |si+1 − si |
)
. From now on we fix i� ∈ {1, . . . , k} to be the

index which realises that supremum. Let Ỹ be an independent copy of Y and set

X̃ j =
{
f j (Ys j ) if j ≤ i�,
f j (Ỹs j ) otherwise.

The most important property of the joint cumulant of a collection of random variables
is that if it can be broken into two independent sub-collections, then the joint cumulant
vanishes. As a consequence, we have

EcX[k] = EcX[k] − Ec X̃[k] =
∑

�∈P(I )

C�

( ∏
A∈�

EX A −
∏
A∈�

EX̃ A
)
.

We now put a total order on the elements of a partition � by postulating that A1 ≤ A2
whenever inf{a ∈ A1} ≤ inf{a ∈ A2} (this is just for definiteness, the actual choice of
order is unimportant). We can then write the above as a telescoping sum, yielding

EcX[k] =
∑

�∈P(I )

C�

∑
A∈�

(
EX A − EX̃ A

)( ∏
B<A, B∈�

EXB
)( ∏

B>A, B∈�

EX̃ B
)
.

(4.16)

We fix A ⊂ [k] such that EX A �= EX̃ A and write A = {a1, . . . , a�}with � = |A| and
i �→ ai increasing. We also write j� < � for the index such that a j� ≤ i� and a j�+1 > i�.
(This necessarily exists since otherwise EX A = EX̃ A.) For i < � and n ≥ 1, we also
write Ti : En → En+1 for the operator given by

Ti g = fai Pti g, ti
def= sai+1 − sai ,

whose norm, as an operator from En to En+1, is bounded by a (possibly n-dependent)
multiple of ‖ fai ‖E , since it is of order ‖ fai ‖E e−cti from E×En to En+1, when restricted
to functions of vanishing mean, by Assumption 2.1. We used the continuity of multipli-
cation of functions. It then follows from the Markov property that

EX A =
∫
Y
T1 . . . T�−1 fa�

dμ, (4.17)

(this is easily shown by induction over �) while we similarly have by the definition of
X̃

EX̃ A =
∫
Y
T1 . . . Ti�−1 fai� dμ

∫
Y
Ti�+1 . . . T�−1 fa�

dμ. (4.18)
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Fig. 1. Example of pairing and partition of 10 elements

This is because, setting A1 = {a1, . . . , ai�} and A2 = A\A1, one has EX̃ A =
EX A1 EX A2 by the definition of X̃ , so that (4.18) follows from (4.17). Writing
g = Ti�+1 . . . T�−1 fa�

∈ E�−i� , it follows that

EX A − EX̃ A =
∫

T1 . . . Ti�
(
g −

∫
g dμ

)
dμ.

The spectral gap assumption (2.1) and the definition of i� then imply that

∣∣EX A − EX̃ A
∣∣ ≤ C exp(−c|si�+1 − si� |)

∏
a∈A

‖ fa‖E .

Combining thiswith (4.16) immediately leads to the claimed bound on the corresponding
cumulant. ��

The first identity of (4.15) combined with Wick’s formula for the moments of Gaus-
sians now suggest that we should rewrite the expectation of (4.12) as a sum over terms
indexed by pairs (�, π)where� is a partition of [2p] arising from (4.15) and represent-
ing a product of cumulants of the f (Yti ) and π is a pairing of [2p] arising from Wick’s
formula.

Figure 1 for example represents the pairing π and partition � given by

π = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)},
� = {{1, 3}, {2, 4, 5}, {6, 7, 8}, {9, 10}} (4.19)

Each pairing (i, j) yields a factor |si − s j |2H−2 while each element B of the partition
yields an exponential factor of the form

∏
i, j∈B exp

( − c|si − s j |
)
thanks to Proposi-

tion 4.8. Since we consider the case H > 1
2 , this yields a locally integrable function in

the expression for the expectation of (4.12), so our analysis mainly focuses on the large-
scale behaviour. We will show then that the terms with � = π , yield a contribution of
order ε(2H−1)pt p which dominates our bound, while all other terms are of higher order
in ε/t . We now proceed to formalising this.

Let G = (V, E) be a graph with vertex set V and edge multiset E (multiple edges
are allowed). Edges e ∈ E are oriented from e− to e+ and we only consider graphs with
e+ �= e−. We also label the vertices by two exponents α± : E → R−. Finally, we assume
that we have a “kernel assignment”, i.e. a collection of functions Ke : R → R (with
e ∈ E) such that

|Ke(t)| ≤ C
(|t |α−(e)1|t |≤1 + |t |α+(e)1|t |≥1

)
. (4.20)
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We denote by ‖Ke‖e the smallest possible constantC appearing in the above expression.
For those who are not familiar with such graph representations, such a graph will be
used to encode expressions of the type

IG :=
∫
Rnd

∏
e∈E

Ke(se+ − se−) ϕ(x1, . . . , xk)dx . (4.21)

Each of its nodes u represents an integration variable su , each edge e represents a factor
Ke, and the resulting expression is integrated against some bounded function ϕ. The
exponents α−(e) and α+(e) indicate the singularity of Ke at 0 and at infinity respectively.

Definition 4.9. We say that such a labelled graph is “regular” if, for every subsetV0 ⊂ V ,
we have ∑

e∈E : e±∈V0

α−(e) + |V0| > 1. (4.22)

The significance of this condition (also calledWeinberg’s condition) is that it guarantees
that the function KG on RV given by

KG(s) =
∏
e∈E

Ke(se+ − se−) (4.23)

is locally integrable [71] where se± is the e± component of s ∈ RV . (See also [28,
Prop. 2.3] for a formulation closer to the one given here.)

We will be mainly interested in the large-scale behaviour here. To describe this,
consider a partition P of V . We say that such a partition is tight if there exists A ∈ P
such that A ∩ Vi �= ∅ for every connected component Vi of G. Given P , we then also
write u ∼ v if there exists A ∈ P with {u, v} ⊂ A.

Definition 4.10. We then say that a labelled graph as above is “integrable” if
∑

e∈E : e−�∼e+
α+(e) + |P| < 1, (4.24)

for every tight partition P . (Note the similarity with Weinberg’s condition.)

The following is then an immediate consequence of [28, Thm 4.3].

