
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04399-6
Commun. Math. Phys. 394, 257–307 (2022) Communications in

Mathematical
Physics

Sphere Partition Function of Calabi–Yau GLSMs

David Erkinger1, Johanna Knapp2

1 Mathematical Physics Group, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
E-mail: david.josef.erkinger@univie.ac.at

2 School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia.
E-mail: johanna.knapp@unimelb.edu.au

Received: 9 September 2020 / Accepted: 6 April 2022
Published online: 9 May 2022 – © The Author(s) 2022

Abstract: The sphere partition function of Calabi–Yau gauged linear sigma models
(GLSMs) has been shown to compute the exact Kähler potential of the Kähler mod-
uli space of a Calabi–Yau. We propose a universal expression for the sphere partition
function evaluated in hybrid phases of Calabi–YauGLSMs that are fibrations of Landau–
Ginzburg orbifolds over somebasemanifold. Special cases includeCalabi–Yau complete
intersections in toric ambient spaces and Landau–Ginzburg orbifolds. The key ingredi-
ents that enter the expression are Givental’s I/J -functions, the Gamma class and further
data associated to the hybrid model. We test the proposal for one- and two-parameter
abelian GLSMs, making connections, where possible, to known results from mirror
symmetry and FJRW theory.
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1. Introduction and Summary

The richness of moduli spaces of string compactifications manifests itself in highly
non-trivial dualities and correspondences and intricate underlying mathematical struc-
tures. The swampland program has shown that there is a deep connection between the
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mathematical properties of stringy moduli spaces and consistency requirements of the-
ories of quantum gravity. This has provided new motivation to explore parameter spaces
associated to string compactifications.

Naturally, the focus is on loci in the moduli spaceM where string compactifications
are geometric. This is due to the fact that in geometric regions of the moduli space the
tools to study string theory are best developed. This includes toric geometry, mirror
symmetry, topological string theory, etc. However, geometric regions are very special
and one may ask if the structures we know very well in geometry also exist elsewhere in
M. There are many reasons for the answer to be “yes”. One of them is the worldsheet
CFT of string theory that does not care whether it has a geometric space-time realisation
or not, and structures such as those encoded in the t t∗-equations [1] hold anywhere in
M. Also the fundamental structures responsible for the swampland constraints should
be visible in all regions of the moduli space.

In order to test such statements, in particular at the quantum level, one requires a
concrete realisation of the worldsheet CFT that is valid at a specific locus in M and
some neighbourhood parameterised by marginal deformations. Furthermore one needs
the tools to carry out concrete calculations. In most regions of the moduli space quantum
corrections are large, and suitable realisations of the CFT are unknown. Exceptions are
certain limiting regions such as geometric ones where the worldsheet CFT is realised in
terms of non-linear sigma models. Other loci of the moduli space that are fairly well-
studied are Landau–Ginzburg (orbifold) points. The majority of limiting points will be
neither geometric nor Landau–Ginzburg but some kind of hybrids thereof, or something
even more general. If we are after structures that are the same everywhere in the moduli
space the diversity of these models poses a problem. For instance, the mathematics
and physics of a Landau–Ginzburg theory is very different from the mathematics and
physics of a non-linear sigma model. To make connections between different loci of the
moduli space, one requires suitable methods to connect well-studied geometric regions
to non-geometric ones.

The main focus of this work will be the Kähler moduli spaceMK of a type II string
compactification on a Calabi–Yau threefold. The Kähler moduli space is “difficult” in
the sense that the physical observables receive quantum corrections through worldsheet
instantons. Furthermore MK decomposes into chambers. Going from one chamber to
another allows one to establish a connection between these observables at different
limiting points.

The stringy Kähler moduli space can be probed making use of the gauged linear
sigma model (GLSM) [2] that provides a common UV description of the CFTs pa-
rameterised by MK . The different chambers in MK correspond to different phases,
i.e. low-energy configurations, of the GLSM. The tools to compute quantum corrected
observables in different regions of MK come from supersymmetric localisation. It has
been shown that the path integral evaluated in different (curved) backgrounds computes
exact (instanton-corrected) quantities in Calabi–Yau compactifications. This includes
the Kähler potential (sphere partition function) [3–5], the elliptic genus (torus partition
function) [6–8], D-brane central charge and openWitten index (hemisphere and annulus
partition function) [9–11], and correlation functions (including Yukawa couplings) [12].
In geometric regions these results can be checked against results from mirror symmetry.
It is expected that the partition functions compute analogous quantities in non-geometric
phases of the GLSM. This was for instance shown in the context of the sphere partition
function [13] which was connected to the Kähler potential on MK via t t∗-geometry.
New derivations via anomalies of the (2, 2) theory were given in [14,15]. The results



Sphere Partition Function of Calabi–Yau GLSMs 259

from supersymmetric localisation are a strong hint that the structure of these objects
must be similar in different phases, because the expressions have the same UV origin.

In [16,17] it was proposed that the hemisphere partition function of a Calabi–Yau
GLSM,which conjecturally computes the exact central charge of aD-brane, has the same
structure in every phase. This was shown to hold for geometric and Landau–Ginzburg
phases. The ingredients that enter into the expression for the hemisphere partition func-
tion are a state space associated to the phase and a non-degenerate pairing, the Gamma
class, Givental’s I /J -functions [18], and the Chern character of the brane. The mathe-
matical formalism required to understand the result is FJRW theory [19,20]. It defines
enumerative invariants in Landau–Ginzburg orbifolds and combines Givental’s mirror
construction with the Landau–Ginzburg/Calabi–Yau correspondence to establish a con-
nection between Gromov-Witten theory and FJRW theory at genus 0. These mathemat-
ical results thus give natural expressions and structures that are valid beyond geometric
regions in themoduli space, and the supersymmetric partition functions can be expressed
in terms of them. Further note that the FJRW formalism also has been developed for
certain classes of hybrid models [21–24] and general statements about state spaces have
been given in [25].

In this workwe consider the sphere partition function. Based on the exampleswe have
analysed, we found that in a hybrid-type phase, that is realised as a Landau–Ginzburg
orbifold model with superpotentialW and orbifold groupG fibered over a base manifold
B, the sphere partition function takes the following universal form:

Zphase
S2

(t, t) = C
∑

δ∈G

∫

B
(−1)Gr

�̂δ(H)

�̂∗
δ (H)

Iδ(u(t), H)Iδ(u(t), H) = 〈I , I 〉, (1.1)

where t is the FI-theta parameter of the GLSM and t is its complex conjugate. In the
first equality, the sum over δ ∈ G is over a subset of twisted sectors of the orbifold
group referred to as narrow sectors in the mathematics literature, Gr is (the eigenvalue
of) a grading operator acting on the narrow state space and its eigenvalues are visible in
(1.1) in orbifold-type phases. It is somewhat hidden in geometric settings, see Sect. 3.2.
Furthermore, we collectively denote the generators of the Kähler cone in H2(B) by H .
�̂δ(H) and �̂∗

δ (H) denote the component of the Gamma class associated to the twisted
sector δ and its conjugate, and Iδ(u(t), H) is the component of Givental’s I -function
associated to the sector δ. There is also a J -function Jδ(u(t), H) that is related to the I -
function by a change of frame and coordinates. Both, the I -function and theGamma class
can be decomposed further with respect to a basis of H2(B). The I -function depends
on the local coordinate u(t) of the phase. By Iδ(u(t), H) we mean taking the I -function
and replacing u → u. Geometric phases and Landau–Ginzburg phases correspond to
special cases: in the Landau–Ginzburg case B is a point, whereas in the Calabi–Yau case
B is the Calabi–Yau itself and G is trivial. The constant C is a normalisation constant.
In geometric phases these structures, and in particular the appearance of the I -function,
have been observed before [26–31]. The quotient of Gamma classes has been analysed
in [32] at the perturbative level. The final equality in (1.1) is to be understood as follows:
〈·, ·〉 is the topological pairing on the state space of the theory in the phase, |I 〉 is an
expansion of the I -function in terms of this basis, 〈I | is the complex (CPT) conjugate of
|I 〉 in the sense of the t t∗-formalism. Further clarification on the the parings, in particular
the topological vs. the hermitean pairing,will be given inSect. 3. In the following sections
we will give further details on how to understand this expression and collect evidence
by considering several classes of examples.
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The article is organised as follows. In Sect. 2 we recall the basic definitions of the
GLSM and the sphere partition function. We furthermore review the definition of the
Kähler potential ofMK in the context of t t∗-geometry. In Sect. 3 we give more details
on the proposal (1.1), in particular in Landau–Ginzburg and geometric settings. In the
remaining sections we study examples. Section 4 focuses on a well-studied class of four-
teen one-parameter GLSMs whose large volume phases are Calabi–Yau hypersurfaces
and complete intersections in toric ambient spaces. These models have already played a
role in one of our previous work [33] to which we refer for technical details on the sphere
partition function. These models are particularly interesting as they have different types
of non-geometric phases, including Landau–Ginzburg orbifold and hybrid phases, that
we can test (1.1) for and where we have additional means of cross-checking the result,
for instance via mirror symmetry or FJRW theory. There are also more exotic phases,
called pseudo-hybrids, where we encounter structures similar to (1.1). In Sect. 5 we
consider a two-parameter model where we in particular conjecture new expressions for
the I -function and the Gamma class in hybrid phases. Further technical details on the
computations can be found in the “Appendix”.

2. Sphere Partition Function and t t∗

In this section we review the definition of the sphere partition function and its connection
to the exact Kähler potential K (t, t) onMK [5,13] in phases of Calabi–YauGLSMs.We
also recall the worldsheet definition of K (t, t) in terms of t t∗-geometry [1]. The power
of Givental’s formalism combined with FJRW theory is that it also applies beyond
geometric settings, notably Landau–Ginzburg orbifold phases [19,20] and certain types
of hybrid phases [21–24]. This provides a framework to define and compute the objects
entering (1.1). First we give more details on Landau–Ginzburg models where explicit
expressions for the ingredients of (1.1) have been given recently [17]. Then we comment
on geometric and hybrid phases.

2.1. GLSM and sphere partition function. We consider a GLSM with gauge group G.
The scalar components φi of the chiral multiplets are coordinates on a complex vector
space V (i.e. they take values in V ∗), with i = 1, . . . , dimV . In the case of a Calabi–Yau
GLSM they transform in the representation ρV : G → SL(V ). We further need the
vector U (1) R-symmetry R : U (1)V → GL(V ). The gauge and R-charges of the φi ,
denoted by Qi and Ri respectively, are the weights of these representations. The gauge
charges can be organised into a rkG × dimV -matrix C. We will consider models with
non-vanishing superpotential W ∈ SymV ∗. The FI-parameters ζ and the theta angles θ

combine into the complexified Kähler parameters t = 2πζ − iθ ∈ g∗
C
where g is the

Lie algebra of G. Furthermore we denote by t the Lie algebra of a maximal torus of G.
The scalar components of the vector multiplet are denoted by σ ∈ gC. There is a natural
pairing 〈, 〉 : gC × g∗

C
→ C. The sphere partition function is defined as

ZS2(ζ, θ) = 1

(2π)dim t|W|
∑

m

i∞∫

−i∞
ddim tσ

∏

α>0

(−1)〈α,m〉
(
1

4
〈α,m〉2 + 〈α, σ 〉2

)

�
( 1
2 R j − i〈Q j , σ 〉 − 1

2 〈Q j ,m〉)

�
(
1 − 1

2 R j + i〈Q j , σ 〉 − 1
2 〈Q j ,m〉)e

−4π i〈ζ,σ 〉−i〈θ,m〉 (2.1)
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where α > 0 denotes the positive roots of G and the m ∈ Z
dimt, taking values on the

coroot lattice of G, account for the discrete values of the gauge field strength on the
sphere. |W| is the cardinality of the Weyl group.

The convergence of this integral is governed by the factor e−4π i〈ζ,σ 〉 and thus by
the choice of phase. To evaluate the integral in a given phase, we have to choose an
integration contour that does not hit any of the poles and that leads to a convergent result
Zphase
S2

for the integral. Evaluating integrals of this type can be quite challenging in the
multi-dimensional case. A prescription can be found in [34], see also [35] for a review
in the context of the sphere partition function.

2.2. t t∗-geometry. Originally t t∗-geometry was studied in [1]. In our discussion we
mostly follow [36–39]. For a review in the spirit of this paper see [17]. We consider an
N = (2, 2) theory in twodimensionswith amass gap.Thenilpotencyof the supercharges
makes it possible to study cohomologies of operators and states with respect to certain
combinations of the supercharge operators. In total there are four different cohomologies
in the NS-sector of the theory denoted by

(c, c), (a, c), (a, a), (c, a), (2.2)

where c stands for chiral and a for anti-chiral. The charge conjugates of (c, c), (a, c)
operators are of type (a, a) and (a, c), respectively. The structures of the four different
cohomologies are related by spectral flow [40,41] and therefore we focus on (c, c) and
the conjugate (a, a). From these operators it is possible to construct deformations of the
theory. Let t i , t̄ i be the parameters describing the exactly marginal deformations. These
take values in a coordinate patch of the moduli space M of the theory. The space of
(anti-)chiral operators has a ring structure

φiφk = Cl
ikφl , φ̄i φ̄k = C̄l

ik φ̄l . (2.3)

The Cl
ik (C̄l

ik) are functions of t
i (t̄ i ). The chiral algebra is represented on the ground

states |k〉 of the theory:
φi |k〉 = Cl

ik |l〉. (2.4)

If we now change the parameters ti , t̄i the ground-states will vary in the full Hilbert
space of the theory. This is denoted by |i(t, t̄)〉. The ground states are sections of the
ground state bundle V . We can introduce a connection as follows

∂

∂t i
|k(t, t̄)〉 = (Ai )

l
k |l(t, t̄)〉, ∂

∂ t̄ i
|k(t, t̄)〉 = (

Āi
)l
k |l(t, t̄)〉. (2.5)

We will denote the associated covariant derivative by

Di = ∂

∂t i
− Ai , D̄i = ∂

∂ t̄ i
− Āi . (2.6)

To get a basis of ground-states in the Ramond-sector a topological or anti-topological
twist of the theory is performed and the path-integral with the respective operator inser-
tion is evaluated on a hemisphere, which is deformed into a cigar-shaped geometry. By
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application of a topological twist one gets a holomorphic basis, which we denote by |i〉.
In this basis the anti-holomorphic part of the connection vanishes

( Āi )
l
k = 0. (2.7)

An anti-topological twist gives an anti-holomorphic basis |ī〉, with (Ai )
l̄
k̄

= 0. The
various ground states are obtained by insertion of (anti-)chiral operators into the path
integral. There is a distinguished ground state that is denoted by |0〉 in a topological
theory and |0̄〉 in the anti-topological theory. There are two possible pairings on this
bundle, depending on the chosen basis, a purely topological one

ηi j = 〈 j |i〉, (2.8)

and a hermitian one

gi j̄ = 〈 j̄ |i〉. (2.9)

In the following we will often write 〈·, ·〉 for the topological pairing and 〈·|·〉 for the
hermitean pairing. Both pairings can be obtained by computing the path integral on the
sphere, with the appropriate operator insertions. The topological metric (2.8) is obtained
by sewing two topologically twisted path integrals on the hemisphere and g by gluing
two path integrals on the hemisphere where in one an anti-topological twist has been
applied. Both, |i〉 and | j̄〉 are a basis of the same space and therefore they must be related
by a change of basis

| j̄〉 = Mi
j̄
|i〉. (2.10)

M encodes the action of CPT conjugation and therefore it must fulfil

MM∗ = 1. (2.11)

The whole structure of the ground state bundle is encoded in the t t∗-equations [1]:

[Di , Dj ] = 0, [Di , D̄ j ] = −[Ci , C̄ j ], [D̄i , D̄ j ] = 0, (2.12)

[Di ,C j ] = [Dj ,Ci ], [Di , C̄ j ] = [D̄i ,C j ] = 0, [D̄i , C̄ j ] = [D̄ j , C̄i ], (2.13)

[Ci ,C j ] = 0, [C̄i , C̄ j ] = 0. (2.14)

As one can prove by using the t t∗-equations, it is possible to introduce a covariant
derivative ∇i ,∇ī with vanishing curvature on V:

∇i = Di − Ci . (2.15)

The flatness of the connection allows to identify the fibres of V with a fixed fibre
V at a chosen point by parallel transport. Choose V to be the vector space of ground
states. ∇i , ∇ī reduce to the ordinary derivatives ∂

∂t i
, ∂

∂r̄ i
in this setup. CPT provides a

real structure on V , by declaring CPT invariant states as real.
Let us now focus on theories with a N = (2, 2) superconformal symmetry with1

ĉ = 3. Of particular interest are chiral fields with conformal dimension ( 12 ,
1
2 )which are

1 This is related to the central charge c of the superconformal algebra by c = 3ĉ.
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the exactly marginal fields. Deformations constructed from these operators thus preserve
the conformal symmetry. We introduce a fixed basis of real vectors

{|0〉, |a1〉, . . . , |am〉, |a1〉, . . . , |am〉, |〉} (2.16)

on V , given m marginal directions. In this basis CPT conjugation is complex conju-
gation. The basis consists of the unique ground state |0〉 with no insertion, the states
corresponding to the marginal fields, their duals with respect to (2.8), and the unique
ground state corresponding to the chiral field with conformal dimension ( 32 ,

3
2 ). In the

case of a SCFT with ĉ = 3 the bundle V decomposes into

V = L ⊕ (T M ⊗ L) ⊕ (T M ⊗ L) ⊕ L, (2.17)

where L is the line bundle corresponding to the state |0〉. The fibres of (T M ⊗ L) are
spanned by the |ai 〉, where T M is the holomorphic tangent space ofM. The conjugate
bundles are spanned by the states

|aī 〉 = gīk |ak〉, |0̄〉 = g0̄0|0〉, (2.18)

using (2.9). By restricting the indices i, j to the marginal deformations, we obtain the
Zamolodchikov metric [1,42]:

Gi j̄ = gi j̄
〈0̄|0〉 . (2.19)

It follows from the t t∗- equations that
Gi j̄ = −∂i∂ j log〈0̄|0〉. (2.20)

This result allows the following interpretation

e−K (t,t̄) = 〈0̄|0〉, (2.21)

where K (t, t̄) is theKähler potential ofGi j̄ . The Zamolodchikovmetric gives the natural
metric on the moduli space of N = (2, 2) superconformal theories.

