
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04442-6
Commun. Math. Phys. 395, 601–641 (2022) Communications in

Mathematical
Physics

Quantum vs. Classical Algorithms for Solving the Heat
Equation

Noah Linden, AshleyMontanaro , Changpeng Shao

School of Mathematics, Fry Building, University of Bristol, Bristol BS8 1UG, UK
E-mail: n.linden@bristol.ac.uk; ashley.montanaro@bristol.ac.uk; changpeng.shao@bristol.ac.uk

Received: 30 June 2020 / Accepted: 6 June 2022
Published online: 24 August 2022 – © The Author(s) 2022

Abstract: Quantum computers are predicted to outperform classical ones for solving
partial differential equations, perhaps exponentially. Here we consider a prototypical
PDE—the heat equation in a rectangular region—and compare in detail the complexities
of ten classical and quantum algorithms for solving it, in the sense of approximately
computing the amount of heat in a given region. We find that, for spatial dimension
d ≥ 2, there is an at most quadratic quantum speedup in terms of the allowable error ε

using an approach based on applying amplitude estimation to an accelerated classical
randomwalk. However, an alternative approach based on a quantum algorithm for linear
equations is never faster than the best classical algorithms.

1. Introduction

Quantumcomputers are predicted to solve certain problems substantiallymore efficiently
than their classical counterparts. One area where quantum algorithms could significantly
outperform classical ones is the approximate solution of partial differential equations
(PDEs). This prospect is both exciting and plausible: exciting because of the ubiquity
of PDEs in many fields of science and engineering, and plausible because some of
the leading classical approaches to solving PDEs (e.g. via the finite difference or finite
element methods) are based on discretising the PDE and reducing the problem to solving
a system of linear equations. There are quantum algorithms that solve linear equations
exponentially faster than classical algorithms (in a certain sense), via approaches that
stem from the algorithm of Harrow, Hassidim and Lloyd (HHL) [1], so these algorithms
could be applied to PDEs. There have been a succession of papers in this area which have
developed new quantum algorithmic techniques [2–10] and applied quantum algorithms
to particular problems [3,11–14].

However, in order to determine if a genuine quantum speedup can be obtained, it
is essential to take into account all complexity parameters, and to compare against the
best classical algorithms. The quantum algorithm should be given the same task as the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-022-04442-6&domain=pdf
http://orcid.org/0000-0001-5640-0343

602 N. Linden, A. Montanaro, C. Shao

classical algorithm—to produce a classical solution to a classical problem, up to a certain
level of accuracy—rather than (for example) being asked to produce a quantum superpo-
sition corresponding to the solution. This can sometimes lead to apparently exponential
speedups being reduced substantially. For example, it was suggested that quantum algo-
rithms for the finite elementmethod could solve electromagnetic scattering cross-section
problems exponentially more efficiently than classical algorithms [3], but it was later
argued that the speedup can be at most polynomial [15] (in fixed spatial dimension). The
true extent of the achievable speedup (or otherwise) by quantum algorithms for PDEs
over their classical counterparts remains to be seen.

Here we aim to fix a benchmark problem to enable us to compare the complexities of
classical and quantum algorithms for solving PDEs. The analysis of [15], for example,
was not specific to a particular problem, and also focused only on the finite element
method; here, by contrast, we aim to choose a specific problem and pin down whether
quantum algorithms of various forms can solve it more quickly than standard classical
algorithms.Wewill consider the heat equation, which has a number of desirable features
in this context: it is a canonical problem which has been studied extensively; it has wide
applications in many fields of science, such as describing particle diffusion in physics
[16], modelling option pricing in finance [17], and serving as the theoretical foundation
of the scale-space technique in image analysis [18]; and there are many methods known
for solving it.

1.1. OurResults. Wecompare the complexity of five classicalmethods andfivequantum
methods for solving the heat equation:

∂u

∂t
= α

(
∂2u

∂x21
+ · · · + ∂2u

∂x2d

)
(1)

for some α > 0, in d spatial dimensions. We consider the hypercubic spatial region
xi ∈ [0, L] and the time region t ∈ [0, T], and let R = [0, L]d × [0, T]. We use
periodic boundary conditions for each xi , but not t . We fix the boundary conditions
u(x1, . . . , xd , 0) = u0(x1, . . . , xd) for some “simple” function u0 : Rd → R

≥0 that is
known in advance. We henceforth use boldface to denote vectors, and in particular let
x denote the vector (x1, . . . , xd). To get some intution for “reasonable” relationships
between some of the parameters, T � L2/α is a typical timescale for the distribution
of heat to approach the uniform distribution.

Complexity model. We measure the complexity of classical algorithms in terms of
the number of elementary operations executed, where we assume that an elementary
arithmetic operation (addition or multiplication) on real numbers can be performed in
constant time. This is a generous measure of complexity, but allows us to compute and
compare the complexity of the classical algorithms we consider in a fairly straightfor-
ward way. We also assume that a classical algorithm can generate a random real number
in the range [0, 1] in constant time. Although this is again a debatable assumption, it
simplifies the analysis and is common in the literature on sampling from probability
distributions and randomised algorithms. We measure the complexity of quantum algo-
rithms by the number of gates used. In our bounds, we aim to compare the complexity
of classical and quantum techniques for solving (1), while avoiding a dependence on
the complexity of u0. Therefore, we assume that u0(x1, . . . , xd) can be computed ex-
actly at no cost for all x1, . . . , xd , and further that

∫
S u0(x1, . . . , xd)dx1 . . . dxd and

Quantum vs. Classical Algorithms for Solving the Heat Equation 603

∫
S u

2
0(x1, . . . , xd)dx1 . . . dxd can be computed exactly at no cost for all regions S. Be-

low, we will extend this assumption to being able to compute sums of simple functions
of u0(x1, . . . , xd) values over discretised regions. (Note that all of the classical and
quantum algorithms we consider have some requirement for an assumption of this form,
so we are not giving one type of algorithm an unfair advantage over the other.)

We will additionally assume that, for all i, j ∈ {1, . . . , d} and some smoothness
bound ζ of dimension (length)−4 if u is dimensionless,

max
(x1,...,xd ,t)∈R

∣∣∣∣∣ ∂4u

∂x2i ∂x
2
j

(x1, . . . , xd , t)

∣∣∣∣∣ ≤ ζ

Ld
, (2)

max
(x1,...,xd ,t)∈R

∣∣∣∣∣∂
2u

∂x2i
(x1, . . . , xd , t)

∣∣∣∣∣ ≤ ζ

Ld−2 , (3)

max
(x1,...,xd ,t)∈R

∣∣∣∣ ∂u∂xi
(x1, . . . , xd , t)

∣∣∣∣ ≤ ζ

Ld−3 . (4)

The denominators in these bounds are chosen to be appropriate based on dimensional
analysis considerations. Indeed, if one has a bound only on the 4th derivative and on u
itself, this is sufficient to obtain similar scaling for the second and first derivative bounds
[19].

There are many interpretations one could consider of what it means to “solve” the
heat equation. Here we focus on solving the following problem: given ε ∈ (0, 1), a fixed
t ∈ [0, T], and a subset S ⊆ [0, L]d , output H̃ such that∣∣∣∣H̃ −

∫
S
u(x1, . . . , xd , t)dx1 . . . dxd

∣∣∣∣ ≤ ε (5)

with probability at least 0.99. That is, for a given time, and a given spatial region, we aim
to approximate the total amount of heat within that region. The complexity of solving the
heat equation depends on the desired accuracy ε as well as all of the other parameters.
We usually imagine that these other parameters are fixed first, and then consider the
scaling of the complexity with respect to ε. This is not the only scaling parameter one
could consider: for example, one could adjust the smoothness of the function and the
complexity of the region being considered. However, focusing on accuracy enables us
to compare the algorithms that we study in a unified way, in terms of a natural figure of
merit. In the detailed bounds that we compute, we also include the dependence of the
algorithmic complexity on other relevant quantities, such as smoothness.

One reason for considering the total heat in a region (5) is that it allows us to consider
classical deterministic methods (which compute u for all—discretised—x and t), clas-
sical probabilistic methods and quantum methods in a unified way; all these methods
allow one to compute (5).We remark that the classical deterministic literature frequently
considers solving the heat equation to correspond to writing down the above quantity
for a family of subsets S that partitions the whole space [0, L]d . Our problem can be
seen as a natural and mathematically rigorous way of solving a discretised version of
this question, in a way that enables the possibility of comparison to quantum methods
(where one is not typically able to compute u for all x and t). One application it allows
is the computation of heat flow into or out of a region.

All of the algorithms we studied were based on the standard approach of discretising
the Eq. (1) via the finite difference method, leading to a system of linear equations.

604 N. Linden, A. Montanaro, C. Shao

Specifically, we used the simple “forward time, central space” (FTCS) method with a
uniform rectangular grid.1 We evaluated the following classical algorithms:

• Solving the corresponding system of linear equations using the conjugate gradient
method.

• Iterating forward in time from the initial condition.
• Using the Fast Fourier Transform to solve the linear system.
• A random walk method based on the connection between the heat equation and
random walk on a grid [20–22].

• An accelerated version of the random walk method, using efficient sampling from
the binomial distribution.2

We also evaluated the following quantum algorithms:

• Solving the linear system using the fastest quantum algorithms for solving linear
equations [25].

• Diagonalising the linear system using the quantum Fourier transform and postse-
lection.

• Coherently accelerating the random walk on a grid [26,27].
• Applying amplitude estimation [28] to the classical random walk on a grid.
• Applying amplitude estimation to the fast classical random walk algorithm.

These methods vary in their flexibility. For example, the quantum and classical linear
equations methods can be applied to muchmore general boundary conditions and spatial
domains than those considered here (and to other PDEs), whereas the Fast Fourier
Transform and coherent diagonalisation methods are only immediately applicable to
solving the heat equation in a simple region.

There are stillmore solutionmethods that could be considered (e.g. the use of different
discretisation techniques). One example is solving the heat equation by expressing it as
a system of ODEs, by discretising only the right-hand side of (1). A high-precision
quantum algorithm for systems of ODEs was given in [5]. However, applying it to
the heat equation seems to give a complexity somewhat worse than solving the fully
discretised system of linear equations using a quantum algorithm (see “Appendix A”).
One can also solve the heat equation in the specific case of a hyperrectangular region
by using the known explicit solution in terms of Fourier series. This requires computing
integrals dependent on the initial condition u0, but for certain initial conditions, it may
be more efficient (or even give an exact solution).

Our results are summarised in Table 1, where we display runtimes in terms of ε

alone, although we compute the complexity of the various algorithms in terms of the
other parameters in detail below. The key points are as follows:

• For d = 1, the quantum methods are all outperformed by the classical Fast Fourier
Transform method. For d ≥ 2, the fastest method is the quantum algorithm based on
applying amplitude amplification to a “fast” classical random walk. For arbitrary d,
the largest quantum speedup using this method is from Õ(ε−2) to Õ(ε−1).

1 Another standard method for solving the heat equation is the Crank–Nicolson method, which is based on
an alternative discretisation scheme to the FTCS method, and has stronger requirements on the smoothness
of the solution. The use of this method could lead to a classical algorithm whose complexity is lower than the
FTCS linear equations method by at most a factor of ε (see “Appendix E”); however, this would still not beat
the best classical algorithms presented in Table 1.

2 A similar complexity can be achieved using a somewhat more complex approach based on the multilevel
Monte Carlo method [23,24].

Quantum vs. Classical Algorithms for Solving the Heat Equation 605

Table 1. The runtimes of the various algorithms considered in this work for solving the heat equation up to
accuracy ε in spatial dimension d, in terms of ε and d only

Method Region Thm. d = 1 d = 2 d = 3 d ≥ 4
Classical
* Linear equations General 5 Õ(ε−2) Õ(ε−2.5) Õ(ε−3) Õ(ε−d/2−1.5)

* Time-stepping General 6 Õ(ε−1.5) Õ(ε−2) Õ(ε−2.5) Õ(ε−d/2−1)

* Fast Fourier Transform Rectangular 8 Õ(ε−0.5) Õ(ε−1) Õ(ε−1.5) Õ(ε−d/2)

Random walk General 10 Õ(ε−3) Õ(ε−3) Õ(ε−3) Õ(ε−3)

Fast random walk Rectangular 12 Õ(ε−2) Õ(ε−2) Õ(ε−2) Õ(ε−2)
Quantum
Linear equations General 17 Õ(ε−2.5) Õ(ε−2.5) Õ(ε−2.75) Õ(ε−d/4−2)

Coherent random walk acceleration General 19 Õ(ε−1.75) Õ(ε−2) Õ(ε−2.25) Õ(ε−d/4−1.5)

Coherent diagonalisation Rectangular 20 Õ(ε−1.25) Õ(ε−1.5) Õ(ε−1.75) Õ(ε−d/4−1)

Random walk amplitude estimation General 21 Õ(ε−2) Õ(ε−2) Õ(ε−2) Õ(ε−2)

Fast r.w. amplitude estimation Rectangular 22 Õ(ε−1) Õ(ε−1) Õ(ε−1) Õ(ε−1)

The Õ notation hides polylogarithmic factors. Lowest-complexity algorithms for each d highlighted in bold.
Starred methods use poly(1/ε) space; other methods use poly log(1/ε) space

• The Fast Fourier Transform and fast random walk amplitude estimation algorithms
are specific to a rectangular region. Considering algorithms that could also be applied
to more general regions, the fastest classical method for d ≤ 3 is iterating the initial
condition forward in time. This outperforms all quantummethods in d = 1, performs
roughly as well as (standard) random walk amplitude estimation in d = 2, and is
outperformed by random walk amplitude estimation for d ≥ 3.

• The quantum linear equation solvingmethod is always outperformed by other quan-
tum methods. In particular, it does not achieve an exponential speedup over classical
methods, asmight be expected.However, note that it providesmoreflexibility in terms
of estimating other quantities, and allowing for more general boundary conditions,
than the most efficient classical methods.

• Among the space-efficient methods—those which use space polylogarithmic in
1/ε—there is a quantumspeedup in all dimensions (from Õ(ε−2) to Õ(ε−1)), because
this criterion rules out the classical Fast Fourier Transform method.

These bounds do not assume the use of a preconditioner to improve the condition
number of the relevant linear system. If a perfect preconditioner were available, then
the complexity of the quantum linear equation solving method would be reduced to be
comparable with that of the diagonalisation method, but would still not be competitive
with other methods.

We conclude that, if our results for the heat equation are representative of the situation
for more general PDEs, it is unclear whether quantum algorithms will offer a super-
polynomial advantage over their classical counterparts for solving PDEs, but polynomial
speedups may be available.

In the remainder of this work, we prove the results corresponding to the complexities
reported in Table 1. We begin by describing the discretisation and numerical integration
approach used, before going on to describe and determine the complexity of the various
algorithms. To achieve this, we need to obtain several technical bounds (e.g. on the
condition number of the relevant linear system; on the �2 norm of a solution to the heat
equation; and on the complexity of approximating the heat in a region from a quantum
state corresponding to a solution to the heat equation). We aim for a self-contained
presentation wherever possible, rather than referring to results in the extensive literature
on numerical solutions of PDEs; see [29–31] for further details.

