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Abstract: We introduce and study tetrahedron instantons, which can be realized in
string theory by D1-branes probing a configuration of intersecting D7-branes in flat
spacetime with a proper constant B-field. Physically they capture instantons on C

3 in
the presence of the most general intersecting real codimension-two supersymmetric
defects. Moreover, we construct the tetrahedron instantons as particular solutions of
general instanton equations in noncommutative field theory. We analyze the moduli
space of tetrahedron instantons and discuss the geometric interpretations. We compute
the instanton partition function both via the equivariant localization on the moduli space
of tetrahedron instantons and via the elliptic genus of the worldvolume theory on the
D1-branes probing the intersecting D7-branes, obtaining the same result. The instanton
partition function of the tetrahedron instantons lies between the higher-rank Donaldson–
Thomas invariants onC

3 and the partition function of the magnificent four model, which
is conjectured to be the mother of all instanton partition functions. Finally, we show
that the instanton partition function admits a free field representation, suggesting the
existence of a novel kind of symmetry which acts on the cohomology of the moduli
spaces of tetrahedron instantons.

1. Introduction

Since the discovery of Yang–Mills instantons as topologically nontrivial field config-
urations that minimize the Yang–Mills action in four-dimensional Euclidean space-
time [14], many important developments on the applications of instantons arose in both
physics [27,120,126] andmathematics [33,43]. In theAtiyah–Drinfield–Hitchin–Manin
(ADHM) construction [8], the moduli space of Yang–Mills instantons on R

4 is given as
a hyperkahler quotient. In addition, the ADHM construction can be derived in a physi-
cally intuitive way using string theory [36,37,129]. For example, themoduli spaceMn,k
of SU(n) instantons of charge k is given by the Higgs branch of the supersymmetric
gauge theory living on k D1-branes probing a stack of n coincident D5-branes in type IIB
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superstring theory. To avoid the noncompactness ofMn,k due to small instantons, Naka-
jima introduced a smooth manifold ˜Mn,k , which can be obtained from the Uhlenbeck
compactification of Mn,k by resolving the singularities [86]. Thereafter Nekrasov and
Schwarz interpreted ˜Mn,k as the moduli space of U(n) instantons on noncommutative
R
4 [106], where the noncommutativity of the spacetime coordinates can be produced in

string theory by turning on a proper constant B-field [123].
Themoduli space ˜Mn,k admits a U(1)2 action which stems from the rotation symme-

try of the spacetimeR
4, and a U(n) action which rotates the gauge orientation at infinity.

Although ˜Mn,k is still noncompact because the instantons can run away to infinity of
the spacetimeR

4, theT-equivariant symplectic volumeZk of ˜Mn,k is well-defined [82],
with T being the maximal torus of U(1)2×U(n). Using the equivariant localization the-
orem [7],Zk can be evaluated exactly and is given by a sum over a collection of random
partitions. Assembling Zk with all k ≥ 0 into a generating function, Nekrasov obtained
the instanton partition function Z = ∑k≥0 qkZk of four-dimensional N = 2 SU(n)
supersymmetric Yang–Mills theory in the Ω-background [110]. It turns out that both
the Seiberg–Witten effective prepotential [121,122] and the couplings to the background
gravitational fields [5,18] can be derived rigorously from Z [76,89,99,101,107,134].
The instanton partition function is also related to the A-model topological strings on
two-dimensional Riemann surfaces [75,77,112,133], the Virasoro/W-algebra confor-
mal blocks [3,132], and quantum integrable systems [102,105,113]. Recently, based
on the computation of the elliptic genus using supersymmetric localization techniques
[16,17], an alternative general approach to computingZ was provided in [56]. Themajor
advantage of this approach is that we no longer need to know ˜Mn,k explicitly, and Z is
given in terms of contour integrals with Jeffrey–Kirwan (JK) residue prescription [58].

Over the past few years, there have been several fascinating generalizations of the
Yang–Mills instantons on R

4. The ADHM-type constructions of Yang–Mills instantons
on some other four-manifolds have been found [24,38,68,71,131]. Instantons also ap-
pear in higher-dimensional gauge theories [1,11,35], and we can get an ADHM-type
construction of instanonmoduli spaces from the low-energy worldvolume theory on D1-
branes probing D(2p + 1)-branes with p = 3, 4 [81]. The instanton partition function
Z is given by a statistical sum over random plane partitions (p = 3) or solid partitions
(p = 4), see [64] for a recent review. The p = 3 case gives the equivariant Donaldson–
Thomas invariants of toric Calabi–Yau threefolds [10,15,25,26,40,78–80], while the
p = 4 case defines the magnificent four model [95,103], and can be interpreted in terms
of equivariant Donaldson–Thomas invariants of toric Calabi–Yau fourfolds [20–22]. The
partition function of the magnificent four model is envisioned to be the mother of all
instanton partition functions [95].

In yet a different line of research, the concept of generalized field theory, which is
constructed by merging several ordinary field theories across defects, has been emerg-
ing in recent years. The spacetime X of a generalized gauge theory contains several
intersecting components, X =⋃A X A. The fields and the gauge groups G A = G|A on
different components can be different, and the matter fields living on the intersection
X A
⋂

X B transform in the bifundamental representation of the product group G A×G B .
For instance, D1-branes probing a configuration of intersecting (anti-)D5-branes, in the
presence of a proper B-field, give rise to the spiked instantons in a generalized gauge the-
ory [92,93,104,119]. When each component X A of the spacetime is a noncompact toric
surface, the generating function of equivariant symplectic volumes of the instantonmod-
uli spaces can be similarly defined and is called the gauge origami partition function [96].
Applying the equivariant localization theorem, the gauge origami partition function can
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be expressed as a statistical sumover collections of randompartitions, and provides a uni-
fied treatment of instanton partition functions of four-dimensionalN = 2 supersymmet-
ric gauge theories [101], possibly with local or surface defects [2,4,9,46,65,69,97,118].
Nekrasov also derived an infinite set of nonperturbative Dyson–Schwinger equations
from the gauge origami partition function [92], leading to a number of interesting ap-
plications [59,60,62,63,72,94,108].

It is the goal of the present work to piece together the jigsaw puzzle of instantons by
studying D1-branes probing a configuration of intersecting D7-branes. With a proper
B-field, the ground state of the D-brane system is supersymmetric, and the low-energy
theory on D1-branes preservesN = (0, 2) supersymmetry in two dimensions. Since the
arrangement of various D-branes and open strings attached to them can be naturally as-
sociated with the vertices, edges and faces of a tetrahedron, we will call these instantons
the tetrahedron instantons. We carefully work out the moduli space of tetrahedron in-
stantons, which can be viewed as an interpolation between other instantonmoduli spaces
that have been explored extensively. It is also a generalization of the moduli space of so-
lutions to the Donaldson–Uhlenbeck–Yau equations [34,124], which describe the BPS
configurations in higher dimensional super-Yang–Mills theory [1,11,35]. We compute
the instanton partition function Z using two approaches. Furthermore, we show that Z
admits a free field representation, suggesting the existence of a novel kind of symmetry
which acts on the cohomology of the moduli spaces of tetrahedron instantons.

The paper is organized as follows. In Sect. 2 we provide a string theory construction
of tetrahedron instantons and work out the instanton moduli spaces. In Sect. 3, we de-
scribe the tetrahedron instantons in the framework of noncommutative field theory. In
Sect. 4 we analyze themoduli space of tetrahedron instantons. In Sect. 5, we compute the
instanton partition function of the tetrahedron instantons using the equivariant localiza-
tion theorem. In Sect. 6, we calculate the instanton partition function of the tetrahedron
instantons from the elliptic genus of the worldvolume theory on the D1-branes probing
a configuration of intersecting D7-branes, and match it with the equivariant localization
computation. In Sect. 7, we give the free field representation of the instanton partition
function. We conclude in Sect. 8 with some comments and a list of interesting open
questions. We have included several appendices with relevant background material.

2. Tetrahedron Instantons from String Theory

We begin our discussion by describing the realization of tetrahedron instantons from
string theory, as this is the most natural setting they can be constructed.

Let us identify the ten-dimensional spacetime R
1,9 with R

1,1 × C
4 by choosing a

complex structure on R
8. We take the coordinates on R

1,1 to be x0, x9. The set of
coordinate labels of four complex planes is denoted by

4 = {1, 2, 3, 4} , (1)

with the complex coordinate on Ca ⊂ C
4 being za = x2a−1 + ix2a . There are four

complex three-planes, C
3
A =

∏

a∈A Ca ⊂ C
4 for A ∈ 4∨, where

4∨ =
(

4
3

)

= {(123) , (124) , (134) , (234)} . (2)

For each A ∈ 4∨, we define
Ǎ = {a ∈ 4

∣

∣ a /∈ A
}

. (3)
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Fig. 1. A tetrahedron with the sets 4 and 4∨ associated with vertices and faces, respectively. Each vertex is
labeled by a ∈ 4 and represents a complex plane Ca . The edge connecting two vertices labeled by a and b
represents a complex two-plane C

2
ab = Ca × Cb . The face A = (abc) ∈ 4∨ has three vertices a, b, and c,

and represents a complex three-plane C
3
A = ∏a∈A Ca . The remaining vertex that is not in the face A ∈ 4∨

is denoted by Ǎ ∈ 4

It is beneficial to introduce a tetrahedron (see Fig. 1) to visualize the above data.
The tetrahedron instantons can be realized by k D1-branes along R

1,1 probing a
system of n A D7A-branes along R

1,1 × C
3
A for A ∈ 4∨ in type IIB superstring theory.

We summarize the configuration of D-branes in Table 1. This can also be visualized by
a tetrahedron Tn,k , where n A D7A-branes sit on the face A, and k D1-branes can move
on the surface of the tetrahedron. Here we denote

n = (n A)A∈4∨ . (4)

We denote the Chan–Paton spaces of the D1-branes and D7A-branes by vector spacesK
and NA, respectively. The presence of the D-branes breaks the ten-dimensional Lorentz
group SO (1, 9) down to SO (1, 1)09 ×

∏

a∈4 SO (2)a , where SO (1, 1)09 is the two-

dimensional Lorentz group of R
1,1, and SO (2)a rotates the plane

(

x2a−1, x2a
)

.

2.1. Condition for unbroken supersymmetry. Let QL and Q R be the superchargeswhich
originate from the left- and right-moving worldsheet degrees of freedom. They are
Majorana–Weyl spinors of the same chirality,

�c QL = QL , �c Q R = Q R, (5)

where

�c = �0�1 · · ·�9, �2
c = 1. (6)
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Table 1. Tetrahedron instantons constructed from D1-branes probing intersecting D7-branes in type IIB su-
perstring theory

Rt C1 C2 C3 C4 R⊥
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

k D1 − • • • • • • • • −
n123 D7123 − − − − − − − • • −
n124 D7124 − − − − − • • − − −
n134 D7134 − − − • • − − − − −
n234 D7234 − • • − − − − − − −
Here − indicates that the D-brane extends along that direction, and • means that the D-brane is located at a
point in that direction

A set of parallel Dp-branes along x0, xi1 , · · · , xi p , i1 < · · · < i p preserves a linear
combination εL QL + εR Q R of the supercharges with

εR = �0�i1 · · ·�i pεL . (7)

Hence, the presence of both the D1-branes and the D7A-branes imposes a constraint on
the preserved supercharges,

�AεL = εL , (8)

where �A = �2a−1�2a�2b−1�2b�2c−1�2c for A = (abc). The Eq. (8) has no nonzero
solutions, since �2

A = −1. Hence, this configuration is not supersymmetric.
We can also reach the conclusion that supersymmetry is completely broken in the ab-

sence of a B-field by inspecting the ground state energy. As reviewed in Appendix A, the
zero-point energy in the Ramond sector is always zero due toworldsheet supersymmetry,
while that in the Neveu–Schwarz sector is given by

E (0) = −1

2
+
κ

8
, (9)

where κ is the number of DN and ND directions. For the D1–D1 and D7A–D7A strings,
κ = 0 and E (0) = − 1

2 . This state is tachyonic and is killed by the GSO projection. The
physical ground state that survives the GSO projection has zero energy and therefore
is supersymmetric. For the D1–D7A strings, κ = 6 and E (0) = 1

4 , indicating that the
ground state is stable but not supersymmetric.

The condition for unbroken supersymmetry is modified in the presence of a nonzero
Neveu–Schwarz B-field [123]. We turn on a constant B-field along C

4 in the canonical
form,

B =
∑

a∈4
badx2a−1 ∧ dx2a, ba ∈ R, (10)

and define

e2π iva = 1 + iba

1− iba
, −1

2
< va <

1

2
. (11)

Then the constraint (8) is modified to be

exp

(

∑

a∈A

ϑa�
2a−1�2a

)

εL = εL , ϑa = π

(

va +
1

2

)

∈ (0, π) . (12)
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There are also conditions for unbroken supersymmetry due to the D7acd - and the D7bcd -
branes,

exp
(

ϑa�
2a−1�2a

)

εL = exp
(

ϑb�
2b−1�2b

)

εL , a �= b ∈ 4. (13)

If we label the 32 components of the ten-dimensional supercharges by the eigenvalues
(s0, s1, s2, s3, s4) of

(

�0�9,−i�1�2,−i�3�4,−i�5�6,−i�7�8
)

, (14)

with si ∈ {±1}, the preserved supercharges obey

exp (isaϑa + isbϑb + iscϑc) = 1, ∀ (abc) ∈ 4∨, (15)

exp (isaϑa − isbϑb) = 1, ∀a �= b ∈ 4, (16)

whose solutions are

ϑ1 = ϑ2 = ϑ3 = ϑ4 = 2π

3
,

s1 = s2 = s3 = s4 = ± 1, s0 = + 1. (17)

Hence, when the B-field is chosen to be

b1 = b2 = b3 = b4 = tan
π

6
= 1√

3
, (18)

or equivalently,

v1 = v2 = v3 = v4 = 1

6
, (19)

there are two preserved supercharges, which are right-moving superchargesQ+ and Q̄+
from the viewpoint of the common two-dimensional intersection R

1,1.
One should keep in mind that the condition (18) for unbroken supersymmetry is

valid for the original string theory vacuum. However, a nonzero constant B-field away
from the supersymmetric locus in (18) can introduce instability in the formof open-string
tachyons. After tachyon condensation, the systemmay roll from the original unstable and
nonsupersymmetric vacuum down to a nearby supersymmetric vacuum [104,123,130].
Indeed, this phenomenon happens and plays an essential role in our system.

2.2. Low-energy spectrum. Weare interested in the low-energy spectrumof open strings
ending on D-branes. Since the system preserves N = (0, 2) supersymmetry in two
dimensions when (18) is satisfied, it is convenient to organize fields obtained from the
quantization of open strings in terms of two-dimensional N = (0, 2) supermultiplets.
For simplicity, we assume that the B-field can at most be a small deviation from the
locus (19),

va = 1

6
+ ṽa, |ṽa | � 1. (20)

As reviewed in Appendix A, we can have Neumann (N), Dirichlet (D), and twisted (T)
boundary conditions at the two ends of the open strings.
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2.2.1. D1–D1 strings The D1–D1 strings satisfy NN boundary conditions along R
1,1

and DD boundary conditions along C
4.

In the Ramond sector, the zero-point energy vanishes. There are ten zero modes, giv-
ing rise to 32 degenerate ground states |s0, s1, s2, s3, s4〉R which form a representation of
the gamma matrix algebra in R

1,9. After the GSO projection, we keep half of the ground
states, which become eight left-moving fermions and eight right-moving fermions in two
dimensions. They transform under Spin(8) ∼= SU(2)− × SU(2)+ × SU(2)′− × SU(2)′+
as (1, 2, 1, 2)⊕ (1, 2, 2, 1)⊕ (2, 1, 1, 2)⊕ (2, 1, 2, 1).

In the Neveu–Schwarz sector, the ground state |0〉NS is unique and has zero-point
energy E (0) = − 1

2 . This tachyonic mode is eliminated by the GSO projection. The
excited states bμ− 1

2
|0〉NS have zero energy and survive the GSO projection. In the light-

cone gauge, they give rise to eight real scalar fields for μ = 1, · · · , 8. These scalar
fields describe the positions of the D1-branes in x1, · · · , x8, and transform in the vector
representation of Spin(8). We can combine them into four complex scalars Ba, a ∈ 4
and their complex conjugates.

The worldvolume theory on k coincident D1-branes is the two-dimensional N =
(8, 8) super-Yang–Mills theory with gauge group U (k), which is the dimensional re-
duction of the ten-dimensional N = 1 U (k) super-Yang–Mills theory.

2.2.2. D1–D7 strings The boundary conditions of D1–D7A strings are NN along R
1,1,

DT along C
3
A, and DD along C Ǎ.

In the Ramond sector, the zero-point energy vanishes. In the light-cone gauge, we
have two zero modes from worldsheet fermions along C Ǎ. Quantization of these zero
modes leads to a pair of massless states with sǍ = ± 1. The GSO projection kills one
of them.

