
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04393-y
Commun. Math. Phys. 393, 1451–1481 (2022) Communications in

Mathematical
Physics

Asymptotic Analysis of von Neumann Entropy in
Conformal Field Theory

Xiaomin Tang1, Feng Xu2

1 Department ofMathematics,HuzhouUniversity,Huzhou,Zhejiang313000,China.E-mail: txm@zjhu.edu.cn
2 Department of Mathematics, University of California at Riverside, Riverside, CA 92521, USA.
E-mail: xufeng@math.ucr.edu

Received: 17 November 2021 / Accepted: 25 March 2022
Published online: 16 April 2022 – This is a U.S. government work and not under copyright protection in the
U.S.; foreign copyright protection may apply 2022

Abstract: Given a QFT net A of local von Neumann algebras A(O), we consider the
von Neumann entropy SA(O, ˜O) of the restriction of the vacuum state to the canonical
intermediate type I factor for the inclusion of von Neumann algebras A(O) ⊂ A(˜O)

(split property). This canonical entanglement entropy SA(O, ˜O) is finite for the chiral
conformal net on the circle generated by finitely many free Fermions (here double cones
are intervals). The finiteness property is derived by an explicit formula of entropy and an
observation that the operators in the definition are closely related to Hankel operators.
In this paper we give further analysis of this entropy using a variety of techniques that
have been developed in different context, and in particular we show that there is an upper
bound given by a positive constant multiply by | ln η|, where η is the cross ratio of the
underlying system, when η → 0.

1. Introduction

von Neumann entropy is the basic concept in quantum information and extends the
classical Shannon’s information entropy notion to the non commutative setting. The role
of entanglement in Quantum Field Theory is more recent and increasingly important;
it represents a piece of the quantum information framework in this subject. It appears
in relation with several primary research topics in theoretical physics as area theorems,
c-theorems, quantum null energy inequality, etc. (see for instance [5,6,40] and refs.
therein).

Despite the rich physical literature on the subject, the rigorous definition of entan-
glement entropy in QFT is however not obvious. The point is that the von Neumann
algebra A(O) associated with a double cone spacetime region O is typically a factor
of type I I I , so no trace exists on A(O) and one cannot naively extends the definition
of entropy as one would do with A = A(O), B = A(O ′), where O is a double cone
and O ′ is its causal complement and ω the vacuum state. Due to ultraviolet divergence,
such a measure of the vacuum entanglement would always result to be infinite. By Haag
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duality, that holds in much generality, A(O ′) is the commutant A(O)′ of A(O) on the
vacuum Hilbert space H, so the von Neumann algebra A(O) ∨ A(O ′) generated by
A(O) and A(O ′) is equal to B(H), a type I factor, and cannot be naturally isomorphic
to the von Neumann tensor product A(O) ⊗ A(O ′) which is type I I I .

To get rid of short distance divergences, one may however consider a slightly larger
double cone O ⊂ ˜O , namely the closure of O is contained in the interior of ˜O . The split
property states that there is a natural isomorphism of von Neumann algebras

A(O) ∨ A(˜O ′) � A(O) ⊗ A(˜O ′) ,

that identifies A(O) with A(O) ⊗ 1 and A(O ′) with 1 ⊗ A(O ′).
The split property expresses the statistical independence ofA(O) andA(˜O ′); it was

verified for the free, neutral Boson QFT case in [2]. It was studied in [11] and led to
important structural features both inMathematics and inPhysics. It followsunder natural,
general physical requirements [4]. It holds automatically in chiral conformal QFT [28].
(See [16] for a discussion of its validity in topologically non trivial spacetimes).

Approaches to the entanglement entropy by means of the split property are studied
in [8,12,17,27,29,40].

The split property is a local property, in fact it is equivalent to the existence of an
intermediate type I factor F between A(O) and A(˜O)

A(O) ⊂ F ⊂ A(˜O) . (1)

A type I factor F is a von Neumann algebra isomorphic to B(K), the algebra of all
bounded linear operators on some Hilbert space K.

Wemay then define the entanglement entropy of the netA associated with the double
cones O ⊂ ˜O as the vacuum von Neumann entropy associated with the F where the
global systems is B(H), the factorization is given by F , namely A = F , B = F ′ with
a tensor product decomposition

H = HA ⊗ HB , A � B(HA) ⊗ 1, B � 1 ⊗ B(HB) ,

and the pure state is the vacuum state.
This definition however depends on the choice of F . Actually, if the split property

holds, there are infinitely many intermediate type I factors F in (1). Yet, as shown in
[11], there is a canonical intermediate type I factorF , associated with the O, ˜O and the
vacuum vector �, given by the formula

F = A(O) ∨ JA(O)J = B(˜O) ∩ JB(˜O)J (2)

(if the local von Neumann algebras are factors), with J is the modular conjugation of
the relative commutant von Neumann algebra A(O)′ ∩ A(˜O) associated with �.

We then define the (canonical) entanglement entropy of A with respect to O, ˜O as

SA(O, ˜O) = −tr(ρF log ρF ) , (3)

where F is the canonical intermediate type I factor (2). Here Tr is the trace of F
(namely F = B(HA) ⊗ 1HB and tr corresponds to the usual trace on B(HA)) and ρF
is the vacuum density matrix relative to F .

The above definition concerns a local net A. If A if a Fermi net, graded locality
rather than locality holds. In this case, the split property is still defined by (1) and the
entanglement entropy by (3). However, the canonical intermediate type I factor is to be
defined by a twisted version of formula (2), cf. equation 50 of [25].
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A main result in [25] is that above defined canonical entanglement entropy is finite
for the chiral conformal netM generated by a complex free fermion on S1. Here, double
cones are intervals I ⊂ ˜I of S1.

In fact in [25] an explicit formula for the von Neumann entropy is given, and its
finiteness follows fromobserving the connection to the theory ofHankel operators . It is in
fact the first known casewhere such canonical entropy is proved to be finite. It is therefore
a natural question to estimate this finite entropy, in particular its asymptotic property
as the cross ratio (sin(η/2))2 goes to zero or equivalently when the end points of the
interval get close to each other (cf. Remark 3.9 in [25]) . Note that due to the monoticity
of relative entropy the entropy is bounded below (cf. Lemma 2.4) by 1

6 | ln sin(η/2)|, so
the real interest is about its upper bound. Our result (cf. Cor. 3.17 ) is that the upper
bound is again a constant multiplied by | ln η| as η → 0. The proof of this result is
surprisingly delicate and rely on deep results in [37], [21] and [38]. The results of [37],
[21] and [38] are motivated by questions of semi-classical analysis of entropy in QFT,
and the context of these questions are very different from ours. In fact since our functions
are not smooth on the circle, we have to modify the proof of some of the results in these
papers for our analysis. These modifications include Lemma 3.11 which is based on a
result in [38], but now applied in three different scales in the proof of Th. 3.15. By using
properties of Hankel operators, it turns out that we can do our estimates by removing
the poles of our functions inside the unit disk. We then use a change of part of the path
to evaluate the fourier coefficients of our functions, first in the relatively easy case when
our functions have no branch cuts. When our functions have branch cuts inside the unit
disk, we reduce our analysis to the estimation of Besov quasinorm of these functions
(cf. Section 3.3). We expect that our techniques will have applications in more general
cases.

There are some similarities between our entropy and reflective entropy discussed in
the physics literature (cf. [9] and references therein). In [9] there are also numerical com-
putations of such reflective entropy and their numerical data agrees with our asymptotic
analysis, but it is not clear at all that those numerical computations on finite lattices in
[9] actually converge to our entropy. It is an interesting question to further understand
this similarity. It is also an interesting question to improve our estimates in this paper, in
particular to determine the constant in Cor. 3.17. See Remark (3.18) and Remark (3.8).

The rest of this paper is organized as follows. In Section 2 we recall the entropy
defined in [25] in the context of chiral net of free fermion, and recall some basic facts
related to Hankel operators in [30]. We begin our asymptotic analysis in Section 3. Our
basic idea is explained at the beginning of Section 3.1. Roughly speaking we deform the
path of integration, removing the poles of our functions inside the unit disk, and then
estimate Besov quasi-norms of these functions (cf. the proof of Th. 3.7). We then use
these results in Section 3.4 to give the Schatten norm of our functions. This is based
on Lemma 3.11, and a key result in Th. 3.15. In Section 3.5 we prove Cor. 3.17 as a
consequence of our results in the previous two sections and results of [21]. In the last
Section we show that our entropy function is continuous in η and goes to 0 as η goes
to π .

2. Preliminaries

2.1. Schatten-von Neumann Ideals. This paper relies on the results for general quasi-
normed ideals of compact operators. Here we limit our attention to the case of Schatten-
von Neumann operator ideals Sq , q > 0. Detailed information on these ideals can
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be found e.g. in [30] and [36]. We shall point out only some basic facts. For a compact
operator A on a separable Hilbert space H , denote by sn(A), n = 1, 2, ... its n-th singular
values, that is, the eigenvalues of the operator |A| := √

A∗A. Note that if R1, R2 are
bounded operators, Then (cf. [36])

sn(R1AR2) ≤ ||R1||sn(A)||R2|| (4)

where ||A|| to denote the norm of an operator A. We denote the identity operator on H
by 1. The Schatten-von Neumann ideal Sq , q > 0 consists of all compact operators A ,

for which |A|Sq := (
∑∞

k=1 sk(A)q)
1
q < ∞. Note that |A|Sq = |A∗|Sq .

