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Abstract: In this paper, we study lattice gauge theory on Z
4 with finite Abelian struc-

ture group. When the inverse coupling strength is sufficiently large, we use ideas from
disagreement percolation to give an upper bound on the decay of correlations of local
functions. We then use this upper bound to compute the leading-order term for both the
expected value of the spin at a given plaquette as well as for the two-point correlation
function. Moreover, we give an upper bound on the dependency of the size of the box
on which the model is defined. The results in this paper extend and refine results by
Chatterjee and Borgs.

1. Introduction

1.1. Background. Gauge theories are crucial tools in modern physics. For instance, they
are used to formulate the Standard Model. These quantum field theories describe how
different types of elementary particles interact. Even though such models have proved to
be very successful in physics, they are not mathematically well-defined. This problem
was considered important enough to be chosen as one of the Millenium Problems by the
Clay Mathematics Institute [11].

Euclidean lattice gauge theories, with underlying structure group given by e.g.U (1),
SU (2) or SU (3), appear as natural and well-defined discretisations of gauge theories
on hyper-cubic lattices [17]. These discretizations have been proven to be very useful
as tools to study the corresponding quantum field theories using e.g. simulations, high
temperature expansions and low temperature expansions [12]. However, there is also
hope that one would be able to take a scaling limit and in this way obtain a rigorously
defined continuum gauge theory. As a first step in this direction, it is often instructive
to try to understand relevant properties of slightly simpler models of the same type.
The decay of correlations is an important property to try to understand in any model
in statistical physics. For lattice gauge theories, this type of property is given further
relevance due its connection with the mass gap problem in Yang–Mills theories. This is
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the main motivation for the current paper, where we study the decay of correlations in
Abelian lattice gauge theories.

While lattice gauge theories with a finite Abelian structure group are not of known
direct physical significance in the context of the StandardModel, they provide toymodels
for development of tools and ideas which can later be generalized to more physically
relevant models. For this reason, they have been studied in the physics literature, see,
e.g., [2,8,13] and the references therein, as well as in the mathematical literature, see
e.g. [2,6,7,16].

1.2. Lattice gauge theories with Wilson action. The lattice Z
4 has a vertex at each point

in R
4 with integer coordinates, and an edge between nearest neighbors, oriented in the

positive direction, so that there are exactly four positively oriented edges emerging from
each vertex x , denoted by dxi , i = 1, . . . , 4. We will let −dxi denote the edge with the
same end points as dxi but with opposite orientation. Each pair dxi and dx j of directed
edges defines anoriented plaquette dxi∧dx j . If i < j , we say that the plaquettedxi∧dx j
is positively oriented, and if i > j , we say that the plaquette dxi ∧ dx j = −dx j ∧ dxi
is negatively oriented.

Given real numbers a1 < b1, a2 < b2, a3 < b3 and a4 < b4, we say that B =([a1, b1] × [a2, b2] × [a3, b3] × [a4, b4]
) ∩ Z

4 is a box. When B is a box, we write
EB for the set of (positively and negatively) oriented edges both of whose endpoints are
contained in B, and PB for set of the oriented plaquettes whose edges are all contained
in EB . We will often write e and p for elements of EB and PB , respectively.

In this paper we will always assume that a finite and Abelian group G has been
given. This group will be referred to as the structure group. We let �EB be the set of
G-valued 1-forms on EB , i.e., the set of functions σ : EB → G with the property that
σ(e) = −σ(−e). Whenever σ ∈ �EB and e ∈ EB , we write σe := σ(e). Each element
σ ∈ �EB induces a configuration dσ on PB by assigning

(dσ)p := σe1 + σe2 + σe3 + σe4 , p ∈ PB, (1)

where e1, e2, e3, e4 are the edges in the boundary ∂p of p, directed according to the
orientation of the plaquette p, see Sect. 2.1.3. The set of all configurations on PB which
arise in this way will be denoted by �PB .

Next, we let ρ be a faithful, irreducible and unitary representation of G. With G and
ρ fixed, we define the Wilson action by

S(σ ) := −
∑

p∈PB

� tr ρ
(
(dσ)p

)
, σ ∈ �EB . (2)

Letting μH denote the uniform measure on �EB and fixing some β ≥ 0, we obtain an
associated probability measure μB,β on �EB by weighting μH by the Wilson action:

μB,β(σ ) := Z−1
B,βe

−βS(σ ) μH (σ ), σ ∈ �EB , (3)

where ZB,β is a constant that ensures thatμB,β is a probability measure. The probability
measureμB,β describes lattice gauge theory on B with structure groupG, representation
ρ, coupling parameter β and free boundary conditions. We let EB,β denote expectation
with respect to μB,β .
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1.3. A distance between sets. Let B and B ′ be two boxes inZ
4 with B ′ ⊆ B. In all of our

results, we need a measure of the distance between sets of plaquettes P1, P2 ⊆ PB . To
be able to define such a measure, we now introduce the following graph. Givenω ∈ �PB
and ω′ ∈ �PB′ , let G(ω, ω′) be the graph with vertex set suppω ∪ suppω′, and an edge
between two distinct plaquettes p1, p2 ∈ suppω∪ suppω′ if p1 and ±p2 are both in the
boundary of some common 3-cell (see also Definition 1). For distinct p1, p2 ∈ PB , let

distB,B′(p1, p2) := 1

2
min

{
|suppω| + |suppω′| : ω ∈ �PB , ω′ ∈ �PB′ s.t.

p1 and p2 are in the same connected component of G(
ω,ω′)},

(4)

for p ∈ PB , let distB,B′(p, p) := 0, and for sets P1, P2 ⊆ PB , let

distB,B′(P1, P2) := min
p1∈P1, p2∈P2

distB,B′(p1, p2). (5)

When B ′ = B, we write distB instead of distB,B . We mention that for any two distinct
plaquettes p1 and p2, one can show that distB,B′(p1, p2) is bounded from above and
below by some constant times the graph distance (in the lattice Z

4) between the corners
of p1 and the corners of p2.

1.4. Preliminary notation. To simplify notation, for β ≥ 0 and g ∈ G, we let

φβ(g) := eβ� tr ρ(g)

eβ� tr ρ(0)
, (6)

and

α(β) :=
∑

g∈G�{0}
φβ(g)2.

The function α(β) will be used to express upper bounds on error terms in our main
results. We mention that for any finite Abelian group G with a faithful representation ρ,
there are constants C > 0 and ξ > 0 such that α(β) ≤ Ce−βξ . In other words, α(β)

decays exponentially in β.
Next, for β ≥ 0 such that 30α(β) < 1, we define

C1(β) := 20

152(1 − 5α(β))2

[
1 +

2

1 − 30α(β)

]
, (7)

and

C2 := 30. (8)

We note that as β → ∞, C1(β) ↘ 4/9.
When P is a set of plaquettes, we let δP denote the set of all plaquettes in P which

shares a 3-cell with some plaquette which does not belong to P .
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1.5. Main results. In several recent papers, the expected value of Wilson loop observ-
ables have been rigorously analyzed with probabilistic techniques, for different structure
groups [4,6,7,9]. The Wilson loop is an important observable in lattice gauge theories
because it is believed to be related to the energy required to separate a pair of quarks
[5,17]. Another important observable is the spin-spin-correlation function, which is
thought to be related to the so-called mass gap of the model [5]. In the first three main
results of this paper, we study variants of this function in the low-temperature regime,
by giving results which describe the decay of correlations of local functions. The first
of these results is the following theorem. To give the statement, when ω ∈ �PB and
P ⊆ PB and P = −P , we let ω |P := (ωp · �p∈P ) denote the restriction of ω to P in
the natural way (see also Sect. 2.1.10).

Theorem 1. Let B be a box in Z
4, and let β ≥ 0 be such that 30α(β) < 1. Further, let

f1, f2 : �PB → C and assume that there are disjoint sets P1, P2 ⊆ PB such that for all
ω ∈ �PB we have f1(ω) = f1(ω |P1) and f2(ω) = f2(ω |P2). Then, if σ ∼ μB,β , we
have

∣∣Cov
(
f1(dσ), f2(dσ)

)∣∣ ≤ C1‖ f1‖∞ ‖ f2‖∞
(
C2α(β)

)distB (P1,P2), (9)

where C1 = C1(β) and C2 are given by in (7) and (8) respectively.
In particular, if p1 ∈ PB and p2 ∈ PB are distinct, then

∣∣Cov
(
tr ρ((dσ)p1), tr ρ((dσ)p2)

)∣∣ ≤ C1(dim ρ)2
(
C2α(β)

)distB (p1,p2). (10)

Remark 1. Since α(β) decays exponentially in β, Theorem 1 shows that the covariance
of two local functions decays exponentially both in β and in the distance between the
corresponding sets P1 and P2.

Remark 2. We mention that if one for disjoint plaquettes p1, p2 ∈ PB knew which
configurations attained the minimum in (4), then the methods used in this paper could be
adapted slightly to describe the first order behaviour of Cov

(
tr ρ((dσ)p1), tr ρ((dσ)p2)

)

for sufficiently large β.

With Theorem 1 at hand, it is natural to ask how the decay of the covariance in (10)
relates to the so-called spin-spin correlation EB,β

[
tr ρ

(
(dσ)p

)
tr ρ

(
(dσ)p′

)]
. The next

theorem, which improves upon a special case of Lemma 4.2 in [2], is a first step towards
answering this question.

Theorem 2. Let B be a box in Z
4, and let β ≥ 0 be such that 5α(β) < 1.

Further, let p ∈ PB and f : G → C. Then, if distB
({p}, δPB

)
> 11, we have

∣∣∣∣EB,β

[
f
(
(dσ)p

)] −
(
f (0) +

∑

e∈∂p

∑

g∈G

(
f (g) − f (0)

)
φβ(g)12

)∣∣∣∣

≤
(
5α(β)

)11

1 − 5α(β)
max
g∈G

∣∣ f (g) − f (0)
∣∣.

(11)

Remark 3. When β tends to infinity, we have
∑

e∈∂p
∑

g∈G φβ(g)12 � α(β)6, and
hence the right hand side of (11) will in general tend to zero much faster than the term∑

e∈∂p
∑

g∈G
(
f (g)− f (0)

)
φβ(g)12 on the left hand side of the same equation. Conse-

quently, Theorem 2 captures the first- and second-order behaviour of EB,β

[
f
(
(dσ)p

)]
.
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Combining Theorem 1 and Theorem 2, we obtain the following result as a corollary.

Theorem 3. Let B be a box in Z
4, and let β ≥ 0 be such that 30α(β) < 1. Further, let

p1, p2 ∈ PB be distinct, and let f1, f2 : G → C. Then, if distB
({p1, p2}, δPB

)
> 11,

we have
∣
∣∣∣EB,β

[
f1

(
(dσ)p1

)
f2

(
(dσ)p2

)] −
∏

j∈{1,2}

(
f j (0) +

∑

e∈∂p

∑

g∈G

(
f j (g) − f j (0)

)
φβ(g)12

)∣
∣∣∣

≤ C1‖ f1‖∞‖ f2‖∞
(
C2α(β)

)distB ({p1},{p2}) + 8‖ f1‖∞‖ f2‖∞
(5α(β))11

1 − 5α(β)
.

(12)

where C1 = C1(β) and C2, are given by (7), and (8) respectively.

Remark 4. For N ≥ 1, let BN be the box [−N , N ]4∩Z
4. By applying Ginibre’s inequal-

ity [10], one can show that whenever f is a real-valued function which depends only on
a finite number of plaquettes, then the limit

lim
N→∞ EBN ,β

[
f (dσ)

]
(13)

exists and is translation invariant (see e.g. Section 2.3 in [7]). From this result, it follows
that Theorems 1, 2 and 3 holds also in this limit.

