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Abstract: We provide strong evidence for the conjecture that the analogue of Kontse-
vich’s matrix Airy function, with the cubic potential Tr(�3) replaced by a quartic term
Tr(�4), obeys the blobbed topological recursion of Borot and Shadrin.We identify in the
quartic Kontsevich model three families of correlation functions for which we establish
interwoven loop equations. One family consists of symmetric meromorphic differential
forms ωg,n labelled by genus and number of marked points of a complex curve. We
reduce the solution of all loop equations to a straightforward but lengthy evaluation of
residues. In all evaluated cases, theωg,n consist of a part with poles at ramification points
which satisfies the universal formula of topological recursion, and of a part holomorphic
at ramification points for which we provide an explicit residue formula.

1. Introduction

This paper achieves decisive progress in the complete solution of a quartic analogue of
the Kontsevich model. The Kontsevich model [1] is a N × N Hermitian matrix model
obtained by deforming a Gaußian measure dμ0(�) with covariance

〈�(ei j )�(ekl)〉c = δilδ jk

λk + λl
(1.1)

(where (ekl) is the standard matrix basis and λ1, . . . , λN are positive real numbers
which we rename to E1, . . . , EN in this paper) by a cubic term exp( i

6Tr(�
3)). Under

‘quartic analogue’ we understand the deformation of the same Gaußian measure (1.1)
by a quartic term exp(−λ

4Tr(�
4)). The Kontsevich model proves a conjecture byWitten

[2] that the generating function of intersection numbers of tautological characteristic
classes on the moduli spaceMg,n of stable complex curves is a τ -function for the KdV
hierarchy. Thereby it beautifully connects several areas of mathematics and physics
such as integrable models, matrix models, 2D quantum gravity, enumerative geometry,
complex algebraic geometry and also noncommutative geometry.
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Some 15 years ago it was understood that the Kontsevich model is also a prime
example for a universal structure called topological recursion [3]. It starts with the
initial data (�,�0, x, ω0,1, B), called the spectral curve. Here x : � → �0 is a ramified
covering of Riemann surfaces, ω0,1 is a meromorphic differential 1-form on � regular
at the ramification points of x , and B the Bergman kernel, a symmetric meromorphic
bidifferential form on � × � with double pole on the diagonal and no residue. From
these initial data, topological recursion constructs a hierarchy {ωg,n} with ω0,2 = B
of symmetric meromorphic differential forms on �n and understands them as spectral
invariants of the curve.Other examples besides theKontsevichmodel (which is described
e.g. in [4, Sect. 6]) are the one- and two-matrix models [5], Mirzakhani’s recursions [6]
for the volume of moduli spaces of hyperbolic Riemann surfaces, recursions in Hurwitz
theory [7] and in Gromov-Witten theory [8].

This paper provides strong evidence that our quartic analogue of the Kontsevich
model is a prime example1 for blobbed topological recursion, an extension of topological
recursion developed by Borot and Shadrin [9]. In this setting the differential forms

ωg,n(..., z) = Pzωg,n(..., z) +Hzωg,n(..., z)

decompose into a part Pzωg,n with poles (in a selected variable z) at ramification points
of x : � → �0 and a partHzωg,n with poles somewhere else. ThePzωg,n are recursively
given by the universal formula (for simple ramifications)

Pzωg,n+1(I, z) =
∑

βi

Res
q→βi

Ki (z, q)

(
ωg−1,n+2(I, q, σi (q))

+
∑

g1+g2=g
I1�I2=I

(g1,I1) �=(0,∅) �=(g2,I2)

ωg1,|I1|+1(I1, q)ωg2,|I2|+1(I2, σi (q))

)
(1.2)

of topological recursion. Here I = {z1, . . . , zn} collects the other variables besides z,
the sum is over the ramification points βi of x defined by x ′(βi ) = 0. The kernel Ki (z, q)

is defined in the neighbourhood of βi by Ki (z, q) =
1
2

∫ q
σi (q)

B(z,q ′)
ω0,1(q)−ω0,1(σi (q))

, where σi �= id
is the local Galois involution x(q) = x(σi (q)) near βi . There is no general formula for
the other part Hzωg,n . The only requirement is that ωg,n = Pzωg,n + Hzωg,n satisfy
abstract loop equations [10]. The ωg′,n′ on the rhs of (1.2) contain both parts P andH.

This paper identifies theωg,n for the quartic analogue of theKontsevichmodel (which
is probably the most innovative step) and establishes loop equations for them and for
two families of functions interweaved with the ωg,n . These loop equations are very
complicated. We succeed in solving them for ω0,2, ω0,3, ω1,1 and ω0,4. The results are
remarkably simple and structured. We prove that, although our loop equations are much
more complicated than familiar equations of topological recursion, the solutions satisfy
exactly the blobbed topological recursion (1.2) in all four cases. This statement boils
down to equality of more than 10 rational numbers. This is unlikely a mere coincidence
so that we conjecture that the quartic analogue of theKontsevichmodel obeys exactly the
structures of blobbed topological recursion. In a subsequent work [11] we confirm the
conjecture for genus g = 0 (i.e. for allω0,n). The loop equations established in this paper
are shown in [11] to be equivalent to equations which express ω0,n+1(z1, . . . , zn,−z) in

1 Up to a small detail: we find a blob also for cylinder topology ω0,2 = B + φ0,2.
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terms of ω0,m+1(z1, . . . , zm,+z) with m ≤ n. Their solution is a residue formula which
implements blobbed topological recursion.

All these structures make the quartic analogue of the Kontsevich model a member of
the family of models associated with the moduli spaceMg,n of stable complex curves.

We summarise central steps which went into the result. The model under consider-
ation is the result of attempts to understand quantum field theories on noncommutative
geometries. These QFT models have a matrix formulation [12,13] which was a main
tool in establishing perturbative renormalisability in four dimensions [14] and vanishing
of the β-function [15]. Exact solutions of particular choices of these matrix models have
been established in [13] for a complex model and most importantly in [16,17] for a
quantum field theory limit of the Kontsevich model (completed much later in [18]).

Building on [15], one of us (RW)with H. Grosse proved in [19] that the planar 2-point
function of the Quartic Kontsevich Model satisfies a non-linear integral equation

(μ2+x+y)ZG(0)(x, y)

= 1 − λ

∫ �2

0
dt �0(t)

(
ZG(0)(x, y) ZG(0)(x, t) − ZG(0)(t, y) − ZG(0)(x, y)

t − x

)
.

(1.3)

Here �0 is the spectral measure of a Laplacian on the noncommutative geometry, λ the
coupling constant andμ2(�), Z(�) are renormalisation parameters to achieve existence
of lim�→∞ G(0)(x, t). For the purpose of this paper it is safe to set μ2 = 0 = Z − 1.
This equation is the first instance of a Dyson-Schwinger equation (or loop equation) in
the Quartic Kontsevich Model. In [20] a fixed point formulation of (1.3) was found from
which in the following years some qualitative results about the solution were deduced.
But in spite of considerable efforts, a solution of (1.3) remained out of reach for 9 years.
In 2018, one of us (RW) with E. Panzer found in [21] the solution of (1.3) for �0(t) = 1,
μ2 = 1 − 2λ log(1 + �2) and Z = 1. A year later, two of us (AH, RW) with H. Grosse
extended in [22] this solution to any Hölder-continuous �0 with

∫ ∞
0

dt
(1+t)3

�0(t) < ∞.

The limit of (1.3) back to a matrix measure �0(t) = 1
N

∑d
k=1 rkδ(t − ek), already

considered in [22], was understood by RW with J. Schürmann in [23] as a problem in
complex algebraic geometry. Also the next equation for the planar 2-point function of
cycle type (2, 0) was solved in [23].

The present paper is a large-scale extension of [22,23] to higher topological sec-
tors. It was already pointed out in [20,23] that, although all Dyson-Schwinger equa-
tions for higher topological sectors are affine equations, no solution theory for them
seemed to exist. We succeed in finding one. In Definition 2.3 we identify three families
Tq1,...,qm‖pq|, Tq1,...,qm‖p|q| and q1,...,qm of auxiliary functions for which we derive in
Sect. 2.3 loop equations. These have a graphical interpretation which we provide in
Appendix D. Knowing ... and T... permits a straightforward solution of all cumulants
G ... of the quartically deformed measure along the lines of [23]. Section 3 extends the
loop equations of Sect. 2.3 to functions of several complex variables. The solution for
the function 

(0)
2 (u, z) in Proposition 3.11 makes first contact with the Bergman kernel

of topological recursion. We describe in Sect. 4 how all equations can be solved by eval-
uation of residues. Doing this in practice can be a longer endeavour, as demonstrated in
Appendix G. The results strongly suggest that our auxiliary functions q1,... qm descent
from symmetric meromorphic differential forms ωg,m which satisfy the main Eq. (1.2)
of blobbed topological recursion. Moreover, we provide explicit residue formulae for
Hzωg,n(..., z).
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2. The Setup

2.1. Matrix integrals. Our aim is the algebraic solution of the quartic analogue of the
Kontsevich model, i.e. of a matrix model with the same weighted covariance as the
Kontsevich model [1] but with quartic instead of cubic deformation. We employ the
notation developed in [23] where further details are given.

Let HN be the real vector space of self-adjoint N × N -matrices and (E1, . . . , EN )

be pairwise different2 positive real numbers. Let dμE,0(�) be the probability measure
on the dual space H ′

N uniquely defined by

exp
(

− 1

2N

N∑

k,l=1

MklMlk

Ek + El

)
=

∫

H ′
N

dμE,0(�) ei�(M) , (2.1)

for any M = M∗ = ∑N
k,l=1 Mklekl ∈ HN where (ekl) is the standard matrix basis. We

deform dμE,0(�) by a quartic potential to a measure

dμE,λ(�) := dμE,0(�) e− λN
4 Tr(�4)

∫
H ′
N
dμE,0(�) e− λN

4 Tr(�4)
, (2.2)

where Tr(�4) := ∑N
j,k,l,m=1 �(e jk)�(ekl)�(elm)�(emj ) when extending the linear

forms via �(M1 + iM2) := �(M1) + i�(M2) to complex N × N -matrices.
The Fourier transform

Z(M) =
∫

H ′
N

dμE,λ(�) ei�(M) (2.3)

of the measure is conveniently used to organise moments

〈ek1l1 . . . eknln 〉 :=
∫

H ′
N

dμE,λ(�) �(ek1l1) · · · �(eknln )

= 1

in
∂nZ(M)

∂Mk1l1 · · · ∂Mknln

∣∣∣
M=0

and cumulants

〈ek1l1 . . . eknln 〉c = 1

in
∂n logZ(M)

∂Mk1l1 · · · ∂Mknln

∣∣∣
M=0

. (2.4)

As explained in [23], the cumulants (2.4) are only non-zero if (l1, . . . , ln) =
(kσ(1), . . . , kσ(n)) is a permutation of (k1, . . . , kn), and in this case3 the cumulant only
depends on the cycle type of this permutation σ in the symmetric group Sn . A non-
vanishing cumulant ofb cycles is thus of the form

〈
(ek11k12

ek12k13
· · · ek1n1k11 ) · · · (ekb1kb2 ekb2kb3 · · ·

2 This is important in the first sections. After extension to several complex variables in Sect. 3.1 we can
admit multiplicities.

3 This assumes that the ki are pairwise different.
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ekbnb k
b
1
)
〉
c and gives, after rescaling by appropriate powers of N , for pairwise different k j

i

rise to

Nn1+···+nb 〈(ek11k12ek12k13 · · · ek1n1k11 ) · · · (ekb1kb2 ekb2kb3 · · · ekbnb kb1 )
〉
c

=: N 2−b · G|k11 ...k1n1 |...|kb1 ...kbnb | .
(2.5)

The goal is to compute these ‘correlation functions’ G ... after (at this point formal)
expansionG ... = ∑∞

g=0 N
−2gG(g)

... , at least in principle. This was achieved in [22,23] for

G(0)
|k1k2| and in [23] forG

(0)
|k1|k2|. The results of [24] extend this solution to allG

(0)
|k1...kn |. But

starting withG(0)
|k11k12 |k21k22 |

andG(1)
|k1k2| a new structure arises which cannot be treated by the

methods developed so far. The present paper gives the solution and shows that precisely
these new structures provide the connection to theworld of topological recursion [3,4,9].

2.2. Dyson-Schwinger equations. The Fourier transform (2.3) satisfies the equations of
motion [23, Lemma 1+2]

1

i

∂Z(M)

∂Mpq
= iMqpZ(M)

N (Ep + Eq)
− λ

i3(Ep + Eq)

N∑

k,l=1

∂3Z(M)

∂Mpk∂Mkl∂Mlq
, (2.6)

1

N

∂Z(M)

∂Ep
=

( N∑

k=1

∂2

∂Mpk∂Mkp
+

1

N

N∑

k=1

G|pk| +
1

N 2G|p|p|
)
Z(M) . (2.7)

The first one can be converted into [23, Eq. (50)]

−N
N∑

k=1

(Ep − Eq)
∂2Z(M)

∂Mpk∂Mkq
=

N∑

k=1

(
Mkp

∂Z(M)

∂Mkq
− Mqk

∂Z(M)

∂Mpk

)
. (2.8)

For Ep �= Eq it is safe to divide by (Ep − Eq) to extract
∂2Z(M)

∂Mpk∂Mkq
, whereas ∂2Z(M)

∂Mpk∂Mkp

has to be taken from (2.7).

Example 2.1. For p �= q one has with Z(0) = 1

G|pq| = −N
∂2 logZ(M)

∂Mpq∂Mqp

∣∣∣
M=0

= −N
∂2Z(M)

∂Mpq∂Mqp

∣∣∣
M=0

= 1

Ep + Eq
− λN

Ep + Eq

N∑

k,l=1

∂2

∂Mlq∂Mqp

∂2Z(M)

∂Mpk∂Mkl

∣∣∣
M=0

.

The second line results when differentiating (2.6) with respect toMqp.We split the l-sum
into l = p where (2.7) is used and l �= p where (2.8) for q �→ l is inserted:

(Ep + Eq)G|pq| = 1 − λ
∂2

∂Mpq∂Mqp

[∂Z(M)

∂Ep
− Z(M)

( N∑

k=1

G|pk| +
1

N
G|p|p|

)]∣∣∣
M=0
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− λ

N∑

k=1

N∑

l=1
l �=p

∂2

∂Mlq∂Mqp

[Mkp
∂Z(M)
∂Mkl

− Mlk
∂Z(M)
∂Mpk

El − Ep

]∣∣∣
M=0

.

Inserting Z(M) = 1 − 1
N2

∑N
j,k=1

( N
2 G| jk|MjkMkj + 1

2G| j |k|Mj j Mkk
)
+ O(M4), the

differentiation yields the Dyson-Schwinger equation (DSE) for the 2-point function

(Ep + Eq)G|pq| =1 +
λ

N

∂G|pq|
∂Ep

− λG|pq|
( 1

N

N∑

k=1

G|pk| +
1

N 2G|p|p|
)

+
λ

N

N∑

l=1
l �=p

G|lq| − G|pq|
El − Ep

+
λ

N 2

G|q|q| − G|p|q|
Eq − Ep

. (2.9)

Example 2.2. For p �= q one has with Z(0) = 1

G|p|q| = −N 2 ∂2 logZ(M)

∂Mpp∂Mqq

∣∣∣
M=0

= −N 2 ∂2Z(M)

∂Mpp∂Mqq

∣∣∣
M=0

= − λN 2

Ep + Ep

N∑

k,l=1

∂2

∂Mlp∂Mqq

∂2Z(M)

∂Mpk∂Mkl

∣∣∣
M=0

.

The second line results when differentiating (2.6) taken at q �→ p with respect to Mqq .
We split the l-sum into l = p where (2.7) is used and l �= p where (2.8) for q �→ l is
inserted:

(Ep + Ep)G|p|q| = −λ
N∂2

∂Mpp∂Mqq

[∂Z(M)

∂Ep
− Z(M)

( N∑

k=1

G|pk| +
1

N
G|p|p|

)]∣∣∣
M=0

− λ

N∑

k=1

N∑

l=1
l �=p

N∂2

∂Mlp∂Mqq

[Mkp
∂Z(M)
∂Mkl

− Mlk
∂Z(M)
∂Mpk

El − Ep

]∣∣∣
M=0

.

Inserting Z(M) = 1 − 1
N2

∑N
j,k=1

( N
2 G| jk|MjkMkj + 1

2G| j |k|Mj j Mkk
)
+ O(M4), the

differentiation yields the Dyson-Schwinger equation for the (1+1)-point function

(Ep + Ep)G|p|q| = λ

N

∂G|p|q|
∂Ep

− λG|p|q|
( 1

N

N∑

k=1

G|pk| +
1

N 2G|p|p|
)

+
λ

N

N∑

l=1
l �=p

G|l|q| − G|p|q|
El − Ep

+ λ
G|qq| − G|pq|

Eq − Ep
. (2.10)

The arising repeated differentiations with respect to the Eq suggest to introduce:

Definition 2.3. Generalised correlation functions are defined for pairwise different
q j , psi by

Tq1,...,qm‖p11 ...p1n1 |p21 ...p2n2 |...|pb1 ...pbnb | := (−N )m∂m

∂Eq1 ...∂Eqm
G|p11 ...p1n1 |p21 ...p2n2 |...|pb1 ...pbnb | .
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Moreover, assume that for

q := 1

N

N∑

k=1

G|qk| +
1

N 2G|q|q|

there is a function F(E, λ) with q = −N ∂F
∂Eq

. Then functions q1,...,qm , symmetric in
their indices, are defined by

q1,...,qm := (−N )m−1∂m−1q1

∂Eq2 ...∂Eqm
+

δm,2

(Eq1 − Eq2)
2 , m ≥ 2 .

