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Abstract: We describe a general approach to the theory of self consistent transfer op-
erators. These operators have been introduced as tools for the study of the statistical
properties of a large number of all to all interacting dynamical systems subjected to a
mean field coupling. We consider a large class of self consistent transfer operators and
prove general statements about existence of invariant measures, speed of convergence to
equilibrium, statistical stability and linear response. While most of the results presented
in the paper are valid in a weak coupling regime, the existence results for the invariant
measures we show also hold outside the weak coupling regime. We apply the general
statements to examples of different nature: coupled continuousmaps, coupled expanding
maps, coupled systems with additive noise, systemsmade of different maps coupled by a
mean field interaction and other examples of self consistent transfer operators not com-
ing from coupled maps. We also consider the problem of finding the optimal coupling
between maps in order to change the statistical properties of the system in a prescribed
way.
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1. Introduction

Suppose we have a normed real or complex vector space Bw and a collection of linear
operators Lδ, f : Bw → Bw depending on some parameter δ ∈ R and f ∈ Bw. One
can consider the nonlinear function Lδ : Bw → Bw defined by

Lδ( f ) := Lδ, f f. (1)

These kindof nonlinear functions havebeen also called self-consistent transfer operators
(as the operator itself depends on the point at which it is calculated). In many examples
where these operators are used the family Lδ, f depends in a Lipschitz way on f and
the Lipschitz constant is proportional to δ. In this context the parameter δ represents
in some sense a measure of the strength of the nonlinearity of the function L. These
concepts have been introduced and studied as models to describe the collective behavior
of a network of interacting systems coupled by a mean field interaction. In the case
of operators modeling coupled extended systems the parameter δ often represents the
strength of the coupling or of the interaction between the systems.

These operators, their invariant measures and their properties have been studied by
different techniques in classes of examples. In this paper we attempt a general approach
to the study of this kind of operators, and the statistical properties of their dynamics.
The main goal is to investigate under which assumptions we can establish some basic
important properties of the self-consistent system as the existence of the invariant mea-
sure in a certain regularity class, the convergence to equilibrium, the statistical stability
and response to perturbation of the system.

We show the flexibility and the effectiveness of the approach applying it to sev-
eral kinds of self-consistent operators coming from coupled expanding maps, coupled
random systems and other examples.

We study the behavior of the invariant measures of these operators, their convergence
to equilibrium and their statistical stability mostly in the “weak coupling” regime, in the
sense that most of the results presented hold for intervals of values of the type δ ∈ [0, δ]
for a relatively small δ (with an estimate for the size of δ, hence not only for δ → 0). Some
of the results presented however can be applied even for large values of δ. In particular,
under suitable assumptions,weprove the existence of some invariant probabilitymeasure
for the self-consistent operator Lδ , also providing estimates on its regularity imposing
no restrictions on the size of δ (Theorem 3), such result then also hold in a strong
coupling regime, for which very few results are known. Sufficient assumptions for the
uniqueness of the invariant measure are then shown in the case of weak coupling regime
(Theorem4). Still in theweak coupling regimewe study the attractiveness of the invariant
measure as a fixed point of Lδ , providing exponential convergence to equilibrium results
(Theorem 6) and study the response of the invariant measure of the system to changes
in the function defining the mean field coupling interaction in the zero coupling limit
(Theorems 12 and 14). We also investigate these questions from an optimal control
point of view. Suppose we have an initial uncoupled system and we want to introduce
a coupling which maximizes certain aspects of the statistical properties of the coupled
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system, as for example the average of a given observable. What is the best coupling to
be introduced in order to do so? This is a problem related to the control of the statistical
properties of chaotic and complex systems.

In this paper we have to deal with several concepts: networks of coupled systems;
self-consistent transfer operators; linear response; random and deterministic systems;
optimal response and control of the statistical properties. To help the reader, each main
section dealing with these concepts will have an introductory part trying to explain the
concept, the main ideas behind and giving some additional references for its deeper
understanding.

Transfer operators. An efficient method for the study of transport and the statistical
properties of a dynamical system is to associate to the system a certain transfer operator
describing how the dynamics acts on suitable spaces of measures or probability distribu-
tions on the phase space. Important properties of the original system are related to fixed
points and other properties of these transfer operators. The transfer operator which is
convenient to associate to a dynamical system is usually a linear operator. Self-consistent
transfer operators are nonlinear operators.

As mentioned before, these operators arise as natural models of extended systems in
which there is a large set of interacting dynamical systems and we consider the dynamics
of each element of the large set (the local dynamics) as being influenced or perturbed by
the state of the other elements in a mean field coupling. This means that the perturbation
we apply to the dynamics of each local system depends on the distribution of the states
of all the other elements of the large system. This global state will be represented by a
probability measure, representing the probability of finding a generic local system in a
given set of states of the phase space. If nowwe consider the transfer operator associated
with the dynamics of each local system we have that this linear operator depends on the
current global state of the system. One can furthermore suppose all the local systems
to be homogeneous and consider again the measure representing the global state of
the system as a representative for the probability of finding a local system in a given
state1. Applying the transfer operator associated to the local dynamics to see how this
probability measure evolves, we have then a transfer operator depending on a certain
measure and acting on the measure itself. This naturally brings us to the formalization
presented in (1). From a formal point of view this give rise to a nonlinear function to be
applied to a certain functional space of measures. In the weak coupling regime however
this nonlinear function is a small nonlinear perturbation of a linear one, simplifying the
situation and the understanding of the properties of this function.

The use of self-consistent operators for the study of networks of coupled maps was
developed from a mathematical point of view in [6,33]. In Sect. 2 we explain some of
the heuristics behind the use of these operators for the study of coupled maps. We refer
to [8,43] for a further discussion on the scientific context in which these concepts appear
and for an accurate bibliography on the subject (see also [13,31] for other approaches to
maps in a global coupling). For introductory material we also recommend the reading
of the paper [41].

Overview of the main results. In Sect. 3 we show a set of general assumptions on the
family of operators Lδ, f , ensuring that the nonlinear operator Lδ has a fixed point of
a certain type and hence the associated system has some invariant probability measure

1 We could also consider in a similar way interacting systems of different types, where instead of a single
measure representing the distribution of the states of the systems in a certain phase space we will have a a
vector of measures representing the states of systems of different type (see Sect. 10 for more details).
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(see Theorem 3). This result is obtained by topological methods, applying the Brouwer
fixed point theorem to a suitable sequence of finite dimensional nonlinear operators
approximating Lδ . The assumptions required for this result are related to the regularity
of the family of linear operators Lδ, f when f varies in a strong-weak topology, the
regularity of its invariant measures (see the assumptions (Exi1), (Exi1.b), (Exi2) in
Theorem 3) and the existence of a suitable finite dimensional projection, allowing to
apply a kind of finite element reduction of the problem. The result also holds outside the
weak coupling regime and implies a general statement for the existence of an invariant
measure for systems of continuous maps in the mean field coupling (see Proposition
16). We also discuss the uniqueness of the invariant probability measure. This will be
proved in the weak coupling regime (see Theorem 4). The set of assumptions for the
uniqueness, essentially require that the operators Lδ, f and their fixed points depend on f
in a Lipschitz way (see assumptions (Exi3) in Theorem 4). The assumptions required to
apply these results are not difficult to be verified, and in the following sections we show
how to apply this general framework to interacting random and deterministic systems,
together with examples of different kind.

InSect. 4we take the samepoint of viewwith the goal of investigating the convergence
to equilibrium: the attractiveness of the invariant measure as a fixed point ofLδ and in the
weakcoupling regimewe showassumptions underwhichwecanprove exponential speed
of convergence to equilibrium for a general class of self-consistent transfer operators
(see Theorem 6). The assumptions we require are related to convergence to equilibrium
and a common “one step” Lasota Yorke inequality satisfied by each transfer operator
in the family Lδ, f (see assumptions (Con1), . . . , (Con3) ). The assumptions made are
in a certain sense natural when considering suitable coupled dynamical systems like
expanding maps or random systems with additive noise, and in the next sections we
apply these general results to several classes of examples.

In Sect. 5, after an introduction to the concept of Linear Response and some related
bibliography, we prove a general statistical stability result (see Theorem 12) and a linear
response result for nonlinear perturbations of linear transfer operators (see Theorem
14), describing the first order change in the invariant measure of the system when an
infinitesimal perturbation leading to a nonlinear operator is applied. We remark that this
result is similar in the statement and in the proof to many other general linear response
results proved for linear transfer operators (see e.g. [15]).

The methods used to establish the general statements in Sects. 3, 4, 5 are related to
the classical transfer operator approach, letting the transfer operator associated with the
system to act on stronger and weaker spaces (in a way similar to the classical reference
[35]), exploiting the fact that the perturbations we are interested in applying to our
systems are small when considered in a kind of mixed norm, from the stronger to the
weaker space.

We show the flexibility of this general approach applying it to systems of different
kind. In particular we will consider coupled deterministic expanding maps and random
maps with additive noise, coupling identical maps or different ones in a mean field
regime. For these exampleswewill use simple spaces of functions as L1,Ck , the Sobolev
spacesWk,1,Wk,2 or the space ofBorel signedmeasures equippedwith the total variation
or the Wasserstein distance.

In Sect. 6 we consider continuous maps on the circle with a mean field coupling
and we prove the existence of an invariant probability measure for the associated self-
consistent transfer operators, providing a sort of Krylov-Bogoliubov theorem for this
kind of extended systems.
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In Sect. 7, after recalling several useful classical results on expanding maps we
show that the self-consistent transfer operator associated with a network of coupled
expanding maps has an invariant measure in a suitable Sobolev spaceWk,1 and we show
an estimate for its Sobolev norm (see Theorem 23). In the small coupling regime we also
show exponential convergence to equilibrium for this kind of systems. This will allow
to apply our general linear response statement and get a linear response statement for
the zero coupling limit of such systems. Similar results for this kind of systems in the
weak coupling regime appear in [41], the spaces used and the methods of proof however
are quite different.

In Sect. 8 we consider coupled random maps and we apply our general framework
to this case. More precisely, we consider maps with additive noise in which at every
iterate of the dynamics a certain deterministic map is applied and then a random i.i.d.
perturbation is added. Due to the regularizing effect of the noise at the level of the
associated transfer operators we do not need to put particular restrictions on the maps
considered. These examples are then particularly interesting for the applications. After
recalling the basic properties of these systems and the associated transfer operators we
define a self-consistent transfer operator representing the global behavior of a network
of coupled random maps. We prove the existence of invariant measures for this self-
consistent operator and show an estimate for itsCk normwhich is uniformwhen varying
the coupling strength. In the case of weak coupling, we also prove exponential speed of
convergence to equilibrium for this globally coupled system. We then apply the general
linear response results to this system, obtaining again a linear response result for the
system in the zero coupling limit.

In Sect. 9 we consider a class of self-consistent transfer operators where the deter-
ministic part of the dynamics is driven by a certain map whose slope depends on the
average of a given observable, in some sense similar to the examples studied in [44]. For
these systems we study the existence, uniqueness of the invariant measures and linear
response, similarly to what is proved for the systems coming from coupled maps.

In Sect. 10 we consider suitable self-consistent transfer operators to model a mean
field interaction of different maps. For simplicity we consider two types of maps. We
show that the general framework we are considering also applies to this case, showing
the existence and uniqueness of the invariant measure in a weak coupling regime.

In Sect. 11 we consider the linear response results we proved from an optimal control
point of view. Suppose we want to introduce in the system a coupling which changes the
statistical properties of the dynamics in some desired way. What is the optimal coupling
to be considered? Given some observable whose average is meant to be optimized and
a convex set P of allowed infinitesimal couplings to be applied, we show conditions
under which the problem has a solution in P and this solution is unique. We remark
that in [37] the research in this direction of research was motivated, with the goal of the
management of the statistical properties of complex systems and in this direction several
results for probabilistic cellular automata were shown.

2. Self-Consistent Transfer Operators for Coupled Circle Maps, Heuristics and
Formalization

Since the study of self-consistent transfer operators is strongly motivated by the applica-
tions to systems of globally interactingmaps, in this section we briefly introduce amodel
representing the dynamics of a large number of coupled maps in a global mean field
interaction and the associated self-consistent transfer operators. We will see how the
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formalization of such interaction leads to the study of a self-consistent transfer operator
of the kind defined at the beginning of the introduction.

We remark that in this paper we only consider discrete time dynamical systems. In
the continuous time case, the models one is lead to consider are related to the topic
of Vlasov-type differential equations, we suggest the recent surveys [12,23] and the
references therein for an introduction to the subject.

We are now going to define more precisely the self-consistent transfer operators
associated with a set of dynamical systems coupled by a mean field interaction. One
can think the set of interacting systems as a continuum, endowed with a measure, as
for instance a swarm of interacting particles distributed by a certain density in different
parts of the space. We take this point of view and we consider the case in which the set
of systems we consider is a measurable space M with a probability p. The set M can
be finite or infinite and in each case we can define the self-consistent transfer operator
associated with the system. We remark that one could see the case where M is infinite
as a suitable limit of finite sets and define the self-consistent transfer operator associated
with the global coupling of infinitely many systems by a suitable limit of finitely many
couplings (see [6,33,41] and Footnote 2 for further details on this approach).

Let us fix some notation and terminology: let us consider two metric spaces X,Y ,
the spaces of Borel probability measures PM(X), PM(Y ) on X and Y, and a Borel
measurable F : X → Y . We denote the pushforward of F as LF : PM(X) → PM(Y ),
defined by the relation

[LF (μ)](A) = μ(F−1(A))

for all μ ∈ PM(X) and measurable set A ⊆ Y . The pushforward can be extended as a
linear function LF : SM(X) → SM(Y ) from the vector space of Borel signed measures
on X to the same space on Y . In this case LF will be also called as the transfer operator
associated with the function F .

We now define amodel for the dynamics of a family of dynamical systems interacting
in the mean field. For simplicity we will suppose as a phase space for each interacting
system the unit circle S1 and we will equip S

1 with the Borel σ−algebra. We consider
an additional metric space M equipped with the Borel σ−algebra and a probability
measure p ∈ PM(M). Let us consider a collection of identical dynamical systems
(S1, T )i , with i ∈ M and T : S1 → S

1 being a Borel measurable function.
The initial state of this collection of interacting systems can be identified by a point

x(0) = (xi (0))i∈M ∈ (S1)M (we suppose i → xi (0) being measurable). Let X ⊆(S1)M

be the set of measurable functions M → S
1. We now define the dynamics of the

interacting systems by defining a global map T : X → X and global trajectory of the
system by

x(t + 1) := T (x(t))

where x(t +1) is defined on every coordinate by applying at each step the local dynamics
T , plus a perturbation given by the mean field interaction with the other systems, by

xi (t + 1) = �δ,x(t) ◦ T (xi (t)) (2)

for all i ∈ M , where �δ,x(t) : S
1 → S

1 represents the perturbation provided by
the global mean field coupling with strength δ ≥ 0, defined in the following way: let
πS1 : R → S

1 be the universal covering projection, let us consider some continuous
function h : S1 × S

1 → R, where h(x, y) represents the way in which the presence of
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some subsystem in the state y ∈ S
1 perturbs a certain subsystems in the state x ∈ S

1;
we define �δ,x(t) as

�δ,x(t)(x) = x + πS1(δ

∫
M
h(x, x j (t)) dp( j)) (3)

( j → h(x, x j (t)) can be viewed as a function : M → R)2. Consider the function
Ix,t : M → S

1 defined by

Ix,t (i) := xi (t).

We remark that with these definitions, for all t ∈ N, Ix,t is also measurable. We
say that the global state x(t) of the system is represented by a probability measure
μx(t) ∈ PM(S1) if

μx(t) = [Ix,t ]∗(p)
(the pushforward of p by the function Ix,t ). Now we see how the measures representing
given initial conditions evolve with the dynamics.

Lemma 1. Let us consider the system (X , T ) defined above. Let μ ∈ PM(S1), let us
consider

�δ,μ(x) := x + πS1(δ

∫
S1
h(x, y) dμ(y)).

Suppose the initial condition of the system x(0) is represented by a measure μx(0), then
x(1) = T (x(0)) is represented by

μx(1) = L�δ,μx(0)◦T (μx(0)).

Proof. Since two probability measures are identical if they act in the same way on
continuous functions,weprove that for all continuous g : S1 → R,wehave

∫
g dμx(1) =∫

g dL�δ,μx(0)◦T (μx(0)). By applying several times the change of variable formula, we
have ∫

S1
g dμx(1) =

∫
M
g(x j (1)) dp( j)

=
∫
M
g(�δ,x(0) ◦ T (x j (0))) dp( j)

2 The set M can be finite or infinite. In the case M = Mn := {1, . . . , n} is finite we consider a finite set
of interacting systems. In this case a natural choice is to set p as the uniform distribution pn giving to each
system the same weight 1

n . We remark that in this case (3) becomes

�δ,x(t)(x) = x + π
S1 (

δ

n

n∑
j=1

h(x, x j (t))). (4)

One approach to the definition of the dynamics of a systemmade of infinitely many globally interacting maps
is to start by the case of n interacting maps and then considering the limit for n → ∞. The perturbation�δ,x(t)
induced by the interaction between the systems is defined as a suitable limit of 4. This might raise some
technical problem in selecting states and the assumptions for which the limit converge. With our approach we
might also consider an infinite space of interacting systems as a limit of a finite interacting family. In this case
it is sufficient to see (M, p) as a suitable limit of (Mn , pn).
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=
∫
S1

g ◦ �δ,x(0) ◦ T (y) dμx(0)(y)

=
∫
S1

g dL�δ,x(0)◦T (μx(0)).

But since x(0) is represented by μx(0)

�δ,x(0)(x) = x + πS1(δ

∫
M
h(x, x j (0)) dp( j))

= �δ,μx(0) (x)

leading to the statement. 	

Hence the measure representing the current state of the system fully determines the

measure which represents the next state of the system, defining a function between
measures

μ → L�δ,μ◦T (μ).

This function is an example of what in the following section we will consider as a self-
consistent transfer operator. In the case of coupled systems (X , T ) described above, to
describe the evolution of a certain probability measure representing the global state of
the system we hence apply at each time a transfer operator from a family of the kind

Lδ,μ := L�δ,μ◦T = L�δ,μLT .

Each operator Lδ,μ can be seen as the transfer operator associated with the dynamics of
a given node of the network of coupled systems, given that the distribution of the states
of the other nodes in the network is represented by the measure μ.

We remark that the extended system (X , T ) above described can be identified by the
choice of the phase space S1 , the local dynamics T , the strength of coupling δ and the
coupling function h. Hence it can be identified as the quadruple (S1, T, δ, h).

3. Self-Consistent Operators, the Existence of the Invariant Measure

General standing assumptions and notations. Motivated by the class of examples
described in the previous section, given a compact metric space X we consider a family
of Markov operators Lδ,μ : SM(X) → SM(X) depending on a probability measure
μ ∈ PM(X) and δ ≥ 0. In our statements, we will apply the operators Lδ,μ to different
strong and weak spaces of measures which are subspaces of SM(X). We now introduce
the notations and the basic assumptions to formalize this. Let (Bw, || ||w) be a normed
vector subspace of SM(X). In the paper we will suppose that the weak norm || ||w is
strong enough so that the functionμ → μ(X) is continuous as a function : Bw → R and
that ||μn −μ||w → 0 for a sequence of positive measures μn implies that μ is positive.
Let Pw := Bw ∩ PM(X) the set of probability measures in Bw. We will suppose that
Pw with the metric induced by || ||w is a complete metric space.