Returning to phases of the GLSM, it was conjectured in [5] that the sphere partition
function of the GLSM calculates the exact Kähler potential of the moduli space of the
Calabi–Yau target space. In [5] the conjecture was tested in examples with the help of
mirror symmetry. In [13] the conjecture was verified using t t∗-geometry. We thus have
two ways to define the Kähler potential on MK . The first via the GLSM:

Zphase
S2

(t, t) = e−K (t,t). (2.22)

On the other hand we have (2.21) via t t∗-geometry. Before we conclude

Zphase
S2

(t, t) = 〈0|0〉, (2.23)

let us clarify the meaning of the coordinates t and t appearing in (2.22) and (2.21). In
the worldsheet CFT the “flat coordinates” t correspond to the deformation parameters
associated to the marginal deformations. They are required, for instance, to extract the
information about enumerative invariants from the Kähler potential. These are not the
FI-theta parameters t of the GLSM. The two choices of coordinates are related by a
coordinate change. In geometric phases and Landau–Ginzburg phases it is known how
to extract this information from the results of supersymmetric localisation [5,17]. It
coincides with the mirror map and exchanges I - and J -functions. FJRW theory gives
prescriptions to compute this map in more general settings. The GLSM is thus a means
to compute 〈0|0〉 exactly for different realisations of worldsheet CFTs.
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3. Universal Expression for ZS2 in Phases of GLSMs

We observe that, given a Calabi–Yau GLSM, the sphere partition function in a phase
that is a Landau–Ginzburg orbifold with orbifold group G fibered over a base manifold
B can always be written in the form (1.1) that we repeat here for convenience:

Zphase
S2

(t, t) = C
∑

δ∈G

∫

B
(−1)Gr

�̂δ(H)

�̂∗
δ (H)

Iδ(u(t), H)Iδ(u(t), H) = 〈I , I 〉. (3.1)

To give more details on the last equality, we expand the I -function in terms of a
basis of the state space. Here we have to make an important restriction. From now
on we will focus on “narrow” states which belong to a specific subset of the states
corresponding to the marginal deformations. Conditions to identify “narrow” states in
different types of phases will be given in the subsections below. Given h ≤ m narrow
marginal deformations,2 the state space reduces to a 2h +2-dimensional space which we
will denote by H and whose basis elements we denote by er . Comparing with (2.16),
there are two distinguished basis elements that are identifiedwith {|0〉, |〉}, respectively,
and 2h elements associated to those {|ai 〉, |ai 〉} that are narrow. We will further denote
by Hnar the h-dimensional subspace corresponding to the narrow deformations. Then
we can expand the I -function as follows:

|I 〉 =
∑

r

Ir er . (3.2)

In the context of the sphere partition function the question is what is the complex (CPT)
conjugate of this expression. Results from geometry [32] and the examples discussed
below suggest the definition

〈I | =
∑

r

I r e
∗
r , I (u) = (−1)Gr

�̂

�̂∗ I (u), (3.3)

where e∗
r is the dual of er such that 〈e∗

r ′ , er 〉 = c · δr,r ′ with some normalisation constant
c. In the case of hybrid models this may have to be modified depending on the pairing
that is used. See Section 3.3 for some comments. Note that there are two pairings at play:
one is the hermitian pairing 〈·|·〉 induced by (2.9) that naturally appears in the definition
of e−K (t,t), the other one is a topological pairing 〈·, ·〉 induced by (2.8). Working with
the I -function, it is natural to use the topological pairing. This suggests that the relation
(3.3) is a realisation of the matrix M (2.10) that implements CPT conjugation so that
one formally has

〈I |I 〉 := 〈I (u)M, I (u)〉 ≡ 〈I , I 〉. (3.4)

By the last equivalence we mean that we absorb the action of M in the definition of I
as indicated in (3.3) when we write 〈I , I 〉. Similar observations have been made in [17]
in the context of the D-brane central charge, where spectral flow was required to relate
the pairing between the (a, c)- and (c, c)-rings to the topological pairing.

2 Note that in all our examples h = m.
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Another way to write the information in Zphase
S2

is as follows. We interpret I as a

2h + 2-dimensional column vector. Then (−1)Gr �̂

�̂∗ and the pairing can be represented
as a (2h + 2) × (2h + 2)-matrix M and we can write

Zphase
S2

= I (u)T M I (u), (3.5)

We will see in the examples that the structure of the matrix M depends on the type of
phase and that its entries are, at least in the examples we have considered, consistent with
the components of (−1)Gr �̂

�̂∗ and the pairing.We note that (3.5) has been observed before
in the context of mirror symmetry, where the components of I have an interpretation as
periods of the mirror Calabi–Yau. Indeed, for the case of the quintic, the matrix M is
related, up to a choice of normalisation, to a matrix “σrs” defined in Section 4 of [43].

To get to the flat coordinates, we denote by I0 the component of the I -function that
corresponds to the unique ground state |0〉 and by I j ( j ∈ 1, . . . , h) the components that
capture the narrow deformations. Then the flat coordinates are defined by

t j (u) = I j
I0

. (3.6)

The J -function is then defined as

J (t (u)) = I

I0
. (3.7)

The transition from the I -function to the J -function thus corresponds to a change of
normalisation of the sphere partition function:

Z̃phase
S2

(t, t) = C
∑

δ∈G

∫

B
(−1)Gr

�̂δ(H)

�̂∗
δ (H)

Iδ(u(t), H)Iδ(u(t), H)

I0(u(t))I 0(u(t))
= 〈J , J 〉. (3.8)

This amounts to aKähler transformation. These structures can be used to extract enumer-
ative invariants from the GLSM partition functions [5,17] that encode the I -function.

In the following we make the discussion more precise for specific types of phases.

3.1. Landau–Ginzburg orbifolds and FJRW theory. A convenient class of models to
test this conjecture are Landau–Ginzburg orbifolds since we can check the results of the
sphere partition function against the definitions of the Gamma class and I -function that
has been defined in FJRW theory [19,20]. In [17] it was shown how this information is
encoded in the Landau–Ginzburg data to which we refer to for details.

We consider a Landau–Ginzburg orbifold with orbifold group G with N fields xi and
holomorphic, quasi-homogeneous,G-invariant superpotential3 W satisfyingdW−1(0) =
{0}. Let the xi have left R-charge qi so that the superpotential has left R-charge 1:
W (λqi xi ) = λW (xi ). The vector R-charge of W is 2. If W is of degree d this im-
plies that there is a Zd -orbifold action 〈J 〉 with J = (

e2π iq1 , . . . , e2π iqN
)
. In this work

we restrict ourselves to Landau–Ginzburg orbifolds with G = 〈J 〉, even though the
subsequent statements are more general [17].

3 To avoid cluttered notation we denote the superpotantiels in Landau–Ginzburg models, hybrids and
GLSMs with the same letter W . We hope the distinction is clear from the context.
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The state space HLG consists of γ -twisted sectors [44,45]

HLG =
⊕

γ∈G
Hγ , (3.9)

where each Hγ is made up of fields that satisfy untwisted boundary conditions in the
γ -twisted sector. For our choice of G we can write γ = J � (� = 0, . . . , d − 1). Then
the untwisted boundary conditions are given by xi (e2iπ z) = e2π iqi �xi (z) with qi� ∈ Z.
One then considers the G-invariant states built out of these fields. Among the states of
HLG one can identify the (ground-)states |0〉(c,c)γ , |0〉(a,c)

γ in the (c, c)- and (a, c)-rings,
and the RR ground states |0〉Rγ . They are isomorphic via spectral flow [41]:

U(− 1
2 ,− 1

2

)|0〉(c,c)γ = |0〉Rγ , U(−1,0)|0〉(c,c)γ = |0〉(a,c)
γ J , (3.10)

whereU(r,r) is the spectral flowoperatorwithR-charges (ĉr, ĉr)with ĉ = ∑N
i=1(1−2qi ).

The elements of the (c, c)-ring have an explicit expression in terms of G-invariant
monomials of the Jacobi ring of Wγ = W |Fixγ where Fixγ is defined as the set of xi
fixed by the action of γ . Via spectral flow one gets an indirect description of the other
states. The left and right R-charges (q, q) of the vacuum states are the eigenvalues of
the generators FL/R of the left and right moving R-symmetries:

FL |0〉γ =
⎛

⎝age(γ ) − N

2
+

∑

j :�q j∈Z
q j +

ĉ

2

⎞

⎠ |0〉γ

FR |0〉γ =
⎛

⎝−age(γ ) +
N

2
− nγ +

∑

j :�q j∈Z
q j +

ĉ

2

⎞

⎠ |0〉γ , (3.11)

with

age(γ ) =
∑

j

q j , nγ = dim(Fix(γ )). (3.12)

In the following we will restrict to narrow sectors. We will refer to those sectors of
the (a, c)-ring as narrow that have (q, q) = (−1, 1) and satisfy nγ J−1 = 0 [17]. The
other sectors are referred to as broad. Being one-dimensional, the narrow sectors are
specified by the label δ ∈ G and we denote them by φδ . One can define the following
pairing on the (c, c)-ring

〈φδ, φδ′ 〉 = 1

|G|δδ,δ′−1 . (3.13)

The pairing on the (a, c)-ring can be inferred from (3.10).
In order to define the I -function and the Gamma class we need to take into account

further information about marginal deformations in the narrow sectors. If the space of
narrowmarginal deformations has dimension h the information about the corresponding
marginal deformations can be encoded in a h× (h + N )-matrix q that can be determined
from the defining data of the Landau–Ginzburg orbifold [17]. In connection to GLSMs
with gauge group U (1)h that have Landau–Ginzburg orbifold phases the matrix q can
be obtained as follows. Take the matrix C of GLSM gauge charges and divide it up into
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blocks C = (L S), where the h × h matrix L contains the charges of those fields that
obtain a VEV in the Landau–Ginzburg phase. Then q = L−1C. Note, however, that it
is possible to define q and L without a GLSM.

The I -function and the Gamma class can be defined explicitly in terms of q. Before
we do that, a word of caution concerning labelling conventions. The Gamma class and
the I -function are associated to the (a, c)-ring and are expressible in terms of basis
elements e(a,c)

δ . However it turns out that the labelling of FJRW theory which is closer
to the labelling of the (c, c)-ring is most convenient. The relation between these basis
elements is

e(a,c)
Jδ = e(c,c)

δ = eδ−1 , (3.14)

where the latter is the FJRW basis. Since in our examples δ = J �, � = 0, . . . , d − 1
we will choose the labels e�. Now we can give the definition of the I -function for
Landau–Ginzburg orbifolds [17]:

I�(u) = −∑
k1, . . . , kh ≥ 0
k′ ≡ � mod d

uk∏h
a=1 �(ka+1)

·∏N
j=1

(−1)〈−
∑h

a=1 kaqa,h+ j +q j 〉�(〈∑h
a=1 kaqa,h+ j−q j 〉)

�(1+
∑h

a=1 kaqa,h+ j−q j )
, (3.15)

where 〈x〉 = x − �x� and uk = ∏
i u

ki
i . The integers ki have periodicities encoded in

the matrix L associated to the action of the orbifold group G:

k ∼ k + LTm ∀m ∈ Z
h . (3.16)

From a GLSM standpoint the matrix L encodes how the Landau–Ginzburg orbifold
group is embedded in the GLSM gauge group. This allows one to associate different
values of k to different sectors labeled by �. This can be systematised by making use
of the Smith normal form of L . We refer to [17] for details. The Landau–Ginzburg
I -function is then given by

ILG(u) =
∑

δ∈G
Iδ(u)e(a,c)

δ . (3.17)

The matrix q also encodes the information to define the Gamma class. The Gamma class
acts diagonally onH(a,c) and one defines

�̂LGe
(a,c)
γ = �̂γ e

(a,c)
γ �̂δ =

N∏

j=1

�

(
1 −

〈
h∑

a=1

kaqa,h+ j − q j

〉)
. (3.18)

Note that �̂� = �̂δ−1 J . The conjugate expression is given by

�̂∗
LGe

(a,c)
γ = �̂∗

γ e
(a,c)
γ �̂∗

δ =
N∏

j=1

�

(〈
h∑

a=1

kaqa,h+ j − q j

〉)
. (3.19)

Finally we introduce

Gr =
N∑

j=1

〈
−

h∑

a=1

kaqa,h+ j + q j

〉
. (3.20)
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It coincides with the eigenvalues of the grading operator defined on the FJRW state
space.

We find that the sphere partition function in Landau–Ginzburg models has the fol-
lowing form

ZLG
S2 (t, t) = 1

|G|
∑

δ

(−1)Gr
�̂δ

�̂∗
δ

Iδ(u(t))Iδ(u(t)) = 〈I LG(u(t)), ILG(u(t))〉, (3.21)

The pairing is (3.13). Here we have defined

〈I LG(u(t))| =
∑

δ

(−1)Gr
�̂δ

�̂∗
δ

Iδ(u(t))eδ−1 . (3.22)

To make the connection to the J -function and the flat coordinate t , we select the element
I0 (associated to the basis element e(a,c)

0 ) that is the unique element that has left/right
R-charges (q, q) = (0, 0). Furthermore we take the elements Iδa (a = 1, . . . , h) of
charges (q, q) = (−1, 1) corresponding to the marginal deformations. Then the flat
coordinates are

ta = Iδa
I0

. (3.23)

The J -function is defined by

JLG(t) = ILG(u(t))

I0(u(t))
. (3.24)

3.2. Geometry. Geometric phases are well-studied and the ingredients to (1.1) can be
found in the literature for many classes of examples. The appearance of the I -function
in the context of the sphere partition function in geometric phases of abelian and non-
abelian GLSMs has been noted in [26–31].

A general expression for the I -function for Calabi–Yaus that are nef complete in-
tersections in smooth toric varieties can be found in [46,47]. We follow [47] where
also the result for the two-parameter example in Sect. 5 has been discussed. Let X� be a
smooth toric variety associated to a toric fan� and letL1, . . . ,L� be line bundles on X�

generated by global sections. We also associate an (N -)lattice polytope �∗ to X� . Let
X ⊂ X� be a smooth complete intersection defined by a global section of V = ⊕�

i=1Li .
Denote by Dρ ∈ H2(X�) the cohomology class of the divisor (usually also denoted by
Dρ) associated to the one-dimensional cones ρ ∈ �(1) of �. Furthermore choose an
integral basis H1, . . . , Hh of H2(X�,Z), which lies in the closure of the Kähler cone.
Furthermore, β ∈ H2(X�,Z) and we define Li (β) = ∫

β
c1(Li ) and Dρ(β) = ∫

β
Dρ .

