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Abstract: Obtaining precise estimates of quantum observables is a crucial step of vari-
ational quantum algorithms. We consider the problem of estimating expectation values
of quantum Hamiltonians, obtained on states prepared on a quantum computer. We pro-
pose a novel estimator for this task, which is locally optimised with knowledge of the
Hamiltonian and a classical approximation to the underlying quantum state. Our es-
timator is based on the concept of classical shadows of a quantum state, and has the
important property of not adding to the circuit depth for the state preparation. We test
its performance numerically for molecular Hamiltonians of increasing size, finding a
sizable reduction in variance with respect to current measurement protocols that do not
increase circuit depths.

1. Introduction

Estimating observables of interest for quantum states prepared on a quantum processor
is a central subroutine in a variety of quantum algorithms. Improving the precision of the
measurement process is a pressing need, considering the fast-paced increase in size of
current quantumdevices.One key application is the energy estimation of complexmolec-
ular Hamiltonians, a staple of variational quantum eigensolvers (VQE) [1–4]. Readout of
quantum information on quantum processors is available only through single-qubit pro-
jective measurements. The outcomes of these single-qubit measurements are combined
to estimate quantum observables described by linear combinations of Pauli operators.
Naively, each Pauli operator can be estimated independently by appending a quantum
circuit composed of one layer of single-qubit gates at the end of state preparation, before
readout.

A series of recent efforts [5–12] has shown that savings in the number of measure-
ments can be obtained for the estimation of complex observables, at the expense of
increasing circuit depths. This increase in circuit depth can defy the purpose of varia-
tional quantum algorithms, which aim to keep gate counts low [13].
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Other strategies, more amenable to execution on near-term devices, have considered
reducing the number ofmeasurements while simultaneously not increasing circuit depth.
These strategies are based on grouping together Pauli operators that can be measured
in the same single-qubit basis. This Pauli grouping approach was introduced in [3]
and explored thoroughly in [14] for chemistry systems. Machine learning techniques
have also recently been used to tackle the measurement problem [15], with no increase
in circuit depth. The machine learning approach is based upon the assumption that
fermionic neural-network states can capture quantum correlations in ground states of
molecular systems [16].

The measurement problem has been considered in the context of predicting collec-
tions of generic observables on reduced density matrices [17–21]. The best asymptotic
scalings up to poly-logarithmic factors are obtained in [17], where it is proposed to char-
acterise a quantum state through randommeasurements; the measurement outcomes are
later used to evaluate expectation values of arbitrary observables.

In this article we introduce an estimator that recovers, in expectation, mean values of
observables on quantum states prepared on quantum computers. The protocol is based
on classical shadows using random Pauli measurements introduced in [17] and referred
to as classical shadows in this present article. We show how sampling from random
measurement bases in the original protocol can be locally biased towards certain bases
on each individual qubit. We name this technique locally-biased classical shadows. We
show how to optimise the estimator’s local bias on each qubit based on the knowledge
of a target observable and a classical approximation of the quantum state, named ref-
erence state. We also prove that this optimisation has a convex cost function in certain
regimes. We benchmark our optimisation procedure in the setting of quantum chemistry
Hamiltonians, where reference states can be obtained from the Hartree–Fock solution,
or multi-reference states, obtained with perturbation theory. We finally compare the
variance of our estimator to previous methods for estimating average values that do not
increase circuit depth, obtaining consistent improvements.

Outline of the paper. Section 2 reviews classical shadows using random Pauli measure-
ments in a notation convenient to this current article. Section 3 provides the construction
of the locally-biased classical shadows and calculates the expectation and variance as-
sociated with the estimator introduced. Section 4 shows how to optimise the estimator.
Section 5 benchmarks our estimator for molecular energies on molecules of increasing
sizes. Section 6 finishes with closing remarks. Appendix A reviews the methods for
molecular energy estimation to which we compare our estimator.

2. Classical Shadows Using Random Pauli Measurements

Classical shadows using random Pauli measurements has been introduced in [17]. This
section reproduces the procedure in a different style. Since we are only concerned with
estimating one specific observable, we do not mention the aspect of a snapshot, nor the
efficient description using the symplectic representation, nor the notion of median of
means.

The problem that we want to address is the estimation of tr(ρO) for a given n-qubit
state ρ and an observable O decomposed as a linear combination of Pauli terms:

O =
∑

Q∈{I,X,Y,Z}⊗n

αQQ (1)
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where αQ ∈ R. Notationally, for a Pauli operator Q as above and for a given qubit
i ∈ {1, 2, . . . , n} we shall write Qi for the i th single-qubit Pauli operator so that Q =
⊗i Qi . We denote the support of such an operator supp(Q) = {i |Qi �= I } and its weight
wt(Q) = | supp(Q)|. An n-qubit Pauli operator Q is said to be full-weight if wt(Q) = n.

This task of estimating tr(ρO) is accomplished with classical shadows of [17] as
described in Algorithm 1. Briefly, one randomly selects a Pauli basis for each of the
n-qubits in which to measure the quantum state; this is irrespective of the operator O .
Then, after measurement, non-zero estimates can be provided for all Pauli operators
which qubit-wise commute with the measurement bases. All other Pauli operators are
implicitly provided with the zero estimator for their expectation values.

