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Abstract: We prove that under the dominant energy condition any non-degenerate
smooth compact totally geodesic horizon admits a smooth tangent vector field of constant
non-zero surface gravity. This result generalizes previous work by Isenberg and Mon-
crief, and byBustamante andReiris to the non-vacuumcase, the vacuumcase being given
a largely independent proof. Moreover, we prove that any such achronal non-degenerate
horizon is actually a Cauchy horizon bounded on one side by a chronology violating
region.

1. Introduction

In this work we are going to study the surface gravity over compact null hypersurfaces.
This study is motivated by the strong cosmic censorship conjecture. Roughly speaking,
this conjecture states that under reasonable physical assumptions, spacetimes have to be
globally hyperbolic. This means that no complete spacelike hypersurface S should have
a non-empty Cauchy horizon H+(S).

Naturally, one could hope to start proving the compact case of the conjecture, which
means to show that under reasonable conditions compact Cauchy horizons cannot form.
Notice that the cosmic censorship conjecture is framed in the context of general, non-
necessarily vacuum spacetimes. The rigidity case of this problem asks to prove that for
vacuum spacetimes (the vacuum condition can be regarded as a non-generic condition)
compact Cauchy horizons can form but just in special circumstances.1

The precise formulation of this rigidity case was given by Isenberg and Moncrief
[32]. They conjectured that every smooth compact null hypersurface (hence generated
by lightlike geodesics) in a (electro-)vacuum spacetime is actually Killing, namely, there

1 As another example of a rigidity case, consider Hawking-Penrose’s singularity theorem. Its rigidity case
is the Lorentzian splitting theorem, which states that under the assumptions of H.-P.’s theorem, provided we
drop the genericity condition, there can be a complete timelike line, but only under a very special circumstance:
the spacetime splits as a product.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-022-04440-8&domain=pdf
http://orcid.org/0000-0002-9890-7246
http://orcid.org/0000-0002-8293-3802


680 S. Gurriaran, E. Minguzzi

exists a Killing vector field tangent to the hypersurface [32]. They were able to prove the
result under the additional assumptions [17], (a) themetric and horizon are analytic,2 and
(b) the horizon generators are closed; but conjectured that (a) and (b) could be dropped.

In a subsequent remarkable paper [33] they introduced the ribbon argument. With it
they were able to prove, under the assumption of the existence of a certain atlas [33, Eq.
(4.1)] (which implies the existence of an integrable distribution), under analyticity, and
still in the vacuum case, that if the horizon admits a future incomplete generator, then
all generators are actually future incomplete. Unfortunately, the existence of a foliation
(integrable distribution) transverse to the generators is quite a non-trivial matter, the
more so in the analytic case, a fact which excluded some types of geodesic dynamics
from their analysis. This problemwas addressed by Bustamante and Reiris in [40]. In the
smooth category they were able to replace the coordinate slices (foliations) of [33,34]
with a ‘horizontal’ not-necessarily-integrable distribution by introducing the ‘horizontal
exponential map’.

Let n be a future-directed lightlike vector field tangent to the horizon H . Here the
surface gravity is the (n-dependent) function κ : H → R

∇nn = κn.

Isenberg andMoncrief were able to show [32], under analyticity, that the surface gravity
κ has to be constant and that the cases κ �= 0 (non-degenerate) and κ = 0 (degenerate)
should be studied separately.

The former would correspond to generators incomplete in one direction and the
latter to complete generators. Actually, they showed that any compact analytic null
hypersurface with constant non-zero surface gravity and closed generators is a Cauchy
horizon [32].

The analytic limitation prevented the proof of their original conjecture. In [10]
Friedrich, Rácz and Wald proved the existence of the Killing vector on one side of
the horizon. They worked in the smooth category and under a vacuum assumption but
still imposed the closure of the generators. In a subsequent work Rácz showed that, under
the same assumptions, the constancy of surface gravity could be proved already for the
non-vacuum case provided the dominant energy condition was imposed [39, Prop. 4.1].

In a series of recent papers Petersen [36,37] and Petersen and Rácz [38] have shown
that in the vacuum smooth case and for smooth horizons it is possible to prove the
existence of a Killing vector field tangent to the horizon provided a smooth choice for
n exists such that κ = −1. Finally, Bustamante and Reiris [40] proved, by using a
modified ribbon argument and the horizontal exponential map mentioned above, that
in the vacuum smooth case it is indeed possible to choose κ = −1. This solved the
Isenberg–Moncrief conjecture in the non-degenerate case.

Of course, these results have very important consequences, as they fix considerably
the possible topologies and symmetries of a spacetime admitting a compact Cauchy
horizon [5,18,34].

The purpose of this work is to study the constancy of surface gravity over compact
null hypersurfaces without the vacuum assumption. We shall be able to generalize most
of the previous results to the non-vacuum case under a dominant energy condition. This
result can be obtained rather easily, provided some key observations are made.

Under the dominant energy condition we shall prove that compact Cauchy horizons
admitting an incomplete geodesic generator (i.e. non-degenerate) do admit a smooth

2 Now we know that the analiticity of the horizon follows from that of the metric [29].
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field n with constant surface gravity normalized to −1. In a sense what we show in this
paper is that these compact horizons are rigid. The Einsten equations in vacuum serve
just to propagate this rigidity well outside the horizon. Already in the vacuum case our
proof is alternative that of [40]. Given the importance of the results in [40] we find it
useful to present a different approach and proof, in fact most of the paper will be devoted
to it.

The main difference with respect to [40] is that, while they work with a vector field
Z defined just on the ribbon and proportional to n, we only work with a smooth vector
field n which is globally defined over H . Compactness arguments become particularly
transparent in our approach and we do not need to introduce the horizontal exponential
map or some frame bundle. The ribbon argument is used just once, and then the ribbon
is not mentioned anymore, contrary to [40] where it is present through the whole proof.

Letting Λ(p) be the geodesic length of the generator starting at p with tangent n(p),
our approach not only allows us to prove thatΛ is smooth, it also allows us to compute the
first and second covariant derivatives ofΛ, and to show that the latter satisfies an elliptic
PDE (in the vacuum case). The smoothness of Λ, which is key to show the existence
of a smooth n with constant κ , follows then immediately by a bootstrap argument. The
non-vacuum case requires a slightly longer analysis.

Another difference is that, while they basically prove constancy of κ and smoothness
of Λ at once, we first prove that n can be chosen so that κ is negative and bounded away
from zero, and then use this property to show that the integral expression for Λ can be
differentiated. In the former step we are also able to obtain a rather clear connection
between the divergent behavior of the integral

∫
κ(s)ds along one generator and the

incompleteness of the generators (cf. the equivalence between 1 and 4 in Def. 4).
Although longer, our proof provides some fine details on the analysis of the problem

and also leads to some interesting equations in the non-vacuum case (cf. Thm. 6, Sec.
8, Eq. (46)).

Remark 1. Anticipating some of the notation to be introduced later on, we might more
precisely outline the proof strategy as follows. If every generator of the horizon starting
with velocity n is future incomplete, and if the finite affine lengthΛ(p) depends smoothly
on the starting point p of the generator, then the vector field K = Λn is easily shown
to have surface gravity −1. Unfortunately, the affine length has expression (Lemma 2)
Λ = ∫ ∞

0 exp(
∫ ρ

0 κ)dρ, and it is difficult to control convergence and regularity under
change of generator.

Our strategy consists in showing that there is a sufficiently large constant C > 0,
independent of the generator, such that, if we take instead the approximating expression
n′ = (

∫ C
0 exp(

∫ ρ

0 κ)dρ)n we get negative surface gravity κ ′ for n′ (Thm. 3) provided
just one generator is future incomplete. It turns out that we just need C as in the result
of Proposition 2 for this to work. Thus we follow the steps:

1. If a generator is incomplete then over the same curve (s-parametrized,with n = d/ds)
we have

∫ ∞
0 κ(s)ds = −∞.

2. Using the ribbon argument, if the equation
∫ ∞
0 κ(s)ds = −∞ is true for one gener-

ator, then it is true for every generator.
3. Using this fact, and compactness, on a non-degenerate horizon we can get a global

C > 0 such that for ρ ≥ C , and for every generator,
∫ ρ

0 κ(s)ds < 0.

4. The vector field n′ = (
∫ C
0 exp(

∫ s
0 κ)ds)n has negative surface gravity, and hence

every generator is future incomplete.
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5. Λ′, the affine length obtained using n′, is now finite. Its smoothness follows from the
fact that Λ′ has an integral expression, together with its derivatives, which involves
the exponential e

∫ ρ
0 κ ′(s)ds with κ ′ upper bounded by a negative constant (by continuity

and compactness). Finally, the field Λ′n′ is smooth and has surface gravity −1.

Continuing with the description of the paper, in Section 8 we are able to prove, in any
dimensions, a result previously obtained by Moncrief and Isenberg under assumptions
of analyticity and closure of generators, namely that in the non-degenerate case horizons
are in fact Cauchy horizons bounded by regions of chronology violation, cf. [34] and
[36, Cor. 2.13] for the vacuum case. We also argue that the horizon classifications by
Rendall [41], and by Bustamante and Reiris [5] can be extended to the non-vacuum case.

It is pleasing that the constancy of surface gravity on (non-degenerate) compact
horizons can be proved by just imposing the dominant energy condition as this result
becomes completely analogous to that on the constancy of surface gravity on (non-
extremal) Killing horizons in Black Holes physics [1] [42, Sec. 12.5] [16, Thm. 7.1]
[7, Thm. 4.3.12]. In fact, the latter result can be obtained from the former by using the
usual compactification trick as in [10, Sect. 2] (the other direction in not possible). As
mentioned, this type of results appeared in the literature but only under the assumption
of closure of generators [39].

Finally, it is worth mentioning that this work is much self contained and that all
computations are coordinate independent. For instance, we do not need to introduce
Gaussian null coordinates. Hopefully, this approach, whichwe find particularly efficient,
will be appreciated by some readers.

Let us introduce some notations and conventions. The spacetime (M, g) is a smooth
connected time-oriented Lorentzian manifold of dimension n + 1. The signature of g is
(−,+, · · · ,+). The symbol of inclusion is reflexive, X ⊂ X . The compact null hyper-
surface or the compact Cauchy horizon is denoted H , smooth future-directed lightlike
vector fields tangent to H are denoted n (this should not cause confusion with the mani-
fold dimension), their integral parameter is denoted with s or ρ, and their flow is denoted
ϕs . The reader is referred to [30] for all the other conventions adopted without mention
in this work.

2. Mathematical Preliminaries

We recall that the null (energy) convergence condition is: for every null vector X ∈ T M ,
Ric(X, X) ≥ 0. By (Λ-)dominant energy condition we shall understand the following
property: Let Λ ∈ R be a constant (the cosmological constant). The endomorphism
T : T M → T M given by

T : X 
→ {Ric(X, ·) −
[
1

2
R + Λ

]

g(X, ·)}� (1)

sends the future timelike causal cone into the past causal cone (and, by continuity, the
future causal cone into the past causal cone). Since the scalar product of a past causal
vector with a future causal vector is non-negative, the dominant energy condition implies
the null convergence condition [15]. Of course, under the Einstein’s equations, T can be
interpreted as the stress-energy tensor.

A C2 hypersurface is known to be null iff locally achronal and ruled by lightlike
geodesics [11,23] [30, Thm. 6.7]. This property suggests how to define the notion ofC0

null hypersurface [11]. Precisely a past C0 null hypersurface H is a locally achronal
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topological embedded hypersurface such that for every p ∈ H there is a past inextendible
lightlike geodesic contained in H with future endpoint p. PastC0 null hypersurface will
also be called future horizons. The most notable example of future horizon is the future
Cauchy horizon H+(S) of a partial Cauchy hypersurface S.