606 N. Linden, A. Montanaro, C. Shao

2. Technical Ingredients

In this section we will discuss the key ingredients that are required for quantum and
classical algorithms to solve the heat equation.

2.1. Discretisation. All of the algorithms that we will consider are based on discretising
the PDE (1). Here we will consider the simplest method of discretisation, known as the
forward-time, central-space (FTCS) method. This method is based on discretising using
the following equalities (for one variable), which can be proved using Taylor’s theorem
with remainder:

du

dt
= u(t + h) − u(t)

h
− h

2

d2u

dt2
(ξ) (6)

d2u

dx2
= u(x + h) + u(x − h) − 2u(x)

h2
+
h2

24

(
d4u

dx4
(ξ ′) + d4u

dx4
(ξ ′′)

)
, (7)

where we assume that u is 4 times differentiable, and ξ ∈ [t, t + h], ξ ′ ∈ [x, x + h],
ξ ′′ ∈ [x − h, x]. So∣∣∣∣dudt − u(t + h) − u(t)

h

∣∣∣∣ ≤ h

2
sup
t

∣∣∣∣d2udt2
(t)

∣∣∣∣ (8)∣∣∣∣d2udx2
− u(x + h) + u(x − h) − 2u(x)

h2

∣∣∣∣ ≤ h2

12
sup
x

∣∣∣∣d4udx4
(x)

∣∣∣∣ . (9)

We will apply these approximations to multivariate functions u(x, t) that satisfy, for all
i, j ∈ {1, . . . , d},

max
(x1,...,xd ,t)∈R

∣∣∣∣∣ ∂4u

∂x2i ∂x
2
j

(x1, . . . , xd , t)

∣∣∣∣∣ ≤ ζ

Ld
(10)

for some ζ and all (x, t) ∈ R. From (1), this implies that max(x1,...,xd ,t)∈R | ∂2u
∂t2

(x, t)| ≤
ζα2d2/Ld . We note that this is dimensionally consistent as α has dimensions (length)2/
time and u is a density.

We will use the sequence of discrete positions x0 = 0, x1 = �x, . . . , xn = n�x ;
t0 = 0, t1 = �t, . . . , tm = m�t , such that T = m�t , L = n�x . Let G (for “grid”)
denote the set of points (x, t) ∈ R such that the coordinates of x are integer multiples of
�x , and t is an integer multiple of �t . For any t , we use Gt to denote the set of points
x such that (x, t) ∈ G. We will let the vector u denote the exact solution of (1) at points
in G, and will use ũ or ũ for the approximate solution to (1) found via discretisation,
dependent on whether we are considering this as a function or a vector.

Considering points in G and using the approximations (8) and (9) gives the linear
constraints

ũ(x, t + �t) − ũ(x, t)
�t

= α

�x2

d∑
i=1

(
ũ(. . . , xi + �x, . . . , t) + ũ(. . . , xi − �x, . . . , t) − 2ũ(x, t)

)
. (11)

The following result can be shown using standard techniques.

Quantum vs. Classical Algorithms for Solving the Heat Equation 607

Theorem 1 (Approximation up to small �∞ error). If �t ≤ �x2/(2dα),

‖̃u − u‖∞ ≤ ζαdT

Ld

(
αd�t

2
+

�x2

12

)
. (12)

Proof. From (11),

ũ(x, t + �t) =
(
1 − 2dα�t

�x2

)
ũ(x, t) +

α�t

�x2

d∑
i=1

(
ũ(. . . , xi + �x, . . . , t)

+ ũ(. . . , xi − �x, . . . , t)
)
. (13)

Let L be the linear operator defined by the right-hand side of (13). Letting ũi and ui
denote the approximate and exact solutions at time ti (i.e. the nd -component vectors
ũ(·, ti), u(·, ti)), we have ũi+1 = Lũi . L is stochastic if

1 − 2dα�t

�x2
≥ 0, i.e. �t ≤ �x2

2dα
, (14)

and this condition holds by assumption. By the discretisation error bounds (8), (9),∣∣∣∣u(x, t + �t) − u(x, t)
�t

− α

�x2

d∑
i=1

(
u(. . . , xi + �x, . . . , t) + u(. . . , xi − �x, . . . , t) − 2u(x, t)

)∣∣∣∣
≤ ζ

Ld

(
α2d2�t

2
+

αd�x2

12

)
, (15)

implying∣∣∣∣∣u(x, t + �t) −
((

1 − 2dα�t

�x2

)
u(x, t) +

α�t

�x2

d∑
i=1

u(. . . , xi + �x, . . . , t)

+ u(. . . , xi − �x, . . . , t)

)∣∣∣∣∣ ≤ ζαd�t

Ld

(
αd�t

2
+

�x2

12

)
, (16)

i.e.

‖ui+1 − Lui‖∞ ≤ ζαd�t

Ld

(
αd�t

2
+

�x2

12

)
. (17)

Writing ũi = ui + ei for some error vector ei, we have

ũ0 = u0 (18)

ũ1 = Lu0 = u1 + e1, where ‖e1‖∞ ≤ ζαd�t

Ld

(
αd�t

2
+

�x2

12

)
(19)

ũ2 = Lũ1 = L(u1 + e1) = u2 + e2 + Le1,

608 N. Linden, A. Montanaro, C. Shao

where ‖e2‖∞ ≤ ζαd�t

Ld

(
αd�t

2
+

�x2

12

)
; (20)

as L is stochastic, ‖Le1‖∞ ≤ ‖e1‖∞, so ‖ũ2 − u2‖∞ ≤ 2ζαd�t L−d
(

αd�t
2 + �x2

12

)
.

Repeating this argument,

‖ũm − um‖∞ ≤ mζαd�t

Ld

(
αd�t

2
+

�x2

12

)
= ζαdT

Ld

(
αd�t

2
+

�x2

12

)
(21)

as claimed. ��
Corollary 2. To estimate u up to �∞ accuracy ε/Ld, it is sufficient to take

�t ≤ 3ε

2d2α2ζT
, �x ≤

√
3ε

dαζT
. (22)

This corresponds to taking m = 2T 2d2α2ζ/(3ε)�, n = L√
dαζT/(3ε)�.

Proof. By design, �t = �x2/(2dα), so Theorem 1 can be applied. Insertion of the
stated values into Theorem 1 gives the claimed result. ��

Note that the constant factors in �t and �x could be traded off against one another
to some extent, and that the constraint that spatial 4th derivatives are upper-bounded by
ζ/Ld applies to the solution u to the heat equation, rather than the initial condition u0.

However, for any t , ‖ ∂4u
∂x4i

(x, t)‖∞ ≤ ‖ ∂4u0
∂x4i

(x)‖∞, so such a constraint on u0 implies an

equivalent constraint on u at other times t . (This claim follows from the discretisation
argument of Theorem 1: the linear time-evolution operator L defined in the theorem
cannot increase the infinity-norm, and discretised partial-derivative operators commute
with L.)

We will make the choices for m and n specified in Corollary 2 throughout the rest of
the paper. Observe that, with these choices, the operator L is precisely a simple random
walk on Z

d
n .

Nowwe have introduced the discretisationmethod,we can describe the normalisation
used: we assume that

‖u0‖1 =
∑

(x,0)∈G
u0(x) =

(n
L

)d = �x−d . (23)

By stochasticity of L, this implies that ‖ũi‖1 = �x−d for all i . This assumption is
approximately equivalent to assuming that

∫
[0,L]d u0(x)dx1 . . . dxd = 1; we will discuss

why at the end of the next section. As a quick check, note that taking u0(x) = L−d gives
‖u0‖1 = (nL)d , ∫[0,L]d u0(x)dx1 . . . dxd = 1.

2.2. Numerical integration. Our goal will ultimately be to compute the integral defined
in (5) giving the total amount of heat within a region S approximately, at a fixed time.
Following the discretisation approach, we will have access to (approximate) evaluations
of a function u at equally spaced grid points, and seek to compute the integral of u over
S.

Quantum vs. Classical Algorithms for Solving the Heat Equation 609

We will consider several numerical integration methods for achieving this goal. Each
of them is based on a 1-dimensional approximation of the form∫ b

a
f (x)dx = �x

∑
i

w(i) f (xi) + E, (24)

wherew(i) are non-negative realweights, xi are grid points between a and bwith spacing
�x , where b − a is an integer multiple of �x , and E is an error term. If we define w, f
to be the vectors corresponding to evaluations of w and f at grid points, we can write
the approximation as �xw · f . To extend an approximation of this form to d-variate
functions, we simply apply it in each dimension, e.g. for d = 2:∫ b1

a1

∫ b2

a2
f (x, y)dydx =

∫ b1

a1

(
�x
∑
i

w(i) f (x, yi) + E(x)

)
dx (25)

= �x
∑
i

w(i)
∫ b1

a1
f (x, yi)dx + E ′ (26)

= �x

⎛
⎝∑

i

w(i)

⎛
⎝�x

∑
j

w(j) f (x j , yi) + E(i)

⎞
⎠
⎞
⎠ + E ′

(27)

= (�x)2
∑
i, j

w(i)w(j) f (x j , yi) + �x

(∑
i

w(i)E(i)

)
+ E ′,

(28)

where E(x) is the error term for x , and |E ′| ≤ (b1 −a1)maxx |E(x)| ≤ L maxx |E(x)|.
For arbitrary d, it is straightforward to see that we can interpret this approximation
as computing the inner product (�x)dw⊗d · f . The error bound becomes O(dLd−1

maxx |E(x)|) as we will always have∑i w(i) ≤ n.
When applied to the heat equation, we seek to evaluate

∫
S u(x, t)dx for some subset

S ⊆ [0, L]d and a fixed time t . Applying the above approximation gives a weighted sum
over x of the form

(�x)d
∑

x∈Gt∩S

w(x)̃u(x, t), (29)

where Gt is a set of grid points of spacing �x in spatial dimensions, and spacing �t in
time. Then∣∣∣∣∣∣

∑
x∈Gt∩S

(�x)dw(x)̃u(x, t) −
∫
S
u(x, t)dx

∣∣∣∣∣∣
≤ (�x)d

∣∣∣∣∣∣
∑

x∈Gt∩S

w(x)̃u(x, t) −
∑

x∈Gt∩S

w(x)u(x, t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

x∈Gt∩S

(�x)dw(x)u(x, t) −
∫
S
u(x, t)dx

∣∣∣∣∣∣

610 N. Linden, A. Montanaro, C. Shao

≤ (�x)d
∑

x∈Gt∩S

w(x) |̃u(x, t) − u(x, t)| + dLd−1 Ẽ

≤ (�x)d‖w‖d1ζαdT L−d
(

αd�t

2
+

�x2

12

)
+ dLd−1 Ẽ,

where Ẽ = maxx |E(x)|, the second inequality follows from the previous error analysis,
and the final inequality follows fromTheorem 1. As�t = �x2/(2dα) fromCorollary 2,
this corresponds to a bound which is

O((�x)d+2‖w‖d1L−dαdζT + dLd−1 Ẽ). (30)

We will consider three numerical integration methods that fit into the above framework:

1. Simpson’s rule: xi = a + i�x , a ≤ xi ≤ b, w = 1
3 (1, 4, 2, 4, 2, . . . , 4, 1),

|E | ≤ �x4

180
(b − a) max

ξ∈[a,b]

∣∣∣∣d4 fdx4
(ξ)

∣∣∣∣ . (31)

Inserting into (30) and using |b − a| ≤ L , ‖w‖1 ≤ n = L/�x , we obtain an overall
error bound of

O(�x2αdζT + d�x4ζ) = O(d�x2ζ(αT + �x2)). (32)

Assuming that�x → 0, the second term is negligible. Choosing�x as inCorollary 2,
the final error introduced by numerical integration is O(ε).

2. The midpoint rule: xi = a + (i + 1
2)�x , a < xi < b, w = (1, 1, . . . , 1),

|E | ≤ �x2

24
(b − a) max

ξ∈[a,b]

∣∣∣∣d2 fdx2
(ξ)

∣∣∣∣ = O(�x2L3−dζ). (33)

Using a similar argument to the previous point, we obtain an overall error bound of

O(�x2αdζT + d�x2L2ζ) = O(d�x2ζ(αT + L2)). (34)

The error increases with L , so we may need to choose �x smaller than the choice
made in Corollary 2. Indeed, working through the same argument, we obtain

m = O(Tαd2ζ(αT + L2)/ε), n = O(L
√
dζ(αT + L2)/ε). (35)

However, for fixed α, d, T, L the asymptotic scaling is the same as Simpson’s rule,
and we will see below that this technique can be advantageous in two respects: the
�2 and �∞ norms of w are lower, and its values are all equal.

3. The left Riemann sum: xi = a + i�x , a ≤ xi < b, w = (1, 1, . . . , 1),

|E | ≤ �x

2
(b − a) max

ξ∈[a,b]

∣∣∣∣d fdx (ξ)

∣∣∣∣ = O(�xL4−dζ). (36)

By the same argument, we obtain an overall error bound of

O(�x2αdζT + d�xL3ζ) = O(d�xζ(�xαT + L3)). (37)

This is weaker than both of the previous bounds, but allows us to justify the normal-
isation assumption that we made that

∑
(x,0)∩G u0(x) = (�x)−d . This is equivalent

to the approximate integral of u0 using the left Riemann sum in (29) equalling 1,
which implies that for �x → 0,

∫
x∈[0,L]d u0(x)dx → 1.

Quantum vs. Classical Algorithms for Solving the Heat Equation 611

2.3. Condition number. Since ũi+1 = Lũi holds for i = 0, 1, . . . ,m − 1, we can find a
full approximate solution to the heat equation at all points in G by solving the following
linear system:

⎛
⎜⎜⎝

I
−L I

. . .
. . .

−L I

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ũ1
ũ2
...

ũm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Lũ0
0
...

0

⎞
⎟⎟⎠ . (38)

An important quantity that determines the complexity of classical and quantum algo-
rithms for solving a linear system Ax = b is the condition number κ = ‖A‖‖A−1‖,
where ‖ · ‖ denotes the operator norm, i.e., the maximal singular value. The proof of the
following theorem is given in “Appendix B”.

Theorem 3. The coefficient matrix A in (38) satisfies ‖A‖ =
(1), ‖A−1‖ =
(m).
Hence the condition number is
(m).

Also note that L appears on the right-hand side of (38), raising the question of the
complexity of preparing the vector (or quantum state) Lũ0 = Lu0. In the quantum case,
this complexity depends on the condition number of L, which in general could be high;
indeed, L can sometimes be noninvertible. However, we have made the assumption that
the initial vectoru0 is non-negative, and for all vectors of this form,L iswell-conditioned:

Lemma 4. Let L be defined by (13), taking �t = �x2/(2αd) as in Corollary 2. Then
for all nonnegative vectors u, ‖Lu‖22/‖u‖22 ≥ 1/(2d).

The proof is included in “Appendix C”.