By using the same strategy as for the proof of Theorem 1, we obtain the following
result, which extends Theorem 5.3 in [6]. In this result, distT V (X,Y ) denotes the total
variation distance between two random variables X and Y .

Theorem 4 (Compare with Theorem 5.3 in [6] and Theorem 2.4 in [2]). Let B and B ′
be two boxes in Z

4 with B ′
� B, and let β ≥ 0 be such that 30α(β) < 1.

Further, let P ⊆ PB′ , and let σ ∼ μB,β and σ ′ ∼ μB′,β . Then

distT V
(
(dσ)|P , (dσ ′)|P

) ≤ C1|P|(C2α(β)
)distB,B′ (P,PB�PB′ )

,

where C1 = C1(β) and C2 are given by (7) and (8) respectively.

Remark 5. In contrast to Theorem 5.3 in [6], which hold only for G = Z2, Theorem 4
is valid for any finite Abelian group. Moreover, our proof can easily be adapted to work
for other lattices such as Z

n for n ≥ 3, as well as for other actions such as the Villain
action. Moreover, we mention that even in the case of G = Z2, we use a completely
different proof strategy than the strategy used in the corresponding proof in [6].

Remark 6. By [1], a critical value for β in the case G = Z2 is given by 0.22. In compar-
ison, when G = Z2, the assumption on β in the above results is either that 5e−4β < 1
(equivalently, β ≥ 0.40) or that 30e−4β < 1 (equivalently, β ≥ 0.8).

Remark 7. In this paper, we always use the measure given by (3), corresponding to free
boundary conditions. However, with minor changes to the proofs in the paper, one can
obtain results analogous to our main results for zero or periodic boundary conditions.

Remark 8. Using the theory as outlined in [4], some of the ideas in this paper might
extend to finite non-Abelian structure groups as well. However, in some of the proofs,
we use tools from discrete exterior calculus which are not valid in a non-Abelian setting.
Consequently, such a generalization would be non-trivial.

Remark 9. The main novelty of this paper is the use of a coupling argument, similar
to arguments in e.g. [3,15], in to obtain upper bounds on both the covariance of local
functions and on the total variation distance. Also, we give natural extensions and gen-
eralizations of several technical but useful lemmas from [7].
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1.6. Structure of the paper. In Sect. 2, we give a brief summary of the foundations of
discrete external calculus on hypercubic lattices, which we will use throughout the rest
of this paper. Next, in Sect. 3, we give upper and lower bounds for the probability that
certain plaquette configurations arise in spin configurations. In Sect. 4, we discuss the
structure and properties of paths in the graph G(ω(0), ω(1)) for ω(0), ω(1) ∈ �PB . In
Sect. 5, we define a notion of two sets being connected, and prove a lemma suggesting
the usefulness of this concept. In Sect. 6, we define another measure dist∗B(p1, p2) of the
distance between two plaquettes, and state and prove a lemmawhich gives a relationship
between this function and the function distB,B′(p1, p2) defined in the introduction. These
results are then used in Sect. 7 to give an upper bound on the probability that two sets are
connected. In Sect. 8, we give a connection between the event that two sets are connected
and the covariance of local functions supported on these sets, and then use this connection
to give a proof of Theorem 1. In Sect. 9, we give a similar connection between the event
that two sets are connected and the total variation distance, and then use this observation
to give a proof of Theorem 4. Finally, in Sect. 10, we prove Theorems 2 and 3.

2. Preliminaries

2.1. Discrete exterior calculus. In this section, we give a very brief overview of discrete
exterior calculus on the cell complexes ofZ

n for n ∈ N. For amore thorough background
on discrete exterior calculus, we refer the reader to [6].

All of the results in this section are obtained under the assumption that an Abelian
group G, which is not necessarily finite, has been given. In particular, they all hold for
G = Z.

2.1.1. Oriented edges (1-cells) The graph Z
n has a vertex at each point x ∈ Z

n with
integer coordinates and an (undirected) edge between nearest neighbors. We associate
to each undirected edge ē in Z

n exactly two directed or oriented edges e and −e with
the same endpoints as ē; e is directed so that the coordinate increases when traversing
e, and −e is directed in the opposite way.

Let e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), …, en := (0, . . . , 0, 1) and let
de1, …, den denote the n oriented edges with one endpoint at the origin which naturally
correspond to these unit vectors (oriented away from the origin). We say that an oriented
edge e is positively oriented if it is equal to a translation of one of these unit vectors,
i.e., if there exists a point x ∈ Z

n and an index j ∈ {1, 2, . . . , n} such that e = x + de j .
If x ∈ Z

n and j ∈ {1, 2, . . . , n}, then we let dx j := x + de j .
Given a box B, we let EB denote the set of oriented edges whose end-points are both

in B, and let E+
B denote the set of positively oriented edges in EB .

2.1.2. Oriented k-cells For any two oriented edges e1 ∈ EB and e2 ∈ EB , we consider
the wedge product e1 ∧ e2 satisfying e1 ∧ e1 = 0 and

e1 ∧ e2 = −(e2 ∧ e1) = (−e2) ∧ e1 = e2 ∧ (−e1). (14)

If e1, e2, …, ek are oriented edges which do not share a common endpoint, we set
e1 ∧ e2 ∧ · · · ∧ ek = 0.

If e1, e2, …, ek are oriented edges and e1 ∧ · · · ∧ ek �= 0, we say that e1 ∧ · · · ∧ ek is
an oriented k-cell. If there exists an x ∈ Z

n and j1 < j2 < · · · < jk such that ei = dx ji ,
then we say that e1∧· · ·∧ek is positively oriented and that−(e1∧· · ·∧ek) is negatively
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oriented. Using (14), this defines an orientation for all k-cells. If not stated otherwise,
we will always consider k-cells as being oriented.

If A is a set of oriented k-cells, we let A+ denote the set of positively oriented k-cells
in A. If A = −A , then we say that A is symmetric.

2.1.3. Oriented plaquettes We will usually say oriented plaquette instead of oriented
2-cell. If x ∈ Z

n and 1 ≤ j1 < j2 ≤, then p := dx j1 ∧ dx j2 is a positively oriented
plaquette, and we define

∂p := {dx j1 , (d(x + e j1)) j2 ,−(d(x + e j2)) j1 ,−dx j2}.

If e is an oriented edge, we let ∂̂e denote the set of oriented plaquettes p such that e ∈ ∂p.
We let PB denote the set of oriented plaquettes whose edges are all in EB .

2.1.4. Discrete differential forms A G-valued function f defined on a subset of the set
of k-cells in Z

n with the property that f (c) = − f (−c) is called a k-form. If f is a
k-form which takes the value f j1,..., jk (x) on dx j1 ∧ · · · ∧ dx jk , it is useful to represent
its values on the k-cells at x ∈ Z

n by the formal expression

f (x) =
∑

1≤ j1<···< jk≤n

f j1,..., jk (x) dx j1 ∧ · · · ∧ dx jk .

To simplify notation, if c := dx j1 ∧ · · · ∧ dx jk is a k-cell and f is a k-form we often
write fc instead of f j1,..., jk (x).

Given a k-form f , we let supp f denote the support of f , i.e. the set of all oriented
k-cells c such that f (c) �= 0.

Now let B be a box, and recall that for k ∈ {1, 2, . . . , n}, a k-cell c is said to be
in B if all its corners are in B. The set of G-valued k-forms with support in the set of
k-cells that are contained in a B will be denoted by �B,k . The set of G-valued 1-forms
with support in EB will also be denoted by �EB = �B,k , and will referred to as spin
configurations, and the set of G-valued 2-forms with support in �PB will be referred to
as plaquette configurations.

2.1.5. The exterior derivative Given h : Z
n → G, x ∈ Z

n , and i ∈ {1, 2, . . . , n}, we
let

∂i h(x) := h(x + ei ) − h(x).

If k ∈ {0, 1, 2, . . . , n − 1} and f is a G-valued k-form, we define the (k + 1)-form d f
via the formal expression

d f (x) =
∑

1≤ j1<···< jk≤n

n∑

i=1

∂i f j1,..., jk (x) dxi ∧ (dx j1 ∧ · · · ∧ dx jk ), x ∈ Z
n .

The operator d is called the exterior derivative.
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2.1.6. Boundary operators If x̂ ∈ Z
n and j ∈ {1, 2, . . . , n}, then

d(�x=x̂ dx j ) =
n∑

i=1

(∂i�x=x̂ ) dxi ∧ dx j =
n∑

i=1

(�x+ei=x̂ − �x=x̂ ) dxi ∧ dx j

=
j−1∑

i=1

(�x+ei=x̂ − �x=x̂ ) dxi ∧ dx j −
n∑

i= j+1

(�x+ei=x̂ − �x=x̂ ) dx j ∧ dxi .

Here we are writing �x=x̂ for the Dirac delta function of x with mass at x̂ . From this
equation, it follows that whenever e = x̂ + de j = dx̂ j is an oriented edge and p is an
oriented plaquette, we have

(
d(�x=x̂ dx j )

)
p =

⎧
⎪⎨

⎪⎩

1 if e ∈ ∂p,
−1 if − e ∈ ∂p,
0 else.

(15)

Note that this implies in particular that if 1 ≤ j1 < j2 ≤ n, p = dx j1 ∧ dx j2 is a
plaquette, and f is a 1-form, then

(d f )p = (d f ) j1, j2(x) =
∑

e∈∂p

fe.

Analogously, if k ∈ {1, 2, . . . , n} and c is a k-cell, we define ∂c as the set of all
(k − 1)-cells ĉ = dx̂ j1 ∧ · · · ∧ dx̂ jk−1 such that

(
d(�x=x̂ d x̂ j1 ∧ · · · ∧ dx̂ jk−1)

)
c = 1.

Using this notation, one can show that if f is a k-form and c0 is a (k + 1)-cell, then

(d f )c0 =
∑

c∈∂c0

fc.

If k ∈ {1, 2, . . . , n} and ĉ is a k-cell, the set ∂ ĉ will be referred to as the boundary of ĉ.
When k ∈ {0, 1, 2, 3, . . . , n − 1} and c is a k-cell, we also define the co-boundary ∂̂c of
c as the set of all (k + 1)-cells ĉ such that c ∈ ∂ ĉ.

Finally, when k ∈ {1, 2, . . . , n} and c is a k-cell, we will abuse notation and let

∂̂(∂c) :=
⋃

c′∈∂c

∂̂c′.

Similarly, when k ∈ {0, 1, 2, . . . , n − 1} and c is a k-cell, we let

∂(∂̂c) :=
⋃

c′∈∂̂c

∂c′.

The following lemma will be useful to us.

Lemma 5 (The Bianchi lemma, see e.g. Lemma 2.5 in [7]). Let B be a box in Z
n for

some n ≥ 3, and let ω ∈ �PB . Then, for any oriented 3-cell c in B, we have
∑

p∈∂c

ωp = 0. (16)
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2.1.7. Boundary cells Let k ∈ {1, 2, . . . , n}. When A is a symmetric set of k-cells, we
define the boundary of A by

δA := {c ∈ A : ∂∂̂c �⊆ A}.

If B is a box and e ∈ δEB , we say that e is a boundary edge of B. Analogously,
a plaquette p ∈ δPB is said to be a boundary plaquette of B. More generally, for
k ∈ {0, 1, . . . , n − 1}, a k-cell c in B is said to be a boundary cell of B, or equivalently
to be in the boundary of B, if there is a (k + 1)-cell ĉ ∈ ∂̂c which contains a k-cell that
is not in B.