A self-consistent transfer operator in our context will be the given of a family of
Markov linear operators such that Lδ,μ : Bw → Bw for all μ ∈ Pw, some δ ≥ 0 and
the dynamical system (Pw,Lδ) where Lδ : Pw → Pw is defined by

Lδ(μ) := Lδ,μ(μ). (5)
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In the notation Lδ we emphasize the dependence on δ as in the following we will be
interested in the behavior of these operators for certain sets of values of δ or in the limit
δ → 0. We also point out that here and in the following we will use the calligraphic
notation L to denote some operator which is not necessarily linear and the notation L to
denote linear operators.

In the following we will apply linear operators on spaces with different topologies.
If A, B are two normed vector spaces and L : A → B is a linear operator we denote the
mixed norm ‖L‖A→B as

‖L‖A→B := sup
f ∈A,‖ f ‖A≤1

‖L f ‖B .

Remark 2. In the case where Lδ,μ is the transfer operator associated with a map Tδ,μ :
X → X to this dynamical system one can also associate the skew product dynamical
system (A × X, F) on A × X where F : A × X → A × X is defined by

F(μ, x) = (Lδ(μ), Tδ,μ(x))

(see also [5]). One can remark that in the case μ is a fixed point for Lδ the associated
dynamics will be nontrivial only on the second coordinate, where Tδ,μ represents a
map for which μ is an invariant measure. Hence by the classical ergodic theory results,
finding the fixed points of Lδ gives important information on the statistical behavior of
the second coordinate of the system F .

Wewill hence be interested in the dynamicsLδ considered on a space ofmeasures, and
on the properties of its fixed points. In particularwewill be interested in the attractiveness
of these fixed points (which will determine the convergence to equilibrium of the global
system) and to the stability or response of these fixed points with respect to perturbations
of the global system.

Standing assumptions 1. In this section we will use the following standing assumptions
and notations.

Let Bw as above, and let Bs be a normed vector subspace (Bs, || ||s) ⊆ (Bw, || ||w).
Suppose || ||s ≥ || ||w. We also denote by Ps := Pw ∩ Bs the set of probability measures
in Bs . We suppose Ps �= ∅. We will also suppose that there is M ≥ 0 such that as μ

varies in Pw the family Lδ,μ is such that ||Lδ,μ||Bw→Bw ≤ M and ||Lδ,μ||Bs→Bs ≤ M .
We now prove general statements regarding the existence and uniqueness of regular

(and then physically meaningful) invariant measures for self-consistent transfer opera-
tors. We remark that since our transfer operators are not linear, the normalization of the
measure to a probability one is important in this context. In the case in which we put
no restrictions on the size of the parameter δ representing the nonlinearity strength, by
a topological reasoning we prove a general result on the existence of invariant proba-
bility measures (Theorem 3). We then suppose that the parameter δ is below a certain
threshold, and in this weak coupling regime we also prove some unique existence re-
sult (see Theorem 4). We remark that in the weak coupling regime similar results have
been proved in several cases of extended systems (see e.g. [6,26,34]), also showing the
uniqueness of the invariant measure in a certain class. It is known on the other hand that
as the coupling strength grows, phase transitions phenomena can occur, leading to the
presence of multiple invariant measures (see [4,44] for a case not arising from coupled
maps in which the uniqueness of absolutely continuous invariant measures is lost for all
δ > 0).
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Theorem 3. Suppose that there exists πn : Bw → Bs, a linear projection of finite rank
n which is a Markov operator with the following properties: there is M0 ≥ 0 and a
decreasing sequence a(n) → 0 such that for all n ≥ 0

||πn||Bw→Bw < M0,

||πn||Bs→Bs < M0 (6)

and

||πn f − f ||w ≤ a(n)|| f ||s . (7)

Let us suppose that πn(Pw) ⊆ Ps and πn(Pw) is bounded in Bs. Let us fix δ ≥ 0 and
suppose furthermore that:

Exi1 there is M1 ≥ 0 such that ∀μ1 ∈ Pw and f ∈ Pw which is a fixed point of Lδ,μ1

it holds

|| f ||s ≤ M1;
Exi1.b ∀μ1 ∈ Pw, n ∈ N and for every f ∈ Pw which is a fixed point for the finite rank

approximation πnLδ,πnμ1πn of Lδ,μ1 it holds

|| f ||s ≤ M1;
Exi2 there is K1 ≥ 0 such that ∀μ1, μ2 ∈ Pw

||Lδ,μ1 − Lδ,μ2 ||Bs→Bw ≤ δK1||μ1 − μ2||w.

Then there is μ ∈ Ps such that

Lδμ = μ.

and

||μ||s ≤ M1. (8)

To understand the assumptions made we suggest to think of Bw as a weak space, for
example L1 and of Bs as a stronger space in which regular fixed points of the linear
transfer operators Lδ,μ are contained, for example, in the case of transfer operators asso-
ciated with expanding maps, one can think of Bs as some Sobolev space. The projection
πn allows to reduce the problem to a finite dimensional one and find fixed points of the
finite dimensional reduced operators by the Brouwer fixed point theorem. In concrete
examples πn could be a finite dimensional discretization, as the Ulam discretization
or similar. The assumptions (Exi1), (Exi1.b) tells that the invariant measures of the
original and discretized operators are unifornmly regular, and can be verified in concrete
examples by showing that these operators satisfy a common Lasota-Yorke inequality.
The assumption (Exi2) in some sense says that the family of operators Lδ,μ depends
on μ in a Lipschitz way, considering a (weak) mixed norm topology. The assumptions
made are then quite natural for a family of transfer operators depending on a parameter.
An interesting corollary of Theorem 3 is Proposition 16, establishing a general statement
for the existence of an invariant probability meaure for general continuous maen field
coupled maps, even outside the weak cupling regime.

Proof of Theorem 3 Without loss of generality we can suppose that each operator Lδ,μ

is such that ||Lδ,μ||Bs→Bs ≤ M0, ||Lδ,μ||Bw→Bw ≤ M0. First we prove that under
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the assumptions of the theorem, given a sequence μi of probability measures which is
bounded in Bs there is μ ∈ Pw and converging subsequence μik → μ, converging in
the weak topology. Indeed let μi be such a sequence, with ||μi ||s ≤ M2, let us consider
νn,i := πnμi . Since πn is Markov this is a sequence of probability measures. By (6)
this sequence is bounded in Bw and belongs to the finite dimensional space πn Bw, then
it has a converging subsequence νn,in,k → νn where we denote by in,k a sequence of
indices for which we have this convergence. We remark that this indices can depend on
n. Since Pw is complete for the weak norm (see Standing assumptions 1) we also have
that νn ∈ Pw.By (7), for all n and k we have ||νn,in,k −μin,k ||w ≤ a(n)M2.Without loss
of generality we can suppose that in,k is a subsequence of in−1,k (suppose we selected
the sequence of indices in−1,k , then we can select the subsequence νn,in,k → νn only
from the indices belonging to in−1,k since νn−1,in−1,k is also a bounded sequence, and so
on for all n by induction). In this case, for m ≥ n we have

||νm,im,k − νn,im,k ||w ≤ ||νm,im,k − μim,k ||w + ||νn,im,k − μim,k ||w
≤ 2a(n)M2.

Since this is true for all k, by taking the limits it holds that ||νn − νm ||w ≤ 2a(n)M2 and
hence νn is a Cauchy sequence of probability measures in Pw. By the completeness of
Pw, the sequence νn will then converge to some ν ∈ Pw. We also have that νk,ik,k → ν

in Bw and since ||νk,ik,k − μik,k ||w ≤ a(k)M2 we also have μik,k → ν in Bw, finding a
converging subsequence as claimed.

Let us consider a finite rank approximation of Lδ, defined by

Lδ,n(μ) := πnLδ,πnμπn(μ).

We now prove that Lδ,n is a continuous function Pw → Pw, indeed let μ ∈ Pw, ν ∈
Bw such that μ + ν ∈ Pw, we have

||Lδ,n(μ + ν) − Lδ,n(μ)||w ≤ ||πn Lδ,πn(μ+ν)πn(μ + ν) − πn Lδ,πnμπn(μ)||w
≤ ||πn ||Bw→Bw [||Lδ,πn(μ+ν)πn(μ + ν) − Lδ,πnμπn(μ + ν)||w

+||Lδ,πnμπn(μ + ν) − Lδ,πnμπn(μ)||w]
≤ ||πn ||Bw→Bw [||Lδ,πn(μ+ν)πn(μ) + Lδ,πn(μ+ν)πn(ν)

−Lδ,πnμπn(μ) − Lδ,πnμπn(ν)||w
+||Lδ,πnμπn(μ + ν) − Lδ,πnμπn(μ)||w]

and

||Lδ,πnμπn(μ + ν) − Lδ,πnμπn(μ)||w ≤ M2||ν||w
while using (Exi2)

||Lδ,πn(μ+ν)πn(μ) − Lδ,πnμπn(μ)||w ≤ δK1||πnν||w||πnμ||s,
||Lδ,πn(μ+ν)πn(ν) − Lδ,πnμπn(ν)||w ≤ 2M2||ν||w

hence

||Lδ,n(μ + ν) − Lδ,n(μ)||w ≤ M[M2 + δMK1||πnμ||s + 2M2]||ν||w.

By assumption πn Pw is bounded in Bs , this shows that ||πnμ||s is uniformly bounded
as μ ranges in Pw and then Lδ,n(μ) is Lipschitz continuous Pw → Pw. Note that since
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Pw is a convex set, πn Pw is a finite dimensional convex and bounded set. Now let us
see that this is also a closed set in Bw. We will deduce that it is compact. Suppose
pi ∈ πn Pw ⊆ Pw is a Cauchy sequence for the Bw norm. Since Pw is complete
this will converge to a point w of Pw. But πn Bw, being a finite dimensional vector
space, is a closed space, then w ∈ πn Bw. Suppose w = πn(u) with u ∈ Bw, since
w = πn(πnu) = πn(w) andw ∈ Pw thenw ∈ πn Pw.By thisπn Pw is a closed subspace
of Bw. Since πn Pw is a bounded, convex and closed subset of a finite dimensional space,
then it is homeomorphic to a closed disc (see e.g. [14], Corollary 1.1.1). We have that
Lδ,n is continuous on πn Pw and Lδ,n(πn Pw) ⊆ πn Pw. Then by the Brouwer fixed point
theorem there is μn ∈ πn Pw such that

Lδ,n(μn) = μn .

This means that πnLδ,πnμnπn(μn) = μn and then by Exi1.b we have that for all
n ∈ N, ||μn||s ≤ M1. As we proved above μn has then a converging subsequence
μnk → μ̂ in the weak norm to some element μ̂ ∈ Pw.

Now let us prove that

Lδ(μ̂) = μ̂.

In fact we have for all k ≥ 0

Lδμ̂ = Lδ,μ̂(μ̂ − μnk ) + Lδ,μ̂(μnk ). (9)

Since ||μ̂ − μnk ||w → 0, and the operator Lδ,μ̂ is bounded then

Lδ,μ̂(μnk ) → Lδμ̂

in the weak norm. By Exi2

||Lδ,μ̂(μnk ) − Lδ,μnk
(μnk )||w ≤ δK1||μ̂ − μnk ||w||μnk ||s

which by Exi1.b becomes

||Lδ,μ̂(μnk ) − Lδ,μnk
(μnk )||w ≤ δK1M1||μ̂ − μnk ||w

and then

Lδ,μnk
(μnk ) → Lδμ̂

in the weak norm. Since μnk = πnkμnk we also have that

Lδ,μnk
(μnk ) − Lδ,nkμnk = Lδ,μnk

(μnk ) − πnk Lδ,μnk
(μnk )

and then by (7)

||Lδ,μnk
(μnk ) − Lδ,nkμnk ||w ≤ a(nk)||Lδ,μnk

μnk ||s
≤ a(nk)MM1 → 0.

We then proved that

Lδ,nkμnk → Lδμ̂.

Since

Lδ,nkμnk = μnk
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then we get

μ̂ = lim
k→∞ μnk = Lδ(μ̂)

proving the invariance of μ̂.

Now we are only left to prove that ||μ̂||s ≤ M1. Since Lδ,μ̂(μ̂) = μ̂ this directly
follows from (Exi1). 	


Theorem 3 gives general, sufficient conditions for the existence of the invariant prob-
ability measure of a self-consistent operator, but it is hard to apply it constructively to
approximate the invariant measure. Furthermore it does not give information about the
uniqueness.

Now we prove a kind of constructive existence and uniqueness result in the case of
weak coupling. Before stating the result, as a general remark on the uniqueness of the
invariant probability measure we show that when δ is small and the operators Lδ,μ are
statistically stable in some sense, different invariant probability measures in Bw of the
associated Lδ must be near each other. Indeed, suppose that each operator of the family
Lδ,μ with δ ≥ 0 and μ ∈ Pw has a unique fixed probability measure in Bw which we
denote by fμ ∈ Pw and suppose there is F : R → R such that ∀μ1, μ2 ∈ Pw

|| fμ1 − fμ2 ||w ≤ F(δ).

If μ, ν ∈ Pw are invariant measures for Lδ, this implies that μ = fμ and ν = fν . Then
we have

||μ − ν||w = || fν − fμ||w ≤ F(δ).

In the case limδ→0 F(δ) = 0 we see that when δ is small different invariant measures of
Lδ must be near each other. In the following statement we then suppose a strong stability
property (see (Exi3)) for the invariant measures of the operators Lδ,μ as μ vary.

Theorem 4. Suppose there is δ ≥ 0 such that for all 0 ≤ δ < δ the family Lδ,μ satisfies
(Exi1) and (Exi2) uniformly (with the same constants for each such δ). Suppose that
Pw contains some probability measure μ with ||μ||w ≤ M1 (where M1 is the constant
coming from (Exi1)). Suppose that for all 0 ≤ δ < δ and μ ∈ Pw with ||μ||w ≤ M1,
Lδ,μ has a unique fixed probability measure in Pw which we denote by fμ. Suppose
furthermore that the family Lδ,μ satisfies the following:

Exi3 there is K2 ≥ 1 such that ∀μ1, μ2 ∈ Pw with max(||μ1||w, ||μ2||w) ≤ M1

|| fμ1 − fμ2 ||w ≤ δK2||μ1 − μ2||w.

Then for all 0 ≤ δ ≤ min(δ, 1
K2

), there is a unique μ ∈ Pw such that

Lδ(μ) = μ.

Furthermore μ = limk→∞ μk where μk is any sequence defined inductively in the
following way: let μ0 be some probability measure in Pw with ||μ0||w ≤ M1, then μ1
is the fixed probability measure of Lδ,μ0 , μi in Pw; μi is the fixed probability measure
of Lδ,μi−1 in Pw and so on.
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While the assumptions (Exi1), (Exi2) and the uniqueness of the fixed probability
measure in Pw for the family Lδ,μ can be easily verified for a large class of examples,
including families of transfer operators coming from piecewise expanding maps, the
assumption (Exi3) imposes some stronger requirements on the kind of systems we can
consider when applying this statement.

The assumption (Exi3) correspond to a Lipschitz quantitative stability for the fixed
points of the operators in the family Lδ,μ when the operators are perturbed by changing
μ. This is a strong assumption which is however satisfied for many interesting systems,
as expanding and uniformly hyperbolic or many random ones, but it is not satisfied for
other systems like piecewise expanding maps for perturbations changing their turning
points. We remark that indeed self-consistent transfer operators arising from piecewise
expanding maps show a complicated behavior from the point of view of the uniqueness
of the invariant measure [44].

Proof of Theorem 4. Let us consider δ such that

0 < δ < K−1
2 . (10)

Let us consider some 0 < δ ≤ δ. Let f0 ∈ Pw with || f0||w ≤ M1. Let f1 ∈ Ps be
the fixed probability measure of Lδ, f0 in Bw, again || f1||w ≤ M1. Now, Lδ, f1 has a
fixed probability measure which we will denote by f2. We also have || f2||w ≤ M1. By
(Exi3)

|| f1 − f2||w ≤ δK2|| f0 − f1||w.

Now let us consider the linear operator Lδ, f2 , this operator has a fixed probability
measure f3 ∈ Bs with || f3||w ≤ M1. We get

|| f3 − f2||w ≤ K2δ|| f2 − f1||w ≤ (K2δ)
2|| f0 − f1||w.

Continuing as before, this will lead to a new fixed probability measure f4 with
|| f4 − f3||w ≤ (K2δ)

3|| f0 − f1||w and so on, defining a sequence fk with || fk ||w ≤ M1
and || fk − fk−1||w ≤ (K2δ)

k−1|| f0 − f1||w. Since (K2δ)
k is summable, fk is a Cauchy

sequence in Pw.

Since Pw is complete this sequence has a limit. Let f := limk→∞ fk ∈ Pw. By
(Exi1), fk is also uniformly bounded in Bs .Nowwe can prove thatLδ( f ) = Lδ, f ( f ) =
f . Indeed

Lδ, f ( f ) = Lδ, f ( lim
k→∞ fk)

= lim
k→∞ Lδ, f ( fk)

because of the continuity of Lδ, f in the weak norm. Furthermore

lim
k→∞ Lδ, f ( fk) = lim

k→∞ Lδ, f ( fk) − Lδ, fk−1( fk) + Lδ, fk−1( fk)

= lim
k→∞ Lδ, f ( fk) − Lδ, fk−1( fk) + fk

because Lδ, fk−1( fk) = fk . However, by (Exi2) there is K1 ≥ 0 such that ||Lδ,μ1 −
Lδ,μ2 ||Bs→Bw ≤ K1δ||μ1 − μ2||w and using this together with (Exi1) we get
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||Lδ, f ( fk) − Lδ, fk−1( fk)||w ≤ K1δ|| f − fk−1||w|| fk ||s
≤ K1δM1|| f − fk−1||w →

k→∞ 0.

Then in the Bw topology

Lδ, f ( f ) = lim
k→∞ Lδ, f ( fk) = lim

k→∞ fk = f.

Regarding theuniqueness, suppose μ1, μ2 ∈ Pw are invariant forLδ . Then Lδ,μ1(μ1)

= μ1 and Lδ,μ2(μ2) = μ2. By (Exi1) we have max(||μ1||w, ||μ2||w) ≤ M1 and then
by (Exi3) we have ||μ1 − μ2||w ≤ δK2||μ1 − μ2||w, implying ||μ1 − μ2||w = 0
because K2δ < 1. 	

Remark 5. The way the fixed point f is found in the previous proof is constructive,
provided we have a mean of finding the invariant measures of the various operators Lδ, fk
(which is possible in many interesting cases by some suitable finite element reduction).
In this case f can be approximated by the sequence fk → f and the proof also provides
an explicit way to estimate the convergence rate of this sequence, which is exponential.

4. Self-Consistent Operators, Exponential Convergence to Equilibrium

Theorems 3 and 4 give information about the existence of fixed probability measures
for the self-consistent operators but gives no information on whether they are attractive
fixed points. In this section we address this question, giving general sufficient conditions
for this to hold. In the case where the invariant probability measure is attractive we have
that the associated system has convergence to equilibrium in some sense, since iterates
of some initial probability measure will converge to the invariant one. It is important
to estimate the speed of this convergence. In the case of weak coupling we will show a
set of general conditions implying exponential speed of convergence to equilibrium for
self-consistent transfer operators.