Then the I -function IX is given by
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IX (u, H) =
∏

i

uHi
i

∑

β∈M(X�)

h∏

i=1

u
∫
β Hi

i

∏�
i=1

∏Li (β)
m=−∞ (c1(Li ) − m)

∏
ρ

∏0
m=−∞(Dρ − m)

∏�
i=1

∏0
m=−∞ (c1(Li ) − m)

∏
ρ

∏Dρ (β)

m=−∞(Dρ − m)
,

(3.25)

where M(X�) is the Mori cone. In the GLSM context, the generators of the Mori cone
coincide with the row vectors of the matrix C of GLSM charges whose column vectors
span the secondary fan of X� . The components of IX are obtained by expanding IX as
a power series in H1, . . . , Hh .

Similarly, the Gamma class of X and its conjugate4 can be written as

�̂X (H) =
∏

ρ �
(
1 − Dρ

)

∏�
i=1 � (1 − c1(Li ))

, �̂∗
X (H) =

∏
ρ �

(
1 + Dρ

)

∏�
i=1 � (1 + c1(Li ))

(3.26)

where H collectively denotes H1, . . . , Hh . The Gamma class is invertible since an ex-
pansion in terms of a power series of H begins with a constant term and we can invert
the series. This is why expressions like �̂

�̂∗ make sense.
To define the pairing 〈·, ·〉, consider α, β ∈ Heven(X,C). Then the relevant pairing

is given by the Mukai pairing [32,48]

〈α, β〉 =
∫

X
α∨ ∧ β, (3.27)

where in the Calabi–Yau case α∨ = (−1)Grα. The grading operator Gr acts as follows
on Heven(X,C):

Grα = k α, for α ∈ H2k(X,C). (3.28)

This coincides with the definition in [20].
Here we have restricted to the cohomology of the Calabi–Yau that descends from

the cohomology of the ambient space X� . We exclude the primitive cohomology of X ,
i.e the cohomology associated to divisors on X that do not have no counterpart in the
ambient geometry. This is the geometric analogue to the restriction to narrow sectors in
the Landau–Ginzburg setting. The pairing is evaluated by making use of the intersection
ring of X . In the geometric setting (1.1) simplifies to

Zgeom
S2

(t, t) =
∫

X

�̂X (H)

�̂∗
X (H)

IX (u(t), H)IX (u(t), H) = 〈I X , IX 〉 (3.29)

The Gamma class and its relation to perturbative corrections has been discussed in
[32], where also the quotient �̂

�̂∗ has first been observed and has been linked to complex
conjugation via an indirect argument using K -theory. Let us briefly summarise this.
There is an isomorphism between Heven(X,C) and Khol(X) ⊗ C, where Khol(X) is
holomorphic K -theory [49], which involves the Gamma class [50–53]

μ : [E] �→ ch(E) ∧ �̂X . (3.30)

4 Compared some other works in the literature �̂X (H) and �̂∗
X (H) may be exchanged. We are using the

convention used in [11].
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It has been suggested that complex conjugation forw ∈ Heven(X,C)works as follows:

w �→ ch−1
(

w

�̂X

)
�→ ch−1

(
w

�̂∗
X

)
�→ w

�̂X

�̂∗
X

, (3.31)

where the map in the middle is complex conjugation on Khol(X). Let us point out that
when evaluating the sphere partition in geometric phases there is some ambiguitywhen it
comes to identifying the pairing and the complex conjugation operator. In the definitions
we have given, the grading operator Gr that acts on the state space apprears twice: one
in the definition of the Mukai pairing and once in (−1)Gr �̂

�̂∗ in (3.3). This means that all

the signs coming from (−1)Gr actually cancel and it would be consistent, at least from
the point of view of the sphere partition function, to use a pairing 〈α, β〉 = ∫

X α ∧ β

instead of the Mukai pairing and to define complex conjugation via �̂

�̂∗ instead of (3.3).

With Hnar = H2(X,C) (where we have excluded the primitive cohomolgy) and
H0(X,C) singling out a distinguished component, the flat coordinates are defined by
the corresponding components Ii (i = 1, . . . , h) and I0 of the I -function:

ti (u) = Ii
I0

, (3.32)

and the J -function is defined by

JX (t) = IX (u(t))

I0(u(t))
. (3.33)

3.3. Hybrid phases. A further non-trivial test for (1.1) is to study regions in the moduli
space that are more exotic than geometric and Landau–Ginzburg phases. A class of such
examples are hybrid models that are fibrations of Landau–Ginzburg orbifolds over some
base manifold B. In the physics literature they have been studied for instance in [54–56].
In the mathematics literature there is a generalisation of FJRW theory that captures a
class of one-parameter hybridmodels [21–25]. In the examples belowwewill recover the
mathematics results for the I -functions and the Gamma class from the sphere partition
function and conjecture new ones in the multi-parameter cases.

The class of models we are considering consists of fibrations of Landau–Ginzburg
orbifolds over certain base manifolds. To give a more precise definition we follow [54].
We consider a Kähler manifold Y0 together with a holomorphic function W whose
critical locus defines a compact subset B such that dW−1(0) = B ⊂ Y0. In the case of
a Landau–Ginzburg model B is a point, whereas a compact Y0 (and hence trivial W )
leads to a nonlinear sigma model.

To obtain an action for the hybrid model, one introduces Y , which is the total space
of a rank N vector bundle X → B where we assume that B is compact, smooth and
Kähler of dimension r . It is possible to write down anN = (2, 2) supersymmetric action
for the hybrid model on Y [54] whose kinetic term describes a non-linear sigma model
on Y and which includes a potential term involving the superpotential W satisfying the
superpotential condition dW−1(0) = B. Given a suitable choice of Kähler metric on
Y , the superpotential condition ensures that at low energies the field fluctuations will be
localised on B.
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The IR theory is anN = (2, 2) superconformal theory characterised by the massless
ground states of the hybrid theory. It is the IR behaviour that determines the distinction
between a “good” hybrid model and a “pseudo-hybrid” [54,57]. To this end, one has
to consider the U (1)L × U (1)R-symmetry. If there is no potential, these symmetries
exist due to an integrable, metric-compatible complex structure on Y . To guarantee
that these symmetries are also present, at least classically, when there is a non-zero
potential, there must be a holomorphic Killing vector field F satisfying LFW = W . At
the quantum level, U (1)L exhibits a chiral anomaly unless c1(TY ) = 0. This is satisfied
if the canonical bundle KY is trivial which will be assumed. A consequence of this is
that B has to be Fano, which is indeed the case for all the examples that we consider,
where B = P

r for r = 1, 2, 4.
In order for the UV R-symmetry to lead to a well-defined R-symmetry in the IR, it is

required that all forms ω ∈ (B) satisfy LFπ∗(ω) = 0 and that U (1)L × U (1)R fixes
B point-wise. Such models are referred to as good hybrids and it is possible to write
down an explicit expression for F [54]. These conditions ensure that the local picture
of a Landau–Ginzburg model fibered over every point in B is valid.

In order for theU (1)L×U (1)R-charges of all (NS,NS)-sector states to be integral, one
has to orbifold by the discrete symmetry generated by e2π i J0 , where J0 is the conserved
U (1)L -charge. As in the Landau–Ginzburg case, we denote the orbifold group by G.
Due to the properties of F , the orbifold only acts on the fibre coordinates. Hybrids of
this type arise in the context of type II string compactifications on Calabi–Yaus that we
are considering here, and also in heterotic settings. All the good hybrids we will discuss
are of this type. Note that in the context of hybrids arising from GLSMs there could
be more general orbifold actions arising as discrete unbroken subgroups of the GLSM
gauge group. This has been discussed, for instance, in a Landau–Ginzburg context in
[17].While we expect the structures discussed in this work to appear in this more general
context as well, we will not consider this more general setting here.

The massless spectrum for good hybrids arising from the cohomology of the right-
moving supersymmetry generator was computed in [54] and interpreted in the context of
heterotic string compactifications. These results provide techniques to obtain the (c, c)-
and (a, c)-rings of the internal Calabi–Yau CFT. In [56] the elements of the (c, c)-ring
in the untwisted sector of in the B-twisted good hybrids have been computed explicitly.
These works use spectral sequences that arise from the structure of the supercharges of
the hybrid models to obtain representatives of the states in terms of the matter content
of the hybrid model. In our approach the state space only enters via its dimension and
the existence of a pairing. Therefore we find it more convenient to use a definition of
the state space as it can be found in the mathematics literature [21,25], even though
it appears to be less general than the physics prescription. In [21] the state space has
been defined for two hybrid models that arise in the same moduli space as certain one-
parameter complete intersections in toric ambient spaces. In Sect. 4 these two examples
are labelled K1 and M1. Our results imply, however, that this prescription applies in a
more general setting and we expect it to hold for all good hybrids.

We need to identify the subset of the (a, c)-ring that corresponds to the narrow sectors
δ ∈ G. These turn out to be precisely those sectors whose cohomology is determined
by the cohomology classes of the base B so that we can characterise the narrow state
space as

H =
⊕

δ

H∗(B,C)(δ). (3.34)
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In other words, there is a copy of H∗(B,C) for every narrow sector. Following [21],
the narrow sectors can be identified as follows. Let us consider a good hybrid model
that is a G = Zd -orbifold over Pr with fibre coordinates x1, . . . , xN . By definition,
the base coordinates do not transform under the orbifold action. Let q1, . . . , qN be the
U (1)L -charges of the fibre coordinates so that the Zd -orbifold is generated by 〈J 〉 with
J = (e2π iq1 , . . . , e2π iqN ), in complete analogy the the Landau–Ginzburg case. The
�-th twisted sector is referred to as narrow if there is no j ∈ {1, . . . , N } such that
e2π i�q j = 1. In all the examples we discuss in the subsequent sections the definition
(3.34) is consistent with the results from the sphere partition function. In particular, the
counting of narrow states for hybrids phases matches with the counting in the geometric
and Landau-Ginzurg phases. Note that a more abstract definition of narrow sectors in
hybrids arising in moduli spaces of complete intersection Calabi–Yaus has been given
in [25].

With these structures in mind, we can evaluate the GLSM sphere partition function
in models with good hybrid phases where we recover the form advertised in (1.1). This
allows us to confirm the mathematics results for the I -functions and the Gamma class
from the sphere partition function and to conjecture new ones in the multi-parameter
cases. While it seems possible to give a general expression of the I -function and the
Gamma class for a rather general class ofmultiparamter good hybridmodels, one expects
technical complications similar to those encountered in the Landau–Ginzburg case [17].
From the GLSM perspective, this reflects the often complicated symmetry breaking
pattern that occurs in phases of GLSMs. The standard examples of hybrid models that
we also study here are very simple and reading off the (conjectural) expressions for the
I -functions and the Gamma class on a case-by-case basis is fairly obvious. In contrast
to the Landau–Ginzburg and geometry cases, we do not have a vast amout of literature
to build upon, nor is there a classification of good hybrids at our disposal to apply any
general statements to. We therefore leave finding general expressions for the Gamma
class and the I -function for good hybrids for future work.

A final remark concerns the definition of the paring that is implicit in (1.1). In the
hybrid case, this expression includes an integral over the base manifold B that is not
Calabi–Yau. For an algebraic variety B there are the following relations between char-
acteristic classes:

Td(B) = e
c1(B)

2 Â(B) = e
c1(B)

2 �̂B �̂∗
B, (3.35)

where Td is the Todd class, c1 is the first Chern class, Â is the A-roof genus, and �̂ is
the Gamma class. Using such identities we can show that the sphere partition function
indeed takes the form (1.1). The results from the sphere partition function are not enough
to deduce the correct definition of the pairing. If we, following [32,48], interpret the
integral over B as an artifact of the Mukai pairing, then we have to modify the definition

of α∨ in (3.27) to be α∨ = (−1)Gre
c1(B)

2 α. Consistency with the result of the sphere
partition function would then further imply that (−1)Gr �̂

�̂∗ in the conjugation operation

(3.3) would have to be modified to (−1)Gre− c1(B)

2 �̂

�̂∗ . It would be interesting to study
this further.

3.4. Pseudo-hybrid phases. A class of hybrids that are not good hybrids habe been
termed pseudo-hybrids in [57]. They are associated to singular CFTs. One of the prop-
erties that follows from the violation of the conditions for being a good hybrid is there
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is no unique R-charge assignment in the IR.5 This is related to the fact that there is
no known enumerative problem in the sense of FJRW theory. Still, it is possible to
evaluate the sphere partition function of a given GLSM in a pseudo-hybrid phase and
there is at least some understanding of the low-energy physics [57]. A further feature of
pseudo-hybrids is that the solutions of the D-term and F-term equations in the GLSM
have several components. This structure is also reflected in the sphere partition function.
Below, we present some results that indicate that the components of the sphere partition
function that correspond to a specific component of the GLSM vacuum also display a
factorisation along the lines of (1.1). The one-parameter examples we consider in this
context and the associated GLSMs have already been discussed in [33] to which we refer
for details.

4. One-Parameter Examples

A canonical class to test the general expression for the sphere partition function is a set
of well-studied one-parameter Calabi–Yaus that also has received some recent attention
in the context of swampland conjectures [33,58,59]. The associated GLSMs have gauge
group G = U (1) and the following field content6

p1 p21,...,2k x1,...,5−n− j+k xα1,...,αn xβ1,...,β j FI
U (1) −d1 −d2 1 α β ζ

U (1)V 2 − 2d1q 2 − 2d2q 2q 2αq 2βq
(4.1)

with the following restrictions

0 ≤ k ≤ 3, 0 ≤ n ≤ 2, 0 ≤ j ≤ 2, (4.2)

5 + k − n − j + αn + jβ = d1 + kd2, (4.3)

where the last equation is the Calabi–Yau condition. The U (1)V charges satisfy 0 ≤
q ≤ 2 if

0 ≤ q ≤ 1

max[d1, d2] . (4.4)

The explicit values of these parameters for all 14 abelian one-parameter models can be
found in7 Table 1. The models have a superpotential of the form

W = p1Gd1(xn) +
k∑

i=1

p2i Gi,d2(xn), (4.5)

where Gd1 is a weighted homogeneous polynomial of degree d1 and similarly for Gi,d2 .
The large volume phases (ζ � 0) are complete intersections in weighted projective
space:

P
5+k−1
15+k−n− jαnβ j [d1, d2, . . . , d2︸ ︷︷ ︸

k-times

]. (4.6)

5 In the language of variation of GIT quotients this is referred to as a “lack of good lift”.
6 By abuse of notation we will denote the chiral superfield and its scalar component by the same lower case

letter.
7 Compared to [33] we changed the labels of some models.
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Table 1. Model data of one-parameter abelian GLSMs

Model-data IR-description
Label αn β j d1 dk2 ζ � 0 ζ � 0
F-type
F1 – – 5 – P15 [5] LG orbifold
F2 – 2 6 – P14,2[6] LG orbifold
F3 – 4 8 – P14,4[8] LG orbifold
F4 2 5 10 – P13,2,5[10] LG orbifold
F5 – 2 4 3 P15,2[4, 3] Pseudo-Hybrid

F6 22 3 6 4 P13,22,3[6, 4] Pseudo-hybrid
F7 4 6 12 2 P14,4,6[12, 2] Pseudo-hybrid
C-type
C1 – – 4 2 P16 [4, 2] Pseudo-hybrid
C2 – 3 6 2 P15,3[6, 2] Pseudo-hybrid

C3 – – 3 22 P17 [3, 2, 2] Pseudo-hybrid
K-type
K1 – – 3 3 P16 [3, 3] Hybrid
K2 – 22 4 4 P14,22 [4, 4] Hybrid

K3 22 32 6 6 P12,22,32 [6, 6] Hybrid
M-type
M1 – – 2 23 P18 [2, 2, 2, 2] Non-linear σ

In the above formula we denote by a superscript the dimension and by a subscript the
weights of the coordinates. In the brackets we give the weighted homogeneous degree
of the defining equations. There are four types of small volume phases (ζ � 0) that can
be classified according to their monodromy around the limiting point. They are labeled
by M, F, K, and C [60]. The M-points have monodromy similar to large volume points.
There is only a single model with this property and it turns out that the two phases are not
birational, much like in non-abelian GLSMs. This has been studied in [61], see also [62]
for the computation of the sphere partition function. Type C points are pseudo-hybrid
phases. The points of type F have Landau–Ginzburg or pseudo-hybrid phases, type K
corresponds to (good) hybrid theories, i.e. fibrations of Landau–Ginzburg orbifolds over
some base manifold.