If q ≥ 1 , then the above functional defines a norm; if 0 < q < 1 , then it is a so-called
quasi-norm. There is nevertheless a convenient analogue of the triangle inequality, which
is called the q-triangle inequality:

|A1 + A2|qSq ≤ |A1|qSq + |A2|qSq , 0 < q ≤ 1 (5)

We also have the Holder inequality:

|A1A2|Sq ≤ |A1|Sq1 |A2|Sq2 , 1/q = 1/q1 + 1/q2, 0 < q1, q2 ≤ ∞ (6)

See [19] and also [3]. In what follows we focus on the case q ∈ (0, 1]. We will use
||A|| to denote the norm of an operator, and ||A||1 the trace of |A|. By definition

|||A|q ||1 = |A|qSq
Note that for a nonzero operator A, the singular values of A/||A|| is bounded above

by 1, therefore if 0 < p < q ≤ 1 we have |A/||A|||qSq ≤ |A/||A|||pSp , from which we
have

|A|qSq ≤ |A|pSp ||A||q−p (7)

2.2. Basic Representation of LU1 and Free Fermion net. Let H denote the Hilbert space
L2(S1; C) of square-summable C-valued functions on the circle. The group LU1 of
smoothmaps S1 → U1, withU1 the set of the unit circle inC, acts on H asmultiplication
operators.

Let us decompose H = H+ ⊕ H−, where

H+ = {functions whose negative Fourier coeffients vanish} .

We denote by P the Hardy projection from H onto H+.
Denote by Ures(H) the group consisting of unitary operator A on H such that the

commutator [P, A] is a Hilbert-Schmidt operator. Denote by Diff+(S1) the group of
orientation preserving diffeomorphism of the circle. It follows from Proposition 6.3.1
andProposition 6.8.2 in [31] that LU1 andDiff+(S1) are subgroups ofUres(H). The basic
representation of LU1 is the representation on Fermionic Fock space Fp = �(PH) ⊗
�((1−P)H)∗ as defined in Section 10.6 of [31]. For more details, see [31] or [39]. Such
a representation gives rise to a graded net as follows. Denote byA(I ) the von Neumann
algebra generated by c(ξ)′s, with ξ ∈ L2(I, C). Here c(ξ) = a(ξ) + a(ξ)∗ and a(ξ) is
the creation operator defined as in Chapter 1 of [39]. Let Z : Fp → Fp be the Klein
transformation given by multiplication by 1 on even forms and by i on odd forms. It
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Fig. 1. The symmetric intervals

follows from Section 15 of chapter 2 of [39] that A is a graded Möbius covariant net,
and A will be called the net of free fermion. A is strongly additive, and the commutant
of A(I ) is ZA(I ′)Z−1 where I ′ is the complement of I on the circle.

Let I1, I2 be two open intervals on the circle, and I1, I2 are disjoint, that is Ī1∩ Ī2 = ∅,
and I = I1 ∪ I2.

For bounded operators A, B : Fp → Fp, we define A+ = 	A	, A− = A − A+,
where 	 is an operator on Fp given by multiplication by 1 on even forms and −1 on odd
forms. Note that Z = 1−i	

1−i .
An operator A is called even (resp. odd) if A = A+ (resp. A = A−). Note that

ω(a) = 0 if a is odd, where ω is the vacuum state corresponding to the vacuum vector
�.

We set

ω1 ⊗2 ω2(AB) = 〈A�,�〉〈B�,�〉, ∀A ∈ A(I1), B ∈ A(I2) .

By (1) Lemma 3.1 in [24] this defines a normal state on the von Neumann algebra
generated by A(I1) and A(I2).

The mutual information S(ω, ω1 ⊗2 ω2) (cf. Definition 2.1 of [24]) is computed in
Section 3 of [24].

2.3. von Neumann Entropy from Split Property. In this section we recall the von Neu-
mann entropy defined in [25] from split property that we aim to compute in this paper.

2.3.1. General Symmetric Interval Wewill focus on the one particle structure on L2(S1;
C) in this section. On S1, we consider the following general four “symmetric intervals"

I1 = {eiθ : 0 < θ < φ} , I2 = {eiθ : φ − π < θ < 0} , (8)

−I1 = {ei(π+θ) : 0 < θ < φ} , −I2 = {ei(π+θ) : φ − π < θ < 0} , 0 < φ < π .

(9)

We will denote by η = π − φ. See Figure 1.
Denote by I0 := {eiθ : 0 < θ < 2φ}. For any interval I if we denote by I 2 the set of

z such that z = w2 for some w ∈ I , then it is clear that I0 = I 21 . We shall consider the
action of SU (1, 1) on S1 which is given by z → az+b

b̄z+ā
with |a|2−|b|2 = ±1. TheMöbius
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group Mob is the subgroup of SU (1, 1) of elements with determinant |a|2 − |b|2 = 1.
The action z → 1

z is orientation reversing. This element has a = d = 0, b = c = −1.

If m(z) = az+b
b̄z+ā

, the unitary action of m on S1 is given by (See Section 4 of [39])

(Um f )(z) = (a − b̄z)−1 f (m−1z) . (10)

Since (a − b̄z)−1 is holomorphic for |z| < 1 and |a| > |b|,Um and its inverse preserves
PH , and soUm commutes with the Hardy space projection P . The flip map (F1 f )(z) =
1
z f (

1
z ) clearly satisfies PF1P = 1 − P . By sending the orientation reversing element

z → 1
z in SU (1, 1) to F1, we get an action of SU (1, 1) on H which is of the form

(Um f )(z) = αm(z) f (m−1z) , (11)

where m(z) = az+b
b̄z+ā

, αm(z) = (a − b̄z)−1.

Let m ∈ Mob be such that mI0 is the upper half circle. Let m1 = m−1F1m. It is
straightforward to see that

m1(z) = z(1 + e2iφ)/2 − e2iφ

z − (1 + e2iφ)/2
. (12)

Define

(F0 f )(z) = αm1(z) f (m
−1
1 z) . (13)

We have the following definition

( j f )(z) := αm1(z
2)

(

1

2
+

z

2u

)

f (u) + αm1(z
2)

(

1

2
− z

2u

)

f (−u) , (14)

where

u2 = m1(z
2) (15)

Note that m1(z2) depends on η.
Note that j maps L2(I1) to L2(I2 ∪ −I2). We will denote by MI the multiplication

operator by χI , the characteristic function of interval I .
By definition, MI1 and jMI1 j are orthogonal projections whose ranges L

2(I1) and
j L2(I1) are also orthogonal. Hence P12 := MI1 + jMI1 j is a projection. If we wish to
emphasize the dependence on η we will write P12 as P12(η).

Note that L2(I1) ⊕ j L2(I1) is the canonical type I standard subspace which is
intermediate between L2(I1) and L2(I1 ∪ I2 ∪−I2). The following is theorem 3.3 from
[25]:

Theorem 2.1.

P12 = Mg + MhR on L2(S1) ,

is a projection onto L2(I1) ⊕ j L2(I1) where

g(z) = (u + z)2

4uz
χI1(u) − (u − z)2

4uz
χI1(−u) + χI1(z) , (16)
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h(z) = z2 − u2

4uz
(χI1(u) − χI1(−u)) , (17)

(R( f )(z) = f (−z), u2 = m1(z
2) , (18)

m1(z) = z(1 + e2iφ)/2 − e2iφ

z − (1 + e2iφ)/2
. (19)

We note that since g, h are invariant under u → −u, these functions are independent
of the choice of the square root u of m1(z2) in Th. 2.1.

For simplicity we will write multiplication operator such as Mg simply as g when no
confusion arises. For an example we can write P12 = g + hR. Similarly we write g∗ the
complex conjugate of a function such as g.

The von Neumann entropy S(F, η) that comes from the canonical type I standard
subspace L2(I1) ⊕ j L2(I1) is defined as follows. Let f0 := −x ln x − (1 − x) ln(1 −
x), 0 < x < 1, and we define f0(0) = f0(1) = 0. We make the following definition:

Definition 2.2.

S(F, η) = tr( f0(PP12(η)P))

where P12 is as in Th. 2.1. For any operator self adjoint T and continuous f defined on
the spectrum of T and PT P , if f (PT P) − P f (T )P is trace class, we use τ(T, f ) to
denote the trace of f (PT P) − P f (T )P .

Since P12(η) is a projection and f0(P12(η)) = 0, S(F, η) = τ(P12(η), f0). We
choose the notation S(F, η) since S(F) is what we used in [25], and we put in extra η to
emphasize the dependence on η. Let us first explain why S(F, η) = S(F) where S(F)

is as in Th. 3.8 of [25]. Let us first recall how S(F) is defined. We shall denote by F :=
L2(I1)⊕ j L2(I1) the canonical type I standard subspace. Recall that onH = L2(S1; C),
the complex structure onH is given by i(2P − 1), with P the projection onto the Hardy
space. Let F ′ be the orthogonal complement of i(2P − 1)F . Let PF := P12(η), PF ′ be
the projections onto F, F ′ respectively. Then PF ′ = (2P − 1)(1 − PF )(2P − 1), and

PF PF ′ PF = PF (2P − 1)(1 − PF )(2P − 1)PF = 4(PF PPF − (PF PPF )2)

By Lemma 2.4 of [25] PF PF ′ PF = 4 �F
(�F+1)2

PF where �F is the modular operator

associated with F , it follows that PF PPF − (PF PPF )2 = �F
(�F+1)2

PF . Let 0 < λi <

1, 1 ≤ i < ∞ be the list (counting multiplicities) of eigenvalues of �F that is in the
interval (0, 1). Define μi = 1

1+λi
. By definition S(F) is the von Neumann entropy of

state ρ′
F = ̂ρ′

F

tr̂ρ′
F

, where ̂ρ′
F is �(�F |HF (0,1)) by Cor. 2.10 of [25]. By using Prop. 2.11

of [25] and a straightforward computation we have

S(F) = −
∑

1≤i<∞
(μi lnμi + (1 − μi ) ln(1 − μi ))

By examing the spectrum of �F
(�F+1)2

PF as in Lemma 2.7 in [25] we see that the list

(counting multiplicities) of eigenvalues of �F
(�F+1)2

PF is λi
(λi+1)2

= μi (1 − μi ), 1 ≤ i <
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∞. Since (PF PPF − (PF PPF )2) = �F
(�F+1)2

PF , the list (counting multiplicities) of

eigenvalues of PF PPF is μ′
i , where μ′

i = μi or μ′
i = 1 − μi , 1 ≤ i < ∞. Therefore

S(F) = −
∑

1≤i<∞
(μ′

i lnμ′
i + (1 − μ′

i ) ln(1 − μ′
i ))

Since (cf. Chapter 1 of [36]) the set of nonzero elements in the spectrum of T ∗T
is the same as the set of nonzero elements in the spectrum of T T ∗ for a bounded
operator T , it follows that the list of nonzero eigenvalues (counting multiplicities) of
PPF P = PP12(η)P = PPF PF P is the same as that of PF PPPF = PF PPF . So we
have S(F, η) = S(F).