For the aim of the paper it will be sufficient to focus on the following special cases,
the generalised 2-point and 1 + 1-point functions:

Tq1,...,qm‖pq| := (−N )m∂m

∂Eq1 ...∂Eqm
G|pq| , Tq1,...,qm‖p|q| := (−N )m∂m

∂Eq1 ...∂Eqm
G|p|q| .

These functions will be considered as formal power series in 1
N2 ,

G =
∞∑

g=0

N−2gG(g) , T =
∞∑

g=0

N−2gT (g) ,  =
∞∑

g=0

N−2g(g) , (2.11)

where g plays the rôle of a genus.
It is well-known that the 2-point function G(g)

|pq| and the 1 + 1-point function G(g)
|p|q|

have an expansion into ribbon graphs, see [25] for the definition of those ribbon graphs
associated to the quartic Kontsevich model. The generalised correlation functions of
Definition 2.3 have a topological meaning as well, since the derivative ∂

∂Eqi
acts on

an internal edge and fixes it to Eqi . This operation is extensively discussed in [25] and
depends topologically on the labelling of the two faces adjacent to the edge. Let us briefly
sum up the major ideas on which the detailed graphical discussion in Appendix D will
build:

We consider genus-g Riemann surfaces X with b boundaries and m marked points.
We let χ = 2 − 2g − m − b be the Euler characteristic of X .

1. The (g)
q1,...,qm correspond to no boundary (b = 0) and m marked points;

2. The T (g)
q1,...,qm‖pq| correspond to b = 1 boundary and m marked points;

3. The T (g)
q1,...,qm‖p|q| correspond to b = 2 boundaries and m marked points.

The ribbon graphs, consisting of vertices, edges and faces, are embedded into these
Riemann surfaces. The faces carry a label from 1 to N , and we distinguish three types:

1. Internal faces whose labellings have to be summed over;
2. External faces in which at least one edge is part of the boundary (with fixed label);
3. Marked faces (with fixed label, too), where no edge is part of a boundary.

For the vertices, also three types show up:

1. 4-valent vertices in the interior, carrying the weight (−λ);
2. 1-valent vertices on the boundaries belonging to one (in G|p|q|) or two (in G|pq|)

external face(s);
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Fig. 1. The action of ∂
∂Eqi

on G(g)
|pq| (shown on the left, with b = 1 boundary and no marked point) turns an

inner face into a marked face with a square-vertex. The result of m such operations is depicted on the right; it
corresponds to a genus g-Riemann surface with one boundary (carrying two 1-valent vertices) and m marked
points. The operation is described in [25] in details

3. One square-vertex within every marked face (see Fig. 1).

Let us return to the actual aim of the paper: We will show in this paper that a com-
plexification of the(g)

... gives rise to meromorphic differentialsωg,n conjectured to obey
blobbed topological recursion [9]. This conjecture has been proved for g = 0 in [11].
In a supplement [25] we express the functions q1,...,qm as distinguished polynomials in
the correlation functionsG|...|, which themselves are quickly growing series in Feynman
ribbon graphs. Both results together imply that intersection numbers [9] are accessible
by a particular combination of graphs.

2.3. Dyson-Schwinger equations for generalised correlation functions.

Definition 2.4. For a set I = {q1, . . . , qm} we introduce:
• |I | = m, |∅| = 0.
• I, q := I ∪ {q} = {q1, . . . , qm, q}.
• I\q := I \ {q}, with I\q = ∅ if q /∈ I .

We let
∑

I1�I2=I be the sum over all disjoint partitions of I into two possibly empty
subsets I1, I2.

Equations for T... result by application of DI := (−N )m∂m

∂Eq1 ···∂Eqm
to (2.9) and (2.10) when tak-

ing Definition 2.3 into account. We will give three important types of Dyson-Schwinger
equations that will determine the recursive structure of our model:

Proposition 2.5. Let I = {q1, . . . , qm}. For pairwise different q j , p, q, the generalised
correlation functions T... and ... satisfy the following three types of Dyson-Schwinger
equations:

(1) The DSE determining the generalised 2-point function:

(
Eq + Ep +

λ

N

N∑

l=1
l �=p

1

El − Ep

)
TI‖pq| − λ

N

N∑

l=1
l /∈I,p

TI‖lq|
El − Ep

= δ0,|I | − λ

{ ∑

I ′�I ′′=I

I ′,pTI ′′‖pq| − 1

N

∂TI‖pq|
∂Ep

+
m∑

j=1

∂

∂Eq j

( TI\q j‖q j q|
Eq j − Ep

)
− 1

N 2

TI‖q|q| − TI‖p|q|
Eq − Ep

}
. (2.12)
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(2) The DSE determining the generalised 1+1-point function:

(
Ep + Ep +

λ

N

N∑

l=1
l �=p

1

El − Ep

)
TI‖p|q| − λ

N

N∑

l=1
l /∈I,p

TI‖l|q|
El − Ep

= (−λ)

{ ∑

I ′�I ′′=I

I ′,pTI ′′‖p|q| − 1

N

∂TI‖p|q|
∂Ep

+
m∑

j=1

∂

∂Eq j

(TI\q j‖q j |q|
Eq j − Ep

)
− TI‖qq| − TI‖pq|

Eq − Ep

}
. (2.13)

(3) The DSE for I,q in terms of T :

I,q = δ|I |,1
(Eq1 − Eq)2

+
1

N

N∑

l=1
l /∈I

TI‖ql| −
m∑

j=1

∂TI\q j‖qq j |
∂Eq j

+
1

N 2 TI‖q|q| , (2.14)

where T∅‖qq j | := G|qq j | and T∅‖q j |q| := G|q j |q|.

Proof. We apply the operator DI := (−N )m∂m

∂Eq1 ···∂Eqm
to (2.9) and take Definition 2.3 into

account. Here we have

DI

(
G|pq|

( 1

N

N∑

k=1

G|pk| +
1

N 2G|p|p|
))

=
∑

I1�I2=I

(
I1,p − δ|I1|,1

(EI1 − Ep)2

)
TI2‖pq| (*)

and, separating the cases l ∈ I and l /∈ I ,

DI

( N∑

l=1
l �=p

G|lq| − G|pq|
El − Ep

)
=

N∑

l=1
l /∈I,p

TI‖lq|
El − Ep

−
N∑

l=1
l �=p

TI‖pq|
El − Ep

(**)

− N
m∑

j=1

{ ∂

∂Eq j

( TI\q j‖q j q|
Eq j − Ep

)
+

TI\q j‖pq|
(Eq j − Ep)2

}
.

The last term in (**) cancels the contribution with δ|I1|,1 in (*). All other derivatives are
clear and arrange into (2.12).

The same considerations give (2.13) when applying DI to (2.10). Equation (2.14) is
clear. ��
Remark 2.6. In a similar manner one can derive Dyson-Schwinger equations for
G|k11 ...k1n1 |...|kb1 ...kbnb |. In fact [20] they can be reduced to polynomials in correlation func-

tions with ns ∈ {1, 2}, in λ and in 1
Eki −Ek j

. We refer to [26] for the precise form of the

recursion. Applying DI then gives rise to Dyson-Schwinger equations for generalised
correlation functions Tq1,...,qm‖k11 ...k1n1 |...|kb1 ...kbnb |. We have provided them in prior versions

of this paper (e.g. https://arxiv.org/abs/2008.12201v3). For the sake of readability we
decided to suppress them here.

TheDyson-Schwinger equations of Proposition 2.5 are in one-to-one correspondence
with a graphical representation via a perturbative expansion into ribbongraphs.Wederive
them once again in Appendix D for illustrative purposes.

https://arxiv.org/abs/2008.12201v3
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3. Loop Equations in Several Complex Variables

3.1. Complexification. The equations in Proposition 2.5 are not sufficient to determine
the functions G, T, because there is no equation for derivatives with respect to matrix
indices (e.g. in

∂TI‖pq|
∂Ep

) or functions with coincident matrix indices (e.g. G|qq|, G|q|q| or
Tp‖pq|), which however are needed. Our strategy is therefore to meromorphically extend
these equations, where the extension is not necessarily unique, but unique at the points
Ep.

Definition 3.1. Proposition 2.5 suggests the following extension:

(a) Introduce holomorphic functions G, T, ̃ in several complex variables, defined on
Cartesian products of a neighbourhood V of {E1, ..., EN } inC, which at E1, . . . , EN
agree with the previous correlation functions:

G(Ep, Eq) ≡ G|pq| , G(Ep|Eq) ≡ G|p|q| ,

T (Eq1, ..., Eqm‖Ep, Eq |) ≡ Tq1,...,qm‖pq| ,

T (Eq1 , ..., Eqm‖Ep|Eq |) ≡ Tq1,...,qm‖p|q| ,

̃(Eq1, ..., Eqm ) ≡ q1,...,qm .

(b) Write the equations in Proposition 2.5 in terms of G, T, ̃ and postulate that they
extend to pairwise different points {Ep �→ ζ, Eq �→ η, Eq j �→ η j } of V .

(c) Complexify the derivative by

∂

∂Eq
f (Eq) �→ f (η) − f (Eq)

η − Eq
+

∂

∂Eq

∣∣∣
Eq �→η

f (η)

such that the ∂
∂Eq

∣∣
Eq �→η

-derivative acts in the sense of Definition 2.3 with extension
to Eq �→ η, and a difference quotient which tends for η → Eq to the derivative on
the argument of f .

(d) Keep the El in summations over l ∈ {1, . . . , N } and complete the l-summation
with the difference quotient term of (c). Consider the equations for ζ, η, ζ s

i , η j ∈
V \ {E1, . . . , EN }.

(e) Define the values of G, T, ̃ at ζ = Ep, η = Eq , ζ
s
i = Epsi

, η j = Eq j and at
coinciding points by a limit procedure.

Remark 3.2. The complexification of the derivative defined in (c) distinguishes between
Definition 2.3 and a derivative acting on the argument of the function. The derivative
on the argument is split into a difference quotient to generate all missing terms in the
l-summation, e.g. for l = q by

lim
η→Eq

f (η) − f (Eq)

η − Eq
= lim

El→Eq

f (El) − f (Eq)

El − Eq
=: ∂ext

∂Eq
f (Eq), (3.1)

where the analyticity property at Eq holds by (b). Consequently, the summation over l
gets unrestricted in the extension to V and coincides with Proposition 2.5 on the points
Ep. Notice that the extension of Definition 3.1 is a meaningful extension but cannot be
unique.
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The complexification procedure allows to relax the condition that all E1, . . . , EN are
pairwise different. Fromnowonweagree that (E1, . . . , EN ) ismadeof pairwise different
e1, . . . , ed which arise with multiplicities r1, . . . , rd in the tuple, with r1 + ... + rd = N .

We search for a solution of the equations after expansion (2.11) of all arising functions
as formal power series in 1

N2 . It will become clear later on that g plays the rôle of the
genus of a Riemann surface so that we call (2.11) the genus expansion. When splitting
the equations into homogeneous powers of N−2 we agree that 1

N

∑d
k=1 rkG

(g)(ek, . . . )

contributes to order g. Similarly for T (g) and ̃(g).

Example 3.3. The complexification procedure of Definition 3.1 turns (2.9) in Exam-
ple 2.1 in presence of multiplicities of the ei into

(ζ + η)G(ζ, η) = 1 − λ

N 2 T (ζ‖ζ, η) − λG(ζ, η)̃(ζ )

+
λ

N

d∑

k=1

rk
G(ek, η) − G(ζ, η)

ek − ζ
+

λ

N 2

G(η|η) − G(ζ |η)

η − ζ
. (3.2)

For instance, we have
∂G|pq|
∂Ep

�→ − 1
N T (ζ‖ζ, η)+rp

G(ζ,η)−G(ep,η)

ζ−Ep
. The last term extends

∑N
l=1,l �=p

G|lq|−G|pq|
El−Ep

�→ ∑d
l=1,l �=p rl

G(el ,η)−G(ζ,η)
el−ζ

to the unrestricted sum in (3.2). After

genus expansion andwith ̃(0)(ζ ) = 1
N

∑d
k=1 rkG

(0)(ζ, ek) fromDefinition 2.3we have

(
ζ + η +

λ

N

d∑

k=1

rkG
(0)(ek, ζ ) +

λ

N

d∑

k=1

rk
ek − ζ

)
G(g)(ζ, η) − λ

N

d∑

k=1

rkG(g)(ek, η)

ek − ζ

= δg,0 − λ

g∑

g′=1

G(g−g′)(ζ, η)̃(g′)(ζ )

− λT (g−1)(ζ‖ζ, η) + λ
G(g−1)(η|η) − G(g−1)(ζ |η)

η − ζ
. (3.3)

Note that the sum over g′ restricts to g′ ≥ 1 because the case g′ = 0 is explicitly included
in the lhs.

For g = 0 this becomes a non-linear equation for the function G(0)(ζ, η) of ζ, η ∈ V .
It has been recently solved:

Theorem 3.4 ([23], building heavily on [22]). Let λ, ek > 0. Assume that there is a
rational function R : Ĉ → Ĉ with

1. R has degree d + 1, is normalised to R(∞) = ∞ and biholomorphically maps a
domain U ⊂ C to a neighbourhood (which can be assumed to be V) in C of a real
interval that contains e1, . . . , ed .

2. In terms of G(0)(R(z), R(w)) =: G(0)(z, w) and ek =: R(εk) for z, w, εk ∈ U one
has

−R(−z) = R(z) +
λ

N

d∑

k=1

rk
R(εk) − R(z)

+
λ

N

d∑

k=1

rkG(0)(z, εk) . (3.4)
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Fig. 2. Illustration of the complexification procedure: The biholomorphic map R : U → V with R(εk ) = ek
will later be enlarged to a ramified cover R : Ĉ → Ĉ. Functions on U will meromorphically continue to the
Riemann sphere Ĉ = C ∪ {∞}

Then R and G(0) are uniquely determined by the case g = 0 of (3.3) to

R(z) = z − λ

N

d∑

k=1

�k

εk + z
, R(εk) = ek , �k R

′(εk) = rk ,

G(0)(z, w) =
1 − λ

N

d∑

k=1

rk
(R(z) − R(εk))(R(εk) − R(−w))

d∏

j=1

R(w)−R(−ε̂k
j )

R(w) − R(ε j )

R(w) − R(−z)
.

(3.5)

The ansatz (3.4) is identically fulfilled by (3.5). In these equations, the solutions of
R(v) = R(z) are denoted by v ∈ {z, ẑ1, . . . , ẑd} with z ∈ U when considering R :
Ĉ → Ĉ. The function G(0)(z, w) is symmetric. Its poles are located at z + w = 0 and
z, w ∈ {ε̂k j } for k, j ∈ {1, ..., d}.

Figure 2 sketches the map R. The rational function R introduces another change of
variables.

Definition 3.5. Let G(g), T (g), ̃(g) be the functions in several complex variables
obtained by the complexification of Definition 3.1, genus expansion and by admitting
multiplicities of the ek . Then functions G(g), T (g), 

(g)
m of several complex variables are

introduced by

G(g)(z, w) := G(g)(R(z), R(w)) , G(g)(z|w) := G(g)(R(z)|R(w)) ,

T (g)(u1, ..., um‖z, w|) := T (g)(R(u1), ..., R(um)‖R(z), R(w)|) ,

T (g)(u1, ..., um‖z|w|) := T (g)(R(u1), ..., R(um)‖R(z)|R(w)|) ,


(g)
m (u1, ...., um) := ̃(g)(R(u1), ..., R(um)) .

We let T (g)(∅‖z, w|) := G(g)(z, w) and T (g)(∅‖z|w|) := G(g)(z|w).

Originally defined as holomorphic functions onCartesian products ofU , we assume (and
will show) that G(g), T (g), 

(g)
m extend to meromorphic functions on Ĉ = C ∪ {∞}.
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3.2. Complexified Dyson-Schwinger equations. We now combine the complexification
according to Definition 3.1 with the change of variables of Definition 3.5:

Corollary 3.6. Let I = {u1, ..., um}. The complexification of Definition 3.1 turns after
genus expansion (2.11), inclusion of multiplicities of ei and the change of variables given
in Definition 3.5, which involves the rational function R of Theorem 3.4, the Dyson-
Schwinger Eq. (2.12) of Proposition 2.5 into equations for meromorphic functions in
several complex variables:

(R(w) − R(−z))T (g)(I‖z, w|) − λ

N

d∑

k=1

rkT (g)(I‖εk, w|)
R(εk) − R(z)

= δ0,mδg,0 − λ

{ ∑

I1�I2=I, g1+g2=g
(g1,I1) �=(0,∅)


(g1)
|I1|+1(I1, z)T

(g2)(I2‖z, w|) + T (g−1)(I, z‖z, w|)

+
m∑

i=1

∂

∂R(ui )

T (g)(I \ ui‖ui , w|)
R(ui ) − R(z)

+
T (g−1)(I‖z|w|) − T (g−1)(I‖w|w|)

R(w) − R(z)

}
.