Proposition 4.11. Let G be a regular and integrable graph with m connected compo-
nents. Then, there exists C depending on G such that

∫
[−L ,L]V

|KG(s)| ds � Lm
∏
e∈E

‖Ke‖e,

uniformly over L ≥ 1, with proportionality constant depending only on the labelled
graph G, where ‖Ke‖e is as defined by (4.20).

Remark 4.12. Our bound on the large-scale behaviour of the kernels Kt is weaker than
the bound [28, Eq. 4.1] sincewe assume no bounds on the derivatives. The reasonwhy the
result still holds is that we assume local integrability, which avoids all renormalisation
issues and therefore gets rid of regularity requirements.
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An immediate, but very useful, corollary is the following.

Corollary 4.13. Let G be a regular graph with m connected components and let L ≥ 1.
Let β : E → R+ be such that

∑
e∈E : e−�∼e+

(
α+(e)− β(e)

)
+ |P| < 1, (4.25)

for every tight partition P . Then, there exists C depending on G and β such that
∫
[−L ,L]V

|KG(t)| dt ≤ CLm
∏
e∈E

Lβ(e)‖Ke‖e.

Proof. It suffices to note that we can assume that the kernels Ke vanish outside of
[−2L , 2L] since this does not affect the value of the integral. If we then consider the
graph identical to G, but with its labels replaced by (α−, α+ − β), then (4.25) implies
integrability for the new graph by (4.24). The local integrability condition (regularity)
still holds, so Proposition 4.11 applies. It remains to note that since 1 ≤ (L/|t |)β11≤|t |≤L ,
decreasing α+(e) by β(e) in (4.20) has the effect of increasing the norm ‖ · ‖e by (at
most) a factor (2L)β(e), provided that we do consider functions supported in [−2L , 2L].

��
We will make use of the following property.

Lemma 4.14. Let G̃ be a graph obtained by deleting some of the edges of G but without
changing its connected components. If G̃ is integrable, then so is G itself.

Proof. This is immediate from Definition 4.10, combined with the fact that the α+(e)
are negative by assumption. ��

The following simple result will also be useful.

Lemma 4.15. If α+(e) < −1 for every edge e of G, then it is integrable.

Proof. Let P be a tight partition of the vertex set V of G and let GP = (VP , EP ) denote
the graph obtained by removing self-loops from G/∼, with ∼ obtained from P as in
(4.24). Then GP is connected by the definition of tightness so that |EP | ≥ |VP | − 1,
which translates into |{e ∈ E : e− �∼ e+}| ≥ |P|− 1. Since α+(e) < −1 for every edge,
the bound (4.24), and therefore the desired claim, then follow at once. ��

We now use these preliminary results both to bound J and J and to determine their
limits in the case H > 1

2 .
Our main technical result is the following bound.

Proposition 4.16. Let Assumptions 2.1 and 2.3 hold for H > 1
2 and let κ ∈ (0, 2−2H).

For f, g ∈ E with
∫

f dμ = ∫
gdμ = 0, set

C( f, g) = �(1− 2H)
(〈 f,L1−2Hg〉μ + 〈g,L1−2H f 〉μ

)
.

Then, for every p ≥ 1 and f ∈ E2p with
∫

fi dμ = 0 for every i , setting

I2p( f ) =
∫ M1

L1

· · ·
∫ M2p

L2p

( 2p∏
j=1

f j (Yt j )
)( p∏

k=1
|t2k − t2k−1|2H−2

)
dt1 · · · dt2p,
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there exists a constant K > 0 such that

∣∣∣I2p( f )−
p∏

k=1
|[L2k−1, M2k−1] ∩ [L2k, M2k]|C( f2k, f2k−1)

∣∣∣ ≤ K L p−κ , (4.26)

where L = supi |Mi − Li | ∨ 1.

Proof. We fix p and write I as a shorthand for I2p( f ). The properties of cumulants
show that, setting Xi = fi (Yti ) as previously, I is given by

I =
∑

�∈P([2p])
I�,

I�
def=

∫ M1

L1

· · ·
∫ M2p

L2p

( ∏
A∈�

EcX A

)( p∏
k=1

|t2k − t2k−1|2H−2
)
dt1 · · · dt2p.

Note first that since the fi are centred, we have I� = 0 unless |A| ≥ 2 for every A ∈ �.
There is furthermore one special partition, namely �� =

{{2k − 1, 2k} : k ∈ [p]}. For
the summand generated by this ‘base’ partition we have I�� =

∏p
k=1 I (2k − 1, 2k),

where we set

I (k, �) =
∫ Mk

Lk

∫ M�

L�

E
(
fk(Ys) f�(Yt )

) |t − s|2H−2 dt ds.

We then note that, for a < b and f, g ∈ E centred, it follows from the spectral gap
assumption and the fact that E, E1 ⊂ L2(μ) by Assumption 2.3, that

∣∣∣
∫ b

a
E

(
f (Y0)g(Yt )

) |t |2H−2 dt − C( f, g)10∈[a,b]
∣∣∣ � ‖ f ‖E‖g‖Ee−c(|a|∧|b|),

(4.27)

for some fixed constant c. It follows from (4.27) that

∣∣I (k, �)− |[Lk, Mk] ∩ [L�, M�]|C( fk, f�)
∣∣ �

∫ Mk

Lk

e−c(|L�−s|∧|M�−s|) ds � 1,

and that I�� differs from the desired expression in the statement by an error of at most
O(L p−1).

Since I = ∑
�∈P([2p]) I� and we already obtained (4.26) for I replaced by I�� ,

it remains to show that |I�| � L p−κ for every partition � �= �� with κ as in the
statement. Fix such a partition � from now on and write again ∼ for the equivalence
relation induced by � on [2p]. We then define a graph G� with vertex set V = [2p] and
edge set E = EB ∪ E�, where

EB = {(2k − 1, 2k) : k ∈ [p]}, E� = {(u, v) : u ∼ v}.
We furthermore assign kernels to the edges of G� by

Ke(t) =
{ |t |2H−2 fore ∈ EB,

e−c|t | otherwise,
(4.28)
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so that Proposition 4.8 yields the bound

|I�| �
∫
[0,L]2p

∣∣KG�(t)
∣∣ dt.