4.1. Evaluation of the sphere partition function. The sphere partition function in our
GLSMs reads

ZS2 = e−4πζq

2π

∑

m∈Z

∫ ∞+iq

−∞+iq
dσ Z p1 Z

k
p2 Z

5+k−n− j
1 Zn

αZ
j
βe

(−2πζ−iθ)(iσ+ m
2 )e(−2πζ+iθ)(iσ− m

2 ),

(4.7)

with

Z p1 = �
( 1
2 (m + 2iσ)d1 + 1

)

�
( 1
2 (m − 2iσ)d1

) , Z p2 = �
( 1
2 (m + 2iσ)d2 + 1

)

�
( 1
2 (m − 2iσ)d2

) , Z1 = �
(−m

2 − iσ
)

�
(−m

2 + iσ + 1
) ,

Zα = �
(− 1

2α(m + 2iσ)
)

�
(
iσα − mα

2 + 1
) , Zβ = �

(− 1
2β(m + 2iσ)

)

�
(
iσβ − mβ

2 + 1
) .

(4.8)
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Observe that in (4.7)we have transformed σ → −iq+σ .We evaluate the sphere partition
function by application of the residue theorem. The result depends on the phase of the
GLSM. Much of this has already been done in [33] to which we refer for details on
how to determine the contributing poles. The most important steps in the evaluation are
also summarized in “Appendix A”. We observe that in all examples of this class the
contributing poles in a phase are associated to fields that get a non-zero VEV in the
given phase.

4.1.1. ζ � 0 phase In this phase the poles of Z1, Zα and Zβ contribute. It is sufficient
to sum over the poles of Zβ . The contributions from the missed poles of Zα vanish in
all models, as we show in “Appendix A”. The final result is given by:

Z ζ�0
S2

= − 1

2π

∮

0
dεZ1,sing(ε)|Z1,reg(ε, t)|2, (4.9)

with

Z1,reg(ε) =
∞∑

a=0

(−1)a(5+k−n− j+αn+ jβ)e−t(iε+a+q)

· � (ad1 + iεd1 + 1)

� (a + iε + 1)5+k−n− j � (aα + iεα + 1)n
� (ad2 + iεd2 + 1)k

�(aβ + iεβ + 1) j
,

(4.10)

and

Z1,sing(ε) = π4 sin (π (iεd1)) sin (π (iεd2))k

sin (π (iε))5+k−n− j sin (π (iεα))n sin (π (iεβ)) j
. (4.11)

4.1.2. ζ � 0 phase For this phase the sphere partition function gets two contributions.
In the first contribution one sums over the poles of Z p1 . In the second contribution one
accounts for previously missed poles of Z p2 , if there are any. One gets:

Z ζ�0
S2

= Z ζ�0
S2,1

+ Z ζ�0
S2,2

, (4.12)

where details on Z ζ�0
S2,1

are given in (A.12). The Z ζ�0
S2,2

contribution is only non-zero
in models with a pseudo-hybrid phase. Because the focus of this work lies on models
with Landau–Ginzburg and hybrid phases we discuss the features of Z ζ�0

S2,2
and pseudo-

hybrids in the “Appendix A”. In models with a Landau–Ginzburg or hybrid phase we
can further simplify Z ζ�0

S2,1
, because in these cases we have d1 = d2. Typically in these

phases Z ζ�0
S2,1

is a sum of different contributions, which we label by δ, where δ ∈ Z>0.

The integrand depends on δ in such a way, that Z ζ�0
S2,1

vanishes unless

〈
δ

d1

〉
�= 0,

〈
α

δ

d1

〉
�= 0,

〈
α

β

d1

〉
�= 0. (4.13)

The possible δ values are restricted from above by δ < d1 and we will denote the set of δ
values which fulfil (4.13) by narrow, because (4.13) corresponds to the narrow sectors
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discussed in Sect. 3.1. For the models of interest we summarize the contributing sectors
and the order of the poles in Table 2. In the narrow sector we can show

〈
α − α

k

d

〉
= 1 −

〈
α
k

d

〉
. (4.14)

Therefore we can use the identity:

sin

(
π

(
iβε + α

k

d

))
= sin

(
π

(
iβε +

〈
α
k

d

〉
+

⌊
α
k

d

⌋))
,

= (−1)

⌊
α k
d

⌋
π

�
(
iβε +

〈
α k
d

〉)
�
(−iβε +

〈
α d−k

d

〉) , (4.15)

which is useful in rewriting Z1,sing (A.12). After the variable transformation ε → iε
d1

,

(A.12) can be written in the following form:

Z ζ�0
S2,1

= 1

2π id1

∑

δ∈narrow

∮

0
dε

(−1)Gr

εk+1

�̂δ(ε)

�̂∗
δ (ε)

|I ζ�0
δ (t, ε)|2, (4.16)

with

I ζ�0
δ (t, ε) =

∞∑

a=0

e
t( ε

d1
+a+ δ

d1
−q)

(−1)a(5+k−n− j+αn+ jβ)

· � (1 + ε)k+1

�
(

ε
d1

+
〈

δ
d1

〉)5+k−n− j
�
(
α ε
d1

+
〈
α δ
d1

〉)n
�
(
β ε
d1

+
〈
β δ
d1

〉) j

·
�
(
a + ε

d1
+ δ

d1

)5+k−n− j
�
(
aα + α ε

d1
+ α

d1
δ
)n

�
(
aβ + β ε

d1
+ β

d1
δ
) j

� (δ + ad1 + ε)k+1
,

(4.17)

and

(−1)Gr = (−1)δ(k+1)(−1)
(5+k−n− j)

⌊
δ
d1

⌋

(−1)
n
⌊
α δ
d1

⌋

(−1)
j
⌊
β δ

d1

⌋

. (4.18)

Here we introduced

�̂δ(ε) = � (1 − ε)k+1 �

(
ε

d1
+

〈
δ

d1

〉)5+k−n− j

· �

(
α

ε

d1
+

〈
α

δ

d1

〉)n

�

(
β

ε

d1
+

〈
β

δ

d1

〉) j

, (4.19)

�̂∗
δ (ε) = � (1 + ε)k+1 �

(
− ε

d1
+

〈
d1 − δ

d1

〉)5+k−n− j

· �

(
−α

ε

d1
+

〈
α
d1 − δ

d1

〉)n

�

(
−β

ε

d1
+

〈
β
d1 − δ

d1

〉) j

. (4.20)
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Table 2. Pole order and contributing sectors for Landau–Ginzburg and hybrid models

δ F1 F2 F3 F4 K1 K2 K3 M1
1 2 3 4 1 2 4 5 1 3 5 7 1 3 7 9 1 2 1 3 1 5 1

Pole order 1 1 1 1 2 2 2 4

It is possible to obtain �̂∗
δ (ε) from �̂δ(ε) by applying the following transformations

ε → −ε, 〈·〉 → 1 − 〈·〉, (4.21)

and as final step (4.14) is used. For later convenience we also introduce

γδ(H) = (−1)Gr
�̂δ(H)

�̂∗
δ (H)

. (4.22)

Below we will show that (4.17), (4.19), and (4.20) exactly match the expression known
from FJRW theory in Landau–Ginzburg and hybrid models.

4.2. Landau–Ginzburgphases. Webeginwith thosemodels of typeF,which areLandau–
Ginzburg orbifold models. Consulting Table 1 these are the models F1, F2, F3 and F4.
Thematrix q that determines the I -function and the Gamma class is obtained by dividing
the GLSM charge vectors by the charge of the (single) p-field:

q =
(
1 − 1

d1
− 1

d1
− 1

d1
− α

d1
− β

d1

)
. (4.23)

In these cases it is very easy to evaluate the sphere partition function because only first
order poles contribute. This is a consequence of the fact that k = 0 in these models (see
Table 1). Then (4.16) reads:

Z ζ�0
S2

= 1

d1

∑

δ∈narrow
(−1)Gr

�̂δ(0)

�̂∗
δ (0)

∣∣∣I ζ�0
δ (t, 0)

∣∣∣
2
, (4.24)

where the explicit δ values can be read off from Table 2 and it can be shown that these
values correspond to the narrow sectors as introduced in Section 3.1. Expressions (4.19)
and (4.20) read:

�̂δ(0) = �

(〈
δ

d1

〉)3

�

(〈
α

δ

d1

〉)
�

(〈
β

δ

d1

〉)
, (4.25)

�̂∗
δ (0) = �

(〈
d1 − δ

d1

〉)3

�

(〈
α
d1 − δ

d1

〉)
�

(〈
β
d1 − δ

d1

〉)
, (4.26)

and inserting into (4.17) gives

I ζ�0
δ (t, 0) =

∞∑

a=0

e
t(a+ δ

d1
−q)

(−1)a(3+α+β)

�
(〈

δ
d1

〉)3
�
(〈

α δ
d1

〉)
�
(〈

β δ
d1

〉)

·
�
(
a + δ

d1

)3
�
(
aα + α

d1
δ
)

�
(
aβ + β

d1
δ
)

� (δ + ad1)
.

(4.27)
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The next step is to show that (4.24) matches (3.21), which means in particular that
the I -function, the Gamma class and the pairing matches with the definitions given in
Sect. 3.1. Since this is rather tediouswe have relegated this discussion to “AppendixC.1”.
By expanding (4.24) in terms of δ we can read off the matrix M introduced in (3.5):

M =

⎛

⎜⎜⎜⎜⎝

γδ1 (0)
d1

0 0 0

0
γδ2 (0)
d1

0 0
0 0 − 1

d1γδ2 (0) 0

0 0 0 − 1
d1γδ1 (0)

⎞

⎟⎟⎟⎟⎠
, (4.28)

where we used (4.22) to write the result in a compact way.

4.3. Geometry. Next we consider the geometric phases ζ � 0. To evaluate the sphere
partition function we follow the steps outlined in [11] in the context of the hemisphere
partition function. The first step is to rewrite the contribution in the large radius phase,
given in (4.9). We apply the transformation

ε → − H

2π

in (4.9) and introduce

�̂(H) = �
(
1 − H

2π i

)5−n− j+k
�
(
1 − α H

2π i

)n
�
(
1 − β H

2π i

) j

�
(
1 − d1

H
2π i

)
�
(
1 − d2

H
2π i

)k . (4.29)

Let us denote by �̂∗ the conjugate of �̂ obtained by setting i → −i . Also we can
normalize the first summand in (4.10) to 1 if we define8

I ζ�0(t, H) = �̂(H)∗Z1,reg

(−H

2π

)

= �
(
1 + H

2π i

)5−n− j+k
�
(
1 + α H

2π i

)n
�
(
1 + β H

2π i

) j

�
(
1 + d1

H
2π i

)
�
(
1 + d2

H
2π i

)k

·
∞∑

a=0

(−1)a(5+k−n− j+αn+ jβ)u(t)(
H
2π i +a+q)

· �
(
1 + ad1 + d1

H
2π i

)
�
(
1 + ad2 + d2

H
2π i

)k

�
(
1 + a + H

2π i

)5+k−n− j
�
(
1 + aα + α H

2π i

)n
�
(
1 + aβ + β H

2π i

) j ,

(4.30)

we introduced u(t) = e−t. We can now write the sphere partition function in the large
radius phase as

Z ζ�0
S2

= (2π i)3
dk2d1
αnβ j

∮

0

dH

2π i

1

H4

�̂(H)

�̂∗(H)
I ζ�0(u(t), H)I ζ�0(u(t), H). (4.31)

8 We observe that the alternating sign in the summation can be removed by a θ -angle shift between IR and
UV theory (see e.g [63]). We will drop this, because it gets cancelled in the sphere partition function.
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The crucial observation is now that the infrared description of all one-parameter models
in the large radius phase is given by a non-linear sigma model on a complete intersection
Calabi–Yau X in weighted projective space of type (4.6). Recall that the total Chern
class of the normal bundle ξ of X is given by

c(ξ) = (1 + d1H)(1 + d2H)k, (4.32)

where H is the hyperplane class of the ambient weighted projective space X� . The
normal bundle ξ has rank k + 1 and we get for the top Chern class:

ck+1(ξ) = d1d
k
2H

k+1. (4.33)

An integration along X can be pulled back from the embedding space with the help of
the top Chern class of ξ :

∫

X
g(H) =

∫

X�

ck+1(ξ) ∧ g(H)

= d1dk2
3!

∂3

∂H3 g(H)|H=0 = d1d
k
2

∮
dz

2π i

1

z4
g(z). (4.34)

We see that (4.29) matches (3.26) and by (4.34) we can write

Z ζ�0
S2

= (2π i)3

αnβ j

∫

X

�̂X (H)

�̂∗
X (H)

I ζ�0(u(t), H)I ζ�0(u(t), H). (4.35)

To read off the matrix M introduced in (3.5) we expand the different components in the
integrand in powers of H and extract the H3 coefficient. We obtain9

M

8π3 =

⎛

⎜⎜⎝

χ(X)ζ(3)
4π3 0 0 −iκ
0 0 −iκ 0
0 −iκ 0 0

−iκ 0 0 0

⎞

⎟⎟⎠ , (4.36)

where κ = d1dk2
αnβ j is the triple intersection number and χ(X) the Euler number of the

Calabi–Yau X . In the pairing matrix (4.36) one can see the expected ζ(3) coefficient.

4.4. K-type hybrid models. Now we consider the models K1, K2 and K3 in Table 1, in
the phase of a Landau–Ginzburg orbifold with orbifold groups G = Z3,Z4,Z6 fibered
over P1. For these models k = 1 and so we can bring (4.16), into the following form
after the transformation ε → H

2π i

Z ζ�0
S2,1

= 2π i

d1

∑

δ∈Narrow

∮
dH

2π i

1

H2 (−1)Gr
�δ(H)

�∗
δ (H)

I ζ�0
δ (t, H)I ζ�0

δ (t̄, H), (4.37)

with

�δ(H) = �

(
1 − H

2π i

)2

�

(
H

2π id1
+

〈
δ

d1

〉)6−n− j

9 We divide M by 8π3 in order to get a canonically normalised ζ(3) term in the geometric phase. See also
[5,64] where similar normalisations have been applied.
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· �

(
α

H

2π id1
+

〈
α

δ

d1

〉)n

�

(
β

H

2π id1
+

〈
β

δ

d1

〉) j

, (4.38)

�∗
δ (H) = �

(
1 +

H

2π i

)2

�

(
− H

2π id1
+

〈
d1 − δ

d1

〉)6−n− j

· �

(
−α

H

2π id1
+

〈
α
d1 − δ

d1

〉)n

�

(
−β

H

2π id1
+

〈
β
d1 − δ

d1

〉) j

, (4.39)

and

Iζ�0
δ (t, H) = �

(
1 + H

2π i

)2

�
(

H
2π id1

+
〈

δ
d1

〉)6−n− j
�
(
α H
2π id1

+
〈
α δ
d1

〉)n
�
(
β H

2π id1
+
〈
β δ

d1

〉) j

·
∞∑

a=0

e
t( H

2π id1
+a+ δ

d1
−q)

(−1)a(6−n− j+αn+ jβ)

·
�
(
a + H

2π id1
+ δ

d1

)6−n− j
�
(
aα + α H

2π id1
+ α

d1
δ
)n

�
(
aβ + β H

2π id1
+ β

d1
δ
) j

�
(
δ + ad1 + H

2π i

)2 .

(4.40)

The vacuum manifold is B = P
1 and similar to (4.34) we can write the sphere partition

function as

Z ζ�0
S2,1

= 2π i

d1

∑

δ∈Narrow

∫

P1
(−1)Gr

�δ(H)

�∗
δ (H)

I ζ�0
δ (t, H)I ζ�0

δ (t̄, H). (4.41)

As in the previous examples this can be rewritten in a matrix notation (3.5). Therefore
we expand each δ sector in (4.41) in H and extract the H1 component. By inserting
(4.38) and (4.39) into (4.22) the matrix M takes the form

M =

⎛

⎜⎜⎜⎜⎝

− ν

d21
γδ1(0) 2π i 1

d1
γδ1(0) 0 0

2π i 1
d1

γδ1(0) 0 0 0
0 0 − ν

d21

1
γδ1 (0) 2π i 1

d1
1

γδ1 (0)

0 0 2π i 1
d1

1
γδ1 (0) 0

⎞

⎟⎟⎟⎟⎠
. (4.42)

Evaluating ν for the K type models gives

K1 K2 K3
ν log 318 log 240 log

(
232318

) . (4.43)

Hybrid models have also been studied in mathematics and therefore we want to match
our results with those in the literature. We focus on the K1 model which was studied
in [21,24] in the context of FJRW theory. The definition of the I function can be found
in10 [21]:

10 We are using the same notation as [21] here. The parameter t is not the flat coordinate but is, as we will
show, related to the FI-theta parameter t.