(3.6)

Equation (3.6) reduces for (g,m) = (0, 0) to

G(0)(z, w) = 1 + λ
N

∑d
k=1

rkG(0)(εk ,w)
R(εk )−R(z)

R(w) − R(−z)
. (3.7)

Corollary 3.7. Let I = {u1, ..., um}. The complexification of Definition 3.1 turns after
genus expansion (2.11), inclusion of multiplicities of ei and the change of variables given
in Definition 3.5, which involves the rational function R of Theorem 3.4, the Dyson-
Schwinger Eq. (2.13) of Proposition 2.5 into equations for meromorphic functions in
several complex variables:

(R(z) − R(−z))T (g)(I‖z|w|) − λ

N

d∑

k=1

rk
T (g)(I‖εk |w|)
R(εk) − R(z)

= −λ

{ ∑

I1�I2=I, g1+g2=g
(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, z)T

(g2)(I2‖z|w|) + T (g−1)(I, z‖z|w|)

+
m∑

i=1

∂

∂R(ui )

T (g)(I \ ui‖ui |w|)
R(ui ) − R(z)

+
T (g)(I‖z, w|) − T (g)(I‖w,w|)

R(w) − R(z)

}
. (3.8)

Remark 3.8. The DSE of Corollary 3.6 has a very intricate form. Actually, this structure
of DSEs is well-known from the 2-matrix model. We refer to [27, Eqs. (2–19)] with the
correspondence  �→ W , T �→ H and

∑
k
T (I‖εk ,w|)
R(εk)−R(z) �→ Ũ . However, the last term

of (3.6) does not have a corresponding counterpart. Thus, the quartic Kontsevich model
is a priori similar to the 2-matrix model, but in some sense richer in its structure. This
difference could explain why it is (conjecturally) governed by the extension to Blobbed
Topological Recursion [9]. The fundamental building blocks in the 2-matrix model are
the W (g)

m,0 which were proved [5] to satisfy topological recursion. For this reason, the

main interest lies on computation and structure of 
(g)
m .
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3.3. The DSE for 
(g)
m (u1, ..., um). To solve the system of Eqs. (3.6) and (3.8) we have

to establish another DSE for 
(g)
m . The same steps as in Corollaries 3.6 and 3.7 turn

(2.14) into


(g)
|I |+1(I, z) = δg,0δ|I |,1

(R(u1) − R(z))2
+

1

N

d∑

k=1

rkT (g)(I‖z, εk |)

−
m∑

i=1

∂T (g)(I\ui‖z, ui |)
∂R(ui )

+ T (g−1)(I‖z|z|) . (3.9)

We will prove another relation:

Proposition 3.9. Let I = {u1, ...., um}. The meromorphic functions 
(g)
m+1 satisfy for

(g,m) �= (0, 0) the DSE

R′(z)G0(z)
(g)
|I |+1(I, z) − λ

N 2

d∑

n,k=1

rnrk
T (g)(I‖εk, εn|)

(R(εk) − R(z))(R(εn) − R(−z))

= δg,0δ|I |,1
(R(z) − R(u1))2

−
∑

I1�I2=I, g1+g2=g
(I1,g1) �=(∅,0) �=(I2,g2)


(g1)
|I1|+1(I1, z)

λ

N

d∑

n=1

rn
T (g2)(I2‖z, εn|)
R(εn) − R(−z)

−
m∑

j=1

∂

∂R(u j )

λ
N

∑d
n=1 rn

T (g)(I\u j‖u j ,εn |)
R(εn)−R(−z)

R(u j ) − R(z)
− λ

N

d∑

n=1

rn
T (g−1)(I, z‖z, εn |)
R(εn) − R(−z)

− λ

N

d∑

n=1

rn
T (g−1)(I‖z|εn|) − T (g−1)(I‖εn|εn|)

(R(εn) − R(z))(R(εn) − R(−z))

−
m∑

j=1

∂

∂R(u j )
T (g)(I \ u j‖u j , z|) + T (g−1)(I‖z|z|) , (3.10)

where G0(z) := Resv→−z G(0)(z, v)dv.

Proof. Take (3.6), multiply it by rn
N (R(w)−R(−z)) , set w = εn and sum over n. The lhs

has the term 1
N

∑d
n=1 rnT (g)(I‖z, εn |), which by (3.9) equals 

(g)
m+1(I, z) plus other

terms. Another 
(g)
m+1(I, z) arises with a prefactor λ

N

∑
n

rnG(0)(εn ,z)
R(εn)−R(−z) from the case

(I2, g2) = (∅, 0) in the second line of (3.6). Moving it to the lhs, we reconstruct a
common prefactor R′(z)G0(z) via (3.7). ��

Remark 3.10. The DSE of 
(g)
m gives the possibility for a comparison with the 2-matrix

model as well. The DSE of Proposition 3.9 coincides (up to two additional terms) with
[27, Eqs. (2–20)] after setting q = p, where those functions are related by  �→ W ,
T �→ H ,

∑
k
T (I‖εk ,w|)
R(εk)−R(z) �→ Ũ and

∑
k,n

T (I‖εk ,εn |)
(R(εk)−R(z))(R(εn)−R(−z)) �→ E . The two terms

violating the exact coincidence are the last term and third last term of (3.10).
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3.4. Solution for
(0)
2 (u, z). For (g,m) = (0, 1) the equation in Proposition 3.9 reduces

to

R′(z)G0(z)
(0)
2 (u, z) − λ

N 2

d∑

n,k=1

rnrk
T (0)(u‖εk, εn|)

(R(εk) − R(z))(R(εn) − R(−z))

= − ∂

∂R(u)

1 + λ
N

∑d
n=1 rn

G(0)(u,εn)
R(εn)−R(−z)

R(u) − R(z)
− ∂

∂R(u)
G(0)(u, z)

= − ∂

∂R(u)

(
G(0)(u,−z) + G(0)(u, z)

)
. (3.11)

The last line follows from (3.7). In [22] the following representation was proved:

G(0)(z, u) = 1

z + u

(
1 +

λ2

N 2

d∑

k,l,m,n=1

Cm,n
k,l

(z − ε̂k
m)(u − ε̂l

n)

)
, (3.12)

where Cm,n
k,l = (ε̂k

m+ε̂l
n)rkrlG(0)(εk ,εl )

R′(ε̂km )R′(ε̂l n)(R(εl )−R(−ε̂k
m ))(R(εk)−R(−ε̂l

n))
. On one hand this shows

G0(z) = 1 − λ2

N 2

d∑

k,l,m,n=1

Cm,n
k,l

(z − ε̂k
m)(z + ε̂l

n)
, (3.13)

on the other hand we have the partial fraction decomposition

G(0)(z, u) = G0(z)

z + u
+

λ2

N 2

d∑

k,l,m,n=1

Cm,n
k,l

(z + ε̂l
n)(z − ε̂k

m)(u − ε̂l
n)

. (3.14)

Both together imply:

Proposition 3.11. Assume that (for generic u) the function 
(0)
2 (u, z) is regular at any

zero z of G0. Then


(0)
2 (u, z) = 1

R′(z)R′(u)

( 1

(u − z)2
+

1

(u + z)2

)
.

Proof. Inserting (3.12) and (3.14) into (3.11) gives

R′(z)(0)
2 (u, z) − 1

R′(u)(u + z)2
− 1

R′(u)(u − z)2

= 1

G0(z)

[
λ

N 2

d∑

n,k=1

rkrnT (0)(u‖εk, εn|)
(R(εk) − R(z))(R(εn) − R(−z))

+
λ2

N 2

d∑

k,l,m,n=1

Cm,n
k,l

( 1
R′(u)(u−ε̂l

n)2
+ 1

R′(u)(u−ε̂k
m )2

)

(z + ε̂l
n)(z − ε̂k

m)

]
.

Since G0(z) has poles at every z = ±ε̂n
j , the rhs of the above equation has poles at

most at the zeros ofG0. By assumption, the lhs is regular there. Thus, both sides must be
constant by Liouville’s theorem and then, when considering z → ∞, identically zero.

��
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Fig. 3. The correlation functions relate to topological data of Riemann surfaces X . The Riemann surface
corresponding to T (g)(u1, ..., um‖z, w|) has g handles,m marked points labelled u1, .., um and one boundary
component with two defects (the 1-valent vertices) labelled z and w. The Riemann surface corresponding to
T (g)(u1, ..., um‖z|w|) has g handles, m marked points labelled u1, ..., um and two boundary components
each with one defect labelled z or w, respectively. The Riemann surface corresponding to (g)(u1, ..., um )

has g handles, m marked points labelled u1, ..., um and no boundary

Remark 3.12. Proposition 3.11 indicates that we are on the right track. The solution


(0)
2 (u, z) is symmetric, and its part 1

(u−z)2
is closely related to the Bergman kernel

B(u, z) = dudz
(u−z)2

of topological recursion. Looking back into Remark 3.2 we can be
confident that the complexification procedure of Definition 3.1 is reasonable.

Comparing again with the 2-matrix model, our DSE (3.11) of 
(0)
2 differs slightly.

The last term G(0)(u, z) in (3.11), which generates the pole on the antidiagonal, is not
present in the 2-matrix model. We refer for instance to [27, Eqs. (2–20)] with the same
identifications as in Remark 3.10 and with g = 0, q = p, pK = ∅ and |qL| = 1. The
last term H in [27, Eqs. (2–20)] corresponds to our G(0)(u, z), which is not present for
pK = ∅. The distinction between the two different sets pK and qL is significant for the
2-matrix model.

4. Recursive Solution

In previous sections we have introduced and studied certain families of func-
tions 

(g)
m (u1, .., um), T (g)(u1, ..., um‖z, w|), T (g)(u1, ..., um‖z|w|) and G(g)(z, w),

G(g)(z|w). As already outlined after Definition 2.3, the integers (g,m, b) are interpreted
as topological data of a Riemann surface X (see Fig. 3):

• g is the genus of X ,
• m is the number of marked points on X ,
• b is the number of boundary components of X ; more precisely b = 1 for
T (g)(u1, ..., um‖z, w|) and b = 2 for T (g)(u1, ..., um‖z|w|).

We let χ = 2 − 2g − m − b be the Euler characteristic of X .
The Dyson-Schwinger equations for the generalised correlation functions 

(g)
m

(u1, .., um), T (g)(u1, ..., um‖z, w|) and T (g)(u1, ..., um‖z|w|) follow a recursion in the
Euler characteristic: To compute a generalised correlation function of negative Euler
characteristic−χ = 2g+(m+b)−2weneedgeneralised correlation functions of negative
Euler characteristic −χ ′ < −χ . In case of equality one builds T (g)(u1, ..., um−1‖z, w|)
from 

(g)
m (u1, ..., um−1, z). Figure 4 shows the recursive structure in solving the cor-

relation function for small −χ . This structure extends in obvious manner to higher
topologies (g,m + b).
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Fig. 4. The three types of Dyson-Schwinger Eqs. (3.6), (3.8) and (3.10) are recursively built up and ordered
in the negative Euler characteristic −χ . This illustration shows for each −χ = 2g + m + b − 2, where b = 0

for 
(g)
m (u1, ..., um ), b = 1 for T (g)(u1, ..., um1‖z, w|) and b = 2 for T (g)(u1, ..., um‖z|w|), the order

in which to compute previous functions via solution of (3.6), (3.8) and (3.10), respectively. The initial case,
χ = 1 is solved simultaneously by combining two equations

We will prove that the solution of T (g)(u1, ..., um‖z, w|) and T (g)(u1, ..., um‖z|w|)
are obtainedby a simple evaluation of residues. For that the following analyticity property
is necessary:

Lemma 4.1. Let I = {u1, ..., um}. The generalised correlation functions T (g)(I‖w, z)|,
T (g)(I‖w|z|), and

(g)
m (I )− δg,0δm,2

(R(u1)−R(u2))2
are analytic at any two coinciding variables

in the domain U which includes all εk but excludes 0.

Proof. The analyticity property is proved by induction in the Euler characteristic. It
is true for G(0)(z, w) = T (0)(∅‖z, w|) by the explicit form (3.5) and G(0)(z|w) =
T (0)(∅‖z|w|) by the explicit form given in [23]. From Proposition 3.11, we have the

limit limu→z
(


(0)
2 (u, z) − 1

(R(u)−R(z))2
) = 1

4z2(R′(z))2 − R′′′(z)
6(R′(z))3 +

(R′′(z))2
4(R′(z))4 .

Then by induction all terms T (g) and 
(g1)
|I1|+1 with 2g1 + |I1| ≥ 2 are analytic at

coinciding arguments. The only critical terms for z → ui arise in combination


(0)
2 (ui , z)T (g)(I\ui‖z, w|) + ∂

∂R(ui )

(T (g)(I\ui‖ui , w|)
R(ui ) − R(z)

)

=
(


(0)
2 (ui , z) − 1

(R(ui ) − R(z))2

)
T (g)(I\ui‖z, w|)

+
∂

∂R(ui )

(T (g)(I\ui‖ui , w|) − T (g)(I\ui‖z, w|)
R(ui ) − R(z)

)
,

which is analytic for z → ui . Regularity for w → ui is obvious, and regularity for
z → w holds by induction. Thus, T (g)(I‖z, w|) is regular for any z, w → ui and
z → w. Similarly for (3.8). The same argument in the rhs of Proposition 3.9 shows
analyticity of 

(g)
|I |+1 with 2g + I ≥ 2 at any ui → u j . ��
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Fig. 5. Graphical illustration of Corollary 4.2

4.1. Recursive solution ofT (g)(u1, ..., um‖z, w|) andT (g)(u1, ..., um‖z|w|). Themain
observationwhen solving theDSEs (3.6) (or (3.8)) is the rationality of the second term of
the lhs in R(z). After multiplicationwith

∏d
k=1(R(εk)−R(z)), the resulting second term

becomes a polynomial in R(z) of degree d−1. This observation suggests an application
of the interpolation formula (see Lemma E.1), where the d distinct numbers are chosen
as x j = R(−ŵ j ) (or x j = R(α j )) in order to let the first term of the lhs vanish at
z = −ŵ j (or at z = α j ). The analyticity is easily shown by induction and similar to
Lemma 4.1. For the sake of readability we have outsourced Propositions E.2 and E.4
and their proofs to the Appendix E. Here we only give their corollaries:

Corollary 4.2. Let I = {u1, ..., um}. The generalised 2-point function is given by

T (g)(I‖z, w|) = λG(0)(z, w) Res
t→z,−ŵ j ,ui ,w

R′(t) dt
(R(z) − R(t))(R(w) − R(−t))G(0)(t, w)

×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t, w|)

+ T (g−1)(I, t‖t, w|) + T (g−1)(I‖t |w|)
R(w) − R(t)

]
.

Instead of providing the technical proof, we have decided to give a graphical interpre-
tation of Corollary 4.2 by cutting the Riemann surface corresponding to the generalised
2-point function. The cut operation itself, as shown in Fig. 5, generates for the generalised
2-point function the factor

λG(0)(z, w)
R′(t) dt

(R(z) − R(t))(R(w) − R(−t))G(0)(t, w)
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together with a residue operation of t at z,−ŵ j , ui and w. Now, the generalised 2-point
function can be cut in three topologically different ways:

1. The cut starts from t and ends at t by encircling the set I1 ⊂ I of marked points
and g1 handles. This separates T (g)(I‖z, w|) into 

(g1)
|I1|+1(I1, t) and T

(g2)(I2‖t, w|).
Take the sum over all possibilities with Euler characteristic χ ≤ 0.

2. The cut starts at t , paces through a handle and ends again at t . This removes the
handle (reduces the genus by 1) at expense of an additional marked point labelled t .

3. The cut starts at t , paces through a handle and ends at the boundary next tow (not at t).
This reduces the genus by one and generates the factor 1

R(w)−R(t) and two separated
boundaries with one defect on each.

It seems that another possible case would be the variant of 3. where the cut does not
pace through a handle but ends next tow. This would generate two separated correlation
functions of the form T (g′)(I ′‖t |), but these do no exist since the quartic Kontsevich
model has no 1-point function (and therefore no generalised 1-point function).

Remark 4.3. This graphical description was already invented for the 2-matrix model to
understand graphically any correlation function as a recursion depending on correlation
functions of lower topology [28]. However, in the 2-matrix model two different sets
of marked points exists, whereas the quartic Kontsevich model has a mixing of those
sectors. In general, a proof of graphical rules is achieved by direct derivation via DSEs.

Corollary 4.4. Let I = {u1, ..., um}. Proposition E.4 is equivalent to

T (g)(I‖z|w|)

=
λ

∏d
j=1

R(z)−R(α j )

R(z)−R(ε j )

(R(z) − R(−z))
Res

t→z,α j ,ui ,w

R′(t) dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))
∏d

k=1(R(t) − R(αk))

×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t |w|) + T (g−1)(I, t‖t |w|) + T (g)(I‖t, w|)
R(w) − R(t)

]
.

The graphical intepretation (see Fig. 6) of Corollary 4.4 differs slightly from Corol-
lary 4.2 since the initial topological data of T (g)(I‖z|w|) differs from T (g)(I‖z, w|).
The cutting operation itself generates the factor

λ
∏d

j=1
R(z)−R(α j )

R(z)−R(ε j )

(R(z) − R(−z))

R′(t) dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))
∏d

k=1(R(t) − R(αk))
,

where residues of t are taken at z, α j , ui , w. This is due to the fact that the starting
boundary has only one defect. The first two cases are essentially the same as in Corollary
4.2.However, the third case differs since two boundaries eachwith one defect are present.
The third case has a cut starting at t and merging into the second boundary next to w.
Both boundaries are merged to a single boundary with two defects. Furthermore, the cut
not ending at its starting point generates again a factor 1

R(w)−R(t) , similar to the third
case of Corollary 4.2.
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Fig. 6. Graphical illustration of Corollary 4.4

Remark 4.5. We have focused the computation in this paper to the generalised 2-point
and 1 + 1-point function. In a previous version of this paper (e.g. https://arxiv.org/abs/
2008.12201v3) we have also defined more general correlation functions. These can be
solved exactly with the same graphical rules, but with more possibilities in cutting the
Riemann surfaces into different topologies.

4.2. Recursive solution for 
(g)
m under Assumptions on its Poles. The solution of the

DSE for 
(g)
m (u1, ..., um) in Proposition 3.9 to low 2g + m (see Appendix G) suggests

the following:

Conjecture 4.6. The function 
(g)
m+1(u1, ..., um, z) is holomorphic in every z ∈

{±ûl j ,±ε̂k
j ,±εk,±αk}, where k, j = 1, ..., d and l = 1, ...,m.