Standing assumptions 2. In this section we will consider a setup similar to the one in
the previous section, with strong and weak spaces Bs and Bw and a family of Markov
bounded operators Lδ,μ satistyfing the General Standing assumptions and the Standing
assumptions 1 stated at beginning of Sect. 3. We will also consider a stronger space
(Bss, || ||ss) with norm satisfying || ||ss ≥ || ||s . We denote by Pss the set of probability
measures in Bss . We will suppose that for all μ ∈ Pw and δ ≥ 0 the operators Lδ,μ :
Bss → Bss are bounded and that Pw is a bounded set for the Bw norm. We will consider
furthermore the following assumptions:

Con1 The operators Lδ,μ satisfy a common “one step” Lasota Yorke inequality. There
are constants δ̂, B, λ1 ≥ 0 with λ1 < 1 such that for all f ∈ Bs, μ ∈ Pw,

0 ≤ δ ≤ δ̂

{ ||Lδ,μ f ||w ≤ || f ||w
||Lδ,μ f ||s ≤ λ1|| f ||s + B|| f ||w.

(11)

Con2 The family of operators satisfy an extended (Exi2) property: there is K ≥ 1
such that for all f ∈ Bs, μ, ν ∈ Pw, 0 ≤ δ ≤ δ̂

||(Lδ,μ − Lδ,ν)( f )||Bs→Bw ≤ δK ||μ − ν||w (12)
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and ∀ f ∈ Bss, μ, ν ∈ Pw

||(Lδ,μ − Lδ,ν)( f )||Bss→Bs ≤ δK ||μ − ν||w.

We remark that by (12), when δ = 0 Lδ,μ, Lδ,ν : Bs → Bs are identical
operators for all μ, ν ∈ Bw. We hence denote this operator as L0. We also
suppose that for all f ∈ Bs, ν ∈ Pw, 0 ≤ δ ≤ δ̂

||(L0 − Lδ,ν)( f )||Bs→Bw ≤ δK ||ν||w. (13)

Con3 The operator L0 : Bs → Bs has convergence to equilibrium: there exists an ≥ 0
with an → 0 such that for all n ∈ N and v ∈ Vs

||Ln
0(v)||w ≤ an||v||s (14)

where

Vs = {μ ∈ Bs |μ(X) = 0}
We remark that the assumption (Con1) implies that the family of operators Lδ,μ is

uniformly bounded when acting on Bs and on Bw as μ varies in Pw
3.

We also remark that the convergence to equilibrium assumption is sometimes not
trivial to be proved in a given system, but it is somehow expected in systems having some
sort of indecomposability and chaotic behavior (for instance some kind of topological
mixing, expansion, hyperbolicity or presence of noise, see also Remark 40).

The following statement estimates the speed of convergence to equilibrium for self-
consistent transfer operators Lδ when δ is small.

Theorem 6. Let Lδ,μ be a family of Markov operators satisfying the Standing assump-
tions 2 (including (Con1), ..., (Con3)) for some δ̂ > 0 and that

sup
μ∈Pw,δ≤δ̂

||Lδ,μ||Bss→Bss < +∞. (15)

Let us consider for all δ ≤ δ̂ the self-consistent operator Lδ defined as in (5), suppose
that for each such δ there is an invariant probability measure μδ ∈ Pss for Lδ and
suppose that

sup
δ≤δ̂

||μδ||ss < +∞. (16)

Then there exists δ such that 0 < δ < δ̂ and there are C, γ ≥ 0 such that for all n ∈ N ,
0 < δ < δ, ν ∈ Pss we have

||Ln
δ (ν) − μδ||s ≤ Ce−γ n||ν − μδ||s . (17)

We remark that the convergence speed estimates provided in (17) are in the strong
norm. These estimates are uniform for δ small enough and uniform in ν. We also remark
that since there is the strong norm on both sides of the inequality, (17) is similar to
a spectral gap estimate, rather than a convergence to equilibrium estimate (where the
regularity of the measure is estimated in the strong norm and the convergence is in the
weak one, resulting in a weaker estimate).

Before the proof of Theorem 6 we prove several results on the convergence to equi-
librium of a sequential composition of operators in the family Lδ,μ. In particular it will
be useful to prove a Lasota Yorke inequality for such a composition.

3 We recall that since μ → μ(X) is continuous, Vs is closed. Furthermore ∀μ ∈ Pw, Lδ,μ(Vs ) ⊆ Vs .
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Lemma 7. Let Lδ,μ be a family ofMarkov operators satisfying (Con1). Letμ1, ..., μn ∈
Pw and

L(n) := Lδ,μn ◦ Lδ,μn−1 ◦ ... ◦ Lδ,μ1 (18)

be a sequential composition of operators in such family, then

||L(n) f ‖w ≤ || f ‖w (19)

and

||L(n) f ‖s ≤ λn1‖ f ‖s + B

1 − λ1
‖ f ‖w. (20)

Proof. The first inequality is straightforward from (Con1). Let us now prove (20). We
have

||Lδ,μ1 f ‖s ≤ λ1‖ f ‖s + B‖ f ‖w

thus

||Lδ,μ2 ◦ Lδ,μ1( f )‖s ≤ λ1‖Lδ,μ2 f ‖s + B‖Lδ,μ2 f ‖w

≤ λ21‖ f ‖s + λ1B|| f ||w + B‖ f ‖w

≤ λ21‖ f ‖s + (1 + λ1)B‖ f ‖w

Continuing the composition we get (20). 	

Lemma 8. Let δ ≥ 0 and let L(n) be a sequential composition of operators Lδ,μi as
in (18) with i ∈ {1, ..., n} and μi ∈ Pw satisfying the above Standing assumptions 2
(including (Con1),...,(Con3)). Let L0 be the operator in the family for δ = 0 as defined
in (Con2). Since Pw is bounded, let us denote by Q := supμ∈Pw

||μ||w. Then there is
C ≥ 0 such that ∀g ∈ Bs,∀n ≥ 0

||L(n)g − Ln
0g||w ≤ δQK (C ||g||s + n

B

1 − λ
||g||w). (21)

where B is the second coefficient of the Lasota Yorke inequality (11).

Proof. To shorten notation let us denote for i ∈ {1, ..., n}, Li := Lδ,μi . By (Con2),
equation (13) we get

||L0g − L j g||w ≤ δK ||μ j ||w||g||s ≤ δQK ||g||s .
The case n = 1 of (21) directly follows from (13). Let us now suppose inductively

||L(n − 1)g − Ln−1
0 g||w ≤ δQK (Cn−1||g||s + (n − 1)

B

1 − λ1
||g||w)

then

||LnL(n − 1)g − Ln
0g||w

≤ ||LnL(n − 1)g − LnL
n−1
0 g + LnL

n−1
0 g − Ln

0g||w
≤ ||LnL(n − 1)g − LnL

n−1
0 g||w + ||LnL

n−1
0 g − Ln

0g||w



732 S. Galatolo

≤ δQK (Cn−1||g||s + (n − 1)
B

1 − λ1
||g||w) + ||[Ln − L0](Ln−1

0 g)||w

≤ δQK (Cn−1||g||s + (n − 1)
B

1 − λ1
||g||w) + δQK ||Ln−1

0 g||s

≤ δQK (Cn−1||g||s + (n − 1)
B

1 − λ1
||g||w)

+δQK (λn−1
1 ||g||s + B

1 − λ1
||g||w)

≤ δQK [(Cn−1 + λn−1
1 )||g||s) + n

B

1 − λ1
K ||g||w].

The statement follows from the observation that continuing the composition, Cn
remains being bounded by the sum of a geometric series. 	


Next statement is inspired by the methods developed in [18] and allows to estimate
the speed of convergence to equilibrium of a sequential composition of linear operators
satisfying the Standing assumptions 2 (including (Con1),...,(Con3)). The statement is
in some sense homologous to Proposition 2.7 in [11].

Proposition 9. Let us consider δ ≥ 0 and a family of operators Lδ,μ satisfying the
Standing assumptions 2 (including (Con1) ,...,(Con3)). Let us consider a sequential
composition L(n) as above. Let us fix n1 > 0 and consider the 2× 2 matrix M defined
by

M :=
(

λ
n1
1

B
1−λ1

δQKC + an1 δQKn1
B

1−λ1

)
.

Under the previous assumptions for any g ∈ Vs the following holds:
(i) for all integer i ≥ 0 the norms of the iterates L(in1)g are bounded by

( ||L(in1)g||s
||L(in1)g||w

)
� Mi

( ||g||s
||g||w

)
.

Here � indicates the componentwise ≤ relation (both coordinates are less or equal).

(ii) Let ρ be the maximum eigenvalue of MT , with eigenvector

(
a
b

)
. Suppose

a, b ≥ 0 and a + b = 1, let us define the (a, b) balanced-norm as

||g||(a,b) := a||g||s + b||g||w.

In this case we have

||L(in1)g||(a,b) ≤ ρi ||g||(a,b). (22)

Furthermore, the situation in which ρ < 1, a, b ≥ 0 can be achieved if n1 is big enough
and δ small enough. More precisely, fixing n1 large enough we have that ρ = ρ(δ) can
be seen as a function of δ. There is some δ1 < 1 such that

ρ1 = sup
δ≤δ1

ρ(δ) < 1 (23)

and there is a positive eigenvector of ρ(δ) for δ ≤ δ1.



Self-Consistent Transfer Operators: Invariant Measures, Convergence to Equilibrium, Linear... 733

As a consequence we also have

||L(in1)g||s ≤ (1/a)ρi ||g||s,
and

||L(in1)g||w ≤ (1/b)ρi ||g||s .
For the proof of Proposition 9 the following lemma will be useful

Lemma 10. Let us consider real sequences an, bn such that an ≥ 0, bn ≥ 0 for all
n ∈ N and an, bn → 0, real numbers δ, A, B,C ≥ 0 and a real matrix of the form

(
bn δB + an
A δnC

)
.

Then there is n1 ≥ 0, δ ≥ 0 and 0 ≤ ρ < 1 such that for all 0 ≤ δ ≤ δ the matrix
(
bn1 δB + an1
A δn1C

)

has largest eigenvalue ρ such that 0 ≤ ρ ≤ ρ and an associated eigenvector (a, b),
such that a, b ≥ 0.

Proof. Fixing n and letting δ → 0, the matrix

(
bn an
A 0

)
, has maximum right eigenvalue

1
2bn +

1
2

√
b2n + 4Aan with eigenvector

(
1
2A

(
bn +

√
b2n + 4Aan

)
1

)
. Now if we take n1

big enough we can let 0 ≤ 1
2bn1 +

1
2

√
b2n1 + 4Aan1 < 1 and then for sufficiently small δ

the statement holds. 	

Now we are ready to prove Proposition 9.

Proof of Proposition 9. For the proof of (i): let us consider n1 ≥ 0 and g0 ∈ Vs and let
us denote gi = L(in1)g0. By Lemma 7 we have

||gi+1||s ≤ λ
n1
1 ||gi ||s + B

1 − λ1
||gi ||w. (24)

By Lemma 8, assumption (Con3) and (14) we get

||gi+1||w ≤ ||Ln1
0 gi ||w + δQK (C ||gi ||s + n1

B

1 − λ1
||gi ||w)

≤ an1 ||gi ||s + δQK (C ||gi ||s + n1
B

1 − λ1
||gi ||w).

(25)

Compacting (24) and (25) into a vector notation, setting vi =
( ||gi ||s

||gi ||w
)
we get

vi+1 �
(

λ
n1
1

B
1−λ1

δQKC + an1 δQKn1
B

1−λ1

)
vi = Mvi . (26)
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We remark that the matrix M does not depend on g0 and depend on the operators
in the family Lδ,μ, composing the sequential composition L(n) only by their common
coefficients λ1, an1 , K , B coming from the assumptions (Con1), ..., (Con3). Further-
more, since M is positive, v1 � v2 implies Mv1 � Mv2. Hence the inequality can be
iterated and we have

ν1 � Mv0, v2 � Mv1 � M2v0...

proving (i). To prove (ii) let us consider the (a, b) balanced-norm: ||g||(a,b) = a||g||s +
b||g||w. The statement (i) implies

||L(in1)g0||(a,b) = (a, b) ·
( ||gi ||s

||gi ||w
)

≤ (a, b) · Mi ·
( ||g0||s

||g0||w
)

,

≤ [((a, b) · Mi )T ]T ·
( ||g0||s

||g0||w
)

,

≤ [(MiT · (a, b)T ]T ·
( ||g0||s

||g0||w
)

,

≤ [ρi · (a, b)T ]T ·
( ||g0||s

||g0||w
)

,

hence

||L(in1)g0||(a,b) ≤ ρi ||g0||(a,b)

proving (ii). The remaining part of the statement is a direct consequence of Lemma 10.
	


We are ready to prove the main statement of this section.

Proof of Theorem 6. We need to estimate ||Ln
δ (ν) − μδ||s . Let us denote by νn the

sequence of probability measures where ν1 = ν and νn = Lδ,νn−1νn−1. The sequence
Ln

δ (ν) can be seen as a sequential composition

Ln
δ (ν) = L(n)(ν)

where using the same notations as in (18)

L(n) = Lδ,νn ◦ Lδ,νn−1 ◦ ... ◦ Lδ,ν1 .

We remark that by the assumptions, ||Lδ,νi ||Bs→Bs are uniformly bounded. Let us
estimate this by

||L(n)(ν) − Ln
δ (μδ)||s ≤ ||L(n)(ν) − L(n)(μδ)||s + ||L(n)(μδ) − Ln

δ (μδ)||s .
(27)
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Since our operators satisfy (Con1),...,(Con3) and ν − μδ ∈ V we can estimate

||L(n)(ν) − L(n)(μδ)||s = ||L(n)(ν − μδ)||s (28)

using Proposition 9.4

Let n1, δ1, ρ1 and || ||(a,b) the parameters and the norm found applying Proposition 9
(see in particular (23)) to (28). Let us consider δ ≤ δ1. We remark that the norm || ||(a,b)
also depends on δ.

To simplify notations let us define a general constant that will be used in the estimates.
Let

Mδ := max(1 + B, ||μδ||ss, sup
μ∈Pw

||Lδ,μ||Bss→Bss , sup
μ∈Pw

||Lδ,μ||Bs→Bs )

and

M1 = sup
δ≤δ1

(Mδ).

By the assumptions (15), (16) we have that M1 < ∞. To find δ ≤ δ1 satisfying our
statement we are going to impose a further condition to the parameter δ which is again
satisfied for δ small enough. Let us state this condition: let us define for all n ≥ 0, by
induction the following sequence

C0 = 1, Cn = Mn
1Cn−1. (29)

Let

M2 := KCn1n1(KM1 + 1)n1 . (30)

Now let us fix δ ≥ 0 such that

ρ2 = (ρ1 + δM2) < 1. (31)

We now see why this condition is sufficient for our statement to hold.We have indeed

||L(n)(μδ) − Ln
δ (μδ)||(a,b) = ||Lδ,νn ...Lδ,ν1μδ − Ln

δ,μδ
(μδ)||(a,b)

≤ ||Lδ,νn ...Lδ,ν1μδ − Lδ,μδ Lδ,νn−1 ...Lδ,ν1μδ||(a,b)

+||Lδ,μδ Lδ,νn−1 ...Lδ,ν1μδ − Ln
δ,μδ

(μδ)||(a,b).

We recall that by (Con2)

||(Lδ,νi − Lδ,ν j )(ω)||(a,b) = a||(Lδ,νi − Lδ,ν j )(ω)||w + b||(Lδ,νi − Lδ,ν j )(ω)||s
≤ aδK ||νi − ν j ||w||ω||s + bδK ||νi − ν j ||w||ω||ss
≤ δK ||νi − ν j ||w||ω||ss .

Suppose inductively that

4 The proof is quite technical.We are going to explain its idea informally to help the reader to understand the
motivation of various estimates: by Proposition 9 we get that ||L(n)(ν)−L(n)(μδ)||s decreases exponentially
in n. The remaining term ||L(n)(μδ) − Lnδ,μ(μδ)||s is small when δ is small and ν1, ..., νn are close to μδ

because the operators involved in the composition L(n) are all near to Lδ,μδ
.

The idea is to use the balanced norm || ||(a,b) to estimate || ||s , and exploit the fact that after n1 iterates
||L(n1)(ν) − L(n1)(μδ)||(a,b) is contracted by a certain factor ρ1 < 1.

If we prove that δ can be made small enough so that ||L(n1)(μδ) − L
n1
δ,μδ

(μδ)||(a,b) is not relevant, then we

have that also ||L(n1)(ν)−Ln1
δ (μδ)||(a,b) is contracted. Hence continuing the iterationwe have an exponential

decrease of this norm, which implies exponential decrease of the || ||s norm.
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||Lδ,νn−1 ...Lδ,ν1μδ − Ln−1
δ,μδ

(μδ)||(a,b) ≤ δKCn−1(||νn−1 − μδ||w + ... + ||ν1 − μδ||w)

(32)

(where Cn ≥ 1 as defined in (29)) then

||Lδ,νn Lδ,νn−1 ...Lδ,ν1μδ − Lδ,μδ Lδ,νn−1 ...Lδ,ν1μδ||(a,b)

≤ δK ||νn − μδ||w||Lδ,νn−1 ...Lδ,ν1μδ||ss
≤ δMn

1 K ||νn − μδ||w
and

||Lδ,μδ Lδ,νn−1 ...Lδ,ν1μδ − Ln
δ,μδ

(μδ)||(a,b)

≤ ||Lδ,μδ ||(a,b) ||Lδ,νn−1 ...Lδ,ν1μδ − Ln−1
δ,μδ

(μδ)||(a,b)

and by (32)

||Lδ,μδ ...Lδ,ν1μδ − Ln
δ,μδ

(μδ)||(a,b)

≤ ||Lδ,μδ ||(a,b)δKCn−1(||νn−1 − μδ||w + ... + ||ν1 − μδ||w)

putting the two estimates together

||Lδ,νn ...Lδ,ν1μδ − Ln
δ,μδ

(μδ)||(a,b)

≤ δMn
1 K ||νn − μδ||w

+δM1KCn−1(||νn−1 − μδ||w + ... + ||ν1 − μδ||w)

≤ δMn
1 KCn−1(||νn − μδ||w + ||νn−1 − μδ||w + ...

... + ||ν1 − μδ||w)

≤ δKCn(||νn − μδ||w + ||νn−1 − μδ||w + ... + ||ν1 − μδ||w).

Now we find a coarse estimate for ||νn1 − μδ||w, ||νn1−1 − μδ||w, ..., ||ν1 − μδ||w
which will be sufficient for our purposes. Recalling that νn = Lδ,νn−1νn−1 we have

||νn − μδ||w ≤ ||Lδ,νn−1νn−1 − Lδ,μδμδ||w
≤ ||Lδ,νn−1νn−1 − Lδ,νn−1μδ||w + ||Lδ,νn−1μδ − Lδ,μδμδ||w

then

||Lδ,νn−1μδ − Lδ,μδμδ||w ≤ δK ||νn−1 − μδ||w ||μδ||s
||Lδ,νn−1νn−1 − Lδ,νn−1μδ||w ≤ ||νn−1 − μδ||w

and

||νn − μδ||w ≤ ||νn−1 − μδ||w(δK ||μδ||s + 1)

≤ ||νn−1 − μδ||w(δKM1 + 1)

and then

max(||νn − μδ||w, ||νn−1 − μδ||w, ..., ||ν1 − μδ||w) ≤ ||ν − μδ||w(δKM1 + 1)n .