Horizons canbehighly irregular [8], and this also extends to compactCauchyhorizons
[4]. However, under the null energy condition we have [29, Thm. 18] and [24, Thm.
1.18]

Theorem 1. Suppose that the null convergence condition holds. Let H be a compact
achronal 3 future horizon whose past inextendible generators are past complete. Then
H is an embedded smooth null hypersuface which is analytic if the metric is analytic.
Moreover, H is totally geodesic and it is generated by inextendible lightlike geodesics.

This result was phrased in terms of Cauchy horizons in [24,29] (but Theorem 1 is
immediate from the proofs). Indeed, the important application to future Cauchy horizons
was possible because of the proof that future Cauchy horizons (also non-smooth ones)
have past complete generators [21,28] (the original proof by Hawking [15] relied on a
smoothness assumption).

It should be mentioned that for C2 null hypersurfaces the relationship between the
total geodesic property and the second fundamental form is somewhat non-trivial. The
second fundamental form is defined as an endomorphism X 
→ b(X) := ∇Xn on the
quotient bundle T H/n, where the overline denotes projection under that quotient. It can
be shown that it vanishes iff∇XY ∈ T H for any two vector fields tangent to the horizon.
This equivalence goes back to Kupeli [23, Thm. 30].

3. Smooth Null Hypersurfaces

In this paper we shall be mostly interested in the null hypersurfaces that result from the
application of Thm. 1. Since we shall not use all the properties implied by that theorem,
we shall assume throughout the paper and without further notice that

(�) H is an embedded compact connected smooth totally geodesic null hypersurface.

By a well known result, smoothness implies that H is generated by lightlike geodesics
[2,6,28]. The total geodesic property implies that the expansion and shear vanish, θ =
σ = 0, and then the Raychaudhuri equation implies R(n, n) = 0 over H .

Since H is totally geodesic there is a 1-form ω : H → T ∗H such that

∇Xn = ω(X)n

where X ∈ T H .

Definition 1. The function κ : H → R, determined by ∇nn = κn, i.e. κ := ω(n), is
called surface gravity.

Of course, the surface gravity depends on the chosen smooth field n. Our problem
with be to determine if a smooth choice of vector field with constant surface gravity
exists.

We provide a couple of examples of vacuum spacetimes admitting a compact Cauchy
horizon, and show how to conveniently calculate their surface gravity. For more exam-
ples, with classification results for topologies and dynamical behavior of generators, see
[5,22].

3 Incidentally, with Prop. 4 we shall prove that achronal can be dropped.



684 S. Gurriaran, E. Minguzzi

Example 1 (Quotient Schwarzschild spacetime). Let us consider, for some constantm >

0, the Schwarzschild spacetime in ingoing Eddington-Finkelstein coordinates. This is
the manifold M̃ = (0,∞)r × Rv × S2 endowed with the metric

g = 2drdv −
(

1 − 2m

r

)

dv2 + r2gS2 ,

and timeorientationprovidedby the (future-directed) lightlike vectorT := −∂r .Observe
that this is a coordinate patch that does not cover the whole Kruskal-Szekeres maximal
extension, e.g. the white hole horizon is excluded. The black hole horizon is the region
r = 2m, the interior of the black hole is the region r < 2m, and the exterior is the region
r > 2m. The vector field n := ∂v is Killing, tangent to the horizon and timelike on the
exterior of the black hole. Let ϕ be the flow of n, and for some constant c > 0 let us
identify every p ∈ M̃ with ϕnc(p) for every n ∈ Z. The spacetime M obtained through
this identification is a vacuum spacetime which admits the compact Cauchy horizon
H = {r = 2m} of topology S2 × S1. The Killing vector n is tangent to H .

The fastest way to calculate the surface gravity is via Proposition 5 that we shall prove
later on (but the reader can already check its simple proof). The vector field T = −∂r
commutes with n and is such that g(T, n) = −1 =: − 1

a thus the surface gravity is

κ = a

2
∂T g(n, n)|H = −1

2
∂r

(
2m

r
− 1

)

|H = 1

4m
.

The identification sends the exterior r > 2m into a region of chronology violation that
lies in the causal past of H , while a compact partial Cauchy hypersurface S with past
Cauchy horizon H−(S) = H can be found in the causal future of H (a general theorem
establishing these features will be proved in Theorem 9, see also the references cited in
that section). It should be noted that the generators of H are past incomplete because in
the covering M̃ the white hole and hence the bifurcation region of the horizon present
in the Kruskal-Szekeres maximal extension, that they would intersect, has been cut out
[3].

Example 2 (Misner spacetime). The Misner vacuum spacetime is given by the manifold
M = Rt × S1x × T 2 endowed with the metric

g = −2dtdx + tdx2 + gT 2 ,

and time orientation provided by the (future-directed) lightlike vector T := ∂t . The
region of chronology violation is given by the open set t < 0, while H = {t = 0} is
a null hypersurface of topology T 3 which is the past Cauchy horizon of the spacelike
partial Cauchy hypersurfaces Sc = {t = c}, c > 0. Note that n := ∂x is Killing, tangent
to H , timelike in the region t < 0 and spacelike in the region t > 0.

Since g(n, T ) = −1 =: − 1
a we have, again by Proposition 5, that the surface gravity

is

κ = a

2
∂T g(n, n)|H = 1

2
∂t (t) = 1

2
.

Affinely parametrized geodesics on the horizon have the form λ 
→ (t (λ), x(λ), q) =
(0, 2 log( 12 (λ − λ̄)) + cnst, q), q ∈ T 2, and hence are past incomplete.

We noted that there are many possible choices for n. We observe
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Lemma 1. For any function f , redefined n′ = e f n, we have that ω′ = ω + d f .

Proof.

ω′(X)e f n = ∇X (e f n) = e f X ( f )n + e f ∇Xn = [∂X f + ω(X)]e f n

�

It can be observed that this is the typical gauge transformation of the potential for gauge
theories based on the commutative group (R,+), cf. [20]. Indeed we have a half-line
bundle L → H , the fiber of the point p being given by the future-directed lightlike
vectors tangent to H at p. L is diffeomorphic to H × R, via the map esn(p) → (p, s),
where the vector field p → n(p) provides the global section. This shows that the bundle
is trivial (as it is always the case for the contractible fiber R).

Furthermore, on it we have an Abelian connection, indeed

ω̃ := ds + ω

is a connection on L (it is invariant under vertical translations and gives 1 on ∂/∂s). Let
Λ(p) ∈ (0,∞] be the affine length of the geodesic γ such that γ (0) = p, γ̇ (0) = n.
Observe that under a change of section (gauge transformation)

s′ = s − f, (2)

n′ = e f n, (3)

ω′ = ω + d f, (4)

Λ′ = e− f Λ, (5)

κ ′ = e f (κ + ∂n f ), (6)

while

ω̃ := ds + ω, (7)

Ω := dω, (8)

K := Λn, (9)

U := κΛ + ∂nΛ, (10)

are left unchanged, so are independent of the section (an important invariant built from
the second derivatives of Λ will be introduced later on, cf. Eq. (28)). Here we have
extended the half-line bundle L into a bundle L̄ so as to include the infinite future
lightlike vector, and so that K is a section of L̄ → H (as it can be Λ = ∞). By Eq. (5)
at those p whereΛ(p) is finite, K (p) is that unique tangent such that the future-directed
geodesic generator γ (0) = p, γ̇ (0) = K , has affine length one. In our paper n will be
always smooth so K will be finite and smooth provided we can prove that Λ is finite
and smooth. This is the strategy of [34,40] which we shall also follow.

Lemma 2. Let x : R → H , s 
→ x(s), be an integral curve of n, with x(0) = p. The
geodesic γ starting from x(τ ) with tangent γ̇ = n has future affine length

Λ(x(τ )) =
∫ ∞

τ

e
∫ ρ
τ κ(x(s))dsdρ. (11)
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Thus Λ is finite at one point of the integral curve iff it is finite everywhere over it, and in
this case it satisfies the differential equation

1 + κΛ + ∂nΛ = 0. (12)

In particular, for κ constant, we have Λ < ∞ iff κ < 0, in which case Λ = −κ−1.

Proof. Let x : R → H , s 
→ x(s), be an integral curve of n, with x(0) = p, and let
f (s) be such that γ̇ (t (s)) = f (s)n(x(s)). Note that f (τ ) = 1. The geodesic condition
reads

0 = ∇γ̇ γ̇ = f [ f ′ + f κ]n
thus f (s) = C exp[− ∫ s

0 κ(x(s))ds] = exp[− ∫ s
τ

κ(x(s))ds], where we used the initial
condition, thus dt

ds = f −1(s) = exp(
∫ s
τ

κ(x(s))ds) and hence Eq. (11).
As a consequence,

∂τΛ(x(τ )) = −1 −
∫ ∞

τ

κ(x(τ )) exp
∫ ρ
τ κ(x(s))ds dρ = −1 − κ(x(τ ))Λ(x(τ )).

�

Remark 2. As mentioned, the main problem will be to show that K is a smooth finite
section of the bundle L̄ → H , hence a section of L → H . The existence of such a
privileged section K will not necessarily imply that the bundle is flat, in fact in general
we shall have dω �= 0.

We need the following algebraic result of which we provide a coordinate independent
proof (as mentioned, in this work we do not need to introduce Gaussian null coordinates,
compare [32,37,38]).

Lemma 3. For vector fields X,Y ∈ T H

R(X,Y )n = dω(X,Y )n,

Ric(Y, n) = dω(n,Y ).

Moreover, there is a bilinear form μ : H → T ∗H ⊗ T ∗H on the horizon such that for
every X,Y ∈ T H, R(n, X)Y = μ(X,Y )n and μ(X,Y ) − μ(Y, X) = −dω(X,Y ).

The result establishes that the 2-form dω, which is independent of the section n, has
indeed an important geometrical meaning. The first formula establishes the connection
between the curvature of∇ and the curvature dω of the Abelian gauge theory introduced
previously.

Note that the right-hand side makes only sense for X,Y ∈ T H as ω ∈ T ∗H while
the left-hand side could make sense also for X,Y ∈ T M .

One could also calculate the second Bianchi identity by using the first expression for
the curvature, just to check whether there are further conditions to be imposed on ω. It
turns that this identity is equivalent to the closure of dω and so it is trivially satisfied.

Proof. Indeed, remembering that ∇ is well defined as a Koszul connection on H

∇X∇Y n − ∇Y∇Xn − ∇[X,Y ]n = ∇X [ω(Y )n] − ∇Y [ω(X)n] − ω([X,Y ])n
= {∇X [ω(Y )] − ∇Y [ω(X)] − ω([X,Y ])}n
= (dω)(X,Y )n.
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Let N be a lightlike vector field on H such that g(N , n) = −1. Let e1, . . . , en−1 ∈
TpH be such that Span(e1, . . . , en−1) = kerg(N , ·) ∩ T H . Note that on T M the basis
dual to (N , n, e1, . . . , en−1) is (−g(n, ·),−g(N , ·), e1, . . . en−1) where ei (e j ) = δi j ,
ei (n) = ei (N ) = 0, i, j = 1, . . . , n − 1. On T H the basis dual to (n, e1, . . . , en−1)) is
(−g(N , ·), e1, . . . , en−1)).

The Ricci tensor is

Ric(X,Y ) =
∑

a

ba(R(ba, X)Y )

where {ba, a = 0, 1, . . . , n} is any basis with {ba} the dual basis. In particular, we can let
{ba} = {N , n, e1, . . . , en−1}. We know that since H is totally geodesic, the connection
on H is the restriction of ∇, i.e. the connection on M . However, we must be careful
when calculating the Ricci tensors, since the traces are different. Actually, this turn out
not to be a problem because in the calculation of Ric(Y, n) there appears the term

b0(R(b0,Y )n) = −g(n, R(N ,Y )n) = 0

which vanishes by a symmetry of the Riemann tensor. We conclude that for the calcu-
lation of Ric(Y, n) we can use the trace restricted to T H and then

Ric(Y, n) = Tr{X 
→ R(X,Y )n} = Tr{X 
→ dω(X,Y )n} = dω(n,Y ).