We prove this conjecture in Appendix F for the planar sector g = 0. Conjec-
ture 4.6 and Lemma 4.1 imply that 

(g)
m (u1, ..., um, z) can only have poles at z =

{0,−u1, ...,−um, β1, ..., β2d}, where the βi are the ramification points of R given by
R′(βi ) = 0. Being by an easy induction argument a rational function,(g)

m (u1, ..., um, z)
must coincide with the partial fraction decomposition about its set of poles. This partial
fraction decomposition can be written as a residue which applied to Proposition 3.9
gives:

Corollary 4.7. Assume Conjecture 4.6 is true for all (g,m). Then for (g,m) �= (0, 0)
and (g,m) �= (0, 1) one has

R′(z)(g)
m+1(u1, ..., um, z)

= Res
q→0,−ul ,βi

dq

(q − z)G0(q)

[ ∑

I1�I2={u1,...,um }
g1+g2=g

(I1,g1) �=(∅,0) �=(I2,g2)


(g1)
|I1|+1(I1, q)

λ

N

d∑

n=1

rnT (g2)(I2‖q, εn |)
R(εn) − R(−q)

https://arxiv.org/abs/2008.12201v3
https://arxiv.org/abs/2008.12201v3
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+
m∑

j=1

∂

∂R(u j )
T (g)(u1, ..ǔ j .., um‖u j , q|) + λ

N

d∑

n=1

rnT (g−1)(u1, ..., um, q‖q, εn |)
R(εn) − R(−q)

+
λ

N

d∑

n=1

rnT (g−1)(u1, ..., um‖q|εn|)
(R(εn) − R(q))(R(εn) − R(−q))

− T (g−1)(u1, ..., um‖q|q|)
]

.

We evaluate in Appendix G the residues of Corollary 4.7 for 
(0)
3 (u1, u2, z),


(0)
4 (u1, u2, u3, z) and

(1)
1 (z). For convenience we collect these results in Subsect. 4.3.

The outcome suggests that the 
(g)
m are closely related to structures in blobbed topolog-

ical recursion (BTR) [9]. We review in Appendix B central aspects of the BTR. To make
contact with BTR we reformulate the solution formulae of our loop equations in terms
of meromorphic differential forms:

Definition 4.8. For integers g ≥ 0 and m ≥ 1 we introduce meromorphic differentials
ωg,m on Ĉ

m by

ω0,1(z) := −R(−z)R′(z)dz ,

ωg,m(z1, . . . , zm) := λ2−2g−m
(g)
m (z1, . . . , zm)

m∏

j=1

R′(z j )dz j for 2g + m ≥ 2 .

(4.1)

Corollary 4.7 takes the following form:

ωg,m+1(u1, ..., um, z) = Res
q→0,−ul ,βi

dz

(q − z)G0(q)

[

∑

I1�I2={u1,...,um }
g1+g2=g

(I1,g1) �=(∅,0) �=(I2,g2)

ωg1,|I1|+1(I1, q)
λ

N

d∑

n=1

rntg2,|I2|(I2‖q, εn |)
R′(q)(R(εn)−R(−q))

+
m∑

j=1

du j [tg,m−1(u1, ..ǔ j .., um‖u j , q|)]dq

+
λ

N

d∑

n=1

rntg−1,m+1(u1, ..., um, q‖q, εn |)
R′(q)(R(εn) − R(−q))

+
λ

N

d∑

n=1

rntg−1.m(u1, ..., um‖q|εn|)
(R(εn) − R(q))(R(εn) − R(−q))

dq − tg−1,m(u1, ..., um‖q|q|)dq
]

,

(4.2)

where du j is the exterior differential in u j and tg,m(u1, ..., um‖z, w|) := λ2g−mT (g)

(z1, ..., zm‖z, w|)∏m
j=1 R

′(z j )dz j aswell as tg,m(u1, ..., um‖z|w|) := λ−1−2g−m−T (g)

(z1, ..., zm‖z|w|)∏m
j=1 R

′(z j )dz j .
The residue in (4.2) provides a natural decomposition

ωg,m+1(u1, ..., um, z) = Pzωg,m+1(u1, ..., um, z) +Hzωg,m+1(u1, ..., um, z) (4.3)

into a part
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Pzωg,m+1(u1, ..., um, z) :=
2d∑

i=1

Res
q→βi

dz

(q − z)G0(q)

[
. . .

]

whose poles in z are located only at the ramification points βi of R and a part

Hzωg,m+1(u1, ..., um, z) :=
(
Res
q→0

+
m∑

l=1

Res
q→−ul

) dz

(q − z)G0(q)

[
. . .

]

which is holomorphic in z at the ramification points. We will discuss these projectors in
the context of blobbed topological recursion in Appendix B, too.

4.3. Solution of ωg,m to low degree. This subsection lists the results for ω0,3, ω0,4 and
ω1,1 obtained by evaluating the residues in the system (4.2), (E.2) and (E.4). Appendix G
gives details about the procedure and provides a few intermediate results.

We let σi be the local Galois involution near the ramification point βi , i.e. R(z) =
R(σi (z)), limz→βi σi (z) = βi and σi �= id. We let B(z, w) = dz dw

(z−w)2
be the Bergman

kernel and define x(z) = R(z) and y(z) = −R(−z). Moreover, we introduce two kernel
forms

Ki (z, q) =
1
2

∫ q ′=q
q ′=σi (q)

B(z, q ′)
(y(q) − y(σi (q))dx(σi (q))

, Ku(z, q) =
∫ q ′=−u
q ′=−q B(z, q ′)
y(−q) − y(−u)

. (4.4)

The evaluation of ω0,3 and ω0,4 in Appendix G confirms4 for m ∈ {2, 3}:
Conjecture 4.9. For any I = {u1, .., um} with m ≥ 2 one has

ω0,m+1(I, z)

=
2d∑

i=1

Res
q→βi

Ki (z, q)
∑

I1�I2=I
I1,I2 �=∅

ω0,|I1|+1(I1, q)ω0,|I2|+1(I2, σi (q))

+
m∑

k=1

duk

(
Res
q→uk

Kuk (z, q)
∑

I1�...�Is=I\uk
I1,...,Is �=∅

ω0,|I1|+1(I1,−q)

y(q) − y(uk)

s∏

r=2

ω0,|Ir |+1(Ir , uk)
(y(q) − y(uk))dx(uk)

)
.

(4.5)

We remark that ω0,m given by Conjecture 4.9 automatically satisfy the linear and
quadratic loop equations given later in Definition B.1 or inside Conjecture 5.1.

The residues at q = βi can be evaluated with the formulae given in Appendix C; the
residues at q = uk are straightforward. In terms of

xn,i := R(n+2)(βi )

R′′(βi )
, yn,i := (−1)n

R(n+1)(−βi )

R′(−βi )
. (4.6)

and with Q(u; z) := 1
u−z +

1
u+z arising in ω0,2(u, z) = −du[Q(u; z)]dz, we find

4 Conjecture 4.9 is now a Theorem proved in [11]. Several equivalent expressions for the residues at z = uk
are given there.
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Pzω0,3(u1, u2, z) = −du1du2
[ d∑

i=1

Q(u1;βi )Q(u2;βi )

R′(−βi )R′′(βi )(z − βi )2

]
dz , (4.7)

Hzω0,3(u1, u2, z) = du1
[ ω0,2(u2, u1)

(dR)(u1)R′(−u1)(z + u1)2

]
+ [u1 ↔ u2] (4.8)

and

Pzω0,4(u1, u2, u3, z)

= du1du2du3
[ 2d∑

i=1

Q(u1;βi )Q(u2;βi )

(R′′(βi ))2(R′(−βi ))2

{
− Q(u3;βi )

(z − βi )4
+
Q(u3;βi )

(z − βi )3

x1,i
3

+
Q′(u3;βi )

(z − βi )2

x1,i
2

− Q′′(u3;βi )

2(z − βi )2
+
Q(u3;βi )

(z − βi )2

( x2,i
6

− x21,i
4

− y1,i x1,i
6

+
y2,i
6

)}

− Q(u3;βi )

R′(−βi )R′′(βi )(z − βi )2

{ Q(u2; u1)
R′(u1)R′(−u1)(u1 + βi )2

+
Q(u1; u2)

R′(u2)R′(−u2)(u2 + βi )2
+

∑

n �=i

Q(u1;βn)Q(u2;βn)

R′(−βn)R′′(βn)(βi − βn)2

}

+ [u3 ↔ u1] + [u3 ↔ u2]
]
dz , (4.9)

Hzω0,4(u1, u2, u3, z)

= du3
[2ω0,2(u1, u3)ω0,2(u2, u3)

(dR(u3))2(R′(−u3))2

(
− 1

(z + u3)3
+

R′′(−u3)

2R′(−u3)(z + u3)2

)

+
ω0,3(u1, u2, u3)

dR(u3)R′(−u3)(z + u3)2

]
dz + [u3 ↔ u1] + [u3 ↔ u2] , (4.10)

where in Q′(u; z), Q′′(u; z) the derivative is with respect to the second argument. We
have simplified (4.10) using the reflection (G.14).

We also have a result for g = 1:

Proposition 4.10. The solution of (4.2) for m = 0 and g = 1 is

Pzω1,1(z) =
2d∑

i=1

dz

R′(−βi )R′′(βi )

{
− 1

8(z − βi )4
+

x1,i
24(z − βi )3

+
1

(z − βi )2

( x2,i
48

− x21,i
48

− x1,i y1,i
48

+
y2,i
48

− 1

8β2
i

)}
,

Hzω1,1(z) = − dz

8(R′(0))2z3
+

R′′(0)dz
16(R′(0))3z2

.

The differential formω1,1 satisfies for z nearβi the loop equations given inDefinitionB.1.

5. Main Conjecture

We established with the proof of Conjecture 4.9 for m = 2 and m = 3 as well as with
Proposition 4.10 the unexpected result that all ωg,m evaluated so far satisfy the linear
and quadratic loop equations. This is very unlikely a mere coincidence, which suggests:
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Conjecture 5.1. Let R : Ĉ → Ĉ be the ramified covering defined in (3.5). Letβ1, ..., β2d
be its ramification points and σi the corresponding local Galois involution in the vicinity
of βi . For all g ≥ 0 and m ≥ 1, the meromorphic differentials ωg,m given by ω0,1(z) =
−R(−z)R′(z)dz, ω0,2(u1, z) = du1 dz

(u1−z)2
+ du1 dz

(u1+z)2
and for 2− 2g−m < 0 by evaluation

of the system (4.2), (E.2) and (E.4) are symmetric and satisfy the linear loop equation
ωg,m(u1, ..., um−1, z) + ωg,m(u1, ..., um−1, σi (z)) = O(z − βi )dz

and the quadratic loop equation

ωg−1,m+1(u1, ..., um−1, z, σi (z)) +
∑

I1�I2={u1,...,um−1}
g1+g2=g

ωg1,|I1|+1(I1, z)ωg2,|I2|+1(I2, σi (z))

= O((z − βi )
2)(dz)2 .

If the conjecture is true5, it is a general fact established in blobbed topological recursion
[9] (and recalled in Appendix B) that the projection to the polar part is given by the
universal formula of topological recursion:

Pzωg,m(u1, ..., um−1, z)

=
2d∑

i=1

Res
q→βi

1
2

∫ q ′=q
q ′=σ(q)

B(z, q ′)
ω0,1(q) − ω0,1(σi (q))

(
ωg−1,m+1(u1, ..., um−1, q, σi (q))

+
∑

I1�I2={u1,...,um−1}
g1+g2=g

(I1,g1) �=(∅,0) �=(I2,g2)

ωg1,|I1|+1(I1, q)ωg2,|I2|+1(I2, σi (q))

)
, (5.1)

where B(u, z) = du dz
(u−z)2

is the Bergman kernel.

6. Conclusion and Outlook

This paper makes the Quartic Kontsevich Model a member of a rich family of models
affiliated with the moduli space Mg,n of stable complex curves. Common to all these
models is the possibility to construct all functions of interest (cumulants of a measure,
correlation functions, generating functions of something) recursively in decreasing Euler
characteristic χ = 2−2g−n. The quartic analogue of the Kontsevich model originates
fromattempts to put theλϕ4-quantumfield theorymodel on a noncommutative geometry.
It is a Hermitian matrix model in which a Gaußian measure with non-trivial covariance
(2.1) is deformed by a quartic potential, see (2.2). This paper shows that the loop equation
for the planar 2-point function of the Quartic Kontsevich model, found in [19] and
eventually solved in [22], is indeed the initial datum for a novel structure affiliated with
Mg,n .

We find that the primary structure of the Quartic KontsevichModel is not the entirety
of cumulants of the quartically deformed measure (as thought before) but a family of
auxiliary functions 

(g)
q1,...,qm introduced in Definition 2.3. They are particular polyno-

mials of cumulants [25]. The
(g)
q1,...,qm are extended first to meromorphic functions

(g)
m

and then to meromorphic forms ωg,m on Ĉ
m . It is convenient to view Ĉ

m as the space

5 As shown in [11], Conjecture 5.1 is true at least for g = 0.
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of (complex, compactified) lines through the m marked points of a Riemann surface of
genus g, see Fig. 7. The 

(g)
m do not exist alone; there are other families of functions

T (g)
... which interpolate between cumulants and ’s. These T (g)

... extend to meromor-
phic functions T (g)(u1, ..., um‖z, w|) and T (g)(u1, ..., um‖z|w|) on the space of lines
through

1. The m marked points of a bordered Riemann surface of genus g with b = 1 or b = 2
boundary components,

2. Defects on the boundary component(s); it is enough to consider two defects for b = 1
and one defect on each boundary for b = 2.

This distinction is nothing new for matrix models. It already appeared for the Her-
mitian 2-matrix model (2MM) [29] which has mixed-coloured and non-mixed coloured
boundaries. The underlying structure of monochromatic boundary correlation functions
of the 2MM was proved to follow a topological recursion [5]. However, to compute
non-mixed coloured boundary correlation functions the knowledge of mixed-coloured
boundary correlation functions is inevitable [27].

The Quartic Kontsevich Model, discussed here, almost shares its structure with the
2MM (cf. (3.6) with [28, Eqs. (1–3)]), even though it is by definition a completely differ-
ent model.We have shown that the resultingDyson-Schwinger equations are structurally
almost of the same form.Wehave found an algorithmconsisting of three steps (see Fig. 4)
to compute a given correlation function of Euler characteristic χ − 1 from correlation
functions of Euler characteristic ≥ χ . We showed that this calculation reduces to an
evaluation of residues.

A look upon the explicitly given results for small (−χ) suggests that the quartic
analogue of the Kontsevich model is governed by blobbed topological recursion [9].
This is an extension of topological recursion by an infinite family of initial data φg,m .
For convenience we provide in Appendix B some background information about the
BTR.

The final proof of our Main Conjecture 5.1 is on the way. The proof for g = 0 is
accomplished in [11]; there remains little doubt that the result holds in general. The
geometric structure is apparent: The spectral curve (of genus zero) is identified and
parametrised by

x(z) = R(z)

y(z) = −R(−z), where R(z) = z − λ

N

d∑

n=1

rn
R′(εn)(εn + z)

.

The numbers εn are related by ep = R(εp) to the distinct values ep occurring with
multiplicity rp in the parameters E1, ..., EN of the Gaußian measure (2.1).

Our blobbed topological recursion is defined by:

1. The covering x = R : Ĉ → Ĉ of the Riemann sphere ramified at {β1, . . . , β2d};
2. Two meromorphic differentials

ω0,1(z) = y(z)dx(z) on Ĉ ,

ω0,2(z, u) = B(z, u) + φ0,2(z, u) on Ĉ
2 , (6.1)

both regular at the ramification points, where B(z, u) = dz du
(z−u)2

is the usual Bergman

kernel and φ0,2(z, u) = dz du
(z+u)2

a symmetric 2-form blob with a double pole on the
antidiagonal;
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3. The recursion kernel Ki (z, q) =
1
2

∫ q′=q
q′=σi (q)

B(z,q ′)
ω0,1(q)−ω0,1(σi (q))

constructed with the usual
Bergman kernel and the local Galois involution σi near βi .

The presence of a blob φ0,2(z, u) is an important difference to the standard approach [9].
Moreover, we recall that for the proof of BTR [9] it was sufficient to assume ωg,m to be
defined on disjoint unions∪iUi about the ramification points. In contrast, our differential
forms ωg,m are globally defined meromorphic forms on Ĉ

m .
We noticed an intriguing rôle of the global involution z �→ −z on Ĉ. This involution

is of central importance in [11] for proving Conjecture 5.1 for genus g = 0. The blobs of
higher genus have poles at the fixed point z = 0 of this involution; also the other poles
at zi = −z j are related in this way. Since z → −z is a very natural structure, we expect
that the corresponding intersection numbers have a topological significance. It seems
worthwhile to work out details and to compute these numbers. Moreover, comparing
our spectral curve (6.1) to [30], we already realised that a subset of the normalised
part generates simple Hurwitz numbers. Our partition function is, however, considerably
easier and more natural than that of [30].

One can take the point of view that the linear and quadratic loop equations [10]
are the heart of TR. Their general solution is blobbed topological recursion [9]; further
conditions are necessary to reduce it to pure TR. This raises the question why the
original Kontsecich model [1] and a large class of generalisations [31] satisfy these
further conditions, whereas the quartic analogue of the Kontsevich model does not. At
themoment we do not have a good intuitive explanation, but on a technical level there are
several reasons. In Remarks 3.8, 3.10, 3.12 and 4.3 we have indicated similarities and
decisive differences to the Hermitean 2-matrix model. Precisely the additional terms
compared with the 2-matrix model are responsible for the poles of ωg,n away from
ramification points of x (and the diagonal in case of ω0,2). The Laurent series about
these additional poles is completely fixed by our global (on Ĉn) loop equations; there is
absolutely no freedom in choosing the blobs. This is a clear difference with the original
formulation of blobbed topological recursion [9] in which the abstract loop equations
are only considered locally in a neighbourhood of the ramification points (so that the
blobs can be chosen freely within the constraints of the loop equations).