We introduce the function from [17, Eq. E28]. For two n-qubit Pauli operators P, Q
define, for each qubit i ,

fi (P, Q) =

⎧
⎪⎨

⎪⎩

1 if Pi = I or Qi = I ;
3 if Pi = Qi �= I ;
0 else.

(2)

and extend this to the multi-qubit setting by declaring f (P, Q) = ∏n
i=1 fi (P, Q).

Also, given a full-weight Pauli operator P , we let μ(P, i) ∈ {±1} denote the eigenvalue
measurement when qubit i is measured in the Pi basis. For a subset A ⊆ {1, 2, . . . , n}
declare

μ(P, A) =
∏

i∈A

μ(P, i) (3)

with the convention that μ(P, ∅) = 1.

Algorithm 1 Estimation of observable via (uniform) classical shadows
for sample s ∈ {1, 2, . . . , S} do

Prepare ρ;
Uniformly at random pick P ∈ {X, Y, Z}⊗n ;
for qubit i ∈ {1, 2, . . . , n} do

Measure qubit i in Pi basis providing eigenvalue measurement μ(P, i) ∈ {±1};
Estimate observable expectation

ν(s) =
∑

Q

αQ f (P, Q)μ(P, supp(Q))

return ν = 1
S

∑
s ν(s).

As shown in [17], the output of this algorithm is an unbiased estimator of the desired
expectation value, that is, E(ν) = tr (ρO).

3. Locally-Biased Classical Shadows

In this section we generalise classical shadows by observing that the randomisation
procedure of the Pauli measurements can be biased in the measurement basis for each
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qubit. We build an estimator based on biased measurements, which in expectation re-
covers tr(ρO). We then proceed to calculate its variance.

As in Sect. 2, we wish to estimate tr(ρO) for a given state ρ and an observable O =∑
Q αQQ. For each qubit i ∈ {1, 2, . . . , n}, consider a probability distribution βi over

{X,Y, Z} anddenote byβi (Pi ) the probability associatedwith eachPauli Pi ∈ {X,Y, Z}.
We write β for the collection {βi }ni=1 and note that β may be considered a probability
distribution on full-weight Pauli operators by associating with P ∈ {X,Y, Z}⊗n the
probability β(P) = ∏

i βi (Pi ).
We generalise the function introduced in Eq. (2). For two n-qubit Pauli operators

P, Q and a product probability distribution β, define, for each qubit i ,

fi (P, Q, β) =

⎧
⎪⎨

⎪⎩

1 if Pi = I or Qi = I ;
(βi (Pi ))−1 if Pi = Qi �= I ;
0 else.

(4)

In this article, we will assume that (βi (Pi ))−1 > 0 in order to avoid ay division-by-zero
edge cases. (Note that such cases are irrelevant when we consider Sect. 4.) We extend
this to the multi-qubit setting by declaring

f (P, Q, β) =
n∏

i=1

fi (P, Q, β). (5)

Algorithm 3 describes an estimator via locally-biased classical shadows. Note that
the (uniform) classical shadows case is retrieved when βi (Pi ) = 1

3 for every qubit
i ∈ {1, 2, . . . , n} and every Pauli term Pi ∈ {X,Y, Z}.

Algorithm 2 Estimation of observable via locally-biased classical shadows
for sample s ∈ {1, 2, . . . , S} do

Prepare ρ;
for qubit i ∈ {1, 2, . . . , n} do

Randomly pick Pi ∈ {X, Y, Z} from βi -distribution;
Measure qubit i in Pi basis providing eigenvalue measurement μ(P, i) ∈ {±1};

Set P = ⊗n
i=1Pi ;

Estimate observable expectation

ν(s) =
∑

Q

αQ f (P, Q, β)μ(P, supp(Q))

return ν = 1
S

∑
s ν(s).

Algorithm 3 recovers the expectation tr(ρO), as shown in the following lemma.

Lemma 1. The estimator ν from Algorithm 3 with a single sample (S = 1) satisfies

E(ν) =
∑

Q

αQ tr(ρQ) and E(ν2) =
∑

Q,R

f (Q, R, β)αQαR tr(ρQR). (6)
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Proof. Let EP denote the expected value over the distribution β(P). Let Eμ(P) denote
the expected value over the measurement outcomes for a fixed Pauli basis P . Using the
fact that β(P) is a product distribution one can easily check that

EP f (P, Q, β) = 1, (7)

EP f (P, Q, β) f (P, R, β) = f (Q, R, β) (8)

for any Q, R ∈ {I, X,Y, Z}⊗n .
Let us say that an n-qubit Pauli operator Q agrees with a basis P ∈ {X,Y, Z}⊗n iff

Qi ∈ {I, Pi } for any qubit i . Note that f (P, Q, β) = 0 unless Q agrees with P . For
any n-qubit Pauli operators Q, R that agree with a basis P one has

Eμ(P)μ(P, supp(Q)) = tr (ρQ) (9)

and

Eμ(P)μ(P, supp(Q))μ(P, supp(R)) = tr (ρQR). (10)

To get the last equality, observe thatμ(P, A)μ(P, A′) = μ(P, A�A′) for any subsets of
qubits A, A′, where A� A′ is the symmetric difference of A and A′. The assumption that
both Q and R agreewith the same basis P implies that supp(Q)�supp(R) = supp(QR).
Now Eq. (10) follows from Eq. (9).