For the last statement of the theorem, observe that for every X,Y,W ∈ T H , by the
symmetries of the Riemann curvature

g(W, R(n, X)Y ) = −g(X, R(W, Y )n) = −g(X, n)dω(W,Y ) = 0,

so being W ∈ T H arbitrary, we get R(n, X)Y = μ(X,Y )n where μ is clearly bilinear.
By the first Bianchi identity R(n, X)Y + R(X,Y )n + R(Y, n)X = 0 that is μ(X,Y ) +
dω(X,Y ) − μ(Y, X) = 0. �


The next result is crucial for the generalization to the non-vacuum case. It can also
be found in the proof of [39, Prop. 4.1]. Since the cosmological constant does not play
a role in the proof, it is omitted from the statement.

Lemma 4. Suppose that (M, g) satisfies the dominant energy condition. Then the follow-
ing property holds: If Ric(X, X) = 0 for some lightlike vector X, thenRic(X, ) ∝ g(X, ·)
(and similarly replacing the two instances of Ric with T as given by (1)).

Proof. It is clear that the statement holds for Ric iff it holds for T , the difference between
the two tensors being proportional to g. We can assume that X is future-directed, the
statement to be proved being independent of its orientation. The dominant energy con-
dition is the statement that the map (1) sends the future causal cone into the past causal
cone so that, in particular, for X causal

g(X, [Ric(X, ·) −
[
R

2
+ Λ

]

g(X, ·)]�) = Ric(X, X) −
[
R

2
+ Λ

]

g(X, X) (13)

is non-negative and vanishing (by the equality case of the reverse triangle inequality
[30]) iff X is lightlike and Ric(X, ·) − [ R2 + Λ]g(X, ·) ∝ g(X, ·). We can apply the
equality case because, due to the assumptions on X , the right-hand side of (13) vanishes.
We conclude that Ric(X, ·) ∝ g(X, ·). �
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The first statement of the next result was known for Killing horizons, e.g. [7, After
Prop. 4.3.11]).

Lemma 5. Assume the dominant energy condition. Then Ric(n, ·) ∝ g(n, ·) on H, thus
Ric(n, ·)|T H = 0. Hence we have

dω(n, ·) = 0 (14)

and μ(n, ·) = μ(·, n) = 0.

This means that the 2-form dω, section of T ∗H ⊗ T ∗H , passes to the quotient to
a section of (T H/n)∗ ⊗ (T H/n)∗, and similarly for μ and Ric|T H×T H . The quotient
space T H/n is endowed with a positive definite metric which is the quotient of g.

Proof. As already observed, we have Ric(n, n) = 0 on H . By Lemma 4 Ric(n, ·) ∝
g(n, ·) and hence Ric(n, ·)|T H = 0.

Note that μ(n,Y )n = R(n, n)Y = 0 and μ(X, n)n = R(n, X)n = dω(n, X)

n = 0. �

Lemma 6. For every vector field X : H → T H,

LXω = dω(X, ·) + d(ω(X)) (15)

thuswehaveunder thedominant energy condition (or,moreweakly, under Ric(n, ·)|T H =
0)

Lnω = dκ, and (LXω)(n) = ∂n(ω(X)),

and hence Lndω = 0 which implies that Lnμ is symmetric.

Proof. It follows from Cartan’s magic formula LX = iXd + diX . The last result follows
from Lndω = dLnω = ddκ = 0. �


We see that the problem of finding a gauge in which κ is constant coincides with that
of finding a gauge in which ω is invariant along the flow of n. Suppose that we can find a
gauge in which κ = −1. Since the generators of H are not necessarily closed, and since
there is in general no codimension-2 spacelike hypersurface Σ ⊂ H globally transverse
to the generators of H , we cannot regard H as a principal bundle. If that were the case
−ω would be a connection [20] for the bundle H → Σ as it is left invariant by the flow
and has value 1 over n.

Remark 3. The property Ric(n, ·)|T H = 0 appearing in Lemmas 4 and 5 was used
in [41] where, however, it was not observed that it follows from the dominant energy
condition. As a consequence, the main result of that work can be improved as follows 4

Theorem 2. Suppose that (M, g) is 4-dimensional and that it satisfies the dominant
energy condition. The horizon H collapses with bounded diameter.

This result already places some strong constraints on the topology of H . For instance,
in a four-dimensional spacetime H cannot be of hyperbolic type, see [41] for a complete
discussion.

4 There are chances that the dimensionality assumption in the results of [41], and hence in this result, could
be dropped. We did not check this point in detail.
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4. Ribbon Argument and Future Incompleteness

The next result iswell known [10, LemmaB1] [33].We include a coordinate independent
proof for completeness.

Lemma 7. Let g̃ = g|T H×T H , then

Ln g̃ = 0

Proof. Let Y, Z : H → T H

(Lng̃)(Y, Z) = g(∇nY, Z) + g(Y,∇n Z) − g(LnY, Z) − g(Y, Ln Z)

= g(∇Y n, Z) + g(Y,∇Zn) = ω(Y )g(n, Z) + ω(Z)g(Y, n) = 0.

�

We now introduce a ‘horizontal’ distribution aimed at splitting T H .

Lemma 8. Let n∗ : H → T ∗H be a smooth 1-form field such that n∗(n) = 1, then
there is a constant C > 0 such that at every p ∈ H and for every X ∈ ker n∗,

|ω(X)| ≤ C
√
g(X, X).

Proof. Let us introduce a complete Riemannian metric on H . It is sufficient to prove
the formula for X ∈ ker n∗ normalized with respect to that metric. But

√
g(X, X) > 0

for any such X because g is semi-positive definite on H , the degenerate direction being
n, while X at each point belongs to a hyperplane transverse to n. Thus the bundle of
normalized X in ker n∗ is compact and |ω(X)|/√g(X, X) is finite and continuous on
the bundle, thus upper bounded. �


As in [40]we construct ribbons closed by n∗-horizontal curves that we now introduce.
A C1 curve on H is said to be n∗-horizontal if its tangent belongs to kern∗. Two n∗-

horizontal curvesσ0,1 : [0, 1] → H are homotopically related if, lettingϕ : H×R → H
denote the flow of n, we have σ1(r) = ϕ(σ0(r), s(r)) for some continuous function
s(r) > 0.

Lemma 9. For every n∗-horizontal curve σ there is a constant B > 0 such that

|
∫

σ̃

ω| ≤ B,

for every n∗-horizontal curve σ̃ in the same homotopy class of σ .

Proof. We know that | ∫
σ

ω| ≤ C
∫ √

g(σ ′, σ ′)dr . The integrals on the right-hand side
coincide for any two homotopic σ0 and σ1 because σ ′

1 = ϕ∗(σ ′
0, s(r)) + term prop. to n,

thus

g(σ ′
1, σ

′
1) = (ϕ∗g)(σ ′

0, σ
′
0) = g(σ ′

0, σ
′
0)

where we used Lng̃ = 0. �

The 1-form field n∗ induces a splitting of T H . In what follows for X ∈ T H wemight

use the notation

X = X⊥ + λn, (16)

where X⊥ is n∗-horizontal and λ = n∗(X) ∈ R. We might also write λ(X) in place of
n∗(X).
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Lemma 10. On H there is a constant K > 0 such that for every vector X ∈ T H, we
have the affine bound

|n∗(dϕs(X))| ≤ K
√
g(X, X) s + |n∗(X)|.

This type of bound will be fundamental in our study and distinguishes our treatment
from those of previous references.

Proof. Let us consider the integral curve of n starting from p and ending at ϕs(p),
σ : [0, s] → H , r 
→ ϕr (p). Notice that σ can have self intersections. Let W (r) ∈
Tϕr (p)H be the vector on the image of σ obtained by flowing X with the 1-parameter
group of diffeomorphisms generated by n, i.e. W (r) = dϕr (X). Observe that all over
H , 0 = Ln(1) = Ln(n∗(n)) = (Lnn∗)(n), thus on the image of σ we have

d

dr
n∗(W (r)) = (Lnn

∗)(W (r)) = (Lnn
∗)(W (r)⊥).

Observe that locally the first step of the above calculation can be performed in a small
subinterval I ⊂ [0, s], r ∈ I , such that σ |I has no self intersections. Then W can be
regarded as a field on σ(I ) and hence we can replace d

dr with Ln and use LnW = 0.
The symmetric bilinear form g̃ is positive definite once restricted to the horizontal

bundle ker n∗ ⊂ T H , as the latter is transversal to n at every point. As the projective
bundle of the horizontal bundle is compact, the function Z 
→ (Lnn∗)(Z)/

√
g(Z , Z) is

continuous and hence bounded on it, thus there is K > 0 such that for every n∗-horizontal
vector Z , |(Lnn∗)(Z)| ≤ K

√
g(Z , Z). Finally, since Lng̃ = 0,

|(Lnn
∗)(W (r)⊥)| ≤ K

√
g(W (r)⊥,W (r)⊥) = K

√
g(dϕr (X), dϕr (X))

= K
√
g(X, X).

By integrating in r , in the interval [0, s], we obtain a bound on |n∗(dϕs(X))−n∗(X)| ≥∣
∣|n∗(dϕs(X))| − |n∗(X)|∣∣. �

(��) In what follows we shall assume the dominant energy condition without further

notice (i.e. the assumption of Lemma 5) or the weaker conditionRic(n, ·)|T H = 0.

The importance of the condition Ric(n, ·)|T H = 0 was recognized in [41, Thm. 1.2]
[36, Assumption 2.1]. The fact that it follows from the dominant energy condition was
noted in [39, Prop. 4.1] [37, Rem. 1.15].

A ribbon is the homotopy of two homotopically related n∗-horizontal curves σ0 and
σ1 (hence σ1(r) = ϕ(σ0(r), s(r)) for some continuous function s(r) > 0). If the ribbon
is injective (no self-intersection) its image is graphically bounded by four curves, the
horizontal sides σ0 and σ1 and two generator segments γ0, γ1 starting from σ0(0) and
σ0(1) respectively, see Fig. 1.

Stokes theorem applied to dω (which vanishes on the tangent bundle to the ribbon)
gives

∫

σ0

ω +
∫

γ1

ω −
∫

σ1

ω −
∫

γ0

ω = 0. (17)

We are not considering here the possibility that the ribbon self intersects. Still one can
obtain Eq. (17) also in this case, by splitting the ribbon in several shorter, non-self
intersecting ribbons for which the previous equation in display holds. Then summing
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σ0

γ0

γ1

σ1

Fig. 1. The curves σ0 and σ1 are n∗-horizontal. The integral
∫
σ1

ω is bounded by a constant which is indepen-
dent on how elongated the ribbon is in the longitudinal direction. The future endpoints of γ0 and γ1 correspond
to values of the integral parameter of n that do not necessarily coincide, however there is a one-to-one corre-
spondence between them so one goes to infinity iff the other goes to infinity (cf. Appendix)

all the equations so obtained one gets the equation for the original ribbon (the interior
horizontal segments give opposite contributions that cancel out). In other words, the
global validity of the equation follows from its local validity.

Alternatively, and more precisely, we can integrate the pullback of dω by the homo-
topy map [33,40]: Let A = {(r, u) : 0 ≤ u ≤ s(r), r ∈ [0, 1]} ⊂ R

2. Let χ : A → H
be the map (the map χ is C1, see the Appendix)

χ : (r, u) 
→ ϕ(σ0(r), u)

where ϕ is the flow of n. Observe that for fixed r , χ(r, ·) : [0, s(r)] → H maps to an
integral curve of n, thus χ∗(∂u) ∝ n.

Now we apply Stokes theorem to A and the form χ∗ω
∫

A
dχ∗ω =

∫

∂A
χ∗ω

observe that dχ∗ω = χ∗dω = 0 because A is a subset of R2 and

(χ∗dω)(·, ∂u) = dω(·, χ∗(∂u)) ∝ dω(·, n) = 0.

