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Abstract: We extend both the Hawking–Penrose theorem and its generalisation due to
Galloway and Senovilla to Lorentzian metrics of regularity C1. For metrics of such low
regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor
now is distributional, and on the other hand, unique solvability of the geodesic equation
is lost. To deal with the first issue in a consistent way, we develop a theory of tensor
distributions of finite order, which also provides a framework for the recent proofs of
the theorems of Hawking and of Penrose for C1-metrics (Graf in Commun Math Phys
378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a
further alternative to causal geodesic incompleteness to the theorem, namely a condition
of maximal causal non-branching. The genericity condition is re-cast in a distributional
form that applies to the current reduced regularity while still being fully compatible with
the smooth and C1,1-settings. In addition, we develop refinements of the comparison
techniques used in the proof of the C1,1-version of the theorem (Graf in Commun Math
Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory
are collected in an appendix.

1. Introduction

The classical singularity theorems1 of General Relativity (GR) collect sufficient and
physically reasonable conditions that lead to causal geodesic incompleteness of space-
time, hence to the occurrence of a singularity in the spirit of Roger Penrose’s Nobel
Prize-winning approach [40]. Being rigorous statements in pure Lorentzian geometry,
they were first formulated within the smooth category. As they form a body of essential
results in GR, the quest for low regularity versions of the theorems is eminent and was
already explicitly discussed in [14, Sec. 8.4]. In fact, the (smooth) theorems can be read
as predicting a mere drop of the differentiability of the metric below C2, rather than
incompleteness.

1 See [14, Ch. 8], [21, Ch. 9], [46–48] for extensive treatments.
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However, only with the rather recent advent of systematic studies in low regularity
GR [6] and, in particular, causality theory [5,24,31,41], a rigorous extension of the
singularity theorems for metrics below the C2-class became feasible, cf. [46, Sec. 6.2].
This applies first of all to metrics of regularity C1,1, which model situations where the
matter variables possess finite jumps. Indeed the Hawking, the Penrose, and, finally,
the Hawking-Penrose theorem were proven in this regularity [8,25,26]. These results
rule out that a smooth spacetime that is incomplete by the classical theorems, can be
extended to a complete C1,1-spacetime. Also, they imply that the spacetime either is
incomplete or the differentiability of the metric is below C1,1, and consequently the
curvature becomes unbounded.

Technically, inC1,1 the exponential map is still available [23,31] and the curvature is
still locally bounded,which allows for a natural extension of the energy and the genericity
conditions. However, the curvature tensor is only defined almost everywhere, which
forbids the use of Jacobi fields and conjugate points, both essential tools in the classical
proofs. Instead one uses regularisation techniques which allow one to derive weakened
versions of the energy conditions for approximating smooth metrics with controlled
causality. Using careful comparison techniques for the (matrix) Riccati equation, it is
then possible to show that these (still) lead to the occurrence of conjugate or focal points
along causal geodesics for the approximating metrics. This in turn forces the geodesics
of the C1,1-metric to stop maximising. Similarly, a natural extension of the initial and
the energy conditions leads to the formation of a trapped set. This, together with an
extension of the causal parts of the classical proofs, allows one to finally derive the
results.

The next step in lowering the regularity assumptions was undertaken byGraf [7], who
extended the Hawking and the Penrose theorems to C1-metrics, with the Gannon-Lee
theorem following in [43].C1-regularity is at themoment the lowest possible classwhere
classical singularity theorems have been established, and in this paper we complete this
effort by proving the most refined of these statements, namely the Hawking-Penrose
theorem.

In this regularity class one faces the following added severe complications arising
from the fact that the Levi-Civita connection is only continuous:

(a) The curvature is no longer locally bounded, but is merely a distribution of order one.
(b) The initial value problem for the geodesic equation is solvable, but not uniquely so.
(c) The exponential map is no longer defined.

The first item is especially relevant when formulating the energy conditions. While
the strong energy condition can be extended in a straightforward manner, a formulation
of the null energy condition is more subtle, cf. [7, Sec. 5], see also Sect. 2.3, below. The
genericity condition needed for the Hawking-Penrose theorem is still more delicate.
Actually it turns out to be necessary to apply the Ricci tensor to vector fields constructed
via parallel transport, which means that they are merely of C1-regularity, see Defini-
tion 2.15. This can only be done since the curvature is a distribution of order one, and
we present the required distributional setting in Sect. 2.1, below. Whereas in the C1,1-
context the use of distributional methods could be avoided, it becomes essential in the
present work, and at the same time has the benefit of providing a global framework also
for the earlier results by Graf [7] on which we build.

Then,whilewe canuse theweakenedversions of the strong andnull energy conditions
for approximating smooth metrics derived in [7] (employing a refined version of the
Friedrichs Lemma), we have to derive from the distributional genericity condition an
appropriate weakened version for smooth approximations that allows us to employ an
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extension of the Riccati comparison techniques developed in [8], see Lemmas 2.17, and
2.18 . The key technique of regularisation by smooth metrics with adapted causality as
put forward in [5] is recalled in Sect. 2.2.

The first issue connected to item (b) is that it necessitates a decision on how to
extend the notion of geodesic completeness, and following [7] we say that a spacetime
is complete if every inextendible solution to the geodesic equation is complete (rather
than merely demanding only one complete solution for any choice of initial data).

Next, item (b) together with item (c) forbids the use of an essential argument in the
context of approximating maximising causal geodesics by maximising causal geodesics
of the approximating metrics. This issue has been solved in [7, Sec. 2] in the globally
hyperbolic case. In the context of the present work, however, we have to establish more
general results, see Sect. 3. In fact, we have to introduce an additional assumption,
namely a non-branching condition for maximising causal geodesics (Definition 3.1),
to derive the corresponding approximation results in Proposition 3.4. Here it is also
essential to apply a classical ODE result (Proposition 2.5), which we reformulate for
our purpose in Corollary 2.6. Moreover, since the interrelation between causal geodesics
(i.e., solutions of the geodesic equation) and maximising curves becomes more subtle
below C1,1 [16,42], we rely in particular on the fact that maximising causal curves are
indeed (unbroken) geodesics and hence C2-curves [27,43].

The new non-branching assumption is well motivated by similar conditions used in
metric geometry, where due to the lack of a differentiable structure the geodesic equation
is not available. Also a null version of the condition was essential in the proof of the
C1-Gannon-Lee theorem, see [43, Sec. 3]. Moreover it adds a novel facet to the inter-
pretation of the C1-version of the theorem: It predicts either geodesic incompleteness or
branching of maximising causal geodesics, with both alternatives physically signifying
a catastrophic event for the observer corresponding to the geodesic. Of course, there
is the alternative that the regularity of the metric drops below C1, which renders the
curvature a distribution of higher order. Again, the result also forbids the extension of
the spacetime to a complete one of regularity C1 without (maximal causal) geodesic
branching. This once more complements the recent C0-inextendibility results of [9,45].

Next we briefly discuss the further prospects of low-regularity singularity theorems.
Concerning the causality part of the results it is expected that they extend to C0,1-
metrics2, while some features of causality theory fail below this class [5,12]. Neverthe-
less, the causal core of some of the singularity theorems has been established in the very
general setting of closed cone structures, see [35, Sec. 2.15].

On the analytic side, already in C0,1 one faces the problem that the right hand side
of the geodesic equation is merely locally bounded and one would have to resort to
non-classical solution concepts. Also another analytical technique at the core of the ar-
guments, i.e. the Friedrichs Lemma which is used to go from the distributional energy
conditions of the singular metric to useful surrogate conditions for the smooth approxi-
mations, appears to be sharp, see [7, Lem. 4.8] for the currently most advanced version.
This is actually a long way from the largest possible class where the curvature can be
(stably) defined in an analytical (distributional) way, i.e. H1 ∩ L∞ locally [11,28,50].
However, the quest is there to at least go into the direction of regularity classes more
closely linked to the classical existence results for the field equations, Hs locally for
s > 5/2, or to current formulations of cosmic censorship, i.e. the connection lying
locally in L2.

2 A class for which Hawking and Ellis [14, p. 268, 287] still speculate the singularity theorems to hold.
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Very recently, also synthetic formulations of the singularity theorems have appeared:
In [1], Lorentzian length spaces that are warped products are studied and a Hawking
singularity theorem is derived from suitable sectional curvature bounds (implying Ricci
curvature bounds in such geometries), based on triangle comparison. Moreover, Caval-
letti andMondino prove a version of Hawking’s singularity theorem in Lorentzianmetric
measure spaces, where Ricci curvature bounds are implemented usingmethods from op-
timal transport [4]. However, it remains unclear to date how these results precisely relate
to the analytical approach to low regularity pursued in this work.

The Hawking-Penrose theorem classically comes in a causal version [17, p. 538,
Thm.], which asserts the incompatibility of the following three conditions for a C2-
spacetime (M, g): chronology, the fact that every inextendible causal geodesic stops
maximising, and the existence of a (future or past) trapped set. The analytic main result
is then a corollary [17, Sec. 3, Cor.] which collects sufficient conditions (energy and
genericity conditions, and initial conditions) to derive the above incompatible items
under the assumption of causal geodesic completeness. We will generally follow this
path, but prove a more general version of the theorem due to Galloway and Senovilla
[10], which adds the existence of a trapped submanifold of arbitrary codimension to the
list of initial conditions.

