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Abstract: This paper generalizes classical spin geometry to the setting of weighted
manifolds (manifolds with density) and provides applications to the Ricci flow. Spectral
properties of the naturally associated weighted Dirac operator, introduced by Perelman,
and its relationship with the weighted scalar curvature are investigated. Further, a gen-
eralization of the ADM mass for weighted asymptotically Euclidean (AE) manifolds is
defined; onmanifolds with nonnegative weighted scalar curvature, it satisfies a weighted
Witten formula and thereby a positive weighted mass theorem. Finally, on such mani-
folds, Ricci flow is the gradient flow of said weighted ADMmass, for a natural choice of
weight function. This yields a monotonicity formula for the weighted spinorial Dirichlet
energy of a weighted Witten spinor along Ricci flow.

0. Introduction

Manifolds with density, or weighted manifolds, have long appeared in mathematics. A
weighted manifold is a Riemannian manifold (M, g) endowed with a function f : M →
R, defining themeasure e− f dVg .After being introducedbyLichnerowicz in [Lic1,Lic2],
more recent attention has been given to the differential geometry of weighted manifolds,
including a generalization of Ricci curvature. A central idea of Perelman’s spectacular
proofs [P] required considering manifolds with density and their evolution. This led him
to introduce a notion of weighted scalar curvature which is not the trace of the weighted
Ricci curvature of Bakry-Émery. Sometimes called the P-scalar curvature, this weighted
scalar curvature has only been moderately studied; see for instance [Fa,AC,LM,D,BH].

This paper shows that the intimate relationship between scalar curvature and the
Dirac operator generalizes naturally to the weighted scalar curvature and an associated
weighted Dirac operator, defined below. Well-known theorems relating scalar curvature
and the Dirac operator include Friedrich’s eigenvalue estimate [Fr1], Witten’s proof
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Table 1. Classical vs. weighted quantities

Riemannian with density
Volume form dV e− f dV
Ricci curvature Ric Ric f := Ric + Hess f
Scalar curvature R R f := R +2� f − |∇ f |2
Hilbert-Einstein fct. HE := ∫

M R dV F( f ) := ∫
M R f e

− f dV

Einstein’s tensor E := Ric − R
2 g E f := Ric f − R f

2 g
Divergence div div f (h) := div(h) − h(∇ f, ·)
Bianchi identity div(E) = 0 div f (E f ) = 0
Einstein metric Ric = �g Ric f = �g
Mean curvature H H f := H − ∇ν f
Dirac operator* D D f := D − 1

2 (∇ f )·
Lichnerowicz formula* D2 = −� + 1

4 R D2
f = −� f +

1
4 R f

Ricci identity* [D, ∇X ] = 1
2Ric(X)· [D f ,∇X ] = 1

2Ric f (X)·
Dirac spinor* ψ s.t. Dψ = 0 ψ f := e−

f
2 ψ s.t. D f ψ f = 0

Eigenvalue bound* λ(D)2 � n
4(n−1) min R λ(D)2 = λ(D f )

2 � n
4(n−1) min R f

ADM mass* m = lim
ρ→∞

∫
Sρ

(∂i gi j − ∂ j gii ) d A j m f := m + 2 lim
ρ→∞

∫
Sρ

〈∇ f, ν〉 e− f d A

Witten formula* m = 4
∫
M

(
|∇ψ |2 + 1

4 R |ψ |2
)
dV m f = 4

∫
M

(
|∇ψ |2 + 1

4 R f |ψ |2
)
e− f dV

Contributions from this paper are labeled with an asterisk (*)

of the positive mass theorem [W1], Gromov-Lawson’s obstructions to positive scalar
curvature [GL], and the Seiberg-Witten theory [W3]. Here, the first two of said theorems
are generalized and then applied to the Ricci flow.

Aside from their applications in Ricci flow, weighted manifolds have proven
extremely useful in the context of diffusion operators in analysis and probability theory,
starting with Bakry and Émery’s celebrated article [BE]. In a more classical
Riemannian geometry context, Cheeger-Colding showed that limits of collapsing
manifolds are naturally endowed with densities. Such densities differ from those defined
by the Riemannian volume form, and the natural object of study is a metric measure
space. See also the many extensions to the theory of (R)CD spaces started in [LV,S].

In physics,manifoldswith density appear in a number of theories arising fromKaluza-
Klein compactifications, via the mechanism of dimensional reduction. The closest to
the purpose of this paper is probably Brans-Dicke theory, which motivates the study
of manifolds with density and Bakry-Émery’s notion of (weighted) Ricci curvature in
[GW,WW,LMO]. Also, the weighted version of the Hilbert-Einstein action, introduced
by Perelman, appears as the Lagrangian in several gravitational theories; this fact was
noted in [CCD+], for instance.

Table 1 gives a summary comparison between classical and weighted quantities. The
weighted quantities are typically better behaved than their Riemannian counterparts as
one can choose a geometrically meaningful density. This idea can be seen as the core of
Perelman’s proofs [P]. In the context of scalar curvature andmass questions, proofs often
employ a conformal change of themetric to reach constant scalar curvature, significantly
changing the geometry; see [CP] for a survey of this technique. In contrast, on weighted
manifolds, the idea is rather to fix the background geometry while varying the weight
in order to obtain a metric with constant weighted scalar curvature.

0.1. Weighted Dirac Operator. Section 1 extends classical spin geometry theory to
weighted manifolds. The new mathematical object introduced in this section is the
weighted Dirac operator,
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D f = D − 1

2
(∇ f )· (0.1)

The ∇ f term acts by Clifford multiplication, and D denotes the standard (unweighted)
Dirac operator. The weighted Dirac operator is self-adjoint with respect to the weighted
L2-inner product and is unitarily equivalent to the standard Dirac operator; see Propo-
sition 1.20.

Differential operators naturally associated with weighted measures have proven in-
valuable in analysis and geometry. Of particular note is the weighted Laplacian, � f =
� − ∇∇ f , also called the drift Laplacian, f -Laplacian, or Witten Laplacian. When

f = |x |2
4 on Rn , then � f is the Ornstein-Uhlenbeck operator. Weighted Laplace opera-

tors have been used in Ricci and mean curvature flow to analyze solitons [CM,CZ,MW],
and by Witten in his study of Morse theory [W2], for example.