Thus

0 =
∫

∂A
χ∗ω

which is the Equation (17). By using our Lemma 9 we arrive at

|
∫

γ1

ω −
∫

γ0

ω| ≤ 2B (18)

where the constant B(σ0) does not depend on how extended the ribbon is in the longitudi-
nal direction. For a discussion of the existence and extendibility of ribbons (homotopies)
we refer the reader to the Appendix.

Proposition 1. The validity of the property “the integral
∫
γp([0,s)) ω over the future-

directed generator starting from p converges to −∞” (resp. +∞, is upper bounded, is
lower bounded) does not depend on the generator γp considered.
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σ0

σ1

C

σ Q = C/n

starting point of γ0

starting point of γ1

Fig. 2. Any two generators γ0 and γ1 starting from the cylinder, and suitably prolonged, can be connected by
a curve σ0 which is the horizontal lift of a geodesic σ living on the quotient space Q

Thus, if for one generator the integral is not lower (upper) bounded, the same is true
for every generator.

Proof. For every p ∈ H we can find a cylindrical neighborhoodC whose quotient under
the flow of n is a disc of radius ρ in the quotient metric (which, for sufficiently small
cylindrical neighborhood, is well defined by Lemma 7), while the height is some δ in
the parameter of n (cf. Figure 2).

We know that for sufficiently small ρ the quotient disc is actually convex [9, Sec.
4.7], that is, any two points on the quotient can be connected by a geodesic of the quotient
metric. Let us consider then∗-horizontal lifts of such geodesics, namely then∗-horizontal
curves projecting on them (See the Appendix for more details on this concept). Their
existence shows that any two generators starting from the cylinder can be joined by a
horizontal curve σ0 provided the starting point of the generator is suitably translated on
the generator. Consider an arbitrarily elongated ribbon with starting horizontal curve
σ0. The image of the ribbon and the closing horizontal curve σ1 need not stay inside
the cylinder (the quotient construction is used to find σ0 while for the existence of the
ribbon we refer the reader to the Appendix).

Nowobserve that
∫

ω evaluated over any generator segment of the cylinder is bounded
by some a priori constant R > 0 (because the segments are determined by their parameter
length and by their starting point, and this pair belongs to a compact set C̄ ×[0, δ] while
the function

∫
ω depends continuously on these variables), thus for any two generator

segments starting from the cylinder and ending outside it we have

|
∫

γ1

ω −
∫

γ0

ω| ≤ 2B + 2R, (19)
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where it is understood that the two final endpoints of the generators are connected by
the horizontal curve σ1.

The constants 2B and 2R do not depend on how long the ribbon is chosen to be, thus
we conclude that

∫
γ0

ω converges to a ± infinite value if and only if
∫
γ1

ω converges to a
± infinite value. Similarly in the bounded cases. Thus the starting points that lead to an
integral

∫
ω which is of a given type (e.g. converges to +∞) form open sets, as do those

of the negative type (resp. does not converge to +∞) and so connected components of
the horizon. As the horizon is connected we conclude that on the horizon we can only
have one of the behaviors. �


We are going to show that if H admits a future incomplete generator then all geodesic
generators are future incomplete (Cor. 2). Our proof makes use of the next important
observation.

Lemma 11. Let f : [0,∞) → R be a continuous bounded function. If g(t) :=
exp(

∫ t
0 f (s)ds) is integrable then

∫ ∞
0 f (t)dt = −∞.

Proof. By a result due to Lesigne [25] for almost every x > 0 we have

lim
n→+∞ g(nx) = 0,

hence for a choice of such x we have since g is positive

lim
n→+∞

∫ nx

0
f = lim

n→+∞ log g(nx) = −∞

For any ρ > 0 we can write ρ = [ρ]x x + r(ρ) where [ρ]x is the integer such that
r ∈ [0, x). Of course, for ρ → ∞ we have [ρ]x → ∞. Note that

|
∫ ρ

[ρ]x
f (s)ds| ≤ Kx

where K > 0 is the bound for f , i.e. | f | ≤ K . Thus

lim
ρ→+∞

∫ ρ

0
f = lim

ρ→+∞(

∫ [ρ]x

0
f +

∫ ρ

[ρ]x
f ) ≤ lim

ρ→+∞(

∫ [ρ]x

0
f + Kx) = −∞.

�

Corollary 1. If the horizon admits one future incomplete generator, then

∫

γ ([0,∞))

ω = −∞

over every generator.

Remember that over a generator
∫
γ ([0,s)) ω = ∫ s

0 κ(γ (s))ds where s is the integral
parameter of n. For shortness, we might denote the argument “κ(s)”.

Proof. The function κ is continuous on the horizon, which is compact, thus it is
bounded. Incompleteness of the generator γ reads

∫ ∞
0 (exp

∫ t
0 κ(s)ds)dt < ∞, i.e.

g(t) := exp
∫ t
0 κ(s)ds is integrable. By Lemma 11

∫
γ

ω = −∞ over the incomplete
generator, thus the same equation holds for any generator by Prop. 1. �
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Proposition 2. Assume H is such that
∫
γ ([0,∞))

ω = −∞ over every generator (e.g.
because it admits a future incomplete generator). There is a constant C > 0 such that
for every generator parametrized with the integral parameter of n (and regardless of the
zero point of the parametrization)

∫ ρ

0
κ(s)ds < 0 (20)

for every ρ ≥ C.

In other words, the integral of surface gravity over a segment of generator of n-
parametrization-length no smaller than C is negative.

Proof. It is sufficient to prove the result for generators starting from a suitable neigh-
borhood Up of an arbitrary point p. By a standard compactness argument, calling Cp
the constant, passing to a finite subcovering covering {Upi }, C = max{Cpi } provides
the constant for the whole horizon.

So let p ∈ H , we know that there is a cylindrical neighborhood Up of height δ in
the n-parametrization such that Eq. (19) holds (actually, taking Up slightly smaller we
can let that equation hold in the closure of Up). Using notation as in the proof of Prop.
1 (including the definitions of δ and R), if the stronger inequality

∫ ρ

0
κ(s)ds < −R (21)

holds for a generator starting from q ∈ Up and for ρ ≥ C̃ then (20) is satisfied for any
starting point q ′ ∈ Up on the same generator segment of Up, it is sufficient to define
C = C̃ + δ. This means that it is sufficient to prove the inequality (21) for one starting
point over each generator segment of the cylinder. If γ0 is the geodesic starting from
p =: p0, and γ1 is another geodesic starting from a different generator of the cylinder,
we pass to the quotient, consider their projections p̄0 and p̄1 and redefine the starting
point p1 to stay in the horizontal lift of the unique geodesic connecting p̄0 to p̄1. The
union of the points so obtained gives a set S on Up (its boundary is contained in ∂Up).
Over every generator starting from S̄ we consider the n-parameter z which vanishes on
S̄.

For q ∈ S let z 
→ φ(q, z) be the horizontal transport map of the n-parameter z over
the p̄-fiber to the n-parameter z′ = φ(q, z) over the q̄-fiber obtained by horizontally
transporting along the geodesic connecting p̄ to q̄ . Thismap is continuous and increasing
in z (no two horizontal lifts of the same curve can intersect). Let T be such that for every
t ≥ T ,

∫ t
0 κ(s)ds < −2B − 3R over the generator starting from p. Let C̃ be the

maximum of q 
→ φ(q, T ) over S̄. Then (19) reads for ρ ≥ C̃

|
∫ ρ

0,γ1
κ(s)ds −

∫ t

0,γ0
κ(s)ds| ≤ 2B + 2R (22)

where the ribbon projects to the radial geodesic starting from p̄, thus as ρ ≥ C̃ we have
t ≥ T and hence we get that (21) is valid over every generator starting from S. Finally,
let C = C̃ + δ. �

Theorem 3. Assume H is such that

∫
γ ([0,∞))

ω = −∞ over every generator (e.g.
because it admits a future incomplete generator). There is a smooth function f : H → R

such that n′ = e f n has (smooth) surface gravity κ ′ < 0 all over H.
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Proof. We define f through

e f (p) =
∫ C

0
e
∫
ϕ(p,[0,s]) ωds,

where C > 0 is as in Prop. 2. It is clear that the function is smooth, thanks to the fact
that it is defined via integration in a compact interval. We want to calculate ∂n f (p). Let
s 
→ x(s) be the integral curve of n starting from p. Similarly to Eq. (11) we have

e f (x(τ )) =
∫ τ+C

τ

e
∫ ρ
τ κ(x(s))dsdρ.

Differentiating with respect to τ (here we can safely differentiate under the integral sign
because the domain of integration is compact) and setting τ = 0 we get

e f ∂n f = −1 + e
∫ C
0 κ(x(s))ds − κe f

or, by Eq. (6), κ ′ = e f (κ + ∂n f ) = −1 + e
∫ C
0 κ(x(s))ds < 0. �


Corollary 2. Assume H admits a future incomplete generator. All geodesic generators
are future incomplete.

Proof. We know that n can be chosen so that κ < 0. As κ is continuous and negative,
by the compactness of H there is some K < 0, such that k ≤ K < 0. Denoting with
x(s) the integral curve of n starting from p, the geodesic γ starting from p with tangent
γ̇ = n has future affine length

Λ(p) =
∫ ∞

0
e
∫ ρ
0 κ(x(s))dsdρ ≤

∫ ∞

0
eKρdρ ≤ 1

−K
< ∞. (23)

�


5. The Differential and Hessian of Λ

In this section our goal is to prove thatΛ isC2, and that its Hessian admits an expression
that, in vacuum, allows for a bootstrap argument (Cor. 3). We start by proving that it is
C1.

Theorem 4. Assume H admits a future incomplete generator. The function Λ is C1.

Proof. From Eq. (5) we know that this property is independent of the choice of n so we
can choose n such that κ ≤ K < 0, and hence Λ ≤ 1/(−K ).

Let us calculate ∂XΛ(p), X ∈ TpH . Let us extend X by pushing it forward with the
flow of n so as to obtain amap s 
→ X (s) = dϕs(X), (elsewhere, to save space, wemight
also denote the pushforward with Xs) which defines a vector at x(s), where s 
→ x(s)
is the integral curve of n starting from p. This is not really a vector field defined over a
neighborhood of the generator passing from p (as the generator can accumulate on itself
and the vector field would be multi-valued) but with some abuse of notations we can
write [X, n] = 0, an equation which is correct if interpreted locally so as to get single
valuedness.
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The function Λ is

Λ(p) =
∫ ∞

0
e
∫
ϕ(p,[0,s]) ωds

Now we are going to assume that we can switch the derivative and the integral. This
key first step will be justified later when we shall show that the argument of the integral
so obtained is continuous and integrable, a fact that allows one to apply the dominated
convergence theorem to justify the first step.

Observe that by varying p in direction X we are really varying the generator. This is
done with the vector field X that locally is such that [X, n] = 0 an equation which tells
us that X preserves the n-parametrization ρ and the related measure dρ

∂XΛ(p) =
∫ ∞

0
[
∫

ϕ(p,[0,ρ])
LXω] e

∫
ϕ(p,[0,ρ]) ωdρ (24)

Now we use Eq. (15) LXω = dω(X, ·) + d(ω(X)) observing that the first term on the
right-hand side vanishes when integrated as dω is annihilated by n (cf. Lemma 5). We
arrive at

∂XΛ(p) =
∫ ∞

0
[ω(X (ρ)) − ω(X (0))] e

∫
ϕ(p,[0,ρ]) ωdρ (25)

=
∫ ∞

0
[ω(X (ρ)) − ω(X (0))] e

∫ ρ
0 κ(x(s))dsdρ. (26)

Linearity of this expression in X is clear. If we can show that the argument is integrable
we justify two facts: (a) that the switching first step was justified, and (b) that this
expression is actually continuous in p and hence provides the continuous differential of
Λ. Both follow from the dominated convergence theorem.