The kernel assignment (4.28) is consistent with the exponents given by

α−(e) =
{
2H − 2 for e ∈ EB,

0 otherwise, α+(e) =
{
2H − 2 for e ∈ EB,

−2 otherwise,

whence it immediately follows that G� is regular.
It now remains to find a function β : E → R+ allowing us to apply Corollary 4.13 to

G�. For this, we construct a set T and set β(e) = 1− κ for e ∈ T and 0 otherwise. To
construct T m consider the graph Ĝ� which has V̂ := � as its vertex set and such that
its edge set Ê is given by

Ê = {(π�(2k − 1), π�(2k)) : π�(2k − 1) �= π�(2k)},
where π� : [2p] → � maps an element to the unique element of the partition � that
contains it. In other words, Ĝ� is obtained by quotienting G� by the partition� and then
removing self-loops. Let now T ⊂ EB be such that T̂ = π�T is a maximal spanning
forest for Ĝ�. In the case of (4.19) for example, one could take T = {(1, 2), (5, 6)}.
With κ as in the statement of the proposition, we now set β(e) = 1− κ for e ∈ T and
0 otherwise. The reason why this choice of β satisfies (4.25) for the graph G� is that
by construction the labelling γ = α+ − β is such that G� contains a spanning forest T̃
consisting of edges e with γ (e) = 2H − 3 + κ < −1. (To build a reduced set of edges
from E = EB ∪ E�, we start with T and then connect its components using edges in
E�.) It then remains to first apply Lemma 4.14 to reduce ourselves to considering G�

and then apply Lemma 4.15.
Denote now by m the number of connected components of Ĝ� and note that since

every element of � is of size at least 2, Ĝ� has at most p vertices. It follows that the
number of elements in T equals at most p−m, so that Corollary 4.13 yields the bound
I� � LmL(1−κ)(p−m) = L p−κ(p−m), which is bounded by L p−κ unless m = p. Since
the only partition � yielding m = p is the complete pairing ��, the claim follows at
once. ��
Corollary 4.17. Let the assumptions of Proposition 4.16 hold. For H ∈ ( 12 , 1) and
f ∈ E with

∫
f (y) μ(dy) = 0, one has for every p ≥ 1 the bounds

‖J ε
s,t ( f )‖L2p � t

1
2 , ‖Jε

s,t ( f )‖L p � t,

uniformly over t ≤ T (for any fixed T ≥ 1) and ε ≤ 1.

Proof. For integer p ≥ 1, we note that as a consequence of Wick’s theorem and the fact
that Y is independent of B, one has the identity,

E
(
J ε
0,t ( f )

)2p = Cpε
p
∫
[0,t/ε]2p

E
(
f (Ys1) · · · f (Ys2p )

) p∏
k=1

η′′(s2k − s2k−1) ds.

(4.29)
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where Cp = 2−p(2p− 1)!!. For t ≥ ε we apply Proposition 4.16 with L = t/ε, so that
∣∣∣E(

J ε
0,t ( f )

)2p∣∣∣ � ε p(t/ε)p−κ + ε p(t/ε)p � εκ t p−κ + t p � t p.

For t < ε, (4.29) is bounded by Cε p‖ f ‖2p
L2p |t/ε|2Hp � t p. One similarly obtains the

bound E
(
J
ε
0,t ( f, g)

)p � t p, completing the proof. ��

5. Identification of the Limit

In this section we complete the proof of Theorem 3.14 by identifying the limit (in law)
of Zε as ε → 0. The proof proceeds in two steps. First, in Proposition 5.3, we show that
the first-order process Z itself converges in law to a limitW with covariance given as in
(1.8). In a second step, we then exploit martingale techniques, and in particular [39], to
obtain convergence of the second-order processZ to the limit described in Theorem 3.14.
Recall that, by (3.17),

(
Z ε
s,t (x)

)
i = ε

1
2−H Z

f ε
i,x

s,t ,
(
Z

ε
s,t (x, x̄)

)
i j

def= ε1−2HZ
f ε
i,x , f

ε
j,x̄

s,t .

Proposition 5.1. In the setting of Proposition 4.1, the family of random rough paths Zε

converges in law, as ε → 0, to the unique (in law) random rough path Z such that the
following hold. The process Z is a B-valued Wiener process with covariance given by

E
(
Zs,t (x)⊗ Zu,v(x̄)

) = |[s, t] ∩ [u, v]| (�(x, x̄) + �(x̄, x)�
)
, (5.1)

with � as defined in (1.6). The “second-order” process Z is the B2-valued process such
that for any x, x̄ in Rd

Zs,t (x, x̄) =
∫ t

s
Zs,r (x)⊗ dZs,r (x̄) + (t − s)�(x, x̄),

where the integral is interpreted in the Itô sense.

Proof. The convergence in distribution of any finite collections of the stochastic pro-
cesses follows from Proposition 5.11 below. By Proposition 4.1, (Z ε,Zε) is tight in
C α([0, T ],B⊕B2) for suitable α ∈ ( 13 , H), so the weak convergence holds with respect
to the rough path norm on C α([0, T ],B ⊕ B2). ��

5.1. Law of large numbers. We will need the following quantitative version of the law
of large numbers. Let E ⊂ E1 ⊂ E2 be Banach spaces of functions Y → R containing
constants and such that pointwise multiplication from E × E1 into E2 is continuous.

Lemma 5.2. Let E ⊂ L4 and E2 ⊂ L2, let the spectral gap condition (2.1) hold for
n = 1, 2, and let f, g ∈ E. Then, the bound

∥∥∥
∫ T

0
f (Ys)g(Ys+t ) ds − T 〈 f, Pt g〉μ

∥∥∥
L2

�
√

(1 + t)T ‖ f ‖E‖g‖E , (5.2)

holds uniformly over t, T ∈ R+ with a proportionality constant depending only on the
constants appearing in the two assumptions.
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Proof. Writing fs as a shorthand for f (Ys) and similarly for g, the square of the left-hand
side of (5.2) is given by

2
∫ T

0

∫ r

0

(
E

(
fsgs+t fr gr+t

)− E
(
fsgs+t

)
E

(
fr gr+t

))
ds dr.