Our version of the causal result is Theorem 6.2 and, for the sake of completeness and
for the convenience of the reader we collect all results fromC1-causality theory3 needed
here (and elsewhere) in Appendix A. The main result is then Theorem 6.3. The results
needed to infer from its analytic conditions (the distributional energy and genericity
conditions) and the non-branching assumptions the inexistence of lines are proven in
Sect. 4. The existence of a trapped set is derived from the various sets of initial conditions
(and the energy conditions) in Sect. 5. Finally, some technical results on extending vector
fields in C1-spacetimes are collected in Appendix B. They allow us to put to use the
distributional genericity condition in the context of regularisations.

To conclude this introduction, we fix the notations and conventions used through-
out the paper. By a manifold M we will mean a smooth, connected, second countable
Hausdorff manifold of dimension n (with n ≥ 3). When such an M is endowed with a
Lorentzian metric g of regularity C1 of signature (−,+ . . . ,+) and is time-oriented via
a smooth timelike vector field we call it a C1-spacetime (hence lowering the regularity
will always apply to the spacetime metric only, not to the underlying manifold). The
Levi-Civita connection of a smooth or C1-spacetime will be denoted by ∇ (for its dis-
tributional definition in the C1-case, see the next section). We will always assume that
M is also endowed with a smooth (complete, background) Riemannian metric h with
associated Riemannian distance function dh and norm ‖ ‖h which we use to estimate
tensor fields. Since all such estimates will be on compact sets only, they are independent
of the choice of h.

A curve γ : I → M is called timelike (causal, null, future or past directed) if it
is locally Lipschitz and γ̇ (t) is timelike (causal, null, future or past directed) almost
everywhere. Concerning causality theory we use standard notation, cf. e.g., [34,39].
Thus p � q (resp. p ≤ q) means that there exists a future directed timelike (resp.
causal) curve from p to q, I +(A) := {q ∈ M : p � q for some p ∈ A} and J+(A) :=
{q ∈ M : p ≤ q for some p ∈ A}. These definitions do not change if one defines the
causality relations via piecewise smooth curves [24,31]. The Lorentzian distance (or
time-separation function) associated to a Lorentzian metric g will be denoted by dg .
A C1-spacetime (M, g) is globally hyperbolic if it is causal (i.e., contains no closed

3 It should be mentioned that these results all follow from the more general approaches of [5,35,41].
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causal curves) and J (p, q) := J+(p) ∩ J−(q) is compact for all p, q ∈ M . A Cauchy
hypersurface in (M, g) is a closed acausal set that is met by each inextendible causal
curve.

For the Riemann curvature tensor we use the convention R(X,Y )Z = [∇X ,∇Y ]Z −
∇[X,Y ]Z and the Ricci tensor is given by Ric(X,Y ) = ∑n

i=1〈Ei , Ei 〉〈R(Ei , X)Y, Ei 〉
(again we refer to the next section for a distributional interpretation in the case of C1-
metrics). Here (Ei )

n
i=1 is a (local) orthonormal frame field, while by (ei )ni=1 we will

denote frames in individual tangent spaces TpM . For an embedded submanifold N of M
of codimension m we define the second fundamental form by II(V,W ) = nor(∇VW )

and the shape operator derived from a normal unit field ν by S(X) = ∇Xν. Using (2.13)
below it follows that for g ∈ C1 and V,W ∈ C1, II(V,W ) is continuous.

For g smooth (resp. C1), 1 < m < n and S a smooth (resp. C2) spacelike (n − m)-
dimensional submanifold let e1(q), . . . , en−m(q) be an orthonormal basis for Tq S, vary-
ing smoothly (resp. C1) with q in a neighborhood (in S) of p ∈ S. Then HS :=
1

n−m

∑n−m
i=1 II(ei , ei )denotes themeancurvature vectorfieldof S, andkS(v) := g(HS, v)

the convergence of v ∈ T M |S . For g in C1, both HS and kS are continuous. A closed
spacelike submanifold S is called (future) trapped if for any future-directed null vector
ν ∈ T S⊥ the convergence kS(ν) is positive, or equivalently that the mean curvature
vector field HS is past pointing timelike on S.

One final convention we shall require is that of tensor classes (cf. [21, Sec. 4.6.3]):
Given a causal geodesic γ in aC1-spacetime (M, g), we set [γ̇ (t)]⊥ := (γ̇ (t))⊥/Rγ̇ (t).
For γ null, [γ̇ (t)]⊥ is an (n − 2)-dimensional subspace of the hypersurface (γ̇ (t))⊥.
On the other hand, for γ timelike, [γ̇ (t)]⊥ equals (γ̇ (t))⊥. To obtain a unified notation,
throughout the paper we will denote the dimension of [γ̇ (t)]⊥ by d, which amounts to
setting d = n − 2 in the null case and d = n − 1 in the timelike case. Furthermore, we
set [γ̇ ]⊥ = ⋃

t [γ̇ (t)]⊥. Then for every normal tensor field A along γ we obtain a well-
defined tensor class [A] along γ , as well as a well-defined tensor class representing the
induced covariant derivative∇γ̇ . We then set [ Ȧ] = [∇γ̇ A]. The metric g|[γ̇ ]⊥ is positive
definite in both the null and the timelike case. For smooth metrics, the curvature (or tidal
force) operator is given by [R](t) : [γ̇ (t)]⊥ → [γ̇ (t)]⊥, [v] �→ [R(v, γ̇ (t))γ̇ (t)].

2. Distributional Curvature of C1-Spacetimes

2.1. Curvature tensors of C1-metrics. In what follows we discuss the general distribu-
tional framework in which to understand the curvature quantities associated to metric
tensors (of arbitrary signature) of regularity below C2, as is required for our further
analysis. The general mathematical framework goes back to [29], while [11] provided
the first study specific to GR. We mainly follow [28], cf. also [13,49], but put a special
emphasis on metrics of regularity C1 and distributions of finite order.

As in [13, Sec. 3.1], for k ∈ N0 ∪ {∞} we denote by Vol(M) the volume bundle
over M , and by �k

c (M,Vol(M)) the space of compactly supported one-densities on M
(i.e., sections of Vol(M)) that are k-times continuously differentiable. Then the space of
distributions of order k on M is the topological dual of �k

c (M,Vol(M)),

D′(k)(M) := �k
c (M,Vol(M))′.

For k = ∞ we omit the superscript (k). Clearly there are topological embeddings
D′(k)(M) ↪→ D′(k+1)(M) ↪→ D′(M) for all k. As we shall see, all curvature quantities
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of C1-metrics are distributional tensor fields of order 1. The space of distributional
(r, s)-tensor fields of order k is defined as

D′(k)T r
s (M) ≡ D′(k)(M, T r

s M) := �k
c (M, T s

r (M)⊗ Vol(M))′. (2.1)

By [13, 3.1.15],

D′T r
s (M) ∼= D′(M)⊗C∞(M) T r

s (M) ∼= LC∞(M)(�
1(M)r × X(M)s;D′(M)).(2.2)

This algebraic isomorphism ultimately rests on the fact that the C∞(M)-module of
C∞-sections �(M, F) in any smooth vector bundle F → M is finitely generated and
projective, which allows one to apply [3, Ch. II §4.2, Prop. 2]. These properties persist
if we consider �Ck (M, F) as a Ck(M)-module for any finite k, so we also have

D′(k)T r
s (M) ∼= D′(k)(M)⊗Ck (M) (T r

s )Ck (M)

∼= LCk (M)(�
1
Ck (M)r × XCk (M)s;D′(k)(M)).

(2.3)

In other words, distributional tensor fields of order k act asCk-balancedmultilinearmaps
on one forms and vector fields of regularity Ck to give a scalar distribution of order k.
For finite k, the multiplication Ck(M) × D′(k)(M) → D′(k)(M) is jointly continuous
(w.r.t. the strong topology), whereas for k = ∞ it is only hypocontinuous [20, p. 362],
but still jointly sequentially continuous [37, p. 233] since C∞(M) is Fréchet, hence
barrelled. The corresponding continuity properties therefore also hold for the tensor
operations introduced above. The isomorphisms (2.2), (2.3) are not topological, but still
bornological by [36, Thm. 15] (which remains valid for spaces of Ck-sections with k
finite).

Smooth, and in fact even L1
loc-tensor fields are continuously and densely embedded

via

T r
s (M) ↪→ D′(k)T r

s (M)

t �→ [(θ1, . . . , θr , X1, . . . , Xs) �→ [ω �→
∫

M
t (θ1, . . . , θr , X1, . . . , Xs)ω]].

Here, ω is a one-density. If M is orientable, densities can be canonically identified with
n-forms. The fact that T r

s (M) is dense in D′(k)T r
s (M) uniquely fixes all the operations

on distributional tensor fields to be introduced below in a way compatible with smooth
pseudo-Riemannian geometry.

For any t ∈ T r
s (M) there is a unique extension that accepts one distributional argu-

ment. E.g., if θ̃1 ∈ D′T 0
1 (M), then since t ( . , θ2, . . . , Xs) ∈ X(M) we may set

t (θ̃1, θ2, . . . , Xs) := θ̃1(t ( . , θ2, . . . , Xs)) ∈ D′(M), (2.4)

and analogously for the other slots.