Finally we have an estimate for ||Lδ,νn ...Lδ,ν1μδ − Ln
δ,μ(μδ)||(a,b) :

||Lδ,νn ...Lδ,ν1μδ − Ln
δ,μ(μδ)||(a,b) ≤ δKCnn||ν − μδ||w(δKM1 + 1)n .
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Now the main estimates are ready. Let us apply Proposition 9 to (28). We get

||L(n1)(ν) − L(n1)(μδ)||(a,b) = ||L(n1)(μδ − ν)||(a,b)

≤ ρ1||μδ − ν||(a,b)

with ρ1 < 1 and then

||L(n1)(ν) − Ln1
δ,μ(μδ)||(a,b) ≤ ||L(n1)(ν) − L(n1)(μδ)||(a,b) (33)

+||L(n1)(μδ) − Ln1
δ,μδ

(μδ)||(a,b) (34)

≤ ρ1||μδ − ν||(a,b)

+δKCn1n1||ν − μδ||w(δKM1 + 1)n1 (35)

≤ ||(μδ − ν)||(a,b)(ρ1 + δKCn1n1(KM1 + 1)n1)

(36)

≤ ||(μδ − ν)||(a,b)(ρ1 + δM2) (37)

where M2 is defined as in (30). But by (31)

ρ2 = (ρ1 + δM2) < 1. (38)

Taking δ ≤ δ we hence get that for all i ≥ 1

||L(in1)(ν) − Lin1
δ,μ(μδ)||(a,b) ≤ ρi

2||(μδ − ν)||(a,b)

proving the statement. 	

Remark 11. We remark that if in the previous proof instead of considering (27) we
considered the estimate

||L(n)(ν) − Ln
δ (μδ)||s = ||L(n)(ν) − Ln

δ,μδ
(μδ)||s

≤ ||L(n)(ν) − Ln
δ,μδ

(ν)||s + ||Ln
δ,μδ

(ν) − Ln
δ,μδ

(μδ)||s
we would have a much easier estimate for the summand

||Ln
δ,μδ

(ν) − Ln
δ,μδ

(μδ)||s = ||Ln
δ,μδ

(ν − μδ)||s,
but estimating ||L(n)(ν) − Ln

δ,μδ
(ν)||s by our assumptions (Con1), ..., (Con3) would

involve a term of the kind ||ν||ss , which would result in a weaker final statement.

5. Statistical Stability and Linear Response for Nonlinear Perturbations

The concept of Linear Response intends to quantify the response of the statistical prop-
erties of the system when it is submitted to a certain infinitesimal perturbation. This will
be measured in some sense by the derivative of the invariant measure of the system with
respect to the perturbation. Let (Lδ)δ≥0 be a one parameter family of transfer operators
associated with a family of perturbations of an initial operator L0, with strength δ, and
let us suppose that μδ is the unique invariant probability measure of the operator Lδ in
a certain space Bss . The linear response of the invariant measure of L0 under the given
perturbation is defined by the limit

μ̇ := lim
δ→0

μδ − μ0

δ
. (39)
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The topology where this convergence takes place may depend on the system and on the
kind of perturbation applied. The linear response to the perturbation hence represents
the first order term of the response of a system to a perturbation and when it holds, a
linear response formula can be written: μδ = μ0 + μ̇δ + o(δ), which is valid in some
weaker or stronger sense.

We remark that given an observable function c : X → R if the convergence in (39)
is strong enough with respect to the regularity of c we get

lim
δ→0

∫
c dμδ − ∫

c dμ0

δ
=

∫
c dμ̇ (40)

showing how the linear response of the invariant measure controls the behavior of ob-
servable averages. For instance the convergence in (40) hold when c ∈ L∞ and the
convergence of the linear response is in L1.

Linear response results in the context of deterministic dynamics have been obtained
first in the case of uniformly hyperbolic systems in [39]. Nowadays linear response
results are known for many other kinds of systems outside the uniformly hyperbolic
case and also in the random case (see [3] for a survey mostly related to deterministic
systems and the introduction of [15] for an overview of the mathematical results in the
random case).

In the case of coupled hyperbolic map lattices with short range interaction, results
on the smooth dependence of the SRB measure were obtained in [24,25]. In the case
of all-to-all coupled maps with mean field interaction and hence in the context of the
present paper, linear response results were shown in [41]. Still in the context of all-to-all
coupled maps, the works [45,46] show numerical evidence of the fact that it is possible
for a network of coupled maps to exhibit linear response, even if its units do not.

The interest of the study of the self consistent transfer operators in a weak coupling
regimemotivates the study of the response to nonlinear perturbations of linear operators.
In this section we prove some stability and linear response results for the invariant
measures of a family Lδ of such operators in the limit δ → 0 in the case where the limit
operator L0 is linear. We remark that in [40] an abstract result is proved which can be
also applied to the linear response of fixed points of nonlinear operators under suitable
perturbations.

Standing assumptions 3. In this section we consider the following general setting
similar to the one considered in [15] (see also [16,27]) for families of linear operators
and independent of the standing assumptions from the previous sections. Let X be a
compact metric space. In the following we consider three normed vector subspaces of
SM(X), the spaces (Bss, ‖ ‖ss) ⊆ (Bs, ‖ ‖s) ⊆ (Bw, ‖ ‖w) ⊆ SM(X) with norms
satisfying

‖ ‖w ≤ ‖ ‖s ≤ ‖ ‖ss .
We remark that, a priori, some of these spaces can be taken equal. Their actual choice
depends on the type of system and perturbation under study. Again, we will assume that
the linear form μ → μ(X) is continuous on Bi , for i ∈ {ss, s, w}. Since we will mainly
consider positive, integral preserving operators acting on these spaces, the following
closed invariant spaces Vss ⊆ Vs ⊆ Vw of zero average measures defined as:

Vi := {μ ∈ Bi |μ(X) = 0}
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where i ∈ {ss, s, w}, will play an important role (we recall thatVs was already considered
in (Con3)).

Let us consider a family of functions Lδ : Bi → Bi , with δ ∈ [
0, δ

)
. Lδ will be

called a family of “nonlinear” Markov operators if:

• each Lδ preserves positive measures,
• for all μ ∈ SM(X) it holds [Lδ(μ)](X) = μ(X).

The following is a “statistical stability” statement for a suitable family of such oper-
ators, showing sufficient conditions under which the invariant probability measures of
these operators are stable under small perturbations of the operators.

Theorem 12. Let Lδ : Bi → Bi with δ ∈ [
0, δ

)
be a family of “nonlinear” Markov

operators. Suppose that L0 : Bs → Bs is linear and bounded. Suppose that for all
δ ∈ [

0, δ
)
there is a probability measure hδ ∈ Bss such that Lδhδ = hδ . Suppose

furthermore that:

(SS1) (regularity bounds) there is M ≥ 0 such that for all δ ∈ [
0, δ

)
‖hδ‖ss ≤ M.

(SS2) (convergence to equilibrium for the unperturbed operator) There is a sequence
an ≥ 0 with an → 0 such that for all g ∈ Vss

‖Ln
0g‖s ≤ an||g||ss .

(SS3) (small perturbation) Let B2M = {x ∈ Bss, ||x ||ss ≤ 2M}. There is K ≥ 0 such
that and L0 − Lδ : B2M → Bs is K δ-Lipschitz.

Then

lim
δ→0

‖hδ − h0‖s = 0.

Remark 13. The convergence to equilibrium assumption in (SS2) is required only for
the unperturbed operator L0, which is a linear operator. We also remark that under this
assumption h0 is the unique invariant probability measure of L0 in Bss .

Proof. Let us estimate ‖hδ − h0‖s exploiting Lδhδ = hδ in the following way:

‖hδ − h0‖s ≤ ‖Ln
δhδ − Ln

0h0‖s
≤ ‖Ln

δhδ − Ln
0hδ‖s + ‖Ln

0hδ − Ln
0h0‖s .

Since hδ, h0 are probability measures, hδ −h0 ∈ Vss and by (SS1), ‖hδ −h0‖ss ≤ 2M,

then because of the assumption (SS2) we have

‖Ln
0hδ − Ln

0h0‖s ≤ Q(n)

with Q(n) = 2anM → 0 (not depending on δ). This implies

‖hδ − h0‖s ≤ ‖Ln
δhδ − Ln

0hδ‖s + Q(n).

To estimate ‖Ln
δhδ − Ln

0hδ‖s we rewrite the sum Ln
0 − Ln

δ telescopically so that

(Ln
δ − Ln

0)hδ =
n∑

k=1

Ln−k
0 (Lδ − L0)Lk−1

δ hδ
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=
n∑

k=1

Ln−k
0 (Lδ − L0)hδ

(note that only the linearity of L0 is used here). The assumption that ‖hδ‖ss ≤ M,

together with the small perturbation assumption (SS3) implies that ‖(Lδ − L0)hδ‖s ≤
δKM as δ → 0. Thus

‖hδ − h0‖s ≤ Q(n) + nM2(n)[δKM] (41)

where M2(n) = maxi≤N (1, ||L0||iBs→Bs
). Choosing first n big enough to let Q(n) be

close to 0 and then δ small enough we can make nM2(n)[δKM] as small as wanted,
proving the statement. 	


We now show a general result about the linear response of fixed points of Markov op-
erators under suitable nonlinear perturbations, the result will be applied to self-consistent
transfer operators in the following sections.

Theorem 14 (Linear Response). Let Lδ : Bs → Bs Lδ : Bss → Bss with δ ∈ [
0, δ

)
be a family of nonlinear Markov operators. Suppose that L0 is linear and bounded
: Bi → Bi for i ∈ {w, s, ss}. Suppose that the family satisfy (SS1), (SS2), (SS3).
Suppose furthermore that the family Lδ satisfy

(LR1) (resolvent of the unperturbed operator) (I d − L0)
−1 := ∑∞

i=0 Li
0 is a bounded

operator Vw → Vw.
(LR2) (small perturbation and derivative operator) Let B2M = {x ∈ Bs, ||x ||s ≤ 2M}.

There is K ≥ 0 such that L0 − Lδ : B2M → Bw is K δ-Lipschitz. Furthermore,
there is L̇h0 ∈ Vw such that

lim
δ→0

∥∥∥∥ (Lδ − L0)

δ
h0 − L̇h0

∥∥∥∥
w

= 0. (42)

Then we have the following Linear Response formula

lim
δ→0

∥∥∥∥hδ − h0
δ

− (I d − L0)
−1L̇h0

∥∥∥∥
w

= 0. (43)

Remark 15. The assumption (LR1) on the existence of the resolvent is asked only for
the unperturbed transfer operator, which is linear. This allows a large class of perturba-
tions. In many systems this assumption will result from the presence of a spectral gap
(compactness or quasi-compactness of L0 acting on Bw).

Proof of Theorem 14. By Theorem 12 we have

lim
δ→0

‖hδ − h0‖s = 0. (44)

Let us now consider (I d−L0)
−1 as a continuous linear operator Vw → Vw. Remark

that since L̇h0 ∈ Vw, the resolvent can be computed at L̇h0. By using that h0 and hδ are
fixed points of their respective operators we obtain that

(I d − L0)
hδ − h0

δ
= 1

δ
(Lδ − L0)hδ.

Since the operators preserve probability measures, (Lδ −L0)hδ ∈ Vw. By applying the
resolvent to both sides
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(I d − L0)
−1(I d − L0)

hδ − h0
δ

= (I d − L0)
−1Lδ − L0

δ
hδ

= (I d − L0)
−1Lδ − L0

δ
h0

+(I d − L0)
−1[Lδ − L0

δ
hδ − Lδ − L0

δ
h0]

we obtain that the left hand side is equal to 1
δ
(hδ − h0). Moreover, with respect to the

right hand side we observe that, applying assumption (LR2) eventually, as δ → 0

∥∥∥∥(I d − L0)
−1[Lδ − L0

δ
hδ − Lδ − L0

δ
h0]

∥∥∥∥
w

≤ ‖(I d − L0)
−1‖Vw→Vw K‖hδ − h0‖s

which goes to zero thanks to Theorem 12. Thus considering the limit δ → 0 we are left
with

lim
δ→0

hδ − h0
δ

= (I d − L0)
−1L̇h0.

converging in the ‖ · ‖w norm, which proves our claim. 	

In Sects. 3 and 4 we considered nonlinear self-consistent transfer operators of the

type

Lδ(μ) = Lδ,μ(μ)

for μ ∈ A ⊆ Pw. These functions are positive and integral preserving. In many
cases these functions can be extended to nonlinear Markov operators Bi → Bi for
i ∈ {w, s, ss} and the above statistical stability theorems can be applied, as it will be
shown in the next sections.

6. Mean Field Coupled Continuous Maps

We show the flexibility of Theorem 3 proving the existence of an invariant probability
measure in the general case of continuous maps interacting by a Lipschitz coupling
function h. In the following we denote by || ||Lip the Lipschitz norm, defined by

||g||Lip = max(||g||∞, sup
x,y∈S1

g(y) − g(x)

d(x, y)
)

for g : S1 → R.

Proposition 16. Let us consider a system of mean field coupled maps as described in
Sect. 2 with a map T0 ∈ C0(S1 → S

1), h ∈ Lip(S1 × S
1 → R) and δ ≥ 0, then there

is μ ∈ PM(S1) such that

Lδ(μ) = μ.
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Proof. Let us consider the space of signed Borel measures SM(S1). We consider two
different norms on this space. || ||w, || ||s defined by

||μ||w = sup
g∈Lip(S1→R),||g||Lip≤1

∫
g dμ

and ||μ||s = μ+(S1) + μ−(S1) where μ± are the positive and negative parts of μ (the
total variation norm). We apply Theorem 3 with (SM(S1), || ||w), (SM(S1), || ||s) as a
weak and strong space. We remark that by Prokhorov’s theorem, Pw is complete when
considered with the || ||w norm.

Now let us define a projection πn as requested by Theorem 3. Let us consider
n ∈ N and divide S

1 into n equal intervals I1, ..., In, with Ii = [xi , xi+1). Let us
consider a partition of unity {φ1, ..., φn} made of continuous piecewise linear functions
φi which are affine on each interval of the partition, such that φi (xi+1) = 1 and they
are supported on Ii mod(n) ∪ Ii+1 mod(n) (hat functions). Let us consider the projection
πn : SM(S1) → SM(S1) defined by

πn(μ) =
∑
i≤n

δxi+1

∫
φi dμ

we have that this projection is linear, preserves probability measures, and ||πn(μ)||s ≤
||μ||s, ||πn(μ)||w ≤ ||μ||w (the first inequality is straightforward, for the second see
[21, Proposition 9.4] Proposition 9.45). Since, by the definition of πn , for each interval
In , the part of the measure μ which is contained in In is transported to the endpoints of
the interval {xi , xi+1} and hence at a distance ≤ 1

n we get (see [21, Proposition 9.4],
proof of Proposition 9.5 for the details)

||πn(μ) − μ||w ≤ 1

n
||μ||s . (45)

Each invariant probability measureμ for each Lδ,μ is such that ||μ||s ≤ 1. The same
canbe said for thefinite dimensional reducedoperatorπn Lδ,πnμπn,hence Exi1, Exi1.b
are satisfied.

To verify Exi2 we have to verify that

||[Lδ,μ1 − Lδ,μ2 ]μ||w ≤ δK ||μ||s ||μ1 − μ2||w (46)

we remark that since h is K Lipschitz, for all x ∈ S
1

|�δ,μ1(x) − �δ,μ2(x)| = δ

∫
h(x, y) d[μ1 − μ2](y)

≤ δK ||μ1 − μ2||w.

Hence

5 The idea of the proof is the following. We consider μ with ||μ||W ≤ 1 and prove ||πnμ||W ≤ 1. For this
we first remark that by the way the discretization is constructed, for each function g̃ such that ||g̃||Lip ≤ 1 and
g̃ is affine on each interval In we have

∫
g̃dμ = ∫

g̃dπnμ ≤ 1. Then consider a generic Lipschitz function
g with ||g||Lip ≤ 1 and note that there is a function g̃ affine on each interval In such that ||g̃||Lip ≤ 1 and∫
g̃dπnμ = ∫

gdπnμ and then
∫
gdπnμ ≤ 1.
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||[Lδ,μ1 − Lδ,μ2 ]μ||w = ||[L�δ,μ1
− L�δ,μ2

]LTμ||w
≤ sup

x∈S1
|�δ,μ1(x) − �δ,μ2(x)| ||LTμ||s

≤ δK ||μ1 − μ2||w||LTμ||s
≤ δK ||μ1 − μ2||w||μ||s

leading to 46.
We can then apply Theorem 3 leading to the existence of an invariant probability

measure for Lδ . 	

Remark 17. For simplicity the statement is proved for maps on S

1. It seems that the
statement can be generalized with the same idea to maps on compact metric spaces for
which there is a sequence of Lipschitz partitions of unity, which can be used to define
suitable projections πn on combinations of delta measures placed on some sequences of
ε − nets covering the space.

Remark 18. In the introductionwedescribed this statement as a kindofKrilov-Bogoliubov
theorem for mean field coupled maps. This similarity is restricted to the fact that we get a
general statement about invariant measures and continuous maps. Our statement allows
to find a fixed probability measure for the self-consistent transfer operator Lδ associated
to the coupled system, and not an invariant measure for a continuous map on a compact
metric space.

We remark that finding such afixedprobabilitymeasure for the self-consistent transfer
operator Lδ associated to the system (which is a measure on S1) is not equivalent to the
problem of finding invariant measures for the global system (X , T ) associated to a
network of coupled maps as defined in Sect. 2. These are measures on (S1)M which
could be equipped with the product σ−algebra. In this case the system (X , T ) can also
have invariant measures which are product of different measures on S

1. For a trivial
example let us think about the uncoupled system (S1, T, δ, h) where T is the doubling
map and δ = 0. In this case, an invariant measure is given by the product of the Lebesgue
measure on some set of coordinates and the delta measure placed in 0 (which is a fixed
point for T ) in all the other coordinates.

7. Coupled Expanding Circle Maps

In this section we consider self-consistent operators modeling a network of all to all
coupled expanding maps, we will prove the existence of an absolutely continuous in-
variant measure and exponential convergence to equilibrium for this kind of systems.
Similar results appeared in [33] where the rigorous study of maps coupled by mean field
interaction was started and in [7,41] in a more general setting.We will also consider the
zero-coupling limit and the related linear response. We show that the transfer operators
in this limit satisfy the assumptions of our general theorems considering as a strong and
weak spaces suitable Sobolev spacesWk,1(S1) of measures having a density whose k-th
derivative is in L1(S1).

Let k > 1 and T0 ∈ Ck(S1,S1) be a nonsingular map6 of the circle. Let us denote
the transfer operator associated with T0 by LT0 . We recall that the transfer operator

6 A nonsingular map T is a map such that for any Lebesgue measurable set A we have m(A) = 0 ⇐⇒
m(T−1(A)) = 0, where m is the Lebesgue measure. If T is nonsingular its associated pushforward map
induces a function L1(S1,R) → L1(S1,R).
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associated with a map can be defined on signed measures by the pushforward of the
map, however when the map is nonsingular, this operator preserves measures having a
density with respect to the Lebesgue measure, L1(S1,R) and then with a small abuse of
notation, identifying a measureμwith its density hμ = dμ

dm with respect to the Lebesgue
measurem, the same operator can be also considered as LT0 : L1(S1,R) → L1(S1,R).
In this case, given any density φ ∈ L1(S1,R) the action of the operator on the density
can then be described by the explicit formula

[L0(φ)](x) :=
∑

y∈T−1
0 (x)

φ(y)

|T ′
0(y)|

.