2.1.8. Closed forms If k ∈ {1, . . . , n − 1} and f is a k-form such that d f = 0, then we
say that f is closed.

2.1.9. The Poincaré lemma

Lemma 6 (The Poincaré lemma, Lemma 2.2 in [6]). Let k ∈ {0, 1, . . . , n−1} and let B
be a box inZ

n. Then the exterior derivative d is a surjective map from the set of G-valued
k-forms with support contained in B onto the set of G-valued closed (k + 1)-forms with
support contained in B. Moreover, if G is finite and m is the number of closed G-valued
k-forms with support contained in B, then this map is an m-to-1 correspondence. Lastly,
if k ∈ {0, 1, 2, . . . , n − 1} and f is a closed (k + 1)-form that vanishes on the boundary
of B, then there is a k-form h that also vanishes on the boundary of B and satisfies
dh = f .

Recall from the introduction that when B is a box in Z
n , we defined

�PB = {
ω ∈ �B,2 : ∃σ ∈ �EB such that ω = dσ

}
.

From Lemma 6, it follows that ω ∈ �PB if and only if dω = 0.

2.1.10. Restrictions of forms If σ ∈ �EB , E ⊆ EB is symmetric, we define σ |E ∈ �EB

for e ∈ EB by

(σ |E )e :=
{

σe if e ∈ E
0 else.

Similarly, if ν ∈ �PB , P ⊆ PB is symmetric, we define ω|P ∈ �B,2 for p ∈ PB by

(ν|P )p :=
{

νp if p ∈ P
0 else.

2.1.11. Non-trivial forms Let k ∈ {1, 2, . . . , n}. A k-form f is said to be non-trivial if
it is not identically equal to zero.
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Fig. 1. Above, we illustrate the setting of Example 1; the red edges represent the edges e and e′, and the blue
plaquettes represent the plaquettes in the supports of ω and ω′.

2.1.12. Irreducible forms Let B be a box in Z
n , and let ω ∈ �PB . If P ⊆ suppω is

symmetric, and there is no symmetric set P0 ⊆ PB such that

(i) P ⊆ P0 � suppω, and
(ii) ω|P0 ∈ �PB (equivalently d(ω|P0) = 0),

then ω is said to be P-irreducible (see Fig. 1). If ω ∈ �PB is P-irreducible for all
non-empty, symmetric sets P ⊆ suppω, then we say that ω is irreducible. Finally, note
that if ω ∈ �PB is ∅-irreducible, then ω ≡ 0.

Example 1. Assume that we are given two edges e, e′ ∈ �EN with ∂̂e ∩ ±∂̂e′ = ∅,

that are not in the boundary of BN . For g ∈ G�{0}, let ω := d(g�e − g�−e) and
ω′ := d(g�e′ − g�−e′) (see Fig. 1). Then, by definition, we have ω,ω′ ∈ �PN , and one
easily verifies that ω and ω′ are both irreducible.

On the other hand, if p ∈ suppω, andwedefine P := {p,−p} and P0 := suppω′�P,

then ω′|P0 = ω′ ∈ �PBN
, and hence ω + ω′ is not P-irreducible, implying in particular

that it is not irreducible.
More generally, one can show that if P ⊆ suppω + ω′ is symmetric, then ω + ω′ is

P-irreducible if and only if P has non-empty intersection with both suppω and suppω′.

Lemma 7. Let B be a box in Z
n, let ω ∈ �PB , and let P ⊆ suppω be non-empty and

symmetric. Then there is a symmetric set P ′ ⊆ suppω such that ω|P ′ ∈ �PB and ω|P ′
is P-irreducible.

Proof. Consider the set S of all symmetric sets P ′ ⊆ PB which are such that

(1) P ⊆ P ′ ⊆ suppω, and
(2) ω|P ′ ∈ �PB .

Since suppω is symmetric and ω ∈ �PB , we have ω ∈ S, and hence S is non-empty.
Moreover, if we order the elements in S using set inclusion, S is a partially ordered
set. Since PB is finite, S is finite, and hence there is a minimal element P ′ ∈ S. By
definition, any such minimal element is P-irreducible, and hence the desired conclusion
follows. ��

2.1.13. The dual lattice The lattice Z
n has a natural dual, called the dual lattice and

denoted by ∗Z
n . In this context, the lattice Z

n is called the primal lattice.
The vertices of the dual lattice ∗Z

n are placed at the centers of the n-cells of the
primal lattice.

For k ∈ {0, 1, . . . , n}, there is a bijection between the set of k-cells of Z
n and the

set of (n − k)-cells of ∗Z
n defined as follows. For each x ∈ Z

n , let y := ∗(dx1 ∧
· · · ∧ dxn) ∈ ∗Z

n be the point at the centre of the primal lattice n-cell dx1 ∧ · · · ∧ dxn .
Let dy1 = y − de1, . . . , dyn = y − den be the edges coming out of y in the negative
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direction. Next, let k ∈ {0, 1, . . . , n} and assume that 1 ≤ i1 < · · · < ik ≤ n are
given. If x ∈ Z

n , then c = dxi1 ∧ · · · ∧ dxik is a k-cell in Z
n . Let j1, . . . , jn−k be any

enumeration of {1, 2, . . . , n}�{i1, . . . , ik}, and let sgn(i1, . . . , ik, j1, . . . , jn−k) denote
the sign of the permutation that maps (1, 2, . . . , n) to (i1, . . . , ik, j1, . . . , jn−k). Define

∗(dxi1 ∧ · · · ∧ dxik ) = sgn(i1, . . . , ik, j1, . . . , jn−k) dy j1 ∧ · · · ∧ dy jn−k

and, analogously, define

∗ (dy j1 ∧ · · · ∧ dy jn−k ) = sgn( j1, . . . , jn−k, i1, . . . , ik) dxi1 ∧ · · · ∧ dxik

= (−1)k(n−k) sgn(i1, . . . , ik, j1, . . . , jn−k) dxi1 ∧ · · · ∧ dxik .

2.1.14. Minimal non-trivial configurations The purpose of the next two lemmas is to
describe the non-trivial plaquette configurations in �PB with smallest support.

Lemma 8. Let B be a box in Z
4, and let ω ∈ �PB . If ω �= 0 and the support of ω does

not contain any boundary plaquettes of PB, then either |suppω| = 12, or |suppω| ≥ 22.

Proof. Let P := suppω.
By Lemma 5, if c is an oriented 3-cell in the primary lattice, then

|∂c ∩ P| ∈ {0, 2, 3, 4, 5, 6}.

Consequently, if e = ∗c in an oriented edge in the dual lattice, then

|∂̂e ∩ ∗P| ∈ {0, 2, 3, 4, 5, 6}. (17)

Let ∗P be the set of unoriented plaquettes obtained from ∗P by identifying p and
−p for each p ∈ ∗P . It then follows from (17) that each unoriented edge ē in the dual
lattice which is in the boundary of a plaquette in ∗P must be in the boundary of at least
two plaquettes in ∗P .

In other words, the set ∗P is a closed surface in the dual lattice. One easily verifies
that the closed (non-empty) surfaces in the dual lattice which contains the fewest number
of plaquettes are 3-dimensional cubes (see Fig. 2), and hence we must have |∗P| ≥ 6.
If |∗P| > 6, then by the same argument we must have |∗P̄| ≥ 11 (see Fig. 2).

Since |suppω| = |P| = 2|∗P|, the desired conclusion follows. ��

Lemma 9 (Lemma 4.6 in [7]). Let B be a box in Z
4, and let ω ∈ �PB . If the support of

ω does not contain any boundary plaquettes of PB and |suppω| = 12, then there is an
edge dx j ∈ EB and g ∈ G�{0} such that

ω = d
(
g dx j

)
.

When B is a box in Z
4 and ω ∈ �PB , we say that a plaquette p ∈ PB is frustrated

(in ω) if ωp �= 0.
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Fig. 2. The above table shows projections of the supports of the non-trivial and irreducible plaquette configu-
rations in Z

4 which has the smallest support (up to translations and rotations), using the notation of the proof
of Lemma 8

2.2. μB,β as a measure on plaquette configurations. Let B be a box in Z
4, and let

β ≥ 0. In (3), we introduced μB,β as a measure on �EB . Using Lemma 6, this induces
a measure on �PB as follows. For ω ∈ �PB , by definition, we have

μB,β({σ ∈ �EB : dσ = ω}) =
∑

σ∈�EB : dσ=ω

∏
p∈PB φβ

(
(dσ)p

)

∑
σ∈�EB

∏
p∈PB φβ

(
(dσ)p

) .

If σ ∈ �EB , then dσ ∈ �PB . Consequently, the previous equation is equal to
∑

σ∈�EB : dσ=ω

∏
p∈PB φβ(ωp)

∑
ω′∈�PB

∑
σ∈�EB : dσ=ω′

∏
p∈PB φβ(ω′

p)

Changing the order of summation, we get
(∏

p∈PB φβ(ωp)
)∣∣{σ ∈ �EB : dσ = ω}∣∣

(∑
ω′∈�PB

∏
p∈PB φβ(ω′

p)
)∣∣{σ ∈ �EB : dσ = ω′}∣∣

By Lemma 6, the term |{σ ∈ �EB : dσ = ω′}| is equal for all ω′ ∈ �PB , and hence in
particular, for all ω′ ∈ �PB we have |{σ ∈ �EB : dσ = ω′}| = |{σ ∈ �EB : dσ = ω}|.
Combining the above equations, we thus obtain

μB,β({σ ∈ �EB : dσ = ω}) =
∏

p∈PB φβ(ωp)
∑

ω′∈�PB

∏
p∈PB φβ(ω′

p)
. (18)
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Consequently, μB,β induces a measure on plaquette configurations. In order to simplify
notation, we will abuse notation and use μB,β and EB,β for both the measure on �EB

and for the induced measure on �PB .

2.3. The activity of plaquette configurations. When B is a box inZ
4,ω ∈ PB and β ≥ 0,

then, recalling the definition of φβ from (6), we abuse notation and write

φβ(ω) :=
∏

p∈suppω

φβ(ωp).

The quantity φβ(ω) is called the activity of ω (see e.g. [2]). Using this notation, since
φβ(0) = 1, for any ω ∈ �PB , we also have

∏

p∈PB

φβ(ωp) =
∏

p∈suppω

φβ(ωp) = φβ(ω)

and hence, using (18), we can write

μB,β

({ω}) = φβ(ω)
∑

ω′∈�PB
φβ(ω′)

. (19)

The following lemma is referred to as the factorization property of φβ in e.g. [4].

Lemma 10. Let B be a box in Z
4, and let β ≥ 0. Further, let ω,ω′ ∈ �PB be such that

suppω ∩ suppω′ = ∅. Then
φβ(ω + ω′) = φβ(ω)φβ(ω′).

Proof. By definition, we have

φβ(ω + ω′) =
∏

p∈supp(ω+ω′)
φβ

(
(ω + ω′)p

) =
∏

p∈supp(ω+ω′)
φβ

(
ωp + ω′

p

)
.

Since ω and ω′ have disjoint supports, we have
∏

p∈supp(ω+ω′)
φβ

(
ωp + ω′

p

) =
∏

p∈suppω

φβ

(
ωp + 0

) ∏

p∈suppω′
φβ

(
0 + ω′

p

)

=
∏

p∈suppω

φβ

(
ωp

) ∏

p∈suppω′
φβ

(
ω′
p

)
.

Since by definition, we have
∏

p∈suppω

φβ

(
ωp

) ∏

p∈suppω′
φβ

(
ω′
p

) = φβ(ω)φβ(ω′),

the desired conclusion immediately follows. ��
Combining (19) and Lemma 10, we obtain the following lemma. This lemma can

be extracted from the proof of Lemma 4.7 in [7], but we state and prove it here as an
independent lemma for easier reference.
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Lemma 11. Let B be a box in Z
4, let β ≥ 0, and let ν ∈ �PB . Then

μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) = φβ(ν). (20)

Proof. Let P = supp ν. Further, let

EP,ν := {
ω ∈ �PB : ω|P = ν

}
,

and, similarly, let

EP,0 := {
ω ∈ �PB : ω|P = 0

}
.