Proposition 1.8 proves a weighted Lichnerowicz formula involving the weighted
scalar curvature,

D2
f = −� f +

1

4
R f . (0.2)

Proposition 1.15 proves a weighted Ricci identity involving the Bakry-Émery Ricci
curvature,

[D f ,∇X ] = 1

2
Ric f (X)· (0.3)

Theorem1.23 generalizes the classical lower bound forDirac eigenvalues to theweighted
setting: on a closed, weighted spin manifold, any eigenvalue λ of D f satisfies

λ2 � n

4(n − 1)
min R f . (0.4)

Furthermore, the same lower bound also holds for eigenvalues of the standard Dirac
operator.

Forthcoming work will study weighted spin manifolds with boundary [BO2].

0.2. Weighted Asymptotically Euclidean Manifolds. A fundamental quantity associated
with an asymptotically Euclidean (AE) manifold (Mn, g) is the ADM mass [ADM],
denotedm(g). Section 2 introduces a quantity extending the ADMmass to the weighted
setting: the weighted mass of an AE manifold with weight function f is defined as

m f (g) := m(g) + 2 lim
ρ→∞

∫

Sρ

〈∇ f, ν〉 e− f d A, (0.5)

where Sρ is a coordinate sphere of radius ρ with outward normal ν and area form d A.
The normalization for m used in this paper is related to Bartnik’s [B] by m = cnmADM,
where cn = 2(n − 1)ωn−1 and ωn−1 is the area of the unit sphere in Rn ; this simplifies
the formulas to follow.

Theorem 2.5 shows that the weighted mass of a spin manifold satisfies a weighted
Witten formula: if the weighted scalar curvature is nonnegative and f decays suitably
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rapidly at infinity, there exists an asymptotically constant weighted-harmonic spinor ψ

of norm 1 at infinity and satisfying

m f (g) = 4
∫

M

(

|∇ψ |2 + 1

4
R f |ψ |2

)

e− f dVg. (0.6)

Moreover, Theorem 2.13 proves a positive weighted mass theorem on spin manifolds:
if the weighted scalar curvature is nonnegative and f decays suitably rapidly at infinity,
then

m f (g) ≥ 0, with equality iff (Mn, g) ∼= (Rn, geuc) and
∫

Rn
(� f f ) e

− f dVgeuc = 0.

(0.7)

By way of a parenthetical remark: using work of Nakajima [N] (see [DO1]), the re-
sults of this section have straightforward extensions to asymptotically locally Euclidean
spaces of dimension 4 with subgroup SU(2) at infinity, though they are not pursued in
this paper.

0.2.1. Weighted Mass and Ricci Flow ADMmass does not measure how far a manifold
is from the Euclideanmetric, except in an asymptotic way at infinity. Indeed, one striking
way to see this is that 3-dimensional Ricci flow (with surgery) starting at an AE metric
with nonnegative scalar curvature converges to Euclidean space [Li]; however, mass
is constant along the flow and thus does not detect the improvement of the geometry
[DM,OW,Ha2,Li].

On the other hand, with a suitable choice of weight function f , the weighted mass
indeed measures how far an AE manifold is from Euclidean space: the most natural
choice for f is the unique fg decaying at infinity and solving R fg ≡ 0. Theorem 2.17
shows that such an fg exists on any AE manifold with nonnegative scalar curvature.
This surprisingly yields the formula

m fg (g) = −λALE(g), (0.8)

where λALE(g) is the renormalized Perelman functional introduced by Deruelle and the
second author [DO1]. Equality (0.8) is the content of Theorem 2.17, and is unexpected
at first sight since λALE stems from a variational principle on the whole manifold, and a
priori is not a boundary term. (The notation for λALE is adopted from [DO1], since the
results here also apply to ALE spaces.)

The renormalized Perelman functional is the correct modification of Perelman’s λ-
functional (for closed manifolds) to AE manifolds: it has the crucial property that Ricci
flow, ∂t g = −2Ric, is its gradient flow [DO1,Ha1]. Thus equality (0.8) implies that a
Ricci flow on an AE manifold with nonnegative scalar curvature is the gradient flow of
the weighted mass (see Corollary 2.20):

d

dt
m fg (g) = −2

∫

M
|Ric + Hess fg |2e− fg dV ≤ 0, (0.9)

and equality implies Ricci-flatness. Together, (0.6), (0.8), and (0.9) imply the following
monotonicity formula along Ricci flow for the weighted spinorial Dirichlet energy of a
weighted Witten spinor:

d

dt

∫

M
|∇ψ |2e− fg dV = −1

2

∫

M
|Ric + Hess fg |2e− fg dV . (0.10)
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This monotonicity formula stands in contrast to the constancy of ADMmass along Ricci
flow, which implies that for an (unweighted) Witten spinor ϕ, the integral

∫
M (|∇ϕ|2 +

1
4 R |ϕ|2)dV is constant along Ricci flow. Further applications of spin geometry to the
Ricci flow, including a direct proof of (0.10) via the first variation, will be presented in
forthcoming work [BO1].

Equality (0.8) additionally implies that all of the advantages of λALE over the ADM
mass also hold for the weighted mass. In addition to those already stated, the key advan-
tages of the weighted mass over the ADMmass are as follows: like ADMmass,m fg (g)
is nonnegative on any spin AE manifold, and vanishes only on Euclidean space;m fg (g)
satisfies a Łojasiewicz inequality measuring the distance to Euclidean space; m fg (g)
is real-analytic on weighted Hölder spaces, where neither mass, nor the L1-norm of
scalar curvature are defined; even when an AE manifold has some negative scalar cur-
vature, m fg (g) is nonnegative and detects how far from Euclidean space the geometry
is, allowing for stability analysis of gravitational instantons under general perturbations
[DO2].

1. Weighted Dirac Operator

Let (Mn, g) be a complete Riemannian spin n-manifold without boundary. The spin
bundle �M → M is a complex vector bundle of rank 2� n

2 �, equipped with a Hermi-
tian metric, Clifford multiplication, and connection. These objects satisfy compatibility
conditions which are stated below. A spinor field, or simply spinor, is a section of the
bundle �M . For background on spin geometry, see the book [P], whose notation and
conventions are adopted here.