3. Classical Methods

Next we determine the complexity of various classical methods for solving the heat
equation, based on the analysis of the previous section.

3.1. Linear systems. Astandard classicalmethod for the heat equation (andmore general
PDEs) is simply to solve the system of linear equations defined in Sect. 2.1 directly. A
leading approach for solving sparse systems of linear equations is the conjugate gradient
method [32]. This can solve a system of N linear equations, each containing at most s
unknowns, and corresponding to a matrix A with condition number κ , up to accuracy
δ in the energy norm ‖ · ‖A in time O(s

√
κN log(1/δ)). The energy norm ‖x‖A with

respect to a positive semidefinite matrix A is defined as ‖x‖A = √
xT Ax.

Note that as the dependence on 1/δ is logarithmic, using almost any reasonable norm
would not change this complexity bound much. For example, we have

‖̃x − x‖2 = ‖A−1/2A1/2(̃x − x)‖2 ≤ ‖A−1/2‖‖A1/2(̃x − x)‖2 = ‖A−1‖1/2‖̃x − x‖A,

(39)

612 N. Linden, A. Montanaro, C. Shao

Theorem 5 (Classical linear equations method). There is a classical algorithm that
outputs an approximate solution ũ(x, t) such that |̃u(x, t) − u(x, t)| ≤ ε/Ld for all
(x, t) ∈ G in time

O

(
3−d/2T d/2+3Ld

(
ζ

ε

)d/2+3/2

dd/2+4αd/2+3 log(Tdαζ 1/2/ε)

)
. (40)

Proof. ByCorollary 2 andTheorem3,we can achieve discretisation accuracy ε/Ld in the
∞-norm (which is sufficient to compute the amount of heatwithin a region up to accuracy
ε via numerical integration) with a system of N = O(mnd) linear equations, each
containing O(d) variables, with condition number
(m), where m = 2T 2d2α2ζ/(3ε),
n = L

√
dαζT/(3ε). We can also calculate the vector on the right-hand side of (38) in

time O(dnd) by multiplying u0 by L. Using the conjugate gradient method, this system
can be solved up to accuracy δ in the energy norm in time O(dm3/2nd log(1/δ)). Then,
by (39) andTheorem3, to achieve accuracy ε in the �2 norm (and hence the �∞ norm) it is
sufficient to take δ =
(ε/

√
m), giving an overall complexity of O(dm3/2nd log(m/ε)).

Inserting the expressions for m and n gives the claimed result. ��
The above approach based on linear equations can be used both for the forwards-

in-time and backwards-in-time discretisation methods, and indeed to solve much more
general PDEs than the heat equation. In the case of the forwards-in-time approach which
is our focus here, there is an even simpler method: compute Lmu0.

Theorem 6 (Classical time-stepping method). There is a classical algorithm that out-
puts an approximate solution ũ(x, t) such that |̃u(x, t) − u(x, t)| ≤ ε/Ld for all
(x, t) ∈ G in time O(3−d/2T d/2+2Ldαd/2+2dd/2+3(ζ/ε)d/2+1).

Proof. We simply apply the linear operatorL defined in (13)m times to the initial vector
u0. Each matrix-vector multiplication can be carried out in time O(dnd), so all required
vectors ũi can be produced in O(dmnd) steps. Inserting the bounds for m and n from
Corollary 2 gives the claimed result. ��

The time-evolution method described in Theorem 6 is simple and efficient; however,
the method of Theorem 5 based on solving a full system of linear equations is more
flexible. A natural alternative approach to compute Lτu0 for some integer τ is to use the
fast Fourier transform to diagonalise L.

We will first need a technical lemma, which will also be used later on, about the
complexity of computing eigenvalues of Lτ .

Lemma 7. For any τ ∈ {0, . . . ,m}, and any δ > 0, all of the eigenvalues of Lτ can be
computed up to accuracy δ in time O(dnd + n log(τ/δ)).

Proof. It is shown in (A6) and (B14) that

L = I⊗d
n +

α�t

�x2

d∑
j=1

I⊗(j−1)
n ⊗ H ⊗ I⊗(d− j)

n , (41)

where H is a circulant matrix with eigenvalues

λ j = −4 sin2
jπ

n
(42)

Quantum vs. Classical Algorithms for Solving the Heat Equation 613

for j ∈ {0, . . . , n − 1}. Eigenvalues of L can be associated with strings j1, . . . , jd ,
where ji corresponds to eigenvalue λ ji of H at position i . Assume that we have chosen
�t and �x according to Corollary 2, such that �t = �x2/(2dα). Then in order to
compute an eigenvalue of L indexed by j1, . . . , jd up to accuracy δ′, it is sufficient to
compute each eigenvalue λ ji up to accuracy O(δ′), take the sum, and add 1. Then for
the corresponding eigenvalue of Lτ to be accurate up to δ, it is sufficient to achieve
δ′ = δ/τ . This follows from all L’s eigenvalues λ being in the range [−1, 1], which
implies that given an approximation λ̃ = λ ± δ′, where λ̃ ∈ [−1, 1], |λτ − λ̃τ | ≤ τδ′.

Therefore, we need to compute each eigenvalue λ j up to accuracy O(δ/τ). This can
be achieved by Taylor-expanding the sine function up to O(log(τ/δ)) terms, which is a
comfortable upper bound to achieve the required accuracy. The n distinct eigenvalues
can thus be pre-computed in overall cost3 O(n log(τ/δ)). There are nd eigenvalues of L
each being a sum of d λ j ’s; so the complexity of computing all the eigenvalues is dnd .
Thus the total cost is this plus the “one-time” cost of computing the λ j ’s. ��
Theorem 8 (Classical diagonalisation method). There is a classical algorithm that out-
puts an approximate solution ũ(x, t) such that |̃u(x, t) − u(x, t)| ≤ ε/Ld for all
(x, t) ∈ G in time

O

(
3−d/2dd/2+1Ld

(
αζT

ε

)d/2

log

(
L2dαζT

ε

))
(43)

Proof. As L is a sum of circulant matrices acting on d separate dimensions (see (41)), it
is diagonalised by the d-th tensor power of the discrete Fourier transform (equivalently,
the inverse quantum Fourier transform up to normalisation). So we use the following
expression to approximately compute ũi :

ũi = Liu0 = (F⊗d)−1�i F⊗du0, (44)

where � is the diagonal matrix whose entries are eigenvalues of L, and F is the discrete
Fourier transform. The algorithm begins by writing down u0 in time O(nd), then applies
the multidimensional fast Fourier transform to u0 in time O(dnd log n). Next each entry
of the resulting vector ismultiplied by the corresponding eigenvalue ofLi , approximately
computed up to accuracy δ using Lemma 7. Thus we obtain a diagonal matrix �̃i such
that ‖�̃i − �i‖ ≤ δ. Then

‖(F⊗d)−1�̃i F⊗du0 − (F⊗d)−1�i F⊗du0‖2 ≤ ‖�̃i − �i‖‖u0‖2 ≤ δ‖u0‖1 = δ
(n
L

)d
, (45)

where we use ‖u0‖1 = (n/L)d as stated in (23). So it is sufficient to take δ = ε/nd . By
Lemma 7, the complexity of the second step is

O(dnd + n log(mnd/ε)) = O(dnd + n logm + dn log n + n log(1/ε)). (46)

Notice that m and n are related by m = n2(2Tdα/L2) so logm = O(log n), and hence
this bound simplifies to O(dnd +dn log n +n log(1/ε)). So the complexity is dominated
by the fast Fourier transform steps which has complexity O(dnd log n), and inserting
the values for m and n, we obtain an overall complexity of

O

(
3−d/2dd/2+1Ld

(
αζT

ε

)d/2

log

(
L2dαζT

ε

))
(47)

3 We would like to thank an anonymous referee for suggesting this point.

614 N. Linden, A. Montanaro, C. Shao

as claimed. ��
Given a solution that is accurate up to �∞ error ε/Ld at all points in G via Theorem

5, 6 or 8, we can apply Simpson’s rule to achieve final error ε in computing the amount
of heat in any desired region via numerical integration. This does not increase the overall
complexity of any of the above algorithms, as it requires time only O(nd).

We see that, of all the “direct” methods for producing a solution to the heat equa-
tion classically, the most efficient is the fast Fourier transform method, which costs
Õ(3−d/2Lddd/2+1(Tαζ/ε)d/2). However, this only gives us the solution at a particular
time t , and assumes that we are solving the heat equation in a (hyper)rectangular region.

We remark that it could bepossible tofind an alternative algorithm to that inTheorem8
by taking the limit m → ∞ and replacing the matrix power with an exponential.4 A
similar idea could be applied within the framework of other algorithms studied in this
work. However, as the complexity of Theorem 8 turns out to be dominated by the
Fourier transform part of the algorithm, it is unclear to what extent this would improve
the complexity of this result.

3.2. Random walk method. The random walk method for solving the heat equation
[20–22] is based around the observation that the linear operator L corresponding to
evolving in time by one step is stochastic, so this process can be understood as a random
walk. This ultimately follows from the representation of the heat equation in terms of
a Laplacian; this would also apply to heat flow within other structures than the simple
rectangular region considered here. Given a sample from a distribution corresponding
to the initial condition u0, one can iterate the random walk m times to produce samples
from distributions corresponding to each of the subsequent time steps.

Lemma 9. Assume that we have chosen particular values for m and n. Then there
is a classical algorithm that outputs samples from distributions ui such that ‖ui −
(�x)d ũi‖∞ ≤ ε for all i = 0, . . . ,m in time O(md log n).

Proof. Let u0 = (�x)du0. As
∑

(x,0)∈G u0(x) = (�x)−d , u0 is indeed a probability
distribution. We have assumed that

∑
x∈S u0(x) can be computed without cost, which

implies that arbitrary marginals of u0 can be computed without cost. This allows us to
sample from u0 in time O(log(nd)) = O(d log n) by a standard technique: split the
domain into half and compute the total probability in each region; choose a region to
split further, according to these probabilities; and repeat until the region is reduced to
just one point x, which is a sample from u0.

Given a sample x from ui, we can sample from ui+1 = (�x)d ũi+1 by applying the
stochastic map L to x (in the sense of sampling from a distribution on new positions,
rather than maintaining the entire vector), to update to a new position in time O(d log n).
So we can output one sample from each of the distributions ui in total time O(md log n).

��
We can now use this to approximate the total amount of heat in a given rectangular

region at a given time t , via the midpoint rule.

Theorem 10. For any S ⊆ [0, L]d such that the corners of S are all integer multiples
of �x, shifted by �x/2, and any t ∈ [0, T] that is an integer multiple of �t , there

4 We would like to thank an anonymous referee for this suggestion.

Quantum vs. Classical Algorithms for Solving the Heat Equation 615

is a classical algorithm that outputs u(S) such that |u(S) − ∫S u(x, t)dx| ≤ ε, with
probability 0.99, in time

O((Tαd3ζ(αT + L2)/ε3) log(L
√
dζ(αT + L2)/ε)). (48)

Proof. For anyprobability distribution P and any subsetU ,
∑

x∈U P(x) can be estimated
by choosing a sequence of k samples xi according to P , and outputting the fraction
of samples that are contained within U . The expectation of this quantity is precisely∑

x∈U P(x), and by a standardChernoff bound (orChebyshev inequality) argument [33],
it is sufficient to take k = O(1/ε2) to estimate this expectation up to accuracy ε with
99% probability of success. We use Lemma 9 to sample from the required distribution.
Write t = i�t for some integer i . Then, if we choose m = O(Tαd2ζ(αT + L2)/ε),
n = O(L

√
dζ(αT + L2)/ε) (see (35)) and apply this technique to Gt ∩ S, we get

precisely the midpoint rule formula for approximating
∫
S u(x, t)dx. Thus we have∣∣∣∣∣∣

∑
x∈Gt∩S

ui(x) −
∫
S
u(x, t)dx

∣∣∣∣∣∣ = O(ε) (49)

via the analysis of the midpoint rule in Sect. 2.2, noting that we have the normalisation
ui = (�x)d ũi . Inserting these choices for m and n into the bound of Lemma 9 and
multiplying by O(1/ε2) gives the claimed result. ��

The readermaywonderwhywedid not use a differentlyweighted sum inTheorem10,
corresponding to approximating the integral via Simpson’s rule, given that this rule
apparently has better accuracy. The reason is that the weighting used for Simpson’s rule
has components which are exponentially large in d, which would lead to an exponential
dependence on d in the final complexity, coming from the Chernoff bound.

3.3. Fast random walk method. We can speed up the algorithm of the previous section
by sampling from the final distribution of the random walk more efficiently than the
naïve simulation method of Lemma 9.

Lemma 11. Assume that we have chosen particular values for m and n. Then there
is a classical algorithm that outputs samples from a distribution um such that ‖um −
(�x)d ũm‖∞ ≤ ε in expected time O(d log n).

Proof. As in Lemma 9, we begin by sampling from u0 in time O(d log n). Next, given
such a sample, we want to perform m steps of a random walk on Z

d
n . We can do this

by simulating m steps of a random walk on Zd and reducing each element of the output
modulo n. Next we show that this can be achieved without performing each step of the
random walk in sequence (which would give a complexity scaling linearly withm). The
random walk can be understood as follows: for each of m steps, choose a dimension
uniformly at random, then increment or decrement the corresponding coordinate with
equal probability of each.Thenumber of steps taken in eachdimension canbedetermined
one at a time. For the i’th dimension (1 ≤ i ≤ d), if m′ steps have been taken in total in
the previous i −1 dimensions, the number of steps taken in that dimension is distributed
according to a binomial distribution with parameters (m −m′, 1/(d − i + 1)). Once the
number si of steps taken in each dimension i is known, the number of increments in
that dimension is also binomially distributed with parameters (si , 1/2). So the problem

616 N. Linden, A. Montanaro, C. Shao

reduces to sampling from binomial distributions with parameters (l, p) for arbitrary
l ≤ m, 0 < p < 1. This can be achieved in constant time [34,35] if one assumes (as we
do) that arithmetic operations on real numbers can be performed in constant time, and a
random real number can be generated in constant time. Therefore the overall complexity
is bounded by the initial cost of sampling. ��

We can plug Lemma 11 into the argument of Theorem 10 to obtain the following
improved result:

Theorem 12. For any S ⊆ [0, L]d such that the corners of S are all integer multiples
of �x, shifted by �x/2, and any t ∈ [0, T] that is an integer multiple of �t , there
is a classical algorithm that outputs u(S) such that |u(S) − ∫S u(x, t)dx| ≤ ε, with
probability 0.99, in time

O((d/ε2) log(L2dζ(αT + L2)/ε)). (50)

Proof. The proof is the same as for Theorem 10, substituting the use of Lemma 11 for
Lemma 9. The final complexity is O((d log n)/ε2), with n = O(L

√
dζ(αT + L2)/ε). ��

4. Quantum Methods

In this section we describe several quantum algorithms for solving the heat equation.
We begin by stating some technical ingredients that we will require.

First, we describe a technical lemma that allows us to go from a quantum state
corresponding to an approximate solution to the heat equation at one or more given
times simultaneously, to an estimate of the heat in a given region.