In [25] we proved that S(F, η) is finite by observing its connection with Hankel
operators. This relies on the growth of fourier coefficients of g, h.We recall the following
result which is proved in [25] and follows essentially from an observation of [18], see
Th. 3.7 in [25].

Lemma 2.3. Suppose f = ∑

n fnzn.
If | fn| ≤ Cn−α with α > 3

2 , n ≥ 0, then |P f (1 − P)|Sq is bounded by a constant

which only depends on C and 1 > q > 1
α− 1

2
; If | fn| ≤ C |n|−α with α > 3

2 , n < 0, then

|(1 − P) f P|Sq is bounded by a constant which only depends on C and 1 > q > 1
α− 1

2
.

Note that g, h are invariant under u → −u. Note that u(z) ∈ I1 ∪ −I1 if an only if
u(z)2 ∈ I 21 = I0. Since u(z)2 = m1(z2), it follows that u(z)2 ∈ I 21 = I0 if and only if
m1(z2) ∈ I0. By definition ofm1(z), we havem

−1
1 (I0) is the complement of I0, which is

I 22 . It follows that u(z) ∈ I1 ∪ −I1 if an only if z ∈ I2 ∪ −I2. So h = z2−u2
4uz χI2∪−I2(z).

Note that this matches with equation (34) of [25]. For the reader who may be confused
with the equation (34) of [25], we note that in the definition of h in 2.1 it is important
that we have χI1(u), not χI1(z).

If u(z) ∈ I1, then g(z) = (u+z)2

4uz = 1
2 +

1
4 (

u
z +

z
u ). Note that |u| = |z| = 1, it follows that

g ≥ 0. Similarly g ≥ 0 if u(z) ∈ −I1. When z ∈ I1, g = 1, and g = 0 when z ∈ −I1.
So g ≥ 0. Similarly we can check that ih is real. g − 1/2 and h are both odd functions
of z, and g2 − g = h2. To do computations for η close to 0, it is convenient to choose an

analytic continuation of u inside the unit disk. Recall that u2 = m1(z2) = z2 cos η−e−iη

eiηz2−cos η
.

Note that the roots of z2 cos η − e−iη are outside the unit disk. For the square root
of z2 cos η − e−iη, we can choose any branch cut outside the closed unit disk, for an
example, two half lines coming out of the two roots of the equation z2 cos η − e−iη = 0
which do not intersect the closed unit disk. The two roots of eiηz2 − cos η are inside the
disk, and for the square root of eiηz2 − cos η, we can choose the branch cut to be the
closed line segment connecting ±e−iη/2√cos η which are the poles of u (cf. Page 128
of [1] for such a choice of branch cut for square root of a quadratic function). u is then
the quotient of these two functions. u is an analytic function in the unit disk minus the
branch cut. We will see that this branch cut is important for our analysis when η → 0.

On I2

g′(z) = (u2 − z2)(zu′ − u)

4z2u2
, h′(z) = (u2 + z2)(zu′ − u)

4z2u2
(20)

m1(z
2) = z2 cos η − e−iη

eiηz2 − cos η
,m1(z)

′ = − sin2(η)eiη

(eiηz − cos η)2
,m1(z)

′′ = − sin2(η)e2iη

(eiηz − cos η)3
(21)
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Let L(z) := |z2 − e−iη cos η|. Let us explain how to estimate the derivatives of g, h
when η is sufficiently small. We will use g as an example since h is similar. If u(z) ∈ I1,

then g(z) = (u+z)2

4uz = 1
2 + 1

4 (
u
z + z

u ). Hence if u(z) ∈ I1 the derivatives of g are linear
combinations of derivatives of u

z and
z
u . To compute the derivatives of u(z), by definition

u(z)2 = m1(z2). So by Chain Rule u(z)′u(z) = m′
1(z

2)z. Keep in mind |u| = |z| = 1. It
follows that g′ is up to addition by a bounded function m′

1(z
2) multiplied by a bounded

function. g′′ is the sum of a bounded function, ((m′
1(z

2)))2 multiplied by a bounded
function and m′′

1(z
2) multiplied by a bounded function. The same idea applies to all

other cases. Note that when η is sufficiently small L(z) ≥ 1/2η2, and therefore from
(21) we have

|((m′
1(z

2)))2| = (sin η)4

L(z)4
≤ 2

(sin η)2

L(z)3

From this we have

|h′| ≤ O(1) + C
sin2(η)

L(z)2
, |h′′| ≤ O(1) + C

sin2(η)

L(z)3
, |g′| ≤ O(1)

+C
sin2(η)

L(z)2
, |g′′| ≤ O(1) + C

sin2(η)

L(z)3
(22)

where O(1) and C are constants independent of η.
Note that the minimal value of L(z2) is when z = e−iη/2, i.e. when z is at the middle

point of I2, and L(e−iη/2) = |1− cos(η)| ∼
1
2η

2 when η is close to 0, it follows that on
I2 ∪ −I2

|h′| ≤ C
1

L(z)
, |h′′| ≤ C

1

L(z)2
, |g′| ≤ C

1

L(z)
, |g′′| ≤ C

1

L(z)2
(23)

where C is independent of η and η is close to 0. Note that since g = 1 on I1, the
above formula for g also holds on I1.

Note that m1(z) is conjugate to the flip, and fix the end points of I0. When z is at
the end points of I2 or −I2, z2 takes values at the end points of I0. It follows that at
the end points of I2 or −I2, u(z)2 = m1(z2) = z2. From formula (20) we can see that
g′ is continuous, and g′ = 0 on the boundary of I2,−I2. g′′ exists at all points on the
circle except the four boundary points of I2,−I2 and is bounded. Since g′ = 0 on the
boundary of I2,−I2, it follows that the second derivative of g in the distribution sense
agrees with g′′, and in particular it is essentially bounded. Hence g ∈ W 2,∞. Similarly
from formula (20) we see that h′ is not continuous, but h′(z) on I2 ∪ −I2 is bounded
when z is close to the boundary of I2,−I2.

The image of I2 (resp. −I2) under V is interval (1, tanψ) (resp. (−1,− cotψ)) with
ψ = (π/4 + η/2). The cross ratio of the interval −I1, I1 in the clockwise order is

1
sin2(η/2)

.

First we recall the lower bound of S(F, η):

Lemma 2.4. S(F, η) ≥ −1
6 ln(sin(η/2)).
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Proof. Since A(I1) ⊂ F ⊂ A(I1 ∪ I2 ∪ −I2), and the commutant ofA(I1 ∪ I2 ∪ −I2)
is ZA(−I1)Z−1, where Z = 1−i	

1−i is the Klein operator (cf. Section 2.2), we have
A(−I1) ⊂ ZF ′Z−1.

Denote byωF , ωF ′ the restriction of the vacuum state to F and its commutant F ′. Let
ω̂ be the tensor state ωF ⊗ ωF ′ , namely ω̂(m1m2) = ω(m1)ω(m2),∀m1 ∈ F,m2 ∈ F ′.
Let us show that when restricting ω̂ to A(I1) ∨ A(−I1), this is the same as ω1 ⊗2 ω2
as in Sect. 2.2. Since F, F ′ are type I factors and Ad	 are automorphisms of F (resp.
F ′) of order two, it follows that 	 = u1u2 where u1 (resp. u2) is unitary element in F
(resp. F ′). Multiplying by a phase factor if necessary we can choose u21 = 1, u22 = 1.
Since 	u1	 = u31 = u1, it follows that u1 is an even element, and similarly u2 is an
even element.

By definition ω̂ is the same as ω1 ⊗2 ω2 on elements of the form ab+, where a ∈
A(I1), and b+ is an even element of A(−I1), i.e., 	b+	 = b+. It is sufficient to check
ω̂(ab−) = 0 if 	b−	 = −b−, b− ∈ A(−I1), i.e., b− is an odd element.

Note that Zb−Z−1 = −i	b− ∈ F ′, and so b− = i	Zb−Z−1 = iu1u2Zb−Z−1. By
definition of ω̂ we have

ω̂(ab−) = ω̂(iau1u2Zb
−Z−1) = ω(iau1)ω(u2Zb

−Z−1)

Note that u2Zb−Z−1 is an odd element in F ′ and so ω(u2Zb−Z−1) = 0.
By monotonicity of relative entropy (cf. Chapter 5 of [26])

S(ω, ω1 ⊗2 ω2) ≤ S(ω, ωF ⊗ ωF ′) = 2S(F, η)

By Th. 3.16 in [24] we have proved the Lemma. ��

2.4. An Inequality from Besov Quasinorm. We proceed now to the Besov classes B
1
p
p

for 0 < p < 1. Let F be an infinitely differentiable function on the real line such that
F ≥ 0, with support in [1/2, 2], and

∑

n≥0 F( x
2n ) = 1,∀x ≥ 1. It is very easy to construct such a function. We can take a

nonnegative smooth function F on the interval [1/2, 1] such that F(1/2) = 0, F(1) =
1, F (k)(1/2) = F (k)(1) = 0,∀k ≥ 1. Then we can put F(x) = 1 − F(x/2), x ∈ [1, 2]
and F(x) = 0, when x is outside [1/2, 2]. Given an analytic function G in the unit disk
with continuous extension to the boundary, assume that G(z) − G(0) = ∑

n>0 Gnzn,
define Fn ∗G(z) = ∑

j≥1 F( j/n)G j z j where n ≥ 1 is an integer. Note that Fn ∗G(z) is
a trignometric polynomial of degree less than 2n. By definition we have G(z)−G(0) =
∑

m≥0,n=2m Fn ∗ G. Let z = e2π i t .