Let f ∈ C∞(M). The weighted Dirac operator D f : �(�M) → �(�M) is defined
as

D f = D − 1

2
(∇ f ), (1.1)

where D = ei · ∇i is the standard (Atiyah-Singer) Dirac operator and · denotes Clifford
multiplication. (Throughout this paper, 1-forms and vector fields will often be identified
without explicit mention.) The weighted Dirac operator is the Dirac operator associated
with the modified spin connection ∇ f : �(�M) → �(T ∗M ⊗ �M), defined by

∇ f
Xψ = ∇Xψ − 1

2
(∇X f )ψ, (1.2)

where ∇ is the standard spin connection induced by the Levi-Civita connection. The
modified spin connection∇ f is notmetric compatible with the standard metric [BHM+,
Proposition 2.5] on the spin bundle, 〈·, ·〉, however, it is compatible with the modified
metric 〈·, ·〉 f := 〈·, ·〉e− f , that is

X (〈ψ, ϕ〉e− f ) = 〈∇ f
Xψ, ϕ〉e− f + 〈ψ,∇ f

Xϕ〉e− f , (1.3)

for any vector field X and spinorsψ, ϕ.Moreover, sinceCliffordmultiplication is parallel
with respect to the standard spin connection, it is also parallel with respect to ∇ f . This
means that

∇ f
X (Y · ψ) = Y · ∇ f

Xψ + (∇XY ) · ψ, (1.4)
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for any vector fields X,Y and spinor ψ .
The weighted Dirac operator satisfies the following weighted integration by parts

formula on W 1,2(e− f dV ),
∫

M
〈ψ, D f ϕ〉e− f dV =

∫

M
〈D f ψ, ϕ〉e− f dV (1.5)

and hence is self-adjoint on W 1,2(e− f dV ). Furthermore, a weighted Lichnerowicz
formula holds, which was observed by Perelman [P, Rem. 1.3]. To state it, let

� f = � − ∇∇ f (1.6)

be the weighted Laplacian acting on spinors and let

R f = R +2� f − |∇ f |2 (1.7)

be Perelman’s weighted scalar curvature (or P-scalar curvature).

Proposition 1.8 (Weighted Lichnerowicz). The square of the weighted Dirac operator
D f satisfies

D2
f = −� f +

1

4
R f . (1.9)

Proof. The proof is a consequence of the standard Lichnerowicz formula and the prop-
erties of Clifford multiplication. Recall that if e1, . . . , en is a local orthonormal basis of
T M , then for any symmetric 2-tensor A,

n∑

i, j=1

A(ei , e j )ei · e j · = −tr(A)1. (1.10)

(The proof is immediate from the Clifford algebra relation ei · e j + e j · ei = −2δi j1).
Combined with the standard Lichnerowicz formula and the Clifford algebra relation, it
follows that for any smooth spinor ψ ,

D2
f ψ =

(

D − 1

2
(∇ f )·

) (

D − 1

2
(∇ f )·

)

ψ

= D2ψ − 1

2
D((∇ f ) · ψ) − 1

2
(∇ f ) · Dψ − 1

4
|∇ f |2ψ

= D2ψ − 1

2
ei · ∇i ((∇ j f )e j · ψ) − 1

2
(∇ j f )e j · ei · ∇iψ − 1

4
|∇ f |2ψ

= D2ψ − 1

2
(∇i∇ j f )ei · e j · ψ − 1

2
(∇ j f )(ei · e j + e j · ei ) · ∇iψ − 1

4
|∇ f |2ψ

= −�ψ +
1

4
Rψ +

1

2
(� f )ψ + 〈∇ f,∇ψ〉 − 1

4
|∇ f |2ψ

= −� f ψ +
1

4
(R +2� f − |∇ f |2)ψ

= −� f ψ +
1

4
R f ψ.

(1.11)

��
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Remark 1.12. The weighted Lichnerowicz formula also follows from the Lichnerowicz
formula for spin-c Dirac operators [Fr2, §3.3],

D2
A = −�A +

1

4
R +

1

2
d A, (1.13)

by choosing the spin-c connection ∇ A for which A = − 1
2d f . Indeed, with this connec-

tion,

�A = (∇ A)∗∇ A = � f − 1

4
(2� f − |∇ f |2) (1.14)

and d A = − 1
2d

2 f = 0, from which the weighted Lichnerowicz formula (1.9) follows
immediately. In this sense, the weighted Dirac operator can also be thought of as the
twisted Dirac operator DA.

Proposition 1.15 (Weighted Ricci identity). The weighted Ricci curvatureRic f = Ric+
Hess f is proportional to the commutator of D f and∇: for any vector field X and spinor
ψ ,

[D f ,∇X ]ψ = 1

2
Ric f (X) · ψ. (1.16)

Proof. Recall the unweighted Ricci identity, [D,∇X ] = 1
2Ric(X)·. (For a proof, see for

example [BHM+,Rem. 2.50]).Using this identity and the fact thatCliffordmultiplication
is parallelwith respect to theweighted spin connection (1.4), it follows that, for any spinor
ψ ,

D f ∇Xψ − ∇X D f ψ = D∇Xψ − 1

2
(∇ f ) · ∇Xψ − ∇X Dψ +

1

2
∇X ((∇ f ) · ψ)

= [D,∇X ]ψ +
1

2
(∇X∇ f ) · ψ

= 1

2
Ric(X) · ψ +

1

2
Hess f (X) · ψ. (1.17)

��
Inwhat follows, denote the space of weighted L2-spinors by L2

f = L2(�M, e− f dV )

and let L2 be the space of unweighted L2-spinors. Define the linear operator

U f : L2 → L2
f , ψ �→ e f/2ψ. (1.18)

This operator is an isomorphism of Hilbert spaces with inverse given by U−1
f = U− f ;

it preserves norms since

‖U f ψ‖L2
f

=
∫

M
|e f/2ψ |2 e− f dV = ‖ψ‖L2 . (1.19)

In particular, U f is a unitary operator. Recall that two operators A, B acting on Hilbert
spaces with domains of definition DA and DB are unitarily equivalent if there exists a
unitary operator U such that UDA = DB and U AU−1x = Bx for all x ∈ DB .
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Proposition 1.20 (Unitary equivalence). The Dirac operator D and the weighted Dirac
operator D f are unitarily equivalent and hence isospectral; on C1-spinors, these oper-
ators are related by

U f DU
−1
f = D f . (1.21)

In particular, Dψ = 0 if and only if D f (e f/2ψ) = 0.