Lemma 13 (Quantumnumerical integration).Let ũ be themnd-component vector corre-
sponding to some function ũ(x, t) such that |̃u(x, t)−u(x, t)| ≤ ε/Ld for all (x, t) ∈ G,
and let

|̃u〉 = 1√∑
(x,t)∈G ũ(x, t)2

∑
(x,t)∈G

ũ(x, t)|x, t〉, (51)

be the corresponding normalised quantum state. Let |̃̃u〉 be a normalised state that
satisfies ‖|̃̃u〉 − |̃u〉‖2 ≤ γ , where γ = O(εnd/2/((

√
10L/3)d ‖̃u‖2)). Also assume that

we have an estimate ‖̃̃u‖2 such that |‖̃̃u‖2−‖̃u‖2| ≤ γ ‖̃u‖2. Let S be a hyperrectangular
region at a fixed time t such that the corners of S are in G. Then it is sufficient to use an
algorithm that produces |̃̃u〉 k times to estimate

∫
S u(x, t)dx ± ε with 99% probability

of success, where k = O((
√
10L/3)d ‖̃u‖2/(εnd/2)).

Proof. Let w(x) be a set of weights corresponding to a numerical integration rule as
defined in Sect. 2.2 (we will use Simpson’s rule in what follows). We will attempt to
estimate

∫
S u(x, t)dx by approximately computing (�x)d

∑
x∈Gt∩S w(x)‖̃̃u‖2〈x, t |̃̃u〉,

where Gt is the set of x such that (x, t) ∈ G. We first determine the level of accuracy
that is required in computing ‖̃̃u‖2, |̃̃u〉. By the triangle inequality we have∣∣∣∣∣∣(�x)d

∑
x∈Gt∩S

w(x)‖̃̃u‖2〈x, t |̃̃u〉 −
∫
S
u(x, t)dx

∣∣∣∣∣∣ (52)

Quantum vs. Classical Algorithms for Solving the Heat Equation 617

≤ (�x)d

∣∣∣∣∣∣
∑

x∈Gt∩S

w(x)‖̃̃u‖2〈x, t |̃̃u〉 −
∑

x∈G∩S

w(x)‖̃u‖2〈x, t |̃̃u〉
∣∣∣∣∣∣ (53)

+ (�x)d

∣∣∣∣∣∣
∑

x∈Gt∩S

w(x)‖̃u‖2〈x, t |̃̃u〉 −
∑

x∈Gt∩S

w(x)‖̃u‖2〈x, t |̃u〉
∣∣∣∣∣∣ (54)

+

∣∣∣∣∣∣(�x)d
∑

x∈Gt∩S

w(x)‖̃u‖2〈x, t |̃u〉 −
∫
S
u(x, t)dx

∣∣∣∣∣∣ (55)

≤ (�x)d
∣∣‖̃̃u‖2 − ‖̃u‖2

∣∣ ∑
x∈Gt∩S

∣∣w(x)〈x, t |̃̃u〉∣∣ (56)

+ (�x)d ‖̃u‖2
∣∣∣∣∣∣
∑

x∈Gt∩S

w(x)(〈x, t |̃̃u〉 − 〈x, t |̃u〉)
∣∣∣∣∣∣ (57)

+

∣∣∣∣∣∣(�x)d
∑

x∈Gt∩S

w(x)̃u(x, t) −
∫
S
u(x, t)dx

∣∣∣∣∣∣ (58)

≤ (�x)dγ ‖̃u‖2‖w‖2 + (�x)dγ ‖̃u‖2‖w‖2 + O(ε) (59)

where in the last inequality we use the analysis of Sect. 2.2 and Cauchy–Schwarz.
To achieve a final bound of ε, we need to have γ = O(ε/(‖̃u‖2(�x)d‖w‖2)). To

find a concrete expression for this requirement, we need to compute ‖w‖2. In the case
of Simpson’s rule, we have

‖w‖2 ≤
(
2

9
+
n − 1

2

(
4

3

)2

+
n − 1

2

(
2

3

)2
)d/2

(60)

=
(
2

9
+ (n − 1)

10

9

)d/2

= O((
√
10/3)dnd/2). (61)

Thus it is sufficient to take γ = O(εnd/2/(
√
10L/3)d)‖̃u‖−1

2 to achieve final accuracy
ε.

Finally, we need to approximately compute (�x)d
∑

x∈Gt∩S w(x)‖̃̃u‖2〈x, t |̃̃u〉 given
an algorithm that produces copies of |̃̃u〉. This can be achieved using amplitude estimation
[28] to estimate the inner product between the state

1

‖w‖2
∑

x∈Gt∩S

w(x)|x, t〉 (62)

and |̃̃u〉, up to accuracy ε/((�x)d‖w‖2 ‖̃̃u‖2), and multiplying by (�x)d‖w‖2 ‖̃̃u‖2. In
order to achieve this level of accuracy, we need to use the algorithm for producing |̃̃u〉
k times, where k = O((�x)d‖w‖2 ‖̃̃u‖/ε) from amplitude estimation. Applying the
previous calculation of ‖w‖2, and using that ‖̃̃u‖2 ≈ ‖̃u‖2, gives the claimed result. ��

Observe that in fact Lemma 13 can be used to estimate
∫
S u(x, t)dx given copies of

states |̃̃u〉 corresponding to an approximation to u which is accurate only within Gt ∩ S,

618 N. Linden, A. Montanaro, C. Shao

rather than over all of S. We will use this later on to estimate the amount of heat in a
region, given a state corresponding to a solution to the heat equation at a particular time
t , rather than all times as stated in this lemma.

The midpoint rule could be used instead of Simpson’s rule in Lemma 13 to integrate
over hyperrectangular regions S such that the corners of S are in G, shifted by �x/2;
this would lead to a similar complexity.

We will also need a technical result regarding the �2 norm of solutions to the heat
equation.

Lemma 14. Let L be defined by (13), taking �t = �x2/(2dα) as in Corollary 2. Then
for any integer τ ≥ 1,

max

{
1

nd
,

1

(4
√

τ)d

}
≤ ‖Lτ |0〉‖22 ≤ de−τ/(4d) +

(
4

n
+

√
d

πτ

)d

. (63)

In this lemma, and elsewhere, we use |0〉 to denote the origin in R
d . The proof is

deferred to “Appendix D”.

4.1. Quantum linear equation solving method. In this section we describe an approach
to solve the heat equation using quantum algorithms for linear equations. The idea is
analogous to the classical linear equations method: we use a quantum algorithm for solv-
ing linear equations to produce a quantum state that encodes a solution approximating
u(x, t) for all times t , and then use Lemma 13 to estimate

∫
S u(x, t)dx. First we state

the complexity of the quantum subroutines that we will use.

Theorem 15 (Solving linear equations [25, Theorem 10]). Let Ay = b for an N × N
invertible matrix A with sparsity s and condition number κ . Given an algorithm that
constructs the state |b〉 = 1

‖b‖2
∑

i bi |i〉 in time Tb, there is a quantum algorithm that
can output a state |̃y〉 such that ∥∥∥|̃y〉 − |A−1b〉

∥∥∥
2

≤ η (64)

with probability at least 0.99, in time

O

(
κ

(
s(TU + log N) log2

(
κ

η

)
+ Tb

)
log κ

)
, (65)

where

TU = O

(
log N + log2.5

(
sκ log(κ/η)

η

))
. (66)

Theorem 30 of [25] is stated only for Hermitian matrices, but as remarked in a
footnote there, it also applies to non-Hermitian matrices by encoding as a submatrix
of a Hermitian matrix. The bound on TU comes from [27, Lemma 48], in which we
set sr = sc = s and ε = η/(κ2 log3(κ/η)). Note that a quantum algorithm by Childs,
Kothari and Somma [36] for solving linear equations could also be used; this would
achieve a similar complexity, but the lower-order terms are not stated explicitly in [36].

Quantum vs. Classical Algorithms for Solving the Heat Equation 619

Theorem 16 (Linear equation norm estimation [25, Theorem 12]). Let Ay = b for an
N × N invertible matrix A with sparsity s and condition number κ . Given an algorithm
that constructs the state |b〉 = 1

‖b‖2
∑

i bi |i〉 in time Tb, there is a quantum algorithm
that outputs z̃ such that

|̃z − ‖A−1b‖2| ≤ η‖A−1b‖2 (67)

with probability at least 0.99, in time

O

(
κ

η

(
s(TU + log N) log2

(
κ

η

)
+ Tb

)
(log3 κ) log log κ

)
, (68)

where

TU = O

(
log N + log2.5

(
sκ log(κ/η)

η

))
. (69)

As the complexity bounds suggest, the algorithms of Theorems 15 and 16 are rather
complicated.

Theorem 17 (Quantum linear equations method). Let S ⊆ [0, L]d be a subset at a fixed
time t. There is a quantum algorithm that produces an estimate

∫
S u(x, t)dx ± ε with

0.99 probability of success in time

O
(
dBLd3−d/2(log2((Tdα)d/2+2(ζ/ε)d/2+1))(log3((Tdα)2ζ/ε))(log2 B) log logm

)
,

(70)

where

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O
(

(Tα)2.5ζ 1.5

ε2.5
(L +

√
Tα)

)
if d = 1,

O
(

(Tα)2.5ζ 1.5L
ε2.5

√
log(T L2αζ/ε)

)
if d = 2,

O
(

(Tα)d/4+2Ld/2dd/2+2ζ d/4+1Cd

εd/4+2

)
if d ≥ 3,

(71)

and C = 201/23−5/4π−1/4, and we assume that if d = 2, αT = O(log(1/ε)), and if
d ≥ 3 that T dα/ζ = O(L6ε−1).

Proof. By Corollary 2 and Theorem 3, we can achieve discretisation accuracy ε/Ld in
the ∞-norm with a system of N = O(mnd) linear equations (see (38)), each containing
O(d) variables, with condition number
(m), where m = 2T 2d2α2ζ/(3ε)�, n =
L√

dαζT/(3ε)�. We will apply Theorem 15 to solve this system of equations.
First, we can produce the initial quantum state corresponding to the right-hand side of

(38) as follows. First we construct |u0〉, which can be done in time O(d log n) as we have
assumed that we can compute marginals of u0 (and its powers) efficiently [37–40]. Then
we apply the nonunitary operation L to |u0〉. This can be achieved in time Õ(κ), where
κ is the condition number of L, via the technique of linear combination of unitaries of
[36]. To be more precise, from (A3), we can decompose H = −2I + Q + QT , where
Q is a shift. So L = 1

2d

∑d
j=1(I

⊗(j−1) ⊗ Q ⊗ I⊗(d− j) + I⊗(j−1) ⊗ QT ⊗ I⊗(d− j)),
which is a linear combination of 2d unitaries. The claimed result then follows directly
from [36, Lemma 7]. The Õ notation hides polylogarithmic terms in n and d. In fact,
κ can be replaced with ‖L‖/‖L|u0〉‖2 (see [15, Section IIIB] for a discussion). From

620 N. Linden, A. Montanaro, C. Shao

Lemma 4, and noting that ‖L‖ = O(1), this is upper-bounded by O(
√
d). Therefore, the

complexity of preparing a normalised version ofL|u0〉 is Õ(
√
d) up to logarithmic terms;

inspection of Theorem 15 shows that this is negligible compared with the complexity of
other aspects of the algorithm.

Let |̃u〉 = 1
‖̃u‖2

∑
(x,t)∈G ũ(x, t)|x, t〉. Using Theorem 15, there is a quantum algo-

rithm that can produce a state |̃̃u〉 such that ‖|̃̃u〉 − |̃u〉‖2 ≤ γ in time

O

(
m log2 N log2

(
m

γ

)
logm

)
= O

(
m(log2(mnd)) log2

(
m

γ

)
logm

)
. (72)

By Theorem 16, there is a quantum algorithm that produces an estimate ‖̃̃u‖2 of ‖̃u‖2
satisfying

1 − γ ≤ ‖̃̃u‖2
‖̃u‖2 ≤ 1 + γ (73)

in time

O

(
dm

γ
(log(mnd))(log3 m)(log2

(
m

γ

)
) log logm

)
. (74)

In both of these estimates we use that log N � log2.5((dm/γ) log(m/γ)) based on our
estimationofγ below.UsingLemma13and insertingγ = O(εnd/2/((

√
10L/3)d ‖̃u‖2)),

the complexity of producing |̃̃u〉 is

O

(
m(log2(mnd)) log2

(
m(

√
10L/3)d ‖̃u‖2
εnd/2

)
logm

)
(75)

and the complexity of producing ‖̃̃u‖2 is

O

⎛
⎝ dm

εnd/2

(√
10L

3

)d
‖̃u‖2(log2(mnd))(log3 m) log2

(
m(

√
10L/3)d ‖̃u‖2
εnd/2

)
log logm

⎞
⎠ .

(76)

By Lemma 13, in order to estimate
∫
S u(x, t)dx ± ε it is sufficient to use the algorithm

for producing |̃̃u〉
k = O((

√
10L/3)d ‖̃u‖2/(εnd/2)) (77)

times, giving an overall complexity for that part of

O

⎛
⎝ m

εnd/2

(√
10L

3

)d

‖̃u‖2(log2(mnd)) log2
(
m(

√
10L/3)d ‖̃u‖2

ε

)
logm

⎞
⎠ . (78)

This implies that the overall complexity of the algorithm is dominated by the complexity
of producing the estimate ‖̃̃u‖2. Defining

B = m

εnd/2

(√
10L

3

)d

‖̃u‖2 (79)

Quantum vs. Classical Algorithms for Solving the Heat Equation 621

for conciseness, (76) can be rewritten as

O
(
dB(log2(mnd))(log3m)(log2 B) log logm

)
. (80)

To calculate B, it remains to upper-bound ‖̃u‖2. A straightforward upper bound is

‖̃u‖2 =
√√√√ m∑

i=0

‖ũi‖22 ≤
√√√√ m∑

i=0

‖ũi‖21 =
√√√√ m∑

i=0

(n
L

)2d = O

(√
m
(n
L

)d)
. (81)

But we will obtain a tighter upper bound, for which it will be sufficient to consider the
particular initial condition u0(0d) = nd , u0(x) = 0 for x �= 0d . This initial condition
can be seen to give a worst-case upper bound by convexity, as follows. Consider the
operator L occurring in (13) and an arbitrary initial condition u′(x) = px such that∑

x px = (n/L)d (corresponding to the L1 normof the initial condition beingnormalised
to 1). Then u0 is a convex combination of point functions of the form ux0(x0) = (n/L)d ,
ux0(x) = 0 for x �= x0. So ‖Lτu′‖2 ≤ ‖Lτu0‖2 by convexity of the �2 norm and shift-
invariance of L.