Given h ∈ Ck(S1 × S
1,R), δ ≥ 0 and (a probability density) ψ ∈ L1(S1,R),

coherently with Sect. 2, we define �δ,ψ : S1 → S
1 as

�δ,ψ(x) = x + πS1(δ

∫
S1
h(x, y)ψ(y)dy).

We will always consider δ small enough such that �δ,ψ is a diffeomorphism. Denote by
Qδ,ψ the transfer operator associated with �δ,ψ,defined as

[Qδ,ψ (φ)](x) = φ(�−1
δ,ψ(x))

|�′
δ,ψ (�−1

δ,ψ (x))| (47)

for any φ ∈ L1(S1,R).
Wewill consider expandingmapsT0 : S1 → S

1 satisfying the following assumptions:

(1) T0 ∈ C6,

02 there is α < 1 such that ∀x ∈ S
1, |T ′

0(x)| ≥ α−1 > 1.

Definition 19. Aset AM,L of expandingmaps is called a uniform family with parameters
M ≥ 0 and L > 1 if it satisfies uniformly the expansiveness and regularity condition:
∀T ∈ AM,L

||T ||C6 ≤ M, inf
x∈S1

|T ′(x)| ≥ L .

It is well known that the transfer operator associated with a smooth expanding map
has spectral gap and it is quasicompact when acting on suitable Sobolev spaces (see e.g.
[27]). In the following we recall some particularly important related estimates we will
use in this paper. We start by recalling the fact that such transfer operators satisfy some
one step Lasota Yorke inequalities over these Sobolev spaces (see [15], Lemma 29 and
its proof). This will be useful when applying the results of Sect. 4.

Lemma 20. Let AM,L be a uniform family of expanding maps, the transfer operators
LT associated with a map T ∈ AM,L satisfy a uniform Lasota-Yorke inequality on
Wk,1(S1): let α := L−1 < 1. For all 1 ≤ k ≤ 5 there are, Ak, Bk ≥ 0 such that for all
n ≥ 0, T ∈ AM,L

||Ln
T f ‖Wk−1,1 ≤ Ak || f ‖Wk−1,1 (48)

||Ln
T f ‖Wk,1 ≤ αkn‖ f ‖Wk,1 + Bk‖ f ‖Wk−1,1 . (49)
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From this result, it is classically deduced that the transfer operator LT of a C6 ex-
panding map T is quasi-compact on each Wk,1(S1), with 1 ≤ k ≤ 5. Furthermore, by
the topological transitivity of expanding maps, 1 is the only eigenvalue on the unit circle
and this implies the following result. (see [15] Proposition 30).

Proposition 21. For all T ∈ AM,L , there are C ≥ 0 and ρ ∈ (0, 1) such that for all

g ∈ Vk := {g ∈ Wk,1(S1) s.t.
∫
S1

g dm = 0}

with 1 ≤ k ≤ 5 and n ≥ 0 it holds

‖Ln
T g‖Wk,1 ≤ Cρn‖g‖Wk,1 .

In particular, the resolvent R(1, L) := (I d − LT )−1 = ∑∞
i=0 L

i
T is a well-defined and

bounded operator on Vk.

Now we recall some estimates relative to small perturbations of expanding maps and
their associated transfer operators. These will be useful to apply our general framework
to self-consistent transfer operators representing a family of coupled expanding maps.
The estimates will be useful to check that the assumptions of our general theorems are
satisfied. We will again identify absolutely continuous measures with their densities and
consider the spaces W 3,1(S1),..., L1(S1) as strongest, strong and weak space.

Proposition 22. If L0 and L1 are transfer operators associated with expanding maps
T0 and T1, then there is a C ∈ R such that ∀k ∈ {1, 2, 3}, ∀ f ∈ Wk,1:

||(L1 − L0) f ||Wk−1,1 ≤ C ||T1 − T0||Ck+2 || f ||Wk,1 . (50)

Proof. In the case k = 1 the proof of this statement can be found for example in [16],
Proposition 26. When k = 2 we have to prove that

||((L1 − L0) f )
′||L1 ≤ C ||T1 − T0||C4 || f ||W 2,1 (51)

we have the well known formula (see [16] Equation 3) valid for i ∈ {0, 1}

(Li f )
′ = Li

(
1

T ′ f
′
)

− Li

(
T ′′

(T ′
)2

f

)
. (52)

By (52) we have

∥∥((L1 − L0) f )
′∥∥

1 ≤
∥∥∥∥L1

(
1

T ′
1
f ′

)
− L0

(
1

T ′
0
f ′

)∥∥∥∥
1

+

∥∥∥∥∥L1

(
T ′′
1

(T
′
1)

2
f

)
− L0

(
T ′′
0

(T
′
0)

2
f

)∥∥∥∥∥
1

.

Considering each summand and applying the statement for the case k = 1 we get
∥∥∥∥L1

(
1

T ′
1
f ′

)
− L0

(
1

T ′
0
f ′

)∥∥∥∥
1

≤
∥∥∥∥L1

(
1

T ′
1
f ′

)
− L1

(
1

T ′
0
f ′

)∥∥∥∥
1

+

∥∥∥∥L1

(
1

T ′
0
f ′

)
− L0

(
1

T ′
0
f ′

)∥∥∥∥
1
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≤ ||T1 − T0||C4K1|| f ′||1 + ||T1 − T0||C4C

∥∥∥∥ 1

T ′
0
f ′

∥∥∥∥
W 1,1

≤ ||T1 − T0||C4 [K1|| f ′||1 + C

∥∥∥∥ 1

T ′
0

∥∥∥∥
C1

|| f ′||W 1,1]

for some constant K1 ≥ 0. Similarly
∥∥∥∥∥L1

(
T ′′
1

(T
′
1)

2
f

)
− L0

(
T ′′
0

(T
′
0)

2
f

)∥∥∥∥∥
1

≤
∥∥∥∥∥L1

(
T ′′
1

(T
′
1)

2
f

)
− L1

(
T ′′
0

(T
′
0)

2
f

)∥∥∥∥∥
1

+

∥∥∥∥∥L1

(
T ′′
0

(T
′
0)

2
f

)
− L0

(
T ′′
0

(T
′
0)

2
f

)∥∥∥∥∥
1

≤
∥∥∥∥∥

T ′′
1

(T
′
1)

2
− T ′′

0

(T
′
0)

2

∥∥∥∥∥∞
|| f ||1

+||T1 − T0||C4C

∥∥∥∥∥
T ′′
0

(T
′
0)

2
f

∥∥∥∥∥
W 1,1

≤ ||T1 − T0||C4 [K2|| f ||1 + δC

∥∥∥∥∥
T ′′
0

(T
′
0)

2

∥∥∥∥∥
C1

|| f ||W 1,1 ]

for some constant K2 ≥ 0. Proving the statement. We remark that

∥∥∥∥ T ′′
0

(T
′
0 )2

∥∥∥∥
C1

involves

the third derivative of T0.
When k = 3 we have to prove that

||((L1 − L0) f )
′′||1 ≤ C ||T1 − T0||C5 || f ||W 3,1 (53)

taking a further derivative in (52) for a transfer operator L1 we get

((L1 f )
′
)′ =

(
L1

(
1

T ′ f
′
))′

−
(
L1

(
T ′′

(T ′
)2

f

))′

where
(
L1

(
1

T ′ f
′
))′

= L1

(
1

T ′ (
1

T ′ f
′)′

)
− L1

(
T ′′

(T ′
)2

(
1

T ′ f
′)
)

= L1

(
1

T ′ (
−T ′′

(T ′)2
f ′ + 1

T ′ f
′′
)

)
− L1

(
T ′′

(T ′
)2

(
1

T ′ f
′)
)

and
(
L1(

T ′′

(T ′
)2

f )

)′
= L1

(
1

T ′ (
T ′′

(T ′
)2

f )′
)

− L1

(
T ′′

(T ′
)2

(
T ′′

(T ′
)2

f )

)

= L1

(
1

T ′ ((
T ′′

(T ′
)2

)′ f + T ′′

(T ′
)2

f ′)
)

− L1

(
T ′′

(T ′
)2

(
T ′′

(T ′
)2

f )

)

and the proof can be concluded as before. 	
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Nowwe can prove that the self-consistent transfer operator associatedwith a family of
coupled expandingmaps has a regular invariantmeasure.We remark that since expanding
maps are continuous, the mere existence for an invariant measure for these systems can
be obtained by Proposition 16. In the following result we prove the existence in of such
measure in a space of measures having a smooth density. Let us consider the expanding
map T0 and denote with LT0 its transfer operator, consider δ ≥ 0 and a coupling function
h ∈ C6(S1×S

1 → R), consider the extended system (S1, T0, δ, h) in which these maps
are coupled by h as explained in Sect. 2 and the associated self-consistent transfer
operator Lδ : L1(S1,R) → L1(S1,R)

Lδ(φ) = Qδ,φ(LT0(φ)) (54)

as defined at (5). We show that this transfer operator has under suitable assumptions a
fixed probability density in W 5,1 which is unique when δ is small enough.

Proposition 23 (Existence and uniqueness of the invariant measure). Let T0, h, δ and
Lδ as above. Suppose δ is such that the set ∪

φ∈Pw

{�δ,φ ◦ T0} ⊆ AM,L is contained in a

uniform family of expanding maps with parameters M, L (see Definition 19). Then there
is at least one probability density fδ ∈ W 5,1 such that

Lδ( fδ) = fδ.

For every such invariant measure, || fδ||W 3,1 ≤ C(M, L) (the W 5,1 norm is bonded by
a constant only depending on M and L).

Furthermore we have the uniqueness in the weak coupling regime. There is δ such
that for each δ ≤ δ , Lδ has unique invariant measure in L1.

Before the proof of this proposition we need to collect some further preliminary
result.

First we prove a one-step Lasota-Yorke inequality for the bounded variation norm for
expandingmaps. This result is surely known to the experts.We prove it for completeness.

Proposition 24. Let T be an expanding map of the circle. Let φ a bounded variation
density. Then

Var(LT (φ)) ≤ 1

infS1(T ′)
Var(φ) + sup

S1
(| T

′′

T ′2 |)
∫
S1

|φ| dm. (55)

Proof. Let us suppose T of degree n and let us consider y1, ..., yk ∈ S
1. Suppose Ii =

[yi , yi+1] (where the indices are considered modulo k). Suppose T−1(Ii ) = ∪1≤ j≤n J j,i
and denote J j,i = [l j,i , r j,i ] (the left and right endpoints). Given a function φ : S1 → R,
let us denote by

v(φ, Ii ) := |φ(yi mod(k)) − φ(yi+1 mod(k))|.
We estimate Var(LT [φ]). We have Var(LT [φ]) ≤ ∑k

i=1 v(L[φ], Ii ).
We have that

v(L[φ], Ii ) = |L[φ](yi mod(k)) − L[φ](yi+1 mod(k))|

≤ |
n∑
j=1

φ(l j,i )

T ′
(l j,i )

− φ(r j,i )

T ′
(r j,i )

|
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≤ |
n∑
j=1

φ(l j,i )

T ′
(l j,i )

− φ(r j,i )

T ′
(l j,i )

| + |
n∑
j=1

φ(r j,i )

T ′
(l j,i )

− φ(r j,i )

T ′
(r j,i )

|

≤ 1

infS1(T ′)
|

n∑
j=1

φ(l j,i ) − φ(r j,i )| + |
n∑
j=1

φ(r j,i )

T ′
(l j,i )

− φ(r j,i )

T ′
(r j,i )

|.

The second summand can be bounded by remarking that by Lagrange theorem there
is ξ j,i ∈ J j,i such that

| 1

T ′
(l j,i )

− 1

T ′
(r j,i )

| = | T ′′(ξi )
(T ′(ξi ))2

||r j,i − l j,i |.

Then

|
n∑
j=1

φ(r j,i )

T ′
(l j,i )

− φ(r j,i )

T ′
(r j,i )

| ≤
n∑
j=1

|φ(r j,i )|| 1

T ′
(l j,i )

− 1

T ′
(r j,i )

|

≤
n∑
j=1

|φ(r j,i )|| T ′′(ξi )
(T ′(ξi ))2

||r j,i − l j,i |

≤ sup
x∈S1

| T ′′(ξi )
(T ′(ξi ))2

|
n∑
j=1

|φ(r j,i )||r j,i − l j,i |

Finally we have

k∑
i=1

v(L[φ], Ii ) ≤
k∑

i=1

[ 1

infS1(T ′)
|

n∑
j=1

φ(l j,i ) − φ(r j,i )|

+ sup
x∈S1

| T ′′(ξi )
(T ′(ξi ))2

|
n∑
j=1

|φ(r j,i )||r j,i − l j,i |]

≤ 1

infS1(T ′)

k∑
i=1

n∑
j=1

v(φ, J j,i )

+ sup
x∈S1

| T ′′(ξi )
(T ′(ξi ))2

|
k∑

i=1

n∑
j=1

|φ(r j,i )||r j,i − l j,i |.

We remark that when the subdivision J j,i is fine enough
∑k

i=1
∑n

j=1 |φ(r j,i )||r j,i −
l j,i | ≤ 2

∫
S1

φ dm and
∑k

i=1
∑n

j=1 v(φ, J j,i ) ≤ Var(φ). This leads directly to the
result. 	


The following Lemma is about the nowadays well known statistical stability of ex-
panding maps (see e.g. [16] Sects. 4 and 7.4. for more details).

Lemma 25. Given a uniform set of expanding maps AM,L , there is K ≥ 1 such that it
holds

|| f1 − f2||L1 ≤ K ||T1 − T2||C6

for all T1, T2 ∈ AM,L having f1, f2 ∈ W 5,1 asabsolutely continuous invariant densities.



Self-Consistent Transfer Operators: Invariant Measures, Convergence to Equilibrium, Linear... 749

Now we estimate how the transfer operator Qδ,ψ changes when changing ψ . This
will allow to apply Lemma 25 in the proof of Proposition 4.

Lemma 26. If T0, h ∈ Ck there are K1 ≥ 1 such that for all ψ, φ ∈ L1

||�δ,ψ − �δ,φ ||Ck ≤ δK1||ψ − φ||L1

||�δ,ψ ◦ T0 − �δ,φ ◦ T0||Ck ≤ δK1||ψ − φ||L1 .

Proof. We have that �δ,ψ(x) = x + π(δ
∫
S1
h(x, y)ψ(y)dy) and �δ,φ(x) = x +

π(δ
∫
S1
h(x, y)φ(y)dy), hence when δ and ||ψ − φ||L1 are small enough

|�δ,ψ(x) − �δ,φ(x)| = |x + π(δ

∫
S1
h(x, y)ψ(y)dy) − x + π(δ

∫
S1
h(x, y)φ(y)dy)|

= |δ
∫
S1
h(x, y)[ψ(y) − φ(y)]dy| ≤ δ||h||L∞||φ − ψ ||L1 .

Considering the derivative with respect to x we get �′
δ,ψ (x) = 1 + π(δ

∫
S1

∂h(x,y)
∂x ψ(y)dy) and similarly for �δ,φ(x). We have then

|�′
δ,ψ(x) − �′

δ,φ(x)| = |δ
∫
S1

∂h(x, y)

∂x
[ψ(y) − φ(y)]dy|

and

|�′
δ,ψ(x) − �′

δ,φ(x)| ≤ δ||∂h
∂x

||L∞||φ − ψ ||L1 .

similarly, we get the same estimate for the further derivatives, proving the statement. 	

Now we are ready for the proof of Proposition 23.

Proof of Proposition 23. Now we consider the first part of the statement and the exis-
tence of an invariant measure in the stronger coupling case. The existence in L1 of a
fixed probability measure for Lδ in this case follows from Theorem 3, applying it with
Bs = BV [S1] and Bw = L1[S1] to the family of operators Lδ,μ = Qδ,μ ◦ LT0 . We now
verify that the required assumptions hold.

The maps �δ,μ ◦ T0 involved in the system are a uniform family of expanding maps.
By Proposition 24 the operators Lδ,μ satisfy a common Lasota Yorke inequality on
BV [S1] and L1[S1] and this gives a family of invariant measures for the operators Lδ,μ

which is uniformly bounded in in BV [S1] hence (Exi1) is verified in this case.
We now verify (Exi2) for the BV norm. Let f ∈ BV , consider fε ∈ W 1,1 with

|| fε ||W 1,1 ≤ || f ||BV + ε and || fε − f ||L1 ≤ ε.

||(Lδ,μ1 − Lδ,μ2) f ||L1 = ||(Lδ,μ1 − Lδ,μ2)[ f − fε + fε]||L1

≤ ||(Lδ,μ1 − Lδ,μ2)[ f − fε]||L1 + ||(Lδ,μ1 − Lδ,μ2) fε ||L1

≤ 2Mε + C ||μ1 − μ2||L1 || fε ||W 1,1

≤ 2Mε + C ||μ1 − μ2||L1(|| fε ||BV + ε)

and since ε is arbitrary, also (Exi2) is verified in this case.
Let Pn be the partition subdividing the circle into n equal intervals. We can consider

πn : L1(S1) → L1(S1) to be the Ulam discretization defined as πn( f ) = E( f |Pn),
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where the conditional expectation is made using the Lebesgue measure, projecting to
piecewise constant functions.

For theUlamprojection it is known that ||πn f − f ||L1 ≤ K
n || f ||BV , ||πn||L1→L1 ≤ 1,

||πn||BV→BV ≤ 1 (see [19] or the proof of [28, Lemma4.1] e.g.) and then the discretized
operators πnLδ,μπn satisfy a uniform Lasota Yorke inequality on BV and L1 (see e.g.
[16], Section 9.3). By this the assumption Exi1.b is satisfied.We can then applyTheorem
3, and get the existence of an invariant probability density f in BV . Since T0, h ∈ C6

and Lδ, f f = f we get that f ∈ W 5,1 and its norm can be uniformly estimated by the
uniform Lasota Yorke inequality on W 5,1 and W 4,1 and then on W 4,1 and W 3,1 and so
on, satisfied uniformly by all the transfer operators related to the family of maps AM,L .

For the second part of the statement (the weak coupling case) we apply Theorem 4
with Bs = W 1,1[S1] and Bw = L1[S1].

By Lemmas 26 and 20 when δ is small enough all the operators in the family Lδ,μ

with μ ∈ Pw are the transfer operators associated with a uniform family of expanding
maps and satisfy a uniform Lasota Yorke inequality on W 1,1 and L1, by this each one
of these operators has a unique invariant probability measure in W 1,1 with uniformly
bounded norm and (Exi1) is verified.

By Lemma 26 and Proposition 22 we get

||(Lδ,μ1 − Lδ,μ2) f ||L1 ≤ Const ||μ1 − μ2||L1 || f ||W 1,1 (56)

verifying (Exi2) in this case.
By Lemmas 25, and 26 also (Exi3) is verified. Then we can apply Theorem 4 to

get the existence and uniqueness for small δ. 	

The following statement is an estimate for the speed of convergence to equilibrium

of mean field coupled expanding maps (see [33], Theorem 4 or [41] Theorem 1.1 for
similar statements).

Proposition 27 (Exponential convergence to equilibrium). Let Lδ be the family of self-
consistent transfer operators arising from T0 ∈ C6 and h ∈ C6 as above. Let fδ ∈ W 1,1

be an invariant probability density of Lδ. Then there exists δ > 0 and C, γ ≥ 0 such
that for all 0 < δ < δ, and each probability density ν ∈ W 1,1 we have

||Ln
δ (ν) − fδ||W 1,1 ≤ Ce−γ n||ν − fδ||W 1,1 .