Proof. For any C1-spinor ψ ,

U f DU
−1
f ψ = e f/2D(e− f/2ψ) = e f/2

(
e− f/2Dψ + (∇e− f/2) · ψ

)

= Dψ − 1

2
(∇ f ) · ψ = D f ψ. (1.22)

This proves (1.21), and it follows immediately from this equation and the fact that U f
is an isomorphism, that Dψ = λψ if and only if D f (U f ψ) = λU f ψ . In particular,U f
is an isomorphism between the eigenspaces Eλ(D) and Eλ(D f ), for any λ ∈ R. Hence,
(when defined) the multiplicities of the eigenvalues coincide. ��

The following eigenvalue inequality is a generalization of Friedrich’s inequality [Fr1]
and the proof below generalizes his proof. See [Fr2, §5.1] for an insightful exposition
of the classical proof, whose outline will be followed below. The weighted Friedrich
inequality proved below is sharp. Indeed, on the round sphere with constant scalar
curvature R and with f a constant function, equality is obtained.

Theorem 1.23. Suppose that (Mn, g) is closed, let f ∈ C∞(M), and let λ be an eigen-
value of the Dirac operator D. Then

λ2 ≥ n

4(n − 1)
min R f , (1.24)

with equality if and only if f is constant and (Mn, g) admits a Killing spinor, in which
case (Mn, g) is Einstein.

Proof. Let ψ be an eigenspinor of the Dirac operator with Dψ = λψ .
Define the connection

∇ f,λ
X = ∇X +

1

2
(∇X f ) +

1

2n
X · (∇ f ) · +λ

n
X · (1.25)

A calculation employing a local orthonormal frame shows that the assumption Dψ=λψ

implies

|∇ f,λψ |2 = |∇ψ |2 − λ2

n
|ψ |2 + 1

4

(

1 − 1

n

)

|∇ f |2|ψ |2 + 1

2
〈∇ f,∇|ψ |2〉. (1.26)

Integrating the above equation over M and integrating the last term by parts implies

∫

M
|∇ f,λψ |2 dV =

∫

M

(

|∇ψ |2 − λ2

n
|ψ |2 + 1

4

(

1 − 1

n

)

|∇ f |2|ψ |2 − 1

2
(� f )|ψ |2〉

)

dV .

(1.27)
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The standard (unweighted) Lichnerowicz formula, the self-adjointness of D on L2, and
the definition of the weighted scalar curvature then imply

∫

M
|∇ f,λψ |2 dV =

∫

M

(

|Dψ |2 − 1

4
R|ψ |2 − λ2

n
|ψ |2

+
1

4

(

1 − 1

n

)

|∇ f |2|ψ |2 − 1

2
(� f )|ψ |2〉

)

dV

=
∫

M

((
n − 1

n

)

λ2|ψ |2 − 1

4
R f |ψ |2 − 1

4n
|∇ f |2|ψ |2

)

dV,

(1.28)

which, after rearranging, implies

λ2
(
n − 1

n

)

‖ψ‖2L2 = ‖∇ f,λψ‖2L2 +
1

4

∫

M

(

R f +
1

n
|∇ f |2

)

|ψ |2 dV (1.29)

≥ 1

4
min
M

R f ‖ψ‖2L2 .

This was to be shown.
If equality occurs in the previous inequality, then R f is constant, ∇ f,λψ = 0 and

∇ f = 0. In particular, f is constant, so 0 = ∇ f,λψ = ∇0,λψ . This is equivalent to the
condition that, for all vector fields X

∇Xψ = −λ

n
X · ψ. (1.30)

Hence ψ s a Killing spinor.
Finally, a manifold admitting a Killing spinor must be Einstein; see for example [Fr2,

§5.2]. The converse is immediate. ��
Whenever the scalar curvature is not constant, Theorem 1.23 implies a strict improve-

ment of Friedrich’s inequality. This is because the weight f can always be chosen to
make R f constant, while if R is not constant, then it follows that R f > Rmin. To show
this, recall that Perelman’s entropy λP is defined as the first eigenvalue of the operator
−4� + R, or equivalently, as the minimum of the weighted Hilbert-Einstein functional
[P]:

λP = inf
u

∫
M

(
4|∇u|2 + R u2

)
dV

∫
M u2 dV

= inf
f

∫
M R f e− f dV
∫
M e− f dV

. (1.31)

If f is the minimizer of λP, the weighted scalar curvature is constant, with R f = λP.
On the other hand, if the scalar curvature is not constant, then R f = λP > Rmin, and
thus the weighted Friedrich inequality (1.24) implies a strict improvement of Friedrich’s
inequality.

Corollary 1.32. Any eigenvalue λ of the Dirac operator D on a closedmanifold (Mn, g)
satisfies

λ2 ≥ n

4(n − 1)
λP(g), (1.33)

with equality if and only if (Mn, g) admits a Killing spinor, in which case (Mn, g) is
Einstein.
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The bound (1.32) gives another proof of the stability of hyperkähler metrics on the
K3 surface along Ricci flow. Indeed, all metrics on K3 satisfy the above inequality with
λ = 0 since Â(K3) �= 0. Consequently, Corollary 1.32 implies that λP (g) � 0 for
all metrics g on K3, with equality exactly on hyperkähler metrics. These metrics are
consequently stable by [Ha1].

Remark 1.34. Hijazi [Hi, Eqn. (5.1)] proved an inequality closely related to that of The-
orem 1.23. Hijazi’s proof employs the Dirac operator of a conformally related metric,
whereas the proof of Theorem 1.23 keeps the metric fixed and uses the weighted Lich-
nerowicz formula (1.9). Hijazi’s inequality implies that any eigenvalue λ of the Dirac
operator satisfies λ2 ≥ n

4(n−1)μ1(g), where μ1(g) is the smallest eigenvalue of the con-

formal Laplace operator−4 n−1
n−2�+R. Since λP(g) is the first eigenvalue of the operator

−4� + R, it follows that

μ1(g) ≥ λP(g). (1.35)

In this sense,Hijazi’s inequality [Hi, Eqn. (5.1)] is sharper than the inequality of Theorem
1.23. On the other hand, the inequality in Corollary 1.32 improves along Ricci flow.