Since we already know that κ ≤ K < 0 it is sufficient to show that [ω(X (ρ)) −
ω(X (0))] is bounded by a polynomial in ρ. Let us introduce the 1-form field n∗ as in
Lemma 8 and let us split X = X⊥ + λn with X⊥ ∈ ker n∗. From the same Lemma and
from LnX = 0, Lng = 0

|ω(X⊥(ρ))| ≤ C
√
g(X⊥(ρ), X⊥(ρ)) = C

√
g(X (ρ), X (ρ)) = C

√
g(X (0), X (0)

By Lemma 10 λ is affinely bounded.We have |ω(λn)| = |λκ| and since |κ| is continuous
on the compact H it is also bounded, which proves that ω(λn) is affinely bounded. We
conclude that |ω(X)| is bounded by an affine expression in ρ, which ends the proof. �


The next result will be used to show that the condition LnRic|T H = 0, that we shall
use in the bootstrap argument, is actually independent of the choice of vector field n and
so represents a well defined property of the horizon.

Lemma 12. Let σ : H → T ∗H × T ∗H be a bilinear form on the horizon such that
σ(·, n) = σ(n, ·) = 0, then Lnσ has the same property. Moreover, (Le f nσ) = e f (Lnσ).

Proof. For any vector field X : H → T H

(Lnσ)(X, n) = Ln[σ(X, n)] − σ(LnX, n) − σ(X, Lnn) = 0.

For any vector fields X,Y : H → T H

(Le f nσ)(X,Y ) = Le f n[σ(X,Y )] − σ(Le f n X,Y ) − σ(X, Le f nY )
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= e f [Ln[σ(X,Y )] − σ(LnX,Y ) − σ(X, LnY )]
+ e f X ( f )σ (n,Y ) + e f Y ( f )σ (X, n) = e f (Lnσ)(X,Y ).

�

Theorem 5. Assume H admits a future incomplete generator. The bilinear form η :
H → T ∗H ⊗ T ∗H on the horizon, given for X,Y ∈ T H by

η(X,Y ) := μ(Y, X) + iX∇Yω + ω(X)ω(Y ), (27)

is symmetric and such that (Ln∇)(Y )X = η(X,Y )n. Moreover, the function Λ is C2

and it satisfies

HessΛ + ω ⊗ dΛ + dΛ ⊗ ω + Λη = B, (28)

where the differential operator T on the left-hand side is symmetric and under a gauge
transformation n′ = e f n, Λ′ = e− f Λ, it satisfies (note that ω and hence η change)
T ′(Λ′) = e− f TΛ, while

B(p)(X,Y ) := −
∫ ∞

0
[ϕ∗

ρμ − μ](Y, X) e
∫
ϕ(p,[0,ρ]) ωdρ, (29)

is a C0 symmetric bilinear form.

Proof. We start proving that it is C2. We calculate the Hessian

HessΛ(Y, X) = ∂Y ∂XΛ − ∂∇Y XΛ

For the former term on the right-hand side we differentiate Eq. (24) by switching the
order of differentiation and integration. Again, we shall prove that this step is allowed by
proving that the differentiated argument is integrable. The latter term is given directly in
terms Eq. (25) which we already proved to be valid. Instead of showing the integrability
of the argument for ∂Y ∂XΛ we show directly that property for HessΛ(Y, X) as their
difference is the argument of the integral expression for ∂∇Y XΛ which we already know
to be integrable (in fact affine times a converging exponential).

∂Y ∂XΛ(p) =
∫ ∞

0

{
[LY

∫

ϕ(p,[0,ρ])
LXω]

+[
∫

ϕ(p,[0,ρ])
LXω][

∫

ϕ(p,[0,ρ])
LYω]

}
e
∫
ϕ(p,[0,ρ]) ωdρ (30)

∂∇Y X (p) =
∫ ∞

0
[
∫

ϕ(p,[0,ρ])
L∇Y Xω] e

∫
ϕ(p,[0,ρ]) ωdρ (31)

HessΛ(Y, X)(p) =
∫ ∞

0

{
[LY (ω(X))(ρ) − LY (ω(X))(0)]

−[ω((∇Y X)ρ) − ω(∇Y X (0))]
+[ω(X (ρ)) − ω(X (0))][ω(Y (ρ)) − ω(Y (0))]

}
e
∫
ϕ(p,[0,ρ]) ωdρ

(32)

To avoid ambiguities we have denoted (∇Y X)ρ the push forward with the flow of n of
∇Y X (0). This is not necessarily ∇Y X (ρ) (remember that X,Y are invariant under the
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flow of n, but to stress the fact that they have been obtained pushing X (0), Y (0) with
the flow of n, we might write Xρ , Y ρ and hence denote ∇Y X (ρ) → ∇Y ρ Xρ). Let

∇ω(X,Y ) := iX∇Yω = (∇Yω)(X),

so that, dω(X,Y ) = ∇ω(Y, X) − ∇ω(X,Y ), and let us rewrite the Hessian as follows

HessΛ(Y, X)(p) =
∫ ∞

0

{
[∇ω(X (ρ),Y (ρ)) − ∇ω(X (0),Y (0))]

+ ω
(∇Y ρ Xρ − (∇Y X)ρ

)

+ [ω(X (ρ)) − ω(X (0))][ω(Y (ρ)) − ω(Y (0))]
}
e
∫
ϕ(p,[0,ρ]) ωdρ

(33)

We study the terms on the three lines separately.

1. The first term is bounded by a quadratic polynomial in ρ, as can be seen splitting
X = X⊥ +λXn and Y = Y⊥ +λY n and arguing again as for the C1 case. That is, the
compactness of the projective bundle of n∗-horizontal vectors implies the existence
of a constant F > 0 such that

∇ω(X⊥(ρ),Y⊥(ρ)) ≤ F
√
g(X⊥(ρ), X⊥(ρ))

√
g(Y⊥(ρ),Y⊥(ρ))

= F
√
g(X (ρ), X (ρ))

√
g(Y (ρ),Y (ρ))

= F
√
g(X (0), X (0))

√
g(Y (0),Y (0)).

The terms that are not bounded by a constant are those that come from terms in λX
or λY which are rather bounded by affine expressions in ρ. For instance, in order to
treat the term ω(X⊥(ρ), λY n) we observe that by the compactness of the projective
bundle of n∗-horizontal vectors there is a constant G > 0 such that

∇ω(X⊥(ρ), n) ≤ G
√
g(X⊥(ρ), X⊥(ρ))

= G
√
g(X (ρ), X (ρ))

= G
√
g(X (0), X (0)).

Thus up to a proportionality constant the bound for that term is the same as that on
λX which is affine in ρ.

2. Let us study the second term. For Y, X ∈ T H we have, by a standard formula on the
Lie derivative of a connection [43, Eq. (2.23)]

(Ln∇)(Y )X = R(n,Y )X + iX∇Y∇n = R(n,Y )X + (∇ω(X,Y ) + ω(X)ω(Y ))n

(34)

By Lemma 3 we have

(Ln∇)(Y )X = η(X,Y )n, (35)

where

η(X,Y ) = μ(Y, X) + ∇ω(X,Y ) + ω(X)ω(Y ), (36)

is a smooth bilinear form on the horizon. It is symmetric, indeed from Lemma 3

η(X,Y ) − η(Y, X) = μ(Y, X) − μ(X,Y ) + ∇ω(X,Y ) − ∇ω(Y, X)
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= −dω(Y, X) + dω(Y, X) = 0.

Now notice that

Ln[∇Y ρ Xρ − (∇Y X)ρ − (

∫ ρ

0
η(X (s),Y (s))ds)n]

= [η(X (ρ),Y (ρ)) − η(X (ρ),Y (ρ))]n = 0

and since the vector in square brackets vanishes at ρ = 0, we have actually that it
vanishes for every ρ, thus

∇Y ρ Xρ − (∇Y X)ρ = [
∫ ρ

0
η(X (s),Y (s))ds] n. (37)

We have

ω
(∇Y ρ Xρ − (∇Y X)ρ

) = κ(x(ρ))

∫ ρ

0
η(X (s),Y (s))ds.

By compactness of H and continuity of η we can easily bound the various terms that
one gets splitting X and Y . More precisely, with the usual splitting it follows that
η(X (s),Y (s)) is bounded by a quadratic polynomial in s and so the term that we are
studying is bounded by a cubic polynomial in ρ.

3. The third term is bounded by a quadratic polynomial in ρ, as each factor is bounded
by an affine expression in ρ.

In conclusion, the integral argument is bounded by a cubic polynomial in ρ and so it
is integrable.

We observe that all three terms are separately symmetric in (X,Y ). The symmetry
of the first term follows expressing it in terms of μ and using the symmetry of Lnμ (see
Lemma 6). The symmetry of the second term follows from the fact that the commutators
of the push forwards is the push forward of the commutators. The symmetry of the last
term is obvious.

We can actually simplify the expression for the Hessian further. First observe that

[ω(X (ρ)) − ω(X (0))][ω(Y (ρ)) − ω(Y (0))]
= − [ω(X (ρ)) − ω(X (0))]ω(Y (0)) − ω(X (0))[ω(Y (ρ)) − ω(Y (0))]

− ω(X (0))ω(Y (0)) + ω(X (ρ))ω(Y (ρ))

Thus by using the expression for dΛ, Eq. (25) we get that the third term can be written

−ω(Y )∂XΛ − ω(X)∂YΛ − ω(X)ω(Y )Λ +
∫ ∞

0
ω(X (ρ))ω(Y (ρ)) e

∫
ϕ(p,[0,ρ]) ωdρ

The first term can be written

−∇ω(X,Y )Λ +
∫ ∞

0
∇ω(X (ρ),Y (ρ)) e

∫
ϕ(p,[0,ρ]) ωdρ

The second term can be written
∫ ∞

0
κ(x(ρ))

∫ ρ

0
η(X (s),Y (s))ds e

∫
ϕ(p,[0,ρ]) ωdρ
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=
∫ ∞

0
κ(x(ρ))

∫ ρ

0
[∇ω(X (s),Y (s)) + ω(X (s))ω(Y (s))]ds e

∫
ϕ(p,[0,ρ]) ωdρ

+
∫ ∞

0
κ(x(ρ))

∫ ρ

0
μ(Y (s), X (s))ds e

∫
ϕ(p,[0,ρ]) ωdρ

Summing the three terms and recalling that
∫
ϕ(p,[0,ρ]) ω = ∫ ρ

0 κ(x(s))ds, we observe
that three integral terms form the single term

∫ ∞

0

d

dρ

{∫ ρ

0
[∇ω(X (s),Y (s)) + ω(X (s))ω(Y (s))]ds e

∫
ϕ(p,[0,ρ]) ω

}

dρ

which vanishes upon integration, thus we arrive at

HessΛ(X,Y ) = − [∇ω(X,Y ) + ω(X)ω(Y )]Λ − ω(Y )∂XΛ − ω(X)∂YΛ

+
∫ ∞

0
κ(x(ρ))

∫ ρ

0
μ(Y (s), X (s))ds e

∫
ϕ(p,[0,ρ]) ωdρ

= − [∇ω(X,Y ) + ω(X)ω(Y )]Λ − ω(Y )∂XΛ − ω(X)∂YΛ

−
∫ ∞

0
μ(Y (ρ), X (ρ)) e

∫
ϕ(p,[0,ρ]) ωdρ

= − η(X,Y )Λ − ω(Y )∂XΛ − ω(X)∂YΛ

−
∫ ∞

0
[μ(Y (ρ), X (ρ)) − μ(Y (0), X (0))] e

∫
ϕ(p,[0,ρ]) ωdρ

Now observe that if n′ = e f n, Λ′ = e− f Λ, ω′ = ω + d f , thus

[HessΛ′ + (∇ω′ + ω′ ⊗ ω′)Λ′ + ω′ ⊗ dΛ′ + dΛ′ ⊗ ω′]
= e− f [HessΛ − Hess f + d f ⊗ d f Λ − d f ⊗ dΛ − dΛ ⊗ d f ]

+ e− f [∇ω + Hess f + ω ⊗ ω + d f ⊗ ω + ω ⊗ d f + d f ⊗ d f ]Λ
+ e− f [ω ⊗ dΛ − ω ⊗ d f Λ + d f ⊗ dΛ − d f ⊗ d f Λ]
+ e− f [dΛ ⊗ ω − d f ⊗ ωΛ + dΛ ⊗ d f − d f ⊗ d f Λ]

= e− f [HessΛ + (∇ω + ω ⊗ ω)Λ + ω ⊗ dΛ + dΛ ⊗ ω]
As μ is invariant, we have that the symmetric differential operator

TΛ := HessΛ + ηΛ + ω ⊗ dΛ + dΛ ⊗ ω

changes through multiplication by an exponential factor i.e. T ′Λ′ = e− f TΛ. Of course,
this is also the transformation of

B(p)(X,Y ) := −
∫ ∞

0
[μ(Y (ρ), X (ρ)) − μ(Y (0), X (0))] e

∫
ϕ(p,[0,ρ]) ωdρ, (38)

that is B ′ = e− f B, it is sufficient to take into account that e f dρ′ = dρ as n′ = e f n, and
that the push forward X ′(ρ)of X (0)withn′ is going to beof the form X ′ = X+gnwhere g
satisfies Lng = X ′( f ) = X ( f )+gLn f and where we recall thatμ(·, n) = μ(n, ·) = 0.