Definition 2.1. A distributional connection is a map ∇ : X(M) × X(M) → D′T 1
0 (M)

satisfying for X, X ′,Y,Y ′ ∈ X(M) and f ∈ C∞(M) the usual computational rules:
∇ f X+X ′Y = f∇XY +∇X ′Y ,∇X (Y +Y ′) = ∇XY +∇XY ′,∇X ( f Y ) = X ( f )Y + f∇XY .
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Using (2.4) any distributional connection can be extended to the entire tensor algebra,
i.e., to a map ∇ : X(M)× T r

s (M) → D′T r
s (M), e.g. for 	 ∈ �1(M) we set

(∇X	)(Y ) := X (	(Y )) −	(∇XY ) (X,Y ∈ X(M)). (2.5)

Let G be any of the spaces Ck (0 ≤ k) or L p
loc (1 ≤ p), then we call a distributional

connection a G-connection if ∇XY is a G-vector field for any X,Y ∈ X(M). A partic-
ularly important case are L2

loc-connections since they form the largest class that allows
for a stable definition of the curvature tensor in distributions, cf. [11,28,49].

Using a local frame one easily sees that by virtue of the respective computational
rules any G-connection can be (uniquely) extended to a map ∇ : XF (M)×XH(M) →
XG(M), provided that F andH are function spaces such that F · G ⊆ G, DH ⊆ G, and
H · G ⊆ G. Hence, in particular, each L2

loc-connection extends in this way to a map

∇ : XC0(M)× XC1(M) → XL2
loc

(M). (2.6)

Moreover, by a similar reasoning, G-connections allow one to insert even less regular
vector fields in the first and second slot at the price of a less regular outcome. In particular,
any L2

loc-connection can be extended to a map

∇ : X(M)× XL2
loc

(M) → D′T 1
0 (M). (2.7)

Using this extension, we have [28, Def. 3.3]:

Definition 2.2. The distributional Riemann tensor of an L2
loc-connection ∇ is the map

R : X(M)3 → D′T 1
0 (M),

R(X,Y, Z)(θ) ≡ (R(X,Y )Z)(θ) := (∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z)(θ)

for X,Y, Z ∈ X(M) and θ ∈ �1(M),

If Fi is a local frame in X(U ) and F j ∈ �1(U ) its dual frame, then the Ricci tensor
corresponding to ∇ is given by

Ric(X,Y ) := (R(X, Fi )Y )(Fi ) ∈ D′(U ) (X,Y ∈ X(U )). (2.8)

Recall the Koszul formula for the Levi-Civita connection of a smooth metric g on M :

2g(∇XY, Z) = X (g(Y, Z)) + Y (g(Z , X)) − Z(g(X,Y ))

− g(X, [Y, Z ]) + g(Y, [Z , X ]) + g(Z , [X,Y ]) =: F(X,Y, Z)
(2.9)

Focusing now on the case at hand in this work, suppose that g is merelyC1 (still allowing
arbitrary signature). Then F(X,Y, Z) is a well-defined element of C0(M), and

∇

XY := Z �→ 1

2
F(X,Y, Z) ∈ �1

C0(M) ⊆ D′T 0
1 (M) (2.10)

defines the distributional Levi-Civita connection of g [28, Def. 4.2]. Note that this is not
(yet) a distributional connection in the sense of Definition 2.1 since it is of order (0, 1)
instead of (1, 0). In addition to the standard product rules it also possesses the properties
(corresponding to [39, Thm. 3.11])

∇

XY − ∇


Y X = [X,Y ]
, i.e., (∇

XY −∇


Y X)(Z) = g([X,Y ], Z),

X (g(Y, Z)) = (∇

XY )(Z) + (∇


X Z)(Y )
(2.11)
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for all X,Y, Z ∈ X(M). These equalities hold distributionally, hence also in C0.
In order to obtain an L2

loc-connection from ∇
 (which in turn will allow us to define
the curvature tensors we require) we need to raise the index via g, setting

g(∇XY, Z) := (∇

XY )(Z) (X,Y, Z ∈ X(M)). (2.12)

This defines a continuous vector field ∇XY , hence even a C0-connection. More gen-
erally, by [28, Sec. 4] this procedure yields an L2

loc-connection even for the significantly
larger Geroch-Traschen class of metrics (g ∈ H1

loc ∩ L∞loc and locally uniformly non-
degenerate).

The Riemann tensor of g ∈ C1 is now given by Definition 2.2. Furthermore, since
in this case ∇ is a C0-connection, it follows that (R(X,Y )Z)(θ) ∈ D′(1)(M), and
consequently, R ∈ D′(1)T 1

3 (M). Indeed by the same reasoning that led to (2.6), (2.7)
we may extend the C0-Levi-Civita connection of g to a map

∇ : XC0(M)× XC1(M) → XC0(M), and ∇ : XC1(M)× XC0(M) → D′(1)T 1
0 (M),

(2.13)

respectively. Here, the second equation shows that the term ([∇X ,∇Y ]Z)(θ) yields an
order one distribution, while (∇[X,Y ]Z)(θ) ∈ C0 since ∇ is a C0-connection.

For W, X,Y, Z ∈ X(M) we define R(W, X,Y, Z) ∈ D′(1)(M) by

R(W, X,Y, Z) := X (g(W,∇Y Z)) − Y (g(W,∇X Z))

− g(∇XW,∇Y Z) + g(∇YW,∇X Z) − g(W,∇[X,Y ]Z).

Using (2.4), (2.7) and (2.11) it is straightforward to check that cf. [28, Rem. 4.5]

R(W, Z , X,Y ) = g(W, R(X,Y )Z).

Alternatively, one may verify this identity in local coordinates using the fact that there
is a well-defined multiplication of distributions of first order with C1-functions.

The Ricci tensor of a C1 metric g is given by (2.8), hence, in particular, is again
a distributional tensor field of order 1. Note that by (2.3) this allows us to apply it to
C1-vector fields, which will be essential in the context of the genericity condition below.
Similarly, since the Riemann tensor, again by (2.3), acts on C1-vector fields, we may
in particular use g-orthonormal frames (which generically are only C1) to calculate the
Ricci tensor, which is also vital below. Explicitly, (2.8) holds for Fi a g-orthonormal
frame and Fi its g-dual. All these facts can alternatively be derived directly from the
extension of ∇ in (2.13).

Again, by the same observations, we have that the scalar curvature S is a distribution
of order 1 (this answers a concern from [7, Sec. 3.2]) and that the standard local formulae
hold in D′(1):

Rm
i jk = ∂ j�

m
ik − ∂k�

m
i j + �m

js�
s
ik − �m

ks�
s
i j ,

Rici j = Rm
imj ,

S = Ricii .

This shows that the local definitions given in [7, (3.2),(3.3)] are compatible with the
global approach developed here.
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2.2. Regularisation. As in previous works on the generalisation of singularity theorems
to metrics of differentiability below C2 [7,24–26], an essential tool in our approach
will be suitable regularisations, both of the metrics themselves and of the derived dis-
tributional curvature quantities. A general regularisation scheme based on chart-wise
convolution with a mollifier ρ ∈ D(B1(0)),

∫
ρ = 1, ρ ≥ 0 (cf. [13, 3.2.10], [24, Sec.

2], [7, Sec. 3.3]) is as follows: Cover M by a countable and locally finite family of
relatively compact chart neighbourhoods (Ui , ψi ) (i ∈ N). Let (ζi )i be a subordinate
partition of unity with supp(ζi ) ⊆ Ui for all i and choose a family of cut-off functions
χi ∈ D(Ui ) with χi ≡ 1 on a neighbourhood of supp(ζi ). Finally, for ε ∈ (0, 1] set
ρε(x) := ε−nρ

( x
ε

)
. Then denoting by f∗ (respectively f ∗) push-forward (resp. pull-

back) of distributions under a diffeomorphism f , for any T ∈ D′T r
s (M) consider the

expression

T �M ρε(x) :=
∑

i

χi (x) ψ∗
i

((
ψi ∗(ζi · T )

) ∗ ρε

)
(x). (2.14)

Here,ψi ∗(ζi ·T ) is viewed as a compactly supported distributional tensor field onRn , so
componentwise convolution with ρε yields a smooth field on R

n . The cut-off functions
χi secure that (ε, x) �→ T �M ρε(x) is a smooth map on (0, 1] × M . For any compact
set K � M there is an εK such that for all ε < εK and all x ∈ K (2.14) reduces to a
finite sum with all χi ≡ 1 (hence to be omitted from the formula), namely when εK is
less than the distance between the support of ζi ◦ ψ−1

i and the boundary of ψi (Ui ) for
all i with Ui ∩ K �= ∅.