By Lemma 14, for any τ ≥ 1,

‖Lτu0‖22 ≤
(n
L

)2d ⎛⎝de−τ/(4d) +

(
4

n
+

√
d

πτ

)d
⎞
⎠ . (82)

This gives an upper bound on the total �2 norm of

√√√√ m∑
τ=0

‖Lτu0‖22 ≤
(n
L

)d√√√√1 + d
m∑

τ=1

e−τ/(4d) +
m∑

τ=1

(
4

n
+

√
d

πτ

)d

(83)

≤
(n
L

)d√√√√1 + d
∑
τ≥0

e−τ/(4d) + 2d
∑

1≤τ≤n2d/(16π)

(
d

πτ

)d/2

+ 2d
∑

n2d/(16π)≤τ≤m

(
4

n

)d

(84)

≤
(n
L

)d√√√√1 +
d

1 − e−1/(4d)
+

(
4d

π

)d/2 ∑
1≤τ≤n2d/(16π)

τ−d/2 + m

(
8

n

)d

. (85)

The first two summands under the square root are negligible compared with the others.
For d = 1, the sum over τ is O(n); for d = 2, it is O(log n); and for d ≥ 3, it is O(1).
The final summand is negligible for d ≥ 2 sincem/n2 = 2Tdα/L2 which is a constant.

This then gives us overall �2 norm bounds ‖̃u‖2 = O((n3/2 +
√
mn)/L) for d = 1,

‖̃u‖2 = O(n2
√
log n/L2) for d = 2, and ‖̃u‖2 = O((

√
2d1/4n/(π1/4L))d) for d ≥ 3.

Compared with (81), this last bound is stronger by a factor of almost
√
m. By the lower

bound part of Lemma 14, the bounds are close to tight.
Inserting the values for m and n, and these bounds on ‖̃u‖2, in the complexity bound

(76), the final complexities are as stated in the theorem. In computing these, we use the

622 N. Linden, A. Montanaro, C. Shao

bounds that

B = m(
√
10L/3)d ‖̃u‖2
εnd/2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O
(

(Tα)2.5ζ 1.5

ε2.5
(L +

√
Tα)

)
if d = 1,

O
(

(Tα)2.5ζ 1.5L
ε2.5

√
log(T L2αζ/ε)

)
if d = 2,

O
(

(Tα)d/4+2Ld/2dd/2+2ζ d/4+1Cd

εd/4+2

)
if d ≥ 3,

(86)

where C = 201/23−5/4π−1/4. ��
Note that in this analysis, as in the classical case, we have assumed that arbitrary

nonzero entries of the matrix A can be computed in time O(1). From the above proof,
we see that an γ -approximation |̃̃u〉 of the quantum state of the solution of the linear
system (38) is obtained in time Õ(dm) = Õ(T 2d3α2ζ/ε) from (72). The dependence
on ε is linear and on d is cubic. This is exponentially better than the classical algorithm
given in Theorem 5. The above theorem therefore shows that the exponential dependence
of the complexity on ε, d comes from computing the amount of heat, rather than the
state preparation step. The exponential speedup disappears because the quantum state
of the solution does not contain the information of the norm. The norm is required when
estimating the amount of heat in a certain region and is exponentially large from our
proof, see (81). So when we use amplitude estimation to estimate the amount of the
heat in a certain region, we need to multiply the norm, and this norm will appear in the
complexity to ensure the desired accuracy.

4.2. Fast-forwarded random walk method. We next consider alternative methods which
directly produce a quantum state corresponding to the distribution of the random walk
at time t = i�t : that is, a state |ψi 〉 close to∑x ũi (x)|x〉/‖ũi‖2. We can then estimate∫
S u(x, t)dx ± ε using Lemma 13.
These methods start by producing an initial state |u0〉 =∑x u0(x)|x〉/‖u0‖2. Given

that we have assumed that we can compute sums of squares of u0 over arbitrary regions in
time O(1), |u0〉 can be constructed in time O(d log n) via the techniques of [37,39,40].
This will turn out not to affect the overall complexity of the algorithms.

The first approach we consider can be viewed as a coherent version of the random
walk method. Given the initial state |u0〉, we attempt to produce a state approximating
|ui 〉 = |Li ui 〉 for some i .

Theorem 18 (Apers and Sarlette [26], Gilyén et al. [27]). Given a symmetric Markov
chain with transition matrix L and a quantum state |ψ0〉, there is an algorithm which
produces a state |ψ̃i 〉 such that

∥∥∥∥|ψ̃i 〉 − Li |ψ0〉
‖Li |ψ0〉‖2

∥∥∥∥
2

≤ η (87)

using

O

(
‖Li |ψ0〉‖−1

2

√
i log(1/(η‖Li |ψ0〉‖2))

)
(88)

steps of the quantum walk corresponding to L.

Quantum vs. Classical Algorithms for Solving the Heat Equation 623

Theorem 19 (Fast-forwarded random walk method). Let S be a subset at a fixed time
t = i�t . There is a quantum algorithm based on fast-forwarding random walks that
estimates

∫
S u(x, t)dx ± ε in time

O

(
d5/2Tαζ 1/2

ε3/2

(
100L2dTαζ

35ε

)d/4

log(L2dαζT/ε)

√
log(L2dαζT/ε)

)
. (89)

Proof. We use the algorithm of Theorem 18 to produce a state |̃̃ui 〉 such that ‖|̃̃ui 〉 −
|̃ui 〉‖2 ≤ γ , where |̃ui 〉 = ũi/‖ũi‖2 and γ is defined in Lemma 13, which is applied at a
single time. We need to use this algorithm k times, where k is also defined in Lemma 13.
The complexity of implementing a quantum walk step is essentially the same as that
of implementing a classical random walk step, which is O(d log n). The complexity
of producing the initial state |u0〉 is also O(d log n). Therefore, the complexity of the
overall algorithm is

O
(
d(log n)k‖u0‖2‖ũi‖−1

2

√
m log(‖u0‖2/(γ ‖ũi‖2))

)
. (90)

As k = O((
√
10L/3)d‖ũi‖2/(εnd/2)), γ = O(εnd/2/((

√
10L/3)d‖ũi‖2)) from

Lemma 13, we see that the ‖ũi‖2 terms cancel. Inserting the values for γ and k, us-
ing ‖u0‖2 ≤ (n/L)d and inserting the values for n and m determined in Corollary 2, we
obtain the claimed result. ��

4.3. Diagonalisation and postselection method. Similarly to the classical case (Theo-
rem 8), we can find a more efficient algorithm than Theorem 19 (one without the factor
of

√
m) in the special case we are considering of solving the heat equation in a hyper-

cube, using the fact that the quantum Fourier transform diagonalises L. By contrast with
the classical method, here we perform operations in superposition. As in the previous
section, again the goal is to produce |ui 〉 for some i ; as we can diagonalise L efficiently,
all that remains is to implement the (non-unitary) operation �i , where � is the diagonal
matrix corresponding to the eigenvalues of L.
Theorem 20 (Quantum diagonalisation and postselection method). Let S be a hyper-
rectangular region at a fixed time t = i�t such that the corners of S are in G. There
is a quantum algorithm that estimates

∫
S u(x, t)dx ± ε with 99% sucess probability in

time

O

((
100L2dαζT

35

)d/4

ε−d/4−1 log(L2dαζT/ε) log log(L2dαζT/ε)

)
. (91)

Proof. Westartwith the state |u0〉, and apply the approximate quantumFourier transform
in time O(d log n log log n) to produce a state |ψ〉. Note that this is exponentially faster
than the classical FFT. Then, similarly to Theorem 8, wewant to apply themap�i to this
state, where� is the diagonal matrix whose entries are eigenvalues ofL, before applying
the inverse quantum Fourier transform to produce |̃ui 〉. Recalling that eigenvalues λ j of
L correspond to strings j = j1, . . . , jd , where j1, . . . , jd ∈ {0, . . . , n − 1}, we expand

|ψ〉 =
n−1∑

j1,..., jd=0

ψ j1,..., jd | j1, . . . , jd〉. (92)

624 N. Linden, A. Montanaro, C. Shao

Then applying�i can be achieved by attaching an ancilla qubit and performing the map

|ψ〉|0〉 �→
n−1∑

j1,..., jd=0

ψ j1,..., jd | j1, . . . , jd〉
(
λij |0〉 +

√
1 − λ2ij |0⊥〉

)
(93)

and measuring the ancilla qubit. If we receive the outcome 0, then the residual state
is as desired, and we can apply the inverse quantum Fourier transform to produce
Li |u0〉/‖Li |u0〉‖2. The probability that the measurement of the ancilla qubits succeeds
is precisely ‖Li |u0〉‖22. Using amplitude amplification, O(‖Li |u0〉‖−1

2) repetitions are
enough to produce the desired state with success probability 0.99. We will also need
to produce an estimate of ‖ũi‖2. To do so, we can apply amplitude estimation to this
procedure to produce an estimate of the square root of the probability of receiving out-
come 0. This gives ‖ũi‖2(1± δ) (with success probability lower-bounded by a constant
arbitrarily close to 1) at an additional multiplicative cost of O(δ−1) [28].

For any i ∈ {0, . . . ,m}, and any δ > 0, by the same argument as Lemma 7 any
desired eigenvalue of Li can be computed classically up to accuracy δ in time O(d),
given a precomputation cost of O(n log(m/δ)) at the start of the algorithm, which will
turn out to be negligible. Then it has been shown by Sanders et al [41] that given a
classical description of λij for each j , one can perform the map (93) on the ancilla qubit
up to accuracy O(δ) using O(d + log(1/δ)) gates and some additional ancilla qubits
which are reset to their original state.

Thus the overall cost of producing the state Li |u0〉/‖Li |u0〉‖2 is

O(‖Li |u0〉‖−1
2 (d log n log log n + log(1/δ)). (94)

In order to use Lemma 13, we will take δ = γ =
(εnd/2/((
√
10L/3)d‖ũi‖2)).

Inserting the value for n from Corollary 2 and using the upper bounds ‖ũi‖2 ≤ ‖u0‖2 ≤
‖u0‖1 = (n/L)d , we get log(1/δ) = O(d log n + log 1/ε) = O(d log n), implying that
the cost of implementing the QFT dominates the overall complexity.

Taking this sufficiently small choice of δ, by Lemma 13 we can use the above proce-
dure k times to estimate

∫
S u(x, t)dx ± ε, where k = O((

√
10L/3)d‖ũi‖2/(εnd/2)) =

O(1/δ). So we see that the complexity of producing a sufficiently accurate estimate of
‖ũi‖2 is asymptotically equivalent to that of performing the numerical integration.

The total cost is then k times the cost of (94). Simplifying by using |u0〉 = 1
‖u0‖2∑

x u0(x)|x〉 and hence ‖Li |u0〉‖ = ‖ũi‖2/‖u0‖2, a ‖ũi‖2 term cancels, leaving a cost
of

O(‖u0‖2(
√
10L/3)dε−1n−d/2d log n log log n). (95)

Once again inserting the values for m and n based on Corollary 2 and using the upper
bounds ‖u0‖2 ≤ ‖u0‖1 = (n/L)d , we obtain an overall bound of

O

((
100L2dαζT

35

)d/4

ε−d/4−1 log(L2dαζT/ε) log log(L2dαζT/ε)

)
(96)

as claimed in the theorem. ��

Quantum vs. Classical Algorithms for Solving the Heat Equation 625

4.4. Random walk amplitude estimation approach. In our final algorithms, we apply
amplitude estimation to the classical random walk approach of Sects. 3.2 and 3.3. This
is the simplest of all the quantum approaches, but turns out to achieve the most efficient
results inmost cases.Webeginwith the application to accelerating the “standard” random
walk method.

Theorem 21. For any S ⊆ [0, L]d such that the corners of S are all integer multiples
of �x, shifted by �x/2, and any t ∈ [0, T] such that t = i�t for some integer i , there
is a quantum algorithm that outputs u(S) such that |u(S) − ∫S u(x, t)dx| ≤ ε, with

probability 0.99, in time O((Tαd3ζ(αT + L2)/ε2) log(L
√
dζ(αT + L2)/ε)).

Proof. The argument is the same asTheorem10, except thatwe use amplitude estimation
[28], rather than standard probability estimation. Given a classical boolean function f
that takes as input a sequence s of bits, amplitude estimation allows Prs[f (s) = 1] to be
estimated up to accuracy ε, with success probability 0.99, using f O(1/ε) times. In this
case, we can think of s as the random seed input to a deterministic procedure which first
produces a sample from u0, where u0 = (�x)du0 as in Lemma 9, and then executes a
sequence of i steps of the random walk. Then f (s) = 1 if the final position is within S,
and f (s) = 0 otherwise. This can be used to estimate

∫
S u(x, t)dx in the same way as

the proof of Theorem 10, except that the complexity is lower by a factor of
(1/ε). ��
Note that this approach as described in Theorem 21 uses space O(m) =

O(T 2d2α2ζ/ε) to store the sequence of movements of the random walk. This is sub-
stantially worse than the classical equivalent, which uses space O(d log n) = O(d
log(L2Tdαζ/ε)). It has been an open problem since 2001 whether quantum algorithms
can coherently simulate general classical random walk processes with little space over-
head [42]. However, quadratic space overhead over the classical algorithm (which is
sufficient to give a polylogarithmic space quantum algorithm) can be achieved using the
pseudorandom number generator of Nisan [43] to replace the sequence of O(m) random
bits specifying the movements of the walk.

4.5. Fast random walk amplitude estimation approach. Finally, we can also apply am-
plitude estimation to speed up the algorithm of Theorem 12.

Theorem 22. For any S ⊆ [0, L]d such that the corners of S are all integer multiples
of �x, shifted by �x/2, and any t ∈ [0, T] such that t = i�t for some integer i , there
is a quantum algorithm that outputs u(S) such that |u(S) − ∫S u(x, t)dx| ≤ ε, with
probability 0.99, in time O((d/ε) log(T Lαd5/2ζ 3/2((αT + L2)/ε)3/2)).

Proof. The argument is the same as the proof of Theorem 21. We apply amplitude
amplification to the random seed used as input to a procedure for sampling from the
initial distribution and the binomial distributions required for the corresponding classical
random walk algorithm (Theorem 12). As in the case of Theorem 21, the complexity is
lower than the corresponding classical algorithm by a factor of
(1/ε). ��

5. Concluding Remarks

We have considered ten algorithms (five classical and five quantum) for solving the heat
equation in a hyperrectangular region, and have found that the quantum algorithm for
solving linear equations is never the fastest, but that for d ≥ 2, a quantum algorithm

626 N. Linden, A. Montanaro, C. Shao

based on applying amplitude amplification is the most efficient, achieving a speedup up
to quadratic over the fastest classical algorithm. However, quantum algorithms based
on solving linear equations may have other advantages over the classical ones, such as
flexibility for more complicated problems, and better space-efficiency.

Theheat equation is of interest in itself, but also as amodel for understanding the likely
performance of quantum algorithms when applied to other PDEs. For example, it was
claimed in [11] that a quantum algorithm for solving Poisson’s equation could achieve
an exponential speedup over classical algorithms in terms of the spatial dimension d.
However, Poisson’s equation can be solved using a classical randomwalk method which
remains polynomial-time even for large d [44]; this method approximates the solution
at a particular point, rather than giving the solution in a whole region. It seems likely
that other classical approaches to solving PDEs may be able to compete with some
apparent exponential quantum speedups, analogously to the “dequantization” approach
in quantum machine learning (see [45] and references therein).