We conclude that Λ satisfies the equation

HessΛ(X,Y ) + ω(X)dΛ(Y ) + dΛ(X)ω(Y ) + η(X,Y )Λ = B(X,Y ), (39)

The same equation shows that B is a C0 symmetric bilinear form, as so is the left-hand
side. Its symmetry follows also from the fact that Lnμ is symmetric. �
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6. Bootstrap Argument for LnRic|TH = 0

The equation for the Hessian of Λ proved in Theorem 5 can be used in a bootstrap
argument provided the bilinear form B is smooth, which would be the case if it vanishes.
From Eq. (29) we see that it vanishes if μ is left invariant by the flow of n. Therefore,
the following result is important.

Lemma 13. We have the identity

Lnμ = 1

2
LnRic|T H . (40)

Proof. Let {ba, a = 0, . . . , n} be the basis (N , n, e1, e2, . . .) at TpM , p ∈ H , where
g(n, N ) = −1, g(n, ei ) = g(N , ei ) = 0, g(ei , e j ) = δi j , and let {ba} be the cobasis

(−g(n, ·),−g(N , ·), g(e1, ·), g(e2, ·), . . .).
We have for X,Y ∈ TpH , using R(n, X)Y = μ(X,Y )n

Ric(X,Y ) =
∑

a

ba(R(ba, X)Y ) = −g(n, R(N , X)Y ) − g(N , R(n, X)Y )

+
n−1∑

i=1

g(ei , R(ei , X)Y )

= − g(N , R(n,Y )X) − g(N , R(n, X)Y ) +
n−1∑

i=1

g(ei , R(ei , X)Y )

=μ(Y, X) + μ(X,Y ) +
n−1∑

i=1

g(ei , R(ei , X)Y ).

We already know that Lnμ is symmetric so we need only to show that the Lie derivative
of the last term vanishes. Observe that extending n by using the local geodesic flow of
N so that LnN = 0 we have Ln(g(N , ei )) = (Lng)(N , ei ) + g(N , Lnei ), thus we can
extend ei locally preserving the above properties by imposing Lnei = (Lng)(N , ei )n.
Thus let us extend X,Y so that LnX = LnY = 0, we have for each i

Ln[g(ei , R(ei , X)Y )] = (Lng)(ei , R(ei , X)Y ) + g(ei , (Ln R)(ei , X)Y )

+ g(Lnei , R(ei , X)Y ) + g(ei , R(Lnei , X)Y ),

the last two terms vanish due to Lnei ∝ n and R(n, X)Y = μ(X,Y )n (or using the
fact that H is totally geodesic). The first term vanishes because Lng|T H×T H = 0 and
because R(ei , X)Y ∈ T H as H is totally geodesic. We are left with

Ln[g(ei , R(ei , X)Y )] = g(ei , (Ln R)(ei , X)Y ). (41)

We have [19, Eq. (2.6)] [43] denoting Lng = habea ⊗ eb and R(ed , ea)eb = Rc
bdaec,

2gcm(Ln R)mbda = (hac;b + hcb;a − hab;c);d − (hdc;b + hcb;d − hdb;c);a (42)

We want to show that the right-hand side vanishes for a, b, c, d ≥ 1. If a covariant
(0, k)-tensor vanishes on T H then the same holds for ∇T |T H , as it is immediate from
the formula

(∇XT )(Y, · · · ) = ∂X (T (Y, · · · )) − T (∇XY, · · · ) − · · ·
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using the fact that ∇XY ∈ T H as H is totally geodesic. Since this is true for Lng, the
same is true for its two covariant derivatives, and so for the right-hand side of Eq. (42).
We conclude that the right-hand side of Eq. (41) vanishes, and so the desired equation
is proved. �

Corollary 3. Assume H admits a future incomplete generator. If LnRic|T H = 0 on the
horizon, then B = 0. Thus (cf. Eq. (28))

HessΛ + ω ⊗ dΛ + dΛ ⊗ ω + ηΛ = 0 (43)

and Λ is C∞ by bootstrapping.

We recall that by Lemma 12 the condition LnRic|T H = 0 does not depend on the
choice of n and so represents a property of the horizon.

Theorem 6. Assume the horizon admits a future incomplete generator and that
LnRic|T H = 0. Then the smooth vector field n can be chosen so that κ = −1 andΛ = 1,
in which case Lnω = 0, η = 0 (i.e. Ln∇|T H = 0), Lnμ = 0 and for X,Y ∈ T H

R(n, X)Y = −[iY∇Xω + ω(X)ω(Y )]n (44)

Proof. We start from any smooth n and rescale it by choosing f in Eqs. (5)–(6) so that
e f = Λ. Then by Eq. (5), the new vector field, here denoted in the same way, is such
that Λ = 1, and by Eq. (12) we have κ = −1. The equation Lnω = 0 follows from
Lemma 6, while η = 0 follows from Eq. (28) with B = 0. The equation Lnμ = 0
follows from Eq. (40) (it can also be obtained by taking the Lie derivative of Eq. (27),
recalling Eq. (35) and using η = 0, Lnω = 0). The equation in display is deduced from
the expression of μ obtained in Eq. (27). �


7. Smoothness of Λ in the Non-vacuum Case

In this section we prove the smoothness of Λ for the non-vacuum case thus without
passing through the bootstrap argument. For another inductive proof see [12].

Definition 2. We say that a smooth s-dependent covariant tensor field Ts is polynomially
bounded in the parameter s if there is a polynomial p(s) such that for every q ∈ H ,
Xi ∈ Tq H , n∗-horizontal, i = 1, . . . , k,

|Ts(X1, X2, . . . , Xk)| ≤ p(s)Πk
i=1

√
g(Xi , Xi ).

and similarly for some of the Xi on the left-hand side replaced by n, in which case the
factor

√
g(Xi , Xi ) on the right-hand side has to be omitted.

Definition 3. We say that a smooth ρ-dependent covariant tensor field Tρ belongs to I
if it has the form

Tρ = Rρ ◦ P
where P is a permutation of the vector arguments, and Rρ belongs to the smallest
family of smooth (ρ-dependent) covariant tensors which (a) contains the smooth (ρ-
independent) covariant tensor fields, (b) is invariant under tensor products and sums, (c)
is invariant under pullback Sρ → ϕ∗

ρSρ (d) is invariant under average Sρ → ∫ ρ

0 Srdr
(in other words each tensor Rρ is obtained from a finite family of smooth covariant
(ρ-independent) tensors by applying a finite number of operations (b), (c) and (d)).
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We notice that if Tρ ∈ I then any contraction with n belongs to I.
Through the usual splitting argument we get

Lemma 14. Every element of I is polynomially bounded.

Proof. The parameter-independent covariant tensors are polynomially bounded with
constant polynomial, as it follows from the compactness of the projective bundle induced
by the bundle of n∗-horizontal vectors. We need only to show that (b)–(d) preserve the
property of being polynomially bounded. This is trivial for (d), the new polynomial being∫ s
0 p(r)dr . It is also trivial for tensor products or sums, that is for (b), the new polynomial
being the product or sum of the original polynomials. As for (c), let Ts be a (0, k)-tensor
polynomially bounded, and let us studyϕ∗

s Ts .We need to split the push forward of the n∗-
horizontal vector into n∗-horizontal and longitudinal parts ϕs∗(Xi ) = ϕs∗(Xi )

⊥+λi (s)n
as in Eq. (16) where λi is linearly bounded λi ≤ K

√
g(Xi , Xi )s. Recall also that

g(ϕs∗(Xi )
⊥, ϕs∗(Xi )

⊥) = g(ϕρ∗(Xi ), ϕs∗(Xi )) = g(Xi , Xi ).

As a consequence, the new polynomial is (1 + Ks)k p(s). �

Lemma 15. Assume H admits a future incomplete generator. If Λ ∈ Ck, k ≥ 1 and
∇kΛ can be written in the form

∇kΛ(X1, X2, . . . , Xk) =
∫ ∞

0
T (k)

ρ (X1, X2, . . . , Xk) e
∫
ϕ(p,[0,ρ]) ωdρ

where T (k)
ρ ∈ I is a (0, k)-tensor field, then Λ ∈ Ck+1 and the previous equation in

display holds also for k → k + 1 for some T (k+1)
ρ ∈ I.

Proof. We are going to compute

∇k+1Λ(X, X1, X2, . . . , Xk) = ∂X [∇kΛ(X1, X2, . . . , Xk)]
−

∑

i

∇kΛ(X1, . . . ,∇X Xi , . . . , Xk).
(45)

SinceΛ ∈ Ck the latter term on the right-hand side is not problematic. It will be absorbed
in terms of the type ∇S to be introduced below.

The critical term is the former one on the right-hand side. Here we need to show
that we can switch differential and integral operators, and this is done by showing that
the integral argument obtained by proceeding naively, i.e. by operating the switch, is
really continuous and integrable, i.e. by using the dominated convergence theorem (this
theorem is used to show that the limit of the incremental ratio can pass from outside to
inside the integral).

We have that (here LX has to be understood as the Lie derivative with respect to
the vector field s 
→ X (s) over the parametrized generator obtained pushing forward
X = X (0) with the flow of n, that is, locally it satisfies LXn = 0)

∂X [∇kΛ(X1, X2, . . . , Xk)] =
∫ ∞

0
[∂X (T (k)

ρ (X1, X2, . . . , Xk))

+ T (k)
ρ (X1, X2, . . . , Xk)

∫ ρ

0
LXω] e

∫
ϕ(p,[0,ρ]) ωdρ
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=
∫ ∞

0
[∂X (T (k)

ρ (X1, X2, . . . , Xk))

+ T (k)
ρ (X1, X2, . . . , Xk)[ϕ∗

ρω − ω](X)] e
∫
ϕ(p,[0,ρ]) ωdρ

Now observe that the last term belongs to I so we can just consider the first term.
Taking into account that any element T (k)

ρ of I is constructed via some finite number
of operations (b)–(d) from parameter independent tensors, we emphasize in the next
expressions the contribution of one such tensor S. Of course, there will be the contribu-
tions of all the smooth ρ-independent covariant tensors entering the expression for T (k)

ρ ,
but each of them is treated analogously, so they are not displayed in the next expressions.