Proof. The proof is an application of Theorem 6, considering Bss = W 2,1, Bs = W 1,1,

Bw = L1. Let Lδ f be the family of transfer operators associated with this system.
By the Lasota Yorke inequalities (Lemma 20) we have that the operators Lδ,μ :

W 2,1 → W 2,1, Lδ,μ : W 1,1 → W 1,1, Lδ,μ : L1 → L1 with μ ∈ Pw are bounded
uniformly for δ small enough. By Lemma 20 they satisfy (Con1). Furthermore by
Lemma 26 and Proposition 22 they satisfy (Con2).

By Proposition 23 the invariant measures fδ satisfy limδ→0 || fδ||W 2,1 < +∞. Since
the circle expanding map T0 has convergence to equilibrium then (Con3) is satisfied.
We can then apply Theorem 6 directly implying the statement. 	


To get some useful formula for the linear response for expanding maps coupled
in a mean field regime, let us now consider small perturbations of expanding maps
T : S1 → S

1 by left composition with a family of diffeomorphisms (Dδ)δ∈[−ε,ε]. More
precisely, let Dδ : S1 → S

1 be a diffeomorphism, with

Dδ = πS1 ◦ (I d + δS) (57)
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and S ∈ C6(S1,R). In this setting let us define the perturbed transfer operators as

Lδ = LDδ ◦ LT

(remark that here L0 = LT ). These kinds of perturbations are of the type induced by a
mean field coupling, they satisfy the “small perturbation” and “existence of a derivative
operator” assumptions of our general theorems like (Con2) or (LR2) of Theorem 14.
We have indeed (see [15, Proposition 35, 36]):

Proposition 28. Let (Dδ)δ∈[0,δ] be as in (57), and T : S
1 → S

1 be a C6 uniformly

expanding map. Let us define L̇ : W 4,1(S1) → W 3,1(S1) by

L̇( f ) := −(S · LT ( f ))′. (58)

Then one has that for all 1 ≤ k ≤ 4 and f ∈ Wk,1

∥∥∥∥ Lδ − L0

δ
( f ) − L̇( f )

∥∥∥∥
Wk−1,1

−→
δ→0

0. (59)

We have now all the ingredients to prove a result regarding the Linear Response of
the coupled system in the small coupling regime.

Proposition 29 (Linear Response for coupled expanding maps (zero coupling limit)).
Consider the family of self-consistent transfer operators Lδ associated with a C6 ex-
panding map T and a coupling driven by the function h, with h ∈ C6. Let h0 be the
unique invariant probability measure in L1 for L0 and hδ some invariant probability
measure for Lδ . Then for δ → 0 we have the following Linear Response formula

lim
δ→0

∥∥∥∥hδ − h0
δ

+ (I d − L0)
−1(h0

∫
S1
h(x, y)h0(y)dy)

′
∥∥∥∥
W 1,1

= 0. (60)

Proof. Theproof is a direct applicationofTheorem14 toour casewith Bss = W 3,1(S1) ⊂
Bs = W 2,1(S1) ⊂ Bw = W 1,1(S1). Let us we see why the assumptions needed to ap-
ply the theorem are satisfied. We recall that the transfer operators Lδ : W 3,1(S1) →
W 3,1(S1) involved are defined by

Lδ(φ) = Qδ,φ(LT0(φ)).

The assumption (SS1) (regularity bounds), is implied byProposition 23. The assump-
tion (SS2) (convergence to equilibrium for the unperturbed operator), is well known to
be verified, as it stands for the unperturbed transfer operator L0 which is the transfer
operator associated with a smooth expanding map. The assumption (LR1) regarding the
existence of the resolvent of the unperturbed operator on the weak space W 1,1 follows
from Proposition 21.

AsLδ is a small perturbation of L0 given by the composition of the transfer operator
Qδ,φ associated with a diffeomorphism near to the identity, the assumption (SS3) and
the first part of (LR2) (small perturbation) follows from Proposition 28, Proposition 22
and Lemma 26 as before. Let us prove indeed that there is K ≥ 0 such that and L0 −Lδ

is K δ-Lipschitz when considered as a function B2M → Bw and B2M → Bs . In the first
case we have to prove that for φ1, φ2 ∈ W 2,1

||[Qδ,φ1(LT0 (φ1)) − LT0 (φ1)] − [Qδ,φ2 (LT0 (φ2)) − LT0 (φ2)]||W 1,1 ≤ K δ||φ1 − φ2||W 2,1 .

(61)
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Developing the formula we get

||Qδ,φ1(LT0(φ1)) − LT0(φ1) − Qδ,φ2(LT0(φ2)) + LT0(φ2)||W 1,1

≤ ||Qδ,φ1(LT0(φ1)) − LT0(φ1) − Qδ,φ1(LT0(φ2))

+Qδ,φ1(LT0(φ2)) − Qδ,φ2(LT0(φ2)) + LT0(φ2)||W 1,1

and

||Qδ,φ1(LT0(φ1)) − LT0(φ1) − Qδ,φ1(LT0(φ2)) + LT0(φ2)||W 1,1

≤ ||Qδ,φ1(LT0(φ1 − φ2)) − LT0(φ1 − φ2)||W 1,1

≤ CK22Mδ||φ1 − φ2||W 2,1

by applying Lemma 26 with ψ = 0 and φ = φ1 and Proposition 22. The other term
can be estimated as

||Qδ,φ1(LT0(φ2)) − Qδ,φ2(LT0(φ2))||W 11

≤ ||Qδ,φ1 ◦ LT0 − Qδ,φ2 ◦ LT0 ||W 2,1→W 1,1 ||φ2||W 2,1

≤ δCK22M ||φ1 − φ2||W 2,1

using Proposition 22 and Lemma 26 and proving the Lipschitz assumption in the
B2M → Bw case. The case B2M → Bs is similar.

The assumption (LR2) on the derivative operator follows from Proposition 28. Let
us apply it and find an expression for L̇h0 in our case. In this case the perturbing operator
to be considered is Qδ,h0 associated with the diffeomorphism �δ,h0 . With the notation
(57) we have Dδ = �δ,h0 = I d + δS with

S(x) =
∫
S1
h(x, y)h0(y)dy

and then

L̇(h0) = −(S LT0h0)
′ = −(h0

∫
S1
h(x, y)h0(y)dy)

′. (62)

Applying Theorem 14, we then get

lim
δ→0

∥∥∥∥hδ − h0
δ

− (I d − LT0)
−1L̇(h0)

∥∥∥∥
W 1,1

= 0 (63)

as in our case W 1,1 is the weak space Substituting (62) in (63) we get (60). 	

Remark 30. From (40) we see that this response result with convergence in the quite
strong topology W 1,1 gives information on the behavior of a large class of observables,
for example we can consider observables in L∞ or L1 or even distributions in the dual
of W 1,1.



Self-Consistent Transfer Operators: Invariant Measures, Convergence to Equilibrium, Linear... 753

8. Maps with Additive Noise on S
1

We illustrate the flexibility of our approach with an application to systems of coupled
random maps. For simplicity we will consider a class of random dynamical systems
on the unit circle S1. Informally speaking, a random dynamics on S

1 is defined by the
iteration of maps chosen randomly in the family Tω : S1 → S

1, ω ∈ � according to a
certain probability distribution p defined on �. In our case we will model this random
choice as independent and identically distributed at each time.

Let T0: S1 → S
1 a continuous and piecewise C1, nonsingular map7. We consider a

random dynamical system, corresponding to the stochastic process (Xn)n∈N defined by

Xn+1 = T0(Xn) + �n mod 1 (64)

where (�n)n∈N are i.i.d random variables distributed according to some smooth kernel
ρ. We will call T0 the deterministic part of the system and ρ the noise kernel of the
system.

Remark 31. Weremark that themaps considered here are quite general.Wedonot require
expansiveness or hyperbolicity, allowing many examples of random maps coming as
models of natural phenomena (see e.g. [9,20,36]).

We will consider the annealed transfer operators associated with these systems (see
[47], Sect. 5 formore details about transfer operators associatedwith this kind of systems
or [15]). Let SM(S1) be the space of signed Borel measures in S1. The annealed transfer
operator L : SM(S1) → SM(S1) associated with the random system is defined by

L(μ) =
∫

�

LTω(μ)dp (65)

where LTω(μ) : SM(S1) → SM(S1) is the transfer operator associated with Tω, hence
taking the average of the pushforward maps with respect to p. For some class of random
dynamical systems L is defined as an operator : L1(S1) → L1(S1) and sometime this
operator is a kernel operator: let k ∈ L∞(S1 × S

1) (the kernel), consider the operator L
defined in the following way: for f ∈ L1(S1)

L f (x) =
∫
S1
k(x, y) f (y)dy. (66)

This kind of operators naturally appear when the random dynamics is defined by the
action of a deterministic map and some additive noise Since the effect of the additive
noise is to perturb the deterministic map by a translation, the annealed transfer operator
will be an average of translations, i.e. a convolution. The well known regularization
properties of convolutions then imply that the annealed transfer operator associated with
a system with additive noise is a regularizing one.

Let us consider a probability density ρ : R → R representing how the noise is
distributed. For simplicity we will suppose ρ being such that ρ(x) = ρ(−x) for all
x ∈ R and being a Schwartz function, hence ρ ∈ Ck for all k ≥ 1. The periodization
ρ̃ : S1 → R of such a function is defined as

ρ̃(x) =
∑
k∈Z

ρ(x + k)

7 We mean that S1 can be partitioned in a finite set of intevrals where T is C1 and that the associated
pushforward map T∗ sends a measure which is absolutely continuous with respect to the Lebesgue measure
to another measure which is absolutely continuous with respect to the Lebesgue measure.
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which clearly converge for a rapidly decreasing function as ρ.

Definition 32. Let f ∈ L1(S1) and ρ as before. We define the convolution ρ ∗ f by

ρ ∗ f (x) :=
∫
S1

ρ̃(x − y) f (y)dy. (67)

To a system with additive noise as defined in (64) we then associate the annealed
transfer operator L : L1 → L1 defined by

L(φ) := ρ ∗ [LT0(φ)] (68)

for all φ ∈ L1, where LT0 is the transfer operator associated with the deterministic map
T0.

We now define the self-consistent transfer operator associated with an infinite collec-
tion of interacting random maps in a mean field coupling. Like in the deterministic case
let us consider h ∈ Ck(S1 × S

1,R), δ ≥ 0, for some k ≥ 1 and a probability density
ψ ∈ L1. Define �δ,ψ : S1 → S

1 again as

�δ,ψ(x) = x + πS1(δ

∫
S1
h(x, y)ψ(y)dy).

Denote by Qδ,ψ the transfer operator associated with �δ,ψ, as in (47). We consider
the following family of operators depending on a probability density φ ∈ L1 and δ ≥ 0
defined as

Lδ,φ(ψ) = ρ ∗ [Qδ,φ(LT0(ψ))]. (69)

Finally we define the nonlinear self-consistent transfer operator associated with this
system of coupled random maps by

Lδ(φ) = ρ ∗ [Qδ,φ(LT0(φ))]. (70)

This represents the idea that a certain initial condition is first moved by the determin-
istic part of the dynamics represented by the map T0 and by the mean field perturbation
�δ,φ , then a further (external and independent of the dynamics) random perturbation
is applied by the noise. In the remaining part of the section we will apply our general
theory to this kind of operators.

The following proposition contains some of the regularization properties for the
convolution we need (see [15] Proposition 15 for the proof and details).

Proposition 33. Let f ∈ L1 and ρ be as before. The convolution ρ ∗ f has the following
properties:

(1) For all k ≥ 1, ρ ∗ f : S1 → R is Ck, and (ρ ∗ f )(i) = ρ(i) ∗ f for any i ≤ k.
(2) One has the following regularization inequality:

‖ρ ∗ f ‖Ck ≤ ‖ρ‖Ck‖ f ‖L1 . (71)

These regularization properties together with the Ascoli Arzela theory imply that a
linear operator L0 : L1 → L1 of the kind

L0(φ) = ρ ∗ LT0(φ) (72)

is a compact operator. If we suppose that the system satisfy a convergence to equilibrium
assumption, this will allow to obtain the spectral gap and the existence of the resolvent
operators, required to apply Theorem 14.
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Proposition 34. Let L0 be the annealed transfer operator associated with a map T0 with
additive noise distributed with a kernel ρ as in (72). Consider m ≥ 1 and suppose that
for all g ∈ Cm such that

∫
g dm = 0

lim
n→∞ ‖Ln

0g‖L1 = 0. (73)

Then for all k ≥ 1, (I d − L0)
−1 := ∑∞

i=0 L
i
0 is a bounded operator Ck → Ck.

Proof. (73) and (71) impliy that limn→∞ ‖Ln
0g‖Ck = 0 for all g ∈ L1 such that∫

g dm = 0 and then some iterate of the transfer operator is a uniform contraction on
the space of Ck densities with zero average. By this the operator has a spectral gap,
implying the existence of the resolvent operator (see for the details [15], section IV). 	


By [15, proposition 18 and 19] and their simple proof the lemma below directly
follows

Lemma 35. Let us consider transfer operators L0, L1 associated with dynamical sys-
tems with additive noise having noise kernel ρ, deterministic part given by continuous
maps T0 and T1 and k ≥ 0. Then there is C ≥ 0 such that for all such T0, T1 and f ∈ L1

||L1 f − L0 f ||Ck−1 ≤ C ||ρ||Ck ||T0 − T1||C0 || f ||1.
We state a result analogous to Proposition 23 in the case of systems with additive

noise. The application to this case is simpler due to the regularizing effect of the noise.

Proposition 36. Suppose T0 is S
1 → S

1 continuous, nonsingular and piecewise C1.

Suppose h ∈ C1, let Lδ be the self-consistent family of operators associated with this
coupled system as defined in (70), then for all δ ≥ 0 there is fδ ∈ C∞ such that for all
k ≥ 1

|| fδ||Ck ≤ ||ρ||Ck (74)

and

Lδ( fδ) = fδ.

Let us suppose that the (linear) operator L0 has convergence to equilibrium when con-
sidered as acting on the spaces C1 and L1 (see (73)) then there is δ > 0 such that for
all δ ∈ [0, δ], fδ is unique.

Proof. We sketch the proof, whose arguments are similar to the ones of Proposition 23.
We will obtain the statement applying Theorems 3 and 4 to the family of operators

Lδ,φ = ρ ∗ [Qδ,φ ◦ LT0 ]
as defined in (69). First we will apply Theorem 3 with Bs = BV and Bw = L1. We
remark that given k ≥ 1, (71) implies a Lasota Yorke inequality which is uniformly
satisfied by these operators, indeed

||Lδ,φ(ψ)||Ck = ||ρ ∗ [Qδ,φ ◦ LT0(ψ)]||Ck

≤ 0||ψ ||Ck + ||ρ||Ck ||[Qδ,φ ◦ LT0(ψ)]||1
≤ 0||ψ ||Ck + ||ρ||Ck ||ψ ||1. (75)
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This implies that the transfer operators in the family are uniformly bounded as oper-
ators L1 → Ck and hence each invariant probability measure fδ,φ of Lδ,φ is such that
|| fδ,φ ||BV ≤ || fδ,φ ||Ck ≤ ||ρ||Ck and then the family of operators satisfy (Exi1).

The assumption (Exi2) (or (12)) is provided similarly as a consequence of theLemma
26 and Lemma 35.

In order to apply Theorem 3 we consider a suitable projection πn . As in the proof
of Proposition 23, let Pn be the partition subdividing the circle into n equal intervals.
Consider πn defined as in the proof of Proposition 23 by πn( f ) = E( f |Pn), where
the conditional expectation is made using the Lebesgue measure, projecting to piece-
wise constant functions. Again, the discretized operators satisfy a uniform Lasota Yorke
inequality on BV and L1, indeed

||πnLδ,φπn(ψ)||BV ≤ ||Lδ,φπn(ψ)||BV
≤ ||Lδ,φπn(ψ)||Ck

≤ ||ρ ∗ [Qδ,φ ◦ LT0(πn(ψ))]||Ck

≤ ||ρ||Ck ||πn(ψ)||1
≤ ||ρ||Ck ||ψ ||1

and Exi1.b is satisfied. We can then apply Theorem 3, and get the existence of an
invariant probability density f in BV . Since ρ ∈ Ck and Lδ, f f = f we get that f ∈ Ck

for all k ≥ 1, also proving (74).
Now we apply Theorem 4 to get the uniqueness. In this case we consider Bs = C1

and Bw = L1. We first have to prove that for δ small enough each operator Lδ,φ with
φ ∈ Pw ha a unique invariant probability measure in Pw. Since L0 has convergence to
equilibrium, is regularizing and C1 is compactly immersed in L1 it is standard to find
that this operator has a unique invariant probability measure. From the convergence
to equilibrium, the small perturbation assumption (Exi2) we verified above and the
regularization property (71) we get that there is γ ≥ 0 such that Lδ,φ has convergence
to equilibrium for all δ ≤ γ and φ ∈ Pw. Indeed let us consider f ∈ Vs and suppose
that by convergence to equilibrium n is such that ||Ln

0 f ||L1 ≤ 1
2||ρ||C1

|| f ||C1 then

||Ln+1
0 f ||C1 ≤ ||ρ||C1 ||LT0(L

n
0 f )||L1 ≤ 1

2
|| f ||C1 .

This implies that Ln+1
0 is a contraction of Vs . Now let us consider φ ∈ Pw, γ ≤

1
4||ρ||C1K (C+nB)

and δ ≤ γ. By a computation similar to the proof of Lemma 8 (remark

that Q = 1 in the case Bw = L1 and by (75), λ = 0) we can get

||Ln
δ,φg − Ln

0g||L1 ≤ δK (C ||g||C1 + nB||g||L1) (76)

≤ δK (C + nB)||g||C1 (77)

≤ 1

4||ρ||C1
||g||C1 (78)

and then ||Ln
δ,φg||L1 ≤ 3

4||ρ||C1
||g||C1 , thus repeating the same reasoning as before Ln+1

δ,φ

also is a contraction of Vs . Hence we have that when δ is small enough each Lδ,φ has
convergence to equilibrium. It follow that Lδ,φ also has spectral gap on C1 and on L1
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Indeed for all f ∈ VL1 := { f ∈ L1,
∫

f = 0} we get ||Lδ,φ f ||C1 ≤ ||ρ||C1 || f ||L1 and
if we have if n is such that ||Ln

δ,φ f ||L1 ≤ 3
4||ρ||C1

|| f ||C1 then again

||Ln+1
δ,φ f ||L1 ≤ 3

4||ρ||C1
||Lδ,φ f ||C1 ≤ 3

4
|| f ||L1 .

Thus each Lδ,φ has a unique invariant probability measure fφ ∈ Pw. Furthermore, the
resolvent of Lδ,φ is defined on VL1and its norm uniformly bounded for every φ ∈ Pw.

Now we can prove that (Exi3) holds. Let us consider probability measures φ1 and
φ2 ∈ Pw and the operators Lδ,φ1 Lδ,φ2 we have seen that when δ ≤ γ these operators
have unique fixed probability densities fφ1 , fφ2 . We want to prove that

|| fφ1 − fφ2 ||L1 ≤ K2||φ1 − φ2||L1 .