Sphere Partition Function of Calabi–Yau GLSMs 281

Ihyb = z
∑

d>0
d �≡−1 mod 3

e

(
d+1+ H(d+1)

z

)
t
z−6〈 d3 〉 �

(
H (d+1)

3z + d
3 + 1

3

)6

�
(
H (d+1)

3z + 〈 d3 〉 + 1
3

)6
�
(
H (d+1)

z + 1
)2

�
(
H (d+1)

z + d + 1
)2 .

(4.44)

We can simplify the above sum by replacing d = 3n + δ, with δ = 0, 1. In this case we
always have � δ

3� = 0, so we can drop the 〈·〉 operations in the above formulas. Further
we note that the label in the superscript of H (3n+δ) is defined modulo 3:

H (3n+δ) = H (δ). (4.45)

After performing the shift δ + 1 → δ we find:

Ihyb = z
2∑

δ=1

∞∑

n=0

e

(
3n+δ+ H(δ)

z

)
t
z−2(δ−1)

�
(
H (δ)

3z + δ
3 + n

)6

�
(
H (δ)

3z + δ
3

)6
�
(
H (δ)

z + 1
)2

�
(
H (δ)

z + 3n + δ
)2 .

(4.46)

Specialising (4.40) to the K1 model we obtain

I ζ�0
δ (t, H) = �

(
1 + H

2π i

)2

�
( H
3·2π i +

δ
3

)6
∞∑

a=0

e
t
(

H
3·2π i +a+

δ
3−q

)

(−1)6a
�6

(
a + H

3·2π i +
δ
3

)

�2
(
δ + 3a + H

2π i

) .

(4.47)

We can match (4.47) and (4.46) if we identify11:

q = 0, H (δ) = H

2π i
, z = 1, e3t = et. (4.48)

The superscript of H (δ) in (4.46) labels the sector of the narrow state space. We do not
see this label explicitly in the sphere partition function, because the pairing is partially
evaluated.

4.5. M-type model. There is only one model that has M-type monodromy in the ζ � 0-
phase. This model has been studied in detail in [61]. The sphere partition function and
Gromov-Witten invariants have been computed in [62]. The interesting feature of this
model is that the moduli space has two points that behave like large volume phases and
that the two Calabi–Yaus associated to these points are not birational. In this sense this
model shares many features with non-abelian GLSMs. While the ζ � 0-phase turns
out to be geometric, the analysis of the phase of the GLSM is much closer to a hybrid
model. The vacuum manifold is a P3 defined by the p-fields. Turning on fluctuations of
the x-fields gives a theory with potential of the form

W =
∑

i, j

xi A
i j (p)x j . (4.49)

11 With our approach we cannot unambiguously fix the value of the parameter z, because the sphere partition
function is not affected by overall signs. Both, z = 1 and z = −1 are consistent. To resolve this, one would
have to analyse the J -function and the enumerative invariants.
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The xs are massive except when det A = 0. It has been shown in [61] that the ζ � 0-
phase is the non-commutative resolution of a singular branched double cover over P3

with branching locus det A = 0.
Many steps in the calculation of the sphere partition function are similar to themodels

of K-type. The only difference is that the vacuum manifold is now a P3. From Table 1
we can read off that k = 3 and d1 = d2 = 2. Again we apply ε → H

2π i whereupon
(4.16) takes the form

Z ζ�0
S2,1

= (2π i)3

2

∫

P3
(−1)Gr

�1(H)

�∗
1(H)

|I ζ�0
1 (t, H)|2, (4.50)

with (4.17):

I ζ�0
1 (t, H) = �

(
1 + H

2π i

)4

�
( H
2·2π i +

1
2

)8
∞∑

a=0

et(
H

2·2π i +a+
1
2−q)(−1)8a

�
(
a + H

2·2π i +
1
2

)8

�
(
1 + 2a + H

2π i

)4 ,

(4.51)

and (4.19), 4.20) are given by:

�1(H) = �

(
1 − H

2π i

)4

�

(
1

2
+

H

2 · 2π i
)8

, �∗
1(H) = �

(
1 +

H

2π i

)4

�

(
1

2
− H

2 · 2π i
)8

.

(4.52)

Here we used the fact that δ only takes the value 1 for M1. The matrix M (3.5) is given
by

M =

⎛

⎜⎜⎝

− τ 3

12 − ζ(3) iπ τ 2

2 2π2τ −4iπ3

iπ τ 2

2 2π2τ −4iπ3 0
2π2τ −4iπ3 0 0
−4iπ3 0 0 0

⎞

⎟⎟⎠ , (4.53)

with

τ = log 216. (4.54)

We can now compare (4.36) and (4.53). Although both points are points of maximal
unipotent monodromy the structure of (4.53) differs from the structure ofM in geometry.

This model was also studied in [21], where the I -function was shown to be

Ihyb(t) =
∑

d>0
d �≡−1 mod 2

ze(d+1+ H(d+1)
z )t

28� d
2 �

∏
1≤b≤d

b≡d+1 mod 2

(
H (d+1) + bz

)8

∏
1≤b≤d

(
H (d+1) + bz

)4 . (4.55)

We can explicitly take into account the restriction on d by writing d = 2n and by
simplifying the products over b one gets

Ihyb(t) =
∞∑

n=0

ze(2n+1+ H(2n+1)
z )t

28� 2n
2 �

∏n
s=1

(
H (2n+1) + 2nz + z − 2sz

)8
∏2n

b=1

(
H (2n+1) + bz

)4 . (4.56)
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We use the identity:

zl
�
(
1 + x

z + l
)

�
(
1 + x

z

) =
l∏

k=1

(x + kz) (4.57)

and find

Ihyb(t) =
�
(
1 + H (1)

z

)4

�
(
1
2 + H (1)

2z

)8
∞∑

n=0

ze(2n+1+ H(1)
z )t

�
(
1
2 + H (1)

2z + n
)8

�
(
1 + H (1)

z + 2n
)4 . (4.58)

The exponent on H (1) labels the state space sector, see also the sentence bellow (4.48).
We can match the above result with (4.51) if we identify:

q = 0, H (1) = H

2π i
, z = 1, e2t = et. (4.59)

As a final remark, note the factor 2 in the overall normalisation of the sphere partition
function (4.50) that must come from the pairing. This is consistent with the Z2 that
encodes the information about the double cover in this phase [61].

4.6. Pseudo-hybrid-models. The pseudo-hybrid phases of this class of models have
been discussed in [33]. One distinguishing feature of these models is that the phases
have several components in the sense that the vacuum equations of the GLSM allow for
different types of solutions. The existence of these components is also responsible for the
fact that there is no unique R-charge assignment in the IR theory. The properties of the
different components is reflected in the pole structure of the sphere partition function.

Pseudo-hybrid phases appear in the models with a C-type singularity and also for the
F-type singularity models F1, F6 and F7 (see Table 1). The sphere partition functions of
C-type models have a mixture of first order pole contributions and a second order pole
contribution. F-type models have only first order pole contributions. Therefore we will
study this two types separately. Details of the evaluation are given in “Appendix B” and
we will only present the final results here. In all models the main task is to rewrite (B.2)
and (B.3) by using (4.15).

Our results indicate that there may be a sensible definition for pairings, I -functions
and Gamma classes for each individual component. It would be interesting to see if this
also makes sense mathematically.

4.6.1. F-type models As discussed in [33], the pseudo-hybrid phase has features of two
different Landau–Ginzburg models with orbifold groups Zd1 and Zd2 . Consistently, the
two contributions to the sphere partition functions only have first order poles, and also
the twisted sectors associated to the corresponding orbifold groups make an appearance.

Because we only have first order poles we can directly evaluate the sphere partition
function and get

Z ζ�0
S2

= 1

d1

d1−1∑

δ=1

(−1)Gr
�̂δ(0)

�̂∗
δ (0)

Iδ(t, 0)Iδ(t̄, 0)

+
1

d2

τd2−1∑

δ=1

κ2−1∑

γ=0

(−1)G̃r
˜̂�δ(0)
˜̂�

∗
δ (0)

Ĩδ,γ (t, 0) Ĩδ,γ (t̄, 0),

(4.60)
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with parameters defined in (A.4). Here we introduced

�̂δ(0) = �

(〈
τd2

τd1 − δ

τd1

〉)k

�

(〈
δ

d1

〉)5+k−n− j

�

(〈
α

δ

d1

〉)n

�

(〈
β

δ

d1

〉) j

, (4.61)

(−1)Gr = (−1)δ(−1)
k

⌊
τd2

δ
τd1

⌋

(−1)
(5+k−n− j)

⌊
δ
d1

⌋

(−1)
n
⌊
α δ
d1

⌋

(−1)
j
⌊
β δ

d1

⌋

. (4.62)

Taking into account that k = 1 for all F-type models,

˜̂�δ(0) = �

(〈
τd1

τd2 − δ

τd2

〉)
�

(〈
δ + τd2γ

d2

〉)6−n− j

�

(〈
α

δ + τd2γ

d2

〉)n

�

(〈
β

δ + τd2γ

d2

〉) j

,

(4.63)

(−1)G̃r = (−1)δ(−1)γ (τd2 +τd1 )(−1)

⌊
d2
d1

δ
⌋

(−1)
(6−n− j)

⌊
δ+τd2

γ

d2

⌋

(−1)
n

⌊
α

δ+τd2
γ

d2

⌋

(−1)
j

⌊
β

δ+τd2
γ

d2

⌋

,

(4.64)

where γ is introduced in the process of rewriting the sum over the poles (see (A.16)).
The conjugate expressions follow from (4.21). Next we define:

Iδ(t, 0) =
�
(〈

τd2
τd1

δ
〉)k

�
(〈

τd2
τd1−δ

τd1

〉)k

�̂δ(0)

∞∑

a=0

e
t(a+ δ

d1
−q)

(−1)a(5+k−n− j+αn+ jβ)

·
�
(
a + δ

d1

)5+k−n− j
�
(
aα + α

d1
δ
)n

�
(
aβ + β

d1
δ
) j

� (δ + ad1) �
(
ad2 +

τd2
τd1

δ
)k ,

(4.65)

and

Ĩδ(t, 0) =
�
(〈

τd1
δ

τd2

〉)
�
(〈

τd1
τd2−δ

τd2

〉)

˜̂�δ(0)

∞∑

a=0

(−1)a(6−n− j+αn+ jβ)e
t(a+

τd2
γ+δ

d2
−q)

·
�
(
a +

τd2γ+δ

d2

)6−n− j
�
(
aα + α

τd2γ+δ

d2

)n
�
(
aβ + β

τd2γ+δ

d2

) j

�
(

τd1
τd2

δ + d1a + τd1γ
)

�
(
δ + d2a + τd2γ

) .

(4.66)

The structure of (4.60) highly resembles the result in the Landau–Ginzburg phases
(4.24), except there are now two contributions. Additionally, expressions (4.61) and
(4.63) that we would like to identify with the Gamma class, come with an extra term
compared to the pure Landau–Ginzburg phases (see (4.25) and (4.26)). The is also visible
in the I -function whose structure is more along the lines of hybrid models (4.40). Note
that the second contribution is absent for the F7 model, consistent with the observation
that one of the Landau–Ginzburg models appearing as a component is massive.
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4.6.2. C-type models The C-type phases are closer to good hybrid models in the sense
that there is a base manifold B of non-zero dimension. In all three cases there is a
component with one-dimensional B and a Landau–Ginzburg component. More details
can be found in [33]. This structure is also reflected in the sphere partition function,
where we encounter first and second order poles.

Here we will first discuss the C1 and C2 models before we come to the C3 model.
The models differ in the structure of the sphere partition function. This again seems to
relate to the different ways the two components emerge in C1 and C2, compared to C3.

C1 and C2 For both models Z ζ�0
S2,2

= 0, while Z ζ�0
S2,1

splits into two components with
first and second order poles, respectively. The part with the second order poles is given
for δ = τd1 . This allows to split Z

ζ�0
S2,1

into

Z ζ�0
S2,1

= 1

d1

∑

δ

∣∣∣∣∣
δ �=τd1

(−1)Gr
�̂δ(0)

�̂∗
δ (0)

Iδ(t, 0)Iδ(t̄, 0)

+
2π i

d2

∮
dε

2π i

(−1)G̃r

ε2

˜̂�(ε)

˜̂�
∗
(ε)

Ĩ (t, ε) Ĩ (t̄, ε).

(4.67)

In the above equation (−1)Gr, the �̂δ(0), �̂∗
δ (0) functions and Iδ(t, 0) have the same

structure as in the F-type examples (see (4.62),(4.61) and (4.65) respectively). In the
second contribution we used the following quantities:

˜̂�(ε) = �
(
1 − ε

2π i

)
�

(
1 − τd2

τd1

ε

2π i

)
�

(
ε

2π id1
+

〈
1

k2

〉)6−n− j

· �

(
α

ε

2π id1
+

〈
α
1

k2

〉)n

�

(
β

ε

2π id1
+

〈
β
1

k2

〉) j

, (4.68)

(−1)G̃r = (−1)τd1 (−1)τd2 (−1)
6−n− j

⌊
1
k2

⌋

(−1)
n
⌊

α
k2

⌋

(−1)
j
⌊

β
k2

⌋

, (4.69)

where one can obtain the conjugate expressions by using (4.21) and

Ĩ (t, ε) =
�
(
1 − ε

2π i

)
�
(
1 + ε

2π i

)
�
(
1 − τd2

τd1

ε
2π i

)
�
(
1 +

τd2
τd1

ε
2π i

)

˜̂�(ε)

·
∞∑

a=0

e
t( ε

2π id1
+a+ 1

κ2
−q)

(−1)a(6−n− j+αn+ jβ)

·
�
(
a + ε

2π id1
+ 1

κ2

)6−n− j
�
(
aα + α ε

2π id1
+ α

κ2

)n
�
(
aβ + β ε

2π id1
+ β

κ2

) j

�
(
τd2 + ad1 + ε

2π i

)
�
(
ad2 + τd2

ε
2π iτd1

+ τd1

) .

(4.70)

Comparing with (4.67) we see that the first line resembles the result in the Landau–
Ginzburg case (4.24) and the second line is similar to the result for the hybrid models
(4.41).
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C3 In contrast to the C1 and C2 model we now have Z ζ�0
S2,2

�= 0, whereas Z ζ�0
S2,1

has
only first order poles. Making use of Table 3 we can bring the sphere partition function
into the following form

Z ζ�0
S2

= 1

d1

∑

δ

(−1)Gr
�̂δ(0)

�̂∗
δ (0)

Iδ(t, 0)Iδ(t̄, 0)

+
2π i

d2

∮
dε

2π i

(−1)G̃r

ε2

˜̂�(ε)

˜̂�
∗
(ε)

Ĩ (t, ε)I (t̄, ε),

(4.71)

where (−1)Gr, the �̂δ(0), �̂∗
δ (0) functions and Iδ(t, 0), similar to the C1 and C2 model,

are given by the F-type expressions (4.62), (4.61), and (4.65), respectively. In the second
term we have introduced the following quantities

˜̂�(ε) = �
(
1 − ε

2π i

)2
�

(
−τd1

ε

2π iτd2
+

〈
τd1

τd2 − 1

τd2

〉)
�

(
ε

2π id2
+

〈
1

d2

〉)7−n− j

· �

(
α

ε

2π id2
+

〈
α

d2

〉)n

�

(
β

ε

2π id2
+

〈
β

d2

〉) j

(4.72)

(−1)G̃r = (−1)

⌊
d2
d1

⌋

(−1)
(7−n− j)

⌊
1
d2

⌋

(−1)
n
⌊

α
d2

⌋

(−1)
j
⌊

β
d2

⌋

, (4.73)

and

Ĩ (ε, t) =
�
(
1 − ε

2π i

)2
�
(
1 + ε

2π i

)2
�
(
−τd1

ε
2π iτd2

+
〈
τd1

τd2−1
τd2

〉)
�
(
τd1

ε
2π iτd2

+
〈
τd1

1
τd2

〉)

˜̂�(ε)

·
∞∑

a=0

(−1)a(7−n− j+αn+ jβ)e
t( ε

2π id2
+a+ 1

d2
−q)

·
�
(
a + ε

2π id2
+ 1

d2

)7−n− j
�
(
aα + α ε

2π id2
+ α

d2

)n
�
(
aβ + β ε

2π id2
+ β

d2

) j

�
(

τd1
τd2

+ d1a + τd1
ε

2π iτd2

)
�
(
1 + d2a + ε

2π i

)2 .