In the expression for ∂X (T (k)
ρ (X1, X2, . . . , Xk)) the derivative is going to distribute

over each of the parameter-independent tensors. When we evaluate T (k)
ρ on the vectors

(X1, . . . , Xk), some vectors X p, . . . , apply to the entries of S, but due to the pullbacks

ϕ∗
r that enter the expression of T (k)

ρ before S, these vectors are really pushed forward
by some cumulative parameter s before being evaluated on S. In other words S will
contribute to ∂X (T (k)

ρ (X1, X2, . . . , Xk)) with a term of the form

· · · ∂ϕs∗(X)[S(ϕs∗(X p), · · · )] · · · .

This derivative has to be converted into a covariant derivative by using the last terms in
Eq. (45). Those involving S have the form

· · · − S(ϕs∗(∇X X p), · · · ) · · · .

Weare going to face here the usual difficulty that the push forward of covariant derivatives
is not the covariant derivative of the push forwards. Taking into account the difference
provided by Eq. (37), the sum of the previous two expressions in display gives

· · · ∇S(ϕs∗(X), ϕs∗(X p), · · · ) + S(∇ϕs∗(X)ϕs∗(X p) − ϕs∗(∇X X p), · · · ) + · · ·
= · · · ∇S(ϕs∗(X), ϕs∗(X p), · · · ) + S(n, · · · )

∫ s

0
dtϕ∗

t η(X, X p) + · · ·

These terms are of type I and thus polynomially bounded.
Therefore the claim is proved and the dominant convergence theorem can indeed be

applied as any polynomial multiplied by the exponential e
∫
ϕ(p,[0,ρ]) ω = e

∫ ρ
0 κ(x(s))ds is

integrable (remember that there is some ε > 0 such that κ < −ε on H ). �

Corollary 4. Assume H admits a future incomplete generator. Function Λ is smooth.

Proof. The induction step is proved by the previous lemma. The starting point of the
induction is justified by the expression of Λ (or by that of its differential). �


8. General Properties in the Non-vacuum Case

In this work by “non-vacuum” we mean “not necessarily Ricci flat”. Of course, the
Ricci flat condition is included in our study. We recall that H and the spacetime satisfy
conditions (�) and (��) introduced previously.

We also recall that in the next result η controls the Lie derivative of the connection,
Eq. (35).
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Theorem 7. Assume H admits a future incomplete generator. The smooth vector field n
can be chosen such that κ = −1 and Λ = 1, in which case Lnω = 0. Moreover,

η = B = − 1

2

∫ ∞

0
(ϕ∗

ρRic − Ric) e−ρdρ = −1

2

∫ ∞

0
ϕ∗

ρ(LnRic) e
−ρdρ. (46)

Proof. It is sufficient to start from any smooth n and choose f in Eqs. (5)–(6) so that
e f = Λ, while using Eq. (12). The equation Lnω = 0 follows from Lemma 6. The last
equation follows from Lemma 13, from Eqs. (28)–(29) through integration by parts. �


Westress that in the following resultswe are not assuming κ constant unless otherwise
specified.

Definition 4. The following properties are equivalent. If they hold we say that H is
future non-degenerate, and similarly in the past version. If they do not hold in any time
orientation, we say that H is degenerate.

1. H admits a future incomplete generator (and hence every generator is future incom-
plete),

2. The smooth vector field n can be chosen such that κ < 0 over H ,
3. The smooth vector field n can be chosen such that κ = −1 over H ,
4. For some choice of smooth vector field n (and hence for every choice) there is a

generator over which
∫ ∞
0 κ(s)ds = −∞ (and hence the same is true for every

generator).

Proof of the equivalence. Observe that 1 ⇒ “2 and 3” follows from Theorem 7, while
“2 or 3” ⇒ 1 follows from the continuity of κ and compactness of H , which implies
κ < −ε < 0 over H , so that the integral (11) converges. We have shown the equivalence
of 1, 2 and 3.

Property 4 does not depend on the choice of smooth vector field n since under a gauge
change n′ = e f n, κ ′ = e f (κ + ∂n f ) and ds′ = e− f ds, thus over every segment η of a
generator with endpoints p, q ∈ H ,

∫
η
κ ′ds′ = ∫

η
κds +Δ f , where Δ f = f (q)− f (p)

is bounded, as f is bounded.
Assume 4 then by Prop. 1 the same property holds for every generator, and by Thm.

3 property 2 holds. For the converse, clearly under 3 property 4 holds. �

Proposition 3. For a future non-degenerate H all generators are complete in the past
direction (and incomplete in the future direction). For a degenerate H all generators
are complete (in both directions).

Proof. In Corollary 2 we already proved the statement in parenthesis. Let n be such
that κ = −1, then for −n we have κ = 1. Observe that the integral curves for −n are
past-directed, thus the claim follows from Eq. (11). The last statement follows from the
fact that 1 in Def. 4 does not hold neither in the future nor in the past cases. �


The (embedded) C2 null hypersurfaces are known to be locally achronal [11] [30,
Thm. 6.7], thus for them we can infer the existence of a neighborhood in which they are
achronal accordingly to the next more general result

Proposition 4. Let N be a locally achronal topological co-dimension one submanifold
which is closed in the topology of M, then there is an open neighborhood U ⊃ N such
that N is achronal in U.
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Proof. LetV be a global smooth timelike vector field, and let x ∈ N . By local achronality
and the other assumptions on N , x admits a neighborhood W in which N ∩ W is an
achronal boundary for the spacetimeW . There is a cylindrical coordinated neighborhood
C ⊂ W , such that N∩C coincideswith the image of a locally Lipschitz graph x0 = h(x),
with ∂0 = V (cf. [35] [30, Thm. 2.87]). Hence, due to the time-orientation of the
spacetime, N is two-sided.

This means that any sufficiently small tubular neighborhood U can be written as
the union of two ‘one-sided’ neighborhoods U1,U2, U1 ∩ U2 = N , where a global
future-directed timelike vector field would point from N towards U1 (i.e. U1 is on the
local future side of N , while U2 is on the local past side). Suppose that there is a C1

timelike curve γ ⊂ U connecting two points of N . By shortening it if necessary, we can
assume that it intersects N just at the endpoints p and q (by local achronality p �= q).
As a consequence, γ \{p, q} is contained in either U1\N , or U2\N , as it is not possible
to pass from one side of the neighborhood to the other without crossing N . Without
loss of generality, let us assume the former possibility. Picking r ∈ γ \{q} in a convex
neighborhood of q, we can replace the last piece of γ connecting r to q with a timelike
geodesic segment. Not all the timelike geodesic segment can be inU2, otherwise r ∈ N ,
contradicting the definition of q. Thus, without loss of generality, we can find a piecewise
C1 timelike curve σ in U1, intersecting N just at the endpoints p, q ′, and having a last
geodesic segment connecting r ∈ U1\N to q ′, r �= q ′.

By the local achronality of N , q ′ admits a convex neighborhood such that the expo-
nential map of the past timelike cone at q ′ on that neighborhood, does not intersect
N , and hence is entirely contained in U2\N . This implies that σ intersects U2\N , a
contradiction.

The contradiction proves that N is achronal in U . �

The next result shows that the surface gravity could have been introduced in a different

way, which is indeed the original one in [32].

Proposition 5. Let T be a vector field defined in a neighborhood of H such that
g(n, T ) = − 1

a = const �= 0 on H (hence transverse to H), and extend n to a neigh-
borhood of H in such a way that LT n = 0, then

κ = a

2
∂T g(n, n)|H . (47)

Proof. We have

∇T g(n, n) = 2g(∇T n, n) = 2g(∇nT, n) = 2[∂ng(T, n) − g(T,∇nn)] = 2κ

a
.

�

Typically T will be future-directed causal, hence a > 0.
In the previous references results similar to the following ones, but under some

achronality assumptions, were given a proof based onGaussian null coordinates [36,37].
Our proof is topological and direct.

Theorem 8. Let T be a future-directed causal vector field transverse to H such that
g(n, T ) = cost, and let ψt be its flow. If κ < 0 all over H, then for sufficiently small |t |,
Ht := ψt (H) is a compact timelike hypersurface for t > 0, and a compact spacelike
hypersurface for t < 0. Moreover, no two hypersurfaces in the family {Ht } intersect.
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Proof. Let p ∈ H , we are going to study the causal character of Tψt (p)ψt (H) =
dψt (TpH) for sufficiently small |t |, proving the claim at p. All the geometric objects
constructed in what follows can be chosen so as to be continuous with p, then the result
follows from the compactness of H by a standard argument.

Since κ(p) < 0 (we do not need constancy of κ) we have from Eq. (47), recalling
that LT n = 0 and hence that n is invariant under the flow, g(dψt (n), dψt (n)) < 0 for
sufficiently small t > 0. As the induced metric on Tψt (p)ψt (H) can only be of three
types we conclude that the Lorentzian case applies.

For the case t < 0, observe that ∂T g(n, n) = (LT g)(n, n), thus by continuity there
is an open double cone Dp ⊂ TpH containing {n,−n} such that the quadratic form
(LT g) is negative on Dp. More precisely, introduced a Riemannian metric h on H , there
is ε > 0 such that for every v ∈ Dp, (LT g)(v, v) < −εh(v, v).

Let Rp = TpH\[Dp ∪ {0}], then Rp does not intersect Cp ⊂ TpM , the causal cone
at p. As a consequence for sufficiently small |t |, dψt (Rp) ∩ Cψt (p) = ∅ which means
that dψt (Rp) consists of spacelike vectors.

Since the zero vector is push forwarded to the zero vector, we need only to study
dψt (Rp), as TpH = Rp ∪ Dp ∪ {0}. But regarding g as a quadratic form, g|Dp ≥ 0 and
for v ∈ Dp

d

dt
g(dψt (v), dψt (v))|t=0 = (LT g)(v, v) < 0

thus g(dψt (v), dψt (v)) = g(v, v) + (LT g)(v, v)t + ov(t). Note that LT LT g|T H is
bounded over the compact sphere of unit vectors of h, so |ov(t)| ≤ bt2h(v, v) for some
b > 0, i.e. it can be uniformly controlled over Dp. This implies that for sufficiently
small |t | with t < 0, dψt (Dp) consists of spacelike vectors.

The last statement follows from Prop. 4 as the existence ofU implies that for p, q ∈
H , it cannot be ψt ′(p) = ψt (q), t ′ �= t , as we would get ψt ′−t (p) = q which leads to a
contradiction with the achronality of H . �


We recall that a temporal function f is a C1 function whose gradient is timelike and
past-directed. Equivalently, ker d f is spacelike and d f (T ) > 0 with T future-directed
causal vector field. Temporal functions are time functions, that is, they increase over
every causal curve.

In the next proposition it is assumed that |t | ≤ c where c is so small that the previous
result applies for every t in this interval.

Proposition 6. Let κ < 0 all over H and let T be as in the previous result. The function
t defined in a neighborhood of H by ∂t = T , t |H = 0, is a temporal function for t < 0.
Moreover, every inextendible causal curve that intersects one Ht ′ , t ′ < 0, must intersect
all the other Ht , t < 0.

Proof. Observe that dt (T ) = 1 and ker dt (ψτ (p)) = Tψτ (p)Hτ which is spacelike by
Thm. 8, thus t is temporal on the region t < 0. The last statement follows from the fact
that no inextendible causal curve can accumulate on a compact spacelike manifold, for
the limit curve theorem would give a causal curve in that manifold, a contradiction. �


For a non-degenerate H , chosen n such that κ = −1, as Lnω = 0 the following
(Petersen) Riemannian metric5 [5,37] is left invariant by the flow ϕ

σ := g̃ + ω ⊗ ω (48)

5 A study of Riemannian metrics of this form over null hypersufaces can be found in [13].
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that is, Lnσ = 0.
We recall that given a generator γ , the future omega-limit set is defined by [27]

Ω f (γ ) =
⋂

t

γ ([t,+∞))

that is, it is the set of future accumulation points of γ . A similar definition is given for
Ωp(γ ).