By definition, the expected value in Eq. (6) is a composition of the expected values
over a Pauli basis P and over the measurement outcomes μ(P), that is, E = EPEμ(P).
Using the above identities one gets

E(ν) = EPEμ(P)ν =
∑

Q

αQ tr (ρQ)EP f (P, Q, β) =
∑

Q

αQ tr (ρQ)

Here the second equality is obtained using Eq. (9) and the linearity of expected values.
The third equality follows from Eq. (7). Likewise,

E(ν2) = EPEμ(P)ν
2 =

∑

Q,R

αQαR tr (ρQR)EP f (P, Q, β) f (P, R, β)

=
∑

Q,R

αQαR f (Q, R, β) tr (ρQR).

Here the second equality is obtained using Eq. (10) and observing that that f (P, Q, β)

f (P, R, β) = 0 unless both Q and R agree with P . The third equality follows from
Eq. (8). �	

Recall that in the context of using a quantum processor, we aim to use the random
variable ν to estimate tr(ρO) to some (additive) precision ε. This dictates the number
of samples S required. Specifically, for fixed ρ, O , we require S = O(ε−2 Var(ν(s)))

where Var(ν(s)) is obviously independent of the specific sample s. For future reference,
we record explicitly the variance of ν for a single sample (S = 1). Lemma 1 establishes

Var(ν) =
⎛

⎝
∑

Q,R

f (Q, R, β)αQαR tr(ρQR)

⎞

⎠ − (tr(ρO))2 . (11)

Remark 1. In [17, Proposition 3], the authors aim to upper-bound this variance inde-
pendently of the state ρ. In the uniform setting, this is achieved with an application
of Cauchy-Schwarz and it leads to a bound of 4k‖O‖2∞ where k is the weight of the
operator.
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4. Optimised Locally-Biased Classical Shadows

In this section we show how the locally-biased classical shadows introduced in Sect. 3
can be optimised when one has partial knowledge about the underlying quantum state.
This partial information is obtained efficiently with a classical computation. This is the
case of VQE for molecular Hamiltonians if one initialises the variational procedure
from a reference state, which can be, for example, the Hartree–Fock solution, a generic
fermionic Gaussian state [22], or perturbative Møller–Plesset solutions. Our method
can be also extended to generic many-body Hamiltonians, considering for example the
generation of reference states with semidefinite programming [23]. On a more general
note, the existence of a good reference state is the assumption of all algorithms that
target ground state properties of interacting many-body problems, including quantum
phase estimation.

In this setting, we optimise the probability distributions β = {βi }ni=1 to obtain the
smallest variance on a given reference state. To do this, we consider the variance calcu-
lated in Eq. (11) and extract from it the component which, associated with the reference
state, explicitly depends on the distributionsβ.We proceed to optimise this cost function,
thereby minimising the variance, noting that a negligible restriction of the cost function
that we use leads to a convex optimisation problem. Finally, we use the optimised dis-
tributions β∗ to build molecular energy estimators as defined in Algorithm 3.

To set notation, we introduce a molecular Hamiltonian, H , acting on n qubits. We
write

H =
∑

P∈{I,X,Y,Z}⊗n

αP P (12)

and denote by H0 the traceless part of H .

4.1. Single-reference optimisation. We first consider the case in which the reference
state is a product state of the form 1

2n ⊗n
i=1 (I + mi Pi ) where mi ∈ {±1} and Pi ∈

{X,Y, Z}. This is the case if a VQE targeting a molecular Hamiltonian in the molecular
basis is initialised with the Hartree–Fock state. In this case Pi = Z . Motivated by this,
we use the label “HF” and, for ease of reading, we assume that Pi = Z . However we
remark that the results here can be generalised out of the quantum chemistry domain.

We are given a reference product state ρHF = 1
2n ⊗n

i=1 (I +mi Z) where mi ∈ {±1}.
The variance of the estimator ν is independent of the constant term H − H0. Writing
the variance from Eq. (11) for the state ρHF upon explicit removal of the constant term
reads

Var(ν|ρHF) =
∑

Q �=I⊗n

∑

R �=I⊗n

f (Q, R, β)αQαR tr(ρHFQR) − tr(ρHFH0)
2. (13)

Our objective is to find probability distributions β so as to minimise Eq. (13). The
following proposition explicits the relevant cost function appropriate to this task.