It follows from Page 250 of [30] that if 0 < q < 1

|PG(1 − P)|qSq ≤
∞
∑

m=0,n=2m
21−q2m

∫

−1/2≤t≤1/2
|Fn ∗ G(z)|qdt (24)

This inequality will play a crucial role in our paper. We shall refer to
∑∞

m=0,n=2m 2m
∫

−1/2≤t≤1/2 |Fn ∗ G(z)|qdt as the Besov quasinorm of G. The definition depends on
the choice of F , and all choices give equivalent seminorms, but we shall not make use
of this fact. The other direction that

∞
∑

m=0,n=2m
2m

∫

−1/2≤t≤1/2
|Fn ∗ G(z)|qdt < ∞
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implies |PG(1 − P)|qSq < ∞ is also true, see Th. 3.1 of [30].

2.5. Poisson Summation. Let F be an infinitely differentiable function on the real line
with support in [1/2, 2], and letm be apositive integer.Consider Fm(z) = ∑

k∈Z
F(k/m)

zk where z = e2π i t with t a point on the upper half plane (including the boundary real
line).

Recall thatFF is the Fourier transform of F ,FF(s) = ∫

F(x)e−2π i xsdx . The proof
of the following Lemma is essentially the same as the proof of Lemma 3.3 in [30]:

Lemma 2.5. Let Gm(t) = Fm(e2π i t )−m(FF)(−mt)where t is on the upper half plane
with real part in [−1/2, 1/2]. Denote by Gm the maximum of |Gm(t)| on [−1/2, 1/2].
Then GmmN → 0 for all N > 0.

Proof. Let ψ(x) = F(x/m)e2πxi t . Note that ψ(x) is a Schwartz function since t is on
the upper half plane, and the support of F is in [1/2, 2]. The rest of the proof using
Poisson summation formula is exactly the same as the proof of Lemma 3.3 in [30]. ��

It is interesting to note that if t is real, Fm(e2i t ) is a periodic function in t and therefore
can be thought as a function on the unit circle, but m(FF)(−mt) is not. Nevertheless
m(FF)(−mt) captures the dominating part of Fm(z)whenm → ∞ as the aboveLemma
shows. By repeatedly using integration by parts we have

(FF)(−mt) ≤ CN
e−ms

1 + mN |t |N ,∀N > 0 (25)

where s is the imaginary part of t , and CN is a constant which only depends on F .

3. Asymptotic Analysis

We will determine the upper bound of S(F, η) in the next few sections. Let us first
describe the basic ideas.

We note that

PP12P = PgP + PhPR

, and both PgP and PhP (cf. Th. 2.1 for definitions) are Toeplitz operators. When η

is small, the support of h shrinks to zero size, so we expect the main contribution to
S(F, η) should come from PgP . To do this we first need to have a good control on the
Schattern-von Neumann norm of Ph(1 − P), this is done in Sect. 3.3. There is also a
further complication concerning PgP . It turns out that f0(PgP) is not trace class, but
f0(PgP) − P f0(g)P is. This problem is addressed in Sect. 3.4.

Suppose a function F(z, η), z ∈ S1 is defined on the circle which depends also on
a parameter 0 < η < π . We always assume that F is bounded, i.e., |F(z, η)| ≤ M
for some constant M which is independent of z, η. We are interested in the property of
F(z, η) when η → 0.

Definition 3.1. Abounded function F(z, η) is said to bevery good if both |PF(1−P)|Sq|(1− P)FP|Sq are O(1) when η → 0 for a 0 < q < 1. A function F(z, η) is said to be
good if both |PF(1 − P)|qSq and |(1 − P)FP|qSq are o(− ln η) when η → 0. We write
F(z, η) ∼ G(z, η) if there exist two positive constants C1,C2 such that

C1|G(z, η)| ≤ |F(z, η)| ≤ C2|G(z, η)|
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Proposition 3.2. (1) If F is good (resp. very good) , then |FP − PF |qSq = o(− ln η)

(resp. O(1)) ;
(2) If F and G are good (resp. very good), then both F +G and FG are good (resp. very

good).

Proof. By equation (7) we may assume that F,G are good for the same q.
Ad (1): FP − PF = −PF(1 − P) + (1 − P)FP
So by q-triangle inequality

|FP − PF |qSq ≤ |(1 − P)FP|qSq + |PF(1 − P)|qSq
and (1) follows.

Ad (2): The statement for F + G follows from the q-triangle inequality as in (5).
Note that PFG(1 − P) = (PF − FP)G(1 − P) + FPG(1 − P). So we have

|PFG(1 − P)|qSq ≤ |(PF − FP)G(1 − P)|qSq + |FPG(1 − P)|qSq
≤ |(PF − FP)|qSq ||G||q + |PG(1 − P)|qSq ||F ||q

and (2) is proved. ��

3.1. Deformation of path. We’d like to use Lemma 2.3 to do estimation. For this purpose
it is important to estimate the growth of the Fourier coefficients of our functions such as

h, g. Unfortunately h′′ grows like (cf. equation (22)) η2

L(z)3
on I2, and L(z) ∼ (θ + η2)

where θ is the distance between z and the middle point of I2. This makes it difficult or
even impossible to obtain O(n−2) type estimate. One simple idea is to see if we can
use Cauchy’s theorem to deform the path I2 to a path where h′′ is better controlled.
A natural such path is the path N which join the ends of I2 inside the unit disk with
property |L(z)| = sin η. On this path N , h′′

∼
1
η
, and when integrated over N which

has length ∼ πη will give us O(1). But we have to pay close attention to possible poles
and branch cuts enclosed by I2 and N . We will see that ultimately it is the branch cut
that is responsible for the asymptotic growth of our entropy.

3.2. Deformation of path: The case with no Branch cut.

Lemma 3.3. Assume that F(z, η) is analytic in the interior bounded by I2 and N in the
unit disk, and has continuous first derivative on I2. In addition assume on the circle F is
0 at the boundary of I2, and F ′ is O(1) on the boundary of I2. If

∫

N |F ′′| = O(1) where
N is the path which join the ends of I2 inside the unit disk with property |L(z)| = sin η.
Then an(F) := ∫

I2
Fzndz = O(n−2),∀n ≥ 0.

Proof. By our assumptions on F and integration by parts

an =
∫

I2
Fzndz = 1

(n + 1)(n + 2)

∫

I2
F ′′zndz + O(n−2)

It is sufficient to check that
∫

I2
F ′′zndz = O(1)
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Since F is analytic in the unit disk, deforming the path I2 to N , and keep in mind
|zn| ≤ 1, n ≥ 0 when |z| ≤ 1 we have

|
∫

I2
F ′′zndz| = |

∫

N
F ′′zndz| ≤

∫

N
|F ′′| = O(1)

��
Proposition 3.4. Both u2 and u−2 are very good.

Proof. By definition

u2 = m1(z
2) = z2 cos η − e−iη

eiηz2 − cos η

m1(z
2) = z2 cos η − e−iη

eiηz2 − cos η
= e−iη cos η − e−i2η sin2(η)

z2 − e−iη cos η

It follows that

Pu2(1 − P) = 0

since u2 is analytic outside the unit disk, and by using Laurent series for u2

(1 − P)u2P = (1 − P)T1P − (1 − P)T2P

where

T1 = 1/2e−3/2iη(sin(η))2(cos η)−1/2

z − e−1/2iη√cos η

T2 = 1/2e−3/2iη(sin(η))2(cos η)−1/2

z + e−1/2iη√cos η

Note that (1 − P)T1P is a rank one operator by using Laurent series for T1, and the
norm of PT1(1−P) is given by themaximumof |T1| on the circle. These are very special
cases of finite rank Hankel operators, cf. 1.3 of [30] for more details. The maximum of
|T1| on the circle is

(cos η)−1/2 (sin(η))2

1 − √
cos η

= O(1)

as η → 0. It follows that

|(1 − P)T1P)|qSq = O(1)

for any q > 0. Similarly

|(1 − P)T2P|qSq = O(1)

for any q > 0 and we have proved u2 is very good. Note that [Pu−2(1 − P)]∗ =
(1 − P)u2P It follows that

|Pu−2(1 − P)|qSq = |(1 − P)u2P|qSq
and the Proposition is proved. ��
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Proposition 3.5. (z−2 − u−2)(χI2 + χ−I2) and its complex conjugate are very good.

Proof. It is sufficient to prove that (z−2−u−2)χI2 and its complex conjugate (z2−u2)χI2
are very good. The proof for (z−2 − u−2)χ−I2 and its complex conjugate is similar. To
simplify writing we will denote the function (z−2 − u−2)χI2 by h1 only in the proof of
this proposition. We first show that |(1 − P)h1P|Sq = O(1) for some 0 ≤ q < 1. By
Lemma 2.3 it is enough to show that

∫

I2
h1zndz = O(n−2),∀n ≥ 0.