(4.74)

Again we see that the sphere partition function (4.71) has a part which looks Landau–
Ginzburg-like and a second contribution which resembles the hybrid case.

5. Two-Parameter Example

The results discussed in this article also apply to examples with more than one Kähler
parameter. We consider one of the standard examples of a two-parameter model [65,66].
The GLSM has G = U (1)2 with field content

p x6 x3 x4 x5 x1 x2 FI
U (1)1 −4 1 1 1 1 0 0 ζ1
U (1)2 0 −2 0 0 0 1 1 ζ2
U (1)V 2 − 8q1 2q1 − 4q2 2q1 2q1 2q1 2q2 2q2,

(5.1)
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where 0 ≤ q1 ≤ 1
4 and 0 ≤ q2 ≤ 1

8 . The superpotential is W = pG(4,0)(x1, . . . , x6).
The sphere partition function is

ZS2 = 1

(2π)2

∑

m∈Z2

∫ ∞

−∞
d2σ Z pZ6Z

3
a Z

2
be

−4π i(ζ1σ1+ζ2σ2)−i(θ1m1+θ2m2), (5.2)

where

Z p = � (1 − 4q1 + 4iσ1 + 2m1)

� (4q1 − 4iσ1 + 2m1)
Z6 = �

(
q1 − 2q2 − iσ1 + 2iσ2 − m1

2 + m2
)

�
(
1 − q1 + 2q2 + iσ1 − 2iσ2 − m1

2 + m2
)

Za = �
(
q1 − iσ1 − m1

2

)

�
(
1 − q1 + iσ1 − m1

2

) Zb = �
(
q2 − iσ2 − m2

2

)

�
(
1 − q2 + iσ2 − m2

2

) . (5.3)

The model has four phases: a geometric phase (ζ1 � 0, ζ2 � 0) which is a hypersurface
G(4,0)(x1, . . . , x6) = 0 in the toric ambient space defined by the U (1)2-charges of
x1, . . . , x6, a Landau–Ginzburg orbifold phase (2ζ1 + ζ2 � 0, ζ2 � 0) with G = Z8
andWLG = G(4,0)(x1, . . . , x5, 1), a hybrid phase (ζ1 � 0, ζ2 � 0) which is a fibration
of a Landau–Ginzburg orbifold with G = Z4 over B = P

1, and an orbifold phase
(2ζ1 + ζ2 � 0, ζ2 � 0) which is a singular hypersurface G(4,0)(x1, . . . , x5, 1) = 0
in the ambient space defined by the charges of x1, . . . , x5 under 2Qi,1 + Qi,2. In the
following we will discuss the Landau–Ginzburg, the geometric, and the hybrid phase.
In the context of supersymmetric localisation this model has also been discussed in
[8,12,64].

5.1. Geometric phase. For a discussion of the sphere partition function of this phase,
see also [64]. After defining zi = iσi − qi , the poles of the sphere partition functions
are determined by the following divisors

Da = z1 − n1 +
m1
2 n1 ≥ max[0,m1] ∈ Z≥0

Db = z2 − n2 +
m2
2 n2 ≥ max[0,m2] ∈ Z≥0

DP = 4z1 + nP + 2m1 + 1 nP ≥ max[0,−4m1] ∈ Z≥0
D6 = −z1 + 2z2 + n6 − m1

2 + m2 n6 ≥ max[0,m1 − 2m2] ∈ Z≥0.

(5.4)

In the geometric phase Da ∩ Db and Db ∩ D6 contribute, call them Zgeom
S2

and Z̃ geom
S2

,
respectively. The former has additional poles from Z6. They contribute for n1 ≥ 2n2
(and n′

1 ≥ 2n′
2 where n′

1, n
′
2 are obtained by mi = ni − n′

i , i = 1, 2). One can show
that by a change of summation variable Z̃ geom

S2
can be transformed into Zgeom

S2
under the

condition n1 ≥ 2n2. This shows that all contributing poles are accounted for by just
computing Zgeom

S2
. We get:

Zgeom
S2

= 1

(2π)2

∑

n1,n2,n′
1,n

′
2≥0

∮
d2εZ pZ6Z

3
a Z

2
b

· e(−2πζ1−iθ1)n1+(−2πζ2−iθ2)n2e(−2πζ1+iθ1)n′
1+(−2πζ2+iθ2)n′

2e−4π(ζ1ε1+ζ2ε2),

(5.5)

where

Z p = � (1 + 4n1 + 4ε1)

�
(−4n′

1 − 4ε1
) Z6 = � (−n1 + 2n2 − ε1 + 2ε2)

�
(
1 + n′

1 − 2n′
2 + ε1 − 2ε2

)
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Za = � (−n1 − ε1)

�
(
1 + n′

1 + ε1
) Zb = � (−n2 − ε2)

�
(
1 + n′

2 + ε2
) . (5.6)

Here we have chosen q1 = q2 = 0 in order to comply with the R-charge assignment
of the non-linear sigma model. To further evaluate this integral we define εi = Hi

2π i
(i = 1, 2) with Hi ∈ H2(X,C). The next step in the calculation is to use the reflection
formula on those Gamma-factors whose argument is negative. Collecting all sines and
factors of π that the reflection formula produces we get

− (2π i)3
sin π H1

2π i

sin3 π H1
2π i sin

2 π H2
2π i sin π

(
H1
2π i − 2 H2

2π i

)
{

π2 n1 ≥ 2n2
(−1)n1+n

′
1 sin2 π

(
H1
2π i − 2 H2

2π i

)
n1 < 2n2

= −(2π i)3Td(X)
4H1

H3
1 H

3
2 (H1 − 2H2)

{
(2π i)2 n1 ≥ 2n2
(−1)n1+n

′
1 (2i)2 sin2 π

(
H1
2π i − 2 H2

2π i

)
n1 < 2n2,

(5.7)

where we have used

Td(X) = (1 − e−4H1)

(1 − e−H1)3(1 − e−H2)2(1 − e−(H1−2H2))

H3
1 H

2
2 (H1 − 2H2)

4H1
. (5.8)

This implies the definition of the following I -function:

IX (t, H) =
�
(
1 + H1

2π i

)3
�
(
1 + H2

2π i

)2

�
(
1 + 4 H1

2π i

)
∑

n1,n2≥0

e−t1n1e−t2n2e−t1
H1
2π i e−t2

H2
2π i

·
�
(
1 + 4n1 + 4 H1

2π i

)

�
(
1 + n1 +

H1
2π i

)3
�
(
1 + n2 +

H2
2π i

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
(
1+ H1

2π i −2 H2
2π i

)

�
(
1+n1−2n2+

H1
2π i −2 H2

2π i

) n1 ≥ 2n2

(−1)n1
�
(
−n1+2n2− H1

2π i +2
H2
2π i

)

�
(
− H1

2π i +2
H2
2π i

) n1 < 2n2.

(5.9)

The Gamma class is

�̂ =
�
(
1 − H1

2π i

)3
�
(
1 − H2

2π i

)2
�
(
1 − H1

2π i + 2 H2
2π i

)

�
(
1 − 4H1

2π i

) . (5.10)

The whole expression for the sphere partition function can then be written as

Zgeom
S2

= − 1

(2π)2

∮
d2H

(2π i)2
(2π i)3Td(X)

4H1

H3
1 H

2
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(
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·
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�
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1+ H1

2π i −2 H2
2π i

)2 IX (t, H)IX (t, H) n1 ≥ 2n2

(2i)2 sin2 π
(

H1
2π i − 2 H2
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)
�
(
− H1

2π i + 2 H2
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)2
IX (t, H)IX (t, H) n1 < 2n2

= − (2π i)5

(2π)2

∮
d2H

(2π i)2
4H1

H3
1 H

2
2 (H1 − 2H2)

�̂

�̂∗ IX (t, H)IX (t, H) (5.11)
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In the second step we have used Td = �̂�̂∗.
Next, we have to rewrite the integral as an integral over the Calabi–Yau X . Consider

a power series h(H1, H2) = ∑
i, j≥0 ai, j H

i
1H

j
2 . Then

∫

X
h(H1, H2) = 8a3,0 + 4a2,1 =

∫

X�

(4H1)h(H1, H2)

=
∮

0

d2H

(2π i)2

[
8

H4
1 H2

+
4

H3
1 H

2
2

]
h(H1, H2) (5.12)

where we have used that the non-zero triple intersection numbers of X are

H3
1 = 8, H2

1 H2 = 4. (5.13)

To show this we have to transform the integral by using the following property of mul-
tidimensional residues (see for instance [67]). Consider a residue integral in n variables
z1, . . . , zn and holomorphic functions { f1(zi ), . . . , fn(zi )} and {g1(zi ), . . . , gn(zi )} sat-
isfying

gk(zi ) = Tkj f j (zi ), (5.14)

where T is a holomorphic matrix. Then

Res

(
h(zi )dz1 ∧ . . . ∧ dzn
f1(z2) · . . . · fn(zi )

)
= Res

(
detT

h(zi )dz1 ∧ . . . ∧ dzn
g1(zi ) · . . . · gn(zi )

)
. (5.15)

In our case we find the following transformation:
(
H2
2

H4
1

)
=
(

1 0
4H2

1 H1 + 2H2

)(
H2
2

H2
1 (H1 − 2H2)

)
(5.16)

and so

det T = H1 + 2H2. (5.17)

This transforms the sphere partition function into the expected form:

Zgeom
S2

= − (2π i)5

(2π)2

∮ [
8

H4
1 H2

+
4

H3
1 H

2
2

]
�̂

�̂∗ I (t)I (t) = (2π i)3
∫

X

�̂

�̂∗ I (t)I (t)

(5.18)

The result can be rewritten as

ZS2

8π3 =
(
I
(0,0)

, . . .

)

⎛

⎜⎜⎜⎜⎜⎝

− 168ζ(3)
4π3 0 0 0 0 −4i
0 0 0 0 −4i 0
0 0 0 −4i −8i 0
0 0 −4i 0 0 0
0 −4i −8i 0 0 0

−4i 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

I (0,0)

I (0,1)

I (1,0)

I (1,1)

I (2,0)

I (2,1) + 2I (3,0)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(5.19)
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where by I (i, j) we denote the coefficient of Hi
1H

j
2 in the expansion of the I -function

with respect to H1, H2.
The I -function and the Gamma class match with (3.25) and (3.26), respectively. As a

further consistency check it is not hard to verify that thePicard-Fuchs operators annihilate
the components of the I -function appearing in (5.19). The differential operators are [66]

L1 = θ21 (θ1 − 2θ2) − 4z1(4θ1 + 3)(4θ1 + 2)(4θ1 + 1)

L2 = θ22 − z2(2θ2 − θ1 + 1)(2θ1 − θ1), (5.20)

where zi = e−ti and θi = zi
∂i
∂zi

.

5.2. Landau–Ginzburg phase. This phase has also been considered in [17] in the context
of the hemisphere partition function. The orbifold group is G = Z8. Labelling its
elements by γ ∈ {0, . . . , 8}, the sectors γ = 0, 4 are broad. We will show below how
the remaining six narrow sectors labelled by δ emerge from the sphere partition function.
We start off with (5.2) and the following coordinate change:

σ1 = i
z1
4

σ2 = i
z1 + 4z2

8
. (5.21)

The location of the poles is given by the divisors

Da = 1

4
(−2m1 + z1 + 1) + n1, n1 ≥ max [0,m1] ,

Db = 1

8
(−4m2 + z1 + 4z2 + 1) + n2, n2 ≥ max [0,m2] ,

DP = 2m1 + nP − z1, nP ≥ max [0,−4m1] ,

D6 = −m1

2
+ m2 + n6 − z2, n6 ≥ max [0,m1 − 2m2] .

(5.22)

The only contributing poles in this phase are given by D6∩DP and therefore we perform
the transformations

z1 → 2m1 + nP + ε1, z2 → 1

2
(−m1 + 2m2 + 2n6) + ε2. (5.23)

The sums in the partition function can be simplified in two steps. First we introduce:

a = nP + 4n6 + 8m2, c = nP + 4n6, b = 4m1 + nP , d = nP . (5.24)

The new summation variables are interrelated and are constrained by

a − c ∈ 8Z, b − d ∈ 4Z, c − d ∈ 4Z≥0, a − b ∈ 4Z≥0, (5.25)

as one can showby inserting thedefinitions (5.24) and taking into account thatnP , n6,m1,

m2 ∈ Z. In the second step we introduce

a = 8l + δ1 c = 8k + δ1 δ1 = 0, 1, . . . , 7,

b = 4p + δ2 d = 4q + δ2 δ2 = 0, 1, . . . , 3.
(5.26)
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The constraints (5.25) are fulfilled if we restrict to the following δ1, δ2 combinations:

δ1 0 1 2 3 4 5 6 7
δ2 0 1 2 3 0 1 2 3

κ = δ1 − δ2 0 0 0 0 4 4 4 4.
(5.27)

This result shows that we can express δ1 = δ2 + κ and as consequence we can write the
sphere partition function, with δ2 ≡ δ, in the following form:

ZLG
S2 = − 1

8(2π i)2
∑

κ∈{0,4}

⎛

⎜⎝
3∑

δ=0

∮

(0,0)
d2ε

1

π3

sin
(
π
(

δ+1
4 + ε1

4

))3
sin

(
π
(

δ+1+κ
8 + ε1+4ε2

8

))2

sin (πε1) sin
(
π
(

κ
4 + ε2

))

·
∣∣∣∣∣∣
et1

ε1
4 et2

ε1+4ε2
8

∞∑

l=0

2l+ κ
4∑

p=0

(−1)pe
t1
4 (4p+δ)e

t2
8 (8l+δ+κ)

2

·
�
(
p + δ+1

4 + ε1
4

)3
�
(
l + δ+1+κ

8 + ε1+4ε2
8

)2

� (1 + 4p + δ + ε1) �
(
1 + 2l − p + κ

4 + ε2
)

∣∣∣∣∣∣∣

2
⎞

⎟⎟⎠ .

(5.28)

In the above equation we see that only first order poles occur and therefore a direct
evaluation is possible. Furthermore δ = 3 gives no contribution. This is expected,
because these terms correspond to a broad sector. After evaluation of the residues and
application of the transformations κ → 4κ , and δ → δ−1, the sphere partition functions
reads

ZLG
S2 = 1

8

∑

k∈{0,1}

⎛

⎝
3∑

δ=1

(−1)δ(−1)κ
1

π5
sin

(
π

δ

4

)3

sin

(
π

δ + 4κ

8

)2

·
∣∣∣∣∣∣

∞∑

l=0

2l+κ∑

p=0

(−1)pe
t1
4 (4p+δ−1)e

t2
8 (8l+δ−1+4κ)

�
(
p + δ

4

)3
�
(
l + δ+4κ

8

)2

� (4p + δ) � (1 + 2l − p + κ)

∣∣∣∣∣∣

2
⎞

⎟⎠ .

(5.29)

We use (4.15) and introduce

(−1)Grκ = (−1)δ(−1)κ(−1)
3
⌊

δ
4

⌋

(−1)
2
⌊

δ+4κ
8

⌋

,

�̂δ,κ (0) = �

(〈
δ

4

〉)3

�

(〈
δ + 4κ

8

〉)2

,

(5.30)

where �̂∗
δ,κ (0) follows from similar manipulations as in the one parameter Landau–

Ginzburg phases. By defining

Iδ,κ (t1, t2, 0) = 1

�
(〈

δ
4

〉)3
�
(〈

δ+4κ
8

〉)2

·
∞∑

l=0

∞∑

p=0

(−1)pe
t1
4 (4p+δ−1)e

t2
8 (8l+δ−1+4κ)

�
(
p + δ

4

)3
�
(
l + δ+4κ

8

)2

� (4p + δ) � (1 + 2l − p + κ)
,

(5.31)
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ZLG
S2

can be written compactly:

ZLG
S2 = 1

8

3∑

δ=1

(
(−1)Gr0

�̂δ,0(0)

�̂∗
δ,0(0)

Iδ,0(t1, t2, 0)Iδ,0(t1, t2, 0)

+ (−1)Gr1
�̂δ,1(0)

�̂∗
δ,1(0)

Iδ,1(t1, t2, 0)Iδ,1(t1.t2, 0)

)
.

(5.32)

We can rewrite (5.32) into matrix form (see (3.5)) by inserting (5.30) into (4.22) for
κ = 0. Let us point out that we do not need (5.30) for κ = 1 to extract M from (5.32).
We find that

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1(0)
8 0 0 0 0 0
0 γ2(0)

8 0 0 0 0
0 0 γ3(0)

8 0 0 0
0 0 0 − 1

8γ3(0)
0 0

0 0 0 0 − 1
8γ2(0)

0

0 0 0 0 0 − 1
8γ1(0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.33)

The last expression can be matched to (3.21) as we show in “Appendix C.2”.