Proposition 1. Given a reference product state ρHF, represented by the logical basis
element {mi }ni=1, the variance associated with Algorithm 3 is minimised upon choosing
β so as to minimise

cost(β) =
∑

(Q,R)∈IZ⊗n

αQαR

∏

i |Qi=Ri �=I

(βi (Qi ))
−1

∏

i |Qi �=Ri

mi (14)
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subject to βi,P ≥ 0 and βi,X + βi,Y + βi,Z = 1 for all i . In the above, the sum is taken
over “influential pairs”:
IZ⊗n = { (Q, R)| Q, R �= I⊗nand f or all i, ei ther Qi = Ri , or {Qi , Ri } = {I, Z}}

(15)

Proof. We must pay attention to only β-dependent terms in Var(ν|ρHF). The simple
structure of ρHF implies, for n-qubit non-identity Pauli operators Q, R,

f (Q, R, β) tr(ρHFQR) =
n∏

i=1

fi (Q, R, β) tr

(
1

2
(I + mi Z)Qi Ri

)

=
n∏

i=1

fi (Q, R, β)δQi ,Ri + mi
(
δQi ,Z δRi ,I + δQi ,I δRi ,Z

)

=
n∏

i=1

δQi ,Ri

(
δQi ,I + (1 − δQi ,I )(βi (Qi ))

−1
)

+ mi
(
δQi ,Z δRi ,I + δQi ,I δRi ,Z

)

The preceding display is independent of β whenever (Q, R) �∈ IZ⊗n . Hence the cost
function captures precisely the component of the variance (when estimating the reference
product state) which is dependent on the probability distributions β. �	

Some remarks are in order.

Remark 2. The cost function of Eq. (14) is not convex. If we however restrict to diagonal
terms from the set of influential pairs, then we obtain the following alternative cost
function, which we refer to as the diagonal cost function:

costdiag(β) =
∑

Q

α2
Q

∏

i∈supp(Q)

(βi (Qi ))
−1 (16)

This diagonal cost function is convex: For fixed Q, the function − logβi (Qi ) is con-
vex, hence so too is

∑
i∈supp(Q)(− log(βi (Qi ))). Exponentiating this result implies∏

i∈supp(Q) βi (Qi )
−1 is convex. The positive linear combination over Pauli operators

Q preserves convexity. In this convex case we are assured that the minimised collection
of distributions provides a global minimum (of the diagonal cost function).

This diagonal cost function makes no reference to the specific single-reference state,
and therefore can be used to find βi which are independent of the underlying quantum
state ρHF. In fact, the diagonal cost function can be derived from Eq. (11) when ρ

is the maximally mixed state. Since the diagonal cost function is convex, we may be
confident that the values for β found numerically are optimal with respect to the cost
function. In the following section, the numerical experiments indicate surprisingly that
the diagonal cost function leads to probability distributions which give very satisfying
results irrespective of the diagonal cost function’s lack of reference to the ground state,
or a state near the ground state. We explain this in Remark 4.

Remark 3. The diagonal cost function can be formulated in the language of geometric
programming [24], while the original cost function is an example of signomial geometric
programming. They can be numerically optimised using standard techniques such as it-
erative updates incorporating closed-form solutions obtained fromLagrangemultipliers.
See Appendix B for more details.
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Remark 4. Weprovide a boundon the original cost function from that on the diagonal cost
function. Set �(Q, R) = |αQ | |αR | ∏

i |Qi=Ri �=I (βi (Qi ))
−1. The diagonal cost function

is
∑

Q �(Q, Q), while the original cost function is at most
∑

Q,R �(Q, R), (the sum is
over only influential pairs in the original cost function). Using that 2xy ≤ x2 + y2 for
real x, y, the following inequality holds

�(Q, R) ≤ �(Q, Q) + �(R, R)

2
. (17)

Summation over all pairs (Q, R) on both sides leads to

∑

Q,R

�(Q, R) ≤ |H0|
∑

Q

�(Q, Q) (18)

where |H0| is the number of traceless terms in the Hamiltonian.
It is perhaps less surprising than one might first expect that the diagonal cost function

performs well for quantum chemistry systems. This is because of the structure of the
problem at hand. For chemistry systems one has that Hamiltonian coefficients corre-
sponding to integrals with fewer orbitals are larger than ones corresponding to many
orbitals. This is because the overlapping spatial region between orbitals decreases with
their number. Considering that in our cost function the Hamiltonian coefficients are
squared, it is not surprising that coefficients corresponding to one-orbital integrals and
two-orbital integrals dominate the total cost.

Remark 5. It is possible to obtain a rough confidence bound on the number of shots
required to get an accurate estimate of tr(ρH) given an unknown ρ in the context of
quantum chemistry. Recall Algorithm 3 samples the state ρ a total of S times and returns
an estimate ν = 1

S

∑
s ν(s). Consider an optimised β∗ according to the diagonal cost

function. Then the single-shot variance of the energy estimator ν(s), given ρ and β∗,
may be bounded

Var(ν(s)|ρ, β∗) ≤
∑

Q,R

f (Q, R, β∗)αQαR tr(ρQR) ≤
∑

Q,R

f (Q, R, β∗)|αQ | |αR |

≤
∑

Q,R

�(Q, R) ≤ |H0| · costdiag(β∗)
(19)

where we have reintroduced the notation of the preceding remark and applied Eq. (18).
Using Chebyshev’s inequality, we can bound the probability that our final estimate ν is
worse than additive-error ε from tr(ρH)