Since E ⊂ L4, Hölder’s inequality shows that the integrand is bounded by somemultiple
of ‖ f ‖2E‖g‖2E . It thus follows from the triangle inequality that the required bound follows
for t ≥ T so we assume t ≤ T from now on. Using the same bound on the integrand,
we can further restrict the inner integral to impose s + t ≤ r at an additive cost of order
at most tT ‖ f ‖2E‖g‖2E . On that smaller domain, we can then rewrite the integrand as

E
(
fsgs+t

(
Pr−s−t ( f Pt g)− 〈 f, Pt g〉μ

)
(Ys+t )

)
.

By the spectral gap assumption applied to f Pt g ∈ E2, we have the bound

‖Pr−s−t ( f Pt g)− 〈 f, Pt g〉μ‖E2 � e−c(r−s−t)‖ f Pt g‖E2 � e−c(r−s−t)‖ f ‖E‖g‖E1 .

Combining this again with Hölder’s inequality, E ⊂ L4, and E2 ⊂ L2, we conclude
that the integrand is of order e−c(r−s−t)‖ f ‖2E‖g‖2E , thus yielding a contribution to the
integral of order T ‖ f ‖2E‖g‖2E as desired. ��

5.2. Identification of the first-order process . We treat separately the cases H < 1
2 and

H > 1
2 , while the case H = 1

2 is straightforward and will be considered when we put
both cases together in Proposition 5.11 below.

5.2.1. The low regularity case Let H ∈ ( 13 ,
1
2 ). Conditional on Y , the process J

ε
s,t ( f ) =

ε
1
2−H

∫ t
s f (Y ε

r )dB(r) is centred Gaussian. In order to identify its limiting distribution,
it thus suffices to show that its conditional covariances converge to a limit that is inde-
pendent of Y . This is the content of the following result.

Proposition 5.3. Let Assumptions 2.1 and 2.3 hold for H ∈ ( 13 ,
1
2 ), and let Assump-

tions 2.2 hold for some p� ≥ 4. Let f, g ∈ E and let u < v and s < t . Then, we
have

lim
ε→0

E
(
J ε
s,t ( f )J

ε
u,v(g) |FY ) = |[s, t] ∩ [u, v]|C( f, g),

in L2, where C( f, g) = 1
2�(2H + 1)

(〈 f,L1−2Hg〉μ + 〈L1−2H f, g〉μ
)
.

Proof. Wework in components it is therefore again sufficient to assume thatm = 1. We
first consider the case [u, v] = [s, t]. A straightforward calculation similar to the one
given in (3.13) shows that, setting αH = H(1− 2H), one has the identity

E
(
J ε
s,t ( f )J

ε
s,t (g) |FY )

= −αH

2
ε1−2H

∫ t−s

s−t
|v|2H−2

∫ 2t−|v|

2s+|v|
(
f (Y ε

u+v
2

)g(Y ε
u−v
2

)− f (Y ε
u
2
)g(Y ε

u
2
)
)
du dv

+ Hε1−2H
∫ t−s

0
u2H−1

(
( f g)(Y ε

(2t−u)/2) + ( f g)(Y ε
(2s+u)/2)

)
du.

(5.3)
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Provided that 2p ≤ p�, the size of the L p-norm of the last term is at most of order
‖ f ‖E‖g‖E |t − s|2Hε1−2H , so that it does not contribute to the limit considered in the
statement. (Note however that in the special case H = 1

2 which we do not consider here,
this term is the only surviving one, which contributes to the fact that the conclusion of
the lemma still holds in this case.)

Regarding the first term, we note that changing the sign of v is the same as swapping
f and g. Taking s = 0 (by stationarity) and performing a change of variables, it remains
to show that, for any fixed t > 0,

ε

∫ t
ε

0

∫ 2t
ε
−v

v

v2H−2
(
f (Y(u+v)/2)g(Y(u−v)/2)− f (Yu

2
)g(Yu

2
)
)
du dv

→−t �(2H + 1)

H(1− 2H)
〈 f,L1−2Hg〉μ (5.4)

in L2 as ε → 0. We set

Îε = −1

2
αHε

∫ t
ε

0
v2H−2Gv dv,

with

Gv =
∫ 2t

ε
−v

v

(
f (Y(u+v)/2)g(Y(u−v)/2)− f (Yu

2
)g(Yu

2
)
)
du.

To show that limε→0 Îε = t
2�(2H + 1)〈 f,L1−2Hg〉μ in L2, we treat the values of v

close to the singularity separately from the others, so we fix some (eventually sufficiently
small) exponent κ . For “small” values of v, we then have the bound

ε

∥∥∥
∫ εκ

0
v2H−2Gv dv

∥∥∥
L2

� t‖ f ‖E‖g‖E
∫ εκ

0
v2H−2

(
1 ∧ vH )

dv

� ε(3H−1)κ t‖ f ‖E‖g‖E ,

which converges to 0 as desired for any fixed κ > 0 since H > 1
3 .

For the remaining values of v, we apply Lemma 5.2, which yields the bound

∥∥∥Gv − 2
( t

ε
− |v|

)(〈Pv f, g〉μ − 〈 f, g〉μ
)∥∥∥

L2
�

√
ε−1(1 + |v|)(t − ε|v|)‖ f ‖E‖g‖E .

For κ < 1
2(1−2H)

, we furthermore have the bound

ε

∫ t
ε

εκ

v2H−2
√

ε−1(1 + |v|)(t − ε|v|) dv �
√

εt
∫ t

ε

εκ

(
v2H−2 + v2H−

3
2
)
dv

�
√

εt
(∫ ∞

εκ

v2H−2 dv +
∫ t

ε

0
v2H−

3
2 dv

)
� ε

1
2−κ(1−2H)

√
t + ε1−2H t2H ,
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which converges to 0 as ε → 0 for every fixed t . We conclude that

lim
ε→0

Îε = −αH lim
ε→0

∫ t
ε

εκ

v2H−2
(
t − ε|v|)(〈Pv f, g〉μ − 〈 f, g〉μ

)
dv

= −αH lim
ε→0

∫ ∞

0
v2H−2t

(〈Pv f, g〉μ − 〈 f, g〉μ
)
dv

= t

2
�(2H + 1)〈 f,L1−2Hg〉μ,

holds in L2, as claimed.
We now consider the case when [s, t) ∩ [u, v) = ∅ and assume without loss of

generality that t ≤ u. We then have

∣∣E(
I ε
s,t ( f )I

ε
u,v(g) |FY )∣∣ = αH

∣∣∣
∫ t

s

∫ v

u
|r − r̄ |2H−2 f (Y ε

r )g(Y ε
r̄ ) dr̄ dr

∣∣∣
�

∫ t

s

∫ v

u
|r − r̄ |2H−2 dr̄ dr < ∞.