In the Neveu–Schwarz sector, the ground state has zero-point energy

E (0) = 1

4
− 1

2

∑

a∈A

|va | = −1

2

∑

a∈A

ṽa . (21)

We should consider three different cases:

1. When E (0) > 0, the ground state is stable, but supersymmetry is broken.
2. When E (0) = 0, the ground state is supersymmetric. It is unique since there are no

worldsheet zero modes to be quantized. It survives the GSO projection, and gives rise
to a real scalar fieldwhich transforms as a singlet under the Spin(8) group. Combining
with the similar state of D7A–D1 strings and the fermions from the Ramond sectors,
we get a massless N = (2, 2) chiral multiplet, transforming as (k,nA) under the
U (k)× U (n A) symmetry.

3. When E (0) < 0, the ground state is tachyonic and unstable. The lowest excited states
are obtained by acting the fermionic creation operators on it. For small ṽa , all of
these excited states have positive energy, and it is reasonable to neglect them when
we study the low-energy theory.

2.2.3. D7–D7 strings The analysis of D7A–D7A strings is similar to that of D1–D1
strings, and we will get the dimensional reduction of the ten-dimensionalN = 1 U (n A)

supersymmetric Yang–Mills theory. The worldsheet bosons have position and momen-
tum zero modes along R

1,1 × C
3
A. Hence the result is the eight-dimensional U (n A)

supersymmetric Yang–Mills theory with sixteen supercharges on R
1,1 × C

3
A.
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Table 2. Field content from D1–D1 and D1–D7A open strings in terms of N = (2, 2) and N = (0, 2)
supermultiplets

Strings N = (2, 2) N = (0, 2) (U (k) ,U (n A))

D1–D1 Vector Vector Υ (Adj, 1)
Chiral Φ Ă = BĂ + · · ·

Chiral (a ∈ A) Chiral Φa = Ba + · · ·
Fermi Ψa,− = ψa,− + · · ·

D1–D7A Chiral Chiral ΦA = IA + · · · (k, nA)
Fermi ΨA,− = ψA,− + · · ·

On the other hand, the boundary conditions of D7acd–D7bcd strings are NN along
R
1,1, TD along Ca , DT along Cb, and TT along Cc and Cd . The worldsheet bosons have

position and momentum zero modes along R
1,1 × Cc × Cd .

In the Ramond sector, the zero-point energy vanishes. In the light-cone gauge, we
have four zero modes from worldsheet fermions along Cc and Cd . Quantization of
these zero modes leads to four massless states with (sc, sd) = (± 1,± 1). The GSO
projection kills two states with (sc, sd) = (+1,−1) , (−1,+1), and two states with
(sc, sd) = (+1,+1) , (−1,−1) survive.

In the Neveu–Schwarz sector, the ground state has zero-point energy
E (0) = − 1

2 (|va | + |vb|), and the lowest excited states increase the energy by |va | and
|vb|. Thus, the energy of the first four states are 1

2 (± va ± vb). The states that survive
the GSO projection have energy ± 1

2 (va − vb) = ± 1
2 (ṽa − ṽb). Combining with the

similar states of D7bcd–D7acd strings, we get two complex scalar fields, which are mass-
less when ṽa = ṽb. All the other excited states can be ignored in the low-energy theory
when |ṽa | , |ṽb| � 1.

Combining states in the Ramond sectors and those in the Neveu–Schwarz sector for
both D7acd–D7bcd strings and D7bcd–D7acd strings, we get a four-component Weyl
spinor and two complex scalar fields, which are component fields of a six-dimensional
N = (1, 0) hypermultiplet on R

1,1 × Cc × Cd . These fields transform in the bifunda-
mental representation (nacd ,nbcd) under U (nacd)× U (nbcd).

2.3. Tetrahedron instantons from the supersymmetric vacua. We are now ready to write
down the low-energy worldvolume theory on D1-branes probing a configuration of
intersecting D7-branes in the presence of a nonzero constant B-field. Our goal is to find
the stable ground state of the low-energy theory. Since the D7-branes are heavy from
the point of view of D1-branes, the degrees of freedom supported on them are frozen
to their classical expectation values. Therefore, the U (n A) symmetry from D7A-branes
will be treated as a global symmetry.

The low-energy worldvolume theory on D1-branes probing a single stack of D7A-
branes with a constant B-field was obtained in [130]. The field content is summarized
in Table 2. In addition to the standard kinetic terms, the theory has a superpotential

W = 1

6
εabcTrΦa [Φb, Φc] , A = (abc) , (22)

and a Fayet-Iliopoulos term with coupling

r =
(

∑

a∈A

va

)

− 1

2
. (23)
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We can deduce from the analysis in Sect. 2.1 that there are four preserved supercharges
specified by

sa = sb = sc = ± 1, sĂ = ± 1, s0 = ± 1, sasĂs0 = 1. (24)

The theory at the classical level has a U(1)R × U(1) Ă R-symmetry, where the U(1)R
(U(1) Ă) symmetry comes from rotations ofC

3
A andC Ă in the same (opposite) directions.

The bound states of D1–D7A-branes and those of D1–D7B-branes for A �= B share
the common U(1)R R-symmetry, but the U(1) Ă symmetry and the U(1)B̆ symmetry are
different. Accordingly, only anN = (0, 2) supersymmetry will be preserved if we have
four stacks of D7-branes. In terms of the two-dimensional N = (0, 2) superspace, the
Lagrangian of the low-energy worldvolume theory is

L =
∫

dθ+d θ̄+Tr

⎛

⎝

1

2e2
Ῡ Υ − i

2

∑

a∈4
Φ̄aD−Φa − 1

2

3
∑

i=1

Ψ̄i,−Ψi,−

⎞

⎠

− 1√
2
Tr

(

∫

dθ+
3
∑

i=1

Ψ−,i J i

∣

∣

∣

∣

∣

θ̄+=0

+ c.c.

)

+

(

ir

2

∫

dθ+ Υ |θ̄+=0 + c.c.

)

−1

2
Tr
∑

A∈4∨

(

iΦ̄AD−ΦA + Ψ̄A,−ΨA,−
)

, (25)

where

J i = 1

2
εiab4 [Φa, Φb] , Ei = [Φ4, Φi ] , E A = Φ ĂΦA. (26)

We also need to impose a consistency condition on the B-field,

v1 = v2 = v3 = v4 = 1

6
+

r

3
, (27)

so that all the fields IA have the same mass, which may be real or imaginary depending
on the sign of the parameter r . This also avoid tachyons from the quantization of the
D7–D7 open strings. Integrating out the auxiliary fields, we obtain the scalar potential
of (25),

V = Tr

⎛

⎝

∑

a∈4

[

Ba, B†
a

]

+
∑

A∈4∨
IA I †A − r · 1U(k)

⎞

⎠

2

+
∑

A∈4∨
Tr
∣

∣BĂ IA
∣

∣

2 +
∑

a<b∈4
Tr |[Ba, Bb]|2 . (28)

Since the scalar potential V ≥ 0, the ground state is always stable. The original string
theory vacuum is given by Ba = 0, IA = 0. For r < 0, this vacuum has positive
energy, and the supersymmetry is spontaneously broken. For r = 0, the original string
theory vacuum preserves supersymmetry. For r > 0, the original string theory vacuum
is not supersymmetric and does not give the global minimum of V . However, the system
restore supersymmetry after transitioning to a nearby vacuum via tachyon condensation.
Moreover, the theory has a family of classical vacua, and the classical moduli spaceMn,k
is given by the space of solutions to V = 0 modulo the gauge symmetry U (k),

Mn,k = { (B, I)| V = 0}/U(k), (29)
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where
B = (Ba)a∈4 , I = (IA)A∈4∨ . (30)

We will call Mn,k the moduli space of tetrahedron instantons in the generalized gauge
theory on

⋃

A∈4∨ C
3
A with gauge groups G|A = U (n A) and instanton number k.

3. Tetrahedron Instantons in Noncommutative Field Theory

As shown in [123], the dynamics of open strings connecting D-branes in the presence of
a strong constant B-field can be described by a noncommutative gauge theory. The non-
commutative deformation is advantageous since the position-space uncertainty smooths
out the singularities in the conventional field theory, and it allows us to treat uniformly
the worldvolume theories of D-branes of various dimensions [39]. It also provides a nat-
ural framework for the description of generalized gauge theories. In the section, we will
construct tetrahedron instantons as particular solutions of general instanton equations in
noncommutative field theory, to put it in perspective.

3.1. General instanton equations. Wedeform the ten-dimensional spaceR
1,1×C

4 to the
noncommutative spaceR

1,1×C
4
Θ , where the coordinates ofC

4
Θ satisfy the commutation

relations
[za, zb] = [z̄a, z̄b] = 0, [za, z̄b] = −2Θaδab, a, b ∈ 4, (31)

and the coordinates of R
1,1 remain commutative. The coordinates of C

4
Θ are not simul-

taneously diagonalizable. We introduce the creation and annihilation operators,

c†a =
za√
2Θa

, ca = z̄a√
2Θa

,
[

ca, c†b

]

= δab, (32)

and replace the underlying spacetime manifold by the Fock module,

H1234 = C

[

c†1, c†2, c†3, c†4

]

|0〉 =
⊕

N∈Z⊗4
≥0

C |N〉 , (33)

where |0〉 is the Fock vacuum defined by

ca |0〉 = 0, a ∈ 4, (34)

and N = (N1,N2,N3,N4). We define HS for a set S ⊂ {1, 2, 3, 4} to be the Fock
module that can be obtained from H1234 by setting Na = 0 for all a /∈ S. We denote

N =
∑

a∈4
Na . (35)

The creation and annihilation operators satisfy

ca |· · · ,Na, · · · 〉 =
√

Na |· · · ,Na − 1, · · · 〉 ,
c†a |· · · ,Na, · · · 〉 =

√

Na + 1 |· · · ,Na + 1, · · · 〉 . (36)
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The derivatives and the integrals are replaced in the noncommutative space by

∂

∂za
f → 1

2Θa
δab [z̄b, f ] , (37)

∫

∏

a∈4
dzadz̄a f →

∏

a∈4
(2πΘa)TrH1234 f. (38)

WenowfixΘa = Θ for alla ∈ 4. Following [93,109], the general instanton equations
can be written as

[Za,Zb] +
1

2
εabcd

[

Z̄c, Z̄d
] = 0, (39)

∑

a∈4

[

Za, Z̄a
] = −ζ · 1H, (40)

[�,Za] =
[

�, Z̄a
] = 0, (41)

where Za and Z̄a are the covariant coordinates of C
4
Θ ,

Za = c†a + i

√

Θ

2
(A2a−1 + iA2a) , Z̄a = ca − i

√

Θ

2
(A2a−1 − iA2a) , (42)

and � is a holomorphic coordinate of R
1,1. The constant ζ > 0 depends on the choice

of H.
The Eq. (41) are modified in the Ω-background to

[�,Za] = εaZa,
[

�, Z̄a
] = −εaZ̄a . (43)

In order to preserve the holomorphic top form 1
4εabcddza ∧ dzb ∧ dzc ∧ dzd that is

involved in (39), we should impose the constraint
∑

a∈4
εa = 0. (44)

In the following, we will give various interesting solutions to the Eqs. (39, 40, 43)
by making different choices of H.

3.2. Noncommutative instantons. The U(n) noncommutative instantons on
∏p

a=1 Ca
correspond to the choice

H = N⊗H, (45)

where N ∼= C
n , and

H = H1···p = C

[

c†1, · · · , c†p
]

|0, · · · , 0〉 =
⊕

N∈Z⊗p
≥0

C
∣

∣N1, · · · ,Np
〉

. (46)

Here p = 2, 3, 4 correspond to the noncommutativeYang–Mills instantons onC
2
12 [106],

the noncommutative instantons on C
3
123 [57], and the instantons of the magnificent four

model on C
4
1234 [19,95], respectively. They can be obtained from the supersymmetric
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bound states of D1-branes and n D (2p + 1)-branes with the B-field taken to infinity
[28,123,130]. The vacuum solution is given by

Za =
{

1N ⊗ c†a, a = 1, · · · , p
0, a = p + 1, · · · , 4 ,

� = 1N ⊗
( p
∑

a=1

εac†aca

)

− diag (a1, · · · ,an)⊗ 1H, (47)

where aα are Coulomb parameters, and we have fixed ζ = p. In the vacuum, there
is no instanton, and the gauge field A = 0. If we set εa = 0 for one direction a ∈
{p + 1, · · · , 4}, then Za is allowed to be nonzero,

Za = diag
(

μ
(a)
1 , · · · , μ(a)

n

)

⊗ 1H. (48)

For the vacuum, we have the normalized character

E∅ =
( p
∏

a=1

(

1− e−βεa
)

)

TrHe−βΦ =
n
∑

α=1

eβaα . (49)

A large class of nontrivial solutions can be produced using the solution generating
technique [51,53,70]. For simplicity, we present here only the U(1) case. We make an
almost gauge transformation of the vacuum solution,

Za =
{

U�c
†
a f�
(

∑p
a=1 c†aca

)

U†
� , a = 1, · · · , p

0, a = p + 1, · · · , 4 ,

� = U�

( p
∑

a=1

εac†aca

)

U†
� − a · 1H. (50)

Here U� is a partial isometry on H obeying

U�U†
� = 1H, U†

�U� = 1H −Π�, (51)

where Π� is a Hermitian projector onto a finite-dimensional subspace ofH,

Π� =
∑

N<�

∣

∣N1, · · · ,Np
〉 〈

N1, · · · ,Np
∣

∣ . (52)

The real function f� (N) satisfies the initial condition f� (N) = 0 forN = 0, · · · , �− 1
and the finite action condition limN→∞ f� (N) = 1, and can be found by substituting
(50) into (39, 40, 43),

f� (N) =
√

1− � (� + 1) · · · (� + p − 1)

(N + 1) (N + 2) · · · (N + p)
(1H −Π�) . (53)

Since U� fails to be unitary only in the subspace of H with N < �, (50) is a true gauge
transformation away from a region of characteristic size

√
�Θ around the origin. The

solution (50) with (53) describes localized instantons near the origin. These instantons
would sit on top of each other if they were commutative instantons, and the space of
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such configurations would have been rather singular. The noncommutative deforma-
tion precisely resolves these singularities, and the position-space uncertainty principle
(31) prevents the instantons from getting closer than the characteristic size

√
Θ . The

topological charge is given by

k = chp = (2πΘ)p

p! TrH
(

F

2π

)p

= � (� + 1) · · · (� + p − 1)

p! , (54)

which is the number of states removed by the operator U�. Of course, these solutions are
only a subset of all the solutions, and we can get more general solutions by relaxing the
condition (51) [70]. In all these solutions, U� identifies H with its subspace

HI = I
(

c†1, · · · , c†p
)

|0, · · · , 0〉 , (55)

where I
(

w1, · · · , wp
) ⊂ C

[

w1, · · · , wp
]

is an ideal in the ring of polynomials, gener-
ated by monomials, and

dimC C
[

w1, · · · , wp
] /

I = k. (56)

Any such ideal defines a partition (p = 2), a plane partition (p = 3), or a solid partition
(p = 4),

I←→ Y =
{

(

x1, · · · , x p
) ∈ Z

p
+
∣

∣

p
∏

a=1

wxa−1
a /∈ I

}

. (57)

Let us now describe in detail the case p = 3, which plays an important role in this
paper. The plane partition is customarily denoted by π , and can be formed by putting
πx,y ∈ Z≥0 boxes vertically at the position (x, y) in a plane,

π =

⎛

⎜

⎜

⎝

π1,1 π1,2 π1,3 · · ·
π2,1 π2,2 π2,3 · · ·
π3,1 π3,2 π3,3 · · ·
...

...
...

. . .

⎞

⎟

⎟

⎠

, (58)

such that πx,y ≥ πx+1,y, πx,y+1 for all x, y ≥ 1. The volume of π is denoted by |π |, and
is given by

|π | =
∑

(x,y)

πx,y . (59)

We can also view the plane partition π as the set of boxes sitting in Z
3
+,

π =
{

(x, y, z) ∈ Z
3
+

∣

∣

∣ 1 ≤ z ≤ πx,y

}

, (60)

so that there can be at most one box at (x, y, z), and a box can occupy (x, y, z) only
if there are boxes in

(

x ′, y, z
)

,
(

x, y′, z
)

,
(

x, y, z′
)

for all 1 ≤ x ′ < x , 1 ≤ y′ < y,
1 ≤ z′ < z. The volume of π is then simply the total number of boxes in π .