5.3. Hybrid phase. Let us briefly recall the structure of the hybrid phase. The D-terms
are

−4|p|2 + |x6|2 +
5∑

i=3

|xi |2 = ζ1

−2|x6|2 + |x1|2 + |x2| = ζ2. (5.34)

The vacuum equations for ζ1 � 0, ζ2 � 0 are

p =
√

−ζ1

4
, |x1|2 + |x2|2 = ζ2. (5.35)

The firstU (1) is broken to a Z4, the secondU (1) is completely broken, and the vacuum
manifold is a P1. The low energy theory is a Z4 Landau–Ginzburg orbifold fibered over
this P

1. To compute the sphere partition function using a standardised approach we
change coordinates to

z1 = −1 + 4q1 − 4iσ1, z2 = −q2 + iσ2. (5.36)

Finding out which poles contribute following [34,35] is rather tedious. The discussion
depends on the sign of 2ζ1 + ζ2 (even though there is no phase boundary when ζ1 � 0
and ζ2 � 0). The upshot of this lengthy calculation is that only the poles associated to
Db ∩ DP contribute, consistent with the observation that only poles associated to fields
that obtain a VEV in the given phase contribute. Making a shift n′

P = nP + 4m1, n′
2 =

n2 − m2 and choosing q1 = 1
4 , q2 = 0 the sphere partition function becomes

ZS2 = 1

4(2π)2

∞∑

ni ,n′
i=0

∮
d2ε

� (−nP − ε1)

�
(
1 + n′

P + ε1
)

�
( 1
4 + nP

4 + ε1
4 + 2n2 + 2ε2

)

�
(
1 − 1

4 − n′
P
4 − ε1

4 − 2n′
2 − 2ε2

)
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·
⎡

⎣ �
( 1
4 + nP

4 + ε1
4

)

�
(
1 − 1

4 − n′
P
4 − ε1

4

)

⎤

⎦
3 [

� (−n2 − ε2)

�
(
1 + n′

2 + ε2
)
]2

· e 2πζ1+iθ1
4 nP e

2πζ1−iθ1
4 n′

P e−(2πζ2+iθ2)n2e−(2πζ2−iθ2)n′
2eπζ1ε1e−4πζ2ε2 . (5.37)

The ε1-integral can be easily evaluated because the poles are only first order. Defining

nP + 1 = 4a + δ, n′
P + 1 = 4b + δ, a, b ∈ Z≥0, δ = 1, 2, 3, 4, (5.38)

and using the reflection formula we get

ZS2 = − 2π i

4(2π)2

∑

a,b,n2,n′
2

4∑

δ=1

∮
dε2(−1)δ

1

π2

sin π
(

δ
4 + 2ε2

)
sin3 π δ

4

sin2 πε2

· �
(
a + δ

4 + 2n2 + 2ε2
)
�
(
b + δ

4 + 2n′
2 + 2ε2

)
�
(
a + δ

4

)3
�
(
b + δ

4

)3

� (4a + δ) � (4b + δ) � (1 + n2 + ε2)
2 �

(
1 + n′

2 + ε2
)2

· e 2πζ1+iθ1
4 (4a+δ−1)e

2πζ1−iθ1
4 (4b+δ−1)e−(2πζ2+iθ2)n2e−(2πζ2−iθ2)n′

2e−4πζ2ε2 . (5.39)

Now we evaluate the ε2-integral. Writing ε2 = H
2π i we note that

sin π
(

δ
4 + 2ε2

)

sin2 πε2
= (2i)eiπ

δ
4
1 − e−2π i δ

4−2H

(1 − e−H )2
= (2i)eiπ

δ
4

(
1 − e−2π i δ

4−2H
) Td(P)1

H2 .

(5.40)

Then we can write

ZS2 = − 2π i

4(2π)2

∑

a,b,n2,n′
2

4∑

δ=1

∫

P1
(−1)δ

(2π i)

π3 eiπ
δ
4

(
1 − e−2π i δ

4−2H
)
Td(P)1 sin3 π

δ

4

· �
(
a + δ

4 + 2n2 + 2 H
2π i

)
�
(
b + δ

4 + 2n′
2 + 2 H

2π i

)
�
(
a + δ

4

)3
�
(
b + δ

4

)3

� (4a + δ) � (4b + δ) �
(
1 + n2 + H

2π i

)2
�
(
1 + n′

2 +
H
2π i

)2

· e 2πζ1+iθ1
4 (4a+δ−1)e

2πζ1−iθ1
4 (4b+δ−1)e−(2πζ2+iθ2)n2e−(2πζ2−iθ2)n′

2e−4πζ2
H
2π i . (5.41)

For δ = 4 we observe that the expression is zero because sin π = 0. We expect this
to correspond to a broad sector. Since this is a two-parameter model we expect the I -
function to have six components, two of which will lead to log-periods. So we expect
that all three remaining values for δ contribute. We write the first line above as

(−1)δ(2π i)eiπ
δ
4 (1 − e−2π i δ

4−2H )
�
(
1 + H

2π i

)2
�
(
1 − H

2π i

)2

�
(

δ
4

)3
�
(
1 − δ

4

)3 . (5.42)

Furthermore we use

eiπ
δ
4 (1 − e−2π i δ

4−2H ) = e−H (2π i)

�
(

δ
4 + H

π i

)
�
(
1 − δ

4 − H
π i

) . (5.43)
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Then the whole first line in the sphere partition function reads

(2π i)2(−1)δe−H �
(
1 + H

2π i

)2
�
(
1 − H

2π i

)2

�
(

δ
4 + H

π i

)
�
(

δ
4

)3
�
(
1 − δ

4 − H
π i

)
�
(
1 − δ

4

)3 . (5.44)

Now it is tempting to define

Iδ(t1, t2, H) = �
(
1 + H

2π i

)2

�
(

δ
4 + H

π i

)
�
(

δ
4

)3 e
−t2 H

2π i

·
∑

a,n≥0

�
(
a + δ

4 + 2n + 2 H
2π i

)
�
(
a + δ

4

)3

� (4a + δ) �
(
1 + n + H

2π i

)2 e
t1
4 (4a+δ−1)e−t2n . (5.45)

Then one can write the sphere partition function as

ZS2 = 2π i

4

3∑

δ=1

∫

P1
(−1)δ

�
(

δ
4 + H

π i

)
�
(

δ
4

)3
�
(
1 − H

2π i

)2

�
(
1 − δ

4 − H
π i

)
�
(
1 − δ

4

)3
�
(
1 + H

2π i

)2

·Iδ(t1, t2, H)Iδ(t1, t2, H), (5.46)

which implies

�̂δ(H) = �

(
δ

4
+

H

π i

)
�

(
δ

4

)3

�

(
1 − H

2π i

)2

�̂∗
δ (H) = �

(
1 − δ

4
− H

π i

)
�

(
1 − δ

4

)3

�

(
1 +

H

2π i

)2

. (5.47)

The factor e−H is the factor e− c1(B)

2 , that we need to relate the Todd class to the Gamma
class via (3.35). Then there is also an extra (−1)δ that we identify with (−1)Gr. So we
find a match with (1.1). To rewrite this in the form (3.5) we can use the definition (4.22)
of γn(H), with (5.47) inserted, to extract the matrix M from (5.46):

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

γ1(0) log 23 − iπ
2 γ1(0) 0 0 0 0

− iπ
2 γ1(0) 0 0 0 0 0
0 0 γ2(0) log 22 − iπ

2 γ2(0) 0 0
0 0 − iπ

2 γ2(0) 0 0 0
0 0 0 0 1

γ1(0)
log 23 − iπ

2
1

γ1(0)

0 0 0 0 − iπ
2

1
γ1(0)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.48)

In order to test our result we check that the proposed I -function is annihilated by the
Picard-Fuchs system (5.20) transformed to local coordinates of the hybrid phase. For
this purpose we define

y1 = z
− 1

4
1 , y2 = z2. (5.49)
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In the y-variables, the Picard-Fuchs operators read

L1 = 4(θ1 − 1)(θ1 − 2)(θ1 − 3) − y41
64

θ21 (θ1 + 8θ2)

L2 = θ22 − y2
16

(θ1 + 8θ2)(θ1 + 8θ2 + 4). (5.50)

We identify

e−t1 = y−4
1 , e−t2 = y2. (5.51)

The I -function encodes six periods. For this purpose we expand it in terms of a power
series in H . The coefficient of H0 encodes three power series �0,δ for δ = 1, 2, 3.
The coefficient of H1 encodes three series �1,δ involving logarithms in y2. All these
expressions are annihilated by the Picard-Fuchs system.

Comment on further hybrid examples So far, we have only considered hybrid models
that are Landau–Ginzburg fibrations over P1, but not all hybrids have a P

1-base. A
well-known two-parameter example within the same class is the U (1)2 GLSM defined
by

p x6 x4 x5 x1 x2 x3 FI
U (1)1 −6 1 2 3 0 0 0 ζ1
U (1)2 0 −3 0 0 1 1 1 ζ2
U (1)V 2 − 12q1 2q1 − 6q2 4q1 6q1 2q2 2q2 2q2

(5.52)

where 0 ≤ q1 ≤ 1
6 and 0 ≤ q2 ≤ 1

18 and W = pG(6,0)(x1, . . . , x6). The phase
structure is the same as in the previous example. The hybrid phase in ζ1 � 0, ζ2 � 0
is a G = Z6 Landau–Ginzburg orbifold fibered over P2. The calculation of the sphere
partition function is almost identical to the two-parameter example presented here and
the results are similar to the previous hybrid cases and therefore we refrain from giving
more details.

6. Outlook

In this work we have studied the GLSM sphere partition function in a large class of
phases of abelian GLSMs. We have found that the exact result can be written in terms
of a general expression that has the same structure in different kinds of phases. There
are several obvious directions for further research.

We expect that our results also hold in the more general case of non-abelian GLSMs.
The sphere partition function has been computed for many examples of non-abelian
GLSMs, including the Rødland model [5,68,69]. The Gamma class for simple non-
abelian models has also been addressed in [11]. We hope to return to this in future
work.

Whilewe could show that the sphere partition function in hybrid phases reduces to the
proposed form and that the result is consistent with results of the mathematics literature,
a better understanding of the physics of the hybrid models would be desirable. See for
instance [54–56] for recent results. Furthermore it would be interesting to see if the
(conjectural) I -functions and Gamma classes we computed for two-parameter hybrid
models and one-parameter pseudo-hybrid models are consistent with FJRW theory. A
better understanding of the state spaces and pairings would also be desirable.
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Another direction contains enumerative invariants for hybrid models. The invariants,
the I -function, the J -function and the mirror map have been defined in [21]. It would
be interesting to compute them explicitly.

While we have focused on the sphere, one can consider other results from supersym-
metric localisation in GLSMs and see if they also evaluate to something that has the
same structure in every phase. For the hemisphere partition function this has already
been shown for geometric and Landau–Ginzburg phases [17]. It would be interesting to
show explicitly that this also holds for more general hybrid models. This in particular
requires a better understanding for D-branes in hybrid phases. For instance, it would
be interesting to study D-branes and the results of [24] via GLSM and localisation
techniques.

Finally, there are fascinating connections between 2D supersymmetric gauge theories
and gauge theories in higher dimensions. It is certainly worthwhile to explore this further
in the context of this article.
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A. Sphere Partition Function in One-Parameter Models

Here we give more details on the evaluation of the sphere partition function (4.7) in
one-parameter models. Subsequently we outline the main steps in the calculation of
(4.9) and (4.12). The parameters for a specific model can be found in Table 1.

A.1. Location of the poles and contour of integration. In order to determine the position
of the poles we follow the procedure outlined in [35]. The position of the poles of the �

functions are interpreted as divisors Di in C. For our models of interest we can read off

http://creativecommons.org/licenses/by/4.0/
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from (4.8) that the divisors are:

Dp1 = 1

2
d1(m + 2iσ) + n1 + 1 n1 ≥ max[0,−d1m],

Dp2 = 1

2
d2(m + 2iσ) + n2 + 1 n2 ≥ max[0,−d2m],

D1 = −m

2
+ n3 − iσ n3 ≥ max[0,m],

Dα = n4 − 1

2
α(m + 2iσ) nα ≥ max[0, αm],

Dβ = n5 − 1

2
β(m + 2iσ) nβ ≥ max[0, βm].

(A.1)

Having determined the position of the poles it remains to study to convergence properties
of the integral. For large ζ values the integrand is dominated by

e−4π iζσ = e−4π iζRe(σ )e4πζ Im(σ ). (A.2)

To obtain a convergent result we have to close the contour as indicated below. Then the
following divisors contribute:

ζ =
{

� 0 : Im(σ ) < 0 D1, Dα, Dβ,

� 0 : Im(σ ) > 0 Dp1 , Dp2 ,
. (A.3)

A.2. Counting of poles. It is possible that certain divisors encode the same poles. There-
fore in the summation over the contributing poles an over-counting has to be avoided.
We introduce:

gcd(β, α) = κ1,
α

κ1
= τα,

β

κ1
= τβ,

gcd(d1, d2) = κ2,
d1
κ2

= τd1 ,
d2
κ2

= τd2 .

(A.4)

In the large radius phase we find that we can sum over the poles of Zβ and thereby get
all poles of Z1 and some of the poles of Zα . The poles of Zα we miss are of the form

nα = ταn + δ δ = 1, . . . , τα − 1 n ∈ Z≥0. (A.5)

A similar discussion shows that in the small radius phase we can first sum over the poles
of Z p1 and in a second summation sum over the remaining poles of Z p2 which are of
the form:

n2 = τd2n + δ δ = 0, 1, 2, . . . , d2 − 2. (A.6)
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A.3. Manipulations of the integrand. Here we simplify (4.7) by manipulations which
are applicable in all phases. Phase dependent specifics are discussed in the main text.
We apply the following steps:

1. Write (4.7) as sum over poles. The contributing poles depend on the phase and their
location is determined by (A.1).

2. We shift the locations of the poles by a variable transformation

σ → ε + const (A.7)

so that the poles are now at ε = 0.
3. We simplify the sums over the magnetic charge lattice (parametrized by m) and the

sum over the different poles ni (i ∈ {1, 2, 3, α, β}), see (A.1).
4. We apply the reflection formula

�(x)�(1 − x) = π

sin(πx)
(A.8)

to further simplify the integrand.

After the above steps we find that in all cases, (4.7) can be written as

ZS2 =
∑

i

ZS2,i (A.9)

with contributions of the form

ZS2,i = − 1

2π

∑

f ini te

(−1)sgn
∮

dεZi,sing(ε)|Zi,reg(t, ε)|2. (A.10)

The exact form of the different components are phase dependent and we will comment
on their structure below.

A.4. ζ � 0 phase. In this phase (4.7) splits into two contributions

Z ζ�0
S2

= Z ζ�0
S2,1

+ Z ζ�0
S2,2

. (A.11)

The first contribution comes from poles of Z p1 and the second term from the remaining

poles of Z p2 , of the form (A.6). Both terms are of the from (A.10). Z ζ�0
S2,1

consists of the
following contributions:

∑

f ini te

(−1)sgn =
d1−1∑

δ=1

,

Z1,reg(t, ε) =
∞∑

a=0

e
t(−iε+a+ δ

d1
−q)

(−1)a(5+k−n− j+αn+ jβ)

·
�
(
a − iε + δ

d1

)5+k−n− j
�
(
aα − iεα + α

d1
δ
)n

�
(
aβ − iεβ + β

d1
δ
) j

� (δ + ad1 − iεd1) �
(
ad2 − iεd2 +

d2
d1

ε
)k ,

Z1,sing(ε) = 1

π4

sin
(
π
(
−iε + δ

d1

))5+k−n− j
sin

(
π
(
−iεα + α

d1
δ
))n

sin
(
π
(
−iεβ + β

d1
δ
)) j

sin π (iεd1) sin
(
π
(
−iεd2 +

d2
d1

δ
))k .