Since this is multiplied by ε1−2H , it follows that E
(
J ε
s,t ( f )J

ε
u,v(g) |FY

) → 0 in that
case. The general case then follows immediately since we have J ε

s,t ( f ) = J ε
s,u( f ) +

J ε
u,t ( f ) for any s ≤ u ≤ t , so that it can be reduced to the two cases we just treated. ��

5.2.2. The high regularity case Let H > 1
2 .We first show that the process Z is Gaussian

with covariance given by (5.1). For this we recall relations between cumulants and
expectations. Fix a finite set A as well as elements fa ∈ E and intervals [sa, ta] ⊂ R for
every a ∈ A. Given a subset B ⊂ A, we write G(B) for the set of pairs (�, p) where
� ∈ P(B) is a partition of B without singletons and p is a pairing of B (i.e. p ∈ P(B)

contains only sets of size two). We also write [s, t]B ⊂ RB for the domain×a∈B[sa, ta].
Given G = (�, p) ∈ G(B), we then set

J ε
G = (−ε

1
2−HαH )|B|

∫
[s,t]B

∏
B′∈�

Ec
(
fa(Y

ε
ra ) : a ∈ B ′

) ∏
{a,b}∈p

|ra − rb|2H−2 dr.

In order to extract a formula for the joint cumulants of the J ε
s,t ’s, we note that if B1∩B2 =

∅ and Gi ∈ G(Bi ), one has

J ε
G1�G2

= J ε
G1
· J ε

G2
, (5.5)

where G1 � G2 ∈ G(B1 � B2) denotes the natural concatenation of G1 and G2. We
furthermore write Gc(B) ⊂ G(B) for the set of “connected” elements, namely those
pairsG = (�, p) such thatG∨ def= �∨ p = {B}, where we use the usual lattice structure
of the set of partitions of B.

Lemma 5.4. Let Assumptions 2.3 holds for H > 1
2 and fa ∈ E, then for every B ⊂ A,

Ec
(
J ε
sa ,ta ( fa) : a ∈ B

) = ∑
G∈Gc(B)

J ε
G .
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Proof. As a consequence of (5.5), we can write

E
∏
a∈A

J ε
sa ,ta ( fa) =

∑
G∈G(A)

J ε
G =

∑
�′∈P(A)

∑
G∈G(A) :G∨=�′

J ε
G

=
∑

�′∈P(A)

∏
B∈�′

∑
G∈Gc(B)

J ε
G .

Comparing this to the first identity in (4.15), we conclude the proof. ��
This allows to conclude:

Lemma 5.5. Let Assumptions 2.1 and 2.3 hold for H > 1
2 . Let fa ∈ E with

∫
fadμ = 0.

Then, for any index set B with more than two elements,

Ec
(
lim
ε→0

J ε
sa ,ta ( fa) : a ∈ B

) = 0. (5.6)

Consequently, the limits {Jsa ,ta ( fa)}a∈B are jointly Gaussian with covariance |[sa, ta]∩
[sb, tb]|C( fa, fb).

Proof. Let G = (�, p) ∈ Gc(B) with |B| even and note that J ε
G can be written as

J ε
G = (−αH )|B|ε|B|/2

∫
[ s
ε
, t
ε
]B

∏
Ā∈�

Ec
(
fa(Yra ) : a ∈ Ā

) ∏
{a,b}∈p

|ra − rb|2H−2 dr.

We then note that if |B| > 2, elements (�, p) ∈ Gc(B) are always such that � �= p.
We can therefore apply Proposition 4.16 with 2p = |B|, which shows that

|J ε
G | � ε|B|/2εκ− |B|

2 ,

which converges to 0, thus yielding (5.6) as claimed. ByProposition 4.16, for any fi ∈ E ,
u < v and s < t we have

lim
ε→0

∣∣∣E(
J ε
s,t ( fi )J

ε
u,v( f j )

)− |[s, t] ∩ [u, v]|C( fi , f j )
∣∣∣ = 0.

Since Gaussian processes are characterised by the fact that their joint cumulants of order
three or higher all vanish, the last claim follows. ��

5.3. Convergence of the second-order process . In this section we assume that H ∈
( 13 , 1). If H = 1

2 , J
ε
t =

∫ t
0 f (Y ε

r )dBr is already a local martingale, otherwise we make
a decomposition as follows. Write B̄t

r = E
(
Br − Bt |F B

t

)
for r > t and write

J ε
t ( f ) = ε

1
2−H

∫ t

0
f (Y ε

r )dBr = M f
t + R f

t ,

where, setting f̄ = ∫
Y f (x) μ(dx) and f̃ = f − f̄ ,

M f
t = ε

1
2−H

∫ t

0
f̃ (Y ε

r ) dBr + ε
1
2−H

∫ ∞

t

(
Pr−t

ε
f̃
)
(Y ε

t ) d B̄t
r , (5.7)

R f
t = ε

1
2−H f̄ Bt − ε

1
2−H

∫ ∞

t

(
Pr−t

ε
f̃
)
(Y ε

t ) d B̄t
r . (5.8)
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The convergence of the integral is guaranteed by the fact that | ˙̄Br
t | � (r − t)(H−1)−

and Pt f̃ → 0 exponentially fast, thanks to the centering condition on f̃ . This clearly
illustrates why have no need to assume that the coefficient F(x, ·) itself is centred for
H < 1

2 since the first term in R f
t obviously converges to 0 in that case. For H = 1

2 , we

write M f
t = J ε

t ( f ) and R f
t = 0.