In general, the normalized character evaluated at the solution labeled by Y is given
by

EY =
( p
∏

a=1

(

1− e−βεa
)

)

TrHe−βΦ
∣

∣Y

= eβa −
( p
∏

a=1

(

1− e−βεa
)

)

∑

(x1,··· ,x p)∈Y
eβa−β

∑p
a=1 εa(xa−1). (61)
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Once we generalize the gauge group to U(n), we will have a collection of n (plane,
solid) partitions labeled by Y = {Y(α), α = 1, · · · , n

}

, and the normalized character
becomes

EY =
( p
∏

a=1

(

1− e−βεa
)

)

TrHe−βΦ
∣

∣Y

=
n
∑

α=1

eβaα −
( p
∏

a=1

(

1− e−βεa
)

)

n
∑

α=1

∑

(x1,··· ,x p)∈Y(α)

eβaα−β
∑p

a=1 εa(xa−1). (62)

3.3. Spiked instantons. We can generalize the noncommutative Yang–Mills instantons
on C

2
12 by taking

H =
⊕

A∈6
(NA ⊗H12) , NA

∼= C
nA , (63)

where

6 =
(

4
2

)

= {(12) , (13) , (14) , (23) , (24) , (34)} . (64)

The solutions of generalized instanton equations with (63) are called the spiked in-
stantons, which can be realized in string theory by D1-branes probing a stack of nA

(anti-)D5A-branes in the presence of a constant B-field [93,104].
The vacuum solution of spiked instantons is given by

Z1 = 1N12 ⊗ c†1 + 1N13 ⊗ c†1 + 1N14 ⊗ c†1,

Z2 = 1N12 ⊗ c†2 + 1N23 ⊗ c†1 + 1N24 ⊗ c†1,

Z3 = 1N13 ⊗ c†2 + 1N23 ⊗ c†2 + 1N34 ⊗ c†1,

Z4 = 1N14 ⊗ c†2 + 1N24 ⊗ c†2 + 1N34 ⊗ c†2,

� =
⊕

A∈6

(

1

2
εA · 1NA ⊗

(

2
∑

a=1

c†aca

)

− diag
(

aA,1, · · · ,aA,nA

)⊗ 1H12

)

. (65)

Here Za contains a piece in NA if and only if a ∈ A, and c†a are assigned to make
[Za,Zb] = 0, which are sufficient conditions for (39). We have no D1-brane in the
vacuum. The parameters εA are given in terms of the Ω-deformation parameters εa
appearing in (43) by

εA =
∑

a∈A
εa . (66)

The Coulomb parameters associated with the stack of (anti-)D5A-branes are aA,α .
We can produce nontrivial solutions of spiked instantons by substituting in (65)

1NA ⊗ c†a → ˜ZA,a, (67)

1NA ⊗
(

2
∑

a=1

c†aca

)

→ UA,�

(

2
∑

a=1

c†aca

)

U†
A,�

(68)
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where
(

˜ZA,1,˜ZA,2
)

,A ∈ 6 are solutions of noncommutative U (nA) Yang–Mills in-
stantons on C

2 with H = NA ⊗ H12 and partial isometry UA,�. Clearly, Za |NA
= 0

whenever a /∈ A. All these solutions are in one-to-one correspondence with a collection
of
∑

A∈6 nA partitions

Y =
{

Y(A,α), α = 1, · · · , nA,A ∈ 6
}

. (69)

3.4. Tetrahedron instantons. The tetrahedron instantons can be viewed as a generaliza-
tion of spiked instantons and noncommutative instantons on C

3. We take

H =
⊕

A∈4∨
(NA ⊗H123) , NA ∼= C

n A . (70)

The construction of the vacuum solution is similar to that for spiked instantons,

Z1 = 1N123 ⊗ c†1 + 1N124 ⊗ c†1 + 1N134 ⊗ c†1,

Z2 = 1N123 ⊗ c†2 + 1N124 ⊗ c†2 + 1N234 ⊗ c†1,

Z3 = 1N123 ⊗ c†3 + 1N134 ⊗ c†2 + 1N234 ⊗ c†2,

Z4 = 1N124 ⊗ c†3 + 1N134 ⊗ c†3 + 1N234 ⊗ c†3,

� =
⊕

A∈4∨

(

εA · 1NA ⊗
(

3
∑

a=1

c†aca

)

− diag
(

aA,1, · · · ,aA,n A

)⊗ 1H123

)

. (71)

We can check that (71) indeed solves theEqs. (39, 40, 41). The vacuum solution describes
that there is no D1-brane but n A D7A-branes, with the associated Coulomb parameters
given by aA,α . The parameters εA are given in terms of the Ω-deformation parameters
εa appearing in (43) by

εA =
∑

a∈A

εa . (72)

We can obtain nontrivial tetrahedron instantons by substituting in (71)

1NA ⊗ c†a → ˜ZA,a, (73)

1NA ⊗
(

3
∑

a=1

c†aca

)

→ UA,�

(

3
∑

a=1

c†aca

)

U†
A,� (74)

where
(

˜ZA,1,˜ZA,2,˜ZA,3
)

, A ∈ 4∨ are solutions of noncommutative instantons on C
3

with H = NA ⊗ H123 and partial isometry UA,�. These solutions satisfy Z Ǎ

∣

∣

NA
=

0. They describe bound states of D1-branes and n A D7A-branes in the presence of a
strong B-field. All these solutions are in one-to-one correspondence with a collection of
∑

A∈4∨ n A plane partitions

π =
{

π(A),A ∈ n
}

. (75)
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where we combined (A, α) into A, and define

n = {A = (A, α)|α = 1, · · · n A, A ∈ 4∨
}

. (76)

We can obtain the normalized characters

EA,π =
(

∏

a∈A

(

1− e−βεa
)

)

TrH123⊗NA e−βΦ
∣

∣

π

=
n A
∑

α=1

eβaA,α

−
(

∏

a∈A

(

1− e−βεa
)

) n A
∑

α=1

∑

(xa)a∈A∈π(A,α)

eβaA,α−β∑a∈A εa(xa−1). (77)

4. Moduli Space of Tetrahedron Instantons

In this section,wewill carefully analyze themoduli spaceMn,k of tetrahedron instantons.

4.1. Basic properties of the moduli space. Let B = (Ba)a∈4 and I = (IA)A∈4∨ be two
quartets of matrices,

Ba ∈ End (K) , IA ∈ Hom (NA,K) , (78)

with the vector spaces K ∼= C
k and NA ∼= C

n A , A ∈ 4∨. The moduli space Mn,k has
been derived from the string theory realization of tetrahedron instantons,

Mn,k = {(B, I)|μR − r · 1k = μC = σ = 0
}

/

U(k), (79)

where

μR =
∑

a∈4

[

Ba, B†
a

]

+
∑

A∈4∨
IA I †A, (80)

μC =
(

μC

ab = [Ba, Bb]
)

a,b∈4 , (81)

σ = (σA = BǍ IA
)

A∈4∨ , (82)

and theU(k) symmetry acts on Ba in the adjoint representation and IA in the fundamental
representation,

(Ba, IA)→
(

gBag−1, gIA

)

, g ∈ U(k). (83)

The metric on Mn,k is inherited from the flat metric on (B, I). Since the moduli space
Mn,k is invariant under the scaling transformation

Ba → κBa, IA → κ IA, r → κ2r, κ > 0, (84)

the value of r is inconsequential as long as r > 0.
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If we drop the equations σ = 0, we can combine the quartet of matrices I into a single

matrix I ∈ Hom
(

⊕

A∈4∨ NA,K
)

, and Mn,k becomes the moduli space of instantons

in the rank n magnificent four model [95,103].
Themoduli spaceMn,k admits an equivalent description using the geometric invariant

theory quotient [83],

Mn,k ∼= {(B, I)|μC = σ = 0
}stable /

GL(k,C), (85)

where the stability condition states that
∑

A=(abc)∈4∨
C [Ba, Bb, Bc] IA (NA) = K. (86)

The virtual dimension ofMn,k can be computed by subtracting the number of constraints
and gauge degrees of freedom from the total number of components of the matrices,

vdimCMn,k =
⎛

⎝4k2 +
∑

A∈4∨
n Ak

⎞

⎠−
⎛

⎝3k2 +
∑

A∈4∨
n Ak

⎞

⎠− k2 = 0. (87)

We emphasize that the vanishing virtual dimension does not mean that the space Mn,k
is empty or a set of discrete points. In fact, we will see that Mn,k generally consists of
several smooth manifolds of positive actual dimensions.

We can also substitute the equations μC = 0 with the equations ρ = 0 using the
identity

∑

1≤a<b≤4
Tr [Ba, Bb] [Ba, Bb]

† = 1

2

∑

1≤a<b≤4
Trρabρ

†
ab, (88)

where

ρab = [Ba, Bb] +
1

2
εabcd

[

B†
c , B†

d

]

. (89)

4.2. Geometric interpretation. In this subsection we discuss geometric interpretations
for the moduli space Mn,k .

Let us start with the simplest case n = (n123, 0, 0, 0), which can be realized in string
theory as the bound states of k D1-branes with n123 D7123-branes [25,57,111]. In this
case, the matrices IA and equations σA = 0 are nontrivial only for A = (123). It is useful
to review two equivalent geometric interpretations for the moduli space M(n123,0,0,0),k .

Let CP
3 = C

3 ∪ CP
2∞ be a compactification of C

3, where the homogeneous co-
ordinates on CP

3 are [z0 : z1 : z2 : z3], and CP
2∞ = [0 : z1 : z2 : z3] is the plane at

infinity. We define the canonical open embedding ι : C
3 ↪→ CP

3. The moduli space
M(n123,0,0,0),k coincides with the moduli space of (E, Φ), where E is a torsion free sheaf
on CP

3 with the Chern character

ch (E) = (n123, 0, 0,−k) , (90)

and the framing Φ is a trivialization of E on CP
2∞,

Φ : E |
CP

2∞
∼= N123 ⊗O

CP
2∞ . (91)
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There is a short exact sequence

0 → E → F → SZ → 0, (92)

where F is the coherent sheaf of sections of the trivial rank n123 holomorphic vector
bundles on CP

3 with framing on CP
2∞,

F ∼= N123 ⊗O
CP

3 , (93)

and SZ is a coherent sheaf supported on the subspace Z ⊂ C
3 = CP

3 \ CP
2∞,

SZ
∼= ι∗OZ. (94)

In our case, Z is a union of k points pi . The sheaf F is a locally free sheaf, and the
torsion free sheaf E fails to be locally free only along Z. As a result of (92), the Chern
characters are related by

ch (E) = ch (F)− ch
(

SZ

)

, (95)

with

ch (F) = (n123, 0, 0, 0) , ch
(

SZ
) =

(

0, 0, 0,
k
∑

i=1

PD [pi ]

)

. (96)

Here we denote the Poincare dual of the fundamental class [X ] associated to X by
PD [X ]. From the perspective of string theory,F and SZ correspond to the D7123-branes
and the D1-branes, respectively. Moreover, (93) is realized in noncommutative field
theory by the vacuum solution (47) with p = 3 and N = N123.

As proven in [23],M(n123,0,0,0),k is isomorphic to a Quot scheme

M(n123,0,0,0),k
∼= Quotk

C3

(

O⊕n123
)

, (97)

which parametrizes isomorphism classes of the quotients O⊕n123 � SZ such that the
Hilbert–Poincare polynomial of SZ is k [115]. When n123 = 1, this Quot scheme is
the same as the Hilbert scheme Hilbk

(

C
3
)

of k points on C
3. In noncommutative field

theory, each quotient O⊕n123 � SZ corresponds to a choice of the partial isometry U�

with the identification (55) satisfying (56).
Nowwe sketch a possible geometric interpretation forMn,k by generalizing the Quot

scheme description forM(n123,0,0,0),k . We regard the worldvolume of the D7123-branes
as the physical spacetime, andF is still a locally free sheaf given by (93). The additional
D7A-branes for A ∈ 4∨ \ {(123)} are located on the real codimension-two hyperplane
hA ⊂ C

3 defined by z Ă = 0, and produce real codimension-two defects in the physical
spacetime. Accordingly, Z becomes a union of hyperplanes and points,

Z =
⎛

⎝

⋃

A∈4∨\{(123)}
hA

⎞

⎠ ∪
(

k
⋃

i=1

pi

)

, (98)

andSZ is a complex of sheaveswhose entries areNA⊗ι∗OhA for A ∈ 4∨\{(123)}, ι∗Opi

for i = 1, · · · , k, and differentials specified by strings stretching between the D-branes.
To define the Quot scheme, we need to further specify the quotients O⊕n123 � SZ by
giving the Hilbert–Poincare polynomial P , which describes the configuration of D1-
branes and D7A-branes for A ∈ 4∨ \ {(123)}. From the classical configuration of the
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D-branes, we can write down their coordinate ring in a suitable basis. For example, if Z
arises from n124 D7124-branes and a single D1-brane, their coordinate ring is given by

C [z1, z2, z3]
/

Ih · Ip, (99)

where Ih = 〈Q (z3)〉 is an ideal generated by a degree n124 polynomial Q (z3) which
encodes the positions of D7124-branes in C3, and Ip = 〈z1 − ξ1, z2 − ξ2, z3 − ξ3〉 is an
ideal which encodes the location (ξ1, ξ2, ξ3) of D1-branes in C

3
123. From the coordinate

ring, we can calculate the Hilbert–Poincare polynomial P (t; n124), which is a formal
power series of t and depends on n124. In general, the Hilbert–Poincare polynomial
P (t; n124, n134, n234, k) will depend on n A for A ∈ 4∨ \ {(123)} and k. We can also
read off the Chern character from P .

Since Mn,k is symmetric under the permutation of n, it is natural to expect the
isomorphisms such as

QuotP(t;n124,n134,n234,k)
C3

(

O⊕n123
) ∼= QuotP(t;n123,n134,n234,k)

C3

(

O⊕n124
)

. (100)

We can interpret such isomorphisms as four possible projections of tetrahedron instan-
tons to the faces of the tetrahedron (see Fig. 1), and each shadow contains the same
information.

Furthermore, the geometric interpretation for Mn,k as the Quot scheme leads to a
natural forgetful projection,

� :Mn,k →
⋃

k′≤k

M(n123,0,0,0),k′ , (101)

where we drop all the information of D7A-branes for A ∈ 4∨ \ {(123)} in the Hilbert–
Poincare polynomial.

It is rather difficult to give a geometric interpretation for Mn,k if we want to keep
the permutation symmetry of n manifest. Here we propose a possible approach, leaving
the mathematical rigor for future work. Instead of considering four stacks of D7A-
branes on different C

3
A, we imagine that they would be unified into a single D7-brane

which wraps a complicated hyperplane in C
4. We compactify C

4 into the projective
space CP

4 = C
4 ∪CP

3∞ with homogeneous coordinates [z0 : z1 : z2 : z3 : z4], and the
hyperplane at infinity is CP

3∞ = [0 : z1 : z2 : z3 : z4]. We also define CP
3
A ⊂ CP

4 and
CP

2∞,A ⊂ CP
3∞ by z Ǎ = 0 for each A ∈ 4∨, respectively. The hyperplane becomes an

algebraic variety,

Xξ =
⎧

⎨

⎩

[z0 : z1 : z2 : z3 : z4] ∈ CP
4

∣

∣

∣

∣

∣

∣

⎛

⎝

∏

A∈4∨
zn A

Ǎ

⎞

⎠ = ξ z
∑

A∈4∨ n A

0

⎫

⎬

⎭

, (102)

where we introduced a small deformation parameter ξ in order to make Xξ a smooth
manifold, and we will finally take ξ to zero. We also introduce a noncompact space X̊ξ ,
which is obtained from Xξ by removing all points on CP

3∞. Then we can take F to be
a rank one locally free sheaf on Xξ ,

F ∼= OXξ , (103)

and the sheaf SZ is
SZ

∼= ι∗OZ, (104)
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where the support Z ⊂ Xξ \ CP
3∞ is a union of k points pi , and ι : X̊ξ ↪→ Xξ is the

natural embedding. We expect that the moduli space Mn,k coincides with the ξ → 0

limit of the Hilbert scheme Hilbk
(

X̊ξ

)

of k points on X̊ξ . Equivalently, Mn,k should

also be identical to the ξ → 0 limit of the moduli space of framed rank one torsion free
sheaves E on Xξ with the framing

Φ : E |Xξ∩CP3∞
∼= OXξ∩CP3∞ . (105)

There are particularly interesting points on the moduli spaceMn,k such that the framed
torsion free sheaf (E, Φ) admits an isomorphism,

(E, Φ) ∼=
⊕

A=(A,α)∈n

(IA, ΦA) , (106)

where IA,α is a rank one torsion free sheaf supported on CP
3
A with the framing ΦA,α :

IA,α
∣

∣

CP
2
A,∞

∼= O
CP

2
A,∞

. The tetrahedron instantons corresponding to such decomposi-

tions are given in noncommutative field theory in Sect. 3.4.

4.3. One-instanton examples. In order to gain a better understanding of Mn,k , we will
work out explicitly the one-instanton moduli spaces step by step. When k = 1, the
matrix Ba is simply a complex number, and IA =

(

IA,1, · · · , IA,n A

)

is a 1× n A matrix
if n A ≥ 1. The equationsμC = 0 are satisfied automatically, sowe only need to consider

∑

A∈4∨
IA I †A = 1, (107)

BǍ IA = 0, (108)

wherewe set r = 1 using the scaling invariance (84).Meanwhile, the groupU(k) = U(1)
acts trivially on Ba and gives an equivalence relation IA ∼ eiθ IA.