Another technical reason for BTR is that the ωg,n in matrix models are typically
related to correlations of diagonal matrix elements �aa (such as in the (generalised)
Kontsevich model [31]) or correlations of resolvents Tr((z − �)−1) (such as in the
2-matrix model [5]). Because of the invariance of the quartic Kontsevich model under
� �→ −�, these special correlations only give rise to even Euler characteristics. In
particular, the initial 

(0)
1 cannot be obtained in this way. We have shown in this paper

that(0)
1 in the quartic Kontsevich model is built from the two-point function G(0)(z, w),

which has a pole at z +w = 0. This pole at opposite diagonals proliferates into the ωg,n
for all 2g + n ≥ 2 and induces poles at zi = 0 for g ≥ 1.

Private discussionswithB. Eynard andE.Garcia-Failde also suggest that there is hope
to formulate the current version of blobbed topological recursion in terms of pure TR by
increasing the genus of the spectral curve by 1. The appearance of the same phenomenon
in the O(n)model [32] and the remarkable structural analogies of holomorphic and polar
parts in the quartic Kontsevich model make this hope a justified research goal for the
future, among other stimulating questions arising from this model.
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A. Notations and Relations

For the sake of readability, and because we partly deviate from conventions in the lit-
erature, we list in the table below a few important notations and symbols used in this
paper.

Symbol Explanation

E1, ..., EN ; λ Parameters of Gaußian measure and its quartic deformation
ek , rk , d Distinct values in (El ), their multiplicities, their number
R(z) Implicitly defined by R(z) = z − λ

N
∑d

k=1
rk

R′(εk )(z+εk )
, ek = R(εk )

εk Unique solutions in neighbourhood of λ = 0 of ek = R(εk )

ẑ j d preimages with R(z) = R(ẑ j ) and z �= ẑ j

{0, ±αi } 2d + 1 solutions of R(z) − R(−z) = 0
βi 2d ramification points, solutions of R′(z) = 0
σi (z) Local Galois involution in the vicinity of βi , with

R(z) = R(σi (z)), limz→βi σi (z) = βi and σi �= id
G|...| Correlation functions/cumulants of the deformed measure
G(g)(...) Complexification and transformation via R of G|...|, plus genus expansion. Satisfies

G(εk , ...) = G|k...|
G(0)(z, w) Given in Theorem 3.4 as solution of a non-linear equation
T...‖...| Generalised correlation functions: Eq -derivatives of G|...| given in Definition 2.3
T (g)(...‖...|) Complexification, transformation via R and genus expansion of T...‖...|
q1...qm Derivative of 1

N
∑

p G|q1 p| + 1
N2 G|q1|q1| with respect to Eq2 , ..., Eqm (see Defini-

tion 2.3)


(g)
m (z1, ..., zm ) Complexification, transformation via R and genus expansion of q1...qm

ωg,m (z1, . . . , zm ) Meromorphic differential = λ2−2g−m
(g)
m (z1, . . . , zm )

∏m
j=1 R′(z j )dz j

L(x), Lw(x) Lagrange interpolation polynomials

χ Euler characteristic χ = 2 − 2g − m − b; the 
(g)
m have b = 0

G0(z) Auxiliary function G0(z) = Res
w→−z

G(0)(z, w)dw

Cm,n
k,l Partial fraction coefficients of G(0)(z, w)

http://creativecommons.org/licenses/by/4.0/
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Symbol Explanation

Q(w; z) Auxiliary function Q(w; z) := 1
w+z +

1
w−z , derivatives Q

′, Q′′ etc. with respect to the
second argument

B(z, u) Bergman kernel B(z, u) = dz du
(z−u)2

φ0,2 A blob given by dz du
(z+u)2

Ki (z, q) Recursion kernel
Hz ,Pz Projections to holomorphic and polar parts (near ramification points) of meromorphic

m-forms

B. Recap of Blobbed Topological Recursion

The outstanding applicability of topological recursion (TR) to a great bandwidth of
mathematical phenomena is clearly undoubted. However, there exist models showing a
certain recursive behaviour regarding their solutions of loop equations, but not perfectly
fitting into the recursion of ordinary TR, for instance in the Hermitian 1-matrix model
extended by multi-trace contributions [33] or in the quartic melonic tensor model [34].
The appearance of poles at z ∈ {0,−ul} in Corollary 4.7 gave a first hint6 to focus on a
framework that even enlarges the mentioned bandwidth. Discovered in 2015, it extends
the usual TR by additional topological quantities baptised blobs to blobbed topological
recursion [9].
It was observed that the loop equations of several (matrix) models can be reduced to a
system of linear and quadratic loop equations:

Definition B.1. Let x : � → �0 be a ramified covering with simple ramification points
βi and σi be the local Galois involution around βi , i.e. x(z) = x(σi (z)), limz→βi σi (z) =
βi and σi �= id. A family of meromorphic differential forms ωg,m on �m , with g ≥ 0
and m > 0, fulfils the linear loop equation if

ωg,m+1(u1, ..., um, z) + ωg,m+1(u1, ..., um, σi (z)) = O(z − βi )dz (B.1)

is a holomorphic linear form for z → βi with (at least) a simple zero at βi . The family
of ωg,m fulfils the quadratic loop equation if

Qi
g,m+1 := ωg−1,m+2(u1, ..., um, z, σi (z))

+
∑

g1+g2=g
I1�I2={u1,...,um }

ωg1,|I1|+1(I1, z)ωg2,|I2|+1(I2, σi (z))

= O((z − βi )
2)(dz)2 (B.2)

is a holomorphic quadratic form with at least a double zero at z → βi .

An important subclass of solutions is given by differentials governed by TR [10]. The
entirety of solutions, instead, is provided by BTR. According to Subsect. 4.3, the solu-
tions ω0,2, ω0,3, ω0,4 and ω1,1 of the loop equations of the Quartic Kontsevich Model
fulfil the linear and quadratic loop equations. We hope to provide in near future the proof
of the natural Main Conjecture 5.1 that all ωg,m obey these loop equations.
The suggestive notation in (4.3) was inspired by [9] and shall be explained now. In the
framework of BTR, one defines projectors Hz and Pz acting on

ωg,m(..., z) = Hzωg,m(..., z) + Pzωg,m(..., z).

6 We thank Stéphane Dartois for pointing out this extension of topological recursion.
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Fig. 7. Diagrammatic representation of blobbed topological recursion: ωg,m is a meromorphic form on a

product of Ĉ (each shown as a line) each attached to a marked point (shown as black dot) on a genus-g
Riemann surface (here g = 2). It is recursively generated. The second and third graph on the rhs are copies of
ordinary topological recursion; these provide the part ofωg,m with poles in z1 at ramification points of x = R.
The first graph on the rhs, however, depicts the holomorphic part as an additional input of each recursion step.
Its poles in z1 are located outside the ramification points of x = R.

It is shown in [9] that the partPzωg,m(z1..., zm−1, z) is produced by the universal formula
of topological recursion from ωg′,m′ with 2g′ + m′ − 2 < 2g + m − 2. The mechanism
of BTR can be depicted as in Fig. 7.
Applying these projections in every variable decomposes ωg,m into 2m pieces, among
them the purely holomorphic part (for 2g + m − 2 > 0) φg,m(z1, ..., zm−1, z) =
Hz1 ...Hzm−1Hzωg,m(z1..., zm−1, z), called theblob, and thepurely polar partPz1 ...Pzm−1

Pzωg,m(z1..., zm−1, z). In the special case where Pz1 ...Pzm−1Pzωg,m(z1..., zm−1, z) =
ωg,m(z1..., zm−1, z), the solution of abstract loop equations shall be called a normalised
one, denoted by ωo

g,m . In [9] there was developed a diagrammatic representation of
(products of) projectors H and P acting on ωg,m .
We will slightly deviate from the above conventions by choosing the unstable blobs
φ0,1, φ0,2 differently and by adopting a global formulation. First, we set φ0,1 = 0 and
φ0,2(z, u) = dzdu

(z+u)2
with ω0,1(z) = y(z)dx(z) as usual and ω0,2(z, u) = B(z, u) +

φ0,2(z, u), see (6.1). In the original formulation [9], the Riemann surface C is a disjoint
union ∪iUi of sufficiently small neighbourhoods of the ramification points βi . Then
Hzωg,m is indeed holomorphic in every z ∈ C. In contrast, our Quartic Kontsevich
Model is defined globally on Ĉ so that the term holomorphic part should be treated
with more caution. It is rather a relic of previous namings and means holomorphic in
ramification points, but with poles somewhere else on Ĉ.
The global formulation also suggests a more natural definition of the projection Pz ,
namely

Pzω(z) =
2d∑

i=1

P i
zω(z) , P i

zω(z) := Res
q→βi

[
ω(q)

∫ q

∞
B(z, .)

]
(B.3)

for a 1-form ω in a selected variable (in case there are 2d ramification points). Here
B(z, z′) is the Bergman kernel; whereas [9] defines Pz with the given bidifferential
ω0,2(z, z′). The global formulation allows us to start the contour integral at the special
point ∞ ∈ Ĉ instead of βi chosen in [9]. In particular, our projector (B.3) sees the
residue and thus gives the whole principal part of the Laurent series about βi .
A main achievement in [9] is a simple proof (which adapts arguments of [10, Proposi-
tion 2.7]) that meromorphic m-forms ωg,m which satisfy the abstract loop equations of
Definition B.1 have a polar part given by the universal TR-formula. The essence of the
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proof remains unchanged when defining the polar part via (B.3). We find it convenient
to sketch the arguments. For z near βi and I = {z1, ..., zm−1} define

S i
zωg,m(I, z) = ωg,m(I, z) + ωg,m(I, σi (z)) ,

�i
zωg,m(I, z) = ωg,m(I, z) − ωg,m(I, σi (z)) .

The quadratic loop Eq. (B.2) can be written as P i
z

[ Qi
g,m (I,z)

�i
zω0,1(z)

] = 0. Indeed, �i
zω0,1(z)

has a double zero at every z = βi so that
Qi

g,m (I,z)

�i
zω0,1(z)

is holomorphic in z = βi .

Write Qi
g,m(I, z) = ω0,1(z)Sizωg,m(I, z) − ωg,m(I, z)�i

zω0,1(z) + Q̃i
g,m(I, z) where

Q̃i
g,m(I, z) excludes both terms with ω0,1 in Qi

g,m . Both ω0,1(z) and (by the linear loop
equation) Sizωg,m(I, z) have a simple zero at z = βi so that we arrive at

P i
zωg,m(I, z) = P i

z

[ Q̃i
g,m(I, z)

�i
zω0,1(z)

]
= 1

2
P i
z

[ Q̃i
g,m(I, z)

�i
zω0,1(z)

]
− 1

2
P i

σi (z)

[ Q̃i
g,m(I, z)

�i
zω0,1(z)

]
.

The second equality follows from the antisymmetry of
Q̃i

g,m (I,z)

�i
zω0,1(z)

under the involution

z ↔ σi (z). Inserting this result into (B.3) establishes

Pzωg,m(I, z) =
2d∑

i=1

Res
q→βi

Ki (z, q)Q̃i
g,m(I, q)

with Ki (z, q) =
1
2

∫ q ′=q
q ′=σi (q)

B(z, q ′)
ω0,1(q) − ω0,1(σi (q))

.

It writes out as in (5.1).

C. Local Galois Involution and Recursion Kernel

Let x : Ĉ → Ĉ be a ramified covering of the Riemann sphere with simple ramification
points, ω0,1(z) = y(z)dx(z) a meromorphic 1-form which is holomorphic in the ramifi-
cation points of x , and B(z1, z2) = dz1dz2

(z1−z2)2
be the standard Bergman kernel on Ĉ2. For a

ramification point βi of x , determined by x ′(βi ) = 0, let σi be the local Galois involution
in a neighbourhood Ui of βi , determined by x(σi (z)) = x(z), limz→βi σi (z) = βi and
σi �= id. Let

xn,i := x (n+2)(βi )

x ′′(βi )
, yn,i := y(n+1)(βi )

y′(βi )
. (C.1)

Lemma C.1. The local Galois involution σi in Ui has a formal power series expansion
σi (q) = βi +

∑∞
n=0 cn,i (q−βi )

n+1 whose coefficients are recursively given by c0,i = −1
and for n ≥ 1 by

cn,i = (−1)n − 1

(n + 2)! xn,i +
1

2

n−1∑

k=1

ck,i cn−k,i +
1

(n + 2)!
n+1∑

k=3

xk−2,i bn+2,k,i (x) ,
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where bn,k,i (x) := Bn,k(1!c0,i , 2!c1,i , ..., (n−k+1)!cn−k,i ) .

Here Bn,k are the Bell polynomials. The first examples are

c1,i = − x1,i
3

, c2,i = − x21,i
9

,

c3,i = −2x31,i
27

+
x1,i x2,i
18

− x3,i
60

, c4,i = −4x41,i
81

+
x21,i x2,i

18
− x1,i x3,i

60
.

Proof. Insert the power series ansatz into the identity 0 = x(σi (q)) − x(q) for q in a
neighbourhood of βi . Then all derivatives with respect to q vanish at q = βi so that we
have from Faà di Bruno’s formula and with x ′(βi ) = 0

x (n)(βi ) =
n∑

k=2

x (k)(βi ) · bn,k,i (x) .

This gives c20,i = 1 for n = 2. The solution c0,i = 1 selects the primary branch
cn,i = 0 for all n ≥ 1. For the local Galois involution we thus have c0,i = −1.
Solving the resulting equations by using the definition for the followingBell polynomials
bn,n,i (x) = (−1)n and

bn,2,i (x) = n!
(

− cn−2,i +
1

2

n−3∑

k=1

ck,i cn−2−k,i

)

gives after shifting n → n + 2 and dividing by x ′′(βi ) the desired recursion. ��
The recursion kernel near a ramification point βi specifies to

Ki (z, q) =
( 1
z−q − 1

z−σi (q)

)
dz

2(y(q) − y(σi (q)))x ′(σi (q))dσi (q)
. (C.2)

In terms of bn,k,i (x), the terms in the recursion kernel expand into

1

z − q
− 1

z − σi (q)
=

∞∑

n=1

(q − βi )
n

n!
( n!
(z − βi )n+1

−
n∑

k=1

k!
(z − βi )k+1

bn,k,i (x)
)

,

y(q) − y(σi (q)) = y′(βi )

∞∑

n=1

(q − βi )
n

n!
(
yn−1,i −

n∑

k=1

yk−1,i bn,k,i (x)
)

,

x ′(σi (q)) = x ′′(βi )

∞∑

n=1

(q − βi )
n

n!
n∑

k=1

xk−1,i bn,k,i (x) .

Up to order O((q − βi )
3) we thus get

Ki (z, q)

= dz

x ′′(βi )y′(βi )dσi (q)

{
− 1

2(z − βi )2(q − βi )
− x1,i

12(z − βi )2

+
[(

− x21,i
8

− x1,i y1,i
12

+
x2,i
12

+
y2,i
12

) (q − βi )

(z − βi )2
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+
x1,i
6

(q − βi )

(z − βi )3
− 1

2

(q − βi )

(z − βi )4

]

+
[(

− 37x31,i
432

− x21,i y1,i

24
+
x1,i x2,i
12

+
x1,i y2,i
24

− x3,i
80

) (q − βi )
2

(z − βi )2

+
x21,i
12

(q − βi )
2

(z − βi )3
− x1,i

4

(q − βi )
2

(z − βi )4

]

+
[(

− 209x41,i
2592

− 19x31,i y1,i

432
− x21,i y

2
1,i

72
+
17x21,i x2,i

144
+
x1,i x2,i y1,i

36

+
19x21,i y2,i

432
+
x1,i y1,i y2,i

36
− x22,i

72
− 23x1,i x3,i

720
− x3,i y1,i

240
− x2,i y2,i

72

− y22,i
72

− x1,i y3,i
72

+
x4,i
240

+
y4,i
240

) (q − βi )
3

(z − βi )2

+
(19x31,i

216
+
x21,i y1,i

36
− x1,i x2,i

18
− x1,i y2,i

36
+
x3,i
120

) (q − βi )
3

(z − βi )3

+
(

− 19x21,i
72

− x1,i y1,i
12

+
x2,i
12

+
y2,i
12

) (q − βi )
3

(z − βi )4

+
x1,i
3

(q − βi )
3

(z − βi )5
− 1

2

(q − βi )
3

(z − βi )6

]

+O((q − βi )
4)

}
.

D. Graphical Derivation of the Dyson-Schwinger Equations

Since all the correlation functions have a combinatorial interpretation, also the DSE’s
of Proposition 2.5 can be described combinatorially in terms of ribbon graphs. The
correlation function are generating series of those ribbon graphs; we refer to [25] for
more details and precise definitions.
Before,we need two further relations between generalised correlation functions achieved
by applying (2.8).

D.1. Ward-Takahashi identity for generalised correlation functions. We will represent
higher correlation function through lower ones by summing over one of the indices:

Lemma D.1. Let I = {q1, ..., qm}. Then we have the identity

−T (g)
I‖nq| − T (g)

I‖pq|
En − Ep

= 1

N

N∑

k=1
k /∈I

T (g)
I‖pknq| +

∑

g1+g2=g
I1�I2=I

T (g1)
I1‖pq|T

(g2)
I2‖qn|

−
∑

qi∈I

∂

∂Eqi
T (g)
I\qi‖pqi nq| + T (g−1)

I‖p|pnq| + T (g−1)
I‖n|pnq| + T (g−1)

I‖pq|nq|.
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Proof. TheWard-Takahashi identity for the 4-point function was already derived in [23,
Eq. (B.5)], that is

−G(g)
|qn| − G(g)

|pq|
En − Ep

= 1

N

N∑

k=1

G(g)
|pknq| +

∑

g1+g2=g

G(g1)
|pq|G

(g2)
|qn|

+ G(g−1)
|p|pnq| + G(g−1)

|n|pnq| + G(g−1)
|pq|nq|.