Lemma 5.6. Let H ∈ ( 13 , 1), let p > 1 and E ⊂ L2p, and let (2.1) holds for n = 1 For

every f ∈ E and and every t ≥ 0, one has limε→0 R
f
t = 0 in Lq for any q ∈ [1, p).

Furthermore,
∥∥ε−H

∫∞
t

(
Pr−t

ε
f̃
)
(Y ε

t ) d B̄t
r‖Lq � ‖ f̃ ‖E .

Proof. We only need to prove if for H �= 1
2 . The first term in the definition of R f

t
obviously converges to 0. The scale and shift invariance of fractional Brownian motion

shows that, in law, the second term ε
1
2−H

∫∞
t

(
Pr−t

ε
f̃
)
(Y ε

t ) d B̄t
r equals

ε
1
2

∫ ∞

0

(
Pr f̃

)
(Y )d B̄0

r ,

with Y a random variable with law μ, independent of B̄0. Note now that ˙̄B0 is Gaussian
and

E| ˙̄B0
r |2 ∝ |r |2H−2.

Furthermore since f ∈ E , ‖Pt f ‖L p � | f |E and ‖Pt f ‖L1 → 0, ‖Pt f ‖Lq → 0 for any
q ∈ [1, p), so that by Cauchy–Schwarz,

∥∥∥
∫ ∞

0

(
Pr f̃

)
(Y )d B̄0

r

∥∥∥
L p

�
∫ ∞

0
‖(Pr f̃ )(Y )‖L2p |r |H−1 dr

� ‖ f̃ ‖E
∫ ∞

0
e−cr |r |H−1 dr < ∞,

and the claim follows. ��
Lemma 5.7. Let H ∈ ( 13 , 1)\{ 12 }. Let Assumption 2.1 hold for n = 1, let Assumption 2.2
hold for some p� > 2, and let Assumption 2.3 hold.

Let f ∈ E, then the process M f
t as defined above is an L p bounded FY

t ∨ F B
t -

martingale for every p < p� with the convention that p� = ∞ for H > 1
2 ).

Proof. For T > 0, we define the FY
t ∨ F B

t -martingale M f,T
t by

M f,T
t = ε

1
2−HE

(∫ T

0
f̃ (Y ε

r ) dBr
∣∣∣FY

t ∨ F B
t

)
,

and we note that for T > t one has

M f,T
t = ε

1
2−H

∫ t

0
f̃ (Y ε

r ) dBr + ε
1
2−H

∫ T

t

(
Pr−t

ε
f̃
)
(Y ε

t )d B̄t
r .

Since ‖Pt f̃ ‖E1 → 0 exponentially fast, it follows from Lemma 5.6 that M f
t =

limT→∞ M f,T
t in L p, so that M f

t is a local martingale. Since the first term of (5.7)
is bounded in L p (by Proposition 4.5 for H ∈ ( 13 ,

1
2 ), and for H > 1

2 from Corol-
lary 4.17 which applies since f̃ is centred), and the second term converges in L p by
Lemma 5.6, the claim follows. ��
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Remark 5.8. For H < 1
2 , we only used the integrability condition E ⊂ L p� in

Lemma 5.7, the condition E2 ⊂ L2 from Assumption 2.3 is not needed (nor is it needed
in Proposition 4.5).

For H �= 1
2 , we can then rewrite J as

J
ε
0,t ( f, g) =

∫ t

0
J ε
s ( f ) dMg

s + J ε
t ( f )Rg

t −
∫ t

0
Rg
s d J

ε
s ( f ). (5.9)

Here, the first integral is an Itô integral, while the integral
∫ t
0 J ε

s ( f )dR f
s should be

interpreted as the limit, as δ → 0, of the corresponding expression with B replaced by
a mollified version Bδ , to which integration by parts is applied.

Lemma 5.9. Let H ∈ ( 13 ,
1
2 ) ∪ ( 12 , 1). Let Assumptions 2.1–2.3 hold and let f ∈ E.

Then, one has

lim
ε→0

E
( ∫ t

0
Rg
s d J

ε
s ( f )

∣∣∣ FY
)
= −1

2
t�(2H + 1)〈L1−2Hg, f 〉μ,

in probability.

Proof. Let us first write Rg
t = J ε

t (ḡ)− R̃g
t where

R̃g
t = ε

1
2−H

∫ ∞

t

(
Pr−t

ε
g̃
)
(Y ε

t ) d B̄t
r ,

and note that
∫ t

0
J ε
s (ḡ) d J ε

s ( f ) = J ε
t (ḡ) J ε

t ( f )− J
ε
0,t ( f, ḡ), (5.10)

for H < 1
2 (vanishes for H > 1

2 since then ḡ = 0). Since J ε
t (ḡ) = ε

1
2−H ḡ Bt , we

conclude from Proposition 4.5 that the first term on the right hand side converges to 0
in probability. Since ḡ is constant, the second part of Proposition 4.7 implies that the
second term also converges to 0 in probability for H ∈ ( 13 ,

1
2 ), so that it remains to

obtain the limit of
∫ t
0 R̃g

s d J ε
s ( f ). For H �= 1

2 we have the identity

E
( ∫ t

0
R̃g
s d J

ε
s ( f )

∣∣∣FY
)
= ε1−2HE

(∫ t

0

∫ ∞

s

(
Pr−s

ε
g̃
)
(Y ε

s )d B̄s
r f (Y

ε
s ) dBs

∣∣∣ FY
)

= ε1−2H

2

∫ t

0

∫ ∞

s

(
Pr−s

ε
g̃
)
(Y ε

s ) f (Y ε
s ) η′′(s − r) dr ds

= H(2H − 1)
∫ t

0

∫ ∞

0

(
Pr g̃ − 1H< 1

2
g̃
)
(Y ε

s ) r2H−2 dr f (Y ε
s ) ds

= 1

2
�(2H + 1)

∫ t

0

〈L1−2Hg, f 〉μ(Y ε
s ) ds.

We have used the fact that the difference between Br − Bs and B̄s
r is independent of

Bs . The claim now follows from Birkhoff’s ergodic theorem (or the quantitative version
given in Lemma 5.2). ��
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Proposition 5.10. Let H ∈ ( 13 ,
1
2 )∪( 12 , 1), let Assumptions 2.1–2.3 hold, and let f ∈ E.