2. Weighted Asymptotically Euclidean Manifolds

A smooth orientable Riemannian manifold (Mn, g) is called asymptotically Euclidean
(AE) of order τ if there exists a compact subset K ⊂ M and a diffeomorphism � :
M \ K → R

n \ Bρ(0), for some ρ > 0, with respect to which

gi j = δi j + O(r−τ ), ∂kgi j = O(r−τ−k), (2.1)

for any partial derivative of order k as r → ∞, where r = |�| is the Euclidean distance
function. The set M \ K is called the end of Mn . (The results of this section extend
in a straightforward manner to AE manifolds with multiple ends, though they are not
pursued here.)

The ADM mass [ADM] of (Mn, g) is defined by

m(g) = lim
ρ→∞

∫

Sρ

(∂i gi j − ∂ j gii ) ∂ j� dVg, (2.2)

where Sρ = r−1(ρ) is a coordinate sphere of radius ρ.1 Although the definition of
mass involves a choice of AE coordinates, if τ > (n − 2)/2 and the scalar curvature is
integrable, then themass is finite and independent of the choice of AE coordinates [B,C].
If n ≤ 7 or (Mn, g) admits a spin structure, then the assumptions R ≥ 0, R ∈ L1(M, g),
and τ > n−2

2 , imply that m(g) is nonnegative and is zero if and only if (Mn, g) is
isometric to (Rn, geuc), by the positive mass theorem [SY,W1].

The AE structure defines a trivialization of the spin bundle at infinity. Indeed, choose
an asymptotic coordinate system �−1 : Rn \ BR(0) → M \ K . The pullback bundle
(�−1)∗�M differs from the trivial spin bundle R

n × � by an element of H1(Rn \
BR(0);Z) = 0. Hence the spin structure is trivial over the end of M and the bundle
(�−1)∗�M extends trivially over all of Rn . This trivialization of the spin bundle allows
for the definition of “constant spinors” on the end of M : a spinor ψ defined on the end

1 The ADM mass as defined in [B] equals (2(n − 1)ωn−1)
−1m(g), where ωn−1 is the area of the unit

sphere in R
n .
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M is called constant (with respect to the asymptotic coordinates �) if ψ = (�−1)∗ψ0,
for some constant spinor ψ0 on Rn .

Witten argued that for any such constant spinor ψ0 on M \ K with |ψ0| → 1 at
infinity, there exists a harmonic spinor ψ on M which is asymptotic to ψ0, in the sense
that |ψ − ψ0| = O(r−τ ) and |∇ψ | = O(r−τ−1). Such a spinor ψ is called a Witten
spinor. Moreover, the ADM mass of (Mn, g) is given by

m(g) = 4
∫

M

(

|∇ψ |2 + 1

4
R |ψ |2

)

dVg, (2.3)

which is calledWitten’s formula for themass. A rigorous proof of the existence ofWitten
spinors is given by Parker-Taubes [PT] and Lee-Parker [LP]; their proofs are generalized
below and in Appendix A.

2.1. Weighted Mass. The weighted ADM mass of a weighted AE manifold (Mn, g, f )
is defined by

m f (g) := m(g) + 2 lim
ρ→∞

∫

Sρ

〈∇ f, ν〉 e− f d A. (2.4)

This definition is motivated by the weighted Witten formula (2.7) below, and manifestly
extends to non-spinmanifolds. LikeADMmass, theweightedmass is independent of the
choice of asymptotic coordinates if τ > n−2

2 and R ∈ L1(M): indeed, the ADMmass is
coordinate independent under said assumptions [B,C], and by the divergence theorem,
the second term in (2.4) equals 2

∫
M (� f f ) e− f dV , which is manifestly coordinate

independent.
The appropriate analytic tools for studying AE manifolds are the weighted Hölder

spaces Ck,α
β (M), whose precise definitions are stated in Appendix A. These spaces share

many of the global elliptic regularity results which hold for the usual Hölder spaces on
compact manifolds. The index β is important because it denotes the order of growth:
functions in Ck,α

β (M) grow at most like rβ . In particular, if the metric g is AE of order

τ on M = R
n , then in the AE coordinate system, g − δ lies in Ck,α

−τ (M) for all k ∈ N

and the scalar curvature of g lies in Ck,α
−τ−2(M) for all k ∈ N.

In what follows, let D f be the weighted Dirac operator associated with the weighted
spin connection (1.2) defined by f , which satisfies the weighted Lichnerowicz formula
(1.9).

Theorem 2.5 (Weighted Witten formula). Let (Mn, g, f ) be a weighted, spin, AE man-
ifold of order τ . Suppose that f ∈ C2,α

−τ (M), that

R f � 0, R f ∈ L1(M, g),
n − 2

2
< τ < n − 2, (2.6)

and that ψ0 is a spinor on (Mn, g) which is constant at infinity, with |ψ0| → 1. Then
there exists a D f -harmonic spinorψ which is asymptotic toψ0 in the sense thatψ−ψ0 ∈
C2,α

−τ (M) and

m f (g) = 4
∫

M

(

|∇ψ |2 + 1

4
R f |ψ |2

)

e− f dVg. (2.7)
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Proof. Here the proof is given under the additional natural assumptions that R ≥ 0, R ∈
L1(M, g) and |∇ f | = O(r−(n−1)). The additional assumptions R ≥ 0, R ∈ L1(M, g)
ensure the existence of an (unweighted) Witten spinor ψ [LP]. Further, the assumption
|∇ f | = O(r−(n−1)) is satisfied if R f = 0; see [DO1, Prop. (2.2)]. In Appendix A.1, a
proof of the general case is given.