P(|ν − tr(ρH)| ≥ ε) ≤ 1

Sε2
|H0| · costdiag(β∗) (20)

and we recall that |H0| = O(n4) for the quantum chemistry setting described in the
following section.
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4.2. Multi-reference optimisation. Wefinish this section by observing that the technique
of optimising the probability distributions also works for multi-reference frame states
such as fermionic Gaussian states, or perturbative solutions. Such reference states are
important for quantum chemistry simulations far from equilibrium (unlike the Hartree–
Fock reference state which is more appropriate near equilibrium). Specifically, consider
a multi-reference state |ψ〉MR, written in the logical basis

|ψ〉MR =
K∑

k=1

λk

∣∣∣ψ(k)
〉
,

∣∣∣ψ(k)
〉
=

∣∣∣b(k)
1 · · · b(k)

n

〉
(21)

where b(k)
i ∈ {0, 1} are associated with Z -eigenvalues m(k)

i = (−1)b
(k)
i and λk ∈ C are

amplitudes such that |ψ〉MR is normalised. The associated density now reads

ρMR =
∑

k,�

λkλ�ρ
(k,�), ρ(k,�) = ⊗n

i=1

∣∣∣b(k)
i

〉 〈
b(�)
i

∣∣∣ (22)

In the following paragraphs, we calculate an appropriate cost function for this case.
Let us restrict ourselves to the single-qubit setting briefly: ρ(k,�) = ∣∣b(k)

〉 〈
b(�)

∣∣. There
are two cases for ρ(k,�) dependent on whether b(k), b(�) agree or not. If they agree then
ρ(k,�) = 1

2 (I +(−1)b
(k)
Z). If they disagree, then ρ(k,�) = 1

2 (X +(−1)b
(k)
iY ). In a similar

way to the single-reference setting, we need to calculate f (Q, R, β) tr(ρ(k,�)QR). This
is best done by considering the two cases: We introduce the function g when b(k) = b(�)

and obtain

f (Q, R, β) tr(ρ(k,�)QR)

= δQ,R

(
δQ,I + (1 − δQ,I )β

−1
Q

)
+ (−1)b

(k) (
δQ,Z δR,I + δQ,I δR,Z

)

= g(Q, R, β, b(k));

We introduce the function h when b(k) �= b(�) and obtain

f (Q, R, β) tr(ρ(k,�)QR) = (
δQ,XδR,I + δQ,I δR,X

)
+ (−1)b

(k)
i
(
δQ,Y δR,I + δQ,I δR,Y

)

= h(Q, R, b(k)).

We can now return to the multi-qubit setting to write down a cost function which
ought be minimised:

costmulti-ref(β)

=
∑

k,�

λkλ�

∑

Q,R

αQαR

⎛

⎜⎝
∏

i |b(k)
i =b(�)

i

g(Qi , Ri , βi , b
(k)
i )

∏

i |b(k)
i �=b(�)

i

h(Qi , Ri , b
(k)
i )

⎞

⎟⎠

(23)

We leave as future work a thorough investigation of cost functions associated with non-
equilibrium quantum chemistry.
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5. Numerical Experiments on Molecular Hamiltonians

In this section we test numerically the locally-biased classical shadows (LBCS) estima-
tor defined in Algorithm 3 for molecular Hamiltonians. We consider six Hamiltonians
corresponding to different molecules, represented in a minimal STO-3G basis, ranging
from 4 to 16 spin orbitals. (The 8 qubit H2 example uses a 6-31G basis.) We map the
molecular Hamiltonians to qubit ones, using three encodings detailed in [25]. The result
is qubit Hamiltonians defined on up to 16 qubits. The molecular Hamiltonians are de-
fined in the molecular basis. In this basis, the Hartree–Fock state is a computational basis
state. We choose the Hartree–Fock state as our single-reference state, and optimise the
distributions β according to Eqs. (14) and (16) separately. We call the optimisation pro-
cedure of the β according to Eq. (16) diagonal. We then use the optimised β∗ to compute
the variance Eq. (11) on the ground state of the molecular Hamiltonians; the ground state
and the ground energy are obtained by the Lanczos method for sparse matrices. Recall
that, for a fixed accuracy with which one aims to estimate the energy, the variance is
proportional to the number of preparations andmeasurements of the state one is required
to perform. It may therefore be viewed as a measuring stick for the run-time of a VQE
algorithm. We report the results in Table 1. In this table, we compare variances obtained
with our LBCS estimator against other previously known observable estimators that do
not increase circuit depth:

• An estimator based on �1 sampling of the Hamiltonian, detailed in [26,27].
• An estimator which measures together collections of qubit-wise commuting Pauli
operators. Tofind the collections of Pauli operators,we use a largest degree first (LDF)
heuristic [28]. The collections are then sampled according to their Hamiltonian �1

weights.
• Classical shadows as given in [17], which corresponds to the case βi (Pi ) = 1

3 for
any qubit i and Pauli term Pi ∈ {X,Y, Z}.