One has

lim
ε→0

∫ t

0
Rg
s d J

ε
s ( f ) = − t

2
�(2H − 1)〈L1−2Hg, f 〉,

in probability.

Proof. Since the expectation converges by Lemma 5.9, it remains to show that the
variance vanishes as ε → 0. As in the proof of Proposition 4.7, we can fix a realisa-
tion of Y and use Proposition 3.4 to reduce ourselves to the case where, conditional
on Y , Rg

t and J ε
t ( f ) are independent. As a consequence of the proof of Lemma 5.9,∫ t

0 J ε
s (ḡ) d J ε

s ( f ) → 0 in probability, so it suffices to bound the conditional variance of
the term with Rg

t replaced by R̃g
t .

Writing At =
∫ t
0 R̃g

s d J ε
s ( f ) (and assuming that R̃g and J ε( f ) are driven by inde-

pendent fractional Brownian motions), we then have as in (4.8) the identity

E
(
A2
t |FY ) = 1

2

∫ t

0

∫ t

0
φε(s, s

′)η′′(s − s′) ds′ ds

but this time we have

φε(s, s
′) = ε2−4H f ε

s′ f
ε
s

∫ ∞

s

∫ ∞

s′

(
Pr ′−s′

ε

g̃
)ε

s′
(
Pr−s

ε
g̃
)ε

sCs∧s′(r, r ′) dr ′ dr, (5.11)

where we use the shorthand f ε
s = f (Y ε

s ) and where

Cs∧s′(r, r ′) = E ˙̄Bs
r
˙̄Bs′
r ′ =

∫ s∧s′

−∞
(r − u)H−

3
2 (r ′ − u)H−

3
2 du.

Note that this holds for any ( 13 ,
1
2 ) ∪ ( 12 , 1) and for r, r ′ ≥ s, we have the bound

|Cs(r, r ′)| � |r − s|H−1|r ′ − s|H−1, which will be used repeatedly below. As a conse-
quence of this, the s ↔ s′ symmetry of the integrand in (5.11) and Assumptions 2.1, we
obtain for p� ≥ 4 the upper bound

‖φε(s, s)‖L1 � ε2−4H
∫ ∞

s
e−c(r−s)/ε

∫ r

s
Cs(r, r

′) dr ′ dr

� ε2−4H
∫ ∞

s
e−c(r−s)/ε

∫ r

s
|r ′ − s|H−1|r − s|H−1 dr ′ dr

� ε2−4H
∫ ∞

s
e−c(r−s)/ε|r − s|2H−1 dr

= ε2−2H
∫ ∞

0
e−cr r2H−1 dr � ε2−2H , (5.12)

with constant proportional to ‖ f ‖2E‖g‖2E . When H > 1
2 , using the local integrability of

η′′, this is sufficient to conclude that

‖E(
A2
t |FY )‖L1 � ε2−2H

∣∣∣
∫ t

0

∫ t

0
η′′(s − s′) ds′ ds

∣∣∣ � ε2−2H t2H ,

which does indeed converge to 0 as ε → 0 as desired.
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It remains to consider the case H < 1
2 , so we restrict ourselves to this case from now

on. Regarding δφε(s, s′) = φε(s, s′)−φε(s, s) for s′ > s (the case s < s′ is analogous),
we write δφε = ∑

δφ
(i)
ε with

δφ(1)
ε (s, s′) = ε2−4H f ε

s′ f
ε
s

∫ s′

s

∫ ∞

s′

(
Pr ′−s′

ε

g̃
)ε

s′
(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(2)
ε (s, s′) = −ε2−4H f ε

s f ε
s

∫ s′

s

∫ s′

s

(
Pr ′−s

ε

g̃
)ε

s

(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(3)
ε (s, s′) = −ε2−4H f ε

s f ε
s

∫ s′

s

∫ ∞

s′

(
Pr ′−s

ε

g̃
)ε

s

(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(4)
ε (s, s′) = −ε2−4H f ε

s f ε
s

∫ ∞

s′

∫ s′

s

(
Pr ′−s

ε

g̃
)ε

s

(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(5)
ε (s, s′) = ε2−4H

(
f ε
s′ − f ε

s

)
f ε
s

∫ ∞

s′

∫ ∞

s′

(
Pr ′−s′

ε

g̃
)ε

s′
(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(6)
ε (s, s′) = ε2−4H f ε

s f ε
s

∫ ∞

s′

∫ ∞

s′

(
Pr ′−s′

ε

g̃ − Pr ′−s
ε

g̃
)ε

s′
(
Pr−s

ε
g̃
)ε

sCs(r, r
′) dr ′ dr,

δφ(7)
ε (s, s′) = ε2−4H f ε

s f ε
s

∫ ∞

s′

∫ ∞

s′

((
Pr ′−s

ε

g̃
)ε

s′ −
(
Pr ′−s

ε

g̃
)ε

s

)(
Pr−s

ε
g̃
)ε

sC0(r, r
′) dr ′ dr.

We obtain the bound

‖δφ(1)
ε (s, s′)‖L1 � ε2−4H

∫ ∞

s′
e−c(r ′−s′)/ε|r ′ − s|H−1

∫ s′

s
|r − s|H−1 dr dr ′

� ε2−4H |s − s′|H
∫ ∞

s′
e−c(r ′−s′)/ε|r ′ − s′|H−1 dr ′

� ε2−3H |s − s′|H ,

and similarly for δφ
(3)
ε and δφ

(4)
ε . Regarding δφ

(2)
ε , we obtain

‖δφ(2)
ε (s, s′)‖L1 � ε2−4H

( ∫ s′

s
e−c(r−s)/ε|r − s|H−1 dr

)2
� ε2−4H |s − s′|2H .

In view of (5.12) and Assumption 2.2, we obtain for δφ
(5)
ε the bound

‖δφ(5)
ε (s, s′)‖L1 � ε2−3H |s′ − s|H ,

using ‖ f ε
s′ − f ε

s ‖L p � (|s − s′|/ε)H to obtain the increment in time.