4.3.1. Instanton on C
3 We start with the rank n instanton on C

3
123 corresponding to

n = (n123 = n, 0, 0, 0) [25,111]. There is only one IA, namely I(123), and the equation
(107) becomes

n
∑

α=1

∣

∣I123,α
∣

∣

2 = 1. (109)

After modding out the U(1) phase, we obtain from I(123) a complex projective space
CP

n−1. Meanwhile, we get B4 = 0 from (108), and B1, B2, B3 are three unconstrained
complex numbers. Therefore, the one-instanton moduli space of the rank n instanton on
C
3
123 is given by

M(n,0,0,0),1 ∼= C
3 × CP

n−1. (110)

Here the factor C
3 stands for the center of the instanton, and the factor CP

n−1 stands
for the size and the gauge orientation of the instanton.
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4.3.2. Generalized folded instanton We go one step further by allowing n to have two
nonzero elements,

n = (n123 = n, n124 = n′, 0, 0
)

, (111)

which can be viewed as a generalization of the folded instantons [93]. In this case, the
nonzero IA are I123 and I124. B1, B2 are unconstrained complex numbers. When B3 and
B4 are both nonzero, we know from (108) that I123 = I124 = 0, which contradicts (107).
When B4 = 0 and B3 �= 0, I124 = 0 and I123 satisfies (109). Modding out the U(1)
phase, we get a CP

n−1 from I123. Similarly, by exchanging 3 ↔ 4, we get a CP
n′−1

from I124. When B3 = B4 = 0, we have

n
∑

α=1

∣

∣I123,α
∣

∣

2 +
n′
∑

α=1

∣

∣I124,α
∣

∣

2 = 1, (112)

which gives a CP
n+n′−1 after modding out the U(1) phase. Therefore, the moduli space

M(n,n′,0,0),1 consists of three smooth manifolds with different actual dimensions for
generic n and n′,

M(n,n′,0,0),1 ∼= C
2 × C

∗ × CP
n−1
⋃

C
2 × C

∗ × CP
n′−1

⋃

C
2 × CP

n+n′−1. (113)

The first and the second components of M(n,n′,0,0),1 correspond to the instanton being
only on C

3
123 and C

3
124, respectively. The factor C

2 ×C
∗ parametrizes the center of the

instanton, while CP
n−1 or CP

n′−1 parametrizes the size and the gauge orientation of the
instanton. The last component ofM(n,n′,0,0),1 corresponds to the instanton being on the
intersection C

2
12 = C

3
123 ∩ C

3
124, and the center of the instanton gives the factor C

2.
Recall that the moduli space of vortices with charge k in the U

(

n + n′
)

gauge theory
is given by the symplectic quotient [52]

Vn+n′,k ∼=
{

(B,I)
∣

∣

∣

[

B,B†
]

+ II† = rv · 1k

}

/

U(k), rv > 0, (114)

where B ∈ End
(

C
k
)

, I ∈ Hom
(

C
n+n′ ,Ck

)

, and the U(k) action is

(B,I)→
(

gBg−1, gI
)

, g ∈ U(k). (115)

We introduce the following actions on Vn+n′,k ,

T1 : (B,I)→ (qB,I) , q ∈ C
∗ (116)

T2 : (B,I)→
(

B,Ih−1
)

, h = diag

⎛

⎜

⎝

n
︷ ︸︸ ︷

1, · · · , 1,
n′

︷ ︸︸ ︷

−1, · · · ,−1

⎞

⎟

⎠
. (117)

Now we focus on the simple case k = 1. The fixed points of Vn+n′,1 under the T1 action
satisfy

B = 0, II† = rv · 1k, (118)

and therefore the T1-fixed points of Vn+n′,1 form a manifold

VT1
n+n′,1

∼= CP
n+n′−1. (119)
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On the other hand, if we write

I =
(

In 0
0 In′

)

, (120)

then the fixed points of Vn+n′,k under the T2 action satisfy

{

InI
†
n = rv · 1k,In′ = 0

}

or
{

In′I
†
n′ = rv · 1k,In = 0

}

, (121)

and consequently the T2-fixed points of Vn+n′,1 are given by

VT2
n+n′,1

∼= C×
(

CP
n−1 ∪ CP

n′−1
)

. (122)

It is interesting that the moduli space M(n,n′,0,0),1 can be rewritten as

M(n,n′,0,0),1 ∼= C
2 ×

(

VT1
n+n′,1 ∪ VT2

n+n′,1

)

, (123)

which is manifestly symmetric between n and n′. Here we used the fact that

VT1
n+n′,1 ∩ VT2

n+n′,1
∼= {0} ×

(

CP
n−1 ∪ CP

n′−1
)

. (124)

It is straightforward to generalize this relation between M(n,n′,0,0),k and Vn+n′,k to any
positive integer k.

4.3.3. Generic tetrahedron instanton Now it is clear how to obtain the one-instanton
moduli spaceMn,1 for generic n. The Eqs. (107) and (108) have no solutionswhen all Ba
are nonzero. When there are r nonzero BǍ with r = 3, 2, 1, 0, the Eq. (108) require the
corresponding r of IA to be zero, and the remaining (4−r) of IA are constrained by (107),
producing a complex projective space after modding out the U(1) phase. Combining all
the possibilities, we get

Mn,1 ∼=
⎡

⎣

⋃

A∈4∨

(

C
∗)3 × CP

n A−1

⎤

⎦ ∪
⎡

⎣

⋃

A �=B∈4∨

(

C
∗)2 × CP

n A,B−1

⎤

⎦ ∪

∪
⎡

⎣

⋃

A �=B �=C∈4∨
C
∗ × CP

n A,B,C−1

⎤

⎦ ∪
[

CP
n4∨−1

]

, (125)

where

nS =
∑

A∈S

n A, S ⊂ 4∨. (126)

We see that Mn,1 for generic n consists of 24 − 1 = 15 smooth manifolds of different
actual dimensions. The interpretation of each component of Mn,1 is a straightforward
generalization of that of M(n,n′,0,0),1.
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4.4. Symmetries of the moduli space. In the definition of the moduli space Mn,k , we
have the freedom to pick the basis for the vector space NA. This induces a U (n A)

symmetry, which acts on IA in the anti-fundamental representation and acts trivially on
other operators,

Ba → Ba, IB → δA,B IBh−1, h ∈ U (n A) . (127)

We parametrize the Cartan subalgebra of the Lie algebra of U (n A) by

aA = diag
(

aA,1, · · · ,aA,n A

)

. (128)

Since the common center U(1)c of
∏

A∈4∨ U (n A) is contained in U(k), it is the group

PU (n) =
∏

A∈4∨ U (n A)

U(1)c
(129)

that acts nontrivially on Mn,k . Accordingly, the parameters aA,α are defined up to the
simultaneous shift aA,α → aA,α + ξ , where ξ is a constant number. Sometimes it is
useful to separate the U (n A) into the U(1) part and the SU (n A) part, and their respective
Cartan subalgebras are parametrized by

āA = 1

n A

n A
∑

α=1

aA,α, ãA,α = aA,α − āA. (130)

In addition, Mn,k has an SU(4) symmetry which acts on (B, I) as

Ba → Uab Bb, IA → IA, U ∈ SU(4). (131)

This SU(4) symmetry is induced from the rotation symmetry of C
4 that leaves the

holomorphic top form invariant.We parametrize the Cartan subalgebra of the Lie algebra
of SU(4) by

ε = diag (ε1, ε2, ε3, ε4) ,
∑

a∈4
εa = 0. (132)

For any S ⊂ 4, we define

εS =
∑

a∈S

εa . (133)

In total, the symmetry group ofMn,k is PU (n)×SU(4). If we adopt the holomorphic
description (85), the symmetry group gets complexified, and its maximal torus is

T = Ta × Tε = GL(1,C)n4∨−1 × GL(1,C)3. (134)

We denote

a = {aA,A ∈ n
}

, ε = {εa, a ∈ 4
}

, (135)

and

t = {tA = eβaA ,A ∈ n
}

, q = {qa = eβεa , a ∈ 4
}

. (136)
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5. Instanton Partition Function from Equivariant Localization

In this section, we will compute the instanton partition function using equivariant local-
ization theorem.

5.1. Fixed points. Generalizing the arguments of [88,110], we can find the setMT
n,k of

all T-fixed points of Mn,k . It is convenient to work with the holomorphic description
(85). We also assume that all the parameters a, ε take generic values. The nongeneric
case is more complicated but can still be handled following [93].

Wechoose suitable bases forNA, A ∈ 4∨ so that theydecompose into one-dimensional
vector spaces,

NA =
n A
⊕

α=1

NA,α, (137)

with NA,α being the eigenspace of Ta action with eigenvalue tA,α . If (B, I) is a T-fixed
point, it must be invariant under the combination of an arbitrary T-transformation and a
related GL(k,C) gauge transformation,

Ba = qagBag−1, a ∈ 4,

IA,α = gIA,αt−1
A,α, A ∈ 4∨. (138)

Hence g (t,q) = eβφ ∈ GL(k,C) defines a representation T → GL(k,C). Since
every irreducible complex representation of an abelian group is one-dimensional, we
can decompose K into the orthogonal direct sum

K =
⊕

A∈4∨
KA =

⊕

A∈n

KA,α, (139)

where KA,α is the eigenspace of Ta action with eigenvalue tA,α , and can be further
decomposed into a direct sum of eigenspaces of Tε. From (138), we have

gBx−1
a B y−1

b Bz−1
c IA

(

NA,α
)

= q1−x
a q1−y

b q1−z
c tA,αBx−1

a B y−1
b Bz−1

c IA
(

NA,α
)

, x, y, z ≥ 1. (140)

Thus, Bx−1
a B y−1

b Bz−1
c IA

(

NA,α
)

is an eigenspaceofTwith eigenvalueq1−x
a q1−y

b q1−z
c tA,α .

Due to the stability condition, we must have

KA=(abc),α =
⊕

(x,y,z)∈π(A,α)

Bx−1
a B y−1

b Bz−1
c IA

(

NA,α
)

, (141)

where the set π(A,α) ⊂ Z
3
+ contains kA,α = dimKA,α elements. It has been shown

explicitly in [25] that all possible π(A,α) are in one-to-one correspondence with plane
partitions. Hence, each T-fixed points of Mn,k is labeled by a collection of plane parti-
tions

π =
{

π(A),A ∈ n
}

, (142)

such that the total volume of π is k,

k = |π| =
∑

A∈n

∣

∣

∣π
(A)
∣

∣

∣ . (143)
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From the point of view of noncommutative field theory, each T-fixed point is given by a
tetrahedron instanton sitting near the origin of the spacetime whose solution is labeled
with π. On the other hand, in the geometric language, each T-fixed point corresponds
to a decomposition

⊕

A=(A,α)∈n (IA, ΦA), where IA is an Tε-invariant ideal sheaf

supported on the Tε-fixed zero-dimensional subscheme contained in C
3
A = CP

3
A \

CP
2
A,∞, and the framing ΦA,α : IA,α

∣

∣

CP
2
A,∞

∼= O
CP

2
A,∞

.

5.2. Tangent space. Now let us look at the holomorphic tangent space TπMn,k , where
π labels a fixed point (B, I) ∈ MT

n,k . If (B + b, I + i) ∈ Mn,k is a nearby point, then

(b, i) should obey the linearization of the equations μC = σ = 0,

d2 (b, i) ≡
(

[ba, Bb] + [Ba, bb] , bǍ IA + BǍi A
) = 0, (144)

up to an infinitesimal GL(k,C)-transformation,

(ba, i A) ∼ (ba, i A) + d1 (φ) , d1 (φ) ≡ ([φ, Ba] , φ IA) , φ ∈ gl(k,C). (145)

We have the following deformation complex,

0 → End (Kπ)
d1−→
(

End (Kπ)⊗ C
4
)

⊕
⎛

⎝

⊕

A∈4∨
Hom (NA,Kπ)

⎞

⎠

d2−→
(

End (Kπ)⊗∧2,+
C
4
)

⊕
⎛

⎝

⊕

A∈4∨
Hom (NA,Kπ)⊗∧3

C
3
A

⎞

⎠→ 0, (146)

whose middle cohomology group is isomorphic to the tangent space TπMn,k . We can
compute the T-equivariant Chern character of TπMn,k ,

χπ = ChT
(

TπMn,k
)

= −K ∗
πKπ + K ∗

πKπChT
(

C
4
)

+ N∗
A Kπ

−K ∗
πKπChT

(

∧2,+
C
4
)

−
∑

A∈4∨
N∗

A KπChT
(

∧3
C
3
A

)

= −K ∗
πKπL +

∑

A∈4∨
N∗

A Kπ

(

1− q−1
A

)

, (147)
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where
(

eβw
)∗ = e−βw, and

NA = ChT (NA) =
n A
∑

α=1

tA,α, (148)

Kπ = ChT (Kπ) =
k
∑

i=1

eβφ
∣

∣

∣

∣

∣

π

=
∑

A=(a,b,c)∈4∨

n A
∑

α=1

tA,α

∑

(x,y,z)∈π(A,α)

q1−x
a q1−y

b q1−z
c , (149)

L = 1− ChT
(

C
4
)

+ ChT
(

∧2,+
C
4
)

= 1−
∑

a∈4
q−1

a + q−1
1 q−1

2 + q−1
1 q−1

3 + q−1
2 q−1

3 . (150)

Notice that the normalized character (77) computed in noncommutative field theory can
be related to NA and Kπ by

EA,π = NA −
(

∏

a∈A

(

1− q−1
a

)

)

Kπ|A . (151)

5.3. Equivariant integrals. The T-equivariant symplectic volume of Mn,k is defined
as the integral of the T-equivariant cohomology class 1 ∈ H∗

T

(

Mn,k
)

over the virtual
fundamental cycle [13,73] of Mn,k ,

Zk (a; ε) =
∫

[Mn,k]vir
1, (152)

where (a, ε) are generators of H∗
T (pt). Since Mn,k is noncompact and is a union of

manifolds of different actual dimensions, we should apply the Atiyah–Bott equivari-
ant localization theorem [7] in the virtual approach [50] to evaluate the T-equivariant
integral,

Zk (a; ε) =
∑

π,|π|=k

1

eT
(

TπMn,k
) =

∑

π,|π|=k

E {−χπ} , (153)

where eT
(

TπMn,k
)

is the T-equivariant Euler class of the tangent space of Mn,k at π,
and the operator E converts additive Chern characters to multiplicative classes,

E

{

∑

i

mi e
βwi

}

=
∏′

i
w

mi
i , (154)

where the wi = 0 term should be excluded in the product. The instanton partition
function is the generating function of Zk (a, ε),

Z (a; ε;q) =
∞
∑

k=0

qkZk (a; ε) =
∑

π

q|π|E {−χπ} , (155)
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where q is the instanton counting parameter. Notice that χπ is not invariant under the
permutations of qa . However, we have

L + L∗ =
∏

a∈4

(

1− q−1
a

)

. (156)

Therefore, E {−χπ} is invariant under the permutations of qa , up to an overall ± sign
that depends on the ordering in a ∈ 4. The orientation problem also appeared in the
study of magnificent four model [95,103].

We can obtain the K-theoretic and elliptic versions of the instanton partition function
by replacing the integrand in (152) from 1 to the arithmetic genus Âβ

(

Mn,k
)

and the
elliptic genus ϕell

(

Mn,k
)

, respectively [12,74]. Correspondingly, the definition of the
operator E becomes

E

{

∑

i

mi e
βwi

}

=
⎧

⎨

⎩

∏′
i

(

1− eβwi
)mi

, K − theoretical
∏′

i
θ1 (wi | τ)mi , elliptic

. (157)

In fact, the result (155) suggests a more refined version of the instanton partition
function with four independent instanton counting parameters qA for A ∈ 4∨,

Z ref (a; ε;q) =
∑

π

∏

A∈4∨
q
∣

∣π(A)
∣

∣

A E {−χπ} , (158)

where q = {qA, A ∈ 4∨
}

and
∣

∣π(A)
∣

∣ =∑n A
α=1

∣

∣π(A,α)
∣

∣.

6. Instanton Partition Function from Elliptic Genus

In this section, we will compute the instanton partition function from the elliptic genus
of the low-energy worldvolume theory on D1-branes, where all the heavy stringy modes
are decoupled.