By (1.21), if Dψ = 0, then the spinor ψ f = e f/2ψ is D f -harmonic. Since

∇ψ = ∇(e− f/2ψ f ) = e− f/2
(

∇ψ f − 1

2
d f ⊗ ψ f

)

, (2.8)

∇ψ f = ∇(e f/2ψ) = e f/2∇ψ +
1

2
d f ⊗ ψ f , (2.9)

it follows that

|∇ψ |2 = e− f
(

|∇ψ f |2 + 1

4
|∇ f |2|ψ f |2 − Re 〈∇ψ f , d f ⊗ ψ f 〉

)

= e− f
(

|∇ψ f |2 + 1

4
|∇ f |2|ψ f |2 − 1

2
|∇ f |2|ψ f |2 − e f Re 〈∇ψ, d f ⊗ ψ〉

)

= e− f
(

|∇ψ f |2 − 1

4
|∇ f |2|ψ f |2

)

− Re 〈∇∇ f ψ,ψ〉. (2.10)

By the definition of the weighted scalar curvature (1.7) and Witten’s formula for the
mass,

1

4
m(g) =

∫

M

(

|∇ψ |2 + 1

4
R |ψ |2

)

dVg

=
∫

M

(

|∇ψ f |2 + 1

4
(R−|∇ f |2)|ψ f |2

)

e− f dVg − Re
∫

M
〈∇∇ f ψ,ψ〉 dVg

=
∫

M

(

|∇ψ f |2 + 1

4
R f |ψ f |2 − 1

2
(� f )|ψ f |2

)

e− f dVg − Re
∫

M
〈∇∇ f ψ,ψ〉 dVg

=
∫

M

(

|∇ψ f |2 + 1

4
R f |ψ f |2

)

e− f dVg −
∫

M

(
1

2
(� f )|ψ |2 + Re 〈∇∇ f ψ,ψ〉

)

dVg .

(2.11)

Integrating the last term by parts and using the fact that |ψ f | → 1 at infinity gives

1

4
m(g) =

∫

M

(

|∇ψ f |2 + 1

4
R f |ψ f |2

)

e− f dVg − lim
ρ→∞

1

2

∫

Sρ

〈∇ f, ν〉|ψ f |2 e− f d A

=
∫

M

(

|∇ψ f |2 + 1

4
R f |ψ f |2

)

e− f dVg − lim
ρ→∞

1

2

∫

Sρ

〈∇ f, ν〉 e− f d A.

(2.12)

By the assumption f → 0 at infinity and |∇ f | = O(r−(n−1)), the latter limit exists and
is finite, since the area of Sρ is of order ρn−1. ��

The following theorem generalizes Schoen-Yau [SY] and Witten’s [W1] positive
mass theorem to the weighted (spin) setting.
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Theorem 2.13 (Positive weighted mass theorem). Let (Mn, g, f ) be a weighted, spin,
AE manifold satisfying the assumptions of Theorem 2.5. Thenm f (g) � 0, with equality
if and only if (Mn, g) is isometric to (Rn, geuc) and

∫
Rn (� f f ) e− f dV = 0.

Proof. Theorem 2.5 provides the existence of a weighted Witten spinor ψ satisfying
the weighted Witten formula (2.7). This shows that m f (g) ≥ 0 if R f ≥ 0. The proof
of the equality statement resembles Witten’s proof of the equality statement for the
positive mass theorem: equality implies that ∇ψ = 0, and since there exist rank(�M)

possible linearly independent constant spinors at infinity ψ0 to which ψ is asymptotic,
�M admits a basis of parallel spinors. Since the map �M → T M sending a spinor ϕ

to the vector field Vϕ defined by

〈Vϕ, X〉 = Im 〈ϕ, X · ϕ〉 for all X ∈ �(T M), (2.14)

is surjective, and since Vϕ is a parallel vector field if ϕ is a parallel spinor, T M admits a
basis of parallel vector fields. Thus (Mn, g) is flat. Finally, sincem(geuc) = 0, integration
by parts and m f (geuc) = 0 imply that

0 = m f (geuc) = lim
ρ→∞ 2

∫

Sρ

〈∇ f, ν〉 e− f d A = −2
∫

Rn
(� f f ) e

− f dV . (2.15)

��

2.2. WeightedMass andRicciFlow. Given an asymptoticallyEuclideanmanifold (Mn, g),
define the renormalized Perelman entropy as

λALE(g) = inf
u−1∈C∞

c (M)

∫

M

(
4|∇u|2 + R u2

)
dV − m(g). (2.16)

Note thatλALE(g) can equivalently be defined as the infimumof
∫
M R f e− f dV−m f (g),

over all f ∈ C∞
c (M). If (Mn, g) admits a Witten spinor ψ , then testing the right-hand-

side of the above equation with u = |ψ | gives that λALE(g) ≤ 0, by Kato’s inequality,
|∇|ψ || ≤ |∇ψ |. As mentioned in the Introduction, Ricci flow is the gradient flow of
λALE on AE manifolds and λALE has various advantages over the ADM mass in the
context of Ricci flow; see the Introduction and also [DO1].

Theorem 2.17. Let (Mn, g) be an asymptotically Euclidean manifold of order τ > n−2
2

and with nonnegative scalar curvature. Then there exists a solution f ∈ C2,α
−τ (M) of the

elliptic equation R f = 0, and the f -weighted mass satisfies

m f (g) = −λALE(g). (2.18)

Proof. By [DO1, (2.3)], there exists a strictly positive minimizer w = e− f/2 of (2.16)
withw−1 ∈ C2,α

−τ (M) satisfying−4�w+Rw = 0. Sincew → 1 at infinity, integration
by parts implies

inf
u−1∈C∞

c (M)

∫

M

(
4|∇u|2 + R u2

)
dV =

∫

M

(
4|∇w|2 + Rw2

)
dV

= lim
ρ→∞

∫

Sρ

4〈∇w, ν〉w d A
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= −2 lim
ρ→∞

∫

Sρ

〈∇ f, ν〉 e− f d A.

(2.19)

The result now follows immediately from the definition (2.4) ofm f (g) and that of λALE,
(2.16).

Note that [DO1, Eqn. (2.3)] is stated for ALE manifolds in the neighborhood of a
Ricci-flat ALEmanifold, to ensure the existence and uniqueness of f by the positivity of
−4�+R thanks to a Hardy inequality; see [DO1, Prop. 1.12]. However, the same proof
holds under the above assumptions on (Mn, g) since the scalar curvature is nonnegative
and the operator −4� + R is therefore positive; see the proof of [Ha1, Thm. 2.6] for a
similar argument. ��

It has been proven in [Li, Thm. 2.2] that the AE conditions are preserved along
Ricci flow (with the same coordinate system) as long as the flow is nonsingular. An
asymptotically Euclidean Ricci flow is defined to be any Ricci flow starting at an AE
manifold.

Corollary 2.20 (Monotonicity of weighted mass). Let (Mn, g(t))t∈I be an asymptoti-
cally Euclidean Ricci flow with nonnegative scalar curvature. Let f : M × I → R be
the time-dependent family of functions solving R f = 0 and f → 0 at infinity, at each
time t ∈ I . Then

d

dt
m f (g) = −2

∫

M
|Ric + Hess f |2e− f dV ≤ 0. (2.21)

In particular, m f (g) is monotone decreasing along the Ricci flow, and is constant only
if (Mn, g(t)) is Ricci-flat.