Applying the operator DI := (−N )m∂m

∂Eq1 ···∂Eqm
to the identity andmaking use of Definition 2.3

yields the assertion. ��
Lemma D.2. Let I = {q1, ..., qm}. Then we have the identity

−T (g)
I‖p|q| − T (g)

I‖n|q|
Ep − En

= 1

N

N∑

k=1
k /∈I

T (g)
I‖pkn|q| −

∑

qi∈I

∂

∂Eqi
T (g)
I\qi‖pqi n|q| + T (g)

I‖pqqn|

+
∑

g1+g2=g
I1�I2=I

T (g1)
I1‖pn|

(
T (g2)
I2‖q|n| + T (g2)

I2‖q|p|
)
+ T (g−1)

I‖q|n|pn| + T (g−1)
I‖q|p|pn|.

Proof. The Ward-Takahashi identity for the 3 + 1-point function was already derived in
[23, Eq. (B.6)], that is

−G(g)
|n|q| − G(g)

|p|q|
En − Ep

= 1

N

N∑

k=1

G(g)
|pkn|q| + G(g)

|pqqn| +
∑

g1+g2=g

G(g1)
|pn|

(
G(g2)

|q|n| + G(g2)
|q|p|

)

+ G(g−1)
|q|n|pn| + G(g−1)

|q|p|pn|.

Applying the operator DI := (−N )m∂m

∂Eq1 ···∂Eqm
to the identity andmaking use of Definition 2.3

yields the assertion. ��

D.2. Graphical derivation of (2.14). We will start with the DSE (3) of Proposition 2.5,
which is achieved combinatorially by an action of the operation −N ∂

∂Eq
on I with

q /∈ I (this was discussed in [25] in greater detail). The derivative acts on an edge
adjacent to an internal face, splitting the edge and fixing the label of the internal face to
q. There are three different cases depending on the other adjacent face to this edge:

(a) If the other adjacent face is also an internal face labelled by l, a generalised 2-point
function appears with a sum over this external face l, which is 1

N

∑N
l=1 TI‖ql|.

(b) If the other adjacent face is labelled by qi ∈ I , a generalised 2-point function appears
with external faces q and qi . A derivative of the form −N ∂

∂Eqi
has to be taken only

acting on the face labelled by Eqi since this face has one additional edge already split,

that is − ∂ext TI\qi ‖qqi |
∂Eqi

as defined in (3.1). A sum over all possible qi has to be taken.

(c) If the other adjacent face is the same face, a generalised 1 + 1-point function appears
with one genus less and two external faces labelled by q each of length one, that is
1
N2 TI‖q|q|.
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Fig. 8. Generic deletion of the first vertex for the generalised 2-point function, which separates the free
propagator from the rest. This operation generates the factor −λ

Ep+Eq

Combining case (a) and (b) via

−N
∂

∂Eqi
TI\qi‖qqi | = TI‖qqi | − N

∂ext

∂Eqi
TI\qi‖qqi |, (D.1)

where we have used (3.1), we obtain the DSE (2.14).

The DSE (1) of Proposition 2.5 is achieved by a bijection between T (g)
I‖pq|, a generating

series of ribbon graphs with a certain structure, and other generating series via an oper-
ation we call vertex deletion (of the first vertex). The generic deletion is drawn in Fig. 8.
We will distinguish between six topologically different cases depending on the choice
of n in Fig. 8. For each choice of n, we get several subcases according to the choice of
k, which we do not draw in general. However, it is evident by the distinctions in n how
these different topologies for k should look like.

(a) Generic n: Here, k can be an internal face label running from 1 to N with the
prefactor 1

N ; the correlation function on the rhs of Fig. 8 therefore is

1

N

N∑

k=1

T (g)
I‖pknq|.

However, five further subcases occur, depending on the choice of k:
– For k = q: The rhs can be split into two components with the structure

T (g1)
I1‖pq|T

(g2)
I2‖qn| with g1 + g2 = g and I1 � I2 = I .

– For k = qi ∈ I : The rhs has an extra derivative on the face labelled by qi coming
from the split edge of the square-vertex, that is − ∂ext

∂Eqi
T (g)
I\qi‖pqi nq|.

– For k = p: A reduction of the genus by one can be generated with two boundary
components one of length 1 and the other of length 3, so we obtain T (g−1)

I‖p|pnq|.
– For k = n: A reduction of the genus by one can be generated with two boundary

components one of length 1 and the other of length 3, so we obtain T (g−1)
I‖n|pnq|.

– For k = q: A reduction of the genus by one can be generated with two boundary
components of length 2, so we obtain T (g−1)

I‖pq|nq|.
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Fig. 9. Three cases depending on k for the generalised 2-point function with n = p. The first vertex is drawn
in the middle seperately

Fig. 10. The generalised 2-point function with n = p but no seperation into two components. The first vertex
is drawn in the middle seperately

These six terms can be combined and surprisingly the identity of Lemma D.1 can be
applied exactly. Consequently, including the deleted free propagator and the vertex,
we obtain after summation over n

−λ

Ep + Eq

1

N

N∑

n=1

[
1

N

N∑

k=1

T (g)
I‖pknq| +

∑

g1+g2=g
I1�I2=I

T (g1)
I1‖pq|T

(g2)
I2‖qn|

−
∑

qi∈I

∂ext

∂Eqi
T (g)
I\qi‖pqi nq| + T (g−1)

I‖p|pnq| + T (g−1)
I‖n|pnq| + T (g−1)

I‖pq|nq|
]

= λ

Ep + Eq

1

N

N∑

n=1

T (g)
I‖nq| − T (g)

I‖pq|
En − Ep

. (D.2)

(b) For n = p: There is one case where the correlation function is split into two com-
ponents after deleting the first vertex. Depending on k, the three different subcases
are drawn in Fig. 9.
– For generic k: The sum over k is taken and the two components have the form

T (g1)
I1‖pk|T

(g2)
I2‖pq| with g1 + g2 = g and I1 � I2 = I .

– For k = p: A reduction of the genus by one can be generated with two boundaries
for one of the correlation functions, we obtain T (g1−1)

I1‖p|p|T
(g2)
I2‖pq|.

– For k = qi ∈ I : One correlation function gets an additional derivative wrt to the
external face qi that is (− ∂ext

∂Eqi
T (g1)
I1\qi‖pqi |)T

(g2)
I2‖pq|.
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Including the deleted free propagator and applying the DSE (2.14) with g1 and I1,
we finally obtain

−λ

Ep + Eq

∑

g1+g2=g
I1�I2=I

T (g2)
I2‖pq|

[
1

N

N∑

k=1

T (g1)
I1‖pk| + T (g1−1)

I1‖p|p| −
∑

qi∈I

∂ext

∂Eqi
T (g1)
I1\qi‖pqi |

]

= −λ

Ep + Eq

∑

g1+g2=g
I1�I2=I

T (g2)
I2‖pq|

(g1)
I1,p

. (D.3)

(c) For n = p: There is a second case where the correlation function is not split into two
components, see Fig. 10. The genus is reduced by one and we can again distinguish
between different k.
– For generic k: There is an internal face labelled by k, we take the sum and have

1
N

∑N
k=1 T

(g−1)
I‖pk|pq|.

– For k = qi : We have an additional derivative wrt to the external face labelled by
qi , that is − ∂ext

∂Eqi
T (g−1)
I‖pqi |pq|.

– For k = p: The genus can be reduced by one more. In total three boundaries are
generated two with length 1 and one with length 2. The correlation function is of
the form T (g−2)

I‖p|p|pq|.
– For k = p: Two boundaries can merge such that only one boundary of length 4

remains, T (g−1)
I‖pppq|.

– For k = q: Two boundaries can merge such that only one boundary of length 4
remains, T (g−1)

I‖pqpq|.
These cases sum again together to the following

−λ

Ep + Eq

[
1

N

N∑

k=1

T (g−1)
I‖pk|pq| −

∑

qi∈I

∂ext

∂Eqi
T (g−1)
I‖pqi |pq|

+ T (g−2)
I‖p|p|pq| + T (g−1)

I‖pppq| + T (g−1)
I‖pqpq|

]

= −λ

Ep + Eq
T (g−1)
I,p‖pq|. (D.4)

This can be seen by deriving −N ∂
∂Ep′

T (g)
I‖pq|, where we consider the same action

as described in Sect. D.2 plus two additional cases: If the other adjacent face is an
external face either labelled by p or q, then a boundary of length 4 is generated, that
is T (g)

I‖pp′ pq| or T
(g)
I‖qp′qp|:

1

N

N∑

k=1

T (g)
I‖p′k|pq| −

∑

qi∈I

∂ext

∂Eqi
T (g)
I‖p′qi |pq| + T (g−1)

I‖p′|p′|pq| + T (g)
I‖pp′ pq| + T (g)

I‖qp′qp|

= T (g)
I,p′‖pq|.

This identity is then applied with p′ = p and g �→ g − 1.
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(d) For n = qi ∈ I : There is an overall derivative − ∂ext

∂Eqi
. Combinatorially, all the cases

are exactly the same as for generic n, but with I \ qi instead of I , see Fig. 11. So
we conclude equivalently to case a)

− λ

Ep + Eq

∑

qi∈I

∂ext

∂Eqi

T (g)
I\qi‖qi q| − T (g)

I\qi‖pq|
Eqi − Ep

(D.5)

(e) For n = q: Fig. 12 shows that for generic k the genus is reduced by one. Here again,
we have several subcases:
– For generic k: The sum over k remains since k is an interal face, that is

1
N

∑N
k=1 T

(g−1)
I‖pkq|q|.

– For generic k = qi ∈ I : One overall derivative appears such that we have
− ∂ext

∂Eqi
T (g−1)
I\qi‖pqi q|q|.

– For k = q: Both boundaries can merge such that one boundary remains of length
4, T (g−1)

I‖pqqq|.
– For k = q: Also a splitting in two components can occur T (g1)

I1‖pq|T
(g2−1)
I2‖q|q| with

g1 + g2 = g and I1 � I2 = I .
– For k = p: A similar splitting in two components can occur T (g1)

I1‖pq|T
(g2−1)
I2‖q|p| .

– For k = q: Also a reduction by one further genus can occur, which has three
boundaries of the form T (g−2)

I‖q|q|pq|.
– For k = p: Also a reduction by one further genus can occur, which has three

boundaries of the form T (g−2)
I‖q|p|pq|.

Summing all subcases, the identity of LemmaD.2 applies perfectly, andwe conclude

− λ

Ep + Eq

[
1

N

N∑

k=1

T (g−1)
I‖pkq|q| −

∑

qi∈I

∂ext

∂Eqi
T (g−1)
I\qi‖pqi q|q| + T (g−1)

I‖pqqq|

+
∑

g1+g2=g
I1�I2=I

T (g1)
I1‖pq|

(
T (g2−1)
I2‖q|q| + T (g2−1)

I2‖q|p|
)
+ T (g−2)

I‖q|q|pq| + T (g−2)
I‖q|p|pq|

]

= λ

Ep + Eq

T (g−1)
I‖p|q| − T (g−1)

I‖q|q|
Ep − Eq

. (D.6)

Finally, including the free propagator for the genus g = 0 and I = ∅ we obtain the DSE

T (g)
I‖pq| = δ0,gδ0,|I |

Ep + Eq
+ (D.2) + (D.3) + (D.4) + (D.5) + (D.6)

which coincides with (2.12) after considering (D.1) and its definition (3.1).

D.4. Graphical derivation of (2.13). The DSE 2) of Proposition 2.5 is also achieved by
a bijection between T (g)

I‖p|q|, a generating series of ribbon graphs with two boundaries of
length 1 and other generating series via deletion of the first vertex. For the generalised
1 + 1-point function, the prefactor after deletion becomes

−λ

Ep + Ep
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Fig. 11. The generalised 2-point function with n = qi , which is similar to the generic n case

Fig. 12. The generalised 2-point function with n = q is reduced by one genus, but has at least two boundaries

instead of −λ
Ep+Eq

as it was for the generalised 2-point function. The first four cases are

(up to some small subtleties) the same as the cases (a)–(d) of the T (g)
I‖pq|. The fifth case,

however, is different:

(e’) We have two separated boundaries each of length 1 labelled by p and q, see Fig.
13. The deletion of the first vertex is divided in several subcases:
– For generic k: If k is an internal face, the sum is taken and one boundary of length

4 remains, 1
N

∑N
k=1 T

(g)
I‖pkqq|.

– For k = qi ∈ I : The overall derivative is taken with k = qi and I \ qi , that is
− ∂ext

∂Eqi
T (g)
I\qi‖pqi qq|.

– For k = q: The graph can be split into two after deleting the first vertex. Two cor-
relation functions occur each with boundary of length 2; we obtain T (g1)

I1‖qq|T
(g2)
I2‖pq|

with g1 + g2 = g and I1 � I2 = I .
– For k = q: There is also the case that two separated boundaries remain, but with

one genus less, T (g−1)
I‖q|qqp| + T (g−1)

I‖qq|qp|.
– For k = p: Two boundaries remain but genus is reduced by one, T (g−1)

I‖p|qqp|.
In summary, we find for the case e’) together with Lemma D.1

−λ

Ep + Ep

[
1

N

N∑

k=1

T (g)
I‖pkqq| −

∑

qi∈I

∂ext

∂Eqi
T (g)
I\qi‖pqi qq|
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Fig. 13. The generalised 1 + 1-point function with n = q does not reduce the genus, but merges the two
boundaries

+
∑

g1+g2=g
I1�I2=I

T (g1)
I1‖qq|T

(g2)
I2‖pq| + T (g−1)

I‖q|qqp| + T (g−1)
I‖qq|qp| + T (g−1)

I‖p|qqp|
]

= λ

Ep + Ep

T (g)
I‖qq| − T (g)

I‖pq|
Eq − Ep

.

Including the first four cases similar to the graphical derivation of the generalised 2-
point function, we finally confirm the DSE (2.13) of the generalised 1+1-point function
T (g)
I‖p|q| with the same considerations as for the generalised 2-point function.

E. Proofs for Sect. 4.1

We will use the following well-known interpolation formula:

Lemma E.1. Let f be a polynomial of degree d − 1 ≥ 0 and x1, ..., xd be pairwise
distinct complex numbers. Then, for all x ∈ C,

f (x) = L(x)
d∑

j=1

f j
(x − x j )L ′(x j )

, where L(x) =
d∏

j=1

(x − x j ) and f j = f (x j ).

We recall [22] that (3.7) gives rise to the product representation

G(0)(z, w) = 1

R(w) − R(−z)

d∏

k=1

R(z) − R(−ŵk)

R(z) − R(εk)
. (E.1)

Proposition E.2. Let I = {u1, ..., um}. The DSE (3.6) is solved by

T (g)(I‖z, w|) = λG(0)(z, w) Res
t→z,−ŵ j

R′(t) dt
(R(z) − R(t))(R(w) − R(−t))G(0)(t, w)

×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t, w|) +
m∑

i=1

∂

∂R(ui )

T (g)(I\ui‖ui , w|)
R(ui ) − R(t)
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+
T (g−1)(I‖t |w|) − T (g−1)(I‖w|w|)

R(w) − R(t)
+ T (g−1)(I, t‖t, w|)

]
, (E.2)

where v ∈ {w, ŵ1, ..., ŵd} are the solutions of R(v) = R(w). We employed the short-
hand notation Res

t→z,−ŵ j
≡ Res

t→z
+

∑d
j=1 Res

t→−ŵ j
.

Proof. The second term of the lhs of the DSE (3.6) is conveniently written as

− λ

N

d∑

k=1

rk
T (g)(I‖εk, w|)
R(εk) − R(z)

=
λ
N

∑d
k=1 rkT (g)(I‖εk, w|)∏d

i �=k(R(z) − R(εi ))
∏d

j=1(R(z) − R(ε j ))

=: f (R(z);w|I )
∏d

j=1(R(z) − R(ε j ))
,

where f ( . ;w|I ) is now a polynomial of degree d − 1. Applying Lemma E.1 with
Lw(t) := ∏d

j=1(t − R(−ŵ j )), the interpolation formula yields

f (R(z);w|I ) = Lw(R(z))
d∑

j=1

f (R(−ŵ j );w|I )
(R(z) − R(−ŵ j ))L ′

w(R(−ŵ j ))

= Lw(R(z))
d∑

j=1

Res
t→−ŵ j

f (R(t);w|I )R′(t)dt
(R(z) − R(t))Lw(R(t))

,

where the analyticity of f (R(z);w|I ) at z = −ŵ j was used. Next, insert (3.6) again for
z �→ t near t = −ŵ j at which the first term of the lhs vanishes (here it is important that
the integrand has only a simple pole at t = −ŵ j ). Inserting it for f (R(t);w|I ) leads to

− λ

N

d∑

k=1

rk
T (g)(I‖εk, w|)
R(εk) − R(z)

= −λ(R(w)−R(−z))G(0)(z, w)

d∑

j=1

Res
t→−ŵ j

R′(t)dt
(R(z)−R(t))(R(w)−R(−t))G(0)(t, w)

×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t, w|) +
m∑

i=1

∂

∂R(ui )

T (g)(I\ui‖ui , w|)
R(ui ) − R(t)

+
T (g−1)(I‖t |w|) − T (g−1)(I‖w|w|)

R(w) − R(t)
+ T (g−1)(I, t‖t, w|)

]
, (E.3)

where the product representation (E.1) was inserted.
Next, compute for the same integrand the residue at t = z (for arbitrary z)

λ(R(w) − R(−z))G(0)(z, w)Res
t→z

R′(t)dt
(R(z) − R(t))(R(w) − R(−t))G(0)(t, w)
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×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t, w|) +
m∑

i=1

∂

∂R(ui )

T (g)(I\ui‖ui , w|)
R(ui ) − R(t)

+
T (g−1)(I‖t |w|) − T (g−1)(I‖w|w|)

R(w) − R(t)
+ T (g−1)(I, t‖t, w|)

]

= −λ

[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, z)T

(g2)(I2‖z, w|) +
m∑

i=1

∂

∂R(ui )

T (g)(I\ui‖ui , w|)
R(ui ) − R(z)

+
T (g−1)(I‖z|w|) − T (g−1)(I‖w|w|)

R(w) − R(z)
+ T (g−1)(I, z‖z, w|)

]

= (R(w) − R(−z))T (g)(I‖z, w|) − λ

N

d∑

k=1

rk
T (g)(I‖εk, w|)
R(εk) − R(z)

.