On N we shall need an estimate of derivatives of h1 similar to that of formula (22)
for h on the circle. Note that when η is small enough, |z| is close to 1 on N . Since
|z2 − e−iη cos η| = sin η on N , cos η ∼ 1 − 1

2η
2, cos η − (cos η)−1

∼ η2, we have
|z2eiη − (cos η)−1| ∼ η when η is sufficiently small, and hence

|m1(z2)| = | z2eiη−(cos η)−1

sin η
| is close to 1 when η is sufficiently small. Now the com-

ments before formula (22) applies verbatim, We have both h1 and h′
1 are O(1) and

|h′′
1| ∼ 1/η, and it follows that

∫

N
|h′′

1|ds ≤ Cπη/η = O(1)

By Lemma 3.3 it follows that |(1 − P)h1P|Sq = O(1), 2/3 < q < 1. Note that h∗
1

has poles inside the unit disk, so our deformation of path argument above does not work
for h∗. But h∗

1 = −z2u2h1, hence if we multiply h∗
1 by 1

−z2u2
then we get h1, and we

have removed the poles of h∗
1. The function

1
−z2u2

has modulus 1 and both 1
−z2u2

and its
complex conjugate are very good by Prop. 3.4, it will follow that h∗

1 is very good. This
will be called as “the trick of removing poles ". In more explicit terms,

(Ph1(1 − P))∗ = (1 − P)(−z2u2)h1P ,

|Ph1(1 − P)|Sq = |[(Ph1(1 − P))]∗|Sq = |(1 − P)(−z2u2)h1P|Sq = O(1)

by Prop. 3.2, Prop. 3.4 and |(1− P)h1P|Sq = O(1), 2/3 < q < 1 that has already been
proved.

Note that |Ph∗
1(1− P)|Sq = |(1− P)h1P|Sq and similarly with P replaced by 1− P ,

and the proposition is proved. ��

3.3. Deformation of path: The case with Branch cut. Our goal in this section is to show
that h is good. Note that h is independent of the choice of branch cut of u inside unit
disk , and in this section we choose the branch cut to be the closed line segment with end
points e−iη/2√cos η and −e−iη/2√cos η. Here η is very close to 0 so that cos η ∼ 1.

Note that h has poles inside the unit disk, but since by Prop. 3.4 u−2 and u2 are very
good, by Prop. 3.2 it is sufficient to show that h0 := u−2h is good, and u−2h has no poles
in the unit disk, but has branch cut. This is another example of the trick of removing
poles. The branch cut is important, because without the branch cut we c could conclude
as in the previous section that by using the trick of removing poles, both g, h are very
good, but this would contradict the lower bound in Lemma 2.4. First we have :

z2 − u2 = − (z2 − e−2iη)(z2 − 1)eiη

eiηz2 − cos η
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Let z1 = eiθ1 with θ1 = η + 2θ, then

h0 = Cz−3(cos η)−1/2
1
2 (z1 + z−1

1 ) − cos η

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1

where C is a constant with |C | = 1. Hence it is enough to check that

h1 =
1
2 (z1 + z−1

1 ) − cos η

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1

is good. Note that z1 = eiηz2 and we think of h1 as a function of z. Note that h∗
0 =

u2h = −u4h0 since h∗ = −h, it follows that h∗
1 = C1z6u4h1 where C1 is a nonzero

constant. Hence if we can show that |(1 − P)h1P|qSq = o(− ln η), then it follows

|Ph1(1 − P)|qSq = |(1 − P)h∗
1P|qSq = |(1 − P)z6u4h1P|qSq = o(− ln η)

since z6u4 is very good by Prop. 3.4 and Prop. 3.2.
In the following we will only consider h1 restricted to I2 and show |(1− P)h1P|qSq =

o(− ln η). Exactly the same argument also shows that h1 restricted to−I2 verifies similar
inequality.

Denote by an = ∫

I2
h1zndz, n ≥ 0. Consider the function h2(z) = ∑

n≥0 anz
−n−1

on the circle. We will write h2 as a sum of three functions. Note that h1zn is analytic in
the unit disk except along the branch cut. We will write the

∫

I2
h1zndz as the integral of

h1zn on three paths on the z plane. To describe these paths, note that we will be doing
integrals in a small neighborhood of 1 when η is close to 0. In this small neighborhood
the map z → z1 = eiηz2 is certainly one to one. Hence it is enough to describe these
paths under the map z → z1 = eiηz2.

The imagine of these three paths are easier to describe in terms of z1 = eiηz2 on the
z1 plane: first the path on the upper half of z1 plane with |z1 − cos η| = sin η from eiη

to cos η − sin η; We denote this quarter of the circle by Ĵ1.
The second path is along part of the branch cut [cos η−sin η, cos η], and then turning

in the opposite direction along the same closed interval. We denote this interval by Ĵ2.
The last part is in the lower half of z1 plane from cos η − sin η to e−iη, and we denote
this quarter of the circle by Ĵ3. See Figure 2 for the image of the three paths on the z1
plane. In Figure 2 points 2, 3 correspond to cos η − sin η, cos η respectively on the z1
plane. The small arc part of the unit circle from e−iη to eiη is the image of I2 on the z1
plane. We will denote by J1, J2, J3 the pre-images of Ĵ1, Ĵ2, Ĵ3 on the z plane.

3.3.1. The part from Integral Along a Quarter of a Circle Let us first show that bn =
∫

J1
h1zndz = O(n−2). Note that h1 is equal to 0 at z1 = eiη.

cos η − sin η +
1

cos η − sin η
= 2 + η2 + o(η2)

Recall that

h1 =
1
2 (z1 + z−1

1 ) − cos η

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1
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eiη

2 3

e−iη

Ĵ1

Ĵ2

Ĵ3

Fig. 2. Image of a contour

When z1 = cos η − sin η and η is sufficiently close to 0, we have z1 ∼ 1 − η −
1
2η

2, cos η ∼ 1 − 1
2η

2. It follows that 1
2 (z1 + z−1

1 ) − cos η ∼ η2, 1 − z1 cos η ∼ η,
z1 − cos η ∼ η, z1 − (cos η)−1

∼ η, | cos η − sin η| ≤ 1 − 1
2η,

we conclude that the value of h1zn at z1 = z2eiη = cos η − sin η is bounded by an
absolute constant multiplied by

η(1 − η

2
)
n
2

We need the following:

Lemma 3.6. (1 − η)nη = O(n−1) uniformly in ∀0 < η < 1.

Proof. Let f (η) = (1 − η)nη. Note that f (0) = f (1) = 0, and so the maximum of
f is attained at the critical point of f . Let f ′ = (1 − η)n − nη(1 − η)n−1 = 0 we get
η = 1

n+1 , and so the maximum of f is

(1 − 1

n + 1
)n

1

n + 1

Note that

lim
n→∞(1 − 1

n + 1
)n = e−1

and the Lemma is proved. ��
By using integration by parts, h1 is equal to 0 at z1 = eiη, and Lemma 3.6 we have

∫

J1
h1z

ndz = O(n−2) − 1

n + 1

∫

J1
h′
1z

n+1dz

On J1 we shall need an estimate of derivatives of h1 similar to that of formula (22)
for h on the circle. Note that when η is small enough, |z| is close to 1 on J1. Since
|z1 − cos η| = sin η on J1, |z1 − (cos η)−1| ∼ η when η is sufficiently small, and hence
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|m1(z2)| = | z1 cos η−1
z1−cos η

| is close to 1 when η is sufficiently small. Now the comments
before formula (22) applies verbatim, and we find that h′

1z
n is O(1) on the boundary of

J2, and
∫

J1
h1z

ndz = O(n−2) − 1

(n + 1)(n + 2)

∫

J1
h′′
1z

n+2dz

Note that
∫

J1
|h′′

1| ∼

∫ η

0

η2

η3
dθ = O(1)

we have shown that
∫

J1
h1z

ndz = O(n−2)

Similarly we have
∫

J3
h1z

n = O(n−2)

3.3.2. The part from Integrals Along the Branch cut Set cn := ∫

J2
h1zndz. Since u

changes signs from the upper part of the branch cut to the lower part, we should actually
consider 2cn . But since our estimate is up to multiplication by a positive constant, we
can ignore this constant 2 in the following. We need to show h3(z) := ∑

n≥0 cnz
−n−1

is good.
Since |(1 − P)h3P|qSq = |Ph∗

3(1 − P)|qSq , We will use inequality (24) for h∗
3.

Let f̂n(t) = Fn ∗ h∗
3, and fn(t) = f̂n

∗
. Then

fn(t) =
∫

J2

∑

j≥1

h1z
j−1F( j/n)e−2π i j t dz

Note that z1 = z2eiη, z = e−iη/2√z1, dz = e−iη/2

2
√
z1
dz1, and

fn(t) =
∫ cos η

cos η−sin η

1
2 (z1 + z−1

1 ) − cos η

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1

∑

j≥1

[√z1e
−iη/2] j F( j/n)e−2π i j t 1

2z1
dz1

Set t1 = −t − η
4π . Note we have

∫

−1/2≤t≤1/2
| f̂n(t)|pdt =

∫

−1/2≤t≤1/2
| fn(t)|pdt =

∫

−1/2≤t1≤1/2
| fn(t)|pdt

where the second equality follows since fn(t) is a function of t with period 1.
We need to estimate

∫

−1/2≤t1≤1/2 | fn(t)|pdt . On J2,

√

z1 − cos η

z1 − (cos η)−1 = O(1),
1

2
(z1 + z−1

1 ) − cos η = O(η2)
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and
∫ cos η

cos η−sin η

1

1 − z1 cos η
dz1 = O(− ln η)

When η is sufficiently small we have 1
2z1

≤ 1.