6.1. Definition via elliptic genus. We have shown that the low-energy worldvolume
theory on D1-branes probing a system of intersecting D7-branes is a two-dimensional
N = (0, 2) supersymmetric gauge theory, with two supercharges Q+ and Q̄+. This
theory has a U(1)4 global symmetry induced from

∏

a∈4 SO (2)a rotating C
4. The cor-

responding bosonic generators Ja commute with each other, but do not commute with
Q+ and Q̄+,

[Ja, Q+] = −Q+,
[

Ja, Q̄+
] = Q̄+. (159)

We can choose three linearly independent combinations of Ja , for instance

(J1 − J4,J2 − J4,J3 − J4) , (160)

which commute with Q+ and Q̄+. They generate a group U(1)3 ⊂ U(1)4, and can be
identified with Tε.
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The elliptic genus of the two-dimensional worldvolume theory on k D1-branes prob-
ing intersecting D7-branes is defined to be

Zk (τ ;a; ε1, ε2, ε3)

= TrHk

⎡

⎣(−1)F q HL q̄ HR

3
∏

a=1

e2π iεa(Ja−J4)
∏

A∈n

e2π iaATA

⎤

⎦ , (161)

where the trace is taken in the RR sector of the Hilbert space Hk of the worldvol-
ume theory, HL and HR are the left- and right-moving Hamiltonians respectively, and
TA=(A,α), α = 1, · · · , n A are the Cartan generators of the symmetry group U (n A). The
parameter

q = e2π iτ (162)

specifies the complex structure τ of a torus. The fugacities (ε1, ε2, ε3) and aA=(A,α) are
associated with U(1)3 and U (n A), respectively. We can introduce ε4 = −ε1 − ε2 − ε3
to make the expression more symmetric,

Zk (τ ;a; ε) = TrHk

⎡

⎣(−1)F q HL q̄ HR
∏

a∈4
e2π iεaJa

∏

A∈n

e2π iaATA

⎤

⎦

∑

a∈4 εa=0

. (163)

It is clear that εa, a ∈ 4 can be identified with the standard Ω-deformation parameters
[110]. The instanton partition function is then the grand canonical partition function of
the elliptic genus,

Z inst (τ ;a; ε;q) = 1 +
∞
∑

k=1

qk Zk (τ ;a; ε) . (164)

The elliptic genus can be calculated using the supersymmetric localization tech-
niques, and is given by contour integrals [17],

Zk = 1

k!
∫ k
∏

i=1

dφi

⎛

⎝Z1−1
k

∏

A∈4∨
Z1−7A

k

⎞

⎠ , (165)

where k! is the order of the Weyl group of U(k). The contributions from the D1–D1
strings and D1–D7A strings are [15]

Z1−1
k =

[

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

]k

×
k
∏

i, j=1
i �= j

θ
(

φi j
)∏

1≤a<b≤3 θ
(

φi j + εab
)

∏

a∈4 θ
(

φi j + εa
) , (166)

Z1−7A
k =

k
∏

i=1

n A
∏

α=1

θ
(

φi − aA,α − εA
)

θ
(

φi − aA,α
) , (167)
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where φi j = φi − φ j , and we use the abbreviation1

θ (z) ≡ θ1 ( z| τ) . (168)

We emphasize that the detailed description of Mn,k is not used in the computation. We
only need to know the supermultiplets that appear in the worldvolume theory, as well as
their charges under the symmetry group T.

We see that Z inst is invariant under an overall shift,

φi → φi − ξ, aA,α → aA,α + ξ. (169)

This confirms the claim that the center U(1)c of
∏

A∈4∨ U (n A) acts trivially, and the
final result of the partition function should not dependent on the overall shift of aA,α .

The integral in (165) make sense only when the integrand is invariant under the large
gauge transformations φi → φi + r + sτ for r, s ∈ Z [15,17]. From the transformation
property of the Jacobi theta function θ1 ( z| τ) under shifts of z,

θ1 ( z + r + sτ | τ) = (−1)r+s exp
(

−π is2τ − 2π isz
)

θ1 ( z| τ) , r, s ∈ Z, (170)

we obtain that

Zk →
⎛

⎝

∏

A∈4∨

k
∏

i=1

n A
∏

α=1

e2π isεA

⎞

⎠ Zk . (171)

To get rid of the extra phase factor for all k ∈ Z
+, we should impose the consistency

condition
∑

A∈4∨
n AεA ∈ Z, (172)

which generalizes the similar condition obtained in [15].

6.2. k = 1. When k = 1, the elliptic genus is given by

Z1 =
[

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

]

∫

dφ
∏

A∈n

θ (φ − aA − εA)
θ (φ − aA)

. (173)

It is straightforward to evaluate this integral explicitly. The set of poles in the integrand
are

M
sing∗ = {φ|φ − aA = 0 mod Z + τZ} . (174)

We should take all of them and the result is given by

Z1 =
[

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

]

∑

φ∗∈Msing

∮

φ∗
dφ
∏

A∈n

θ (φ − aA − εA)
θ (φ − aA)

=
∑

A=(A,α)∈n

⎡

⎣

∏

a<b∈A θ (εab)
∏

a∈A θ (εa)

∏

B∈n\{A}

θ (aA − aB − εB)
θ (aA − aB)

⎤

⎦ , (175)

where we have used
∑

a∈4 εa = 0. Due to the product over a < b ∈ A, the result
depends on the ordering of a ∈ 4.

1 Hopefully, this does not create any confusion. Especially, this is different from the notation θi (τ ) ≡
θi (0| τ) that often appears in the literature.
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6.3. General k. Now we proceed with general k. As shown in [17], we should apply the
JK residue formula [58] to evaluate the contour integrals in (165).

6.3.1. Classification of potential poles in terms of trees We first classify all the poten-
tial poles in the integrand that can have nonzero JK-residues, temporarily ignoring the
numerator.

The denominator of the integral (165) becomes zero along the hyperplanes

HA,i j,a =
{

φi − φ j = −εa
}

, (176)

HF,i,A = {φi = aA} , (177)

where the identifications up to Z + τZ are understood. We introduce the standard basis
{ei }i=1,··· ,k of R

k ,

ei =
(

0, · · · , 0, i
1, 0, · · · , k

0

)

. (178)

The charge vectors associated with (176) and (177) are hA,i j = ei − e j and hF,i = ei ,
respectively.

A singularity is called nondegenerate if exactly k linearly independent hyperplanes
intersect at the point, and is called degenerate if the total number of hyperplanes through
the point is greater than k. A practical way to deal with the degenerate singularities
is to blowup them into nondegenerate ones by introducing small generic nonphysical
fugacities to deform the hyperplane arrangement. In the end of the computation, we
remove the deformation by sending the nonphysical fugacities to zero in a continuous
way. In the following, we will only consider the situation where all singularities are
nondegenerate.

We denote the charge vectors of the k hyperplanes by

Q =
⎛

⎜

⎝

Q1
...

Qk

⎞

⎟

⎠
, QI ∈ {hA,hF } . (179)

The JK-residue can be nonzero only if η ∈ Cone (Q), i.e.,

k
∑

I=1

λIQI = η, λI > 0. (180)

In our problem, the result will depend on η, and we should take the standard choice2

η =
k
∑

i=1

ei = (1, 1, · · · , 1) . (181)

Since charge vectors of type hA only generate at most a (k−1)-dimensional subspace of
R

k ,Qmust contain M ≥ 1 charge vectors of type hF , which are taken to be e1, · · · , eM
using Weyl permutations. We will show that it is possible to divide Q into M subsets in

2 One could take other choices of η if one includes a P field as in [15].
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such a way that each subset contains exactly one charge vector of type hF . Let us start
with e1. If Q j1 = e1 − e j1 is also in Q, the condition (180) gives

(

λ1 + λ j1

)

e1 +
∑

I �=1, j1

λIQI = λ j1e j1 +
k
∑

i=1

ei . (182)

Since the coefficient of e j1 on the right-hand side is positive, Q must contain e j1 − e j2
for at least one j2. Notice that e j1 cannot be in Q, since it is not linearly independent
with e1 and e1 − e j1 that are already in Q. Then the same argument for e j2 leads to the
requirement thatQmust contain e j2−e j3 for at least one j3 �= 1, j1. Since there are only
a finite number of elements inQ, this procedure cannot be carried on forever, and finally
it is impossible to match the coefficient of one ei . Therefore, e1 − e j is not allowed to
be in Q.

On the contrary, Q can contain one or more charge vectors e
j (μ)1

− e1, which are

labeled by μ = 1, · · · , and we require j (μ)1 > M in order to avoid linearly dependent
combinations of charge vectors. We can draw an oriented rooted tree. The root vertex is
labeled by e1. For each e

j (μ)1
− e1 ∈ Q, we put an arrow from e1 to the vertex e

j (μ)1
. We

can go on and add e
j (ν)2

− e
j (μ)1

in Q, with j (ν)2 being different from 1, · · · , M and j (μ)1

so that there are no linear relations among selected charge vectors. The tree grows by
adding the vertices e

j (ν)2
and arrows from e

j (μ)1
to e

j (ν)2
. We can repeat this construction

until no charge vectors can be further added in this way, ending up with an oriented
rooted tree with root e1 and arrows corresponding to charge vectors of type hA,i j , i > j .
The linearly independent condition ensures that there can be no cycles. Subsequently,
we can proceed with e2, and produce a similar oriented rooted tree. The trees with root
e1 and e2 must be disconnected, otherwise there will be linear relations among charge
vectors. After performing this construction for all e1, · · · , eM , we divide all the charge
vectors in Q into a disjoint union of M oriented rooted trees, with k vertices in total.

It is convenient to perform aWeyl permutation of φi so thatQ form a block diagonal
matrix,

Q = diag
(

Q(1), · · · ,Q(M)
)

, (183)

where the block Q(m) is a square matrix of order km ,

Q(m) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 · · · 0
−1 1 0 0 · · · 0
∗ ∗ 1 0 · · · 0
∗ ∗ ∗ 1 · · · 0
...

...
...
...
. . .

...

∗ ∗ ∗ ∗ · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, m = 1, . . . , M,

M
∑

m=1

km = k. (184)

The first row in Q(m) corresponds to the root of the m-th tree, and the remaining rows
correspond to the other vertices of the m-th tree. Each ∗ can be either 0 or−1, and there
is exactly one −1 in each row containing ∗. We relabel the poles φi by

φm,l ≡ φl+
∑m−1

j=1 k j
, l = 1, . . . , km . (185)
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The positions of poles are solutions to the equations

Q(m)

⎛

⎜

⎝

φm,1
...

φm,km

⎞

⎟

⎠
=
⎛

⎜

⎝

γm,1
...

γm,km

⎞

⎟

⎠
, (186)

where

γm,l ∈
{

{

aA,A ∈ n
}

, l = 1
{−εa, a ∈ 4

}

, l > 1
. (187)

In particular, we can have an injective map

� : {1, · · · , M} → n, (188)

and the pole corresponding to the root of the m-th tree is

φm,1 = a�(m). (189)

We can decorate the trees associated with Q into trees describing potential poles that
can have nonvanishing JK-residues by assigning �(m) to the root of the m-th tree, and
painting each arrow by the a-th color if the pole associated with the target vertex differs
from the pole associated with the source vertex by −εa .

6.3.2. Classification of genuine poles in terms of colored plane partitions There is an
important flaw in the above classificationof poles that cangive nonvanishing JK-residues,
because the denominator can have extra zeros from linearly dependent hyperplanes, and
the zeros in the numerator will cancel some zeros in the denominator. We define the
genuine poles to be the poles that indeed give nonvanishing JK-residues. These genuine
poles must be contained in the set of potential poles found above.

We claim that the genuine poles φm,l are completely classified by a collection of
colored plane partitions,

π =
{

π(A),A ∈ n
}

, (190)

where each π(A) is restricted to be a plane partition, and we allow some of π(A) to be
empty. If there are M non-empty plane partitions in π, then we can introduce a bijective
map

� : {1, · · · , M} →
{

A ∈ n
∣

∣π(A) �= ∅
}

, (191)

and the poles labeled by π are at

φm,s = aA + (1− x)εa + (1− y)εb + (1− z)εc, (192)

where �(m) = A = (abc, α) and s = (x, y, z) ∈ π(A). This claim can be proved by
induction on k as follows.

For k = 1, all the allowed poles are at
{

aA,A ∈ n
}

. For each given pole, there is only
one nonempty plane partition in π, and is given by {(1, 1, 1)} ∈ Z

3
+. We have shown that

they give nonvanishing contributions to Z1. Hence, the claim holds for the base case.
We assume that the claim is true for k − 1 and examine it for k. If all the blocks of

Q are one dimensional, then the poles are at

φi = a�(i), (193)
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with the map � : {1, · · · , k} → {

A ∈ n
∣

∣π(A) �= ∅}. There are k nonempty plane
partitions in π, with each one being {(1, 1, 1)} ∈ Z

3
+. All of them will give nonzero

contributions to the JK-residue, and the claim holds.
We then consider the case whenQ is that it contains at least one charge vector of type

hA,i j , i > j . Up to Weyl permutations, we can always arrange the k hyperplanes so that
the charge vectors of the first (k − 1) hyperplanes only contain e1, · · · , ek−1, and the
charge vector of the last hyperplane Hk isQk = ek −eJ with a fixed J . From the picture
of trees, Hk is associated with the arrow from eJ to ek and ek is not the source of any
other arrow. In other words, ek corresponds to an end of a tree with multiple vertices.
The integrand which contains φ1, · · · , φk−1 but not φk is precisely the integrand for
the instanton number k − 1. The poles φ1, · · · , φk can contribute to the JK-residue if
∑k

I=1 λIQI = η with λI > 0, which leads to

k−1
∑

I=1

λIQI =
(

k
∑

i=1

ei

)

− λk (ek − eJ ) . (194)

Because the left-hand side does not contain ek , we need λk = 1 and

k−1
∑

I=1

λIQI =
(

k−1
∑

i=1

ei

)

+ eJ . (195)

Since the right-hand side is in the same chamber as
(

∑k−1
i=1 ei

)

, we know that the poles

φ1, · · · , φk−1 must also contribute to the JK-residue. Therefore, the genuine poles for
φ1, · · · , φk can be obtained by first giving the genuine poles for φ1, · · · , φk−1, and
then determining the proper position of the pole φk by choosing Hk . By the induction
hypothesis, the genuine poles for φ1, · · · , φk−1 are labeled by a collection π of colored
plane partitions with |π| = k − 1. We need to show that there is a bijection between
the possible choices of Hk giving nonzero k-dimensional JK-residue and the ways of
making a collectionπ′ of colored plane partitions with

∣

∣π′∣
∣ = k fromπ by adding a box.

Without loss of generality, we assume that φk is in a tree whose root vertex corresponds
to the pole at a123,1 = a∗. Based on our assumption of Hk , the potential pole for φk

is φk = φJ − εa for a ∈ 4. Accordingly, adding Hk can only deform π(123,1) = π∗,
leaving the other colored plane partitions invariant. We can factorize the integrand of Zk
into two parts,

Z1−1
k

∏

A∈4∨
Z1−7A

k =
⎛

⎝Z1−1
k

∏

A∈4∨
Z1−7A

k

⎞

⎠

reg

× Ik . (196)

Here the regular part contains neither zeros nor poles in the neighborhood of φk →
φJ − εa , and Ik is given by

Ik = f (0) f (ε12) f (ε13) f (ε23)
∏

a∈4 f (εa)
× θ (φk − a∗ − ε123) , (197)

where
f (x) =

∏

s∈π∗
(θ (φk − cs + x) θ (cs − φk + x)) , (198)
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and

cs=(x,y,z) = a∗ + (1− x)ε1 + (1− y)ε2 + (1− z)ε3. (199)

If φJ = a∗ corresponding to the box (1, 1, 1) ∈ π∗, then the factor θ (φk − a∗ − ε123) in
the numerator cancels the factor θ (φk − a∗ + ε4) in the denominator using the constraint
∑

a∈4 εa = 0, and the genuine poles are φk = a∗−εa for a ∈ {1, 2, 3}. In the following,
we assume that φJ corresponds to the box (x, y, z) ∈ π∗ \ {(1, 1, 1)}, then the potential
poles are

φk = a∗ +
(

1− x ′
)

ε1 +
(

1− y′
)

ε2 +
(

1− z′
)

ε3, (200)

with four possibilities

(

x ′, y′, z′
) ∈ {(x + 1, y, z) , (x, y + 1, z) , (x, y, z + 1) , (x − 1, y − 1, z − 1)} . (201)

When the box
(

x ′, y′, z′
)

is already contained in π∗, the numerator of Ik contains a
double zero from

θ
(

φk − c(x ′,y′,z′)
)

θ
(

c(x ′,y′,z′) − φk
)

, (202)

and the residue vanishes. Therefore, there can be at most one box at each (x, y, z) ∈ π ′∗.
We denote the combination of the plane partition π∗ and the box

(

x ′, y′, z′
)

by π ′∗. We
need to show that if π ′∗ is not a plane partition, then the residue is zero.

If
(

x ′, y′, z′
)

is one of the boxes (x + 1, y, z), (x, y + 1, z), and (x, y, z + 1), the box
(x, y, z) ∈ π∗ \ {(1, 1, 1)} must sit on the boundary of π∗. We can focus on the case
(

x ′, y′, z′
) = (x + 1, y, z), and the other cases can be obtained by simple permutations.