(A.12)
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The building blocks of Z ζ�0
S2,2

are given by

∑

f ini te

(−1)sgn =
τd2−1∑

δ=1

κ2−1∑

γ=0

(−1)kδ(−1)τd1γ (−1)kτd2γ ,

Z2,reg(t, ε) =
∞∑

a=0

(−1)a(5+k−n− j+αn+ jβ)e
t(−iε+a+ γ

κ2
+ δ
d2

−q)

·
�
(
a − iε + δ

d2
+ γ

κ2

)5+k−n− j
�
(
aα − iεα + α

d2
δ + γα

κ2

)n

�
(

τd1
τd2

(δ) + d1b − iεd1 + τd1γ
)

·
�
(
aβ − iεβ + β

d2
δ + γβ

κ2

) j

�
(
d2a − iεd2 + τd2γ

)k ,

Z2,sing(ε) = 1

π4

sin
(
π
(
−iε + δ

d2
+ γ

κ2

))5+k−n− j
sin

(
π
(
−iεα + α

d2
δ + γα

κ2

))n

sin
(
π
(

τd1
τd2

δ − iεd1
))

·
sin

(
π
(
−iεβ + β

d2
δ + γβ

κ2

)) j

sin (π iεd2)k
. (A.13)

In the small radius phase it strongly depends on the nature of the phase which combi-
nations of the parameters in (A.12) and (A.13) lead to a non-vanishing contribution. In
Table 3 we give an overview of the contributing combinations for all 14 one-parameter
models.

A.5. ζ � 0 phase. Similar to the small radius phase we find that (4.7) splits into two
parts

Z ζ�0
S2

= Z ζ�0
S2,1

+ Z ζ�0
S2,2

, (A.14)

with the contributions of the form (A.10). Z ζ�0
S2,1

comes from the poles of Zβ and Z ζ�0
S2,2

originates from the leftover poles (A.5) of Zα . The form of Z ζ�0
S2,1

is given in (4.9), but

let us comment why no alternating sign appears. The sign appearing in Z ζ�0
S2,1

always is
1 because

(−1)5+k−n− j+n+ j+k+1 = (−1)6+2k = 1. (A.15)
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Table 3. Contributing poles and pole order in the ζ � 0 phase

Contribution Zζ�0
S2,1

Zζ�0
S2,2

κ1 κ2 δ Order δ γ Order

F-type
F1 – – 1,2,3,4 1 – – –
F2 – – 1,2,4,5 1 – – –
F3 – – 1,3,5,7 1 – – –
F4 1 – 1,3,7,9 1 – – –
F5 – 1 1,3 1 1,2 0 1
F6 1 2 1,5 1 1 0,1 1
F7 2 2 1,5,7,11 1 – – –
C-type
C1 – 2 1,3 1 – – –
C1 – 2 2 2 – – –
C2 – 2 1,5 1 – – –
C2 – 2 3 2 – – –
C3 – 1 1,2 1 1 0 2
K-type
K1 – 3 1,2 2 – – –
K2 – 4 1,3 2 – – –
K3 1 6 1,5 2 – – –
M-type
M1 – 2 1 4 – – –

For Z ζ�0
S2,2

we only give

∑

sing

(−1)sgn =
τα−1∑

δ=1

κ1−1∑

γ=0

(−1)nδ(−1)nγ τα (−1) jγ τβ ,

Z2,sing(ε) = π4
sin

(
π
(

δd1
α

+ iεd1 +
γ d1
κ1

))
sin

(
π
(

δd2
α

+ iεd2 +
γ d2
κ1

))k

sin
(
π
(

δ
α
+ iε + γ

κ1

))5+k−n− j
sin (π (iεα))n sin

(
π
(

δτβ

τα
+ iεβ

)) j
.

(A.16)

From the structure of these expression one can conclude that for all one-parameter
models

Z ζ�0
S2,2

= 0, (A.17)

because there are always sine-contributions in the numerator of Z2,sing(ε) that are zero.

B. Pseudo-Hybrid Models

Here we will discuss the one parameter pseudo hybrid phases in more detail. We start
from the contributions to Z ζ�0

S2,1
(A.12) and apply the shift ε → iε

d1
. In Z ζ�0

S2,2
(A.13) we

apply ε → iε
d2
. We only get a non-zero contribution if (see Table 3)
〈

δ

d1

〉
�= 0,

〈
α

δ

d1

〉
�= 0,

〈
β

δ

d1

〉
�= 0,

〈
δ

d2
+

γ

κ2

〉
�= 0

〈
α

(
δ

d2
+

γ

κ2

)〉
�= 0

〈
β

(
δ

d2
+

γ

κ2

)〉
�= 0

〈
τd1

τd2
δ

〉
�= 0

(B.1)
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This allows to rewrite Z1,sing(ε) (A.12) and Z2,sing(ε) (A.13) in the following form

Z1,sing(ε) = (−1)
k

⌊
τd2

δ
τd1

⌋

ε

·� (1 − ε) � (1 + ε) �

(
τd2

ε

τd1
+

〈
τd2

τd1
δ

〉)k

�

(
1 − τd2

ε

τd1
−
〈
τd2

τd1
δ

〉)k

· (−1)
(5+k−n− j)

⌊
δ
d1

⌋

�
(

ε
d1

+
〈

δ
d1

〉)5+k−n− j
�
(
− ε

d1
+
〈
d1−δ
d1

〉)5+k−n− j

· (−1)
n
⌊
α δ
d1

⌋

�
(
α ε
d1

+
〈
α δ
d1

〉)n
�
(
−α ε

d1
+
〈
α d1−δ

d1

〉)n

· (−1)
j
⌊
β δ

d1

⌋

�
(
β ε
d1

+
〈
β δ
d1

〉) j
�
(
−β ε

d1
+
〈
β d1−δ

d1

〉) j
, (B.2)

and

Z2,sing(ε) = (−1)

⌊
τd2
τd1

δ

⌋

εk

·� (1 − ε)k � (1 + ε)k �

(
−τd1

ε

τd2
+

〈
τd1

τd2 − δ

τd2

〉)
�

(
τd1

ε

τd2
+

〈
τd1

δ

τd2

〉)

· (−1)
(5+k−n− j)

⌊
δ
d2

+ γ
κ2

⌋

�
(

ε
d2

+
〈

δ
d2

+ γ
κ2

〉)5+k−n− j
�
(
1 − ε

d2
−
〈

δ
d2

+ γ
κ2

〉)5+k−n− j

· (−1)
n
⌊

α
d2

δ+ γα
κ2

⌋

�
(
α ε
d2

+
〈

α
d2

δ + γα
κ2

〉)n
�
(
1 − α ε

d2
−
〈

α
d2

δ + γα
κ2

〉)n

· (−1)
j
⌊

β
d2

δ+ γβ
κ2

⌋

�
(
β ε

d2
+
〈

β
d2

δ + γβ
κ2

〉) j
�
(
1 − β ε

d2
−
〈

β
d2

δ + γβ
κ2

〉) j
. (B.3)

C. FJRW/Landau–Ginzburg Expression for Various Models

Here we outline the main steps to match the I - functions and �̂ classes obtained from
ZS2 in the Landau–Ginzburg phases with results in the literature. We start from the
expressions (3.15),(3.18), (3.19) and (3.20) (see Sect. 3.1).



302 D. Erkinger, J. Knapp

C.1. One parameter models. The q matrix of the models of interest is given in (4.23)
and evaluation of (3.18) gives

�̂δ = �

(
1 −

〈
− k

d
− 1

d

〉)3

�

(
1 −

〈
−kα

d
− α

d

〉)
�

(
1 −

〈
−kβ

d
− β

d

〉)
. (C.1)

By inserting q into (3.17) we find

ILG(u) = −
∑

k≥0

uk

� (k + 1)
(−1)

3
〈
k+1
d

〉
+
〈
α k+1

d

〉
+
〈
β k+1

d

〉

·
�
(〈− k

d − 1
d

〉)3
�
(〈− kα

d − α
d

〉)
�
(〈

− kβ
d − β

d

〉)

�
(
1 − k

d − 1
d

)3
�
(
1 − kα

d − α
d

)
�
(
1 − kβ

d − β
d

) .

(C.2)

Applying the shift k + 1 → k we get

�̂δ = �

(
1 −

〈
− k

d

〉)3

�

(
1 −

〈
−kα

d

〉)
�

(
1 −

〈
−kβ

d

〉)
, (C.3)

and

ILG(u) = −
∑

k≥1

uk−1

� (k)

(−1)
3
〈
k
d

〉
+
〈
kα
d

〉
+
〈
kβ
d

〉

�
(〈− k

d

〉)3
�
(〈− kα

d

〉)
�
(〈

− kβ
d

〉)

�
(
1 − k

d

)3
�
(
1 − kα

d

)
�
(
1 − kβ

d

) . (C.4)

Next we transform k → dn + δ δ = 1, . . . , d − 1, and use
〈
−ρn − δρ

d

〉
= 1 −

〈
δρ

d

〉
,

〈
ρn +

δρ

d

〉
=
〈
δρ

d

〉
, (C.5)

to arrive at the following expressions:

�̂δ = �

(〈
k

d

〉)3
�

(〈
kα

d

〉)
�

(〈
kβ

d

〉)
, (C.6)

ILG(u) = −
d−1∑

δ=1

∑

n≥0

udn+δ−1

� (dn + δ)

(−1)
3
〈

δ
d

〉
+
〈
αδ
d

〉
+
〈
βδ
d

〉

�
(
1 −

〈
δ
d

〉)3
�
(
1 −

〈
αδ
d

〉)
�
(
1 −

〈
βδ
d

〉)

�
(
1 − n − δ

d

)3
�
(
1 − αn − αδ

d

)
�
(
1 − βn − βδ

d

) .

(C.7)

The next identity we apply is

3

〈
δ

d

〉
+

〈
αδ

d

〉
+

〈
βδ

d

〉
= δ − 3

⌊
δ

d

⌋
−
⌊

αδ

d

⌋
−
⌊

βδ

d

⌋
. (C.8)

By using (A.8) we get

ILG(u) = −
d−1∑

δ=1

∑

n≥0

(−1)δ(−1)dn
udn+δ−1

� (dn + δ)

�
(
n + δ

d

)3
�
(
αn + αδ

d

)
�
(
βn + βδ

d

)

�
(〈

δ
d

〉)3
�
(〈

αδ
d

〉)
�
(〈

βδ
d

〉) ,

=
d−1∑

δ=1

Iδ(u).

(C.9)
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Similar steps as above lead to the following expressions for (3.18) and (3.20):

Gr = δ −
(
3

⌊
δ

d

⌋
+

⌊
α

δ

d

⌋
+

⌊
β

δ

d

⌋)
, (C.10)

�̂∗
δ = �

(〈
d − k

d

〉)3

�

(〈
α
d − k

d

〉)
�

(〈
β
d − k

d

〉)
. (C.11)

We can now insert (C.9), (C.6), (C.11) and (C.10) into (3.21):

ZLG
S2 =

∑

δ,δ′
(−1)

δ+3
⌊

δ
d

⌋
+
⌊
α δ
d

⌋
+
⌊
β δ

d

⌋ �
(〈

δ
d

〉)3
�
(〈

δα
d

〉)
�
(〈

δβ
d

〉)

�
(〈 d−δ

d

〉)3
�
(〈
α d−δ

d

〉)
�
(〈
β d−δ

d

〉)

· Iδ(u(t))Iδ′(u(t))
〈
eδ−1 , eδ′

〉

= 1

d

∑

δ

(−1)
δ+3

⌊
δ
d

⌋
+
⌊
α δ
d

⌋
+
⌊
β δ

d

⌋ �
(〈

δ
d

〉)3
�
(〈

δα
d

〉)
�
(〈

δβ
d

〉)

�
(〈 d−δ

d

〉)3
�
(〈
α d−δ

d

〉)
�
(〈
β d−δ

d

〉)

· Iδ(u(t))Iδ(u(t)). (C.12)

The last line follows from (3.13). We see that (C.12) matches the result from the GLSM
calculation (4.24).

C.2. Two parameter model. In this model the q-matrix reads

q =
(
1 0 − 1

4 − 1
4 − 1

4 − 1
8 − 1

8
0 1 0 0 0 − 1

2 − 1
2

)
(C.13)

In [17] it was shown that (3.17) can be rewritten in the following form:

ILG(u) =
3∑

r=1

[
1

�
( r
4

)3
�
( r
8

)2 �̂ ev
r er +

1

�
( r
4

)3
�
( r
8 + 1

2

)2 �̂ od
r er+4

]
, (C.14)

with

�̂ ev
r = (−1)r+1

∑

n∈2Z≥0

�
(
n + r

4

)4

� (4n + r)

(−212ψ4)n+ r−1
4
∑

m

�
(
m + n

2 + r
8

)2

�
(
n + r

4

)
� (2m + 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0+1

�
(
n + r

4

)4

� (4n + r)

(−212ψ4)n+ r−1
4
∑

m

�
(
m + n

2 + r
8 + 1

2

)2

�
(
n + r

4

)
� (2m + 2)

(2φ)2m+1 ,

(C.15)

and

�̂ odd
r = (−1)r+1

∑

n∈2Z≥0+1

�
(
n + r

4

)4

� (4n + r)

(−212ψ4)n+ r−1
4
∑

m

�
(
m + n

2 + r
8

)2

�
(
n + r

4

)
� (2m + 1)

(2φ)2m

+ (−1)r
∑

n∈2Z≥0

�
(
n + r

4

)4

� (4n + r)

(−212ψ4)n+ r−1
4
∑

m

�
(
m + n

2 + r
8 + 1

2

)2

�
(
n + r

4

)
� (2m + 2)

(2φ)2m+1 .

(C.16)
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We apply the following transformations

(C.15)

{
k = m + n

2 n ∈ 2Z
k = m + n+1

2 n ∈ 2Z + 1
, (C.16)

{
k = m + n

2 n ∈ 2Z
k = m + n−1

2 n ∈ 2Z + 1
. (C.17)

Observe that we performed a shift by an integer so that the limits of summation are not
affected. By identifying

et1 = −211ψ4φ−1 (C.18)

et2 = 22φ2, (C.19)

it follows that (C.14) can be written as

ILG(u) =
3∑

δ=1

[
(−1)δ+1eδ Iδ,0(t1, t2) + (−1)δeδ+4 Iδ,1(t1, t2)

]
, (C.20)

where (5.31) was inserted. Next we evaluate (3.18):

�̂δ = �

(
1 −

〈
−k1 + 1

4

〉)3

�

(
1 −

〈
−k1 + 1

8
− k2

2

〉)2

. (C.21)

We apply the reparameterization

k1 = 4n + r − 1 r = 1, . . . , 4 k2 = 2m + s s = 0, 1, (C.22)

given in [17] to get

�̂δ = �
(
1 −

〈
−r

4

〉)3
�
(
1 −

〈
−n + s

2
− r

8

〉)2
, (C.23)

where we dropped integer shifts from 〈·〉. Next we split the above formula into two
contributions with either n + s ∈ 2Z or not:

�̂δ =
{

�
(
1 − 〈− r

4

〉)3
�
(
1 − 〈− r

8

〉)2
n + s ∈ 2Z

�
(
1 − 〈− r

4

〉)3
�
(
1 − 〈− 1

2 − r
8

〉)2
n + s ∈ 2Z + 1

. (C.24)

We focus on the narrow state space where
〈r
4

〉
�= 0,

〈r
8

〉
�= 0,

〈 r
2
+
r

8

〉
�= 0. (C.25)

It follows that we can write

�̂δ =
{

�
(〈 r

4

〉)3
�
(〈 r

8

〉)2
n + s ∈ 2Z

�
(〈 r

4

〉)3
�
(〈 4+r

8

〉)2
n + s ∈ 2Z + 1

. (C.26)

By the same steps we can rewrite (3.19) as

�̂∗
δ =

{
�
(〈 4−r

4

〉)3
�
(〈 8−r

8

〉)2
n + s ∈ 2Z

�
(〈 4−r

4

〉)3
�
(〈 4−r

8

〉)2
n + s ∈ 2Z + 1

, (C.27)
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and (3.20) as

Gr =
{
r − 3

⌊ r
4

⌋− 2
⌊ r
8

⌋
n + s ∈ 2Z

r + 1 − 3
⌊ r
4

⌋− 2
⌊ 4+r

8

⌋
n + s ∈ 2Z + 1

. (C.28)

Inserting (C.20), (C.26), (C.27) and (C.28) into (3.21) gives

ZLG
S2 =

3∑

δ,δ′=1

(
(−1)

δ−3
⌊

δ
4

⌋
−2

⌊
δ
8

⌋
�
(〈

δ
4

〉)3
�
(〈

δ
8

〉)2

�
(〈 4−δ

4

〉)3
�
(〈 8−δ

8

〉)2 (−1)δ+1 Iδ,0(t̄1, t̄2)
〈
eδ−1

∣∣

+(−1)
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(C.29)

By (3.13) the above results give for the sphere partition function:
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(C.30)

So (C.30) matches the GLSM result (5.32).
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