Note that
∑

j≥1[
√
z1e−iη/2] j F( j/n)e−2π i j t = ∑

j≥1 F( j/n)e2π i j t̂ with t̂ = t1 +
s
2π , s = −i 12 ln z1, and on J2, 1

2 ln z1 < 0. When −1/2 ≤ t1 ≤ 1/2 , apply Lemma 2.5

to
∑

j≥1 F( j/n)e2π i j t̂ , we have that up to O(n−N ) term for any N > 0, we can replace
fn(t) by

gn(t1) =
∫ cos η

cos η−sin η

1
2 (z1 + z−1

1 ) − cos η

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1 nFF(−n(t1 +
s

2π
))

1

2z1
dz1

where s = −i 12 ln z1. We will choose N large enough such that

∞
∑

m=0,n=2m
n

∫

|t1|≤ 1
2

| fn(t)|pdt = O(1) +
∞
∑

m=0,n=2m
n

∫

|t1|≤ 1
2

|gn(t1)|pdt1

Now it is sufficient to evaluate
∑∞

m=0,n=2m n
∫

|t1|≤ 1
2
|gn(t1)|pdt1.

Note that by inequality (25)

|FF(−n(t1 +
s

2π
))| ≤ CN

e
n
2 ln(z1)

1 + nN (|t1 + s
2π |))N ,∀N ≥ 0

where the constant CN depends on N and F .
It follows that when η is sufficiently small

|gn(t1)| ≤ n
∫ cos η

cos η−sin η

| 12 (z1 + z−1
1 ) − cos η|

1 − z1 cos η

√

z1 − cos η

z1 − (cos η)−1

CN
e
n
2 ln(cos η)

(1 + nN (|t1| + − ln(cos η)
2π ))N

dz1

We note that the exponential decay factor e
n
2 ln(cos η) is due to the fact that the branch

cut is inside the unit disk.
Recall that on J2,

√

z1 − cos η

z1 − (cos η)−1 = O(1),
1

2
(z1 + z−1

1 ) − cos η = O(η2)

and
∫ cos η

cos η−sin η

1

1 − z1 cos η
= O(− ln η)

It follows that

|gn(t1)| ≤ CNn(− ln η)η2
e
n
2 ln(cos η)

1 + nN (|t1| + − ln(cos η)
2π )N

(26)



Asymptotic Analysis of von Neumann Entropy in Conformal Field Theory 1469

To evaluate
∫

−1/2≤t1≤1/2 |gn(t1)|pdt1, t1 = t − η
4π , we break this integral into two

parts. Set δ := − ln(cos η). First we evaluate
∫

|t1|≤δ

|gn(t1)|pdt1

Choose N = 1 in (26). Since p < 1 we have
∫

|t1|≤δ
|gn(t1)|pdt1 ≤ C1η

2p

(− ln η)pδ1−pe−δ n
2 p

Hence

∞
∑

m=0,n=2m
n

∫

|t1|≤δ

|gn(t1)|pdt1 ≤ C1

∞
∑

m=0,n=2m
nη2p(− ln η)pδ1−pe−δ n

2 p

Note that η2 = O(δ) and by Lemma 3.10 we have proved that

∞
∑

m=0,n=2m
n

∫

|t1|≤δ

|gn(t1)|pdt1 = O((− ln η)p)

Next we evaluate
∫

1
2≥|t1|≥δ

|gn(t1)|pdt1. This time we choose N in (26) such that
1 + p > Np > 1. Note that when η is small enough we have

∫

1
2≥|t1|≥δ

|t1|−Npdt1 ≤ 2δ1−Np

We get

∞
∑

m=0,n=2m
n

∫

1
2≥|t1|≥δ

|gn(t1)|pdt1 ≤ 2CN

∞
∑

m=1,n=2m
n1+p−Npη2p(− ln η)pδ1−Npe−δ n

2 p

Note that η2 = O(δ) and by Lemma 3.10 we prove that

∞
∑

m=0,n=2m
n

∫

1
2≥|t1|≥δ

|gn(t1)|pdt1 = O((− ln η)p)

By inequality (24) we have proved

|(1 − P)h3P|pSp = O((− ln η)p),∀0 < p < 1.

Putting together these three parts from Sects. 3.3.1 and 3.3.2, and use Lemma 2.3,
we prove the following Theorem:

Theorem 3.7. If 2/3 < p < 1, then

|(1 − P)hP|pSp = O((− ln η)p), |Ph(1 − P)|pSp = O((− ln η)p)

Remark 3.8. Though the above theorem is sufficient for our purpose, we can actually
show that ||(1− P)hP||1 = O(1). It is an interesting question to see if one can improve
the above theorem to show that h is very good.
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Corollary 3.9. If 2/3 < p < 1, then

|(1 − P)ghP|pSp = O((− ln η)p), |Phg(1 − P)|pSp = O((− ln η)p)

Proof. By definition

gh = z2 + u2

16u2z2
(z2 − u2)χI2∪−I2 +

1

2
h

The corollary follows from Th. 3.7 and Proposition 3.4, Prop. 3.5 and Prop. 3.2. ��
Lemma 3.10. Assume that x > 0, p > 0, δ > 0. Then

∑∞
m=0 2

mxe−2mδpδx = O(1) when δ → 0.

Proof. Let F(y) := yxe−yp. Then limy→0 F(y) = 0 = limy→∞ F(y). The only
critical point of F(y) is at y = x/p and the maximum of F(y) is F(x/p) < ∞. F is
increasing when y < x/p and decreasing when y > x/p.

It follows that

∞
∑

m=0

2mxe−2mδpδx ≤ 2F(x/p)δx +
∫ ∞

0
2wx e−2wδpδxdw

Set 2wδ = w1, and since x > 0 we have
∫ ∞

0
2wx e−2wδpδxdw =

∫ ∞

δ

wx−1
1 e−w1 p 1

ln 2
dw1 = O(1)

and the Lemma follows.

3.4. Estimation of Entropy. Since f0(PgP), P0 f (g)P are not trace class operators, but
f0(PgP)−P f0(g)P is, this makes it very delicate to show that S(F, η)− tr( f0(PgP)−
P f0(g)P) is small. This is proved in several steps in this section.

We begin this section with a generalization of Lemma 2.2 in [38].

Lemma 3.11. Suppose that R1(z), R2(z), z > 0, V are bounded operators, and W =
R1(z)V R2(z). Assume that as z → 0, ||R1(z)|| ∼

1
zt1 , ||R2(z)|| ∼

1
zt2 , ||W || ∼

1
zt0 ,

where t0, t1, t2 are positive. Let 0 < σ < 1. Then

||W ||1 ≤ ||W ||1−σ ||R1||σ ||R2||σ |V |σSσ
∼

1

z(t0(1−σ)+(t1+t2)σ )
|V |σSσ

Proof. First by (6)
||W ||1 = |||W |1−σ |W |σ ||1 ≤ ||W ||1−σ |||W |σ ||1
Note that by (4) sn(R1V R2) ≤ ||R1||sn(V )||R2||, and so sn(R1V R2)

σ ≤ ||R1||σ
sn(V )σ ||R2||σ and the Lemma follows. ��

In our applications in this section 0 ≤ t0 ≤ 2, 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1. So the
maximum of t0(1−σ)+ (t1 + t2)σ ) is 2. There are two different cases that are important
in the following: The first case is when we need t0(1− σ) + (t1 + t2)σ < 2 to make sure
our integral is convergent: in this case if we can manage to find one of the ti , i = 0, 1, 2
which do not take their maximal value then we will achieve our goal. The second case is
when 0 ≤ t0 ≤ 1, 0 ≤ t1 + t2 ≤ 1. In this case the maximum of t0(1−σ)+(t1 + t2)σ ≤ 1,
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and we need to get t0(1− σ) + (t1 + t2)σ < 1. Again this can be done if we can manage
to get t0 or t1 + t2 to take values less than their allowed maximum , then we can make
sure that our integral is convergent. We will see three different such “savings" of the
exponents in the following.

First we will use an integral representation for f0(T ) (cf. [7]).

Lemma 3.12. Suppose 0 ≤ T ≤ 1 is an operator. Then

f0(T ) =
∫ ∞

1
2

2β

β + 1
2

˜T

z + ˜T
dβ

where ˜T = T (1 − T ), z = β2 − 1
4 .

Proof. Using Fundamental Theorem of Calculus one checks that if 0 ≤ x ≤ 1,

f0(x) =
∫ ∞

1
2

2β

β + 1
2

x(1 − x)

β2 − 1
4 + x(1 − x)

dβ

and the Lemma follows from functional calculus for self-adjoint operators. ��
Let A = PP12P, ˜A = PP12P(1 − PP12P). See Th. 2.1 for definition of P12.
˜B1 = Pg2P − (PgP)2, ˜B = PgP − (PgP)2.
Note that since P12 is a projection, ˜A = PP12P(1− PP12P) = PP12(1− P)P12P .

By Prop. 3.5 and Th. 3.7 of [25] ˜A is of trace class. Similarly ˜B1 if of trace class but ˜B
is not.

By definition 2.2 we have

S(F, η) = τ(P12(η), f0) = tr( f0(PAP))

Lemma 3.13.

|˜B1 − ˜A|qSq = O((− ln η)q), 2/3 < q < 1

Proof. Note that since P12 is a projection, ˜A = PP2
12P − (PP12P)2 = PP12(1 −

P)P12P . Also ˜B1 = Pg(1 − P)gP .
So we have

˜B1 − ˜A = −PhR(1 − P)P12P − Pg(1 − P)hRP

Note [R, P] = 0, and Pg(1− P)hRP = Pgh(1− P)RP + Pg[1− P, h]RP . Note
that [1 − P, h] = −[P, h] = (1 − P)hP − Ph(1 − P) so Th. 3.7 applies.