Just as is the case for smoothing via convolution in the local setting,T �Mρε converges
to T as ε → 0 in D′T r

s , and indeed in C
k
loc or W

k,p
loc (p < ∞) if T is contained in these

spaces [7, Prop. 3.5].
For a givenC1 Lorentzianmetric gwewill in addition require concrete regularisations

that are adapted to the causal structure induced by g. This construction goes back to
Chrusciel and Grant [5, Prop. 1.2], cf. also [24, Prop. 2.5]. The version we will use is
[7, Lem. 4.2, Cor. 4.3]:

Lemma 2.3. Let (M, g) be a C1-spacetime. Then for any ε > 0 there exist smooth
Lorentzian metrics ǧε, ĝε on M, time orientable by the same timelike vector field as g,
and satisfying:

(i) ǧε ≺ g ≺ ĝε for all ε.
(ii) ǧε and ĝε converge to g in C1

loc as ε → 0.
(iii) ǧε − g �M ρε → 0 in C∞

loc and for any K � M there exist cK > 0 and ε0(K ) such
that ‖ǧε − g �M ρε‖∞,K ≤ cK ε and ‖g − g �M ρε‖∞,K ≤ cK ε for all ε < ε0.
An analogous statement holds for ĝε as well as for the inverse metrics g−1, (ǧε)

−1

and (ĝε)
−1.

In this work we will generally use ǧε, ĝε to denote the regularisations of Lemma 2.3,
which are of utmost importance throughout.

Next we recall the following essential result on convergence of the curvature under
regularisations, which is a special case of several so-called stability results, see [11,
Thm. 2], [28, Thm. 4.6], [50, Thm. 5.1].

Lemma 2.4. Let (M, g) be a C1-spacetime, and let gε be either ǧε or ĝε. Then we have
for the Riemann and the Ricci tensor

R[gε] → R[g] and Ric[gε] → Ric[g] distributionally. (2.15)

In particular, the Riemann and the Ricci tensor possess the usual symmetries.



1152 M. Kunzinger, A. Ohanyan, B. Schinnerl, R. Steinbauer

We will frequently need the following result from ODE theory (cf. [15, Ch.2, Thm.
3.2]), which we will mainly use in the context of regularisation given below in Corol-
lary 2.6.

Proposition 2.5. Let f and fm, m ∈ N be continuous functions on an open set E ⊆
R×R

n with fm → f in C0
loc. Let ym = ym(t) be a solution to the initial value problem

y′m(t) = fm(t, ym(t)), y′m(tm) = ym0

with data (tm, ym0) ∈ E and maximal interval of existence (ω−
m , ω+

m). Suppose that the
sequence of initial data converges,

(tm, ym0) → (t0, y0) ∈ E .

Then there exist a solution y = y(t) for the initial value problem

y′(t) = f (t, y(t)), y(t0) = y0,

defined on a maximal interval (ω−, ω+), and a subsequence ml with the property that
for any s1 < s2 with (s1, s2) ⊆ (ω−, ω+) we have (s1, s2) ⊆ (ω−

ml
, ω+

ml
) for all large l,

and yml → y in C1
loc(ω

−, ω+).4 In particular,

lim sup
m

ω−
m ≤ ω− < ω+ ≤ lim inf

m
ω+
m .

We will mostly use the previous result to conclude that gε-geodesics, where gε ∈
{ǧε, ĝε}, converge uniformly on compact intervals to a g-geodesic:

Corollary 2.6. Let (M, g) be a C1-spacetime and let gm = ǧεm or gm = ĝεm with
εm → 0. Let γm : (am, bm) → M be inextendible gm-geodesics. Suppose that γm(t0) →
p ∈ M and γ̇m(t0) → v ∈ TpM,where t0 ∈ ⋂

(am, bm). Then there exist an inextendible
g-geodesic γ : (a, b) → M with γ (t0) = p, γ̇ (t0) = v and a subsequence ml such
that whenever (s1, s2) ⊆ (a, b), we have (s1, s2) ⊆ (aml , bml ) for all large l and γml

converges in C2
loc(a, b) to γ . Moreover,

lim sup
m

am ≤ a < b ≤ lim inf
m

bm .

Proof. As this is a local statement, we may assume M = R
n . We rewrite the geodesic

equations for gm as a first order initial value problem (with �m the Christoffel symbols
of gm) and 1 ≤ i ≤ n:

γ̇ i
m(t) = ηim(t),

η̇im = −(�m)ijk(γm(t))η j
m(t)ηkm(t),

γ i
m(t0) = pim,

ηim(t0) = vim .

We define the continuous functions fm : R2n → R, fm(x, y) := (y,−(�m)ijk(x)y
j yk),

and similarly f : R2n → R, f (x, y) := (y,−� jk(x)y j yk). Then fm → f uniformly
on compact subsets of R2n , and by assumption (pm, vm) → (p, v) ∈ R

2n . The exis-
tence of an inextendible g-geodesic sublimit γ of the sequence γm now follows from
Proposition 2.5, and the C2

loc-convergence follows suit. ��
4 In [15, Ch.2, Thm. 3.2], convergence is only stated in C0

loc, but inserting this into the equivalent integral
equations immediately yields the claim as given here.



The Hawking–Penrose Singularity Theorem 1153

In the case of only future or past inextendibility, an obvious analogue of Corollary 2.6
holds.

Remark 2.7. (Parallel transport) Under the assumptions of Corollary 2.6, let wm ∈
Tγm (t0)M , wm → w ∈ TpM . Then since the ODEs governing parallel transport are
linear, there are unique smooth vector fields Wm along γm that are global solutions of
the corresponding initial value problem, and by the standard results on continuous de-
pendence of solutions on the right hand side and the data, they converge in C1

loc to the
unique C1-vector field W along γ resulting from g-parallel transport of w along γ .

2.3. Energy conditions. Let us briefly recall the timelike and null energy conditions for
C1-spacetimes. They are formulated in a way so that they imply corresponding condi-
tions for the curvatures of approximating metrics. If the metric is C1,1 or better, then
the energy conditions presented here are equivalent to the usual pointwise (or pointwise
a.e.) energy conditions. We follow [7, Sec. 3-5], to which we also refer for proofs.
We startwith the timelike energy condition,whosedistributional generalisation is straight-
forward, cf. [7, Def. 3.3].

Definition 2.8 (Distributional timelike energy condition). Let (M, g) be aC1-spacetime.
We say that (M, g) satisfies thedistributional timelike energy condition if for any timelike
X ∈ X(M), Ric(X, X) ∈ D′(1)(M) is a nonnegative scalar distribution on M .

Recall that a scalar distribution u ∈ D′(M) is nonnegative, u ≥ 0, if u(ω) ≡ 〈u, ω〉 ≥
0 for all nonnegative test densities ω ∈ �c(M,Vol(M)). A nonnegative distribution is
always a measure [19, Thm. 2.1.7] and hence a distribution of order 0. Moreover, non-
negativity is stable with respect to regularisation [19, Thm. 2.1.9]. Finally, for u, v ∈
D′(M) we write u ≥ v if u − v ≥ 0.

Remark 2.9. We note that an equivalent formulation of the distributional timelike energy
condition consists in imposing that, for any U ⊆ M open and any X ∈ X(U ) timelike,
Ric(X, X) ≥ 0 inD′(1)(U ). Indeed, given a timelike X ∈ X(U ), let V � U be open and
choose a cut-off function χ ∈ D(U ) that equals 1 on a neighbourhood of V . By time-
orientability of M there exists some timelike T ∈ X(M) of the same time-orientation
as X , so Y := χX + (1 − χ)T is a global timelike vector field on M . Then for any
non-negative ω ∈ �c(M,Vol(M)) with support in V we have 0 ≤ 〈Ric(Y,Y ), ω〉 =
〈Ric(X, X), ω〉, and by the sheaf property ofD′(1), we obtainRic(X, X) ≥ 0 inD′(1)(U ).

The usefulness of Definition 2.8 is highlighted by its implications for the curvatures
of approximating metrics, cf. [7, Lem. 4.1, Lem. 4.6].

Lemma 2.10. Let (M, g) be aC1-spacetime satisfying the distributional timelike energy
condition and let K be compact in M. Then

∀C > 0 ∀δ > 0 ∀κ < 0 ∃ε0 > 0 ∀ε < ε0 ∀X ∈ T M |K
with g(X, X) ≤ κ and ‖X‖h ≤ C : Ric[ǧε](X, X) > −δ.

The following is an immediate consequence of the previous result.

Corollary 2.11. Let (M, g) be a C1-spacetime satisfying the distributional timelike en-
ergy condition and let K be compact in M. Then

∀δ > 0 ∃ε0 > 0 ∀ε < ε0 ∀X ∈ T M |K with ǧε(X, X) = −1 : Ric[ǧε](X, X) > −δ.
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Let us now turn to the proper distributional formulation of the null energy condition.
The naive approach of defining it in analogy to Definition 2.8 does not yield analogues
of Lemma 2.10 and Corollary 2.11 because vector fields that are ǧε-null are only almost
g-null. This necessitates a definition of the following form.

Definition 2.12 (Distributional null energy condition, [7, Def. 5.1]). Let (M, g) be a
C1-spacetime. We say (M, g) satisfies the distributional null energy condition if for any
compact set K and any δ > 0 there exists ε = ε(δ, K ) > 0 such that Ric(X, X) > −δ

(as distributions) for any local smooth vector field X ∈ X(U ) (U ⊆ K open) with
‖X‖h = 1 and |g(X, X)| < ε on U .

The above requirement |g(X, X)| < ε may equivalently be replaced by ‖X−N‖h <

ε, where N is aC1 g-null vector field onU , cf. [7, Lem. 5.2].Yet another useful equivalent
reformulation is the following rescaled version, cf. [7, Def. 5.3].