Acknowledgements We would like to thank Jin-Peng Liu and Gui-Lu Long for comments on a previous
version, and two anonymous referees for helpful suggestions which improved this work. We acknowledge
support from the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European
Union’s Horizon 2020 Programme (QuantAlgo project), EPSRC grants EP/R043957/1 and EP/T001062/1,
and EPSRC Early Career Fellowship EP/L021005/1. This project has received funding from the European
ResearchCouncil (ERC) under the EuropeanUnion’sHorizon 2020 research and innovation programme (grant
agreement No. 817581). No new data were created during this study.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A: Runtime of applying a quantum algorithm for ODEs to the heat
equation

In this appendix, we sketch the complexity obtained when using the algorithm of Berry
et al. [5] to solve the heat equation as a system of ODEs. Also note that a procedure is
not explicitly given in [5] to approximate the �2 norm of the solution vector, which is
required to estimate its properties.Wewill show that the quantum algorithm based on [5]
is somewhat worse than the quantum linear equations method proposed in Theorem 17
to generate the quantum state of the heat equation.

In the heat equation (1), if we just discretise x1, . . . , xd to the same level of accuracy
as specified in Sect. 2.1, then we obtain a system of ODEs of the form

dũ
dt

= α

�x2
Aũ, (A1)

where ũ is the vector of {u(j1�x, . . . , jd�x, t) : j1, . . . , jd ∈ {0, 1, . . . , n − 1}},

A =
d∑
j=1

I⊗(j−1)
n ⊗ H ⊗ I⊗(d− j)

n , (A2)

http://creativecommons.org/licenses/by/4.0/

Quantum vs. Classical Algorithms for Solving the Heat Equation 627

and

H =

⎛
⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

1
. . .

. . .

. . .
. . . 1

1 1 −2

⎞
⎟⎟⎟⎟⎟⎠ (A3)

is an n × n matrix.
In [5], Berry et al. proposed a quantum algorithm to solve time-independent ODEs

dx
dt = Ax+b. They assumed that A is diagonalizable and the real parts of the eigenvalues
are non-positive. This is satisfied for the heat equation (A1) as shown in the following
lemma.

Lemma 23. The eigenvalues of A are {λ j1 + · · · + λ jd : j1, . . . , jd ∈ {0, 1, . . . , n − 1}},
where

λ j = −4 sin2
jπ

n
. (A4)

Moreover, A is diagonalized by the d-th tensor product of the quantumFourier transform.

Proof. Since H is a circulant matrix, it can be diagonalized by the quantum Fourier
transform F . Denote � = diag{λ0, . . . , λn−1} as the diagonal matrix that stores the
eigenvalues of H , then �F† = F†H . Set c0 = −2, c1 = 1, c2 = · · · = cn−2 =
0, cn−1 = 1. Then �F†|0〉 = F†H |0〉 gives

1√
n

⎛
⎜⎜⎝

λ0
λ1
...

λn−1

⎞
⎟⎟⎠ = F†

⎛
⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎠ . (A5)

For convenience, set ωn = e2π i/n , then

λ j =
n−1∑
k=0

ckω
− jk
n = −2 + ω

− j
n + ω

− j (n−1)
n = −2 + ω

− j
n + ω

j
n = −2 + 2 cos

2 jπ

n

= −4 sin2
jπ

n
. (A6)

The claimed result follows easily from Eq. (A2). ��
Since we can determine the nonzero entries of H efficiently, we can determine the

nonzero entries of A efficiently too. The sparsity of A is
(d). By Theorem 9 of [5], the
quantum state |̃u(T)〉 of the ODE (A1) to precision ε is obtained in time

Õ(dgT ‖A‖), (A7)

where g = maxt∈[0,T] ‖̃u(t)‖/‖̃u(T)‖. By Lemma 23 and Corollary 2,

‖A‖ = α

�x2
max
j1,..., jd

|λ j1 + · · · + λ jd | = 4αd

�x2
=
(α2d2ζT/ε). (A8)

628 N. Linden, A. Montanaro, C. Shao

Thus, the quantum state |̃u(T)〉 is obtained in time

Õ(α2d3T 2gζ/ε). (A9)

Note that in the proof of Theorem 17, equation (72) shows that we can obtain the
state |̃u〉 in time

Õ(md2) = Õ(α2d4T 2ζ/ε). (A10)

In comparison, the complexity of the algorithm of [5] has better dependence on d, but
is increased by a multiplicative factor g ≥ 1. The complexity of obtaining the desired
state using the quantum spectral method of Childs and Liu [7] also equals (A9).

Appendix B: Estimation of the condition number

For some of the classical and quantum methods we consider, the condition number of
the relevant linear system will be an important component of the algorithms’ overall
complexity.

Recall from Eq. (38) that this linear system is⎛
⎜⎜⎝

I
−L I

. . .
. . .

−L I

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ũ1
ũ2
...

ũm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Lũ0
0
...

0

⎞
⎟⎟⎠ . (B1)

In the following, we will estimate the condition number of the above linear system. For
convenience, we let A denote the coefficient matrix.

First we consider the case d = 1. In this case

L = I +
α�t

�x2
H, (B2)

where H is the matrix defined in Eq. (A3). If we define T to be the following m × m
matrix:

T =

⎛
⎜⎜⎝

1
−1 1

. . .
. . .

−1 1

⎞
⎟⎟⎠ , (B3)

then

A = T ⊗ L − α�t

�x2
I ⊗ H. (B4)

For convenience, denote

γ j = 4
α�t

�x2
sin2

jπ

n
, j = 0, 1, . . . , n − 1. (B5)

Then by Lemma 23, the eigenvalues of L are 1− γ j for j = 0, 1, . . . , n− 1. Moreover,

(I ⊗ F†)A(I ⊗ F) =
n−1∑
j=0

(
(1 − γ j)T + γ j I

)⊗ | j〉〈 j |, (B6)

Quantum vs. Classical Algorithms for Solving the Heat Equation 629

where F is the quantum Fourier transform. It is easy to show that the set of singular
values of A is the collection of the singular values of

A j = (1 − γ j)T + γ j I (B7)

for all j . Next, we focus on the calculation of the singular values of A j . Note that if
γ j = 1, then A j = I . This case is trivial, so we assume that γ j �= 1 in the following.
From Eq. (B3), it is easy to see that A j is nonsingular.

Proposition 24. The eigenvalues of A j A
†
j have the following form:

(1 − γ j)
2 + 2(1 − γ j) cos θ + 1 =

(
sin θ

sinmθ

)2

, (B8)

where θ is nonzero and satisfies

(1 − γ j) sinmθ + sin(m + 1)θ = 0. (B9)

Before proving the above result, we first show how to estimate the condition number
of A from this proposition.

Proposition 25. Assuming that d = 1, the condition number κ of the linear system (38)
is κ =
(m). Moreover, ‖A‖ =
(1), ‖A−1‖ =
(m).

Proof. Let σmax, σmin be the maximal and minimal nonzero singular value of A respec-
tively. If j = 0, then γ j = 0 and A j = T . The singular values of T are

2 cos
kπ

2m + 1
, (B10)

where k = 1, . . . ,m. A proof of this will be given at the end of this appendix. If we
choose k = m, then

σmin ≤ 2 cos
mπ

2m + 1
= 2 sin

π

2(2m + 1)
≤ π

2m + 1
. (B11)

To compute the minimal nonzero value of (sin θ/ sinmθ)2 in the interval [0, π], it
suffices to focus on the interval θ ∈ [0, π/2], since | sinmθ | is periodic in the interval
[0, π/2], and the periods are {[kπ/m, (k + 1)π/m] : k = 0, . . . ,m/2 − 1}. Also, in the
interval [0, π/2], sin θ is increasing. Since we want to compute the minimal value, we
just need to consider the interval [0, π/m]. Actually, we only need to focus on [0, π/2m]
because | sinmθ | is symmetric along the line θ = π/2m. When θ is small, sin θ ≥ 2θ/π

and sinmθ ≤ mθ , so

σmin ≥ min
0<θ<π

∣∣∣∣ sin θ

sinmθ

∣∣∣∣ ≥ 2

mπ
. (B12)

Therefore, we have

σmin =
(1/m). (B13)

Next, we estimate σmax. Since α�t/�x2 ≤ 1/2, we have 0 ≤ γ j ≤ 2. Thus,
(1 − γ j)

2 + 2(1 − γ j) cos θ + 1 ≤ 4. When γ j = 1, the eigenvalue is 1, so σmax ≥ 1.
Note that in the case α�t/�x2 = 1/2, then γ j = 1 implies that j = n/4 in Eq. (B5).
As a result, σmax =
(1). Together with Eq. (B13), we obtain the claimed result. ��

630 N. Linden, A. Montanaro, C. Shao

Next, we consider the general case d > 1. It is easy to see that

L = I⊗d
n +

α�t

�x2

d∑
j=1

I⊗(j−1)
n ⊗ H ⊗ I⊗(d− j)

n . (B14)

The coefficient matrix of the linear system (38) is

A = T ⊗ L − α�t

�x2

d∑
j=1

I⊗(j−1)
n ⊗ H ⊗ I⊗(d− j)

n . (B15)

Theorem 3 (restated). The largest and smallest singular values of the matrix in (38)
satisfy σmax =
(1), σmin =
(1/m), respectively. Hence the condition number is

(m).

Proof. The proof of this theorem is similar to that of Proposition 25. The calculation of
the singular values of A can be reduced to calculating the singular values of

A j1,..., jd = (1 − γ j1 − · · · − γ jd)T + (γ j1 + · · · + γ jd)I, (B16)

where j1, . . . , jd ∈ {0, 1, . . . , n−1}. The result of Proposition 24 also holds for A j1,..., jd
by changing γ j into γ j1 + · · ·+ γ jd . Let σmax, σmin be the maximal and minimal nonzero
singular value respectively.

The estimation of σmin is the same as that in the proof of Proposition 25. The upper
bound is obtained by considering the special case γ j1 = · · · = γ jd = 0. Similarly to
Eq. (B11), σmin ≤ π/(2m + 1). As for the lower bound, the proof of that in Eq. (B12) is
independent of γ j , so it is also true for A j1,..., jd . Thus σmin =
(1/m).

As for σmax, if we consider the special case γ j1 = · · · = γ jd = 1/d, then we obtain
σmax ≥ 1. This special case is obtained by taking j = n/4 in the case dα�t/�x2 = 1/2.
Since the eigenvalue of A j1,..., jd also has the form (B8) by changing γ j into γ j1 +· · ·+γ jd ,
γ j = 4 α�t

�x2
sin2 jπ

n and dα�t/�x2 ≤ 1/2, we have γ j1 + · · ·+ γ jd ≤ 4dα�t/�x2 ≤ 2.
By Eq. (B8), σmax ≤ 4. Thus σmax =
(1), and σmin =
(1/m). ��
Proof of Proposition 24. For convenience, set β j = γ j/(1 − γ j), then

A j A
†
j = (1 − γ j)

2

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + β j)
2 −(1 + β j)

−(1 + β j) 1 + (1 + β j)
2 −(1 + β j)

−(1 + β j)
. . .

. . .

. . .
. . . −(1 + β j)

−(1 + β j) 1 + (1 + β j)
2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B17)

= (1 − γ j)
2[(1 + (1 + β j)

2)Im − (1 + β j)Q j], (B18)

where

Q j =

⎛
⎜⎜⎜⎜⎜⎝

q j 1
1 0 1

1
. . .

. . .

. . .
. . . 1
1 0

⎞
⎟⎟⎟⎟⎟⎠ , (B19)

Quantum vs. Classical Algorithms for Solving the Heat Equation 631

and q j = 1/(1 + β j) = 1 − γ j . In the following, we need to compute the eigenvalues
of Q j . The following lemma describes the characteristic polynomial of Q j . It is easy to
calculate that det(Q j + 2I) = m + 1 +mq j �= 0 as −1 ≤ q j ≤ 1. This means −2 is not
an eigenvalue of Q j . In the following analysis, we will not consider this case.

Lemma 26. Assume that λ �= 2. For any m ≥ 1, let

fm =

∣∣∣∣∣∣∣∣∣∣∣

λ 1
1 λ 1

1
. . .

. . .

. . .
. . . 1
1 λ

∣∣∣∣∣∣∣∣∣∣∣
m×m

. (B20)

Then

fm = xm+1
1 − xm+1

2

x1 − x2
, (B21)

where x1 = 1
2 (λ +

√
λ2 − 4), x2 = 1

2 (λ − √
λ2 − 4), and x1 �= x2. Moreover,

|Q j + λI | = q j
xm1 − xm2
x1 − x2

+
xm+1
1 − xm+1

2

x1 − x2
. (B22)

Proof. By definition, fm = λ fm−1 − fm−2, then fm = α1xm1 + α2xm2 for some α1, α2.
Since f1 = λ, f2 = λ2 − 1, we have

α1x1 + α2x2 = λ, (B23)

α1x
2
1 + α2x

2
2 = λ2 − 1. (B24)

Solving the linear system gives

α1 = x1
x1 − x2

, α2 = x2
x2 − x1

. (B25)

So fm = xm+1
1 −xm+1

2
x1−x2

. Since λ �= 2, we obtain x1 �= x2. By definition,

|Q j + λI | = (q j + λ) fm−1 − fm−2 = q j fm−1 + fm = q j
xm1 − xm2
x1 − x2

+
xm+1
1 − xm+1

2

x1 − x2
.

(B26)

This completes the proof. ��
Now we have to solve for λ from Eq. (B22), i.e.,

q j (x
m
1 − xm2) + (xm+1

1 − xm+1
2) = 0. (B27)

Divides both sides of the above equation by xm+1
2 , we obtain

q j

(
xm1
xm2

− 1

)
1

x2
+

(
xm+1
1

xm+1
2

− 1

)
= 0. (B28)

632 N. Linden, A. Montanaro, C. Shao

Since x1x2 = 1, we have

q j (x
2m
1 − 1)x1 + (x2(m+1)

1 − 1) = 0. (B29)

If x1 is an solution, then x2 = 1/x1 is also a solution of the above equation. Assume that
x1 = reiθ . Since x1 + x−1

1 = λ ∈ R, if θ �= 0 mod π , then r = ±1.
By (B17) and noting that in Lemma 26, −λ is the eigenvalue of Q j , we obtain that

the eigenvalues of A j A
†
j are of the form

σ = (1 − γ j)
2[1 + (1 + β j)

2 + (1 + β j)λ] (B30)

= (1 − γ j)
2[1 + (1 + β j)

2 + (1 + β j)(x1 + x−1
1)] (B31)

= (1 − γ j)
2[(1 + x1(1 + β j))(1 +

1 + β j

x1
)], (B32)

where x1 runs over all solutions of Eq. (B27). By Eq. (B29) and q j = 1/(1 + β j), we
know that x2m+1

1 (1 + x1(1 + β j)) = x1 + (1 + β j). Thus σ/(1− γ j)
2 can be rewritten as

x2m1 (1 + x1(1 + β j))
2 or

1

x2m1

(
1 +

1 + β j

x1

)2

. (B33)

If x1 ∈ R, and if |x1| ≥ 1, then the first expression of (B33) implies that σ/(1 − γ j)
2

is exponentially large; however the second expression shows that σ/(1 − γ j)
2 tends to

zero. The same contradiction also appears if |x1| ≤ 1. So if x1 ∈ R, then x1 = ±1. We
prove this more formally in the following lemma.