By (19), we then have

μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) =
∑

ω∈EP,ν
φβ(ω)

∑
ω∈EP,0

φβ(ω)
. (21)

Since ν ∈ �PB by assumption, we have dν = 0. Consequently, for any ω ∈ �PB , we
have

d(ω − ν) = dω − dν = 0 − 0 = 0,

and hence (ω − ν) ∈ �PB . This implies in particular that the mapping ω �→ ω − ν is a
bijection from EP,ν to EP,0, and hence the right-hand side of (21) is equal to

∑
ω∈EP,ν

φβ(ω)
∑

ω∈EP,ν
φβ(ω − ν)

=
∑

ω∈EP,ν
φβ((ω − ν) + ν)

∑
ω∈EP,ν

φβ(ω − ν)
. (22)

Next, note that if ω ∈ EP,ν , then (ω − ν) and ν have disjoint supports. Consequently,
for such ω we can apply Lemma 10 to obtain

φβ((ω − ν) + ν) = φβ(ω − ν)φβ(ν).

Plugging this into the left hand side of (22), we obtain

∑
ω∈EP,ν

φβ((ω − ν) + ν)
∑

ω∈EP,ν
φβ(ω − ν)

=
∑

ω∈EP,ν
φβ(ω − ν)φβ(ν)

∑
ω∈EP,ν

φβ(ω − ν)
= φβ(ν).

Combining the previous equations, we obtain (20) as desired. ��

2.4. Notation and standing assumptions. Throughout the remainder of this paper, we
assume that a finite Abelian structure group G, and a faithful, irreducible and unitary
representation of ρ has been fixed.
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3. The Probability of Sets of Plaquettes Being Frustrated

In this section we will state and prove three propositions which will be useful in later
sections. We mention that although these are technical, they might be useful outside the
scope of this paper. The first of these results is the following proposition, which extends
Proposition 4.9 in [7].

Proposition 12. Let B be a box inZ
4, let β ≥ 0 be such that 5α(β) < 1, and let P ⊆ PB

be non-empty and symmetric. For M ≥ |P+|, let 

≥
P,M := 


≥
B,P,M be the set of all

ω ∈ �PB such that there is ν ∈ �PB with

(1) P ⊆ supp ν,
(2) ν is P-irreducible,
(3) |supp ν| ≥ 2M, and
(4) ω|supp ν = ν.

Then

μβ,N
(



≥
P,M ) ≤ 5M−|P+|α(β)M

1 − 5α(β)
.

Before we give a proof of Proposition 12, we state and prove a few lemmas which
will be used in the proof. The first of these lemmas is Lemma 13 below, which essentially
is identical to Lemma 4.7 in [7].

Lemma 13. Let B be a box in Z
4, let β ≥ 0, and let ν ∈ �PB . Then

μB,β

({ω ∈ �PB : ω|supp ν = ν}) ≤ φβ(ν). (23)

Proof. Since

μB,β

({ω ∈ �PB : ω|supp ν = ν})

= μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) · μB,β

({ω ∈ �PB : ω|supp ν = 0}),

and μB,β is a probability measure, we have

μB,β

({ω ∈ �PB : ω|supp ν = ν}) ≤ μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) .

Using Lemma 11, we obtain (13) as desired. ��
The next result we will need in the proof of Proposition 12 is the following lemma,

which gives an upper bound on the sum of the activity of the plaquette configurations ν

which satisfies (1), (2), and (3) of Proposition 12.

Lemma 14. Let B be a box in Z
4, and let β ≥ 0. Further, let P ⊆ PB be non-empty

and symmetric, let m ≥ |P+|, and let 
P,m be the set of all plaquette configurations
ν ∈ �PB such that

(1) P ⊆ supp ν,
(2) ν is P-irreducible
(3) |supp ν| = 2m.



1326 M. P. Forsström

Then
∑

ν∈
P,m

φβ(ν) ≤ 5m−|P+|α(β)m .

Remark 10. Lemma 14 is very similar to Lemma 4.9 in [7], and is also similar to
Lemma 3.11 in [14] and Lemma 1.5 in [2]. We remark however that our proof strategy
yields a strictly better upper bound than the corresponding proofs in [2] and [14]. This
would yield a strictly larger lower bound on β in the main results of this paper, and hence
we give an alternative proof here.

Proof of Lemma 14. Let � := |P+|. We will prove that Lemma 14 holds by giving a
injective map from the set 
P,m to a set of sequences ν(�), ν(�+1), . . . , ν(m) of G-valued
2-forms on PB , and then use this map to obtain the desired upper bound. To this end,
assume that a total ordering of the plaquettes in PB and a total ordering of the 3-cells in
B are given. If 
P,m is empty, then the desired conclusion trivially holds, and hence we
can assume that this is not the case.

Fix some ν ∈ 
P,m .
Let {p1, p2, . . . , p�} := P+, and define

ν(�) := ν|P .

Now assume that for some k ∈ {�, � + 1, . . . ,m}, we are given 2-forms
ν(�), ν(�+1), . . . , ν(k) such that

(i) for each j ∈ {� + 1, � + 2, . . . , k}, we have supp ν( j) = supp ν( j−1) � {p j ,−p j } for
some p j ∈ PB , and

(ii) for each j ∈ {�, � + 1, . . . , k} we have ν|supp ν( j) = ν( j).

Consider first the case that dν(k) = 0. Since, by (ii), we have ν|supp ν(k) = ν(k),

it follows from (2) that we must have ν(k) = ν. On the other hand, by (i), we have
|supp ν(k)| = 2k, and hence using (3) we obtain k = m. Consequently, if k < m, then
dν(k) �≡ 0. Equivalently, in this case there is at least one oriented 3-cell c in B for
which (dν(k))c �= 0. Let ck+1 be the first oriented 3-cell (with respect to the ordering
of the 3-cells) for which (dν(k))ck+1 �= 0. Since ν ∈ �PB , we have (dν)ck+1 = 0, and
consequently there must be at least one plaquette p ∈ supp ν ∩ (

∂ck+1� supp ν(k)
)
. Let

pk+1 be the first such plaquette (with respect to the ordering of the plaquettes).
Define

ν(k+1)
p :=

{
νp if p = ±pk+1
ν

(k)
p otherwise.

Note that if ν(�), ν(�+1), . . . , ν(k) satisfies (i) and (ii), then so does ν(k+1). Using induc-
tion, we obtain a sequence ν(�), ν(�+1), . . . , ν(m) of 2-forms with supp ν(�) = P which
satisfies (i) and (ii).We now show that such a sequencemust satisfy ν(m) = ν. To this end,
note that by (i), |supp ν(m)| = 2m and by (ii), ν|supp ν(m) = ν(m). Since |supp ν| = 2m,

it follows that ν(m) = ν.
We now use the above construction of sequences (ν(�), ν(�+1), . . . , ν(m)), each cor-

responding to some ν ∈ 
P,m, to get an upper bound on
∑

ν∈
P,m
φβ(ν). To obtain

such an upper bound, note first that for each k ∈ {�, � + 1, · · · ,m − 1}, given ν(k),
the 3-cell ck+1 is uniquely determined. Next, given ν(k) and ck+1, there are at most five
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possible choices for pk+1. Finally, note that for each k ∈ {1, 2, . . . ,m}, we must choose
νpk ∈ G�{0}. Since for ν ∈ 
P,m themapping ν �→ (ν(�), ν(�+1), . . . , ν(m)) is injective,
we obtain

∑

ν∈
P,m

φβ(ν) =
∑

ν∈
P,m

∏

p∈supp ν

φβ(νp) ≤ 5m−|P+|
[ ∑

g∈G�{0}
φ(g)2

]m
.

Recalling the definition of α(β), the desired conclusion now follows. ��
Proof of Proposition 12. For eachm ≥ |P+| let
P,m be defined as in Lemma 14. Then,
by definition,



≥
P,M =

⋃

m≥M


P,m .

Consequently, by a union bound, we have

μB,β

(



≥
P,M

) ≤
∞∑

m=M

μB,β

(

P,m

) ≤
∞∑

m=M

∑

ν∈
P,m

μB,β

({ω ∈ �PB : ω|supp ν = ν}).

By Lemma 13, for any m ≥ M and any ν ∈ 
P,m ⊆ �PB , we have

μB,β

({ω ∈ �PB : ω|supp ν = ν}) ≤ φβ(ν).

Applying Lemma 14, we thus obtain

∞∑

m=M

∑

ν∈
P,m

μB,β

({ω ∈ �PB : ω|supp ν = ν}) ≤
∞∑

m=M

5m−|P+|α(β)m .

The right-hand side in the previous equation is a geometric sum,which converges exactly
if 5α(β) < 1.

In this case, by combining the previous equations, we obtain

μB,β

(



≥
P,M

) ≤ 5M−|P+|α(β)M

1 − 5α(β)

as desired. ��
The next result is a small variation of Proposition 12 which turns out to be useful

when we work with pairs of plaquette configurations.

Proposition 15. Let B and B ′ be two boxes in Z
4 with B ′ ⊆ B, let β ≥ 0 be such that

5α(β) < 1, and let P0 ⊆ PB′ be non-empty and symmetric. For M ≥ |P+
0 |, let 
̄

≥
P0,M

be the set of all pairs (ω, ω′) ∈ �PB × �PB′ such that there is ν ∈ �PB and ν′ ∈ �PB′
with

(1) ω|supp ν = ν and ω′|supp ν′ = ν′,
(2) P0 ⊆ supp ν ∪ supp ν′,
(3) for all symmetric sets P ⊆ supp ν and P ′ ⊆ supp ν′ which satisfies satisfies P�P ′ =

P0, ν is P-irreducible and ν′ is P ′-irreducible.
(4) |supp ν| + |supp ν′| ≥ 2M.
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Then

μB,β × μB′,β
(

̄

≥
P0,M

) ≤ 2|P+
0 |(M − |P+

0 |) 5M−|P+
0 |α(β)M

(1 − 5α(β))2
. (24)

Proof. For non-empty and symmetric sets P ⊆ PB , and m ≥ |P+|, recall the definition
of 


≥
B,P,m from Proposition 12.

For m0 ≥ 0, define



≥
B,∅,m0

:=
{

�PB if m0 = 0,
∅ else.

Analogously, for non-empty and symmetric sets P ⊆ PB′ , and m ≥ |P+|, recall the
definition of 


≥
B′,P,m from Proposition 12, and for m0 ≥ 0, define



≥
B′,∅,m0

:=
{

�PB′ if m0 = 0,
∅ else.

Then, by definition, we have


̄
≥
P0,M

⊆
⋃

P⊆P0 :
P=−P

M−|P+
�P+|⋃

m0=|P+|



≥
B,P,m0

× 

≥
B′,P0�P,M−m0

.

Consequently, by a union bound, we have

μB,β × μB′,β
(

̄

≥
P0,M

) ≤
∑

P⊆P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

)
. (25)

If P = ∅, then
M−|P+

0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

) = μB,β

(



≥
B,∅,0

)
μB′,β

(



≥
B′,P9,M

)

= μB′,β
(



≥
B′,P0,M

)
.

Similarly, if P = P0, then

M−|P+
0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

) = μB,β

(



≥
B,P0,M

)
μB′,β

(



≥
B′,∅,0

)

= μB,β

(



≥
B,P0,M

)
.



Decay of Correlations in Finite Abelian Lattice Gauge Theories 1329

Consequently, we have

∑

P⊆P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

)

= μB,β

(



≥
B,P0,M

)
+ μB′,β

(



≥
B′,P0,M

)

+
∑

∅�P�P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

)
.