By Th. 3.7, Cor. 3.9 and Prop. 3.2 the lemma is proved. ��
Note that

˜A

z + ˜A
− ˜B1

z + ˜B1

= z × 1

z + ˜A
(˜B1 − ˜A)

1

z + ˜B1

Apply Lemma 3.11 for W = 1

z+˜A
− 1

z+˜B1
= 1

z+˜A
(˜B1 − ˜A) 1

z+˜B1
, with t0 = 1, t1 =

t2 = 1, we have

|| ˜A

z + ˜A
− ˜B1

z + ˜B1

||1 ≤ C |˜B1 − ˜A|σSσ

1

zσ
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It follows that by Lemma 3.13
∫ ∞

1/2
|tr( 2β

β + 1/2
(

˜A

z + ˜A
− ˜B1

z + ˜B1

))|dβ ≤ C
∫ ∞

1/2

1

zσ
× O((− ln η)σ )

Recall that z = β2 − 1/4, and so
∫ ∞
1/2

1
zσ = O(1) if 1 > σ > 1/2. It follows that

S(F, η) −
∫ ∞

1/2
tr(

2β

β + 1/2

˜B1

z + ˜B1

)dβ = O((− ln η)σ ), 2/3 < σ < 1 (27)

where S(F, η) is the first term in above integral by Lemma 3.12.
Next we estimate

∫ ∞

1/2
tr(

2β

β + 1/2

˜B1

z + ˜B1
)dβ − τ(g, f0)

First we introduce some notations that will simplify writing. These notations will
only be used in this section.

Let X = PgP − (PgP)2,Y := ˜B1 = Pg(1 − P)gP. X − Y = P(g − g2)P =
Ph21P, h1 = ih. h∗

1 = h1. Here h is as in Th. 2.1. Note that X ≥ 0,Y ≥ 0.

h1Y = h1Pg(1 − P)gP = [h1, P]g(1 − P)gP + Ph1g(1 − P)gP

. It follows from Th. 3.7, Cor. 3.9 and Prop. 3.2 that

|h1Y |qSq = O((− ln η)q), 2/3 < q < 1

Recall by definition

τ(g, f0) =
∫ ∞

1/2

2β

β + 1/2
tr

(

X

X + z
− P

W

W + z
P

)

The estimate of
∫ ∞

1/2

2β

β + 1/2
tr(

˜B1

z + ˜B1
)dβ − τ(g, f0)

reduces to estimate

Y

Y + z
− (

X

X + z
− P

W

W + z
P)

where W = h21.
As a first step we estimate

X

X + z
− P

W

W + z
P = zP

1

X + z
(X − PW )

1

W + z
P

We have X − PW = Y + PW P − PW .
First we need a simple Lemma:

Lemma 3.14. If S is a positive operator, and T T ∗ ≤ S, z > 0, then

|| 1

z + S
T || = ||T ∗ 1

z + S
|| ≤ 1√

2z
1
2
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Proof. Since ||Q|| = ||Q∗||, it is sufficient to prove

|| 1

z + S
T || ≤ 1√

2z
1
2

We have

1

z + S
T T ∗ 1

z + S
≤ 1

z + S
S

1

z + S
≤ 1

2z

Hence

|| 1

z + S
T ||2 = || 1

z + S
T T ∗ 1

z + S
|| ≤ 1

2z

and the Lemma is proved. ��
Let us show that

∫ ∞

1/2
z

2β

β + 1/2
tr(P

1

X + z
(PW P − PW )

1

W + z
P)dz = O((− ln η)σ )

We will apply Lemma 3.11 with R1 = 1
X+z , V = PW P − PW, R2 = 1

W+z P . It is
clear that t1 = t2 = 1, and we need choose t0 small enough. The key observation is that

R1V R2 = 1

X + z
(Ph1h1P)

1

W + z
P − 1

X + z
PW

1

W + z
P

and since X ≥ Ph21P , from Lemma 3.14 we have

|| 1

X + z
(Ph1h1P)

1

W + z
P|| ≤ 1√

2z1/2+1

It is also clear that

|| 1

X + z
PW

1

W + z
P|| ≤ 1

z

and we achieve our goal with

||R1V R2|| ≤ C
1

z3/2

Now we can apply Lemma 3.11 with t0 = 3/2, t1 = t2 = 1 to obtain

|ztr(R1V R2)| ≤ 1

z
1+σ
2

|||V |σ ||1

Since h21 = −h2, By Th. 3.7 we get

∫ ∞

1/2

2β

β + 1/2
tr(

1

X + z
(Ph1h1P)

1

W + z
P − 1

X + z
PW

1

W + z
P)dβ

= O((− ln η)σ )), 2/3 < σ < 1 (28)
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Let us consider

P
1

X + z
Y (1 − W

z +W
)P

We write

P
1

X + z
Y

W

z +W
P = P

1

X + z
Pg(1 − P)(1 − P)gPh1

h1
z + h21

P

and apply Lemma 3.11 with R1 = P 1
X+z Pg(1 − P), V = (1 − P)gPh1, R2 = h1

z+h21
P

Note that by Lemma 3.14 we have

||R1|| ∼ z−1/2, ||R2|| ∼ z−1/2, ||R1V R2|| ∼ z−1/2

We have t0 = 1/2, t1 = t2 = 1/2, again with savings on exponents. We have

||P 1

X + z
Y

W

z +W
P||1 ≤ C |(1 − P)gPh1|σSσ

1

z
1
2 +

σ
2

Note that |(1 − P)gPh1|σSσ
≤ |(1 − P)gh1P|σSσ

+ ||(1 − P)g|||[P, h1]|σSσ

By Th. 3.7 and Cor. 3.9, the same argument as above shows that
∫ ∞

1/2

2β

β + 1/2
tr

(

P
1

X + z
Y

W

z +W
P

)

dβ = O((− ln η)σ ), 2/3 < σ < 1 (29)

Finally we are left with
(

1

z + Y
− 1

z + X

)

Y = 1

z + X
(z + X − z − Y )

1

z + Y
Y = 1

z + X
PW P

Y

z + Y

By choosing R1 = 1
z+X Ph1, V = h1Pg(1 − P), R2 = (1 − P)gP 1

z+Y and use
Lemma 3.14 we find that t0 = 1/2, t1 = t2 = 1/2, again with savings as the preceding
case to complete the proof that

∫ ∞

1/2

2β

β + 1/2
tr

((

1

Y + z
− 1

z + X

)

Y

)

dβ = O((− ln η)σ ), 2/3 < σ < 1 (30)

To summarize, we first prove that

S(F, η) −
∫ ∞

1/2
tr(

2β

β + 1/2

˜B1

z + ˜B1
)dβ = O((− ln η)σ ), 2/3 < σ < 1

which is equation (27).
Next we estimate

∫ ∞

1/2

2β

β + 1/2
tr(

˜B1

z + ˜B1
)dβ − τ(g, f0)

In addition to multiplication by 2β
β+1/2 , the integrand in the above integral is

Y

Y + z
−

(

X

X + z
− P

W

W + z
P

)
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where W = h21. We show that

X

X + z
− P

W

W + z
P = zP

1

X + z
(Y + PW P − PW )

1

W + z
P

and the integral corresponds to the integrand

zP
1

X + z
(PW P − PW )

1

W + z
P

is O((− ln η)σ ), 2/3 < σ < 1 as in equation (28).
Then we show the integral corresponds to the integrand

P
1

X + z
YW

1

W + z
P

is O((− ln η)σ ), 2/3 < σ < 1 as in equation (29). This shows that up to O((− ln η)σ ),

2/3 < σ < 1, the integrand ( X
X+z − P W

W+z P) can be replaced by − 1
z+X Y . And fi-

nally we show that the integral corresponds to the integrand ( 1
z+Y − 1

z+X )Y is also
O((− ln η)σ ), 2/3 < σ < 1 as in equation (30).

So we have proved the following theorem:

Theorem 3.15.

S(F, η) − τ(g, f0) = O((− ln η)σ ), 2/3 < σ < 1

where S(F, η) and τ(g, f0) are defined as in definition 2.2.

3.5. Upper Bound for Entropy. Th. 3.15 reduce the estimation of S(F, η) to τ(g; f0).
f0(PgP) − P f0(g)P is called truncated Wiener-Hopf operators in [21]. There is a re-
markable formula for τ(g; f0) going back to H.Widom (cf. [21] and references therein).
The more general version that we will use can be found in [37] and [21]. To describe
this formula, we recall some basic definitions from [37].

For any complex valued function f : C → C and s1, s2 define

U (s1, s2; f ) =
∫ 1

0

f ((1 − t)s1 + ts2) − ((1 − t) f (s1) + t f (s2))

t (1 − t)
dt

and introduce

B(a; f ) = 1

8π2

∫ ∫

U (a(ψ1), α(ψ2); f )

|ψ1 − ψ2|2 dψ1dψ2

where a is another function a : C → C.
The quantity B(a; f ) is an object that appears very often in the theory ofWiener-Hopf

operators.
We denote by

Bε(a; f ) := 1

8π2

∫ ∫

|ψ1−ψ2|<ε

U (a(ψ1, ψ2; f )

|ψ1 − ψ2|2 dψ1dψ2
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and

Bε1,ε2(a; f ) := 1

8π2

∫ ∫

ε1<|ψ1−ψ2|<ε2

U (a(ψ1, ψ2; f )

|ψ1 − ψ2|2 dψ1dψ2

B≥ε(a; f ) := 1

8π2

∫ ∫

ε≤|ψ1−ψ2|
U (a(ψ1, ψ2; f )

|ψ1 − ψ2|2 dψ1dψ2

Now we will use Cayley transformation to identify the unit circle with the extended
real line, and to think our function g as a function ĝ on the real line, that is ĝ(x) =
g(C(x)). Recall Cayley transform V (x) = i(x + i)/(x − i), which carries the (one point
compactification of the) real line onto the circle and the upper half plane onto the unit
disk. It induces a unitary map

U f (x) = π− 1
2 (x − i)−1 f (V (x))

of L2(S1, C) onto L2(R, C). The operator U carries the Hardy space on the circle onto
the Hardy space on the real line (cf. Chapter one of [30]). We will use the Cayley
transform to identify intervals on the circle with one point removed to intervals on the
real line. Note that ĝ ∈ W 2,∞, and has compact support.