We hence apply a construction similar to the proof of Theorem 14 to the family of
operators L̂ε : L1 → L1 defined by

L̂ε = Lδ,φ1 + ε[Lδ,φ2 − Lδ,φ1 ].
Consider

(I d − Lδ,φ2)( fφ2 − fφ1) = fφ2 − Lδ,φ2 fφ2 − fφ1 + Lδ,φ2 fφ1
= (Lδ,φ2 − Lδ,φ1) fφ1 .

We have that

( fφ2 − fφ1) = (I d − Lδ,φ2)
−1(Lδ,φ2 − Lδ,φ1) fφ1 .

By the fact that (I d − Lδ,φ2)
−1 is well defined and continuous on VL1 remarked before

and by the fact that || fφ1 ||C1 ≤ ||ρ||C1 and (Exi2) we get

|| fφ2 − fφ1 ||L1 ≤ δK ||ρ||C1 ||φ2 − φ1||L1

and then (Exi3) is verified. Applying Theorem 4 we then get the uniqueness for δ small
enough. 	

Proposition 37 (Exponential convergence to equilibrium). Let Lδ be the family of self-
consistent transfer operators arising from a map T0, a kernel ρ as above, and h ∈ Ck

with k ≥ 1. Suppose the uncoupled system L0 has convergence to equilibrium. Let fδ
be an invariant probability measure of Lδ. Then there exists δ > 0 and C, γ ≥ 0 such
that for all 0 < δ < δ and each probability density ν ∈ Ck we have

||Ln
δ (ν) − fδ||Ck ≤ Ce−γ n||ν − fδ||Ck .

Proof. Again the proof is a direct application of Theorem 6 toLδ considering the spaces
Bss = Ck+1, Bs = Ck and Bw = L1. The assumption (Con1) for this kind of systems is
already verified in (75). The assumption (Con2) is as a direct consequence of Lemmas
26 and 35. The assumption (Con3) is required as an assumption in this statement. 	


Let us now consider a linear response result for the invariant measure of Lδ when
δ → 0 in the case of coupled maps with additive noise.
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Proposition 38 (Linear Response for coupled maps with additive noise). Let Lδ be
the family of self-consistent transfer operators arising from a map T0, a kernel ρ and
h as above. Suppose the uncoupled initial transfer operator L0 has convergence to
equilibrium in the sense of (73). Let f0 ∈ Ck be the unique invariant probability density
of L0 and fδ ∈ Ck be the invariant probability density of Lδ (unique when δ is small
enough). Then we have the following Linear Response formula

lim
δ→0

∥∥∥∥ fδ − f0
δ

+ (I d − L0)
−1ρ ∗ (LT0(h0)

∫
S1
h(x, y)h0(y)dy)

′
∥∥∥∥
Ck−1

= 0. (79)

Before the proof, we recall some preliminary result on the response of systems with
additive noise. We now consider small perturbations of our random maps with additive
noise by composition with a map Dδ , which is when δ is small, a diffeomorphism near
to the identity. Consider a map S ∈ C2(S1,R) and the map Dδ : S1 → S

1 defined by
Dδ = I d + δS. Let us consider then the perturbation of T0 by composition with Dδ

defined by Tδ = T0◦Dδ.Starting from this family ofmaps and a kernelρ we can consider
a family of dynamical systems with additive noise as in (64 ). Since LTδ = LDδ ◦ LT0 ,
to this system we associate the annealed transfer operator defined by

Lδ := ρ ∗ LDδ◦T0 = ρ ∗ (LDδ ◦ LT0). (80)

Now, in order to apply our general theorems it will be useful to consider the derivative
operator L̇ for the family of operators (LDδ◦T0)δ∈[0,δ]. In this direction, the following
result ( [15, Theorem 24]) gives some useful estimates.

Proposition 39. Let (Lδ)δ∈[0,δ] be the family of transfer operators as described in (80).
For all k ≥ 2

lim
δ→0

∥∥∥∥ Lδ − L0

δ
− L̇

∥∥∥∥
Ck→Ck−1

= 0 (81)

where L̇ : Ck(S1) → Ck−1(S1) is defined by:

L̇( f ) = −ρ ∗ (S · LT0 f )
′.

Proof of Proposition 38. Similar to the proof of Proposition 29, the proof is a direct
application of Theorem 14. We apply Theorem 14 to the family of operators Lδ(φ) =
ρ ∗ [Qδ,φ(LT0(φ))] considering the spaces Bss = Ck+2(S1) ⊆ Bs = Ck+1(S1) ⊂ Bw =
Ck(S1). Let us nowverify that the assumptions needed to apply the theorem are satisfied.
The assumption (SS1) (regularity bounds), is implied by Proposition 36.

The assumption (SS2)(convergence to equilibrium for the unperturbed operator), is
supposed to hold. The assumption (SS3) and the first part of the assumption (LR2)
(small perturbation) follows from Lemma 26 and 35. Indeed we have to prove that
there is K ≥ 0 such that L0 − Lδ is K δ-Lipschitz when considered as a function
B2M → Bw and B2M → Bs . In the first case we have to prove that for φ1, φ2 ∈ {φ ∈
Ck+1, ||φ||Ck+1 ≤ 2M}
||ρ ∗ [Qδ,φ1(LT0 (φ1)) − LT0 (φ1)] − ρ ∗ [Qδ,φ2 (LT0 (φ2)) − LT0 (φ2)]||Ck ≤ K δ||φ1 − φ2||Ck+1 .

We have
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||ρ ∗ [Qδ,φ1(LT0(φ1)) − LT0(φ1)] − ρ ∗ [Qδ,φ2(LT0(φ2)) − LT0(φ2)]||Ck

≤ ||ρ ∗ Qδ,φ1(LT0(φ1)) − ρ ∗ LT0(φ1) − ρ ∗ Qδ,φ1(LT0(φ2))

+ρ ∗ Qδ,φ1(LT0(φ2)) − ρ ∗ Qδ,φ2(LT0(φ2)) + ρ ∗ LT0(φ2)||Ck

and

||ρ ∗ Qδ,φ1(LT0(φ1)) − ρ ∗ LT0(φ1) − ρ ∗ Qδ,φ1(LT0(φ2)) + ρ ∗ LT0(φ2)||Ck

≤ ||ρ ∗ Qδ,φ1(LT0(φ1 − φ2)) − ρ ∗ LT0(φ1 − φ2)||Ck

≤ δCK12M ||φ1 − φ2||Ck+1

applying Lemma 26 with ψ = 0 and φ = φ1 and Lemma 35.
Furthermore

||ρ ∗ Qδ,φ1(LT0(φ2)) − ρ ∗ Qδ,φ2(LT0(φ2))||Ck ≤ δCK12M ||φ1 − φ2||Ck+1

again by Lemmas 26 and 35.
In the second case we have to prove that for φ1, φ2 ∈ {φ ∈ Ck+2, ||φ||Ck+2 ≤ 2M}

||ρ ∗ [Qδ,φ1(L0(φ1)) − L0(φ1)] − ρ ∗ [Qδ,φ2 (L0(φ2)) − L0(φ2)]||Ck+1 ≤ kδ||φ1 − φ2||Ck+2

which can be proved similarly as before.
The assumption (LR1) (resolvent of the unperturbed operator) follows from Propo-

sition 34. The second part of assumption (LR2) (derivative operator) follows from
Proposition 39 in a way similar to what is done in the proof of Proposition 29. Applying
Theorem 14, we then get

lim
δ→0

∥∥∥∥hδ − h0
δ

− (I d − L0)
−1L̇h0

∥∥∥∥
Ck

= 0.

We can now let the formula be more explicit by finding an expression for L̇. In our case

S(x) =
∫
S1
h(x, y)h0(y)dy

and then

L̇(h0) = ρ ∗ (−h0S)′ = ρ ∗ (−LT0(h0)
∫
S1
h(x, y)h0(y)dy)

′.

	

Remark 40. The convergence to equilibrium assumption (73) required in Proposition 37
and Proposition 38 for the uncoupled transfer operator L0 is easy to be verified in many
examples of systems whose deterministic part has some kind of topological mixing and
the noise is distributed by a smooth kernel or it has large support in some sense, see
[29, Corollary 5.7.1], [22, Lemma 41] or [1, Remarks 2.3 and 6.4]. In more complicated
situations it can be also verified by computer aided estimates ([20]).
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Remark 41. We remark that another meaningful definition for the transfer operator as-
sociated with a family of random maps coupled in by their mean field could be the
following

Lδ(φ) = [Qδ,φ(ρ ∗ LT0(φ))]. (82)

In this case one applies the coupling directly to the annealed transfer operator of the
random maps. Here for small δ the application of our theory seems to be possible by
estimates similar to the ones shown in this section and in Sect. 7. Indeed the transfer
operator realizing the coupling Qδ,φ is applied after the convolution. Considering φ ∈
L1, by (71) we get that (ρ ∗ LT0(φ)) is regularized to the regularity of the kernel ρ. If h
is smooth enough and δ small enough, this regularity is preserved by the application of
Qδ,φ leading to the verification of regularity properties like Exi1, Exi1.b, Con1 and
SS1.

The verification of small perturbation properties like Exi2, Con2, SS3 and LR2 for
the family of transfer operators associated with (82) Lδ,φ = Qδ,φ(ρ ∗ LT0) relies on the
estimation of the distance of Qδ,φ1 from Qδ,φ2 on a mixed norm which can be done in
a way similar to the use of Lemmas 22 and Lemma 26 as done in Sect. 7 . The form of
the derivative operator L̇ is probably similar to the one given at Proposition 28.

9. Self-Consistent Operators not Coming from Coupled Map Networks

In this section we consider a class of self-consistent transfer operators not coming from
networks of coupled maps, giving other examples of application of our general theory.
The systems considered are inspired to some examples studied in [5,44], where we have
a map whose slope depends on the average of a certain observable during the iterates.
We add noise to simplify the functional analytic properties of the system. Let us consider
again a family of random maps on [0, 1] depending on a probability measure μ and on
a parameter δ ≥ 0.

Let us consider the classical tent map T : [0, 1] → [0, 1], defined by T (x) =
min(2x, 2 − 2x), the family of maps Tδ,μ : [0, 1] → [0, 1] we consider as a self-
consistent perturbation of the tent map are defined by

Tδ,μ(x) = T (x)

1 + δ
∫
xdμ

.

Then adding a noise-like perturbation to the map Tδ,μ we consider the process (Xn)n∈N
defined on [0, 1] by

Xn+1 = Tδ,μ(Xn)+̂�n mod 1 (83)

where (�n)n∈N are i.i.d random variables distributed according to a kernel ρ ∈ Lip(R),

supported on [−1, 1]with Lipschitz constant L and where +̂ is the “boundary reflecting”
sum, defined by a+̂b := π(a + b) , and π : R → [0, 1] is the piecewise linear map
π(x) = mini∈Z |x − 2i |. This is a model of a system on [0, 1] with reflecting boundary
conditions. When the noise sends a point outside the space [0, 1] the projection π is
applied to let the imageof themapagain in [0, 1].Let us denote as Lπ the transfer operator
Lπ : L1(R) → L1([0, 1]) associated with the map π. Let b ∈ R and g ∈ Lip(R)

consider the translation operator τb defined by (τb g)(y) := g(y + b).
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The annealed transfer operator associated with the random dynamical system (83)
is a Markov operator and is given by the following kernel operator (for details see [1],
Section 6):

Lδ,μ f (x) =
∫

kδ,μ(x, y) f (y)dy, (84)

where

kδ,μ(x, y) = (Lπτ−Tδ,μ(y)ρ)(x) (85)

and x, y ∈ [0, 1]. Since the perturbation induced on the system with additive noise by
increasing the parameter δ is not coming from the composition with a diffeomorphism
we cannot use the estimates from the previous sections directly. We hence take a slightly
different point of view on systems with additive noise, and related basic estimates which
were developed in [1].

In this case we will consider Bw = L2[0, 1]. Let Pw be the set of measures having
a probability density in L2. The nonlinear self-consistent operator we consider in this
case hence is given by Lδ : Pw → Pw defined as

Lδμ = Lδ,μμ (86)

for all μ ∈ Pw. We remark that since ρ ∈ Lip(R) and it is supported on [−1, 1] the
kernel of this operator is bounded: kδ,μ ∈ L∞([0, 1]2). Let us recall some classical and
useful facts about kernel operators.

• If kδ,μ ∈ L∞([0, 1]2), then
||Lδ,μ f ||∞ ≤ ||kδ,μ||L∞([0,1]2)|| f ||1 (87)

and the operator Lδ,μ : L1 → L∞ is bounded. Furthermore, ‖Lδ,μ‖L p→L∞ ≤
‖kδ,μ‖L∞([0,1]2) for 1 ≤ p ≤ ∞.

• The operator Lδ,μ : L2 → L2 is compact and

||Lδ,μ f ||2 ≤ ||kδ,μ||L2([0,1]2)|| f ||2 (88)

(see [10, Proposition 4.7] or [32]).

It is also well known that these Markov operators have invariant probability densities
in L2 (see e.g. [1, Theorem 2.2]). Since kδ,μ ∈ L∞([0, 1]2), by (87) we also have that
any invariant probability density fδ,μ for this operator satisfies

|| fδ,μ||∞ ≤ ||kδ,μ||L∞([0,1]2) ≤ ||ρ||L∞[0,1]. (89)

In [1, Section 6] the following estimates are proved for such kernel operators coming
from maps with additive noise and reflecting boundaries conditions (see Proposition
6.2):

Proposition 42. Assume that kδ,μ is the kernel associated to the transfer operator of
a system with additive noise and reflecting boundaries composed by a map Tδ,μ and a
noise kernel ρ (see (85)). Let us fix δ, suppose that the family of interval maps {Tε}ε∈[0,ε)
satisfies
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T0 = Tδ,μ (90)

Tε = T0 + ε · Ṫ + Tε,

where Ṫ , Tε ∈ L2 and ‖Tε‖2 = o(ε). Consider the transfer operator L0 associated
with the unperturbed system with map T0 and kernel ρ. Let Lε be the transfer operator
associated with the system driven by Tε and kernel ρ. Then there are ε, K ≥ 0 such that
for ε ∈ [0, ε)

||L0 − Lε ||L2→L2 ≤ εK (91)

and ∀ f0 ∈ L2

lim
ε→0

Lε − L0

ε
f0 = −

∫ 1

0

(
Lπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y) f0(y)dy, (92)

with convergence in L2.

The inequality (91) shows that the perturbations we are interested in applying to the
transfer operators associated with this kind of systems are small perturbations in the
L2 → L2 topology. We will then consider the transfer operators associated with this
kind of systems as operators acting on L2[0, 1] and in this subsection we will apply our
general statements with the choice Bss = Bs = Bw = L2[0, 1]. We now can apply
Theorem 4 and prove

Proposition 43. Let Lδ be the self-consistent transfer operator associated to Tδ,μ and
ρ as defined in (86). There are M, δ ≥ 0 such that for all δ ∈ [0, δ] there is a unique
fδ ∈ Pw with || fδ||L2 ≤ M such that

Lδ( fδ) = fδ.

Before the proof of Proposition 43 we need a couple of preliminary results

Proposition 44. There is C ≥ 0 such that for all μ1, μ2 ∈ Pw ⊆ L2,

||Lδ,μ2 − Lδ,μ1 ||L2→L2 ≤ δC ||μ1 − μ2||L2

||L0,μ1 − Lδ,μ1 ||L2→L2 ≤ δC ||μ1||L2

Proof. The proof follows by (88), estimating the difference of the associated kernels.
Let us first consider ||Lδ,μ2 − Lδ,μ1 ||L2→L2 . We have

||Lδμ2 − Lδμ1 ||L2→L2 ≤ ||kδ,μ1 − kδ,μ2 ||L2([0,1]2)

= (

∫
[0,1]2

(kδ,μ1(x, y) − kδ,μ2(x, y))
2dxdy)

1
2 .

We first estimate the distance between the two deterministic parts of the dynamics.
For all y ∈ [0, 1] we get

|Tδ,μ1(y) − Tδ,μ2(y)| ≤ | T (y)

1 + δ
∫
xdμ1(x)

− T (y)

1 + δ
∫
xdμ2(x)

|

≤ |T (y)(1 + δ
∫
xdμ2(x)) − T (y)(1 + δ

∫
xdμ1(x))

(1 + δ
∫
xdμ1(x))(1 + δ

∫
xdμ2(x))

|
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≤ δ|
∫

xdμ2(x) −
∫

xdμ1(x)|
≤ δ||μ1 − μ2||L2 .

Now let us suppose that ρ is L−Lipschitz. Since ρ is supported in [−1, 1] we get
that τ−Tδ,μ(y)ρ(x) is supported in [−2, 1] for each μ. By this Lπ (τ−Tδ,μ(y)ρ(x)) is the
sum of at most three non zero contributions for each x ∈ [0, 1], hence

|[kδ,μ2 − kδ,μ1](x, y)| ≤ |Lπ [τ−Tδ,μ2 (y)ρ(x) − τ−Tδ,μ1 (y)ρ(x)]|
≤ 3 sup

x∈[−1,2],y∈[0,1]
|[τ−Tδ,μ2 (y)ρ(x) − τ−Tδ,μ1 (y)ρ(x)]|

≤ 3δL ||μ1 − μ2||L2

proving the statement. The estimate for ||L0,μ1 − Lδ,μ1 ||L2→L2 is similar. We have

|Tδ,μ1(y) − T0,μ1(y)| ≤ | T (y)

1 + δ
∫
xdμ1(x)

− T (y)|

≤ |T (y)(1 + δ
∫
xdμ2(x)) − T (y)

(1 + δ
∫
xdμ1(x))

|

≤ δ|
∫

xdμ1(x)|
≤ δ||μ1||L2

and the statement is obtained as before. 	

Proposition 45. Let us consider a self-consistent operator Lδ as defined at beginning
of Sect. 9. Consider VL2 := {v ∈ L2,

∫
vdm = 0}. Suppose that there is n such that

for each v ∈ VL2 , ||Ln
0(v)||L2 ≤ 1

2 ||v||L2 . Then there are K , δ ≥ 0 such that for every
δ ∈ [0, δ), and probability measures μ1, μ2 ∈ L2 satisfying ||μi ||L2 ≤ ||ρ||∞ for all
i ∈ {1, 2} it holds that Lδ,μi has a unique invariant probability measure with density in
L2 which we denote by fμi . Furthermore, with these notations

|| fμ1 − fμ2 ||L2 ≤ δK ||μ1 − μ2||L2 .

Proof. We sketch the proof, which is similar to part of the proof of Proposition 36. Since
||Ln

0(v)||L2 ≤ 1
2 ||v||L2 , by Proposition 44 for δ small enough we have ||Ln

δ,μ1
(v)||L2 ≤

3
4 ||v||L2 for all μ1 with ||μ1||L2 ≤ ||ρ||∞ and v ∈ VL2 , impliying the uniqueness of
the invariant probability density in L2. By this we can also define the resolvent for each
such operator Lδ,μ1 on VL2 with a uniform bound on its L2 norm. Since

(I d − Lδ,μ2)( fμ2 − fμ1) = fμ2 − Lδ,μ2 fμ2 − fμ1 + Lδ,μ2 fμ1

= (Lδ,μ2 − Lδ,μ1) fμ1 .

We have that

( fμ2 − fμ1) = (I d − Lδ,μ2)
−1(Lδ,μ2 − Lδ,μ1) fμ1 .