Lemma 2.13. A C1-spacetime (M, g) satisfies the distributional null energy condition
if and only if for any compact K ⊆ M, any c1, c2 > 0 and any δ > 0 there is ε =
ε(δ, K , c1, c2) > 0 such that Ric(X, X) > −δ (as distributions) for any local smooth
vector field X ∈ X(U ), U ⊆ K, with 0 < c1 ≤ ‖X‖h ≤ c2 and |g(X, X)| < ε on U.

The following analogue of Lemma 2.10 and Corollary 2.11 shows that the above
definition of the null energy condition is the correct one in the C1-case (see [7, Lem.
5.5]).

Lemma 2.14. Let (M, g) be a C1-spacetime satisfying the distributional null energy
condition. Let K ⊆ M be compact and let c1, c2 > 0. Then for all δ > 0 there is
ε0 = ε0(δ, K , c1, c2) > 0 such that

∀ε < ε0 ∀X ∈ T M |K with 0 < c1 ≤ ‖X‖h ≤ c2 and

ǧε(X, X) = 0 : Ric[ǧε](X, X) > −δ.

The above distributional versions of the timelike and null energy conditions were
successfully used in [7] to prove the singularity theorems of Hawking and of Penrose
for C1-spacetimes. For our C1-proof of the Hawking-Penrose singularity theorem, we
need a distributional version of the genericity condition along geodesics.

Definition 2.15 (Distributional genericity condition). Let (M, g) be aC1-spacetime and
let γ : I → M be a causal geodesic. We say that the distributional genericity condition
holds at γ (t0), t0 ∈ I , if there is a neighbourhood U of γ (t0), C1-vector fields X, V
on U with the property that (X ◦ γ )(t) = γ̇ (t), (V ◦ γ )(t) ⊥ γ̇ (t) for all t ∈ I with
γ (t) ∈ U , and there exist c > 0 and δ > 0 such that for all C1-vector fields X̃ , Ṽ on U
with ‖X − X̃‖h < δ and ‖V − Ṽ ‖h < δ we have

g(R(X̃ , Ṽ )Ṽ , X̃) > c in D′(1)(U ). (2.16)

This condition extends the one used in theC1,1-case in [8,Def. 2.2] aswe shall discuss
in Remark 2.19, below. Again it allows us to derive an approximate genericity condition
for regularisations. Note, however, that it will turn out to be essential to use C1-vector
fields (and their approximations), which can be inserted into R ∈ D′(1)T 1

3 (M), by (2.3).
Also the distributional genericity condition appropriately restricts to smaller sets, a

technical point which we clarify first.
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Remark 2.16. In Definition 2.15 we may shrink the neighbourhood U while retaining
the constants c and δ. More precisely, let U , X , V , c, and δ be as in the definition
and let W � U , then (2.16) holds for all C1-vector fields X̃W , ṼW on W which satisfy
‖X |W− X̃W‖h < δ and‖V |W−ṼW‖h < δ. Indeed, by the sheaf property of distributions,
it suffices to establish that (2.16) then holds locally around each point x ∈ W . To establish
this let χ ∈ D(W ) be a plateau function that equals 1 in a neighbourhood W ′ of x and
set X̃ = X + χ(X̃W − X) and likewise for Ṽ . Then X̃ and Ṽ are C1-vector fields on U
with ‖X − X̃‖h < δ and ‖V − Ṽ ‖h < δ (2.16). So we obtain on W ′

c < g(R(X̃ , Ṽ )Ṽ , X̃) = g(R(X̃W , ṼW )ṼW , X̃W ). (2.17)

Lemma 2.17. Let (M, g) be a C1-spacetime and let gε be either ǧε or ĝε. Suppose γ is
a g-causal g-geodesic and assume that the distributional genericity condition holds at
γ (t0) (with neighbourhood U, vector fields X, V and constants c, δ). Suppose that Xε,
Vε are C1-vector fields on U with Xε, Vε → X, V in C1

loc(U ). Then for any compact
subset K � U there is ε̃ > 0 such that for all ε < ε̃:

gε(R[gε](Xε, Vε)Vε, Xε) >
c

2

on K .

Proof. Wemay takeU to be relatively compact. By assumption, for all C1-vector fields
X̃ , Ṽ on U with ‖X − X̃‖h < δ and ‖V − Ṽ ‖h < δ, we have

g(R(X̃ , Ṽ )Ṽ , X̃) > c in D′(1)(U ).

Since Xε → X and Vε → V in C1
loc, there is ε0 > 0 such that for all ε < ε0,

‖Xε − X‖h < δ and ‖Vε − V ‖h < δ. Let from now on ε < ε0. Hence, the assumption
gives

g(R(Xε, Vε)Vε, Xε) > c in D′(1)(U ).

Since �M -convolution with a non-negative mollifier ρε respects positivity, we have

g(R(Xε, Vε)Vε, Xε) �M ρε > c.

We claim that

g(R(Xε, Vε)Vε, Xε) �M ρε−(g �M ρε)(R[g �M ρε](Xε, Vε)Vε, Xε)→0 in C0
loc(U ).

This is seen by first showing that

g(R(Xε, Vε)Vε, Xε) �M ρε − g((R[g] �M ρε)(Xε, Vε)Vε, Xε) → 0 in C0
loc(U ).

The latter locally corresponds to the question whether given a net hε of C1-functions
that converges in C1

loc to h ∈ C1 and a first order distribution T we can show (hεT ) ∗
ρε − hε(T ∗ ρε) → 0 in C0

loc. This is shown by arguing along the lines of [7, Lem.
4.8] and using that T can locally be written as a first order distributional derivative of a
C0-function. By a similar argument (noting the fast convergence speed of g�M ρε → g),
the right hand side above is C0

loc-equivalent (i.e. the difference goes to 0 in C0
loc) to

(g �M ρε)(R[g] �M ρε(Xε, Vε)Vε, Xε).
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This is C0
loc-equivalent to

(g �M ρε)(R[g �M ρε](Xε, Vε)Vε, Xε)

by the same arguments as in [7, Lem. 4.6] and uniform boundedness of Xε, Vε.
Next, we show that

(g �M ρε)(R[g �M ρε](Xε, Vε)Vε, Xε) − gε(R[gε](Xε, Vε)Vε, Xε) → 0

in C0
loc(U ). Upon writing everything out in coordinates, we see that only terms of the

form

(g �M ρε)∂�[g �M ρε]XεVεVεXε − gε∂�[gε]XεVεVεXε

are of interest, because for any of the other terms in the difference, both summands
converge in C0

loc(U ) to the respective expressions for g. Since the Xε, Vε are uniformly
bounded, we may omit them in our estimates without loss of information. But for terms
as above, we only need to consider those expressions where we have second derivatives
of the metrics, since ∂ j (g �M ρε)

mk → ∂ j gmk in C0
loc(U ) and similarly for ∂ j (gε)

mk .
Hence, we work in a chart, fix a compact set K and are left with estimating the following
expression on K :

|(g �M ρε)bc(g �M ρε)
mk∂s∂r (g �M ρε)i j − (gε)bc(gε)

mk∂s∂r (gε)i j |
≤ |(g �M ρε)bc(g �M ρε)

mk | · |∂s∂r (g �M ρε)i j − ∂s∂r (gε)i j | + I I.

The first term goes to 0 uniformly on K by Lemma 2.3(iii). We continue estimating the
remaining term I I :

I I = |(g �M ρε)bc(g �M ρε)
mk∂s∂r (gε)i j − (gε)bc(gε)

mk∂s∂r (gε)i j |
≤ |∂s∂r (gε)i j | · |(g �M ρε)bc(g �M ρε)

mk − (gε)bc(gε)
mk |.

To show that this goes to 0 uniformly on K , it suffices to show that the second factor
can be estimated by a constant times ε by the same argument as in the proof of [7, Lem.
4.5]. Since ‖gε − (g �M ρε)‖∞,K and ‖g−1

ε − (g �M ρε)
−1‖∞,K can both be estimated

by a constant times ε again by Lemma 2.3(iii), this is easily seen to hold.
Hence, there is ε1 > 0 such that for all ε < min(ε0, ε1),

gε(R[gε](Xε, Vε)Vε, Xε) >
c

2
on K .

��
Next we derive from the distributional genericity condition an estimate on the tidal

force operator for the regularised metrics. It is this result which allows us to enter into
the Riccati comparison techniques in Sect. 4.

Lemma 2.18. Let the assumptions of Lemma 2.17 hold and let γε be gε-causal gε-
geodesics, whose gε-causal character is the same as the g-causal character of γ and
which converge in C1

loc to γ . Then there are c̃ > 0, r > 0, ε0 > 0 and a neighbourhood
U of γ (t0) such that for any 0 < ε < ε0 there exist vector fields Eε

i onU such that Eε
i ◦γε

constitutes a gε-orthonormal frame along γε and such that Eε
i → Ei in C1

loc(U ), where
Ei ◦ γ is an orthonormal frame along γ . Further, there exists some C = C(ε) > 0 such
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that along γε the ε-tidal force operator [Rε](t) := [Rε(., γ̇ε(t))γ̇ε(t)] : [γ̇ε(t)]⊥ →
[γ̇ε(t)]⊥ fulfills

[Rε](t) > diag(c̃,−C, . . . ,−C) on [t0 − r, t0 + r ] (2.18)

in terms of the frame Eε
i and where we have used the shorthand Rε for R[gε].