Details of the first two estimatorsmaybe found inAppendixA.1 For all the estimators,we
report variances exactly computed on the ground states of the Hamiltonians considered.

In all but one experiment of Table 1, we observe that the LBCS estimator outperforms
the other estimators. The one case where the LDF decomposition provides a lower
variance—H2 on a minimal basis—should be considered a curiosity due to the small
qubit count.

The two different cost functions used to optimise the β-distributions provide very
similar variance. This is remarkable considering that the diagonal cost function defined in
Eq. (16) is convex. For any givenmolecule, our numerical analysis indicated that the non-
convex cost function Eq. (14) always converged to a single collection of distributions,
irrespective of the initialised values for the distributions.

Next, we plot in Fig. 1 an optimised distribution β∗. Specifically, we take the example
of H2O on 14 qubits in the Jordan–Wigner encoding. Due to the symmetry [25] where
the first 7 qubits correspond to spin-up orbitals, and the last 7 qubits correspond to
spin-down orbitals, we observe that β∗

i = β∗
i+7 for i ∈ {1, 2, . . . , 7}. Note also that the

probabilities are symmetric in X and Y (which is not the case for the Bravyi–Kitaev
encoding).

Finally, we analyse the role played by the specific fermionic encoding used. For a
restricted set of Hamiltonians, Table 2 reports variances for the three estimators: LDF
grouping; classical shadows; andLBCS,with three different fermion-to-qubit encodings:

1 Code is available upon request.
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Table 1. Variance for various estimators considered in this work

Molecule Qubits Estimator Variance
H2 4 �1 sampling 2.49

LDF grouping 0.402
Classical shadows 1.97
LBCS 1.86
LBCS (diagonal cost function) 1.86

H2 8 �1 sampling 120
LDF grouping 22.3
Classical shadows 51.4
LBCS 17.5
LBCS (diagonal cost function) 17.7

LiH 12 �1 sampling 138
LDF grouping 54.2
Classical shadows 266
LBCS 14.8
LBCS (diagonal cost function) 14.8

BeH2 14 �1 sampling 418
LDF grouping 135
Classical shadows 1670
LBCS 67.6
LBCS (diagonal cost function) 67.6

H2O 14 �1 sampling 4360
LDF grouping 1040
Classical shadows 2840
LBCS 257
LBCS (diagonal cost function) 257

NH3 16 �1 sampling 3930
LDF grouping 891
Classical shadows 14400
LBCS 353
LBCS (diagonal cost function) 353

LBCS is optimised according to Eq. (14), while the diagonal cost function is defined in Eq. (16)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

Probabilities

Qubit

X Y Z

Fig. 1. Probability distributions over the first 7 of 14 qubits for H2O Hamiltonian using the Jordan–Wigner
encoding. The probability distributions have been optimised according to Eq. (16)
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Table 2. Variance for different estimators computed on the ground states of the molecules indicated

Molecule Encoding Variance

LDF grouping Classical shadows LBCS
H2 (4 qubits) JW 0.402 1.97 1.86

Parity 0.193 4.00 0.541
BK 0.193 10.0 0.541

H2 (8 qubits) JW 22.3 51.4 17.7
Parity 38.0 70.8 18.9
BK 38.4 169 19.5

LiH JW 54.2 266 14.8
Parity 85.8 760 26.5
BK 75.5 163 68.0

BeH2 JW 135 1670 67.6
Parity 239 3160 130
BK 197 947 238

H2O JW 1040 2840 258
Parity 2670 6380 429
BK 2090 10,600 1360

LBCS is optimized with the cost function defined in Eq. (16)

Jordan–Wigner; parity; andBravyi–Kitaev.Note that the variances for parity andBravyi–
Kitaev mappings are higher because those mappings generate Pauli distributions that
tend to have more X and Y operators, as opposed to the linear tail of Z operators of the
Jordan–Wigner, against which the distributions β can be easily biased. We do not report
�1 sampling in Table 2, as it is invariant under choice of encoding. Irrespective of the
encoding, the locally biased classical shadows shows a reduction in variance over the
LDF grouping whose collections are sampled according to their 1-norm.

6. Conclusion

This article has considered the measurement problem associated with molecular energy
estimation on quantum computers and has proposed a new algorithm for that problem.
Investigating the principal subroutine present in classical shadows using random Pauli
measurements, we are able to produce a non-uniform version of these shadows, termed
locally-biased classical shadows. These locally biased classical shadows require prob-
ability distributions for each qubit. By solving a convex optimisation problem for a
given molecular Hamiltonian, we find appropriate probability distributions for measur-
ing states which are close to the true ground state of the molecular Hamiltonian. We
benchmark the proposed algorithm on systems up to 16 qubits in size and observe sig-
nificant and consistent improvement over Pauli grouping heuristic algorithms. To claim
this improvement over Pauli grouping heuristic algorithms we have benchmarked our
algorithm against the LDF heuristic. Note that Ref. [14] finds that other heuristics pro-
duce a number of qubit-wise commuting sets that only differ by 10% and are expected
to offer similar performance to the LDF heuristic. Moreover standard Pauli grouping
techniques are based on heuristically solving a computationally hard problem, whereas
our method requires simply solving a convex optimisation problem whose number of
variables is linear in the number of qubits.