In order to bound δφ
(6)
ε , we note that one has the bound

‖(Pt g̃ − g̃)(Y ε
s )‖L p = ∥∥E(

g̃(Y ε
t+s)− g̃(Y ε

s ) |Gs
)∥∥

L p

≤ ∥∥g̃(Y ε
t+s)− g̃(Y ε

s )
∥∥
L p � ‖g̃‖E

(
1 ∧ t Hε−H )

.

As a consequence of Assumption 2.1, we thus obtain the bound

‖δφ(6)
ε (s, s′)‖L1 � ε2−3H |s′ − s|H ,
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and similarly for δφ
(7)
ε . Collecting all of these bounds, we conclude that

‖δφε(s, s
′)‖L1 � ε2−3H |s′ − s|H + ε2−4H |s − s′|2H .

It suffices then to apply Lemma 4.3 to φε with β = 0, Ĉ = 0, and ζ ∈ {H, 2H}
to conclude that ‖E(A2

t |FY )‖L1 � ε2−2H t2H + ε2−4H t4H , which converges to 0 as
ε → 0, thus concluding the proof. ��

Collecting all of these results, we conclude that the following holds.

Proposition 5.11. Let Assumptions 2.1–2.3 hold and let f1, . . . fN ∈ E for some N ≥ 1.
The processes

(
J ε
t ( fi ), Jε

s,t ( fi , f j )
)
i, j≤N converge jointly in distribution to

(
W (i)

t ,

∫ t

s
W (i)

r dW ( j)(r) +
1

2
(t − s)�(2H + 1)〈 fi ,L1−2H f j 〉μ

)
i, j≤N

,

where the W (i) are Wiener processes with covariance

EW (i)
s W ( j)

t = 1

2
(s ∧ t)�(2H + 1)

(〈L1−2H fi , f j 〉μ + 〈L1−2H f j , fi 〉μ
)
. (5.13)

Proof. If H < 1
2 , by Proposition 5.3 and Lemma 5.6, (J ε

t ( fi ), Mε
t ( fi ), R

fi
t )i≤N all

converge jointly to (W (i)
t ,W ( j)

t , 0). This holds similarly for H > 1
2 , using Lemma 5.5.

Since by Proposition 5.10 below,
∫ t
0 R fi

s d J ε
s ( f j ) converges to a deterministic limit, and∫ t

0 J ε
s ( fi )dMε

t ( f j ) →
∫ t
0 W

(i)
r dW ( j)

r , the desired convergence in distribution follows
by combining (5.9) with the standard convergence theorem of stochastic integrals, c.f.
[39, Theorem 6.22] and [43, Theorem 2.7].

The case H = 1
2 is straightforward. Firstly, we see that conditional on FY , the

J ε
s,t ( fi ) =

∫ t
s fi (Y ε

r ) dB(r) are L2 bounded martingales with respect to the filtration

generated by B. By Lemma 5.2, their covariances
∫ t
s E( fi f j )(Y ε

r ) dr converge to (t −
s)〈 fi , f j 〉μ in L2. Then,

J
ε
s.t =

∫ t

s
J ε
r ( fi ) ◦ d J ε

r ( f j ) =
∫ t

s

∫ u

s
f (Y ε

r )g(Y ε
u )dBrdBu +

1

2

∫ t

s

(
f g

)
(Y ε

r )dr,

which converges in L2. Since J ε
s,t ( fi ) converge, they converge together with their inte-

grals, concluding the convergence of (J ε
t ( fi ), Jε

s,t ( fi , f j ))i, j≤N for H = 1
2 . ��
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Appendix A. A Compactness Criterion

Recall the definitions of B and B2 from Sect. 2, fix ζ ∈ (0, 1) and κ > 0, and define
B̂ ⊂ B as the space of C3 functions X on Rd such that

‖Z‖B̂
def= sup

x∈Rd

(
(1 + |x |)κ/2‖Z‖C3+ζ

x

)
< ∞, (A.1)

where

‖Z‖C3+ζ
x

= sup
x ′ : |x ′−x |≤1

sup
|�|≤3

(
|D�Z(x)| + |D

�Z(x)− D�Z(x ′)|
|x − x ′|ζ

)
.

Similarly, we define B̂2 as the space of functions on Rd × Rd such that

‖Z‖B̂2

def= sup
x,x̄∈Rd

(
(1 + |x | + |x̄ |)κ/2‖Z‖C3+ζ

(x,x̄)

)
< ∞.

We then have the following.

Lemma A.1. The embeddings B̂ ⊂ B and B̂2 ⊂ B2 are compact for any ζ ∈ (0, 1) and
κ > 0. Furthermore, there exists a constant C such that for any random C3 functions Z
and Z̄ one has the bound

E‖Z‖pB̂ ≤ C sup
|x−x ′|≤1

sup
|�|≤3

(1 + |x |)κpE|D
�Z(x)− D�Z(x ′)|p

|x − x ′|p ,

E‖Z̄‖pB̂2
≤ C sup

|x−x ′ |≤1
|x̄−x̄ ′ |≤1

sup
|k+�|≤3

(1 + |x | + |x̄ |)κpE|D
k
1D

�
2 Z̄(x, x̄)− Dk

1D
�
2 Z̄(x ′, x̄ ′)|p

|x − x ′|p + |x̄ − x̄ ′|p ,

(A.2)

provided that p ≥ d, ζ < 1− d/p, and κ > 4d/p.

Proof. The compactness statement is a routine modification of Arzelá–Ascoli. Regard-
ing the first bound, it follows from Kolmogorov’s continuity criterion [64, Thm 2.1, p.
26] that, writing K for the right-hand-side of (A.2), there is C > 0 such that

E‖Z‖pC3+ζ
x

≤ C(1 + |x |)−κpK ,

provided that 0 < ζ < 1 − d/p. We then cover Rd with balls of diameter 1 and note
that a norm equivalent to that of B̂ is obtained by restricting the supremum in (A.1) over

http://creativecommons.org/licenses/by/4.0/
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the centres of these balls. Since κ > 2d/p, we can then simply bound the supremum by
the sum, yielding

E‖Z‖pB̂ ≤
∑
x

E
(
(1 + |x |)κp/2‖Z‖pC3+ζ

x

) ≤ C
∑
x

(1 + |x |)−κp/2K ≤ C ′K ,

as claimed. The second bound is identical, except that d is replaced by 2d. ��
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