Proposition 7. Let H be non-degenerate, then for every generator γ we have γ =
Ω f (γ ) ∩ Ωp(γ ).

In other words γ future (and past) accumulates to each of its points (compare with
the similar result in [34]).

Proof. Let us choose n so that κ = −1. Let p ∈ γ and let B(p, r) be the open ball of
σ -radius r centered at p.

Since the σ -volume of H is finite and since the volume is preserved by the flow ϕ,
by the standard application of the Poincaré recurrence argument, for each τ > 0 there
is some k ∈ N\{0} such that ϕkτ (B(p, r)) ∩ B(p, r) �= ∅. As τ is arbitrary this means
that the future-directed generator starting from p intersects B(p, 2r) indefinitely in the
future. As r is arbitrary, p is a future accumulation point of γ , and similarly in the past
case.

This shows γ ⊂ Ω f (γ ) ∩ Ωp(γ ) and since the right-hand side is closed γ ⊂
Ω f (γ ) ∩ Ωp(γ ). The other direction is clear since, by definition, Ω f (γ ) ⊂ γ and
similarly in the past case. �


The next result was proved in [32] for vacuum spacetimes under an analyticity
assumption and for closed generators. See also [36, Cor. 2.13] for the smooth vac-
uum case of point (ii).

We recall that the region of chronology violation C consists of those points p through
which passes a closed timelike curve. The set [p]U is the chronological class of p for
the spacetime U in the induced metric.

Theorem 9. Let H be future non-degenerate, let T be a future-directed causal vector
field transverse to H such that g(n, T ) = cnst < 0, and let Ht := ψt (H).

(i) For each sufficiently small t > 0, Ht is contained in the chronology violating set C,
hence H ⊂ C. More precisely, there is a neighborhood U ⊃ H, such that for each
p ∈ I +(H,U ), [p]U = I +(H,U ).

(ii) For each neighborhood U of H in which H is achronal (it exists by Prop. 4) we have,
for each sufficiently small t < 0, that the compact spacelike hypersurface Ht ⊂ U
is acausal in U and such that H+(Ht ,U ) = H and D+(Ht ,U ) = ψ(H, [t, 0)) =
∪s∈[t,0)Hs.

Thus every non-degenerate horizon H is actually a Cauchy horizon bounded on one side
by a (one single chronology violating class of a) region of chronology violation.

Remember that a partial Cauchy hypersurface is an acausal edgeless set [30]. Here
Ht is just a ‘local’ partial Cauchy hypersurface as it is acausal just in U . However,
‘local’ can be dropped if H is achronal. Notice also that Ht is diffeomorphic to H as it
is standard between a (local) partial Cauchy hypersurface and its Cauchy horizon.

The versions of (i) and (ii) for past non-degenerate horizon can be obtained reversing
the time orientation. The region of chronology violation will be found in the past of H ,
while the partial Cauchy hypersurfaces with past Cauchy horizon H will be found in the
future of H .
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Proof. (i). Every point of ψt (H) is of the form p′ := ψt (p) for some p ∈ H . Let r < p
be apoint slightly before p in the generatorγ passing through p. The curveγ accumulates
to the future to each point of γ , hence also to r . Since ψt |H is a diffeomorphism for
sufficiently small |t |, the curve γ ′ := ψt ◦ γ accumulates to the future on r ′ := ψt (r).
But for t > 0 since κ < 0, we have that dψt (n) is timelike, thus the curve γ ′ is timelike,
which implies r ′ � p′. Moreover, since γ ′ passes through p and accumulates to r ′, we
have, by the openness of the chronological relation that there is a closed timelike curve
passing through p′ which gives the desired result.

The chronological classes are open and their union gives the chronology violating
set. Since H is connected, ψ(H, (0, a)) is connected and contained in the chronology
violating class of U = ψ(H, (−a, a)) for sufficiently small a > 0, hence it is entirely
contained in one chronology violating class of U .

(i i). By Prop. 6 we know that every inextendible causal curve γ passing through
q ∈ Ht ′ , intersects Ht , t < t ′ < 0. This fact and point (i) show that D+(Ht ,U ) =
ψ(H, [t, 0)) = ∪s∈[t,0)Hs and H+(Ht ,U ) = H . Finally, observe that if there
are p1, p2 ∈ Ht connected by a future-directed causal curve γ ⊂ U then H is
non-achronal in U , due to the fact that γ intersects H and the timelike integral
curve of T passing through p2 intersects H .

�


8.1. Classification in the 3+1 dimensional case. By using the invariance of the Petersen
metric σ under the flow ϕ, Bustamante and Reiris obtained a classification for the
topology and for the orbital types of the null generators of the compact non-degenerate
Cauchy horizons in smooth vacuum 3 + 1-spacetimes [5]. This classification improved a
previous classification in [34]. As they also stress in their paper, the proof relies only on
the fact that the surface gravity can be normalized to −1. Indeed, the proof uses results
on isometric actions for Riemannian 3-dimensional manifolds, there applied to the case
of (H, σ ).

According to our previous results, their theorems generalize to the non-vacuum case
as follows (we introduce all the assumption on our horizon H for clarity)

Theorem 10. Let (M, g) be a 3+1-dimensional spacetime which satisfies the dominant
energy condition. Let H be a smooth compact totally geodesic non-degenerate horizon
(hence generated by lightlike geodesics). Then the classification of Theorem 1.1 and
Corollary 1.2 of [5] applies to H.

9. Conclusions

In this work we explored properties related to surface gravity of (�) a compact connected
smooth totally geodesic null hypersurface H under (��) the dominant energy condition
(or some weaker condition). These hypersurfaces arise naturally as compact Cauchy
horizons on spacetimes satisfying (��). We stressed that the dominant energy condition,
rather than the vacuum assumption, is sufficient in this connection for many purposes.
For instance, the results (a) ‘a horizon H that admits an incomplete generator admits a
lightlike tangent field n whose surface gravity is a constant’ (non-degenerate horizon),
and (b) ‘every non-degenerate horizon is a (local) Cauchy horizon bounded by a region of
chronology violation’, can be obtained without a vacuum assumption. Much of the work
was in fact devoted to proving (a) with a strategy largely independent of that of [33,40].
Our method of proof gives new insights into this type of normalization problems.
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Appendix: Existence and Regularity of the Homotopy

In this appendix we prove that ribbons with arbitrary starting horizontal curve σ0 exist,
that they are smooth and that they can be arbitrarily extended in the longitudinal direction.
Furthermore, these ribbons are foliated by horizontal curves that establish a bijection
between the longitudinal sides γ0 and γ1.

Let σ0 : [0, 1] → H be a horizontal curve, and let us consider the map

χ : [0, 1] × R → H, χ(r, u) = ϕ(σ0(r), u),

where ϕ is the flow of n, so that dϕ(r, u)(∂u) = n.
The 1-form on [0, 1] × R given by β = ϕ∗(n∗), satisfies β(∂u) = n∗(dϕ(∂u)) =

n∗(n) = 1 and hence has the form

β = du −U (r, u)dr

where U is some smooth function. Since σ0 is horizontal, we have U (r, 0) = 0. The
distribution ker β is integrable on [0, 1] × R, and the leaves are graphs of maps r 
→
(r, s(r)) with

ds

dr
= U (r, s).

For each starting point (0, s(0)) we have one integral leaf. Since the solutions to the
above ODE exist and are unique, distinct leaves do not intersect. The image of the leaves
under the map χ are the horizontal curves that foliate the ribbon.

Wewant to prove that every leaf starting from {0}×R reaches {1}×R, in other words,
each leaf, regarded as a graph, has an r -domain which coincides with [0, 1]. Since the
solutions to the ODE are unique the integral leafs would end up establishing a bijection
s(0) ↔ s(1). Notice that each leaf would be ϕ-mapped to a horizontal curve connecting
γ0 to γ1.

Observe that the map μ : r 
→ χ(r, s(r)) = ϕ(σ0(r), s(r)) has as image a horizontal
curve, which means n∗(dμ(∂r )) = 0. Since

dμ(∂r ) = (
dϕs(r)

)
(σ ′

0(r)) + s′(r)n,

we arrive at the ODE

s′(r) = −n∗ (
d

(
ϕs(r)

)
(σ ′

0(r))
)
, (49)

which gives a precise form to the function U introduced above.

Lemma 16. Let σ0 : [0, 1] → H be a horizontal curve. For every ρ ∈ R, the maximal
solution to the ODE (49) with initial condition s(0) = ρ is defined on [0, 1].
Observe that since σ0 is horizontal the zero map s(r) = 0 is a solution, and since no two
solutions intersect, we have that ρ > 0 implies s(r) > 0 for every r in the domain of
the solution, and similarly for ρ < 0.

Proof. Let us consider the case ρ > 0, the other case being analogous. Let s : I → R

be the maximal solution of the ODE, with I = [0, α), α ≤ 1, the maximal interval. By
Lemma 10 there is K > 0 such that

s′(r) ≤ |s′(r)| = ∣
∣n∗ (

d
(
ϕs(r)

)
(σ ′

0(r))
) ∣
∣ ≤ K

√
g(σ ′

0(r), σ
′
0(r))s(r) ≤ Cs(r)
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where C > 0 is a suitable constant. Then the solution is bounded6 on I and hence, by
ODE theory [14, Cor. 3.1], I = [0, 1]. �


9.1. Local horizontal lift. In this sectionwe give some details on the notion of horizontal
lift.

Let p ∈ H and, on the manifold H , let {xa, a = 0, . . . , n − 1} be the coordinates of
a cylinder coordinate neighborhood C of p such that ∂0 = n and x0 = 0 is a spacelike
codimension-2 manifold. Remember that n∗ is a 1-form on H such that n∗(n) = 1, thus
its kernel is a subspace of T H transverse to n. This means that in local coordinates

n∗ = dx0 + Ai (x
0, xi )dxi

where i = 1, . . . , n − 1. This is the typical connection of generalized gauge theories
[26,31] (in standard gauge theories Ai would not depend on x0, that is n∗ would be
invariant under the flow ϕ of n).

The condition of n∗-horizontality for a curve r 
→ x(r) on H is

dx0

dr
= −Ai (x

0, xi )
dxi

dr

which is a first order ODE for x0(r) once the map r 
→ xi (r) has been assigned. The
curve α : r 
→ xi (r) lives on the quotient space Q := C/n of the cylinder by the flow,
and what we are defining would be called horizontal lift in generalized gauge theories.

For each q1 ∈ Q, and curve α with starting point q1 in Q, we have, for each point in
the fiber of q1, one and only one horizontal lift. This existence and uniqueness follows
from the existence of solutions to the previous ODE [14]. The smooth dependence of
the horizontal lift on the choice of point in the fiber follows from regularity results on
the dependence of ODE from the initial conditions [14]. Since solutions to the ODE are
unique, different horizontal lifts of the same curve do not intersect.

Acknowledgements S.G. thanks the Department of Mathematics of Firenze for kind hospitality. E.M. was
partially supported by GNFM of INDAM.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agree-
ment.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

6 To see this, define h(r) = s(r)e−Cr . We have h′ = (s′ − Cs)e−Cr ≤ 0, thus h is decreasing, hence
h(r) ≤ h(0) = s(0). Thus s(r) ≤ s(0)eCr ≤ ρeCr .

http://creativecommons.org/licenses/by/4.0/


712 S. Gurriaran, E. Minguzzi

Declarations

Data availability statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys.
31, 161–170 (1973)

2. Beem, J.K., Królak, A.: Cauchy horizon end points and differentiability. J. Math. Phys. 39, 6001–6010
(1998)

3. Boyer, R.H.: Geodesic Killing orbits and bifurcate Killing horizons. Proc. R. Soc. Lond. Ser. A 311,
245–252 (1969)
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