(26)

Since 5α(β) < 1, we can now apply Proposition 12 to obtain

μB,β

(



≥
B,P0,M

)
+ μB′,β

(



≥
B′,P0,M

)

+
∑

∅�P�P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|
μB,β

(



≥
B,P,m0

)
μB′,β

(



≥
B′,P0�P,M−m0

)

≤ 2
5M−|P+

0 |α(β)M

1 − 5α(β)

+
∑

∅�P�P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|

5m0−|P+|α(β)m0

1 − 5α(β)

5(M−m0)−|P+
0 �P+|α(β)M−m0

1 − 5α(β)

= 2
5M−|P+|α(β)M

1 − 5α(β)
+

∑

∅�P�P0 :
P=−P

M−|P+
0 �P+|∑

m0=|P+|

5M−|P+
0 |α(β)M

(1 − 5α(β))2

= 2
5M−|P+

0 |α(β)M

1 − 5α(β)
+ (2|P+

0 | − 2)(M − |P+
0 | + 1)

5M−|P+
0 |α(β)M

(1 − 5α(β))2

≤ 2|P+
0 |(M − |P+

0 | + 1)
5M−|P+

0 |α(β)M

(1 − 5α(β))2
.

(27)

Combining (25), (26) and (27), we finally obtain (24) as desired. ��
The last result of this section is the following proposition, which provides a matching

lower bound for the inequality in Lemma 13.

Proposition 16. Let B be a box inZ
4, let β > 0 be such that 5α(β) < 1, and let ν ∈ �PB

be such that distB(supp ν, δB) ≥ 7.
Then
(
1 − 55α(β)6|supp ν|

2(1 − 5α(β))

)
φβ(ν) ≤ μB,β

({ω ∈ �PB : ω|supp ν = ν}) ≤ φβ(ν). (28)

Remark 11. For any given ν ∈ �PB , he ratio between the upper and lower bound in (28)
can be made arbitrarily close to one by taking β sufficiently large.
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Proof. Since the upper bound in (28) is a direct consequence of Lemma 13, we only
need to show that the lower bound in (28) holds. To this end, note first that

μB,β

({ω ∈ �PB : ω|supp ν = ν})

= μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) · μB,β

({ω ∈ �PB : ω|supp ν = 0}), (29)

Assume that p ∈ PB and that ω′ ∈ �PB is such that ω′|p �= 0. By Lemma 7 there
exists an irreducible and non-trivial plaquette configuration ν′ ∈ �PB with p ∈ supp ν′
and ω′|supp ν′ = ν′. By Lemma 8, any non-trivial plaquette configuration ν′ ∈ �PB must
satisfy |(supp ν′)+| ≥ 6. Consequently, by Proposition 12, applied with P := {p,−p}
and M = 6, we have

μB,β

({ω ∈ �PB : ω|p �= 0}) ≤ 56−1α(β)6

1 − 5α(β)
.

Next note that for ω ∈ �PB , the event ω|supp ν �= 0 is equivalent to that suppω ∩
(supp ν)+ �= ∅.

Consequently, by a union bound, we obtain

μB,β

({ω ∈ �PN : ω|supp ν = 0}) ≥ 1 −
∑

p∈(supp ν)+

56−1α(β)6

1 − 5α(β)
. (30)

On the other hand, by Lemma 11, we have

μB,β

({ω ∈ �PB : ω|supp ν = ν})

μB,β

({ω ∈ �PB : ω|supp ν = 0}) = φβ(ν). (31)

Combining (29), (30) and (31), we obtain the desired lower bound. ��

4. Paths, Optimal Paths and Geodesics

The following definition, which we recall from the introduction, will be central in the
rest of this paper.

Definition 1. Given two boxes B and B ′ in Z
4, ω ∈ �PB and ω′ ∈ �PB′ , let G(ω, ω′) be

the graph with vertex set suppω ∪ suppω′ and an edge between two distinct plaquettes
p1, p2 ∈ suppω ∪ suppω′ if either ∂̂ p1 ∩ ∂̂ p2 �= ∅ or ∂̂ p1 ∩ ∂̂(−p2) �= ∅.

If p1, p2 ∈ suppω ∪ suppω′ are neighbors in G(ω, ω′), we write p1 ∼ p2.
The main reason for introducing the graph G(ω, ω′) is to be able to talk about paths

and geodesics in this graph. To be able to talk about general properties of such paths,
we introduce the following notation.

Definition 2. Let B be a box in Z
4, and let the plaquettes p1, p2, . . . , pm ∈ PB be

distinct. If for each k ∈ {1, 2, . . . ,m − 1} we have ∂̂ pk ∩ ±∂̂ pk+1 �= ∅, then P :=
(p1, p2, . . . , pm) is said to be a path (from p1 to pm) in PB .
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When P = (p1, p2, . . . , pm) is a path, we let Image(P) denote the set
{p1, p2, . . . , pm}, and let |P| := |Image(P)| = m.

Note that if B and B ′ are two boxes in Z
4 with B ′ ⊆ B and P is a path in PB′ , then

P is a path in PB′ . Also, if ω ∈ �PB , ω
′ ∈ �PB′ , and P is a path in G(ω, ω′), then P is

a path in PB . Conversely, if P is a path in PB , g ∈ G�{0}, and we define ω ∈ �PB and
ω′ ∈ �PB′ by letting ω′ ≡ 0 and ωp = g for all p ∈ P+

B , then P is a path in G(ω, ω′).
Note that in this example, ω has full support. The next lemma shows that in some cases,
there is ω ∈ �PB and ω′ ∈ �PB′ with relatively small supports such that a given path P
is a path in G(ω, ω′).

Lemma 17. Let B be a box in Z
4, and letP = (p1, p2, . . . , pm) be a shortest path from

p1 to pm in PB. Then there is ω(0), ω(1) ∈ �PB such that

(1) P is a path in G(ω(0), ω(1)), and
(2) |suppω(0)| + |suppω(1)| ≤ 12|P|.
Proof. We first choose a sequence of oriented edges as follows.

(i) Let k1 := 1. Ifm ≥ 2 and ∂p1 ∩±∂p2 �= ∅, pick e1 ∈ ∂p1 ∩±∂p2. Otherwise, pick
any e1 ∈ ∂p1.

Now assume that e1, e2, . . . , e j−1 are given for some j ≥ 2. If there is k ∈ {1, . . . ,m}
such that ∂pk ∩ ±{e1, e2, . . . , e j−1} = ∅, we choose e j as follows.
(ii) Let k j ≥ 1 be the smallest integer such that ∂pk j ∩ ±{e1, e2, . . . , e j−1} = ∅.
If k j + 1 ≤ m and ∂pk j ∩ ±∂pk j+1 �= ∅, pick e j ∈ ∂pk j ∩ ±∂pk j+1. Otherwise, pick
any e j ∈ ∂pk j .

Let � be the smallest positive integer which is such that ∂pk ∩ ±{e1, e2, . . . , e�} �= ∅
for all k ∈ {1, 2, . . . ,m}.

Fix any g ∈ G�{0} and define σ (0), σ (1) ∈ �EN by

σ (0)
e =

∑

j∈{1,2,...,�} :
j is even

(
g�e=e j − g�e=−e j

)
, e ∈ EB

and

σ (1)
e =

∑

j∈{1,2,...,�} :
j is odd

(
g�e=e j − g�e=−e j

)
, e ∈ EB .

We will show that ω(0) := dσ (0) and ω(1) := dσ (1) have the desired properties.
Since P is a path, (1) is equivalent to that

{p1, p2, . . . , pm} ⊆ suppω(0) ∪ suppω(1). (32)

To see that this holds, fix some k ∈ {1, 2, . . . ,m}, and define

Jk := {
j ∈ {1, 2, . . . , �} : e j ∈ ±∂pk

}
.

By the choice of the edges e1, e2, . . . , e�, the set Jk is non-empty.
Now let j, j ′ ∈ Jk be such that j ≤ j ′.
By the choice of e j , we have e j ∈ ∂pk j , and since j ∈ Jk, we also have e j ∈ ±∂pk .

Consequently, e j ∈ ∂pk j ∩ ±∂pk, and thus pk j ∼ pk . By the same argument, we also
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have pk j ′ ∼ pk . Consequently, (pk j , pk, pk j ′ ) is a path in G(ω(0), ω(1)). Since P is a
shortest path, P contains pk j pk, and pk j ′ and k j ≤ k j ′ (since j ≤ j ′), we must have
k j ∈ {k − 1, k} and k j ′ ∈ {k, k + 1}.

Since e j ∈ ±∂pk, we cannot have k j+1 = k, and since k j ∈ {k − 1, k}, we thus have
k j+1 ≥ k + 1. Consequently, if j ′ �= j ′, we must have j ′ = j + 1.

In other words, we have either Jk = { j} for some j ∈ {1, 2, . . . , �}, or Jk = { j, j +1}
for some j ∈ {1, 2, . . . , � − 1}.

This implies in particular that

pk ∈
{
suppω(0) if j is even
suppω(1) if j is odd,

and thus (1) holds.
To see that (2) holds, note simply that

|suppω(0)| + |suppω(1)| ≤ 6
(|supp σ (0)| + |supp σ (1)|) = 12� ≤ 12|P|.

This concludes the proof. ��
Lemma 18. Let B and B ′ be two boxes in Z

4, let P1, P2 ⊆ PB ∪ PB be disjoint, and
assume that ω ∈ �PB and ω′ ∈ �PB′ are such that that P1 ↔ P2 in G(ω, ω′). Further,
let P := (p1, p2, . . . , p�) be a geodesic in G(ω, ω′) between p1 ∈ P1 and p� ∈ P2.
Then

|P| ≤ (|suppω| + |suppω′|)/2.
Proof. Since P is a geodesic in G, we must have

Image(P) ∩ (− Image(P)
) = ∅,

and

± Image(P) ⊆ suppω ∪ suppω′.

Consequently, we have

2|P| ≤ |suppω ∪ suppω′| ≤ |suppω| + |suppω′|. (33)

From this the desired conclusion immediately follows. ��
Remark 12. If we either assume that ∂∂̂ p ∩ δPB = ∅ for all p ∈ Image P or consider
lattice gauge theory with zero boundary conditions, then one can quite easily show
that (33) can be replaced with

10|P|/3 ≤ |suppω| + |suppω′|.
If we have zero boundary conditions, then this stronger inequality can be used to replace
the constant C2 defined in (8) with the smaller constant 33/5 · 10.
Definition 3. A path P = (p1, p2 . . . , pm) is said to be optimal if

(i) p1, p2, . . . , pm−1 all have the same orientation, and
(ii) for any i, j ∈ {1, 2, . . . ,m}, if ∂̂ pi ∩ (∂̂ p j ∪ ∂̂(−p j )) �= ∅, then |i − j | ≤ 1.
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The next lemma gives an upper bound on the number of optimal paths of a given
length.

Lemma 19. Let B be a box in Z
4, let p1 ∈ PB, and let m ≥ 2. Then there are at most

40 · 15m−2 optimal paths P = (p1, p2, . . . , pm) with pm �= ±p1.

Proof. Note first that for any p ∈ PB , we have |∂̂ p| = 4, and if c ∈ ∂̂ p, then
|(∂c)�{p}| = 5.

Since P is a path, we have

p2 ∈ ±(
∂∂̂ p1�{p1}

)
.

Since
∣∣∣±(

∂∂̂ p1�{p1}
)∣∣∣ = 2 · 4 · 5 = 40,

the desired conclusion holds in the case m = 2.
On the other hand, for each plaquette p ∈ ±(

∂∂̂ p1�{p1}
)
, we also have −p ∈

±(
∂∂̂ p1�{p1}

)
, and exactly one of p and −p has the same orientation as p1. Since P

is optimal, if m ≥ 3 then the plaquettes p1 and p2 must have the same orientation, and
hence in this case, given p1 there are at most 40/2 = 20 possible choices of p2.