We want to count the orderΔ of singularity for a potential pole φk , which is the number
of poles from the denominator minus the number of zeros from the numerator. The
residue is nonzero when Δ = 1. We need to further make the following distinction:

– When y = z = 1, π ′∗ is a plane partition. Ik only contains a pole from
θ
(

φk − c(x,1,1) + ε1
)

, and therefore the residue is nonzero.
– When y > 1 and z = 1 (by exchanging y and z we can get results for z > 1 and

x = y = 1), π ′∗ is a plane partition if and only if

(x + 1, y − 1, 1) ∈ π∗. (203)

The poles and the zero of Ik are

poles :
{

θ
(

φk − c(x,y,1) + ε1
)

,

θ
(

φk − c(x+1,y−1,1) + ε2
)

, if (x + 1, y − 1, 1) ∈ π ′∗
zero : θ (φk − c(x,y−1,1) + ε12

)

. (204)

If π ′∗ is a plane partition, Δ = 1, and the residue is nonzero. On the other hand, if
(x + 1, y − 1, 1) /∈ π∗ so that π ′∗ is not a plane partition, Δ = 0, and the residue
vanishes.

– When y, z > 1, π ′∗ is a plane partition if and only if

(x + 1, y − 1, z) , (x + 1, y, z − 1) ∈ π∗. (205)
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The poles and zeros of Ik are

poles :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

θ
(

φk − c(x,y,z) + ε1
)

,

θ
(

c(x,y−1,z−1) − φk + ε4
)

,

θ
(

φk − c(x+1,y−1,z) + ε2
)

, if (x + 1, y − 1, z) ∈ π∗
θ
(

φk − c(x+1,y,z−1) + ε3
)

, if (x + 1, y, z − 1) ∈ π∗

zeros :

⎧

⎪

⎨

⎪

⎩

θ
(

φk − c(x,y−1,z) + ε12
)

,

θ
(

φk − c(x,y,z−1) + ε13
)

,

θ
(

φk − c(x+1,y−1,z−1) + ε23
)

, if (x + 1, y − 1, z − 1) ∈ π∗
(206)

Since (x + 1, y − 1, z − 1) ∈ π∗ is automatically satisfied when (x + 1, y − 1, z) ∈
π∗ or (x + 1, y, z − 1) ∈ π∗, we can have Δ = 1 so that the residue is nonzero only
if π ′∗ is a plane partition.

If
(

x ′, y′, z′
) = (x − 1, y − 1, z − 1), the residue can be nonzero only if (x − 1, y, z) /∈

π∗, since the numerator would contain a zero from θ
(

c(x−1,y,z) − φk + ε23
)

otherwise.
Similarly, π∗ cannot contain (x, y − 1, z) and (x, y, z − 1). However, this is in contra-
diction to the assumption that (x, y, z) ∈ π∗ \ {(1, 1, 1)} and π∗ is a plane partition.
Therefore, taking

(

x ′, y′, z′
) = (x − 1, y − 1, z − 1) will always lead to a vanishing

residue.
In summary, we have shown that all the genuine poles of φk are in one-to-one cor-

respondence with the possibilities of adding a box to π to make a collection of colored
plane partitions.

6.3.3. Expression Eventually, we obtain the elliptic genus Zk ,

Zk =
∑

π,|π|=k

Zπ. (207)

We define

CA,s = aA + (1− x)εa + (1− y)εb + (1− z)εc, (208)

for A = (abc, α) ∈ n and s = (x, y, z) ∈ π(A), and

DA,s
B,t = CA,s − CB,t . (209)

We also introduce the notation

R {θ ( x | τ)} = θ (x)
∏

1≤a<b≤3 θ (x + εab)
∏

a∈4 θ (x + εa)
. (210)

Then Zπ can be expressed as

Zπ =
⎛

⎝

∏

A∈n

Z (A)
π

⎞

⎠

⎛

⎝

∏

A �=B∈n

Z (A,B)
π

⎞

⎠ , (211)
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where

Z (A=(A,α))
π = θ

(

ε Ǎ

)

(

∏

a<b∈A θ (εab)
∏

a∈4 θ (εa)

)

∣

∣π(A)
∣

∣

⎛

⎝

∏′

s �=t∈π(A)

R
{

θ
(

DA,s
A,t

)}

⎞

⎠

×
⎛

⎝

∏

s∈π(A)\(1,1,1)

θ
(

CA,s − aA − εA
)

θ
(

CA,s − aA
)

⎞

⎠ , (212)

and

Z (A,B)
π =

⎛

⎝

∏

s∈π(A)

∏

t∈π(B)

R
{

θ
(

DA,s
B,t
)}

⎞

⎠

⎛

⎝

∏

s∈π(A)

θ
(

CA,s − aB − εB
)

θ
(

CA,s − aB
)

⎞

⎠ . (213)

The instanton partition function is

Z =
∑

π

q|π|Zπ, (214)

which is identical to Z inst in (155) if we use the elliptic version (157) of the operator E.

6.3.4. Example: k = 2 and n = (1, 1, 0, 0) Let us present here explicitly the result
for the simplest nontrivial example, k = 2 and n = (n123 = 1, n124 = 1, 0, 0). We are
dealing with the integral

Z2 = 1

2

[

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

]2

∫

dφ1dφ2
θ2 (φ1 − φ2)

∏

1≤a<b≤3 θ (φ1 − φ2 ± εab)
∏

a∈4 θ (φ1 − φ2 ± εa)

×
2
∏

i=1

θ (φi − a123 − ε123)

θ (φi − a123)

θ (φi − a124 − ε124)

θ (φi − a124)
. (215)

Due to the invariance under the overall shift (169), the result can only depend on the
difference

δ = a123 − a124. (216)

The genuine poles are completely classified by a collection of two (possibly empty)
colored plane partitions,

π =
{

π(123), π(124)
}

, (217)

and the total number of boxes
∣

∣

∣π
(123)

∣

∣

∣ +
∣

∣

∣π
(124)

∣

∣

∣ = k = 2. (218)

There are three possibilities:
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1. If
∣

∣π(123)
∣

∣ = 2,
∣

∣π(124)
∣

∣ = 0, the genuine poles are at (a123,a123 − εa) , a = 1, 2, 3,
and the corresponding residues are

z(a123,a123−ε1) =
θ (ε12) θ (ε13) θ (ε23)

θ (ε1) θ (ε2) θ (ε3)

θ (δ + ε3) θ (δ − ε1 + ε3)

θ (δ) θ (δ − ε1)

×θ (2ε1 + ε2) θ (2ε1 + ε3) θ (ε23 − ε1)

θ (2ε1) θ (ε1 − ε2) θ (ε1 − ε3)
, (219)

z(a123,a123−ε2) =
θ (ε12) θ (ε13) θ (ε23)

θ (ε1) θ (ε2) θ (ε3)

θ (δ + ε3) θ (δ − ε2 + ε3)

θ (δ) θ (δ − ε2)

×θ (2ε2 + ε1) θ (2ε2 + ε3) θ (ε13 − ε2)

θ (2ε2) θ (ε2 − ε1) θ (ε2 − ε3)
, (220)

z(a123,a123−ε3) =
θ (ε12) θ (ε13) θ (ε23)

θ (ε1) θ (ε2) θ (ε3)

θ (δ + ε3)

θ (δ − ε3)

×θ (2ε3 + ε1) θ (2ε3 + ε2) θ (ε12 − ε3)

θ (2ε3) θ (ε3 − ε1) θ (ε3 − ε2)
, (221)

2. If
∣

∣π(123)
∣

∣ = 0,
∣

∣π(124)
∣

∣ = 2, the genuine poles are at (a124,a124 − εa) , a = 1, 2, 4,
and the corresponding residues are

z(a124,a124−ε1) =
θ (ε12) θ (ε14) θ (ε24)

θ (ε1) θ (ε2) θ (ε4)

θ (δ − ε4) θ (δ + ε1 − ε4)

θ (δ) θ (δ + ε1)

×θ (2ε1 + ε2) θ (2ε1 + ε4) θ (ε24 − ε1)

θ (2ε1) θ (ε1 − ε2) θ (ε1 − ε4)
, (222)

z(a124,a124−ε2) =
θ (ε12) θ (ε14) θ (ε24)

θ (ε1) θ (ε2) θ (ε4)

θ (δ − ε4) θ (δ + ε2 − ε4)

θ (δ) θ (δ + ε2)

×θ (2ε2 + ε1) θ (2ε2 + ε4) θ (ε14 − ε2)

θ (2ε2) θ (ε2 − ε1) θ (ε2 − ε4)
, (223)

z(a124,a124−ε4) =
θ (ε12) θ (ε14) θ (ε24)

θ (ε1) θ (ε2) θ (ε4)

θ (δ − ε4)

θ (δ + ε4)

×θ (2ε4 + ε1) θ (2ε4 + ε2) θ (ε12 − ε4)

θ (2ε2) θ (ε2 − ε1) θ (ε2 − ε4)
, (224)

3. If
∣

∣π(123)
∣

∣ = ∣

∣π(124)
∣

∣ = 1, the genuine pole can only be at (a123,a124), and the
corresponding residue is

z(a123,a124) =
θ2 (ε12) θ

2 (ε13) θ
2 (ε23)

θ2 (ε1) θ2 (ε2) θ (ε3) θ (ε4)

× θ (±δ + ε12) θ (±δ + ε13) θ (±δ + ε23)

θ (±δ + ε1) θ (±δ + ε2) θ (−δ + ε3) θ (δ + ε4)
. (225)

In the above calculations, we have taken a particular ordering of φ1 and φ2 to cancel the
factor of 2 in the denominator of (215). Summing up these contributions, we get

Z2 =
∑

a∈(123)
z(a123,a123−εa) +

∑

a∈(124)
z(a124,a124−εa) + z(a123,a124). (226)

One can check that (226)matches the general expressiongiven in the previous subsection.
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6.4. Expectation value of real codimension-two defects. Up to now, we treat all D7A-
branes on equal footing, but the string theory construction of tetrahedron instantons and
the geometric interpretation of the moduli space suggest a different point of view of
the instanton partition function. We choose the physical spacetime to be R

1,1 × C
3
123,

so that the bound states of D1- and D7123-branes give rise to instantons on C
3
123. The

remaining D7A-branes for A ∈ 4∨ \ {(123)} will produce real codimension-two defects
from the viewpoint of the physical spacetime. This provides the physical realization of
the projection of the moduli space Mn,k of tetrahedron instantons to the moduli spaces
M(n123,0,0,0),k′ of instantons on C

3
123 discussed in Sect. 4. Thus we identify the instanton

partition function as the expectation value of real codimension-two defects OA in the
instanton partition function of the Donaldson–Thomas theory,

Z =
∞
∑

k=0

qk

k!
∫ k
∏

i=1

dφi

⎡

⎣

(

Z1−1
k Z1−7123

k

)

⎛

⎝

∏

A∈4∨\{(123)}
Z1−7A

k

⎞

⎠

⎤

⎦

=
〈

∏

A∈4∨\{(123)}
OA

〉

DT

, (227)

where the bracket denotes the unnormalized vacuumexpectation value in theDonaldson–
Thomas theory on C

3
123 whose instanton partition function is given by

ZDT =
∞
∑

k=0

qk

k!
∫ k
∏

i=1

dφi Z1−1
k Z1−7123

k . (228)

6.5. Dimensional reductions. We now briefly discuss dimensional reductions of the
system.

Performing a T-duality along x9 of the configuration in Table 1, we get D0-branes
probing a configuration of intersecting D6-branes in type IIA superstring theory. The
generating function of the generalized Witten indices of the supersymmetric gauged
quantum mechanical models on D0-branes is the K-theoretical version of the instanton
partition function of tetrahedron instantons. Since there are no anomalies of large gauge
transformations, we no longer impose the constraint (172). Taking the limit q → 0 of
Z , we get the dimensionally reduced instanton partition function Z↓,

Z↓ =
∑

π

q|π|Z↓
π

=
∑

π

q|π|
⎛

⎝

∏

A∈n

Z↓(A)
π

⎞

⎠

⎛

⎝

∏

A �=B∈n

Z↓(A,B)
π

⎞

⎠ , (229)

where Z↓(A)
π and Z↓(A,B)

π are obtained from Z (A)
π and Z (A,B)

π by substituting

θ (z)→ 2 sinh

(

βz

2

)

, (230)

and β is the circumference of the circle of the supersymmetric quantum mechanics. The
instanton partition function Z↓ matches Z in (155) with the K-theoretical version (157)
of the operator E.
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We can further perform a T-duality along x0 direction to get D-instantons probing
a configuration of intersecting D5-branes in type IIB superstring theory. The instanton
partition function Z⇓ is obtained by

Z⇓ =
∑

π

q|π|Z⇓
π =

∑

π

q|π|
⎛

⎝

∏

A∈n

Z⇓(A)
π

⎞

⎠

⎛

⎝

∏

A �=B∈n

Z⇓(A,B)
π

⎞

⎠ . (231)

Here Z⇓(A)
π and Z⇓(A,B)

π are obtained from Z (A)
π and Z (A,B)

π by substituting θ (z)→ z,

Z⇓(A=(A,α))
π = ε Ǎ

(

∏

a<b∈A εab
∏

a∈4 εa

)

∣

∣π(A)
∣

∣

⎛

⎝

∏

s �=t∈π(A)

R
{

DA,s
A,t

}

⎞

⎠

×
⎛

⎝

∏

s∈π(A)\(1,1,1)

CA,s − aA − εA
CA,s − aA

⎞

⎠ , (232)

Z⇓(A,B)
π =

⎛

⎝

∏

s∈π(A)

∏

t∈π(B)

R
{

DA,s
B,t
}

⎞

⎠

⎛

⎝

∏

s∈π(A)

CA,s − aB − εB
CA,s − aB

⎞

⎠ , (233)

where

R {x} = x (x + ε12) (x + ε13) (x + ε23)

(x + ε1) (x + ε2) (x + ε3) (x + ε4)
. (234)

The partition function Z⇓ matches Z in (155) exactly.

7. Free Field Representation

Following [15,66,75,99,110], we give a free field representation of the instanton parti-
tion function. This is in the general spirit of the BPS/CFT correspondence [92].

Recall that the torus propagator for a free massless r -component scalar field ϕ =
(ϕ1, · · · , ϕr ) is given by [30]

Gi, j (z, z̄) = 〈ϕi (z, z̄) ϕ j (0, 0)
〉

T2

= − log

∣

∣

∣

∣

∣

θ1 ( z| τ)
2πη(τ)3

exp

(

−π (Imz)2

Imτ

)∣

∣

∣

∣

∣

2

δi, j , i, j = 1, · · · , r, (235)

where the torus T
2 is described by a complex z-plane with the identification z ∼= z +1 ∼=

z + τ , and Gi, j (z, z̄) is the normalized doubly periodic solution of the Laplacian on T
2,

−ΔGi, j (z, z̄) =
(

2πδ2(z)− 4π

Imτ

)

δi, j . (236)

The basic vertex operators of the theory are the exponential fields parameterized by a
r -component vector parameter α = (α1, · · · , αr ),

Vα (z, z̄) =: ei
∑r

i=1 αiϕi (z,z̄) : . (237)
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We require that the complex structure τ of T
2 is the same as that in the definition of the

elliptic genus (161). Then we will use the abbreviation (168) in the following.
We shall take r = 7 and introduce a slightly deformed vertex operator

Vα,ρ (z, z̄) =: ei
∑7

i=1 αiϕi (z+ρi ,z̄+ρi ) :: e−i
∑7

i=1 αiϕi (z−ρi ,z̄−ρi ) :, (238)

where

α = (i, i, i, i, 1, 1, 1) , ρ = 1

2
(ε1, ε2, ε3, ε4, ε12, ε13, ε23) . (239)

It is an important fact that when
∑

a∈4 εa = 0 we have

7
∑

i=1

α2
i (Im (ρi ))

2 = 0. (240)

Performing the Wick contraction, we can get

Vα,ρ (z, z̄) =
∣

∣

∣

∣

∣

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

∣

∣

∣

∣

∣

2

: Vα,ρ (z, z̄) :, (241)

and
〈: Vα,ρ (z, z̄) :: Vα,ρ (w, w̄) :

〉

T2

=
∣

∣

∣

∣

∣

θ2 (z − w)
∏

1≤a<b≤3 θ (z − w ± εab)
∏

a∈4 θ (z − w ± εa)

∣

∣

∣

∣

∣

2

, (242)

where θ (z ± ε̃) = θ (z + ε̃) θ (z − ε̃). Since (242) takes the form of an absolute square,
we can define the holomorphic part as

〈: Vα,ρ (z, z̄) :: Vα,ρ (w, w̄) :
〉hol
T2

= θ2 (z − w)
∏

1≤a<b≤3 θ (z − w ± εab)
∏

a∈4 θ (z − w ± εa)
. (243)

We further introduce a linear source operator,

Υ = 1

2π i

∮

�

dz
∑

A∈4∨
%A(z)∂zϕ Ǎ(z), (244)

where the contour � is chosen to be a loop around z = 0 encircling all ±ρi for i =
1, · · · , 7, and %A(z) is a locally analytic function inside �,

%A(z) =
n A
∑

α=1

log θ

(

z − aA,α − 1

2
εA

)

. (245)

Then
〈

eΥ : Vα,ρ(z) :
〉

T2 =
∏

A=(A,α)∈n

θ (z − aA − εA)

θ (z − aA)
, (246)

which is already holomorphic.
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Therefore, we have the expansion
〈

eΥ eq
∮

C Vα,ρ(z)dz
〉hol

T2

=
∞
∑

k=0

qk

k!