Summing both expressions gives the assertion. ��
Remark E.3. The residue formula of Proposition E.2 is equivalent to the formula found
in [23] via inversion of Cauchy matrices

( 1
R(ε j )−R(−ŵk )

)
j,k . This is not surprising as

the derivation of the inverse Cauchy matrix in [35] is mainly based on the interpolation
formula.

The proof of Corollary 4.2 is:

Proof. We rewrite one of the terms in Proposition E.2 as

∂

∂R(ui )
Res

t→z,−ŵ j

R′(t)dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))Lw(R(t))

T (g)(I\ui‖ui , w|)
R(ui ) − R(t)

= ∂

∂R(ui )
Res

x→R(z),R(−ŵ j )

dx
∏d

k=1(x − R(εk))

(R(z) − x)Lw(x)

T (g)(I\ui‖ui , w|)
R(ui ) − x

= − ∂

∂R(ui )
Res

x→R(ui )

∏d
k=1(x − R(εk))

(R(z) − x)Lw(x)

T (g)(I\ui‖ui , w|)
R(ui ) − x

= 1

R′(ui )
∂

∂ui

∏d
k=1(R(ui ) − R(εk))

(R(z) − R(ui ))Lw(R(ui ))
T (g)(I\ui‖ui , w|)

= Res
t→ui

R′(t)dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))Lw(R(t))

{ 1

R′(ui )R′(t)(t − ui )2
T (g)(I\ui‖t, w|)

}
,

where we substituted t �→ x = R(t), then moved the integration contour and finally
represented the result in form of a residue formula. Proposition 3.11 implies that

1
R′(ui )R′(t)(t−ui )2

is partially given in 
(0)
2 (ui , t). According to Lemma 4.1, (0)

2 (z, w) is
the only correlation function divergent on the diagonal so that the terms in { } extend to∑

I1,I2,g1,g2 
(g1)
|I1|+1(I1; t)T (g2)(I2‖t, w|) and finally to

∑
I1,I2,g1,g2 

(g1)
|I1|+1(I1; t)T (g2)

(I2‖t, w|) + T (g−1)(I, t‖t, w|) + T (g−1)(I‖t |w|)
R(w)−R(t) .
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Analogously, the term

Res
t→z,−ŵ j

R′(t)dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))Lw(R(t))

T (g−1)(I‖w|w|)
R(w) − R(t)

is represented by the w-residue in the Corollary, where again vanishing terms are added
after substitution and moving the integration contour. ��
As argued in the proof of Corollary 4.2, Lemma 4.1 implies that the residue at t = ui
contributes only via 

(0)
2 (ui , t) and the residue at t = w only via T (g−1)(I‖t |w|)

R(w)−R(t) .

Proposition E.4. Let I = {u1, ..., um}. The DSE (3.8) is solved by

T (g)(I‖z|w|) =
λ

∏d
j=1

R(z)−R(α j )

R(z)−R(ε j )

(R(z) − R(−z))
Res

t→z,α j

R′(t) dt
∏d

k=1(R(t) − R(εk))

(R(z) − R(t))
∏d

k=1(R(t) − R(αk))

×
[ ∑

I1�I2=I
g1+g2=g

(I1,g1) �=(∅,0)


(g1)
|I1|+1(I1, t)T

(g2)(I2‖t |w|) + T (g−1)(I, t‖t |w|)

+
m∑

i=1

∂

∂R(ui )

T (g)(I\ui‖ui |w|)
R(ui ) − R(t)

+
T (g)(I‖t, w|) − T (g)(I‖w,w|)

R(w) − R(t)

]
,

(E.4)

where v ∈ {0,±α j } are the 2d + 1 solutions of R(v) − R(−v) = 0.

Proof. Similar to the proof of Proposition E.2, but with d distinct points xk = R(αk)

for the interpolation formula of Lemma E.1. ��
The proof of Corollary 4.4 works in a completely analogous way.

F. Proof of Conjecture 4.6 for g = 0

It is convenient to introduce

T (g)(u1, .., um‖z, w|) =: ∂mU (g)(u1, .., um‖z, w|)
∂R(u1) · · · ∂R(um)

,

T (g)(u1, .., um‖z|w|) =: ∂mU (g)(u1, .., um‖z|w|)
∂R(u1) · · · ∂R(um)

,


(g)
m+1(u1, .., um, z) =: ∂mW(g)

m+1(u1, .., um; z)
∂R(u1) · · · ∂R(um)

. (F.1)

In these variables the DSE (3.6) reads for g = 0 and m ≥ 1

(R(w) − R(−z))U (0)(u1, ..., um‖z, w|) − λ

N

d∑

k=1

rkU (0)(u1, ..., um‖εk, w|)
R(εk) − R(z)
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= −λ
∑

I1�I2={u1,...,um }
I1 �=∅

W(0)
|I1|+1(I1; z)U (0)(I2‖z, w|) − λ

m∑

j=1

U (0)(u1, ..ǔ j .., um‖u j , w|)
R(u j ) − R(z)

,

(F.2)

where U (0)(∅‖z, w|) = G(0)(z, w). The DSE (3.10) becomes for m ≥ 2

R′(z)G0(z)W(0)
m+1(u1, ..., um; z) − λ

N 2

d∑

n,k=1

rnrkU (0)(u1, ..., um‖εk, εn|)
(R(εk) − R(z))(R(εn) − R(−z))

= −
∑

I1�I2={u1,...,um }
I1 �=∅�=I2

W(0)
|I1+1|(I1; z)

λ

N

d∑

n=1

rnU (0)(I2‖z, εn|)
R(εn) − R(−z)

−
m∑

j=1

λ
N

∑d
n=1 rn

U (0)(u1,..ǔ j ..,um‖u j ,εn |)
R(εn)−R(−z)

R(u j ) − R(z)
−

m∑

j=1

U (0)(u1, ..ǔ j .., um‖u j , z|) . (F.3)

Lemma F.1. For all m ≥ 1, the functionW(0)
m+1(u1, . . . , um; z) is holomorphic in every

z = û j
k , whereas U (0)(u1, . . . , um‖z, w|) has simple poles there with residue

Res
z→û j

k
U (0)(u1, ..., um‖z, w|)dz

= −
m∑

l=1

∑

I1�...�Il={u1,...ǔ j ...,um }
I2,...,Il �=∅ for l>1

(−λ)lU (0)(I1‖u j , w|)∏l
i=2 W

(0)
|Ii |+1(Ii ; z)

R′(z)(R(w) − R(−z))l

∣∣∣
z=û j

k
. (F.4)

Proof. By induction in m, starting with Proposition 3.11 for m = 1. Assume that the
assertion concerning W(0)

k+1 is true for all k ≤ m − 1. Then (F.4) is recursively obtained
when taking the residue in (F.2) and inserting it repeatedly into itself. Next, taking (F.4)
into account, the residue of (F.3) at z = û j

k collapses to

Res
z→û j

k
R′(z)G0(z)W(0)

m+1(u1, ..., um; z)dz

= Res
z→û j

k

[ 1

N

d∑

n=1

rnU (0)(u1, ..., um‖z, εn|) −
m∑

i=1

U (0)(u1, ..ǔi .., um‖ui , z|)
]
dz .

But the rhs is Res
z→û j

k
W(0)

m+1(u1, ..., um; z)dz when expressing (3.9) in terms ofW and U .

With R′(û j
k)G0(û j

k) �= 1 we finish the proof. ��
Lemma F.2. For all m ≥ 1, the functionW(0)

m+1(u1, . . . , um; z) is holomorphic in every
z = ±ε̂k

j , whereas U (0)(u1, . . . , um‖z, w|) has simple poles at z = ε̂k
j and is regular

at z = −ε̂k
j .
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Proof. By induction inm, starting from the true statement forG(0)(z, w) andW(0)
2 (u; z).

If the statement is true for all W(0)
|I |+1(I ; z) with |I | + 1 ≤ m and U (0)(I‖..|) with

|I | ≤ m − 1, then the rhs of (F.2) has at most simple poles at z = ε̂k
j and no poles at

z = −ε̂k
j . The same is true for the second term of the lhs of (F.2) so that the statement

extends to U (0)(u1, . . . , um‖z, w|). This means that the rhs and the second term of the
lhs of (F.3) have at most simple poles at z = ±ε̂k

j . Since the prefactorG0(z) has simple
poles at every z = ±ε̂k

j and R′(±ε̂k
j ) is regular, the function W(0)

m+1(u1, . . . , um; z)
must be regular at z = ±ε̂k

j . ��
Lemma F.3. The functions W(0)

m+1(u1, .., um; z) and U (0)(u1, .., um‖z, w|) are regular
at z = −εn.

Proof. No term in (F.2) is singular for z = −εn , some of them even vanish because
of R(−εn) = ∞. The singular denominators 1

R(εn)−R(−z) in (F.3) are protected by
1

R′(z) → 0 for z → −εn . ��
By construction all functions are holomorphic at z = εn . This leaves the opposite
diagonals z = −uk and the ramification points z = βi (from the prefactor R′(z) in (F.3))
as the only possible location of poles in W(0)

m+1(u1, ..., um; z). These are preserved by

differentiation to 
(0)
m+1(u1, ..., um, z), so that the proof of Conjecture 4.6 for g = 0 is

complete.
For g ≥ 1 we also expect poles at z = 0 inherited from the initial value G(g−1)(z|z)
and from the poles at z = −z in T (g−1)(u1, ..., um, z‖z, εn |). Also absence of poles at
z = ±αk is only relevant for g ≥ 1. We also note

Lemma F.4. We have

Res
z→û j

k
U (0)(u1, ..., um‖z|w|)dz

= −
m∑

l=1

∑

I1�...�Il={u1,...ǔ j ...,um }
I2,...,Il �=∅ for l>1

(−λ)lU (0)(I1‖u j |w|)∏l
i=2 W

(0)
|Ii |+1(Ii ; z)

R′(z)(R(z) − R(−z))l

∣∣∣
z=û j

k

− λ

m∑

n=1

1

R′(z)(R(z) − R(−z))n

×
m∑

l=n

∑

I1�...�Il={u1,...ǔ j ...,um }
I2,...,Il �=∅ for l>1

(−λ)lU (0)(I1‖u j , w|)∏l
i=2 W

(0)
|Ii |+1(Ii ; z)

(R(w) − R(z))(R(w) − R(−z))l+1−n

∣∣∣
z=û j

k
.

(F.5)

G. Solution of the Recursion for Small Degree

G.1. Preparations for g = 0. We formulate the proof in terms of U (0) and W(0)
m intro-

duced in (F.1). Equation (E.3) then translates for g = 0 to

λ

N

d∑

k=1

rk
U (0)(I‖εk, w|)
R(εk) − R(z)
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= λ(R(w)−R(−z))G(0)(z, w)

d∑

j=1

Res
t→−ŵ j

R′(t)dt
(R(z)−R(t))(R(w)−R(−t))G(0)(t, w)

×
[ ∑

I1�I2=I
I1 �=∅

W(0)
|I1|+1(I1; t)U (0)(I2‖t, w|) +

m∑

i=1

U (0)(I\ui‖ui , w|)
R(ui ) − R(t)

]
, (G.1)

where I = {u1, ..., um} and m ≥ 1. Using the product representation (E.1) and the
interpolation formula of Lemma E.1 it is straightforward to establish

d∑

j=1

Res
t→−ŵ j

R′(t)dt
(R(z)−R(t))(R(ui ) − R(t))(R(w)−R(−t))G(0)(t, w)

= 1

R(z)−R(ui )

( 1

(R(w) − R(−ui ))G(0)(ui , w)
− 1

(R(w) − R(−z))G(0)(z, w)

)
.

DefiningU (g)(I‖z, w|) =: G(0)(z, w)Ũ (g)(I‖z, w|) (with Ũ (g)(∅‖z, w|) ≡ 1), Eq. (G.1)
becomes

λ

N

d∑

k=1

rk
U (0)(I‖εk, w|)
R(εk) − R(z)

= λ(R(w)−R(−z))G(0)(z, w)
( m∑

i=1

Ũ (0)(I\ui‖ui , w|)
(R(z) − R(ui ))(R(w) − R(−ui ))

+
∑

I1�I2=I
I1 �=∅

d∑

j=1

R′(−ŵ j )W(0)
|I1|+1(I1;−ŵ j )Ũ (0)(I2‖−ŵ j , w|)

R′(ŵ j )(R(z) − R(−ŵ j ))

)

−
m∑

i=1

λU (0)(I\ui‖ui , w|)
R(z) − R(ui )

. (G.2)

The limit w = q, z → −q of (G.2) is

λ

N

d∑

k=1

rk
U (0)(I‖εk, q|)
R(εk) − R(−q)

= λR′(q)G0(q)U(0)(I‖q) − λ

m∑

i=1

U (0)(I\ui‖ui , q|)
R(−q) − R(ui )

(G.3)

where

U(0)(I‖q) =
∑

I1�I2=I
I1 �=∅

d∑

j=1

R′(−q̂ j )W(0)
|I1|+1(I1;−q̂ j )Ũ (0)(I2‖−q̂ j , q|)

R′(q̂ j )(R(−q) − R(−q̂ j ))

−
m∑

i=1

Ũ (0)(I\ui‖ui , q|)
(R(ui ) − R(−q))(R(q) − R(−ui ))

. (G.4)
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On the other handwe insert (G.2) into the lhs of theDyson-SchwingerEq. (3.6), restricted
to g = 0 and translated to U (0) and W(0)

m :

Ũ (0)(I‖z, w|) =
∑

I1�I2=I
I1 �=∅

d∑

j=1

λR′(−ŵ j )W(0)
|I1|+1(I1;−ŵ j )Ũ (0)(I2‖−ŵ j , w|)

R′(ŵ j )(R(z) − R(−ŵ j ))

+
m∑

i=1

λŨ (0)(I\ui‖ui , w|)
(R(z) − R(ui ))(R(w) − R(−ui ))

−
∑

I1�I2=I
I1 �=∅

λW(0)
|I1|+1(I1; z)Ũ (0)(I2‖z, w|)

R(w) − R(−z)
. (G.5)

With these preparations we can eliminate G0 in the residue formula of Corollary 4.7:

Proposition G.1. For I = {u1, ..., um} and m ≥ 2 one has

R′(z)W(0)
|I |+1(I ; z)

= Res
q→−u1,...,m ,β1,...2d

λ dq

(q − z)

[ ∑

I1�I2=I
I1,I2 �=∅

R′(q)W(0)
|I1|+1(I1; q)U(0)(I2‖q)

]

− λ

m∑

k=1

U(0)(I\uk‖uk)
z + uk

. (G.6)

Proof. We insert (G.3) into Corollary 4.7, restricted to g = 0 and translated to W(0)
m .

The second term on the rhs (sum over i) then cancels the last line of (G.5):

R′(z)W(0)
|I |+1(I ; z)

= Res
q→−u1,...,m ,β1,...2d

λ dq

(q − z)

[ ∑

I1�I2=I
I1,I2 �=∅

R′(q)W(0)
|I1|+1(I1; q)U(0)(I2‖q)

+
m∑

k=1

G(0)(uk, q)

G0(q)

{ ∑

I1�I2=I\uk
I1 �=∅

d∑

j=1

R′(−ûk j )W(0)
|I1|+1(I1;−ûk j )Ũ (0)(I2‖−ûk j , uk |)

R′(ûk j )(R(q) − R(−ûk j ))

+
m∑

l=1
l �=k

Ũ (0)(I\{ul , uk}‖ul , uk |)
(R(q) − R(ul))(R(uk) − R(−ul))

}]
.

The last two lines only contribute to the residue at q = −uk via the first-order pole of
G(0)(uk, q). The residue cancels G0 and otherwise amounts to replace q �→ −uk . This
produces U(0)(I\uk‖uk) according to (G.4). ��
We prove in the next subsections that the solution of (G.6) confirms the following
conjecture for m = 2 and m = 3:
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Conjecture G.2. For any I = {u1, .., um} with m ≥ 2 one has

R′(z)W(0)
m+1(I ; z)

= λ

2d∑

i=1

Res
q→βi

K̃i (z, q)
∑

I1�I2=I
I1,I2 �=∅

R′(q)W(0)
|I1|+1(I1; q)R′(σi (q))W(0)

|I2|+1(I2; σi (q))

+
m∑

k=1

(
Res
q→uk

K̃uk (z, q)
∑

I1�...�Is=I\uk
I1,...,Is �=∅

λR′(−q)W(0)
|I1|+1(I1;−q)

R(−uk) − R(−q)

s∏

r=2

λW(0)
|Ir |+1(Ir ; uk)

R(−uk)−R(−q)

)
,

(G.7)

where

K̃i (z, q) :=
1
2 (

1
z−q − 1

z−σi (q)
)dq

R′(σi (q))(−R(−q) + R(−σi (q)))
, K̃u(z, q) := ( 1

z+q − 1
z+u )dq

R(u) − R(q)
.