Lemma 27. If x1 ∈ R, |x1| ≥ 1 and x2m+1
1 (1+ x1(1+β j)) = x1 +1+β j , then x1 = ±1.

Proof. First assume x1 > 1. We have x2m1 (1 + x1(1 + β j)) = 1 +
1+β j
x1

. The left side is
strictly greater than 1 + (1 + β j), while the right side strictly smaller than 1 + (1 + β j), a
contradiction. Next assume x1 < −1. Set x̃1 = −x1 > 1, then we have (1 + β j) − x̃1 =
x̃2m+1
1 (x̃1(1 + β j) − 1) ≥ x̃1(1 + β j) − 1 > (1 + β j) − 1. This means x̃1 < 1, a
contradiction. ��

Due to the two equivalent expressions (B33) of eigenvalues, it is also a contradiction
if 0 < |x1| < 1. Since x1 �= x2, the above lemmameans x1 /∈ R, thus the only possibility
is x1 = eiθ for some θ , then (x2m1 − 1)x1 + (1 + β j)(x

2(m+1)
1 − 1) = 0 implies that

(xm1 − x−m
1) + (1 + β j)(x

m+1
1 − x−m−1

1) = 0. (B34)

So (eimθ − e−imθ) + (1 + β j)(ei(m+1)θ − e−i(m+1)θ) = 0, that is

sinmθ + (1 + β j) sin(m + 1)θ = 0. (B35)

Thus,

σ

(1 − γ j)2
= (xm1 (1 + x1(1 + β j)))

2 (B36)

= ((cosmθ + i sinmθ)(1 + (1 + β j) cos θ + i(1 + β j) sin θ))2 (B37)

= [(cosmθ(1 + (1 + β j) cos θ) − (1 + β j) sinmθ sin θ) (B38)

Quantum vs. Classical Algorithms for Solving the Heat Equation 633

+ i((1 + β j) cosmθ sin θ + (1 + (1 + β j) cos θ) sinmθ)]2 (B39)

= [(cosmθ + (1 + β j) cos(m + 1)θ) + i(sinmθ + (1 + β j) sin(m + 1)θ)]2
(B40)

= (cosmθ + (1 + β j) cos(m + 1)θ)2 (B41)

=
(

sin θ

sin(m + 1)θ

)2

, (B42)

where the last identity (B42) is derived from the identity (B35).
On the other hand,

σ

(1 − γ j)2
= 1 + (1 + β j)

2 + (1 + β j)(x1 + x−1
1) = 1 + (1 + β j)

2 + 2(1 + β j) cos θ.

(B43)

Substitute β j = γ j/(1 − γ j) into (B35) and (B43) will yield the claimed results. ��
Based on the above calculation, next we compute the singular values of T , which is

claimed in Eq. (B10). It suffices to choose j = 0 in (B33). If j = 0, then γ j = β j = 0,
so x1 satisfies x2m+1

1 (1 + x1) = (1 + x1). Since x1 �= −1, we obtain x2m+1
1 = 1, i.e.,

ei(2m+1)θ = 1, thus θ = 2kπ
2m+1 , where k = 0,±1, . . . ,±m. Note that x1 �= x2, so k �= 0.

Also note that x1x2 = 1, so we just need to choose k = 1, 2, . . . ,m to determine x1.
For these θ ,

σ =
(

sin 2kπ
2m+1

sin 2k(m+1)π
2m+1

)2

=
(
2 sin kπ

2m+1 cos
kπ

2m+1

sin kπ
2m+1

)2

=
(
2 cos

kπ

2m + 1

)2

. (B44)

Therefore, the singular values of T are 2 cos kπ
2m+1 , where k = 1, 2, . . . ,m.

Appendix C: L is Well-Conditioned on Nonnegative Vectors

In this appendix, we show that L cannot shrink nonnegative vectors too much, implying
that the quantum algorithm for solving linear equations can construct a quantum state
corresponding to Lu0 efficiently, given a quantum state corresponding to u0.

Lemma 4 (restated). Let L be defined by (13), taking �t = �x2/(2αd) as in Corol-
lary 2. Then for all nonnegative vectors u, ‖Lu‖22/‖u‖22 ≥ 1/(2d).

Proof. Write L =∑d
i=1 Li , where Li acts only on the i’th coordinate and

Li ũ(x, t) = 1

2d
(̃u(. . . , xi + �x, . . . , t) + ũ(. . . , xi − �x, . . . , t)) . (C1)

This operator corresponds to the matrix

1

d

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
2 . . . 1

2
1
2 0 1

2 . . .

1
2 0

. . .

. . .
1
2 0 . . . 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)

634 N. Linden, A. Montanaro, C. Shao

Then

‖Lu‖22 =
d∑

i, j=1

uTLiL ju ≥
d∑

i=1

uTL2
i u (C3)

using non-negativity of Li and u. It is easy to see that the matrix for L2
i has entries all

equal to 1
2d2

on the main diagonal, and non-negative entries elsewhere. Therefore, for
each i ,

uTL2
i u ≥ ‖u‖22

2d2
, (C4)

and hence ‖Lu‖22 ≥ ‖u‖22/(2d). ��

Appendix D: Bounds on �2 Norm of Solutions to Heat Equation

In this appendix we prove Lemma 14, which gives upper and lower bounds on ‖Lτ |0〉‖22
in the special case where�t = �x2/(2dα). To achieve this, we will use Fourier analysis
(similarly to “Appendix B”). As in the previous appendix, write L = ∑d

i=1 Li , where
Li acts only on the i’th coordinate and

Li ũ(x, t) = 1

2d
(̃u(. . . , xi + �x, . . . , t) + ũ(. . . , xi − �x, . . . , t)) . (D1)

Each operatorLi is diagonalised by the quantum Fourier transform onZn and has eigen-
values 1

d cos(2πy/n) for y = 0, . . . , n − 1. Applying the quantum Fourier transform
to |0〉 gives a uniform superposition over all Fourier modes y, which we identify with
elements of Zn . Then

‖Lτ |0〉‖22 = n−d
n−1∑

y1,...,yd=0

[
1

d

d∑
i=1

cos(2πyi/n)

]2τ
. (D2)

We also observe that L describes a simple random walk on a periodic d-dimensional
square lattice. As

‖Lτ |0〉‖22 = 〈0|L2τ |0〉, (D3)

where we use |0〉 to denote the origin, we can interpret ‖Lτ |0〉‖22 as the probability of
returning to the origin after 2τ steps of the random walk.

To complete the proof of Lemma 14 and bound this quantity, we will first handle the
simpler 1-dimensional case separately.

Lemma 28. Let d = 1 and let L be defined by (13), taking �t = �x2/(2α) as in
Corollary 2. Then

max

{
1

n
,

1

2
√

τ

}
≤ 〈0|L2τ |0〉 ≤ 4

n
+

1√
πτ

. (D4)

Quantum vs. Classical Algorithms for Solving the Heat Equation 635

Proof. A lower bound

〈0|L2τ |0〉 ≥
(2τ

τ

)
22τ

≥ 1

2
√

τ
(D5)

follows by observing that the probability of returning to 0 after 2τ steps is lower-bounded
by the probability of a random walk on the integers (not considered modulo n) returning
to 0 after 2τ steps, which is exactly

(2τ
τ

)
/22τ . Next, we use (D2) to obtain

〈0|L2τ |0〉 = 1

n

n−1∑
y=0

cos(2πy/n)2τ , (D6)

which is an exact statement for the walk modulo n, and observe that a lower bound of
1/n is immediate from considering only the y = 0 term.

For an upper bound, we start with the same expression, and use

〈0|L2τ |0〉 ≤ 4

n

�n/4�∑
y=0

cos(2πy/n)2τ (D7)

≤ 4

n

�n/4�∑
y=0

e−4τπ2 y2/n2 (D8)

≤ 4

n

(
1 +
∫ ∞

0
e−(2

√
τπy/n)2dy

)
(D9)

= 4

n

(
1 +

n

2π
√

τ

∫ ∞

0
e−y2dy

)
(D10)

= 4

n
+

1√
πτ

. (D11)

The first inequality follows from splitting the sum up as

n−1∑
y=0

cos(2πy/n)2τ =
∑
y≤n/4

cos(2πy/n)2τ +
∑

n/4<y≤n/2

cos(2πy/n)2τ +
∑

n/2<y≤3n/4

cos(2πy/n)2τ

+
∑

3n/4<y<n

cos(2πy/n)2τ . (D12)

Using that cos(θ)2 = cos(kπ ± θ)2 for k ∈ Z, each of the last three sums is upper-
bounded by the first one. For example,∑

n/4<y≤n/2

cos(2πy/n)2τ =
∑

n/4<y≤n/2

cos(2π(n/2 − y)/n)2τ =
∑

n/4<n/2−y′≤n/2

cos(2πy′/n)2τ

=
∑

0≤y′<n/4

cos(2πy′/n)2τ ; (D13)

note that if n is not a multiple of 2, y′ = n/2− y ranges over values of the form i + 1/2
for integer i . As cos θ is decreasing in the range 0 ≤ θ ≤ π , replacing the sum with
a sum over integers in the range {0, . . . , n/4} could not make it smaller. The second
inequality uses that cos θ ≤ e−θ2/2 for θ ≤ π/2 [46, Chapter 3, Theorem 2]. ��

636 N. Linden, A. Montanaro, C. Shao

Lemma 14 (restated). Let L be defined by (13), taking �t = �x2/(2dα) as in Corol-
lary 2. Then for any τ ≥ 1,

max

{
1

nd
,

1

(4
√

τ)d

}
≤ 〈0|L2τ |0〉 ≤ de−τ/(4d) +

(
4

n
+

√
d

πτ

)d

. (D14)

Proof. We start by proving the upper bound, which is based on the interpretation of
〈0|L2τ |0〉 as the probability of returning to the origin after 2τ steps of a random walk.
Each step corresponds to choosing one of d dimensions uniformly at random, then
moving in one of two possible directions in that dimension. The walk returns to the
origin after 2τ steps if it has done so in every dimension. To understand the probability
of this event, we use Lemma 28.

Let s ∈ {1, . . . , d}2τ denote the sequence of dimensions chosen by the walk, and
let Ni (s) denote the number of i’s in s. Let p(N) denote the probability that a 1d walk
returns to the origin after N steps. Then

〈0|L2τ |0〉 = d−2τ
∑

s∈{1,...,d}2τ
p(N1(s)) . . . p(Nd(s)) (D15)

using independence of the random walks, conditioned on s. By Lemma 28, we have

〈0|L2τ |0〉 ≤ d−2τ
∑

s∈{1,...,d}2τ

(
4

n
+

1√
πN1(s)

)
. . .

(
4

n
+

1√
πNd(s)

)
. (D16)

By a Chernoff bound, for each i ∈ {1, . . . , d},

Pr
s∈{1,...,d}2τ

[
Ni (s) ≤ Es[Ni (s)]

2

]
= Pr

s∈{1,...,d}2τ
[
Ni (s) ≤ τ

d

]
≤ e−τ/(4d), (D17)

so using a union bound over i ,

〈0|L2τ |0〉 ≤ de−τ/(4d) + d−2τ
∑

s∈{1,...,d}2τ
∀i,Ni (s)>τ/d

(
4

n
+

1√
πN1(s)

)
. . .

(
4

n
+

1√
πNd (s)

)

(D18)

≤ de−τ/(4d) + d−2τ
∑

s∈{1,...,d}2τ
∀i,Ni (s)>τ/d

(
4

n
+

√
d

πτ

)d
(D19)

≤ de−τ/(4d) +

(
4

n
+

√
d

πτ

)d
(D20)

as claimed. Next we prove the lower bound. Using

〈0|L2τ |0〉 = n−d
n−1∑

y1,...,yd=0

[
1

d

d∑
i=1

cos(2πyi/n)

]2τ
, (D21)

Quantum vs. Classical Algorithms for Solving the Heat Equation 637

we get a lower bound of n−d immediately by considering the term y1 = · · · = yd = 0.
For the remaining part of the lower bound, we use that from Lemma 28, the probability
that a walk on Zn making 2k steps returns to the origin is lower-bounded by 1

2
√
k
. So, if

each of the d independent random walks makes an even number of steps, the probability
that they all simultaneously return to the origin is at least 1

(2
√

τ)d
. It remains to lower-

bound the probability that all of the walks make an even number of steps.
Let Ne(d, 2τ) denote the number of sequences of 2τ integers between 1 and d such

that the number of times that each integer appears in the sequence is even. The probability
that all the walks make an even number of steps is Ne(d, 2τ)/d2τ . We will show by
induction on d that Ne(d, 2τ) ≥ d2τ /2d . For the base case, Ne(1, 2τ) = 1 ≥ 1/2 as
required. Then for d ≥ 2,

Ne(d, 2τ) =
τ∑

i=0

(
2τ

2i

)
Ne(d − 1, 2τ − 2i) (D22)

≥
τ∑

i=0

(
2τ

2i

)
1

2d−1 (d − 1)2τ−2i (D23)

= (d − 1)2τ
1

2d−1

τ∑
i=0

(
2τ

2i

)
(d − 1)−2i (D24)

= (d − 1)2τ
1

2d−1

1

2

((
1 +

1

d − 1

)2τ

+

(
1 − 1

d − 1

)2τ
)

(D25)

= 1

2d

(
d2τ + (d − 2)2τ

)
(D26)

≥ 1

2d
d2τ . (D27)

Therefore, with probability at least 1/2d , all of the walks make an even number of steps,
and the probability that they all return to the origin after 2τ steps in total is at least 1

(4
√

τ)d

as claimed. ��

Appendix E: The Crank–Nicolson method for solving the heat equation

The Crank–Nicolson method is a commonly used numerical method for solving the heat
equation. It is unconditionally stable, and is a combination of the forward and backward
Euler methods. In this part, we briefly review the Crank–Nicolson method and see how
it may enable a reduction of the complexity of the linear equation method for solving
our problem. The improvement is at most a linear factor of ε depending on the condition
number of the induced linear system of equations. From numerical evidence for the
scaling of the condition number, it appears that the improvement is by a factor of ε3/4.
However, the use of this method requires more stringent assumptions on the smoothness
of the solution than the FTCSmethod, and still leads to an algorithmwhose complexity is
worse than the best classical algorithms given in Table 1, even under the most optimistic
assumptions on the scaling of the condition number.