[

2πη(τ)3
∏

1≤a<b≤3 θ (εab)
∏

a∈4 θ (εa)

]k

×
∮

C
dz1 · · ·

∮

C
dzk

k
∏

i=1

∏

A=(A,α)∈n

θ (z − aA − εA)

θ (z − aA)

×
k
∏

i, j=1
i �= j

θ
(

zi j
)∏

1≤a<b≤3 θ
(

zi j + εab
)

∏

a∈4 θ
(

zi j + εa
) , (247)

which coincides with the instanton partition function (164) if the contour C is chosen to
give the Jeffrey–Kirwan residues.We see that the contributions from theD1–D1 andD1–
D7 strings are reproduced by the Wick contractions within the exponentiated integrated
vertex, and the Wick contractions between the exponentiated integrated vertex and the
linear source, respectively.

8. Conclusions and Future Directions

In this paper, we introduced tetrahedron instantons and explained how to construct them
from string theory and from noncommutative field theory.We analyzed the moduli space
of tetrahedron instantons and discussed its geometric interpretations. We computed the
instanton partition function in two different approaches: the infrared approach which
computes the partition function via equivariant localization on the moduli space of tetra-
hedron instantons, and the ultraviolet approach which computes the partition function
as the elliptic genus of the worldvolume theory on the D1-branes probing a configura-
tion of intersecting D7-branes. Both approaches lead to the same result. Our instanton
partition function can also be viewed as the expectation value of the most general real
codimension-two defects in the instanton partition function of the Donaldson–Thomas
theory. Finally, we find a free field representation of the instanton partition function,
indicating the existence of a novel kind of symmetry acting on the cohomology of the
moduli spaces of tetrahedron instantons.

There are still many interesting aspects of tetrahedron instantons that remain to be
better understood. Some of the future directions in which this work could be continued
are listed in the following.

1. According to [130], a supersymmetric bound state can be formed by the D1–D9
system if we turn on a constant B-field satisfying

∑

a∈4
va ≥ 1. (248)

Therefore, we can generalize the tetrahedron instantons by adding a stack of D9-
branes without further breaking the supersymmetry if the B-field satisfies the condi-
tion

v1 = v2 = v3 = v4 ≥ 1

4
. (249)
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This generalization can also be viewed as instantons in the magnificent four model
with all possible real codimension-two defects. Furthermore, it is fascinating to also
incorporate in the system the spiked instantons, which can be realized by D1-branes
probing six stacks of (anti-)D5-branes in type IIB superstring theory. As analyzed in
[104], supersymmetry is completely broken when we have six stacks of D5-branes,
and two supercharges can be preserved when we have four stacks of D5-branes and
two stacks of anti-D5-branes in the presence of a B-field obeying

v1 = −v2 = v3 = −v4. (250)

In both cases, no supersymmetry will be preserved when we put together the magnif-
icent four model, the tetrahedron instantons and the spiked instantons. On the other
hand, the configuration of D1-branes with six stacks of anti-D5-branes preserve two
supercharges when the B-field obeys3

v1 = v2 = v3 = v4. (251)

In this case, we can study the supersymmetric combination of the magnificent four
model, the tetrahedron instantons and the spiked instantons. This combined system
can be understood as instantons in the magnificent four model with all possible real
codimension-two and real codimension-four defects.

2. It was proposed that the partition function of the magnificent four model is the
mother of all instanton partition functions [95,103]. In particular, it was shown in
[103] that the partition function of the magnificent four model at a degenerate limit
reduces to the instanton partition function of the Donaldson–Thomas theory on C

3.
The magnificent four model can be realized in string theory using D0-branes probing
a collection of D8- and anti-D8-branes wrapping a Calabi–Yau fourfold, with an
appropriate B-field. Here the D0–D8 system gives an ADHM-type construction for
instantons in the eight-dimensional gauge theory, while the presence of the anti-D8-
branes introduces certain fundamentalmatter fields. The degenerate limit corresponds
to a fine-tuned position of the anti-D8-branes, and it was conjectured that anti-D8-
branes will annihilate the D8-branes, leaving a configuration of D6-branes after the
tachyon condensation. It is natural to imagine that by taking more general degenerate
limits, the instanton partition function of our model can always be obtained from
that of the magnificent four model. The matching of the instanton partition function
will then be a highly nontrivial test of the tachyon condensation in nontrivial string
backgrounds.

3. It is well known that the partition function of theDonaldson–Thomas theory on a toric
Calabi–Yau threefold and the partition function of the magnificent four model play
important roles in the study of the compactification of M-theory on Calabi–Yau five-
folds [29,54,100]. An equivalence between the Donaldson–Thomas invariants and
Gromov-Witten invariants was conjectured [78–80]. Together with the Gopakumar-
Vafa invariants [47–49], they arise from different expansions of the same topological
string amplitude. A fascinating direction is to explore our model from this viewpoint.
We consider the bound state of k D0-branes and n A D6A-branes on S

1 × C
3
A for all

A ∈ 4∨, which can be lifted to M-theory as a bound state of k graviton Kaluza-Klein
modes on S

1 × X, where X is a noncompact Calabi–Yau fivefolds. When only one
of the n A is nonzero, X becomes C

3
A × TNn A , where TNn A is the n A-centered Taub-

NUT space. After introducing theΩ-deformation, the eleven-dimensional spacetime

3 We thank the reviewer for pointing to us this configuration.
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S
1×X is replaced by a fiber bundle over S

1 with fiberX, such that the fiber is rotated
by an element g ∈ SU(5) as we go around S

1. The eleven-dimensional supergravity
partition function on this background is defined as the twisted Witten index,

Z sugra
[

S
1

�g X
]

(q1, · · · , q5) = TrH(X)(−1)F e−β{Q,Q∗}g

= exp

[ ∞
∑

�=1

1

�
F sugra

(

q�1, · · · , q�5
)

]

, (252)

where H(X) is the Hilbert space of the supergravity theory on X, F is the fermion
number operator, β is the circumference of S

1, Q is a preserved supercharge that
commuteswith g, and q1, · · · , q5 satisfying∏5

i=1 qi = 1 are the fugacities associated
with the SU(5) action. We can decompose the single-particle index F into two parts,

F sugra = F sugra,pert + F sugra,inst, (253)

where F sugra,pert is the perturbative contribution from D6-branes in the absence of
D0-branes, and F sugra,inst should coincide with the single-particle index (147) of
the instanton partition function. An extraordinary feature of this correspondence is
that the instanton counting parameter q in the instanton partition function will be
expressed in terms of the fugacities q1, · · · , q5 in F sugra,inst.

4. In this paper we only considered the simplest spacetime geometry R
1,1 × C

4. It is
definitely interesting to generalize our analysis to R

1,1 × Y, where Y is an arbitrary
toric Calabi–Yau fourfold. For example, one can consider the orbifold Y = C

4/�,
where � is a finite subgroup of SU(4). The moduli space will be a generalization of
Nakajima quiver varieties [19,85,87,93] and the chain-saw quiver [41,42,65]. The
instanton partition function on the orbifold can be obtained by projecting onto the �-
invariant part. Another nature choice is to blowup the origin ofC

4 in the spirit of [89–
91], and it may be useful for the study of BPS/CFT correspondence [61,98]. These
instanton partition functions should lie between the Donaldson–Thomas invariants of
toric Calabi–Yau threefolds [78,79] and fourfolds [20–22]. We can even generalize
our computations by including extra D-branes wrapping compact divisors.

5. The instanton partition function of theDonaldson–Thomas theorywas identifiedwith
the classical statistical mechanics of melting crystal [116], and can be interpreted as a
quantum gravitational path integral involving fluctuations of geometry and topology
[57]. It would bewonderful if one can provide a similar interpretation for the instanton
partition function of tetrahedron instantons, in particular from the expression (227).

6. It would be interesting if we can have a better understanding of the free field repre-
sentation of the instanton partition function, generalizing the discussion in [32].

7. We may consider the tetrahedron instantons with supergroups by adding negative
branes [31,117,125] in our construction.We can then calculate the instanton partition
function as in [67].

Acknowledgements. We are grateful to Giulio Bonelli, Nikita Nekrasov, Mauricio Romo, Peng Shan, and
Dingxin Zhang for comments and discussions. We thank Jie Zhou in particular for valuable comments and
suggestions on the manuscript. WY would also like to thank the education from the course Geometric Rep-
resentation Theory at Tsinghua University. EP and XZ are partially supported by the GIF Research Grant
I-1515-303./2019. WY is supported by the Young overseas high-level talents introduction plan, national key
research and development program of China (No.. 2020YFA0713000), and NNSF of China with Grant No.:
11847301 and 12047502.

Funding Open Access funding enabled and organized by Projekt DEAL.



824 E. Pomoni, W. Yan, X. Zhang

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Open Strings in the Presence of a Constant B-Field

The closed string background on which the open strings propagate is the flat spacetime
R
1,1 × C

4 with metric Gμν = ημν and a constant B-field whose nonzero components
are given by (10). The worldsheet action of the open string on such background in the
conformal gauge is

S = 1

4π�2s

∫

dτ
∫ π

0
dσ Gμν

(

∂τ Xμ∂τ Xν − ∂σ Xμ∂σ Xν + 2iψμ
−∂+ψν− + 2iψμ

+ ∂−ψν
+

)

− 1

2π�2s

∫

dτ
[

Bμν

((

∂τ Xμ
)

Xν + iψμ
−ψν− + iψμ

+ ψ
ν
+

)]σ=π
σ=0 , (254)

where �s is the string length, and σ± = τ ± σ are the light-cone coordinates with
∂± = 1

2 (∂τ ± ∂σ ). From the variations of the action (254), we can obtain the equations
of motion for Xμ and ψ±,

∂+∂−Xμ = 0, ∂+ψ
μ
− = ∂−ψμ

+ = 0, (255)

as well as the boundary conditions
[(

Gμν∂σ Xμ + Bμν∂τ Xμ
)

δXν
]σ=π
σ=0 = 0, (256)

[

δψ
μ
−
(

Gμν − Bμν

)

ψν− − δψ
μ
+
(

Gμν + Bμν

)

ψν
+

]σ=π
σ=0 = 0. (257)

Hence, there are two possible boundary conditions for the worldsheet bosons Xμ at
σ = 0 or σ = π : the Dirichlet (D) boundary condition

δXμ
∣

∣

σ=0,π = 0 ⇔ ∂τ Xμ
∣

∣

σ=0,π = 0, (258)

and the twisted (T) boundary condition
(

Gμν∂σ Xμ + Bμν∂τ Xμ
)∣

∣

σ=0,π = 0. (259)

The boundary condition (259) becomes theNeumann (N) boundary condition for B = 0.
The worldsheet supersymmetry transformations in the bulk are

δXμ = iε+ψ
μ
− − iε−ψμ

+ , δψ
μ
± = ±2ε∓∂±Xμ. (260)

Since we introduce D1-branes along R
1,1 and D7A-branes along R

1,1 × C
3
A with

A ∈ 4∨, open strings always satisfy NN boundary conditions along R
1,1,

∂σ X0,9
∣

∣

∣

σ=0
= ∂σ X0,9

∣

∣

∣

σ=π = 0. (261)

http://creativecommons.org/licenses/by/4.0/
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For the remaining 8 directions, let us introduce the complex bosons

Za = X2a−1 + iX2a, Z̄ a = X2a−1 − iX2a, a ∈ 4. (262)

The general solution of the equation of motion of Za is given by Za = Za
L

(

σ +
)

+
Za

R

(

σ−
)

, where

Za
L

(

σ +) = za
L

2
+
�2s

2
pa

Lσ
+ +

i�s√
2

∑

n �=0

αa
n

n
e−inσ+

,

Za
R

(

σ−
) = za

R

2
+
�2s

2
pa

Rσ
− +

i�s√
2

∑

n �=0

α̃a
n

n
e−inσ− , (263)

and the boundary condition can be written uniformly as
(

∂+ − e−2π iνa∂−
)

Za
∣

∣

∣

σ=0
=
(

∂+ − e−2π iν′a∂−
)

Za
∣

∣

∣

σ=π = 0. (264)

Here νa = va (ν′a = va) if the σ = 0 (σ = π ) end of the open string is on D7A-brane
with a ∈ A, and νa = 1

2 (ν
′
a = 1

2 ) otherwise. The mode expansions of Za when νa = ν′a
is

Za = za + �2s pa
(

σ + + e2π iνaσ−
)

+
i�s√
2

∑

n∈Z\{0}

αa
n

n

(

e−inσ+
+ e2π iνa e−inσ−

)

, (265)

and when ν′a − νa = δ �= 0 is

Za = za +
i�s√
2

∑

r∈Z+δ

αa
r

r

(

e−irσ+
+ e2π iνa e−irσ−

)

. (266)

Meanwhile, we introduce the complex combinations of fermions

Ψ a± = ψ2a−1± + iψ2a± , Ψ̄ a± = ψ2a−1± − iψ2a± . (267)

The boundary conditions compatible with (264) can be chosen as
(

Ψ a
+ − (−1)ξ e−2π iνaΨ a−

)∣

∣

∣

σ=0
=
(

Ψ a
+ − e−2π iν′aΨ a−

)∣

∣

∣

σ=π = 0, (268)

with ξ = 0 for the Ramond sector and ξ = 1 for theNeveu–Schwarz sector. TheRamond
sector preserves half of the worldsheet supersymmetry (260) with ε = ε− = −ε+, while
the Neveu–Schwarz sector breaks all the worldsheet supersymmetry. We combine Ψ a

+
and Ψ a− into a single field Ψ a with the extended range 0 ≤ σ ≤ 2π ,

Ψ a (τ, σ ) =
{

Ψ a
+ (τ, σ ) 0 ≤ σ ≤ π

e−2π iν′aΨ a− (τ, 2π − σ) π ≤ σ ≤ 2π
, (269)

whose field equation is ∂−Ψ a = 0. The boundary condition (268) at σ = π ensures that
Ψ a (τ, σ ) is continuous, while the boundary condition (268) at σ = 0 leads to

Ψ a (τ, 2π) = exp

(

−2π i

(

δ − 1

2
ξ

))

Ψ a (τ, 0) . (270)
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Therefore, the mode expansion of Ψ a in the Ramond sector is

Ψ a (τ, σ ) = �s

∑

r∈Z+δ
da

r e−irσ+
, (271)

and that in the Neveu–Schwarz sector is

Ψ a (τ, σ ) = �s

∑

r∈Z+δ− 1
2

ba
r e−irσ+

. (272)

The zero-point energy of Za is

VZ (δ) =
∞
∑

n=0

(n + |δ|) reg= ζH (−1, |δ|) = 1

24
− 1

2

(

|δ| − 1

2

)2

, (273)

and that of Ψ a is

VΨ (δ)

=
{

−∑∞
n=0 (n + |δ|) reg= −ζH (−1, |δ|) = − 1

24 + 1
2

(|δ| − 1
2

)2
R

−∑∞
n=0
(

n+
∣

∣|δ| − 1
2

∣

∣

) reg= −ζH
(−1,

∣

∣|δ| − 1
2

∣

∣

) = − 1
24 +

1
2

(∣

∣|δ| − 1
2

∣

∣− 1
2

)2
NS

, (274)

where ζH (s, a) =∑∞
n=0(n+a)−s is theHurwitz zeta function. The sumof the zero-point

energy V = VZ + VΨ is

V (δ) =
{

0, R
1
8 − 1

2

∣

∣|δ| − 1
2

∣

∣ , NS
. (275)

The vanishing of the zero-point energy in the Ramond sector is guaranteed by the un-
broken worldsheet supersymmetry.

In the absence of a constant B-field, we have δ = 0 for DD or NN directions, and
|δ| = 1

2 for DN and ND directions. The total zero-point energy of the Dp–Dp′ strings
in the Neveu–Schwarz sector is given by

E (0) = κ

2
V

(

1

2

)

+
8− κ

2
V (0) = −1

2
+
κ

8
, (276)

where κ is the number of DN and ND directions.
For the B-field given by (10), the physical ground states of D1–D1 and D7A–D7A

strings still have zero energy. The total zero-point energy of the D1–D7A strings in the
Neveu–Schwarz sector becomes

E (0) =
∑

a∈A

V

(

1

2
− va

)

+ V (0) = 1

4
− 1

2

∑

a∈A

|va | , (277)

and that of the D7(acd)–D7(bcd) string becomes

E (0) = V

(

1

2
− va

)

+ V

(

vb − 1

2

)

+ 2V (0) = −1

2
(|va | + |vb|) . (278)
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B. Two-Dimensional Supersymmetric Gauge Theory

In this appendix, we review two-dimensional N = (2, 2) and N = (0, 2) supersym-
metric gauge theories [55,128].