Proof. Since m f (g) = −λALE (g), equation (2.21) follows from the formula for the
first variation of λALE, which can be found in [DO1, Prop. 2.3 and 3.13]. Once again, the
assumptions of closeness to a Ricci-flat ALE metric of Deruelle-Ozuch can be replaced
by the nonnegativity of scalar curvature. Their closeness assumption is again only used
to ensure the existence of f . Note that in contrast with Perelman’s monotonicity for
closed manifolds, which is proved by letting f evolve parabolically backwards in time,
the monotonicity formula (2.21) uses the fact that f solves the elliptic equation R f = 0
at each time.

To prove the equality statement, note that formula (2.21) implies that m f (g) is con-
stant if and only if (Mn, g, f ) is a steady Ricci soliton. The proof is completed by using
[DK, Prop. 2.6]: any ALE steady soliton with ∇ f → 0 at infinity is Ricci flat. ��
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A. Appendix

This appendix provides a proof of the general case of Theorem 2.5 on the existence of a
weighted Witten spinor satisfying the weighted Witten formula. In Section 2.1, a simple
and illustrative proof was given under natural, albeit more restrictive assumptions.

Let (Mn, g) be an asymptotically Euclidean (AE), Riemannian spin manifold of
order τ . The asymptotic coordinates define a positive function r on M , which equals
the Euclidean distance to the origin on M \ K , and which can be extended to a smooth
function which is bounded below by 1 on all of M .

Using r , the weightedCk spaceCk
β(M) is defined for β ∈ R as the set ofCk functions

u on M for which the norm

‖u‖Ck
β

=
k∑

i=0

sup
M

r−β+i |∇ i u| (A.1)

is finite. The weighted Hölder space Ck,α
β (M) is defined for α ∈ (0, 1) as the set of

u ∈ Ck
β(M) for which the norm

‖u‖Ck,α
β

= ‖u‖Ck
β
+ sup

x,y
(min{r(x), r(y)})−β+k+α |∇ku(x) − ∇ku(y)|

d(x, y)α
(A.2)

is finite.2 These definitions of weighted Hölder spaces coincide with those of [LP, §9].
In particular, the index β denotes the order of growth: functions in Ck,α

β (M) grow at

most like rβ . Note that the definitions of the weighted function spaces depend on the
“distance function” r , and thereby on the choice of asymptotic coordinates. However, it
is easy to see that r is uniformly equivalent to the geodesic distance from an arbitrary
fixed point in M as r → ∞, hence all choices of r define equivalent norms. For the
remainder of this appendix, fix α ∈ (0, 1).

A.1. Existence of weightedWitten spinors. Let f ∈ C∞(M) and let D f be the weighted
Dirac operator associated with the weighted spin connection (1.2) defined by f , which
satisfies the weighted Lichnerowicz formula (1.9).

Lemma A.3. On a weighted, AE, spin manifold (Mn, g, f ) satisfying the hypotheses of
Theorem 2.5, the operator

D2
f : C2,α

−τ (M) → C0,α
−τ−2(M) (A.4)

is an isomorphism.

2 The meaning of “weighted” in “weighted Hölder spaces” is distinct from its meaning in “weighted
manifolds.”

http://creativecommons.org/licenses/by/4.0/
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Proof. To show injectivity, suppose D2
f ξ = 0 for some ξ ∈ C2,α

−τ (M). Then ξ = O(r−τ )

and ∇ξ = O(r−τ−1). Applying the weighted Lichnerowicz formula and integration by
parts (the boundary term vanishes because τ > (n − 2)/2), it follows that

0 =
∫

M
〈D2

f ξ, ξ 〉 e− f dVg =
∫

M

(

−〈� f ξ, ξ 〉 + 1

4
R f |ξ |2

)

e− f dVg

=
∫

M

(

|∇ξ |2 + 1

4
R f |ξ |2

)

e− f dVg. (A.5)

Since R f ≥ 0, this shows that ∇ξ = 0, so ∇|ξ |2 = 0. Thus |ξ | is a constant, which is
zero since ξ vanishes at infinity. Thus D2

f is injective.

The weighted Lichnerowicz formula implies that D2
f = −� + ∇∇ f + 1

4 R f . Since

f ∈ C2,α
−τ and g is smooth and AE of order τ , it follows that ∇ f ∈ C1,α

−τ−1 and R f ∈
C0,α

−τ−2. Since
n−2
2 < τ < n − 2, it follows from [CSCB] that D2

f is an isomorphism if
it is injective. With injectivity proven above, the proof is complete; see [LP, Thm. 9.2d]
for the proof for the unweighted Dirac operator. ��

As explained in Section 2, the asymptotically Euclidean structure defines a trivializa-
tion of the spin bundle at infinity, allowing for the notion of a spinor which is “constant”
in the asymptotic coordinate system. In what follows, for ρ > 0, let Sρ = r−1(ρ) be the
ρ-level set of r , that is, a coordinate sphere of radius ρ.

Proof of Theorem 2.5. With respect to the trivialization of the spin bundle at infinity,
the weighted Dirac operator may be written as

D f = ei · ∂i − 1

2
(∇ f ) · −1

8
(∂kgi j )e

i · [e j ·, ek ·] + O(r−2τ−1). (A.6)

Choose a spinor ψ0 which is constant at infinity and with |ψ0| → 1 at infinity,
and extend it to a smooth spinor on M . It follows from the above equation and the
assumption f ∈ C2,α

−τ (M) that D2
f ψ0 ∈ C0,α

−τ−2(M). By Lemma (A.3), there exists

ξ ∈ C2,α
−τ (M) with D2

f ξ = D2
f ψ0. The spinor ψ = ψ0 − ξ then satisfies D2

f ψ = 0 and

ϕ := D f ψ = D f ψ0 − D f ξ satisfies D f ϕ = 0 and lies in C1,α
−τ−1(M), so integrating

by parts as in the proof of the Lemma above shows that ϕ = 0. Thus ψ is a weighted
harmonic spinor which is asymptotic to ψ0.