Proof. Let w.l.o.g. t0 = 0. We deal with the case of γ being null or timelike simulta-
neously and construct a g-orthonormal frame for [γ̇ ]⊥ along γ . First note that, if γ is
timelike, V ◦ γ is nowhere proportional to γ̇ , but the same may not be true in the null
case. First we will show that we can replace V by a vector field whose restriction to γ

is parallel in [γ̇ ]⊥ and still retain (2.16).
There must exist some t such that V ◦ γ (t) �∈ span(γ̇ (t)). Indeed, suppose to the

contrary that V (γ (t)) = f (t) · X (γ (t)) for some real-valued C1 function f and all
t . Then extending both X ◦ γ and V ◦ γ in a cylindrically constant fashion as given
by Lemma B.1, we obtain vector fields Ṽ , X̃ on a neighbourhood W of γ (0) that are
proportional and can be made arbitrarily close to V resp. X in C0 when shrinking W
since they restrict to the same vector fields on γ . According to Definition 2.15 they
therefore satisfy (2.16) close to γ (0). However, by the symmetry properties of R (cf.
Lemma 2.4) and the proportionality of Ṽ and X̃ wemust have R(X̃ , Ṽ )Ṽ = 0 inD′(W ),
a contradiction.

Hence there exists some v := V (t1) with v ∈ [γ̇ (t1)]⊥. Defining V1 as the parallel
translate of v along γ we obtain V1 ∈ [γ̇ ]⊥ along all of γ . By the same continuity
argument as above, (2.16) then still holds for the vector fields V1 and X (note that
a t1 as above must exist arbitrarily close to 0). In the timelike case we may assume
that γ is parametrised to unit speed, and we set en := γ̇ (0). If γ is null we can write
γ̇ (0) = en−1 + en for orthonormal vectors en−1, en with en timelike.

In the null case, extend e1 := V1(0) ∈ [γ̇ (0)]⊥ to a g-orthonormal basis {ei }ni=1
(with en−1, en as above) and define Ei to be the g-parallel translate of ei along γ (so that
E1 = V1 and X = En−1 + En along γ ). For γ timelike we also construct an orthonormal
frame E1 = V1, E2, . . . , En = X along γ via parallel transport. As γε → γ in C1

loc,
we can find a gε orthonormal basis {eε

i } at γε(0) with eε
i → ei in T M , and such that

γ̇ε(0) = eε
n if γε is gε-timelike, while γ̇ε(0) = eε

n−1 + e
ε
n with e

ε
n timelike if γε is gε-null.

For every ε let Eε
i be the gε-parallel translate of eε

i along γε. By Remark 2.7, Eε
i → Ei

inC1
loc (i.e. in T (T M), uniformly on compact time intervals) and we can use LemmaB.2

to extend Eε
i to vector fields on U , converging in C1

loc(U ) to the extensions of Ei to U .
As we have now found vector fields Eε

i that restrict to a gε-frame along γε and
converge to the g-frame Ei along γ , we are in a position to apply Lemma 2.17 and
hence estimate the gε-tidal force operator along γε.

For the remainder of the proof we roughly follow the layout of the proof of [8, Prop.
3.6]. There, for a C1,1-metric g the statement is first shown for the g-tidal force operator
along γ and then carried over for small ε by an approximation argument. However, in the
C1-setting this is no longer possible, as R is now merely distributional and for a matrix
with distributional entries eigenvalues are not defined. Also, a direct approximation
procedure of that form is no longer feasible. Instead we use Lemma 2.17, and argue
separately for any ε, making the procedure (and hence the constant C) dependent on ε5.
More precisely:

Let c be the constant given by the genericity condition and let c̃ := c
2 and 0 < c1 < c̃.

Set Rε
i j := 〈Rε(Eε

i , Xε)Xε, Eε
j 〉, i, j = 1, . . . , d, where Xε = Eε

n in the timelike case

5 This is, however, sufficient in our proof of the main result.
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and Xε = Eε
n−1 + Eε

n in the null case. As in the proof of (3.5) in [8, Lemma 3.7], we

choose C(ε) > 0 such that λε
min(x) ≥ ‖(Rε

1 j ) j‖e
c̃−c1

for all x ∈ U , where λε
min(x) is the

smallest eigenvalue of (Rε
i j )

d
i, j=2 + C(ε)Idd−1 at x ∈ U . By Lemma 2.17 there exists

some ε̃ > 0 such that Rε
11 > c̃ for all 0 < ε < ε̃ on U (shrinking U once more if

necessary). For these ε it then follows that Rε
i j −diag(c1,−C(ε), . . .−C(ε)) is positive

definite on U . Then picking r > 0 such that γε([−r, r ]) ⊆ U for all ε small, evaluation
along γε gives the claim. ��
Remark 2.19. Note that while Definition 2.15 may at first sight appear to be stronger
than a straightforward generalisation of the genericity condition given for C1,1-metrics
in [8], due to the local boundedness of R in that regularity it is actually equivalent:

For C1,1-metrics Definition 2.15 clearly implies Definition 2.2 of [8]. For the reverse
implication, let X, V be continuous vector fields in a neighbourhood of γ (t0) such that
X (γ (t)) = γ̇ (t) and V (γ (t)) ∈ (γ̇ (t))⊥ for all t and such that 〈R(V, X)X, V 〉 > c > 0.
Arguing exactly as in the proof of Lemma 2.18 we can then use parallel transport and
cylindrically constant extension to find C1-vector fields that are uniformly close to X
and V . It therefore suffices to show that the genericity condition from [8] is stable under
locally uniformperturbation. Thus let Ṽ , X̃ beC1 vector fields that are uniformly close to
V, X . Then one can locally in a coordinate system estimate |Ṽi −Vi | ≤ δ, |X̃i − Xi | ≤ δ

for some small δ. Consequently,

〈R(Ṽ , X̃)X̃ , Ṽ 〉 = gi j R
i
klm Ṽ

l X̃m X̃k Ṽ j ≥ gi j R
i
klmV

l Xm XkV j +O(δ)

where the last term collects all δ-contributions and takes into account the local bound-
edness of R. Consequently, choosing δ small enough (and appropriately shrinking the
neighbourhood of γ (t0)) we can secure that the sum still remains > c/2.

3. Branching

In metric geometry, where geodesics are defined as (local) minimisers of the length
functional, local uniqueness of geodesics is expressed in the form of a non-branching
condition. Here, a branch point is defined as an element of a minimiser at which
the curve splits into two minimisers that on some positive parameter interval do not
have another point in common, cf., e.g., [44,51]. Similarly, in the synthetic Lorentzian
setting [22], the role of causal geodesics is taken on by maximising causal curves,
and non-branching is formulated analogously. In both cases, lower synthetic sectional
curvature bounds (formulated via triangle comparison in constant curvature model
spaces) imply non-branching [22,44]. Synthetic Ricci curvature bounds in metric mea-
sure spaces (curvature-dimension conditions), on the other hand, do not imply non-
branching of geodesics [38]. Similarly, in recent work on synthetic Ricci curvature
bounds in Lorentzian pre-length spaces [4], a timelike non-branching condition is re-
quired in addition to a timelike-curvature dimension condition to obtain a version of the
Hawking singularity theorem.

In theC1-setting we are concerned with in this paper, the coincidence between causal
local maximisers and geodesics that is familiar from smooth Lorentzian geometry ceases
to hold (cf. Example 3.2 below), although it is still true that causal maximisers are
geodesics (Lemma A.4). In addition, one generically cannot expect unique local solv-
ability of the geodesic initial value problem. Nevertheless, on physical grounds, it seems
reasonable to assign a privileged role to causal geodesics that are locally maximising.
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We therefore introduce a (weak notion of a) non-branching condition that is intended
to preclude locally maximising geodesics from branching (where we do not require the
second branch to be maximising as well):

Definition 3.1 (Non-branching conditions). Let (M, g) be a C1-spacetime. A geodesic
γ : [a, b] → M branches at t0 ∈ (a, b) if there exist ε > 0 and some geodesic σ with
γ |[t0−ε,t0] ⊆ σ , but γ |(t0,t0+ε) ∩ σ = ∅.
(M, g) is called maximally causally (resp. timelike, resp. null) non-branching (MCNB,
MTNB, MNNB), if no maximal causal (resp. timelike, resp. null) geodesic branches in
the above sense.

Example 3.2. A C1-spacetime in which maximal causal branching occurs can be con-
structed from the second Riemannian example given in [16]. There, a C1,α-Riemannian
metric (α < 1) in the (u, v)-plane is given with non-unique solutions to the geodesic
initial value problem starting at {v = 0}. Further it is shown that the geodesic boundary
value problem for geodesics γ starting at the surface {v = 0} is uniquely solvable and
hence such geodesics are at least initially minimizing: If they were not, by properties
of any C1-Riemannian manifold as a locally compact length space, there would exist a
minimiser σ between two points on γ . However in C1-Riemannian manifolds minimis-
ers are geodesics and by uniqueness (of the boundary value problem) γ = σ (cf. [42]
for proofs and references).

In [18] it is shown that causal geodesics in static spacetimes are maximising if and
only if their Riemannian parts are minimizing and so one can easily construct both
maximising timelike and null geodesics that branch.