B.1. N = (2, 2) Supersymmetry. The N = (2, 2) supersymmetry algebra in two-
dimensional Minkowski spacetime R

1,1 with coordinates xμ,μ = 0, 1 is generated
by four supercharges Q± and Q̄± = Q†

±, spacetime translations H , P , the Lorentz
boost M = M01, and U(1)V and U(1)A R-symmetries FV and FA. They satisfy the
(anti-)commutation relations,

Q2± = Q̄2± = 0,
{

Q±, Q̄±
} = 2 (H ∓ P) ,

{

Q̄+, Q̄−
} = 2Z , {Q+, Q−} = 2Z∗,

{

Q̄+, Q−
} = 2Z̃ ,

{

Q+, Q̄−
} = 2Z̃∗,

[

M, Q±
] = ∓Q±,

[

M, Q̄±
] = ∓Q̄±,

[

FV , Q±
] = −Q±,

[

FV , Q̄±
] = +Q̄±,

[

FA, Q±
] = ∓Q±,

[

FA, Q̄±
] = ±Q̄±, (279)

where Z and Z̃ commute with all operators in the theory and are called central charges.
A central charge can be nonzero if there is a soliton that interpolates different vacua or
if the theory has a continuous abelian symmetry. In superconformal field theory, both
central charges must vanish.

In terms of the N = (2, 2) superspace with coordinates
(

xμ, θ±, θ̄±
)

, the super-
charges are given by

Q± = ∂

∂θ±
+ 2iθ̄±∂±,

Q̄± = − ∂

∂θ̄±
− 2iθ±∂±, (280)

where ∂± = 1
2 (∂0 ± ∂1). They anti-commute with the super-derivatives

D± = ∂

∂θ±
− 2iθ̄±∂±,

D̄± = − ∂

∂θ̄±
+ 2iθ±∂±, (281)

which also obey anti-commutation relations

D2± = D̄2± = 0,
{

D±, D̄±
} = 4i∂±. (282)

R-symmetries act on a superfield F
(

xμ, θ±, θ̄±
)

with vector R-charge qV and axial
R-charge qA as

eiαFV F
(

xμ, θ±, θ̄±
) = eiαqV F

(

xμ, e−iαθ±, eiαθ̄±
)

, (283)

eiαFAF
(

xμ, θ±, θ̄±
) = eiαqAF

(

xμ, e∓iαθ±, e±iαθ̄±
)

. (284)
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There are three basic types ofN = (2, 2) superfields. A chiral superfield& satisfies

D̄±Φ = 0, (285)

which can be expanded as

Φ
(

xμ, θ±, θ̄±
) = φ

(

y±
)

+
√
2θαψα

(

y±
)

+ 2θ+θ−F
(

y±
)

, (286)

where y± = x± − 2iθ±θ̄±, and F is a complex auxiliary field. The complex conjugate
of Φ is an anti-chiral superfield, D±&̄ = 0.

A twisted chiral superfield Λ satisfies

D̄+Λ = D−Λ = 0, (287)

which can be expanded as

Λ = ϕ
(

ỹ±
)

+
√
2θ+χ̄+

(

ỹ±
)

+
√
2θ̄−χ−

(

ỹ±
)

+ 2θ+θ̄−˜F
(

ỹ±
)

, (288)

where ỹ± = x± ∓ 2iθ±θ̄±, and ˜F is a complex auxiliary field. The complex conjugate
of Λ is a twisted anti-chiral superfield, D̄−Λ = D+Λ = 0.

We can also introduce a vector multiplet, which consists of a vector field A±, Dirac
fermions λ±, λ̄± which are conjugate to each other, and a complex scalar σ in the adjoint
representation of the gauge group. The vector superfield V is a real superfield and can
be expanded in the Wess-Zumino gauge as

V = θ−θ̄− (A0 − A1) + θ+θ̄+ (A0 + A1)− θ−θ̄+σ − θ+θ̄−σ̄
+
√
2i
(

θ−θ+θ̄−λ̄− + θ−θ+θ̄+λ̄+ + θ̄+θ̄−θ−λ− + θ̄+θ̄−θ+λ+
)

+ 2θ−θ+θ̄+θ̄−D, (289)

where D is a real auxiliary field. To couple a matter superfield to the gauge field, we
simply replace the super-derivatives D2±, D̄2± by the gauge-covariant super-derivatives

D± = e−V D±eV , D̄± = eV D̄±e−V . (290)

The field strength of V is given by

Σ = 1

2

{

D̄+,D−
}

, (291)

which is a twisted chiral superfield D̄+Σ = D−Σ = 0.
The supersymmetric Lagrangian can be written as

L =
∫

d4θK
(

F , F̄
)

+
1

2

(∫

dθ−dθ+ W(&)|θ̄±=0 + c.c.

)

+
1

2

(∫

d θ̄−dθ+ ˜W(Λ)
∣

∣

θ−=θ̄+=0 + c.c.

)

, (292)

where the first term involving an arbitrary real function K
(

F , F̄
)

is the D-term con-
tribution, the second term involving a superpotential W is the F-term contribution, and
the third term involving a twisted superpotential ˜W is the twisted F-term contribution.
Here W(&) and ˜W(Λ) are required to be holomorphic functions of chiral superfields
and twisted chiral superfields, respectively.
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We are mainly interested in the gauged linear sigma model which describes a vector
superfield V with gauge group U(N ) and field strength Σ , coupled with charged chiral
multiplets &i . The Lagrangian is given by (292), with

K = − 1

2e2
TrΣ̄Σ + Tr

(

∑

i

&̄i&i

)

, W = 0, ˜W = −tΣ, (293)

where e is the gauge coupling constant, and t = r − iϑ is the complex combination of
the Fayet–Iliopoulos parameter r and the theta angle ϑ .

B.2. N = (0, 2) Supersymmetry. We can get N = (0, 2) supersymmetry from N =
(2, 2) supersymmetry by dropping Q− and Q̄−. There is only one U(1)R R-symmetry
R satisfying

[R, Q+] = −Q+,
[

R, Q̄+
] = +Q̄+. (294)

TheN = (0, 2) superspace with coordinates
(

xμ, θ+, θ̄+
)

is the subspace ofN = (2, 2)
superspace with θ− = θ̄− = 0.

There are three basic types ofN = (0, 2) superfields.AnN = (0, 2) chiral superfield
Φ is a complex-valued Lorentz scalar obeying

D̄+Φ = 0, (295)

which can be expanded as

Φ = φ +
√
2θ+ψ+ − 2iθ+θ̄+∂+φ, (296)

where φ is a complex scalar and ψ+ is a right-moving fermion.
An N = (0, 2) Fermi superfield Ψ− is a left-moving spinor satisfying

D̄+Ψ− = √
2E (Φi ) , (297)

which can be expanded as

Ψ− = ψ− −
√
2θ+G − 2iθ+θ̄+∂+ψ− −

√
2θ̄+E (φi ) + 2θ+θ̄+

∂E

∂φi
ψ+,i , (298)

where ψ− is a left-moving fermion and G is an auxiliary field.
The N = (0, 2) vector superfield U is a real superfield with the expansion

U = A0 − A1 − 2iθ+λ̄− − 2iθ̄+λ− + 2θ+θ̄+D, (299)

where Aμ is the gauge field, λ−, λ̄− are left-moving fermions, and D is a real auxiliary
field. All the fields are in the adjoint representation of the gauge group. The gauge-
covariant super-derivatives D+ and D̄+ are given by

D+ = ∂

∂θ+
− iθ̄+ (D0 +D1) ,

D̄+ = − ∂

∂θ̄+
+ iθ+ (D0 +D1) , (300)
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where

D0 = ∂0 + iA0 + θ+λ̄− + θ̄+λ− + iθ+θ̄+D,

D1 = ∂1 + iA1 − θ+λ̄− − θ̄+λ− − iθ+θ̄+D, (301)

are the gauge-covariant derivatives. We can organize U in terms of the gauge-invariant
field strength Υ = 1

2

[

D̄+,D0 −D1
]

, which is a Fermi superfield.
We can write down the supersymmetric Lagrangian of an N = (0, 2) gauged linear

sigma model with a vector multiplet V whose field strength is Υ coupled to chiral
multiplets Φi and the Fermi multiplets Ψa ,

L =
∫

dθ+d θ̄+
(

1

2e2
TrῩ Υ − i

2
Tr
∑

i

Φ̄iD−Φi − 1

2
Tr
∑

a

Ψ̄−,aΨ−,a

)

+

+

(

it

2

∫

dθ+ Υ |θ̄+=0 + c.c.

)

− 1√
2

(

∫

dθ+ Tr
∑

a

Ψ−,a J a

∣

∣

∣

∣

∣

θ̄+=0

+ c.c.

)

,

(302)

where J a (Φi ) are holomorphic functions obeying

∑

a

Ea (Φi ) J a (Φi ) = 0. (303)

It is sometimes useful to write a theory with N = (2, 2) supersymmetry in the lan-
guage of theN = (0, 2) superspace. AnN = (2, 2) vector multiplet V decomposes into
anN = (0, 2) vector multipletU and anN = (0, 2) chiral multipletΣ ′ = Σ |θ−=θ̄−=0.
An N = (2, 2) chiral multiplet & decomposes into an N = (0, 2) chiral multiplet
Φ = &|θ−=θ̄−=0 and an N = (0, 2) Fermi superfield Ψ− = 1√

2
D−&|θ−=θ̄−=0, with

E = 1

2
D̄+D−&

∣

∣

θ−=θ̄−=0 =
1

2

{

D̄+,D−
}

&
∣

∣

θ−=θ̄−=0 = Σ ′Φ. (304)

The kinetic terms decompose naturally, while the F-term contribution specified by the
superpotential W(&) is reduced to a collection of functions J a , one for each &a =
(

Φa, Ψ−,a
)

, with

J a = ∂W
∂Φa

. (305)

The condition (303) is satisfied automatically.

C. Elliptic Genus of N D (0, 2) Theories

We consider the Euclidean path-integral of a two-dimensional N = (0, 2) supersym-
metric theory on a torus T

2, in the presence of a background flat connection for the
flavor symmetry. Let Ta be the Cartan generators of the flavor symmetry group G f . In
the Hamiltonian formalism, the elliptic genus can be defined by [16,17,44,45]

Z (x; q) = TrR(−1)F q HL q̄ HR
∏

a

e2π ixa Ta , (306)
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where the trace is over the Hilbert space of the theory on the spatial circle, with periodic
boundary conditions for fermions. F is the fermion number. q = e2π iτ specifies the
complex structure τ of T 2. HL and HR are the left- and right-moving Hamiltonians,
respectively. Based on the standard argument in [127], the elliptic genus is independent
of q̄ if the theory has a discrete spectrum.4

We consider a two-dimensional N = (0, 2) supersymmetric gauged linear sigma
model which is described by a vector multiplet V with gauge group G of rank r , chiral
multipletsΦi transforming in the representationR (Φi ) of G×G f , and Fermimultiplets
Ψa transforming in the representation R (Ψa) of G × G f . The elliptic genus has been
rigorously derived using the technique of path integral localization [16,17],

Z (x; q) = 1

|WG |
∮

JK
ZV

∏

i

ZΦi

∏

a

ZΨa , (307)

where |WG | is the order of the Weyl group of G, ZV , ZΦi , and ZΨa are the contributions
from V without zero-modes of the Cartan generators, &i , and Ψa , respectively. The
contour integral is evaluated using the Jeffrey–Kirwan residue prescription [58]. In terms
of the Dedekind eta function η(τ) and the Jacobi theta function θ1 ( z| τ),

η(τ) = q
1
24

∞
∏

n=1

(

1− qn) , (308)

θ1 ( z| τ) = i
∑

n∈Z
(−1)n e(2n+1)π izq

1
2

(

n+ 1
2

)2

, (309)

the explicit expressions of ZV , Z&i , and ZΨa are given by

ZV =
(

2πη(τ)2

i

)r r
∏

I=1

dϕI

∏

α∈G

iθ1 (α · ϕ| τ)
η(τ )

, (310)

Z&i =
∏

ρ∈R(&i )

iη(τ)

θ1 (ρ · ζ | τ) , (311)

ZΨa =
∏

ρ∈R(Ψa)

iθ1 (ρ · ζ | τ)
η(τ )

, (312)

where ϕ parametrizes a Cartan subalgebra of G, and ζ includes both ϕ and x . The
function θ1 ( z| τ) has no poles, but there are simple zeros at z ∈ Z + τZ, with residues
of its inverse

1

2π i

∮

z=a+bτ

dz

θ1 ( z| τ) =
(−1)a+beiπτb2

2πη(τ)3
, (313)

where we have used the identity

2πη(τ)3 = ∂zθ1 (0| τ) . (314)

In this paper, we often use the abbreviation

θ (z) ≡ θ1 ( z| τ) . (315)

4 Notice that the elliptic genus can suffer from a holomorphic anomaly for noncompact models. See
[6,84,114] for examples with N = (2, 2) supersymmetry.
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By taking the degenerate limit q → 1 and neglecting an overall x-independent factor,
we can reduce the elliptic genus of a two-dimensional supersymmetric gauge theory to
the Witten index of the one-dimensional supersymmetric quantum mechanics obtained
by the standard dimensional reduction. The contributions of ZV , ZΦi , and ZΨa become

ZV =
r
∏

I=1

dϕI

∏

α∈G

2 sinh

(

βα · ϕ
2

)

(316)

ZΦi =
∏

ρ∈R(Φi )

1

2 sinh
(

βρ·ζ
2

) , (317)

ZΨa =
∏

ρ∈R(Ψa)

2 sinh

(

βρ · ζ
2

)

, (318)

where β is the circumference of S
1. If we further reduce to zero dimension, the partition

function of the corresponding supersymmetricmatrixmodel can be obtainedby replacing

2 sinh
(

βz
2

)

→ z.

D. Jeffrey–Kirwan Residue Formula

The Jeffrey–Kirwan residue formula introduced in [58] gives a prescription for express-
ing multiple contour integrals as a sum of iterated residues.

Let ω be a meromorphic (k, 0)-form on a k-dimensional complex manifold,

ω = A(u)

B(u)
du1 ∧ · · · ∧ duk, (319)

where A(u) and B(u) are two holomorphic functions of k complex variables u =
(u1, · · · , uk). We assume that B(u) is a product of linear factors,

B(u) =
∏

i

(Qi · u + bi ) , (320)

where Qi is the charge vector associated with the singular hyperplane Hi ,

Hi =
{

u ∈ C
n
∣

∣Qi · u + bi = 0
}

. (321)

Using the standard basis
{

e j
}

j=1,··· ,k of R
k ,

e j =
(

0, · · · , 0,
j
1, 0, · · · , k

0

)

, (322)

we can write Qi as

Qi =
k
∑

j=1

Qi, je j , (323)

and

Qi · u =
k
∑

j=1

Qi, j u j . (324)
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Clearly, ω is holomorphic on the complement of Msing = ⋃i Hi . Let M
sing∗ ⊂ Msing

be the set of isolated points where n ≥ k linearly independent singular hyperplanes
meet. For u∗ ∈ M

sing∗ , we denote by Q (u∗) the set of charge vectors of the singular
hyperplanes meeting at u∗,

Q (u∗) = {Qi | u∗ ∈ Hi , i = 1, · · · , n} . (325)

We assume that for each u∗ ∈ M
sing∗ , the hyperplane arrangement is projective, which

requires that the set Q (u∗) is contained in a half-space of R
k . This assumption is auto-

matically obeyed when the hyperplane arrangement is nondegenerate, which means that
the number of hyperplanes meeting at every u∗ ∈ M

sing∗ is exactly k. Then the residue
of ω at u∗ is given by its integral over

∏k
i=1 Ci , where Ci is a small circle around Hi .

We denote the cone spanned by Q1, · · · ,Qk by

Cone (Q1, · · · ,Qk) =
{

k
∑

i=1

λiQi = η

∣

∣

∣

∣

∣

λi > 0

}

. (326)

Let Conesing (Q) be the union of the cones generated by all subsets of Q with k − 1
elements. The space R

k \Conesing (Q) is a union of connected components, and we call
each connected component a chamber. We can specify a chamber by a generic nonzero
vector η ∈ R

k \ Conesing (Q). Then the Jeffrey–Kirwan residue formula states that
∫

ω �
∑

u∗∈Msing∗

JKRes
u=u∗

(Q (u∗) , η) ω, (327)

where the JK-residue operator is defined by the condition

JKRes
u=u∗

(Q (u∗) , η)
du1 ∧ · · · ∧ duk

∏k
i=1 (Qi · (u − u∗))

=
{

1
|det(Q1,··· ,Qk )| , η ∈ Cone (Q1, · · · ,Qk)

0, Otherwise
,

(328)
As η is varied, the JK-residue is locally constant but can jump when η crosses the
boundary of a chamber. In the simplest case of k = 1, we have

JKRes
u=u∗

({q} , η) du

u − u∗
=
{

sign(q), ηq > 0
0, ηq < 0

. (329)
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