Next, assume that m ≥ 4 and that j ∈ {3, . . . ,m − 1}. Since P is a path, we have

p j ∈ ±(
∂∂̂ p j−1�{p j−1}

)
,

and since P is optimal, we have

p j �∈ ±∂∂̂ p j−2.

Since P is a path, we have |∂̂ p j−1 ∩ ±∂̂ p j−2| ≥ 1. Since j < m, the plaquettes p j and
p j−1 must have the same orientation, and hence, given p1, p2, . . . , p j−1, there are at
most 2 · (4− 1) · 5 · 1

2 = 15 possible choices of p j . By the same argument, since the last
plaquette can have any orientation, it follows that given p1, p2, . . . , pm−1, there can be
at most 2 · (4 − 1) · 5 = 30 possible choices of pm .

To sum up, we have showed that there are exactly 40 optimal paths P = (p1, p2)
with p2 �= ±p1, and if m ≥ 3, there are at most 20 · 15m−3 · 30 optimal paths P =
(p1, p2, . . . , pm) with pm �= ±p1. This concludes the proof. ��
Lemma 20. Let B and B ′ be two boxes in Z

4, and let p1, p2 ∈ PB be disjoint. Further,
let ω ∈ �PB and ω′ ∈ �PB′ and assume that {p1} ↔ {p2} in G(ω, ω′). Then there is an
optimal geodesic P from p1 to p2 in G(ω, ω′).

Proof. Since {p1} ↔ {p2} in G(ω, ω′), there exist at least one geodesic from p1 to p2
in G(ω, ω′). Let (p(1), p(2), . . . , p(m)) be such a geodesic.

Then, for any τ2, . . . , τm−1 ∈ {−1, 1}, the path
P := (

p(1), τ2 p
(2), . . . , τm−1 p

(m−1), p(m)
)

is also a geodesic from p1 to p2 in G(ω, ω′). In particular, we can choose τ2, . . . , τm−1 ∈
{−1, 1} such that P is an optimal geodesic from p1 to p2 in G(ω, ω′). This concludes
the proof. ��
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5. Connected Sets of Plaquettes

Definition 4. Let B and B ′ be two boxes in in Z
4, and let ω ∈ �PB and ω′ ∈ �PB′ .

Let P1, P2 ⊆ PB ∪ PB′ be two disjoint sets. If there is p1 ∈ P1 and p2 ∈ P2 and a
path from p1 to p2 in G(ω, ω′), then we say that P1 and P2 are connected in G(ω, ω′)
and write P1 ↔ P2 (in G(ω, ω′)). Otherwise, we say that P1 and P2 are disconnected,
and write P1 � P2 (in G(ω, ω′)).

Note that with this definition, if p1, p2 ∈ PB ∪ PB′ , ω ∈ �PB and ω′ ∈ �PB′ , then
there is a path from p1 to p2 in G(ω, ω′) if and only if {p1} ↔ {p2} in G(ω, ω′). Note
also that if P1, P2 ⊆ PB ∪ PB′ , ω ∈ �PB and ω′ ∈ �PB′ then, by definition, P1 ↔ P2
in G(ω, ω′) if and only if P2 ↔ P1 in G(ω, ω′). Moreover, P1 ↔ P2 in G(ω, ω′) if and
only if δP1 ↔ δP2 in G(ω, ω′).

Re remark that if ω ∈ �PB , then the connected components of G(ω, 0) are called
vortices in [4,6], and correspond to the support of polymers in [2].

Our main reason for introducing a notion of sets of plaquettes being connected is the
following lemma.

Lemma 21. Let B be a box in Z
4, and let β ≥ 0. Further, let P1, P2 ⊆ PB be symmetric

and disjoint, and let f : �PB → C and g : �PB → C be such that f (ω) = f (ω|P1) and
g(ω) = g(ω|P2) for all ω ∈ �PB=. Finally, let ω

(0), ω(1) ∼ μB,β be independent. Then

EB,β × EB,β

[
f
(
ω(0)|P1

)
g
(
ω(0)|P2

) · �
[
P1 � P2 in G(ω(0), ω(1))

]]

= EB,β × EB,β

[
f
(
ω(0)|P1

)
g
(
ω(1)|P2

) · �
[
P1 � P2 in G(ω(0), ω(1))

]]
.

(34)

Proof. Given ω(0), ω(1) ∈ �PB , let

P̂1 := P̂1(ω, ω′) := {
p ∈ PB : ∂(∂̂ p) ↔ P1 in G(ω, ω′)

}
.

Then P̂1 is the set of all plaquettes in PB which shares a 3-cell with some plaquette in
PB which is connected to P1.

Note that the set P̂1 can be determined without looking outside P̂1 in ω(0) and ω(1),
and that

d
(
ω(0)|P̂1

) = d
(
ω(0)|P̂1

) = 0.

This implies that even if we know ω(0)|P̂1 and ω(1)|P̂1 , we cannot distinguish between

ω(0)|PB�P̂1
and ω(0)|PB�P̂1

. Consequently, we have

EB,β × EB,β

[
g
(
ω(0)|P2

) | P2 ∩ P̂1 = ∅, ω(0)|P̂1, ω(1)|P̂1
]

= EB,β × EB,β

[
g
(
ω(1)|P2

) | P2 ∩ P̂1 = ∅, ω(0)|P̂1, ω(1)|P̂1
]
.

This implies in particular that

EB,β × EB,β

[
f
(
ω(0)|P1

)
g
(
ω(0)|P2

) · �
[
P2 ∩ P̂1 = ∅]]

= EB,β × EB,β

[
f
(
ω(0)|P1

)
g
(
ω(1)|P2

) · �
[
P2 ∩ P̂1 = ∅]]

.

Noting that

P1 � P2 in G(ω(0), ω(1)) ⇔ P2 ∩ P̂1 = ∅,

the desired conclusion follows. ��
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6. Distances Between Plaquettes

Assume that two boxes B and B ′ in Z
4 with B ′ ⊆ B, and sets P1, P2 ⊆ PB ∪ PB′

are given. Recall the definition of distB,B′(P1, P2) from (5). Using the notation of the
previous section, we have

distB,B′(P1, P2) = 1

2
min

{
|suppω| + |suppω′| : ω ∈ �PB , ω′ ∈ �PB′ s.t.

P1 ↔ P2 in G(ω, ω′)
}
.

We now define another measure of the distance between sets of plaquettes which will
be useful to us.

dist∗B(P1, P2) := min
p1∈P1, p2∈P2

min
{|P| : P is a path from p1 to p2 in PB

}
.

We mention that we do neither claim nor prove that the functions distB,B′ and dist∗B
defined above are distance functions, and this will not be needed in the rest of this paper.

The following lemma gives a relationship between the distances distB,B′ and dist∗B .

Lemma 22. Let B and B ′ be two boxes in Z
4 with B ′ ⊆ B, and let P1, P2 ⊆ PB be

disjoint. Then

dist∗B(P1, P2) ≤ distB,B′(P1, P2). (35)

and

distB(P1, P2) ≤ 6 dist∗B(P1, P2). (36)

Proof. We first prove that (36) holds.
To this end, letP be a path from p1 ∈ P1 to p2 ∈ P2 in PB with |P| = dist∗B(P1, P2).

ThenP is a shortest path from p1 to p2, and hence byLemma17 there isω(0), ω(1) ∈ �PB
such that P is a path in G(ω(0), ω(1)) and |suppω(0)| + |suppω(1)| ≤ 12|P|. Since P is
a path in G(ω(0), ω(1)) from p1 ∈ P1 to p2 ∈ P2, we have P1 ↔ P2 in G(ω(0), ω(1)),
and hence

distB(P1, P2) ≤ 1

2

(|suppω(0)| + |suppω(1)|) ≤ 12|P|
2

= 6|P| = 6 dist∗B(P1, P2).

This concludes the proof of (36).
We now show that (35) holds. To this end, assume that ω ∈ �PB and ω′ ∈ �PB′ are

such that that P1 ↔ P2 in G(ω, ω′) and |suppω| + |suppω′| = 2 distB,B′(P1, P2). By
the definition of distB,B′(P1, P2), such plaquette configurations ω and ω′ exists.

Since P1 ↔ P2 in G(ω, ω′), there exists at least one path in G(ω, ω′) between some
p1 ∈ P1 and some p2 ∈ P2. Let P be such a path. Then by definition, we have

dist∗B,B′(P1, P2) ≤ |P|.
Moreover, by Lemma 18, we have

|P| ≤ (|suppω| + |suppω′|)/2 = distB,B′(P1, P2).

Combining these equations, we obtain

dist∗B(P1, P2) ≤ distB,B′(P1, P2)

as desired. ��
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7. The Probability of Two Sets Being Connected

The purpose of this section is to give a proof of the following result, which gives an
upper bound on the probability that two given sets are connected.

Proposition 23. Let B and B ′ be two boxes in Z
4 with B ′ ⊆ B, let β ≥ 0 be such that

30α(β) < 1, and let P1, P2 ⊆ PB be disjoint. Then

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB : P1 ↔ P2 in G(ω, ω′)
})

≤ C1|P1|
(
C2α(β)

)distB,B′ (P1,P2)

2
.

Before giving a proof of this result at the end of this section, we will state and prove
the following lemma, which gives an upper bound on the probability that a given path
P is a path in a random graph G(ω, ω′).

Lemma 24. Let B and B ′ be two a boxes in Z
4 with B ′ ⊆ B, and let β ≥ 0 be such that

5α(β) < 1. Further, let p1, p2 ∈ PB be distinct, and let P be a path from p1 to p2 in
PB.

Then

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P is a geodesic in G(ω, ω′)
})

≤ 5−|P |(10α(β))M

2(1 − 5α(β))2
,

where M := max
(
|P|, distB,B′(p1, p2)

)
.

Proof. Let ω ∈ �PB and ω′ ∈ �PB′ be such that P is a geodesic from p1 to p2 in
G(ω, ω′), and let P0 := ± ImageP. ��
We now claim that the following holds.

Claim 25. There are symmetric sets P̂ ⊆ suppω and P̂ ′ ⊆ suppω′ such that

(a) P0 ⊆ P̂ ∪ P̂ ′,
(b) for all symmetric sets P ⊆ P̂ and P ′ ⊆ P̂ ′ which satisfies satisfies P � P ′ = P0,

ω|P̂ is P-irreducible and ω′|P̂ ′ is P ′-irreducible.

Proof of Claim. We will give a proof by contradiction. To this end, and assume that no
symmetric sets P̂ ⊆ suppω and P̂ ′ ⊆ suppω′ which satisfy both (a) and (b) exist.

1. Let P̂0 := suppω and P̂ ′
0 := suppω′.Note that, by assumption, sinceP is a geodesic

in G(ω, ω′) and P0 = ± ImageP, (a) holds with P̂ = P̂0 and P̂ ′ = P̂ ′
0.

2. For k = 1, 2, 3, . . ., assume that sets P̂k−1 and P̂ ′
k−1 such that (a) holds with P̂ =

P̂k−1 and P̂ ′ = P̂ ′
k−1 are given.

Since (a) holds with P̂ = P̂k−1 and P̂ ′ = P̂ ′
k−1, by assumption, (b) must fail.

Consequently, there must exist symmetric sets P ⊆ P̂k−1 and P ′ ⊆ P̂ ′
k−1 such that

P � P ′ = P0, and such that either ω|P̂k−1
is not P-irreducible or ω′|P̂ ′

k−1
is not P ′-

irreducible.
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At the same time, by Lemma 7, there is P̂k ⊆ P̂k−1 and P̂ ′
k ⊆ P̂ ′

k−1 such that ω|P̂k is
P-irreducible and ω|P̂ ′

k
is P ′-irreducible.

Since P0 = P � P ′ , we have P0 ⊆ suppω|P̂k ∪ suppω′|P̂ ′
k

= P̂k ∩ P̂ ′
k and hence (a)

holds with P̂ = P̂k and P̂ ′ = P̂ ′
k .