Since ||(I d − Lδ,μ2)
−1||L2→L2 is uniformly bounded and || fμ1 ||L2 ≤ || fμ1 ||L∞ ≤

||ρ||∞, applying Proposition 44 we get the statement. 	
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Proof of Proposition 43. We apply Theorem 4 with Bs = Bw = L2[0, 1]. The assump-
tion (Exi1) is provided by (89), (Exi2) is provided by Proposition 44, (91) and (Exi3)
is provided by Proposition 45. The unique fixed point we find is in L2 and since the
kernels we consider in the construction are uniformly bounded in L∞ the L2 norm of
the fixed point is uniformly bounded as δ varies. 	


Now we can prove the linear response formula for these self-consistent operators in
the small nonlinear perturbation regime.

Proposition 46 (Linear response). Consider the family of self-consistent transfer oper-
ators Lδ : L2 → L2 as described before with δ ∈ (0, δ) as found in Proposition 43 and
with invariant probability measures fδ . We have the following Linear Response formula

lim
δ→0

fδ − f0
δ

= (I d − L0)
−1

∫ 1

0

(
Lπ

(
τ−T0(y)

dρ

dx

))
(x)aT (y) f0(y)dy, (93)

where a = ∫
td f0(t) and the limit is converging in L2.

Proof. The proof is an application of Theorem 14 where the spaces considered in this
case are Bss = Bs = Bw = L2. The assumption (SS1) (regularity bounds), is implied by
Proposition 43. Let us remark that the unperturbed system is a noisy tentmap, hence it has
convergence to equilibrium (by [1, Remarks 6.4]) and the assumption (SS2) is satisfied.
To verify assumption (SS3) (small perturbation) we need to verify that, considering
B2M = {x ∈ L2, ||x || ≤ 2M}. There is K ≥ 0 such that and L0 − Lδ : B2M → L2 is
K δ-Lipschitz. We have to verify that for all μ1, μ2 ∈ B2M

||(Lδ − L0)μ1 − (Lδ − L0)μ2||L2 ≤ K δ||μ1 − μ2||L2 . (94)

Recalling that by Proposition 44 we have L0,μ1 = L0,μ2 := L0, we have

(Lδ − L0)μ1 − (Lδ − L0)μ2

= Lδ,μ1μ1 − L0,μ1μ1 − Lδ,μ2μ2 + L0,μ2μ2

= Lδ,μ1μ1 − Lδ,μ1μ2 + Lδ,μ1μ2 − L0,μ1μ1 − Lδ,μ2μ2 + L0,μ2μ2

= [Lδ,μ1 − L0](μ1 − μ2) + [Lδ,μ1 − Lδ,μ2 ]μ2

Now by Proposition 44

||[Lδ,μ1 − L0](μ1 − μ2)||L2 ≤ δC ||μ1||L2 ||μ1 − μ2||L2

and

||[Lδ,μ1 − Lδ,μ2 ]μ2||L2 ≤ δC ||μ2||L2 ||μ1 − μ2||L2

proving the statement. Now we can apply Theorem 12 and deduce that fδ → f0 in
L2. The assumption (LR1) on the existence of the resolvent is equivalent to (SS2)
since we consider only one space L2 and for the same reason the first part of (LR2)is
equivalent to (SS3). We now only need to compute the derivative operator. When the
self-consistent operator is considered, as δ increases, the effect of the perturbation on the
system is only on the map defining the deterministic part of the dynamics. We then use
(92), from Proposition 42. We remark that this perturbation on the deterministic part of
the dynamics depends on the invariant measure fδ of the system as δ changes, however
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we will see that since fδ → f0 in L2 this also give rise to a family of maps with additive
noise of the type

Tδ = T0 + δ · Ṫ + tδ

as in (90). Indeed let us compute Ṫ in this case. Considering that Tδ, fδ (x) = T (x)
1+δ

∫
xd fδ

we get

Tδ − T0
δ

= 1

δ
[ T (x)

1 + δ
∫
xd fδ

− T (x)]

= T (x)
−δ

∫
xd fδ

δ + δ2
∫
xd fδ

= −T (x)

∫
xd fδ

1 + δ
∫
xd fδ

.

Since fδ → f0 in L2 hence

Ṫ = lim
δ→0

Tδ − T0
δ

= −T (x)
∫

xd f0

and we have the expression for L̇ f0 from (92). Applying Theorem 14 then, we then get

lim
δ→0

fδ − f0
δ

= (I d − L0)
−1

∫ 1

0

(
Lπ

(
τ−T0(y)

dρ

dx

))
(x)aT (y) f0(y)dy

where a = ∫
td f0(t). 	


10. Coupling Different Maps

In this section we show how one can use a self-consistent transfer operator approach as a
model for the behavior of networks of coupled maps of different types. We will see that
our general theoretical framework naturally includes this case. For simplicity we will
consider only two types of maps, also for simplicity we will consider coupled expanding
maps on the circle. Let us consider two different C6 expanding maps of the circle
(T1, S1), (T2, S1). Given two probability densities ψ1, ψ2 ∈ L1(S1,R) representing
the distribution of probability of the states in the two systems, two coupling functions
h1, h2 ∈ C6(S1×S

1,R) and δ ∈ [0, ε0] representing theway inwhich these distributions
perturb the dynamics (which can be different for the two different systems). Let us define
�δ,ψ1,ψ2 : S1 → S

1 with i ∈ {1, 2} as

�δ,ψ1,ψ2(x) = x + πS1(δ

∫
S1
h1(x, y)ψ1(y)dy + δ

∫
S1
h2(x, y)ψ2(y)dy)

(here for simplicity we suppose that the diffeomorphism perturbing the two different
maps is the same though with different contributions for the two different maps, but
one can consider different ways to define �δ,ψi for each map) the maps will hence be
perturbed by the combined action of the two densities ψ1 and ψ2.
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Again we assume ε0 is so small that �δ,ψ1,ψ2 is a diffeomorphism for all δ ∈ [0, ε0]
and �′

δ,ψ1,ψ2
> 0. Denote by Qδ,ψ1,ψ2 the transfer operator associated with �δ,ψ1,ψ2 ,

defined as

[Qδ,ψ1,ψ2(φ)](x) = φ(�−1
δ,ψ1,ψ2

(x))

|�′
δ,δ,ψ1,ψ2

(�−1
δ,δ,ψ1,ψ2

(x))|

for any φ ∈ L1(S1,R). Now we consider the action of the two maps by considering a
global system (S1 × S1, Fδ,ψ1,ψ2) with

Fδ,ψ1,ψ2(x1, x2) = (�δ,ψ1,ψ2 ◦ T1(x1),�δ,ψ1,ψ2 ◦ T2(x2)).

Finally let us consider the space of functions B1 := {( f1, f2) ∈ L1(S1) × L1(S1)}
with the norm ||( f1, f2)||B1 = || f1||L1 + || f2||L1 (this is also called the direct sum
L1(S1) ⊕ L1(S1)), the space P1 of probability elements in B1, P1 = {( f1, f2) ∈
B1 s.t.∀i ∈ {1, 2}, fi ≥ 0,

∫
fi dm = 1} and the stronger spaces B2 := {( f1, f2) ∈

W 1,1(S1) × W 1,1(S1)} with the norm ||( f1, f2)||B1 = || f1||W 1,1 + || f2||W 1,1 and B3 :=
{( f1, f2) ∈ W 2,1(S1)×W 2,1(S1)} with the norm ||( f1, f2)||B1 = || f1||W 2,1 + || f2||W 2,1

(again direct sums of Sobolev spaces). These sets can be trivially endowed with a struc-
ture of normed vector space. Coherently with the previous sections we define a family
of transfer operators Lδ,φ1,φ2 : Bw → Bw depending on elements of the weaker space
(φ1, φ2) ∈ P1 as

Lδ,φ1,φ2(( f1, f2)) = (Qδ,φ1,φ2(LT1( f1)), Qδ,φ1,φ2(LT2( f2)). (95)

By this we can define the self-consistent transfer operator Lδ : Bw → Bw associated
with this system as

Lδ(( f1, f2)) = Lδ, f1, f2(( f1, f2)). (96)

We remark that B1 can be identifiedwith a closed subset of L1(S1×S
1) by ( f1, f2) →

f where f is defined by f (x, y) = f1(x) f2(y) and Lδ preserves this subspace.
We now prove the existence and uniqueness of the invariant measure for this kind of

self-consistent operators for small δ, applying our general statement, Theorem 4.

Proposition 47. Let T1, T2 be two C6 expanding maps and let h1, h2 ∈ C6(S1 ×S
1,R).

Let us consider a globally coupled system as defined above. There is some δ such that
for all δ ∈ [0, δ] there is a unique ( f1,δ, f2,δ) ∈ B2 such that

Lδ(( f1,δ, f2,δ)) = ( f1,δ, f2,δ).

Furthermore there is M ≥ 0 such that for all δ ∈ [0, δ]
||( f1,δ, f2,δ)||B2 ≤ M.

Proof. The proof follows by the application of Theorem 4 with Bw = B1 and Bs =
B2. We verify the needed assumptions; the assumption (Exi1) is trivial, indeed given
μ = (φ1, φ2) ∈ B1 for any δ small enough the invariant measure of Lδ,φ1,φ2 , which
is a system which is the product of two expanding maps, is trivially in B2 and if we
let (φ1, φ2) range in P1, the B2 norm of the associated invariant measure is uniformly
bounded.



Self-Consistent Transfer Operators: Invariant Measures, Convergence to Equilibrium, Linear... 767

The assumption (Exi2) can be easily deduced by Proposition 22 as done in the case
of system made by coupling identical maps obtaining that there is some K1 ≥ 0 such
that

||Lδ,φ1,φ2 − Lδ,φ3,φ4 ||B2→B1 ≤ δK1||(φ1, φ2) − (φ3, φ4)||B1
for δ ranging in some neighborhood of the origin and (φ1, φ2), (φ3, φ4) ∈ P1. Again,
applying Lemma 25, like done in Proposition 23 we verify (Exi3) for this product
system. Then Theorem 4 can be applied, giving the statement. 	


It seems that it is possible to extend all the results we proved for coupled expanding
maps to this kind of systems, with the same ideas and estimates (but longer formulas
and computations, as we have two coordinates). This work however would be quite long
and outside of the scope of this paper.

During the revisions of the present paper, the preprint [42] was published. In this
work a formalization of a system of coupled maps of different types and its related self-
consistent transfer operators similar to the one shown in this section was used to study
the synchronization of interacting clusters of globally coupled maps.

11. The Optimal Coupling

In this section we study the problem of finding an optimal small coupling functions
δḣ in order to maximize the average of a given observable. This is an optimal control
problem in which the goal is to change the statistical properties of the system in an
certain direction, in some optimal way. In this case we consider an initial uncoupled
system and introduce a small perturbation by a coupling function δḣ and we look for
the response of the system to this small perturbation like in Theorem 14. We suppose
the direction of perturbation ḣ can vary in some (infinite dimensional) set P , and in this
set we look for an optimal one. In the context of extended systems this kind of problems
were also defined as “management of the statistical properties of the complex system”
([37]). In some sense this is an inverse problem related to the linear response, in which
the goal is to find the optimal perturbation giving a certain kind of response. Related
problems in which the focus is more on the realization of a given fixed response have
also been called “linear request” problems (see [17,30]).

The problem of finding an optimal infinitesimal perturbation, in order to maximize
the average of a given observable and other statistical properties of dynamics was inves-
tigated in the case of finite Markov chains in [2] and for a class of random dynamical
systems whose transfer operators are Hilbert Schmidt operators in [1].

In this section we start the investigation of these kind of problems in the case of self-
consistent transfer operators.We obtain existence and uniqueness of the optimal solution
under assumptions similar to the ones used in [1].Wewill focus on the question of finding
the best coupling in order to optimize the behavior of a given observable. Let us explain
more precisely but still a bit informally the kind of problem we are going to consider:
given a certain system, we consider a set P of allowed infinitesimal perturbations we
can put in the system. It is natural to think of the set of allowed perturbations P as a
convex set because if two different perturbations of the system are possible, then their
convex combination (applying the two perturbations with different intensities) should
also be possible. We will also consider P as a subset of some Hilbert space H (as it is
useful for optimization purposes). Let μḣ,δ be the invariant probability measure of the
system after applying a perturbation in the direction ḣ ∈ P with intensity δ (we will
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formalize later what we mean by direction and intensity in our case). Let the response
to this perturbation be denoted as

R(ḣ) = lim
δ→0

μḣ,δ − μ0

δ
.

Let us consider c : [0, 1] → R. We are interested in the rate of increasing of the
expectation of c

d(
∫
c dμḣ,δ)

dδ

∣∣∣∣
δ=0

and the element ḣ ∈ P for which this is maximized, thus we are interested in finding
ḣopt such that

d(
∫
c dμḣopt ,δ)

dδ

∣∣∣∣
δ=0

= max
ḣ∈P

d(
∫
c dμḣ,δ)

dδ

∣∣∣∣
δ=0

. (97)

By (39) and (40), under the suitable assumptions, this turns out to be equivalent to finding
ḣopt such that

∫
c dR(ḣopt ) = max

ḣ∈P

∫
c dR(ḣ). (98)

This is hence the maximization of a certain linear function on the set P .

11.1. Some reminders on optimization of a linear function on a convex set. The optimal
perturbation problemwemean to consider is related to the maximization of a continuous
linear function on the set of allowed infinitesimal perturbations P . The existence and
uniqueness of an optimal perturbation hence depends on the properties of the convex
bounded set P . We now recall some general results, adapted for our purposes, on
optimizing a linear continuous function on a convex set. LetJ : H → R be a continuous
linear function, where H is a separable Hilbert space and P ⊂ H.

The abstract problem we consider then is to find ḣopt ∈ P such that

J (ḣopt ) = max
ḣ∈P

J (ḣ). (99)

The following propositions summarizes some efficient criteria for the existence and
uniqueness of the solution of such problem (see [1], Section 4 for more details and the
proofs).

Proposition 48 (Existence of the optimal solution). Let P be bounded, convex, and
closed inH. Then, Problem (99) has at least one solution.

Uniqueness of the optimal solution will be provided by strict convexity of P .

Definition 49. We say that a convex closed set A ⊆ H is strictly convex if for all pair
x, y ∈ A and for all 0 < γ < 1, the points γ x + (1 − γ )y ∈ int(A), where the relative
interior8 is meant.

8 The relative interior of a closed convex set C is the interior of C relative to the closed affine hull of C .
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Proposition 50 (Uniqueness of the optimal solution). Suppose P is closed, bounded,
and strictly convex subset ofH, and that P contains the zero vector in its relative interior.
If J is not uniformly vanishing on P then the optimal solution to (99) is unique.

We remark that in the case J is uniformly vanishing, all the elements of P are
solutions of the problem (98).

11.2. Optimizing the response of the expectation of an observable. Let c ∈ L1 be a
given observable. We consider the problem of finding an infinitesimal perturbation that
maximizes the expectation of c. Asmotivated before,wewant to solve the problem stated
in (98). Suppose that P is a closed, bounded, convex subset of H containing the zero
perturbation, and that J is not uniformly vanishing on P . Let us consider the function
J (ḣ) = ∫

c dR(ḣ). When this function is continuous as a map from (P, ‖ · ‖H) to R,
we may immediately apply Proposition 48 to obtain that there exists a solution to the
problem considered in (98). If, in addition, P is strictly convex and J is nonvanishing,
then by Proposition 50 the solution to (98) is unique.

In the following subsections we hence apply these remarks to find the existence and
uniqueness of the optimal coupling in the case of coupled expanding map and maps with
additive noise.

11.2.1. The optimal coupling for expanding maps We consider self-consistent transfer
operators coming from a system of coupledmaps as in Sect. 7, whereL0 is the uncoupled
operator and Lδ is the self-consistent operator with coupling driven by a function ḣ :
S
1 × S

1 → R and with strength δ. We proved in Proposition 29 (see (60)) that the
response of the invariant measure of the system as δ increases is given by

R(ḣ) = (I d − L0)
−1(h0

∫
S1
ḣ(x, y)h0(y)dy)

′.

Given some observable c ∈ L1 and some convex set of allowed perturbations P we
now apply the previous results to the problem of finding the optimal coupling ḣopt ∈ P
solving the problem (98) for this response function R(ḣ). From Remark 30 (see also
(40)) we know that the rate of change of the average of c can be estimated by the linear
response when the convergence of the linear response is in W 1,1.

We remark that to apply the general results of Sect. 11.1 we need P being a subset
of a Hilbert space. Since to apply Proposition 29 we need ḣ ∈ C6 we consider a Hilbert
space of perturbations which is included in C6. A simple choice is W 7,2. We hence
consider a system with coupled expanding maps, the Hilbert space W 7,2 and a convex
set P ⊆ W 7,2(S1 × S1).

Proposition 51. Under the above assumptions, supposing that P is a closed bounded
convex set in W 7,2, Problem (98) has a solution in P. If furthermore P is strictly convex
either the optimal solution is unique or every ḣ ∈ P is the optimal solution.

Proof. The result directly follows applying Propositions 48 and 50. In order to apply
the propositions we have to check that ḣ → ∫

c dR(ḣ) is continuous on P. Since

R(ḣ) = (I d − L0)
−1(h0

∫
S1
ḣ(x, y)h0(y)dy)

′
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we have∫
c dR(ḣ) ≤ ||c||1||(I d − L0)

−1(h0

∫
S1
ḣ(x, y)h0(y)dy)

′||∞

≤ ||c||1||(I d − L0)
−1||W 1,1→W 1,1 ||(h0

∫
S1
ḣ(x, y)h0(y)dy)

′||W 1,1

≤ ||c||1||(I d − L0)
−1||VW1,1→W 1,12||h0||2C3 ||ḣ||W 2,1 .

Now the result follow by a direct application of Propositions 48 and 50. 	


11.2.2. The optimal coupling for systems with additive noise Now we consider the
optimal coupling in order to maximize the average of one observable c in the case of the
coupled maps with additive noise as described in Sect. 8. Since Proposition 38 gives a
convergence of the linear response in the strong space Ck , by Remark 30 we know that
we can consider very general observables. For simplicity we will consider c ∈ L1 but in
fact we could consider even weaker spaces as distribution spaces (the dual of Ck). For
simplicity we also take P ⊆ W 1,2 to let (79) make sense. The response formula in this
case is

R(ḣ) = (I d − L0)
−1ρ ∗ (LT0(h0)

∫
S1
ḣ(x, y)h0(y)dy)

′.

We will hence consider the problem (98) with this response function. Similarly to the
expanding maps case we get the following statement.

Proposition 52. Under the above assumptions, supposing that P is a closed bounded
convex set in W 1,2, Problem (98) has a solution in P. If furthermore P is strictly convex
either the solution is unique or every ḣ ∈ P is the optimal solution.

Proof. The result again directly follows applying Propositions 48 and 50. In order to
apply the propositions we check that ḣ → ∫

c dR(ḣ) is continuous on P. Since in this
case

R(ḣ) = (I d − L0)
−1ρ ∗ (h0

∫
S1
ḣ(x, y)h0(y)dy)

′

we have∫
c dR(ḣ) ≤ ||c||1||(I d − L0)

−1ρ ∗ (h0

∫
S1
ḣ(x, y)h0(y)dy)

′||∞
≤ ||c||1||(I d − L0)

−1||VCk→L∞2||ρ||Ck ||h0||2W 1,1 ||ḣ||W 2,1

establishing the continuity of ḣ → ∫
c dR(ḣ). 	
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