Finally, the introduction of such a domain-specific cost function is, to the authors’
knowledge, novel. It is sufficiently general that applications of this idea will also be
relevant in fields unrelated to quantum chemistry.
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Appendix A: Comparative Algorithms for Estimating Molecular Hamiltonians

This appendix provides details for the two algorithms against which we benchmark
locally-biased classical shadows. Recall that we assume that the molecular Hamiltonian
H acts on n-qubits and that a given state ρ is provided and whose energy we aim to
estimate. We write

H =
∑

P∈{I,X,Y,Z}⊗n

αP P (24)

and denote by H0 the traceless part of H . Denote by ‖α‖�1 the �1-norm of the traceless
coefficients, and associate with this norm the following �1-distribution γ over the Pauli
operators:

‖α‖�1 =
∑

P∈{I,X,Y,Z}⊗n\{I⊗n}
|αP | γ (P) = 1

‖α‖�1
|αP | (25)

We expose the dependence of the algorithms on the identity coefficient αI⊗n . This is
because in the practical setting of molecular Hamiltonians considered in this text, the
identity coefficient can be on the order of 10% of ‖α‖�1 . For the �1 sampling, it would
be unwise to prepare ρ only to subsequently measure no qubits. For the largest degree
first setting, it would be unwise to arbitrarily associate the identity operator to one of
the collections of qubit-wise commuting Pauli operators thereby associating the identity
operator’s weight |αI⊗n | to the corresponding collection’s weight and overly favouring
the sampling of said collection.

Recall the notation from Sect. 2. Given a Pauli operator P , we let μ(P, i) ∈ {±1}
denote the eigenvaluemeasurement when qubit i is measured in the Pi basis. For a subset
A ⊆ {1, 2, . . . , n} we write μ(P, A) = ∏

i∈A μ(P, i).

A.1. Ell-1 algorithm. This algorithm was the first algorithm proposed for estimating
energies in the context of variational quantum algorithms [26]. The �1-norm of the
traceless coefficients provides the probability distribution γ .Wemay use this probability
distribution to select a Pauli operator P which dictates the Pauli basis in which to
measure the state ρ, thereby providing an estimate for tr(ρP). Algorithm 4 describes
this procedure precisely.

http://creativecommons.org/licenses/by/4.0/
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Algorithm 3 Estimation of observable via locally-biased classical shadows
for sample s ∈ {1, 2, . . . , S} do

Prepare ρ;
for qubit i ∈ {1, 2, . . . , n} do

Randomly pick Pi ∈ {X, Y, Z} from βi -distribution;
Measure qubit i in Pi basis providing eigenvalue measurement μ(P, i) ∈ {±1};

Set P = ⊗n
i=1Pi ;

Estimate observable expectation

ν(s) =
∑

Q

αQ f (P, Q, β)μ(P, supp(Q))

return ν = 1
S

∑
s ν(s).

For completeness, we record calculations for the expectation and variance of this
estimator. Consider a single shot giving ν. Let EP denote the expected value over the
distribution γ (P) and let Eμ(P) denote the expected value over the measurement out-
comes for a fixed Pauli operator P . Without loss of generality, wemay assume αI⊗n = 0.
Now Eμ(P)μ(P, supp(P)) = tr(ρP) whence

E(ν) = EPEμ(P)ν = EP‖α‖�1 sgn(αP ) tr(ρP) =
∑

P

αP tr(ρP) = tr(ρH). (26)

The variance (for a single sample) can also be calculated:

Var(ν) =
∑

P �=I⊗n

(γP · ‖α‖2
�1

) − tr(ρH0)
2 = ‖α‖2

�1
− tr(ρH0)

2. (27)

A.2. Largest degree first. Consider a Hamiltonian decomposed into K collections
{C (k)}Kk=1 excluding the identity term: H = αI⊗n I⊗n +

∑K
k=1 Hk where Hk =∑

Q∈C(k) αQQ. (Recalling the notation H0 for the traceless part of the Hamiltonian,

we note that H0 = ∑
k Hk .) Suppose that for each collection C (k), the Pauli terms com-

mute qubit-wise: for all Q, R ∈ C (k) and all qubits i , we have [Qi , Ri ] = 0. In this
case, there exists a Pauli operator P(k) of weight n which commutes qubit-wise with
each Pauli in C (k).

Consider also a probability distribution κ over the collections {C (k)}Kk=1. Sampling
from this distribution provides Algorithm 4.