We first consider the dimension 1 case. Below, xi = i�x, ti = i�t . By Taylor
expanding, we have

638 N. Linden, A. Montanaro, C. Shao

u(xi , t j+1) = u(xi , t j+1/2) +
∂u

∂t
(xi , t j+1/2)

�t

2
+
1

2

∂2u

∂t2
(xi , t j+1/2)(

�t

2
)2 +

1

6

∂3u

∂t3
(xi , ξ)(

�t

2
)3,

u(xi , t j) = u(xi , t j+1/2) − ∂u

∂t
(xi , t j+1/2)

�t

2
+
1

2

∂2u

∂t2
(xi , t j+1/2)(

�t

2
)2 − 1

6

∂3u

∂t3
(xi , ξ

′)(�t

2
)3,

where ξ ∈ [t j+1/2, t j+1], ξ ′ ∈ [t j , t j+1/2]. So
∂u

∂t
(xi , t j+1/2) = u(xi , t j+1) − u(xi , t j)

�t
− 1

6
(
∂3u

∂t3
(xi , ξ) +

∂3u

∂t3
(xi , ξ

′))(�t

2
)3

= u(xi , t j+1) − u(xi , t j)

�t
+ O(�t3 sup

x,t
|∂

3u

∂t3
|).

Using the average of the second centered differences for ∂2u
∂x2

(xi , t j+1),
∂2u
∂x2

(xi , t j), we
have

∂2u

∂x2
(xi , t j+1/2) = 1

2

(
u(xi+1, t j+1) − 2u(xi , t j+1) + u(xi−1, t j+1)

�x2

+
u(xi+1, t j) − 2u(xi , t j) + u(xi−1, t j)

�x2

)
+ O(�x2 sup

x,t
|∂

4u

∂x4
|).

The Crank–Nicolson method in dimension 1 is then based on the following approxima-
tion:

ũ(xi , t j+1) − ũ(xi , t j)

�t

= 1

2

(
ũ(xi+1, t j+1) − 2ũ(xi , t j+1) + ũ(xi−1, t j+1)

�x2
+
ũ(xi+1, t j) − 2ũ(xi , t j) + ũ(xi−1, t j)

�x2

)
.

In the dimension d case, from the heat equation ∂u/∂t = α
∑d

i=1 ∂2u/∂x2i , we know
that

sup
x,t

|∂
3u

∂t3
| ≤ α3d3 sup

x,t
| ∂6u

∂x2i ∂x
2
j ∂x

2
k

|.

Using assumptions (2)–(4) in the main paper, we can bound

sup
x,t

|∂
3u

∂t3
| = O(α3d3ζ/Ld+2),

by making a further bound assumption consistent with the above that

sup
x,t

| ∂6u

∂x2i ∂x
2
j ∂x

2
k

| ≤ ζ

Ld+2 .

Denoting λ = α�t/2�x2, the Crank–Nicolson method in dimension d is

ũ(x, t + �t) − ũ(x, t) = λ

d∑
i=1

(
ũ(x + �xei , t + �t) − 2ũ(x, t + �t)

Quantum vs. Classical Algorithms for Solving the Heat Equation 639

+ ũ(x − �xei , t + �t) + ũ(x + �xei , t) − 2ũ(x, t) + ũ(x − �xei , t)
)
,

where {e1, . . . , ed} is the standard basis of Rd . Therefore,

(1 + 2dλ)ũ(x, t + �t) − λ

d∑
i=1

(
ũ(x + �xei , t + �t) + ũ(x − �xei , t + �t)

)

= (1 − 2dλ)ũ(x, t) + λ

d∑
i=1

(
ũ(x + �xei , t) + ũ(x − �xei , t)

)
.

We can write it in a matrix form

Lũi+1 = Rũi ,

where the notation ũi and ui below are the same as those in Theorem 1. From the above
analysis,

‖Lui+1 − Rui‖∞ ≤ �t

(
α3d3ζ�t2

Ld+2 +
αdζ�x2

Ld

)
=: E .

Assume that Lũi = Lui + Ei , where Ei is the error. Then

ũ0 = u0,
Lũ1 = Rũ0 = Ru0 = Lu1 + E1, where ‖E1‖∞ ≤ E .

Lũ2 = Rũ1 = R(u1 + L−1E1) = Lu2 + E2 + RL−1E1,

where ‖E2 + RL−1E1‖∞ ≤ (1 + ‖RL−1‖∞)E .

If ‖RL−1‖∞ =
(1), then ‖Lũ2 − Lu2‖∞ ≤ 2E . Therefore, we have

‖Lũm − Lum‖∞ ≤ mE = T

(
α3d3ζ�t2

Ld+2 +
αdζ�x2

Ld

)
.

Set the above error bound as ε/Ld+2, we have

�t ≤
√

ε/α3d3ζT , �x ≤
√

ε/αdζT L2.

So

m = T
√

α3d3ζT/ε�, n = L
√

αdζT L2/ε�.
Comparing to Corollary 2, m has better dependence on ε.

From numerical tests, the condition number of the induced linear equations is of order
m. So if we use the classical linear equation method, similarly to the proof of Theorem 5,
the complexity (here we only show the dependence on ε) becomes

Õ(m3/2nd) = Õ(ε− d
2 − 3

4).

This is better than Theorem 5 (recall that the complexity in Theorem 5 is Õ(ε− d
2 − 3

2))
by a factor of ε3/4. Moreover, even if we assume that the condition number is 1, the

640 N. Linden, A. Montanaro, C. Shao

complexity is Õ(mnd) = Õ(ε− d
2 − 1

2), which leads to a linear improvement in ε. But
this is still worse than the best classical algorithms given in Table 1.

In summary, as we can see, the advantage of the Crank–Nicolson method is that the
error to approximate ∂u/∂t becomes O(�t2). Correspondingly, m can be improved to
m ≈ 1/

√
ε from 1/ε (see Corollary 2). As a result, the Crank–Nicolson method may

lead to a slightly better classical linear equations algorithm by at most a factor of ε than
Theorem 5, at the cost of needing to make an additional assumption on the smoothness
of the solution. Onemay also ask whether the other algorithms studied in this work could
be improved by the use of the Crank–Nicolson method rather than FTCS. When d ≥ 3
our best classical algorithm is based on random walk. However, we do not know how to
define a randomwalkmethod for the heat equation based on theCrank–Nicolson scheme.
When d ≤ 2, the best classical algorithm is based on the fast Fourier transform. From
the Crank–Nicolson scheme, we can also propose a similar method based on the fast
Fourier transform. Similarly to Theorem 8, the cost is close to nd . In the Crank–Nicolson
method, we still have n ≈ 1/

√
ε. So the complexity does not change.

References

1. Harrow, A., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett.
15, 150502 (2009). arXiv:0811.3171

2. Leyton, S., Osborne, T.: A quantum algorithm to solve nonlinear differential equations (2008).
arXiv:0812.4423

3. Clader, B., Jacobs, B., Sprouse, C.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett.
110, 250504 (2013). arXiv:1301.2340

4. Berry, D.: High-order quantum algorithm for solving linear differential equations. J. Phys. A: Math. Gen.
47, 105301 (2014). arXiv:1010.2745

5. Berry, D., Childs, A., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations
with exponentially improved dependence on precision. Commun. Math. Phys. 356, 1057 (2017).
arXiv:1701.03684

6. Arrazola, J., Kalajdzievski, T., Weedbrook, C., Lloyd, S.: Quantum algorithm for nonhomogeneous linear
partial differential equations. Phys. Rev. A 100, 032306 (2019). arXiv:1809.02622

7. Childs, A., Liu, J.-P.: Quantum spectral methods for differential equations. Commun.Math. Phys. (2020).
arXiv:1901.00961

8. Lubasch, M., Joo, J., Moinier, P., Kiffner, M., Jaksch, D.: Variational quantum algorithms for nonlinear
problems (2019). arXiv:1907.09032

9. Childs, A., Liu, J.-P., Ostrander, A.: High-precision quantum algorithms for partial differential equations
(2020). arXiv:2002.07868

10. Xin, T., Wei, S., Cui, J., Xiao, J., Arrazola, I., Lamata, L., Kong, X., Lu, D., Solano, E., Long, G.:
Quantum algorithm for solving linear differential equations: theory and experiment. Phys. Rev. A 101
(2020). arXiv:1807.04553

11. Cao, Y., Papageorgiou, A., Petras, I., Traub, J., Kais, S.: Quantum algorithm and circuit design solving
the Poisson equation. New J. Phys. 15, 013021 (2013). arXiv:1207.2485

12. Scherer, A., Valiron, B., Mau, S.-C., Alexander, S., van den Berg, E., Chapuran, T.: Concrete resource
analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross
section of a 2D target. Quantum Inf. Process. 16, 1 (2017). arXiv:1505.06552

13. Wang, S., Wang, Z., Li, W., Fan, L., Wei, Z., Gu, Y.: Quantum fast Poisson solver: the algorithm and
modular circuit design (2019). arXiv:1910.09756

14. Costa, P., Jordan, S., Ostrander, A.: Quantum algorithm for simulating the wave equation. Phys. Rev. A
99 (2019). arXiv:1711.05394

15. Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A 93, 032324
(2016). arXiv:1512.05903

16. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)
17. Wilmott, P., Howson, S., Howison, S., Dewynne, J., et al.: The Mathematics of Financial Derivatives: A

Student Introduction. Cambridge University Press, Cambridge (1995)
18. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern

Anal. Mach. Intell. 12, 629 (1990)
19. Ore, O.: On functions with bounded derivatives. Trans. Am. Math. Soc. 43, 321 (1938)

http://arxiv.org/abs/0811.3171
http://arxiv.org/abs/0812.4423
http://arxiv.org/abs/1301.2340
http://arxiv.org/abs/1010.2745
http://arxiv.org/abs/1701.03684
http://arxiv.org/abs/1809.02622
http://arxiv.org/abs/1901.00961
http://arxiv.org/abs/1907.09032
http://arxiv.org/abs/2002.07868
http://arxiv.org/abs/1807.04553
http://arxiv.org/abs/1207.2485
http://arxiv.org/abs/1505.06552
http://arxiv.org/abs/1910.09756
http://arxiv.org/abs/1711.05394
http://arxiv.org/abs/1512.05903

Quantum vs. Classical Algorithms for Solving the Heat Equation 641

20. Lawler, G.: Random Walk and the Heat Equation. American Mathematical Society, Providence (2010)
21. Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369 (1947)
22. King, G.: Monte-Carlo method for solving diffusion problems. Ind. Eng. Chem. 43, 2475 (1951)
23. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.: Multilevel Monte Carlo methods and applications to

elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3 (2011)
24. Giles, M.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607 (2008)
25. Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regres-

sion techniques via faster Hamiltonian simulation. In: Proceedings of 46th International Colloquium on
Automata, Languages, and Programming, pp. 33:1–33:14 (2019). arXiv:1804.01973

26. Apers, S., Sarlette, A.: Quantum fast-forwarding: Markov chains and graph property testing (2018).
arXiv:1804.02321

27. Gilyén, A., Su, Y., Low, G., Wiebe, N.: Quantum singular value transformation and beyond: exponential
improvements for quantummatrix arithmetics. In: Proceedings of 51st Annual ACM Symposium Theory
of Computing, pp. 193–204 (2019). arXiv:1806.01838

28. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Quantum
Computation and Quantum Information: A Millennium 305, 53 (2002). arXiv:quant-ph/0005055

29. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University
Press, Cambridge (2009)

30. LeVeque, R.: Finite DifferenceMethods for Ordinary and Partial Differential Equations. SIAM, Philadel-
phia (2007)

31. Trefethen, L.: Finite difference and spectral methods for ordinary and partial differential equations (1996).
http://people.maths.ox.ac.uk/trefethen/pdetext.html

32. Shewchuk, J.: An introduction to the conjugate gradientmethodwithout the agonizing pain. Technical Re-
port CMU-CS-TR-94-125 (Carnegie Mellon University, 1994). http://www.cs.cmu.edu/~quake-papers/
painless-conjugate-gradient.ps

33. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, Cambridge (2009)

34. Kachitvichyanukul, V., Schmeiser, B.: Binomial random variate generation. Commun. ACM 31, 216
(1988)

35. Devroye, L.: Non-uniform Random Variate Generation. Springer-Verlag, New York (1986)
36. Childs, A., Kothari, R., Somma, R.: Quantum linear systems algorithm with exponentially improved

dependence on precision. SIAM J. Comput. 46, 1920 (2017). arXiv:1511.02306
37. Zalka, C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. A Math. Phys. Eng. Sci.

454, 313 (1998) https://doi.org/10.1098/rspa.1998.0162
38. Long, G.-L, Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed

state. Phys. Rev. A 64 (2001). arXiv:quant-ph/0104030
39. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability

distributions (2002). arXiv:quant-ph/0208112
40. Kaye, P., Mosca, M.: Quantum networks for generating arbitrary quantum states (2004).

arXiv:quant-ph/0407102
41. Sanders, Y.R., Low, G.H., Scherer, A., Berry, D.W.: Black-box quantum state preparation with-

out arithmetic. Phys. Rev. Lett. 122, 020502 (2019). https://doi.org/10.1103/PhysRevLett.122.020502,
arXiv:1807.03206

42. Watrous, J.:Quantumsimulations of classical randomwalks and undirected graph connectivity. J. Comput.
Syst. Sci. 62, 376 (2001). (quant-ph/9812012)

43. Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12, 449 (1992)
44. Bauer, W.: The Monte Carlo method. J. Soc. Ind. Appl. Math. 6, 438 (1958)
45. Chia, N.-H., Gilyén, A., Li, T., Lin, H.-H., Tang, E., Wang, C.: Sampling-based sublinear low-rank matrix

arithmetic framework for dequantizing quantum machine learning (2019). arXiv:1910.06151
46. Diaconis, P.: Group representations in probability and statistics (Institute ofMathematical Statistics, 1988)

Communicated by H-T. Yau

http://arxiv.org/abs/1804.01973
http://arxiv.org/abs/1804.02321
http://arxiv.org/abs/1806.01838
http://arxiv.org/abs/quant-ph/0005055
http://people.maths.ox.ac.uk/trefethen/pdetext.html
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.ps
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.ps
http://arxiv.org/abs/1511.02306
https://doi.org/10.1098/rspa.1998.0162
http://arxiv.org/abs/quant-ph/0104030
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/quant-ph/0407102
https://doi.org/10.1103/PhysRevLett.122.020502
http://arxiv.org/abs/1807.03206
http://arxiv.org/abs/1910.06151

	Quantum vs. Classical Algorithms for Solving the Heat Equation
	Abstract:
	1 Introduction
	1.1 Our Results

	2 Technical Ingredients
	2.1 Discretisation
	2.2 Numerical integration
	2.3 Condition number

	3 Classical Methods
	3.1 Linear systems
	3.2 Random walk method
	3.3 Fast random walk method

	4 Quantum Methods
	4.1 Quantum linear equation solving method
	4.2 Fast-forwarded random walk method
	4.3 Diagonalisation and postselection method
	4.4 Random walk amplitude estimation approach
	4.5 Fast random walk amplitude estimation approach

	5 Concluding Remarks
	Acknowledgements
	References