Lemma 3.3. If the C1-spacetime (M, g) is MCNB (resp. MTNB, MNNB), then any two
maximal causal (resp. timelike, null) geodesics that meet tangentially at an interior point
must coincide on their maximal domain of definition.

Proof. We only show this for MCNB spacetimes, the other cases are proven in exactly
the same way by replacing all occurrences of “causal" with “timelike” resp. “null”. Let
γ, σ be two maximising, causal geodesics meeting tangentially at p, which is not an
endpoint of either curve. W.l.o.g. we may assume that γ (0) = σ(0) = p. It suffices to
show that there is ε > 0 such that γ |[0,ε) = σ |[0,ε). Indeed since then γ and σ meet
tangentially at t = ε, the maximal such interval coincides with the maximal domain of
definition (to the right and analogously to the left).

Assume to the contrary that γ |[0,ε) �= σ |[0,ε) for any ε. As the curves both satisfy
the geodesic equation at p and their tangents agree, so do their second derivatives. Thus
γ and γ |(−ε,0] ∪ σ |[0,ε) are both (unbroken) geodesics and by MCNB γ cannot branch
at t = 0. So for every ε > 0 we have γ |(0,ε) ∩ σ |(0,ε) �= ∅. Hence there exist tk ↓ 0
such that γ (tk) = σ(tk), and by our indirect assumption there exists sk ↓ 0 such that
γ (sk) �= σ(sk). For any k set

ηk := sup{a ∈ [0, sk] : γ |(sk−a,sk ] ∩ σ |(sk−a,sk ] = ∅}.
Further choose some η̃k > 0 such that for Ik := (sk−ηk, sk+η̃k)wehave γ |Ik∩σ |Ik = ∅.
Since tk ↓ 0 and γ (tk) = σ(tk), we know that sk > ηk . However, γ (sk−ηk) = σ(sk−ηk)

by our choice of ηk . Set sk − ηk = rk and for simplicity of notation assume rk < tk . If
γ̇ (rk) �= σ̇ (rk), the curve α := γ |[0,rk ] ∪ σ |[rk ,tk ] is a broken geodesic from p to γ (tk)
and hence not maximising by [43, Lem. 3.2], i.e., d(p, γ (tk)) > L(α). Since γ and σ

are maximisers we have d(p, γ (rk)) = L(γ |[0,rk ]) = L(σ |[0,rk ]) Consequently,
d(p, σ (tk)) = L(σ |[0,tk ]) = L(σ |[0,rk ]) + L(σ |[rk ,tk ]) = L(α) < d(p, σ (tk)),
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a contradiction, and hence γ̇ (rk) = σ̇ (rk).
Again employing the geodesic equation, also the second derivatives of γ and σ

coincide at rk , and so the curves γ |[0,sk ] and γ |[0,rk ] ∪ σ |[rk ,sk ] display maximal causal
branching, a contradiction. ��

The following result shows that in maximally causally non-branching spacetimes,
maximal causal geodesics can always be approximated by geodesics for the regularised
spacetimes ĝε and ǧε. Whether such a result is true in general is questionable and very
likely regularisation dependent.

Proposition 3.4. Let (M, g) be a C1-spacetime that is MCNB.

(i) Suppose that M is globally hyperbolic and let εk ↘ 0 (k → ∞). Set gk := ĝεk or
gk := ǧεk for all k. If γ : [0, a] → M is a maximising, timelike g-geodesic then for
any small δ > 0 there exists a subsequence gkl of gk and gkl -maximising, timelike
geodesics γl converging in C1 to γ |[0,a−δ].

(ii) Let gk = ǧεk for all k. If M is causal and γ : [0, a] → M is a g-maximizing null
geodesic, then for any small δ > 0, there exists a subsequence gkl of gk , tl ↓ 0 and
gkl -null geodesics γl : [tl , a−δ] → M contained in ∂ I +l (γ (0)) (hence in particular
gkl -maximising), which converge in C1

loc to γ |[0,a−δ].
If, furthermore, M is strongly causal and S is an acausal set such that γ ⊆ E+(S),
then even γl : [tl , a − δ] → E+

l (S) and γl(tl) ∈ S with γl(tl) → γ (0).

Proof. Fix δ ∈ (0, a) and set p := γ (0), q := γ (a), and qδ := γ (a − δ).

(i) Since γ is timelike, qδ ∈ I +(p) and without loss of generality we may assume that
also qδ ∈ I +k (p) for all k. Since g is globally hyperbolic we can also assumew.l.o.g.
that gk are globally hyperbolic as well (see [26, Prop. 2.3 (iv)], which remains
valid for g ∈ C1). Thus there exist gk-maximising, timelike geodesics γk from
p to qδ [41, Prop. 6.5]. By Corollary 2.6 an affinely reparametrised subsequence,
without loss of generality γk itself, converges in C1

loc to a g-causal geodesic σ . By
Lemma A.13 σ is a g-maximising timelike geodesic from p to qδ , in particular
d(p, qδ) = L(γ |[0,a−δ]) = L(σ ). We cannot yet apply Lemma 3.3 since it is not
clearwhetherσ ismaximising beyond qδ . However denote by η := σ∪γ |[a−δ,a] the
concatenation of σ and γ . Since d(p, q) = L(γ ) = L(γ |[0,a−δ])+ L(γ |[a−δ,a]) =
L(σ ) + L(γ |[a−δ,a]) = L(η), it is a maximising, timelike geodesic from p to q.
We can now apply Lemma 3.3 to the curves η and γ , to obtain η = γ and hence
σ = γ |[0,a−δ].

(ii) A similar statement was shown in [43, Cor. 3.5], but we need to adapt some of the
main points of the argument to our assumptions.
Choose a sequence of points qkδ ∈ ∂ I +gk (p) converging to qδ . There exist future

directed, gk-null maximising geodesics γk ending at qkδ and contained in ∂ I +gk (p).
W.l.o.g we may assume their terminal velocities to be h-normalized, so we can
apply Corollary 2.6 to obtain a subsequence of γk (denoted in the same way)
converging to a g-null geodesic σ . Since ∂ I +gk (p) ⊆ I +(p) (recall that gk = ǧεk )
we know that σ ⊆ ∂ I +(p), since otherwise qδ ∈ I +(p), hence σ is maximising
(cf. Lemma A.15). Note that γ and σ meet tangentially at qδ , because otherwise
η := σ ∪ γ |[a−δ,a] would not be maximising by Lemma A.4 and so q ∈ I +(σ ) ⊆
I +(I +(p)) ⊆ I +(p), a contradiction. Lemma 3.3 now shows that γ = η and so
σ = γ , wherever both curves are defined. There are two possibilities for σ , either
it is past inextendible or it reaches p. However, if it is past inextendible, we must
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have σ ⊇ γ |[0,a−δ]. Hence in both cases the γk converge to γ in C1
loc. Further this

means that there are tk ∈ [0, a − δ] with γk(tk) → p, and we have tk → t0 = 0
since otherwise γ (t0) = p = γ (0), contradicting the causality of M . Now assume
M to be strongly causal and γ ⊆ E+(S) for S acausal, then there exists a g-
causally convex, g-globally hyperbolic neighbourhood U of p by [32, Lem. 3.21]
(this result holds also for C1-spacetimes). In such neighbourhoods it holds that
I +U (S) = I +(S) ∩ U , J+U (S) = J+(S) ∩ U and hence also E+

U (S) = ∂ I +U (S) =
∂ I +(S) ∩U . Clearly U is also gk-causally convex and gk-globally hyperbolic and
so these equalities also hold for gk . Note that in the same fashion as for the case of a
single point p one can show that γk → γ |[0,a−δ]. If γk reaches S, we immediately
obtain γk ⊆ E+

k (S). In the other case γk ⊆ ∂ I +k (S)\J+k (S) is past inextendible.
However, as they converge to γ |[0,a−δ], there must be pk ∈ γk , with pk → p.
Hence, w.l.o.g. pk ∈ ∂ I +k (S) ∩U = E+

U,k(S) and so pk ∈ J+k (S), a contradiction.
We have shown that γk reach S, and it only remains to show that they do so close
to 0. Again let γk(tk) ∈ S with γk(tk) → p. If tk → t0, then γ (t0) ∈ S and by
acausality of S we must have t0 = 0. ��

Remark 3.5. (i) As the proof of Proposition 3.4 shows, for (i) it suffices to assume
(M, g) to be MTNB, while for (ii) MNNB would suffice.

(ii) We will make use of Proposition 3.4(ii) in two different scenarios: Thm. 4.3 and
Proposition 5.5 below. In the first case (M causal) all we need to ensure is that γl are
maximizing for long enough, i.e. a − δ − tl is close to a. In the second (M strongly
causal) it is important to also obtain that γl reaches S, in order to be able to use the
initial conditions assumed on S.