Consider a single sample giving an estimator ν. Similar to the �1 algorithmweobserve
that ν recovers tr(ρH) in expectation. Specifically, for a fixed collection C (k) and hence
a fixed full-weight Pauli operator P(k), let Eμ(P(k)) denote the expected value over the
measurement outcomes associated with P(k). NowEμ(P(k))μ(P(k), supp(Q)) = tr(ρQ)
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Algorithm 4 Energy estimation via �1-distribution over Pauli bases
for sample s ∈ {1, . . . , S} do

Prepare ρ;
Randomly pick P from γ -distribution;
for qubit i ∈ supp(P) do

Measure qubit i in Pi basis providing eigenvalue measurement μ(P, i) ∈ {±1};
Estimate observable expectation

ν(s) = αI⊗n + ‖α‖�1 · sgn(αP ) · μ(P, supp(P))

return ν = 1
S

∑
s ν(s).

whenever Q ∈ C (k) and if we let EC(k) denote the expected value over the distribution
κ(C (k)) we conclude

E(ν) = EC(k)Eμ(P(k))ν = EC(k)
1

κ(C (k))

∑

Q∈C(k)

αQ tr(ρQ) = tr(ρH) (28)

Again, we have assumed without loss of generality that H is traceless.
The variance may be calculated as

Var(ν) =
⎛

⎝
K∑

k=1

1

κ(C (k))

∑

Q,R∈C(k)

αQαR

∏

i∈supp(QR)

tr(ρQR)

⎞

⎠ − tr(ρH0)
2 (29)

An alternative formula reads [3, Appendix A]

Var(ν) =
K∑

k=1

1

κ(C (k))

∑

Q,R∈C(k)

αQαR (tr(ρQR) − tr(ρQ) tr(ρR)) (30)

Our analysis uses the LDF heuristics in order to obtain such a decomposition. Various
heuristics for building decompositions are investigated in [14] for systems up to 36
qubits. The heuristics give numbers of groups that differ by 10% and they conclude LDF
is attractive due to its short runtime. For the LDF decomposition, we first construct a
graph G = (V, E) where:

• vQ ∈ V for all Q �= I⊗n such that αQ �= 0;
• eQ,R ∈ E if {Qi , Ri } = 0 for some qubit i .

Second, the vertices of the graph are sorted in decreasing order of their degrees, and the
smallest available colour is then progressively assigned to each ordered vertex. Colours
correspond to collections inwhich Pauli operators commute qubit-wise. TheLDFheuris-
tics guarantee the number of colours of the graph is at most one plus the degree of the
graph: K ≤ 1 + �(G). With this decomposition constructed, our analysis is done with
the following choice for κ:

κ(C (k)) = ‖α|C(k)‖�1

‖α‖�1
‖α|C(k)‖�1 =

∑

Q∈C(k)

|αQ | (31)

Qiskit [29] provides an implementation of the decomposition procedure.2

2 https://qiskit.org/documentation/_modules/qiskit/aqua/operators/legacy/pauli_graph.html#PauliGraph.
Last accessed on June 6, 2020

https://qiskit.org/documentation/_modules/qiskit/aqua/operators/legacy/pauli_graph.html#PauliGraph
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Appendix B: Optimisation of Cost Functions

In Sect. 4 we introduced two cost functions. Specifically, a non-convex cost function in
Eq. (14) which requires knowledge of the Hamiltonian H and an arbitrary computational
basis state, and a convex “diagonal” cost function in Eq. (16) which requires knowledge
of the Hamiltonian only.

We solve these optimisation problems using the method of iterative updates incor-
porating closed-form solutions obtained with Lagrange multipliers. Specifically given
current values β(t)(P) and update step-size � ∈ (0, 1), we may update iteratively:

β(t+1)(P) = (1 − �)β(t)(P) + �βclosed(P) (32)

where the closed-form equations (detailed below) are obtained by solving the optimiza-
tion of the cost function with Lagrange multipliers to obtain conditions for all βi (Pi )
which must hold at optimality. The closed-form equations for the diagonal cost function
of Eq. (16) are

βi (Pi ) =
∑

Q|Qi=Pi α2
Q

∏
j∈supp(Q) β j (Q j )

−1

∑
Q|Qi �=I α2

Q

∏
j∈supp(Q) β j (Q j )−1

(33)

while for the original cost function of Eq. (14), they read

βi (Pi ) =
∑

(Q,R)∈IZ⊗n |Qi=Ri=Pi αQαR
∏

j |Q j=R j �=I β j (Q j )
−1 ∏

j |Q j �=R j
m j

∑
(Q,R)∈IZ⊗n |Qi=Ri �=I αQαR

∏
j |Q j=R j �=I β j (Q j )−1

∏
j |Q j �=R j

m j
. (34)

We can confirm that if Eq. (32) converges for some t = T and � ∈ (0, 1), then
the values β(T )(P) at convergence are the closed-form equations. This is because by
arranging the terms of the equation, we have

∣∣∣β(T+1)(P) − β(T )(P)

∣∣∣ = �

∣∣∣β(T )(P) − βclosed(P)

∣∣∣ , (35)

where the left-hand side of the above equation approaches zero at the convergence. Also,
at every iterative update the constraints (that β is a product probability distribution) are
always satisfied whenever initialisation occurs with a random collection of probability
distributions. Finally, we point out the use of the update step-size � in Eq. (32) was
introduced in [30] where it is called smoothed updating.
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