Conjecture (G.2) is now a Theorem proved in [11]. The statement translates easily to
Conjecture 4.9 about ω0,m .
In intermediate steps of the proof the following residues become important:

∇n
z f (z) := Res

q→z

f (q)dq

(R(q) − R(z))n(R(−z) − R(−q))
. (G.8)

Note that the upper index n is merely an index, not an exponent. The first such residues
read

∇1
z f (z) = f ′(z) + f (z)( R′′(−z)

2R′(−z) − R′′(z)
2R′(z) )

R′(z)R′(−z)
,

∇2
z f (z) =

1
2 f ′′(z) + f ′(z)( R′′(−z)

2R′(−z) − R′′(z)
R′(z) )

(R′(z))2R′(−z)

+
f (z)( (R′′(−z))2

4(R′(−z))2
+ 3(R′′(z))2

4(R′(z))2 − R′′(z)R′′(−z)
2R′(z)R′(−z) − R′′′(−z)

6R′(−z) − R′′′(z)
3R′(z) )

(R′(z))2R′(−z)
.

These operations arise in the limit w = q, z → −q̂ j of (G.5):

Ũ (0)(I‖−q̂ j , q|) =
∑

I1�I2=I
I1 �=∅

d∑

l=1
l �= j

λR′(−q̂l)W(0)
|I1|+1(I1;−q̂l)Ũ (0)(I2‖−q̂l , q|)

R′(q̂l)(R(−q̂ j ) − R(−q̂l))

+
m∑

i=1

λŨ (0)(I\ui‖ui , q|)
(R(−q̂ j ) − R(ui ))(R(q) − R(−ui ))

−
∑

I1�I2=I
I1 �=∅

λ∇1
z

(
R′(z)W(0)

|I1|+1(I1; z)Ũ (0)(I2‖z, q|))∣∣z=−q̂ j . (G.9)
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G.2. Proof of Conjectures 4.9 and G.2 for m = 2. The case m = 1 of (G.4) reduces to

U(0)(u‖q) =
d∑

j=1

W(0)
2 (u; q̂ j )

(R(−q) − R(−q̂ j ))
− 1

(R(u) − R(−q))(R(q) − R(−u))
, (G.10)

where the symmetry R′(−z)
R′(z) W(0)

2 (u1;−z) = W(0)
2 (u1; z) has been used. This is inserted

into (G.6) for m = 2. The first term of the rhs of (G.10) contributes to the residue
at q = βi , the second term to the residue at q = −u. Moreover, R′(q)W(0)

2 (u; q) =
−( 1

u+q + 1
u−q

)
has a simple pole at q = −u. We thus arrive at

R′(z)W(0)
3 (u1, u2, z)

=
2d∑

i=1

Res
q→βi

λ dq

q − z

d∑

j=1

[
R′(q)W(0)

2 (u1; q)W(0)
2 (u2; q̂ j ) + u1↔u2

]

R(−q) − R(−q̂ j )

+
[λU(0)(u2‖−u1)

z + u1
− λU(0)(u2‖u1)

z + u1

− Res
q→−u1

λ dq

q − z

R′(q)W(0)
2 (u2; q)

(R(u1) − R(−q))(R(q) − R(−u1))
+ u1↔u2

]
.

In the first line there is, under the assumption of simple ramification points, a unique
preimage q̂ ji = σi (q) with limq→βi q̂

ji = βi . Only this one contributes to the pole at
q = βi . In the last line we change variables q → −q, arrange λ dq

z+q = (
λ dq
z+q − λ dq

z+u1
)+ λ dq

z+u1

and note that λ dq
z+u1

produces the residue (G.8):

R′(z)W(0)
3 (u1, u2; z)

=
2d∑

i=1

Res
q→βi

λ dq

z − q

[
R′(q)W(0)

2 (u1; q) R′(σi (q))W(0)
2 (u2; σi (q)) + u1↔u2

]

R′(σi (q))(−R(−q) + R(−σi (q)))

+
[ λ

z + u1

{
U(0)(u2‖−u1) − U(0)(u2‖u1) + ∇1−u1

(
R′(−u1)W(0)

2 (u2;−u1)
)}

+ Res
q→u1

( λ dq

z + q
− λ dq

z + u1

) R′(−q)W(0)
2 (u2;−q)

(R(u1) − R(q))(R(−u1) − R(−q))
+ u1↔u2

]
.

One checks that the terms in braces { } sum up to zero. The first term on the rhs can be
rearranged using the symmetry

dq

(z − q)x ′(σi (q))
= dqdσi (q)

(z − q)x ′(σi (q))dσi (q)
= dqdσi (q)

(z − q)x ′(q)dq
= dσi (q)

(z − q)x ′(q)
.

Since an odd function under the involution q ↔ σi (q) is integrated, we may replace
dq

(z−q)
�→ 1

2 (
dq

(z−q)
− dq

(z−σi (q))
) and thus establish Conjecture G.2 for m = 2. The result

immediately translates into Conjecture 4.9 form = 2. The residue at q = βi is evaluated
with formulae of Appendix C and translates to (4.7). It is straightforward to evaluate the
residue at q = u1 and q = u2 to (4.8).
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G.3. Proof of Conjectures 4.9 and G.2 for m = 3.

Lemma G.3. For I = {u1, u2} one has

U(0)(I‖q) =
d∑

j=1

W(0)
3 (I ; q̂ j ) + λ

∑2
k=1W

(0)
2 (I\uk; q̂ j )Ǔ

(0)
j (uk‖q)

(R(−q) − R(−q̂ j ))

+
2∑

k=1

λW(0)
2 (I\uk; uk)

(R(q) − R(−uk))2(R(uk) − R(−q))

+ λ

2∏

k=1

( 1

(R(q) − R(−uk))(R(uk) − R(−q))

)
, (G.11)

where

Ǔ
(0)
j (u‖q) :=

d∑

l=1
l �= j

W(0)
2 (u; q̂l)

R(−q̂ j ) − R(−q̂l)
− 1

(R(u) − R(−q))(R(q) − R(−u))
. (G.12)

Proof. Inserting (G.9) for I = uk into the first line of (G.4) for I = {u1, u2} and (G.5)
into the second line of (G.4) leads after simplifications to

U(0)(u1, u2‖q)

=
d∑

j=1

R′(−q̂ j )W(0)
3 (u1, u2;−q̂ j )

R′(q̂ j )(R(−q) − R(−q̂ j ))
+ λ

d∑

j=1

[
W(0)

2 (u1; q̂ j )Ǔ
(0)
j (u2‖q) + u1 ↔ u2

]

(R(−q) − R(−q̂ j ))

−
d∑

j=1

[
λR′(q̂ j )W(0)

2 (u1; q̂ j )∇−q̂ j

(
R′(−q̂ j )W(0)(u2;−q̂ j )

)
+ u1 ↔ u2

]

R′(q̂ j )(R(−q) − R(−q̂ j ))

+
λ

(R(q) − R(−u1))(R(u1) − R(−q))(R(q) − R(−u2))(R(u2) − R(−q))

+
[ λW(0)

2 (u2; u1)
(R(q) − R(−u1))2(R(u1) − R(−q))

+ u1 ↔ u2
]

. (G.13)

The explicit formulae for W(0)
3 allow to prove the following identity7:

R′(z)W(0)
3 (u1, u2; z) − R′(−z)W(0)

3 (u1, u2;−z)

= [
λR′(−z)W(0)

2 (u1;−z)∇1
z (R

′(z)W(0)(u2; z)) + u1 ↔ u2
]

. (G.14)

Inserted back into (G.13) for z �→ −q̂ j gives the assertion. ��
7 The generalisation of this identity to any W(0)

|I |+1(I,±z), and its proof, is the key step of the proof of
Conjecture 5.1 for g = 0 in [11]. The identity seems analogous to [5, Appendix A, Eqs. (1–5)] in the Hermitian
2-matrix model.
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We insert (G.11) and (G.10) into (G.6) for m = 3. Let again q̂ ji = σi (q) be the unique
(for simple ramification points) preimage with limq→βi σi (q) = βi . Only the first line
of (G.11) contributes to the residue at q = βi . More precisely, in the sum in this first
line we have contributions from all terms with j = ji , whereas for j �= ji we only have

poles in Ǔ j (u‖q), namely in the single term
λW(0)

2 (u;q̂ ji )

R(−q̂ j )−R(−q̂ ji )
of the sum in (G.12). To the

residue at q = −u3 we have contributions from R′(q)W(0)
3 (ui , u3; q) �→ λW(0)

2 (ui ,−u3)
(q+u3)2R′(u3) ,

from R′(q)W(0)
2 (u3; q) �→ − 1

(q+u3)
, from U(0)(u3‖q) �→ − 1

(R(u3)−R(−q))(R(q)−R(−u3))

according to (G.10) and fromU(0)(ui , u3‖q) given by (G.11). Here the first line of (G.11)
contributes via Ǔ

(0)
j (u3‖q) �→ − 1

(R(u3)−R(−q))(R(q)−R(−u3))
, which together with the

other lines amount to

U(0)(ui , u3‖q) �→ λW(0)
2 (ui ; u3)

(R(u3) − R(−q))(R(q) − R(−u3))2

− λU(0)(ui‖q)

(R(u3) − R(−q))(R(q) − R(−u3))
.

After partial rearrangement of permutations and change of variables q → −q to achieve
the residue at q = u3 we arrive at

R′(z)W(0)
4 (u1, u2, u3; z)

=
{ 2d∑

i=1

Res
q→βi

λ dq

q − z

[ R′(q)W(0)
3 (u1, u2; q)W(0)

2 (u3; σi (q))

R(−q) − R(−σi (q))

+
R′(q)W(0)

2 (u3; q)W(0)
3 (u1, u2; σi (q))

R(−q) − R(−σi (q))

+
(
R′(q)W(0)

3 (u1, u2; q)+

[
λR′(q)W(0)

2 (u2; q)W(0)
2 (u1; σi (q))+u1↔u2

]

R(−q) − R(−σi (q))

)
(*)

×
(
Ǔ

(0)
ji

(u3‖q) +
d∑

l=1
l �= ji

(R(−q) − R(−σi (q)))W(0)
2 (u3; q̂l)

R(−q) − R(−q̂l)(R(−q̂l) − R(−σi (q)))

)]

+ Res
q→u3

λ dq

z + q

[
− R′(−q)W(0)

3 (u1, u2;−q)

(R(u3) − R(q))(R(−q) − R(−u3))
(**)

+
λR′(−q)(W(0)

2 (u1;−q)W(0)
2 (u2; u3) +W(0)

2 (u2;−q)W(0)
2 (u1; u3))

(R(u3) − R(q))(R(−q) − R(−u3))2
(**)

+ λU(0)(u1‖−q)
( W(0)(u2;−u3)

(q − u3)2R′(u3)
− R′(−q)W(0)(u2;−q)

(R(u3) − R(q))(R(−q) − R(−u3))

)
(†)

+ λU(0)(u2‖−q)
( W(0)(u1;−u3)

(q − u3)2R′(u3)
− R′(−q)W(0)(u1;−q)

(R(u3)−R(q))(R(−q) − R(−u3))

)]
(†)

+
λ

z + u3

(
U(0)(u1, u2‖−u3) − U(0)(u1, u2‖u3)

)
+ [u3 ↔ u1] + [u3 ↔ u2]

}
.
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As shown in the previous subsection, the line labelled by (*) is regular for q → βi

so that (*) and the line after can be discarded. In the two lines (**) we arrange λ dq
z+q =

(
λ dq
z+q − λ dq

z+u3
) + λ dq

z+u3
as before, where the second λ dq

z+u3
produces the residue (G.8). The

lines (†) have only a simple pole whose residue can also be written in terms of (G.8).
We thus find

R′(z)W(0)
4 (u1, u2, u3; z)

=
2d∑

i=1

Res
q→βi

λ dq

q − z

∑

I1�I2={u1,u2,u3}
I1,I2 �=∅

R′(q)W(0)
|I1|+1(I1; q)W(0)

|I2|+1(I2; σi (q))

R(−q) − R(−σi (q))

+

{
Res
q→u3

( λ dq

z + q
− λ dq

z + u3

)[ R′(−q)W(0)
3 (u1, u2;−q)

(R(u3) − R(q))(R(−u3) − R(−q))

+
λR′(q)(W(0)

2 (u1; q)W(0)
2 (u2; u3) +W(0)

2 (u2; q)W(0)
2 (u1; u3))

(R(u3) − R(−q))(R(−u3) − R(−q))2

]

+
λX (u1, u2;−u3)

z + u3
+ [u3 ↔ u1] + [u3 ↔ u2]

}
, (G.15)

where the remaining collection of terms is shown to vanish identically8:

X (u1, u2; q) := U(0)(u1, u2‖q) − U(0)(u1, u2‖ − q) + ∇1
q

(
R′(q)W(0)

3 (u1, u2; q)
)

+ λ
[
U(0)(u2‖q)∇1

q

(
R′(q)W(0)

2 (u1; q)
)
+ u1 ↔ u2

]

− λ
[
W(0)

2 (u2;−q)∇2
q

(
R′(q)W(0)

2 (u1; q)
)
+ u1 ↔ u2

] ≡ 0 .

After symmetrisation q ↔ σi (q) we confirm Conjecture G.2 for m = 3. The result
immediately translates into Conjecture 4.9 for m = 3. The residue at q = βi is eval-
uated with the formulae given in Appendix C and translates to (4.9). The evaluation
of the residue at q = −u3 gives in a first step rise to W(0)

3 (u1, u2;−u3) and deriva-

tives ∂u3W
(0)
3 (u1; u3) and ∂u3W

(0)
3 (u2; u3). The reflection (G.14) simplifies this to an

equation which translates into (4.10).

G.4. Proof of Proposition 4.10. According to Corollary 4.7 for m = 0 and g = 1 we
have with (G.3)

R′(z)(1)
1 (z)

= Res
q→0,βi

dq

(q − z)G0(q)

[ ∂

∂R(u)

(
λR′(q)G0(q)U(0)(u‖q) − λG(0)(u, q)

R(−q) − R(u)

)∣∣∣
u=q

+
λ

N

d∑

n=1

rnG(0)(q|εn)
(R(εn) − R(q))(R(εn) − R(−q))

− G(0)(q|q)
]
, (G.16)

8 This is a consequence of sophisticated combinatorial structures, see [11].
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provided that the part in [. . . ] has only simple poles at z = ±ε̂k
j (whichwewill confirm).

From (3.8) at m = 0 and g = 0 we get

λ

N

d∑

n=1

rnG(0)(q|εn)
(R(εn) − R(q))(R(εn) − R(−q))

− G(0)(q|q)

= lim
u→q

(
G(0)(u|−q) − λ

G(0)(u,−q)

(R(u) − R(−q))2

)
− λR′(q)G0(q)

(R(q) − R(−q))3

− ∂

∂R(u)

λG(0)(u, q)

(R(u) − R(−q))

∣∣∣
u=q

. (G.17)

The limit in the second line follows with [23, Proposition 17],

lim
u→q

(
G(0)(u|−q) − λ

G(0)(u,−q)

(R(u) − R(−q))2

)

= λ(R(q) + R(−q) − 2R(0))

(R(q) − R(−q))4

d∏

j=1

(R(q) − R(α j ))(R(−q) − R(α j ))

(R(q) − R(ε j ))(R(−q) − R(ε j ))
. (G.18)

With these considerations and (G.10) we get

R′(z)(1)
1 (z)

= Res
q→0,βi

λ dq

(q − z)

[ d∑

j=1

R′(q)
(0)
2 (q, q̂ j )

R(−q) − R(−q̂ j )
+

R′(−q)

(R(q) − R(−q))3

+
(R(q) + R(−q) − 2R(0))

G0(q)(R(q) − R(−q))4

d∏

j=1

(R(q) − R(α j ))(R(−q) − R(α j ))

(R(q) − R(ε j ))(R(−q) − R(ε j ))

]
. (G.19)

In particular, the terms in brackets are regular at q = ±ε̂n
j so that Conjecture 4.6 is true

for g = 1,m = 0. Being an even function of q, the expression (G.18) has a second-order
pole at q = 0 without residue; it is regular at q = βi :

(G.18) = λR′′(0)
16q2(R′(0))4

d∏

j=1

(R(0) − R(α j ))
2

(R(0) − R(ε j ))2
+ regular terms at q ∈ {0, βi } .

One has
∏d

j=1
(R(0)−R(α j ))

2

(R(0)−R(ε j ))
2 = limq→0

(R(q)−R(−q))2

2R(q)−2R(0) G(0)(q, q) = R′(0)G0(0) as

shown in [23, Proposition 15]. The same discussion as for W(0)
3 shows that only one

preimage q̂ ji = σi (q) of the first term on the rhs of (G.19) contributes to the pole at
q = βi , and again the standard recursion kernel of topological recursion arises:

R′(z)(1)
1 (z)dz =

2d∑

i=1

Res
q→βi

λdqdz

z − q

R′(q)R′(σi (q))
(0)
2 (q, σi (q))

R′(σi (q))(−R(−q) − (−R(−σi (q))))

+ Res
q→0

λdqdz

z − q

[
− R′(−q)

(R(q) − R(−q))3
− R′′(0)

16q2(R′(0))3
]
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= λ

2d∑

i=1

Res
q→βi

[
Ki (z, q)ω0,2(q, σi (q))

]

+ λdz
[

− 1

8(R′(0))2z3
+

R′′(0)
16(R′(0))3z2

]
. (G.20)

The expansion of the recursion kernel given in Appendix C evaluates the residue to the
explicit formula given in Proposition 4.10. ��
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