Also, since either ω|P̂k−1
is not P-irreducible or ω′|P̂ ′

k−1
is not P ′ irreducible, we must

have |P̂k | + |P̂ ′
k | < |P̂k−1| + |P̂ ′

k−1|.
Repeating the above argument,weobtain an infinite sequenceof sets (P̂0, P̂ ′

0), (P̂1, P̂
′
1), . . .

with

|P̂0| + |P̂ ′
0| > |P̂1| + |P̂ ′

1| > |P̂2| + |P̂ ′
2| > . . . .

However, since PN is finite and P0 ⊆ P̂k ∪ P̂ ′
k , this is impossible, and hence our

assumption must be false. This concludes the proof. ��
Using Claim 25, we let P̂ ⊆ suppω and P̂ ′ ⊆ suppω′ be symmetric sets which

satisfy (a) and (b) of this claim, and define ν := ω|P̂ and ν′ := ω′|P̂ ′ .
Note that by definition, ν and ν′ satisfy (1), (2), and (3) of Proposition 15.
Next, since P is a geodesic in G(ω, ω′), it follows that P is a geodesic in G(ν, ν′).

Using Lemma 18, it follows from (a) and the definition of ν and ν′ that

|supp ν| + |supp ν′|
2

≥ |P|.

On the other hand, by the definition of distB,B′ , we must also have

|supp ν| + |supp ν′|
2

≥ distB,B′(p1, p2).

To sum up, we have showed that if ω ∈ �PB and ω′ ∈ �PB′ are such that P is a
geodesic from p1 to p2 in G(ω, ω′), and we let 
̄

≥
P0,M

be as in Proposition 15, then

(ω, ω′) ∈ 
̄
≥
P0,M

. Consequently,

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P is a geodesic in G(ω, ω′)
})

≤ μB,β × μB′,β(
̄
≥
P0,M

)

Applying Proposition 15, we thus obtain

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P is a geodesic in G(ω, ω′)
})

≤ 2|P |(M − |P|) 5M−|P |α(β)M

(1 − 5α(β))2
.

Since p1 and p2 are distinct, we have |P| ≥ 2, and hence M − |P| ≥ 1. Using the
inequality x ≤ 2x−1, valid for all x ≥ 1, the desired conclusion follows. ��

We now give a proof of Proposition 23.
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Proof of Proposition 23. Let ω ∈ �PB and ω′ ∈ �PB′ , and assume that P1 ↔ P2 in
G(ω, ω′). Then, by Lemma 20, there is p1 ∈ P1, p2 ∈ P2, and an optimal geodesic from
p1 to p2 in G(ω, ω′).

Consequently, we have the upper bound

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P1 ↔ P2 in G(ω, ω)
})

≤ μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : ∃p1 ∈ P1, p2 ∈ P2 and

an optimal geodesic P from p1 to p2 in G(ω, ω′)
})

(37)

By Lemma 19, given m ≥ 2 and p1 ∈ P1, there are at most 40 · 15m−2 optimal paths
P of length m which starts at p1 and ends at some p ∈ PB .

Since P1 and P2 are disjoint, we have dist∗B(P1, P2) ≥ 2. Consequently, for any
m ≥ dist∗B(P1, P2), there can be at most |P1| · 40 · 15m−2 optimal paths which starts at
some p1 ∈ P1 and ends at some p2 ∈ P2.

In particular, this implies that for any m ≥ dist∗B(P1, P2), there are at most |P1| · 40 ·
15m−2 paths which starts at some p1 ∈ P1 and ends at some p2 ∈ P2 which can be an
optimal geodesic in G(ω, ω′) for some ω ∈ �PB and ω′ ∈ �PB′ .

On the other hand, given a path P from p1 to p2, by Lemma 24 we have

μB,β × μB,β

({
ω ∈ �PB , ω′ ∈ �PB′ : P is a geodesic in G(ω, ω′)

})

≤ 5−|P |(10α(β))max(|P |,distB,B′ (p1,p2))

2(1 − 5α(β))2
.

Combining there observations, and summing over all m ≥ dist∗B(P1, P2), we thus
obtain

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : ∃p1 ∈ P1, p2 ∈ P2 and (38)

an optimal geodesic P from p1 to p2 in G(ω, ω′)
})

≤
∞∑

m=dist∗B (P1,P2)

40|P1| · 15m−2 · 5
−m

(
10α(β)

)max(m,distB,B′ (P1,P2))

2(1 − 5α(β))2

= 20|P1|
152(1 − 5α(β))2

∞∑

m=dist∗B (P1,P2)

3m
(
10α(β)

)max(m,distB,B′ (P1,P2)). (39)

We now rewrite the sum in (39) as follows. First, note that by Lemma 22, we have

dist∗B(P1, P2) ≤ distB,B′(P1, P2).

Consequently,

∞∑

m=dist∗B (P1,P2)

3m
(
10α(β)

)max(m,distB,B′ (p1,p2))

=
distB,B′ (P1,P2)−1∑

m=dist∗B (P1,P2)

3m
(
10α(β)

)distB,B′ (P1,P2) +
∞∑

m=distB,B′ (P1,P2)

(
30α(β)

)m
. (40)
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Thefirst term in (40) is a finite geometric sum, and the second term is an infinite geometric
sum which converge since 30α(β) < 1. Hence the previous equation is equal to

3distB,B′ (P1,P2) − 3dist
∗
B (P1,P2)

3 − 1

(
10α(β)

)distB,B′ (P1,P2) +

(
30α(β)

)distB,B′ (P1,P2)

1 − 30α(β)
.

Since 30α(β) < 1, we can bound the previous equation from above by
[
1

2
+

1

1 − 30α(β)

](
30α(β)

)distB,B′ (P1,P2).

Combining the previous equations, we obtain

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P1 ↔ P2 in (ω, ω′)
})

≤ 20|P1|
152(1 − 5α(β))2

[
1

2
+

1

1 − 30α(β)

](
30α(β)

)distB,B′ (P1,P2).

Recalling the definition of C1 from (7) and the definition of C2 from (8), we obtain the
desired conclusion. ��

8. Covariance and Connected Sets

We now use the notion of connected sets to obtain an upper bound on the covariance of
local functions.

Lemma 26. Let B be a box in Z
4, and let β ≥ 0. Further, let P1 ⊆ PB and P2 ⊆ PB be

symmetric and disjoint, and let f1, f2 : �B,2 → C be such that f1(ω) = f1(ω|P1) and
f2(ω) = f2(ω|P2) for all ω ∈ �PB . Finally, let ω,ω′ ∼ μB,β be independent. Then

∣∣∣Cov
(
f1(ω), f2(ω)

)∣∣∣

≤ 2‖ f1‖∞‖ f2‖∞ μB,β × μB,β

({
ω,ω′ ∈ �PB : P1 ↔ P2 in G(ω, ω′)

})
.

Proof. Note first that

EB,β

[
f1(ω) f2(ω)

] = EB,β × EB,β

[
f1(ω) f2(ω) · �

[
P1 ↔ P2 in G(ω, ω′)

]]

+ EB,β × EB,β

[
f1(ω) f2(ω) · �

[
P1 � P2 in G(ω, ω′)

]]
.

Since f1(ω′′) = f1(ω′′|P1) and f2(ω′′) = f1(ω′′|P2) for all ω′′ ∈ �PB , we can apply
Lemma 21 to obtain

EB,β × EB,β

[
f1(ω) f2(ω) · �

[
P1 � P2 in G(ω, ω′)

]]

= EB,β × EB,β

[
f1(ω) f2(ω

′) · �
[
P1 � P2 in G(ω, ω′)

]]

= EB,β × EB,β

[
f1(ω) f2(ω

′)
]

− EB,β × EB,β

[
f1(ω) f2(ω

′) · �
[
P1 ↔ P2 in G(ω, ω′)

]]

= EB,β

[
f1(ω)

]
EB,β

[
f2(ω

′)
]

− EB,β × EB,β

[
f1(ω) f2(ω

′) · �
[
P1 ↔ P2 in G(ω, ω′)

]]
.
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Combining the previous equations, we obtain

EB,β

[
f1(ω) f2(ω)

]

= EB,β

[
f1(ω)

]
EB,β

[
f2(ω

′)
]

− EB,β × EB,β

[
f1(ω) f2(ω

′) · �
[
P1 ↔ P2 in G(ω, ω′)

]]

+ EB,β × EB,β

[
f1(ω) f2(ω) · �

[
P1 ↔ P2 in G(ω, ω′)

]]
,

and hence

Cov
(
f1(ω), f2(ω)

)
= EB,β × EB,β

[
f1(ω) f2(ω) · �

[
P1 ↔ P2 in G(ω, ω′)

]]

− EB,β × EB,β

[
f1(ω) f2(ω

′) · �
[
P1 ↔ P2 in G(ω, ω′)

]]
.

From this the desired conclusion immediately follows. ��
We now combine the previous lemma with Proposition Proposition 23 to obtain our

first main result.

Proof of Theorem 1. By combining Lemma 26 and Proposition 23, we immediately
obtain

∣∣
∣Cov

(
f1(dσ), f2(dσ)

)∣∣
∣ ≤ C1

(
C2α(β)

)distB (P1,P2)‖ f1‖∞ ‖ f2‖∞.

This concludes the proof of the first part of Theorem 1.
To see that the second claim of the theorem holds, we apply the first part of the

theorem with f1(ω) = tr ρ(ωp1), f2(ω) = tr ρ(ωp2), P1 = {p1}, and P2 = {p2}, and
note that since ρ is unitary, we have ‖ f1‖∞ ≤ dim ρ and ‖ f2‖∞ ≤ dim ρ. ��

9. Total Variation and Connected Sets

The next lemma gives a connection between the total variation distance of two restricted
configurations and the property of two sets being connected in the same configurations.
The proof of this lemma uses a coupling of the two configurations. We mention that this
coupling is the same type of coupling that is used in e.g. [15] and [3].

Lemma 27. Let B ′
� B be two boxes in Z

4, and let β ≥ 0. Let P0 ⊆ PB′ . Further, let
ω ∼ μB,β and ω′ ∼ μB′,β . Then

distT V (ω|P0 , ω′|P0)
≤ μB,β × μB′,β

({
ω ∈ �PB , ω′ ∈ �PB′ : P0 ↔ (PB�PB′) in G(ω, ω′)

})
.

Proof. Given ω ∈ �PB and ω′ ∈ �PB′ , let

P̂ := {p ∈ PB′ : {p} ↔ PB�PB′ in G(ω, ω′)}
(see Fig. 3B).

Next, define

ˆ̂P := (PB�PB′) ∪ {
p ∈ PB′ : ∂(∂̂ p) ↔ PB�PB′ in G(ω, ω′)

}
.
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(A) (B)

B
B

B
B

B
B

B
B

B
B

(C)

Fig. 3. In the three figures above we let the green and blue disks represent the connected components of
G(ω, 0) and G(0, ω′) respectively for some ω ∈ �PB and ω′ ∈ �PB′ (see A). The clusters of partially

overlapping disks correspond to connected components in G(ω, ω′). In B the red area corresponds to the set

P̂ , and in C the red area corresponds to the set ˆ̂P

(see Fig. 3C) and note that PB�PB′ ⊆ ˆ̂P and that

suppω| ˆ̂P ∪ suppω′| ˆ̂P = P̂ .