The length function is L(z) = |z2 − e−iη cos η|. Notice that |L(z1) − L(z2)| ≤
|z21 − z22| ≤ 2|z1 − z2|.

Define scale function τ and amplitude function v ( cf. Sect. 3 of [21]) as follows:

τ(x) = 1

5
L(C(x)), v(x) = (1 + |x |)−2

Note that

C(x) = i
x + i

x − i

|C ′(x)| = | 2

(x − i)2
| ≤ 2, |C ′′(x)| = | 4

(x − i)3
| ≤ 4

|τ(x1) − τ(x1)| ≤ 2

5
|C(x1) − C(x2)| ≤ 4

5
|x1 − x2|

One can check directly from (23) that

|ĝ(x)| ≤ Cv(x), |ĝ(k)(x)| ≤ Ck
v(x)

τ (x)k
, k = 1, 2

where C,Ck are constants. Note that the minimum of τ(x) is τmin = 1− cos η ∼ η2.
Our ĝ ∈ W 2,∞, has support in [−2, 2] and verifies conditions 4.1 in [21]. Hence Th.

3.2 in [37] applies to ĝ.

Lemma 3.16.

τ(g; f0) = B(ĝ; f0)

Proof. By Prop. 4.1 of [21] τ(g; f ) = B(ĝ; f ) if f ∈ C4
0(R). Now choose a sequence

of smooth functions fn to approximate f0 in the norm defined in Th. 3.2 of [37], and
our lemma follows from Prop. 2.2 of [21] and Th. 3.2 of [37]. ��
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By Th. 6.1 of [37] we have

|B(ĝ; f0)| ≤ C
∫

v(x)

τ (x)
dx

for some constant C > 0.
Let us evaluate

∫

v(x)

τ (x)
dx

Change coordinate to z = C(x) = eiθ , we have

∫

v(x)

τ (x)
dx ≤ C

∫ 2π

0

1

|z2 − e−iη cos η|dθ = 2C
∫ 2π

0

1

|z − e−iη cos η|dθ

By Prop. 1.4.10 of [35] we have

∫

1

|z − e−iη cos η|dθ ∼ − ln(1 − cos2(η)) ∼ −2 ln η

Hence

|τ(C1)| ≤ C(− ln η)

for some constant C > 0.
By Th. 3.15 and Lemma 3.16 we have therefore proved

Corollary 3.17. S(F, η) ≤ C(− ln η) for some constant C > 0 when η → 0, where
S(F, η) is as in definition 2.2.

Remark 3.18. In fact we can write

B(ĝ; f0) = Bη2(ĝ, f0) + Bη2,η(ĝ, f0) + B≥η(ĝ, f0)

By Section 9 of [21] we have Bη2(ĝ; f0) = O(1), and B≥η(ĝ; f0) = −1
6 ln η+O(1).

Unfortunately it is not clear if one can show Bη2,η(ĝ; f0) = o(− ln η) since our function
ĝ is not smooth as the functions considered in Section 9 of [21]. If Bη2,η(ĝ, f0) =
o(− ln η), then it follows that

S(F, η) = 1

6
(− ln η) + o(− ln η)

as η → 0.
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3.6. Continuity. Note that in general von Neumann entropy does not behave as well as
relative entropy. It is therefore interesting to examine the properties of S(F, η) as func-
tions of η using our explicit formula. In this section we prove that S(F, η) is continuous
and limη→π S(F, η) = 0. First we have the following Lemma:

Lemma 3.19. Suppose f (z, v) = ∑

n fn(v)zn, | fn(v)| ≤ C |n|−α with α > 3
2 where

C only depends on the neighborhood V of v0. In addition assume that for each n �= 0,
limv→v0 fn = 0. Then limv→v0 |P f (1 − P)|pSp = 0, limv→v0 |(1 − P) f P|pSp = 0, 1 >

p > 1
α− 1

2
.

Proof. Note that P( f −C)(1− P) = P f (1− P) for any constantC . That is why n �= 0
in the Lemma. We prove limv→v0 |P f (1 − P)|pSp = 0. The proof of limv→v0 |(1 −
P) f P|pSp = 0 is similar. Given any ε > 0. We first write f = fN + f≥N where

fN = ∑

|n|≤N fn(v)zn .
As in [18],

P f (1 − P)(zn) =
∑

k≥0

fk−n(v)zk = ξ−n, n < 0 .

It follows that

P f (1 − P) =
∑

n<0

(· , zn)ξ−n

||P f (1 − P)||pSp ≤
∑

n<0

||ξ−n||p

where (· , zn) is the inner product with zn .

Note that ||ξ−n|| = ( ∑

k≥0 | fk−n(v)|2) 1
2 = O(|n|−α+ 1

2 ), by choosing N sufficiently
large we have |P f≥N (1 − P)|pSp < ε/2. Since

|P fN (1 − P)|pSp ≤ 2N (
∑

1≤|n|≤N

| fn(v)|)p

By assumption we can choose v close enough to v0 such that

|P fN (1 − P)|pSp ≤ ε/2

and the Lemma is proved. ��
Proposition 3.20. Suppose T1, T2 are projections, and let γ := |P(T1 −T2)(1− P)|pp +
|(1 − P)(T1 − T2)P|pp < ∞, for some 0 < p < 1. Then f0(PT1P) − f0(PT2P) is
trace class and

|tr( f0(PT1P) − f0(PT2P))| ≤ Cpγ

where Cp is a constant which only depends on p.
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Proof. By inequality (7) we can assume that p > 1/2.
The idea of the proof is already present after Lemma 3.13.
By using Lemma 3.12

f0(PT1P) − f0(PT2P) =
∫ ∞

1/2
(

2β

β + 1/2
(

P̃T1P

z + P̃T1P
− P̃T2P

z + P̃T2P
))dβ

Where ˜T := T (1 − T ). Apply Lemma 3.11 for W = 1
z+P̃T1P

− 1
z+P̃T2P

= 1
z+P̃T1P

(P̃T2P − P̃T1P) 1
z+P̃T2P

, with t0 = 1, t1 = t2 = 1 exactly as after Lemma 3.13, we

have
∥

∥

∥

∥

∥

P̃T1P

z + P̃T1P
− P̃T2P

z + P̃T2P

∥

∥

∥

∥

∥

1

≤ C |P̃T1P − P̃T2P|pSp
1

z p

Recall that z = β2 − 1/4, and so
∫ ∞
1/2

1
z p = O(1) if p > 1/2. Finally notice that

since T1 is a projection,

PT1P(1 − PT1P) = PT 2
1 P − (PT1P)2 = PT1(1 − P)T1P

Denote by T := T1−T2. Then we have T1 = T +T2, and PT1(1− P)T1P− PT2(1−
P)T2P = PT2(1 − P)T P + PT (1 − P)T1P .

It follows that

|P̃T1P − P̃T2P|pSp ≤ γ

and the Proposition is proved. ��
Theorem 3.21. S(F, η) is a continuous function of η ∈ (0, π) and limη→π− S(F, η)

= 0.

Proof. Let η = π − φ, and assume that φ → 0.
First from the formula (22) we see that both g′′, h′′ are bounded, up to addition

of constants, by constants multiplied by φ2

L3 where L is the distance between z2 and

e−iη cos η. Note that as φ → 0, the smallest L is reached at end points of I2 and this
value is ∼ φ. If we use angle θ between points in I2 and the end points of I2 where L
attains its minimum as an integration parameter, then we have as φ → 0

∫

I2
|h′′|dθ ∼

∫ π

0

φ2

(θ + φ)3
dθ = O(1)

Similarly
∫

I2
|g′′|dθ ∼

∫ π

0

φ2

(θ + φ)3
dθ = O(1)

The same is also true for the integrals of h′′, g′′ over −I2.
It follows by integration by parts that the Fourier coefficients of h, g are of O(n−2)

as n → ∞. Moreover for n ≥ 0 and remember h is an odd function we have

2
∫

I2
h(z)z2ndz =

∫

I2∪−I2
h(z)z2ndz = −

∫

J∪−J
h(z)z2ndz
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where J is a path connecting end points of I2 and −I2 with |eiηz2 − cos η| = sin(φ),
since h(z)z2n is analytic in the region bounded by I2 ∪ −I2 ∪ J ∪ −J . Here we have
used the fact that h is independent of the choice of analytical continuation of u and we
can choose branch cut of u which is outside the region bounded by I2 ∪ −I2 ∪ J ∪ −J .

It follows that for
∣

∣

∣

∣

∫

I2
h(z)z2ndz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

J
h(z)z2ndz

∣

∣

∣

∣

≤ Cφ

as φ → 0, where C is a constant. It is also clear that
∫

I2
h(z)z2ndz

is continuous in η. Since ih is real it follows all fourier coefficients of h goes to 0 when
φ → 0. Similarly since g − 1

2 is odd we have
∣

∣

∣

∣

∫

I2
(g − 1

2
)z2ndz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

J
(g − 1

2
)z2ndz

∣

∣

∣

∣

→ 0

as φ → 0. Since on I1, g = 1, | ∫I1 z2ndz| = O(φ). Moreover since g is real, it follows

that all fourier coefficients of (g − 1
2 ) goes to 0 when φ → 0. By applying Lemma 3.19

(note that n �= 0 in Lemma 3.19 ) and Prop. 3.20 with T1 = P12(φ), T2 = 0 we
conclude that limη→π− S(F, η) = 0. To prove continuity, we observe if we fix a small
neighborhood V of η0 in (0, π), then on V we have |hn| ≤ Cn−2, |gn| ≤ Cn−2 where
C only depends on the neighborhood V . Since hn, gn are obviously continuous in η,
the continuity of S(F)(η) follows again by applying Lemma 3.19 and Prop. 3.20, with
T1 = P12(φ), T2 = P12(η0). ��
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