Let X be the vector field on M \ K defined by

X = Re 〈∇iψ,ψ〉e− f ei . (A.7)

Let λi = Re 〈∇iψ,ψ〉e− f so that X = λi ei . Define the (n − 1)-form

α = ιX (dVg). (A.8)

Then dα = divg(X)dVg and

divg(X) = λidivg(ei ) + 〈∇λi , ei 〉
= ∇iλi

= Re∇i (〈∇iψ,ψ〉e− f )

=
(
Re 〈∇i∇iψ,ψ〉 − Re 〈∇∇ f ψ,ψ〉 + |∇ψ |2

)
e− f
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=
(
Re 〈� f ψ,ψ〉 + |∇ψ |2

)
e− f , (A.9)

hence

dα =
(
Re 〈� f ψ,ψ〉 + |∇ψ |2

)
e− f dVg. (A.10)

Stokes’ theorem then gives, with Mρ = {r ≤ ρ} ⊂ M and Sρ = ∂Mρ , that
∫

Mρ

(
Re 〈� f ψ,ψ〉 + |∇ψ |2

)
e− f dVg

=
∫

Mρ

dα =
∫

Sρ

α = Re
∫

Sρ

〈∇iψ,ψ〉e− f ιei (dVg). (A.11)

Since ψ = ψ0 − ξ , the latter boundary term equals

Re
∫

Sρ

(〈∇iψ0, ψ0〉 − 〈∇iξ, ψ0〉 − 〈ξ,∇iψ0〉 + 〈∇iξ, ξ 〉) e− f ιei (dVg). (A.12)

Since [e j ·, ek ·] is skew-Hermitian, as in (A.6), it follows that

Re 〈∇iψ0, ψ0〉 = −1

8
Re (∂kgi j )〈[e j ·, ek ·]ψ0, ψ0〉 + O(r−2τ−1) = O(r−2τ−1),

(A.13)

and so the first term in (A.12) vanishes as ρ → ∞. Also, since ξ = O(r−τ ), ∇ξ =
O(r−τ−1), and ∇ψ0 = O(r−τ−1), the third and fourth terms in (A.12) also vanish as
ρ → ∞. Thus only the second term in (A.12) contributes to the limit ρ → ∞; the
remainder of the proof consists in showing that said term equals the weighted mass.

To analyze the remaining term, let L f
i denote the operator

L f
i = 1

2
[ei ·, e j ·](∇ j − 1

2
(∇ j f ))

= (δi j + ei · e j ·)(∇ j − 1

2
(∇ j f )

= ∇i − 1

2
(∇i f ) + ei · D − ei · 1

2
(∇ f )·

= ∇ f
i + ei · D f . (A.14)

If β is the (n − 2)-form

β = e− f 〈[ei ·, e j ·]ψ0, ξ 〉ιei ιe j dVg, (A.15)

then since ek ∧ ιei ιe j dVg = δik ιe j dVg − δ jk ιei dVg ,

dβ = 2e− f ((∇ j f )〈[ei ·, e j ·]ψ0, ξ 〉
− 〈[ei ·, e j ·]∇ jψ0, ξ 〉 + 〈[ei ·, e j ·]ψ0,∇ jξ 〉))ιei dVg

= −2e− f (〈[ei ·, e j ·](∇ jψ0 − 1

2
(∇ j f )ψ0), ξ 〉

− 〈ψ0, [ei ·, e j ·](∇ jξ − 1

2
(∇ j f )ψ0)〉)ιei dVg
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= −4e− f (〈L f
i ψ0, ξ 〉 − 〈ψ0, L

f
i ξ 〉)ιei dVg. (A.16)

Therefore, by Stokes’ theorem and the fact that D f ξ = D f ψ0, the second term in (A.12)
is

−Re
∫

Sρ

〈∇i ξ, ψ0〉e− f ιei (dVg)

= Re
∫

Sρ

〈ei · D f ξ − L f
i ξ − 1

2
(∇i f )ξ, ψ0〉e− f ιei (dVg)

= Re
∫

Sρ

(

〈ei · D f ψ0, ψ0〉 − 〈ξ, L f
i ψ0〉 − 1

2
〈(∇i f )ξ, ψ0〉

)

e− f ιei (dVg).

(A.17)

Since f → 0 at infinity, ∇ f = O(r δ−1), where δ − 1 < τ − (n − 1) by (2.6), and
ξ = O(r−τ ), the last term above vanishes as ρ → ∞. Similarly, the second term above
vanishes in the limit. On the other hand, (A.6) gives

ei · D f ψ0 = −1

8
(∂kgl j )ei · el · [e j ·, ek ·]ψ0 − 1

2
ei · (∇ f ) · ψ0 + O(r−2τ−1)ψ0

= −1

4
(∂kgl j )ei · el · (δ jk + e j · ek ·)ψ0 − 1

2
ei · (∇ f ) · ψ0 + O(r−2τ−1)ψ0

= −1

4
(∂ j gk j − ∂kg j j )ei · ek · ψ0 − 1

2
ei · (∇ f ) · ψ0 + O(r−2τ−1)ψ0.

(A.18)

Writing ei · ek · = 1
2 [ei ·, ek ·] − δik and noting that [ei ·, ek ·] is skew, it follows that

Re 〈ei · D f ψ0, ψ0〉 = 1

4
(∂ j gi j − ∂i g j j + 2(∇i f ) + O(r−2τ−1))|ψ0|2. (A.19)

and hence (A.17) becomes

1

4

∫

Sρ

(
∂ j gi j − ∂i g j j + 2(∇i f ) + O(r−2τ−1)

)
|ψ0|2e− f ιei dVg. (A.20)

Putting this into (A.11), letting ρ → ∞ and using the definition of mass (2.2) gives the
formula

∫

M

(

|∇ψ |2 + 1

4
R f |ψ |2

)

e− f dVg = 1

4
m(g) +

1

2
lim

ρ→∞

∫

Sρ

|ψ0|2e− f ι∇ f dVg.

(A.21)

Finally, a coordinate calculation shows that
∫

Sρ

〈∇ f, ν〉 e− f d A =
∫

Sρ

e− f ι∇ f dVg, (A.22)

and since |ψ0| → 1 at infinity, the second-to-last equation gives the weighted Witten
formula

∫

M

(

|∇ψ |2 + 1

4
R f |ψ |2

)

e− f dVg = 1

4
m(g) +

1

2
lim

ρ→∞

∫

Sρ

〈∇ f, ν〉 e− f d A.

(A.23)

��
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