Note also that the set P̂ can be determined without looking outside ˆ̂P in ω and
ω′. Together, these observations imply that if we let ω ∼ μB,β and ω′ ∼ μB′,β be
independent, then, conditioned on P̂ = P̂(ω, ω′), we have

ω|PB′�P̂
d= ω′|PB′�P̂ . (41)

Wenowuse this observation to construct a coupling (ω̂, ω̂′) of ω̂ ∼ μB,β and ω̂′ ∼ μB′,β .
To this end, let ω ∼ μB,β and ω′ ∼ μB′,β be independent.
Given P̂ = P̂(ω, ω′), define

{
ω̂ := ω

ω̂′ := ω′|P̂ + ω|PB′�P̂ .

By (41), we have

ω̂|PB′�P̂
d= ω̂′|PB′�P̂ , (42)

and hence ω̂′ ∼ μB′,β . Since ω̂ ∼ μB,β by definition, it follows that (ω̂, ω̂′) is a coupling
of ω̂ ∼ μB,β and ω̂′ ∼ μB′,β .

By the coupling characterization of total variation distance, we therefore have

distT V (ω|P0 , ω′|P0) ≤ μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �B′,β : ω̂|P0 �= ω̂′|P0
})

.

If ω̂|P0 �= ω̂′|P0 , then
P0 ↔ P̂B�PB′ ,

and hence it follows that

distT V (ω|P0 , ω′|P0) ≤ μB,β × μB,β

({
ω,ω′ ∈ �PB : P0 ↔ (PB�PB′) in G(ω, ω′)

})
.

This completes the proof. ��
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We now use the previous lemma to give a proof of Theorem 4.

Proof of Theorem 4. By Lemma 27, we have

distT V (ω|P0 , ω′|P0) ≤ μB,β

× μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P0 ↔ (PB�PB′) in (ω, ω′))
})

.

On the other hand, by Proposition 23, we have

μB,β × μB′,β
({

ω ∈ �PB , ω′ ∈ �PB′ : P0 ↔ (PB�PB′) in (ω, ω′)
})

≤ C1|P0|
(
C2α(β)

)distB,B′ (P0,PB�PB′ )
.

Combining the previous equations, we thus obtain

distT V (ω|P0 , ω′|P0) ≤ C1|P0|
(
C2α(β)

)distB,B′ (P0,PB�PB′ )

as desired. ��

10. The Expected Spin at a Plaquette

In this section, we give proofs of Theorem 2 and Theorem 3.

Proof of Theorem 2. We first define two useful events.
Let

A := {
σ ∈ �EB : ∃ irreducible ν ∈ �PB with (dσ)|supp ν = ν,

p ∈ supp ν and |(supp ν)+| ≥ 11
}
,

and, for e ∈ ∂p and g ∈ G, let

Ae,g := {
σ ∈ �EB : ∀p′ ∈ ∂e we have (dσ)p′ = g

}
.

Note that since distB
({p}, δPB

)
> 6, these events are all well-defined. Moreover, by

Lemma 8 and Lemma 9, since distB
({p}, δPB

)
> 11, we have

{
σ ∈ �EN : (dσ)p �= 0

} = A ∪
⋃

e∈∂p

⊔

g∈G�{0}
Ae,g (43)

We now give upper bounds of the μB,β -measure of the events defined above.
To this end, note first that by Proposition 12, applied with P = {p,−p} and M = 11,

we have

μB,β(A) ≤ 510α(β)11

1 − 5α(β)
. (44)

If for some e ∈ ∂p the event Ac
e,0 happen, then there must exist an irreducible

plaquette configuration ν ∈ �PB with (dσ)|supp ν = ν and supp ν ∩ ∂̂e �= ∅. From
Proposition 12, applied with p′ ∈ ∂̂e and M = 6, and a union bound, we obtain

0 ≤ 1 − μB,β(Ae,0) ≤
∑

p′∈∂̂e

55α(β)6

1 − 5α(β)
. (45)
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Next, note that if {e, e′} ⊆ ∂p and g ∈ G�{0} then it follows from Proposition 12,
applied with P = (∂̂e∪ ∂̂(−e))∪ (∂̂e′ ∪ ∂̂(−e′)) and M = |P+| = 6 + 6− 1 = 11, that

∑

g∈G�{0}
μB,β(Ae,g ∩ Ae′,g) ≤ α(β)11

1 − 5α(β)
. (46)

Finally, if we for e = dx j ∈ ∂p and g ∈ G�{0} define ν(e,g) by

ν
(e,g)
e′ := d(g dx j )

then d(ν(e,g)) = 0, supp ν(e,g) = ±∂̂e, and by Lemma 9, we have

σ ∈ Ae,g ⇔ (dσ)|±∂̂e = ν(e,g).

Moreover, we have

σ ∈ Ae,0 ⇔ (dσ)|±∂̂e = 0.

Consequently, we can apply Lemma 11 with ν = ν(e,g) to obtain

μB,β(Ae,g)

μB,β(Ae,0)
= μB,β

({σ ∈ �EB : (dσ)|supp ν(e,g) = ν(e,g)})

μB,β

({σ ∈ �EB : (dσ)|supp ν(e,g) = 0}) = φβ(g)12 (47)

We now combine the above equations to obtain (11). To this end, note first that by
the triangle inequality we have

∣
∣∣∣EB,β

[
f
(
(dσ)p

)] −
(
f (0) +

∑

e∈∂p

∑

g∈G

(
f (g) − f (0)

)
φ(g)12

)∣
∣∣∣

=
∣∣∣∣EB,β

[
f
(
(dσ)p

) − f (0)
] −

∑

e∈∂p

μB,β(Ae,0)
∑

g∈G

(
f (g) − f (0)

)
φ(g)12

+
∑

e∈∂p

(
μB,β(Ae,0) − 1

) ∑

g∈G

(
f (g) − f (0)

)
φ(g)12

∣∣∣∣

≤
∣∣∣∣EB,β [ f ((dσ)p) − f (0)] −

∑

e∈∂p

μB,β(Ae,0)
∑

g∈G

(
f (g) − f (0)

)
φ(g)12

∣∣∣∣ (48)

+

∣∣∣∣
∑

e∈∂p

(
1 − μB,β(Ae,0)

) ∑

g∈G

(
f (g) − f (0)

)
φ(g)12

∣∣∣∣. (49)

To get an upper bound on (48), we first rewrite (43) as a union of disjoint events;

{σ ∈ �EN : (dσ)p �= 0} = A �
⊔

g∈G�{0}

( ⊔

E⊆∂p :
E �=∅

(Ac
⋂

e′∈E
Ae′,g

⋂

e′′∈∂p�E

Ac
e′′,g)

)
.

(50)
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Using first (47) and then (50), we immediately obtain

∣
∣∣EB,β

[
f
(
(dσ)p

) − f (0)
] −

∑

e∈∂p

μB,β(Ae,0)
∑

g∈G

(
f (g) − f (0)

)
φB,β(g)

∣
∣∣

(47)=
∣∣∣EB,β

[
f
(
(dσ)p

) − f (0)
] −

∑

e∈∂p

∑

g∈G

(
f (g) − f (0)

)
μB,β(Ae,g)

∣∣∣

(50)≤
(
μB,β(A) +

∑

{e1,e2}⊆∂p

∑

g∈G�{0}
μB,β(Ae1,g ∩ Ae2,g)

)
· max
g∈G

∣∣ f (g) − f (0)
∣∣

(44),(46)≤
(
510α(β)11

1 − 5α(β)
+

(|∂p|
2

)
α(β)11

1 − 5α(β)

)
· max
g∈G

∣
∣ f (g) − f (0)

∣
∣.

To obtain an upper bound on (49), we use (45) to get

∣∣∣
∣
∑

e∈∂p

(
1 − μB,β(Ae,0)

) ∑

g∈G

(
f (g) − f (0)

)
φ(g)12

∣∣∣
∣

≤
∑

e∈∂p

∑

p′∈∂̂e

55α(β)6

1 − 5α(β)
· max
g∈G

∣∣ f (g) − f (0)
∣∣ ·

∑

g∈G�{0}
φβ(g)12.

Finally, note that
(|∂p|

2

) = 6, that
∑

e∈∂p|∂̂e| = 4 · 6, and that

∑

g∈G�{0}
φβ(g)12 ≤ ( ∑

g∈G�{0}
φβ(g)2

)6 = α(β)6

Combining the above equations, we thus get

∣∣∣∣EB,β

[
f
(
(dσ)p

)] −
(
f (0) +

∑

e∈∂p

∑

g∈G

(
f (g) − f (0)

)
φ(g)12

)∣∣∣∣

≤
(
510α(β)11

1 − 5α(β)
+

6α(β)11

1 − 5α(β)
+
24 · 55α(β)12

1 − 5α(β)

)
· max
g∈G

∣∣ f (g) − f (0)
∣∣.

Since 5α(β) < 1, we have 510 +6+24 ·55α(β) < 511, and hence the desired conclusion
follows. ��
Proof of Theorem 3. Note first that, by definition, we have

EB,β

[
f1

(
(dσ)p1

)
f2

(
(dσ)p2

)]

= Cov
(
f1

(
(dσ)p1

)
, f2

(
(dσ)p2

))
+ EB,β

[
ρ
(
(dσ)p1

)]
EB,β

[
ρ
(
(dσ)p2

)]
.
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Consequently, by the triangle inequality we have

∣
∣∣∣EB,β

[
f1

(
(dσ)p1

)
f2

(
(dσ)p2

)] −
∏

j∈{1,2}

(
f j (0) +

∑

e∈∂p j

∑

g∈G

(
f j (g) − f j (0)

)
φβ(g)12

)∣
∣∣∣

≤
∣∣∣
∣Cov

(
f1

(
(dσ)p1

)
, f2

(
(dσ)p2

))
∣∣∣
∣

+

∣∣∣∣EB,β

[
f1

(
(dσ)p

)]
EB,β

[
f2

(
(dσ)p′

)]

−
∏

j∈{1,2}

(
f j (0) +

∑

e∈∂p

∑

g∈G

(
f j (g) − f j (0)

)
φβ(g)12

)∣∣∣
∣.

For the second term, note that for any x, y, a, b ∈ C, we have |xy−ab| ≤ |(x −a)(y−
b)| + |a(y − b)| + |b(x − a)|. Using this inequality and Theorem 2, we obtain

∣∣
∣∣EB,β

[
f1

(
(dσ)p1

)]
EB,β

[
f2

(
(dσ)p2

)]

−
∏

j∈{1,2}

(
f j (0) +

∑

e∈∂p j

∑

g∈G

(
f j (g) − f j (0)

)
φβ(g)12

)∣∣∣∣

≤
∏

j∈{0,1}

(
5α(β)

)11

1 − 5α(β)
· max
g∈G

∣∣ f j (g) − f j (0)
∣∣

+
∑

j∈{0,1}

(
5α(β)

)11

1 − 5α(β)
· max
g∈G

∣
∣ f j (g) − f j (0)

∣
∣ · max

g∈G
∣
∣ f1− j (g)

∣
∣.

Combining the previous equations and using Theorem 1, we get

∣∣∣∣EB,β

[
f1

(
(dσ)p1

)
f2

(
(dσ)p2

)] −
∏

j∈{1,2}

(
f j (0) +

∑

e∈∂p

∑

g∈G

(
f j (g) − f j (0)

)
φβ(g)12

)∣∣∣∣

≤ C1‖ f1‖∞‖ f2‖∞
(
C2α(β)

)distB ({p1},{p2})

+

( (
5α(β)

)11

1 − 5α(β)

)2 ∏

j∈{0,1}
max
g∈G

∣∣ f j (g) − f j (0)
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+

(
5α(β)

)11

1 − 5α(β)

∑

j∈{0,1}
max
g∈G

∣∣ f j (g) − f j (0)
∣∣ · max

g∈G
∣∣ f1− j (g)

∣∣.

Noting that, for j ∈ {0, 1}, we have
max
g∈G

∣∣ f j (g) − f j (0)
∣∣ ≤ 2max

g∈G
∣∣ f j (g)

∣∣,

we obtain (12) as desired. ��
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