4. No Lines

In this section we will prove that, under suitable causality and energy conditions, com-
plete causal geodesics stop being maximising also in (MCNB) C1-spacetimes. To this
endwe first prove the existence of conjugate points for causal geodesics in smooth space-
times under weakened versions of the energy conditions. More precisely we will invoke
the energy conditions derived for regularisations in Lemma2.10 and inLemma2.14 from
the distributional energy conditions, as well as in Lemma 2.18 from the distributional
genericity condition. The following is a strengthened version of [8, Prop. 4.2]:

Lemma 4.1. Let (M, g) be a smooth spacetime. Given some c > 0 and 0 < r < π
4
√
c
,

there exist δ(c, r) > 0 and T (c, r) > 0 such that any causal geodesic γ defined on
[−T, T ] for which the following hold

(i) Ric(γ̇ , γ̇ ) ≥ −δ on [−T, T ] and
(ii) there exists a smooth parallel orthonormal frame for [γ̇ ]⊥ and someC > 0 such that

w.r.t. this frame the tidal force operator satisfies [R](t) > diag(c,−C, . . . ,−C) on
[−r, r ],

possesses a pair of conjugate points on [−T, T ].
Proof. This actually follows by a more careful choice of constants in the proof of [8,
Prop. 4.2]. To see this we briefly recall the main steps of that proof. The argument
proceeds indirectly, assuming that for any δ > 0 and T > 0 there is some γ satisfying
(i) and (ii) without conjugate points in [−T, T ]. Denote by [A] the unique Jacobi tensor
class along γ with [A](−T ) = 0 and [A](0) = id. Taking [E1](t), . . . , [Ed ](t) as
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in (ii), linear endomorphisms of [γ̇ ]⊥ are written as matrices in this basis, and we set
[R̃](t) := diag(c,−C, . . . ,−C) with C as in (ii). Then by (ii), [R̃](t) < [R](t) on
[−r, r ].

The self-adjoint operator [B] := [ Ȧ] · [A]−1satisfies the matrix Riccati equation

[Ḃ] + [B]2 + [R] = 0, (4.1)

and we denote by [B̃] the solution to (4.1), with [R̃] instead of [R] and initial value
prescribed at some t1 ∈ [−r, r ]. We may even choose t1 in [−r, 0] and [B̃](t1) :=
β̃(t1) · id, where β̃(t1) is greater or equal than the largest eigenvalue of [B](t1). More
precisely, examining the Raychaudhuri equation

θ̇ +
1

d
θ2 + tr(σ 2) + tr([R]) = 0, (4.2)

for the expansion θ = tr([B]) (with σ = [B] − 1
d θ · id), it follows that one can pick

β̃(t1) := f (ν, δ, r) and [B̃](t1) := f (ν, δ, r) · id to indeed achieve that [B](t) ≤ [B̃](t)
on [t1, r ]. Here, f (ν, δ, r) =

√
2ν
r + δ + ν

d with ν = 4d/T .

Moreover, due to the fact that both [R̃] and [B̃](t1) are diagonal, the Riccati equation
for [B̃] decouples. Indeed it can be explicitly solved by

[B̃](t) = 1

d
diag(Hc, f (t), H−C, f (t), . . . , H−C, f (t)),

where

Hc, f (t) = d
√
c cot(

√
c(t − t1) + arccot( f/

√
c)),

and

H−C, f (t) = d
√
C tanh

(√
C(t − t1) + artanh( f/

√
C)

)
.

From this point on, the proof of [8, Prop. 4.2] proceeds by exclusively analysing
the function Hc, f , and the only requirement on r turns out to be 4r

√
c < π . Once

this is granted, δ and T can be chosen depending only on c to arrive at the desired
contradiction. ��

Recall that a line is an inextendible causal geodesic maximising the Lorentzian dis-
tance between any of its points.

Theorem 4.2. (No timelike lines). Let (M, g) be a globally hyperbolic, MTNB C1-
spacetime satisfying the distributional timelike energy condition and the distributional
genericity condition along any inextendible timelike geodesic. Then there is no complete
timelike line in M.

Proof. Suppose γ : R → M is a complete timelike line. We may assume that distri-
butional genericity holds at t0 = 0 along γ . We approximate g by ǧε ≺ g, which are
hence also globally hyperbolic. By Lemma 2.18 there exist c > 0, 0 < r < π

4
√
c
with

the following property: For any C1-approximation γε of γ by ǧε-timelike geodesics,
there exists ε0 > 0 such that for all ε < ε0, there is C = C(ε) > 0 so that (ii) in
Lemma 4.1 is satisfied for Rε. Now for the above choice of c and r , pick δ > 0 and
T > 0 as in Lemma 4.1, and let T̃ > T . By Proposition 3.4(i), for the curve γ |[−T,T̃ ]
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and δ < T̃ − T , we obtain a subsequence ǧεk and ǧεk -maximal timelike geodesics γk

from γ (−T ) to γ (T̃ ) converging to γ |[−T,T̃ ] in C1.

Let K be a compact neighbourhood of γ ([−T, T ]). Since γεk → γ in C1([−T, T ]),
there are k0 ∈ N, C̃ > 0 and κ < 0 such that for all k ≥ k0, we have γεk ([−T, T ]) ⊆ K ,
‖γ̇εk‖h ≤ C̃ and ǧεk (γ̇εk , γ̇εk ) < κ on [−T, T ]. Hence by [7, Lem. 4.6] (and the remark
preceding it) we have Ricεk (γ̇εk , γ̇εk ) ≥ −δ on [−T, T ] for large k. Therefore, also (i) in
Lemma 4.1 is satisfied for γεk , yielding the existence of conjugate points for any γεk (k
large) in [−T, T ], a contradiction since they are maximising even in the strictly larger
interval [−T, T̃ ]. ��
Theorem 4.3. (No null lines) Let (M, g) be a causal, MNNBC1-spacetime that satisfies
the distributional null energy condition and the distributional genericity condition along
any inextendible null geodesic. Then there is no complete null line in M.

Proof. Suppose γ : R → M is a complete null line. We will again make use of the
approximation ǧε. Suppose without loss of generality that the distributional genericity
condition holds along γ at t0 = 0. By Lemma 2.18 there exist c > 0 and 0 < r < π

4
√
c

satisfying: For any C1-approximation γε of γ by ǧε-null geodesics, there exists ε0 > 0
such that for all ε < ε0, there is C = C(ε) > 0 so that (ii) in Lemma 4.1 is satisfied
for Rε. Choose δ > 0 and T > 0 as in Lemma 4.1 for this pair (c, r) and let T̃ > T .
Using Proposition 3.4(ii) for the curve γ |[−T,T̃ ] and S = γ (−T ) (cf. Remark 3.5(ii)),

there exists a subsequence ǧεk and ǧεk -maximal null geodesics γk : [−T, T̃ ] → M
converging to γ |[−T,T̃ ] in C1.

Since γk → γ in C1([−T, T ]), once we choose a compact neighbourhood K of
γ ([−T, T ]), there are k0 ∈ N and C̃2 > C̃1 > 0 such that for all k ≥ k0, we have
γεk ([−T, T ]) ⊆ K , C̃1 < ‖γ̇k‖h < C̃2 in [−T, T ]. Hence, Lemma 2.14 implies that
Ricεk (γ̇k, γ̇k) > −δ in [−T, T ]. But then Lemma 4.1 may be invoked to give the ex-
istence of conjugate points on γk |[−T,T ] for large k, a contradiction since they were
supposed to be maximising even on [−T, T̃ ]. ��

5. Initial Conditions

The classical Hawking-Penrose theorem for spacetimes of dimension 4 assumes three al-
ternative initial conditions: the existence of a compact, spacelike hypersurface, a trapped
(2-)surface, or a “trapped point”, i.e., a point fromwhere all future (or past) null geodesics
converge. The second condition was later generalised in [10] to trapped submanifolds
of arbitrary codimension m with 1 < m < n = dim(M).

While the first condition does not need any special attention here we will start by
generalising the trapped submanifold-case to C1-spacetimes. As for C1,1-spacetimes
(see [8, Sec. 6.2]), trapped submanifolds are defined in the support sense. However, to
show that normal null geodesics emanating from them stop being maximising is more
delicate now due to the lack of an exponential map, cf. (the proof of) Proposition 5.5.
At the end of this section we will deal with the case of a “trapped point”.

Definition 5.1 (Support submanifolds). Let (M, g) be aC1-spacetime and let S, S̃ ⊆ M
be submanifolds.We say that S̃ is a future support submanifold for S at q ∈ S if dim S =
dim S̃, q ∈ S̃, and there is a neighbourhood U of q in M such that S̃ ∩U ⊆ J+U (S).



1164 M. Kunzinger, A. Ohanyan, B. Schinnerl, R. Steinbauer

Definition 5.2 (TrappedC0-submanifolds). Let (M, g) be aC1-spacetime of dimension
n. We say that a C0-submanifold S ⊆ M of codimension 1 ≤ m < n is a future
trapped submanifold if it is compact without boundary and for any p ∈ S there exists a
neighbourhoodU of p such thatU ∩S is achronal inU andmoreover S has past pointing
timelike mean curvature in the sense of support submanifolds, i.e. for any q ∈ S there
exists a future C2-support submanifold S̃ for S at q whose mean curvature vector at q
is past-pointing timelike.

Now, to show that lightrays from trapped submanifolds stop maximising, we reduce
the problem to a question about smooth approximating metrics, which are understood
much better. The essential results that deal with the corresponding situations for smooth
metrics are [8, Lem. 6.4] and [7, Lem. 5.6]. To give a precise formulation we first
introduce some notation.

Suppose S ⊆ M is a spacelike C2-submanifold of codimension 1 < m < n, p ∈ S
and ν ∈ TpM is a future null normal to S. Let γ be a geodesic with γ (0) = p, γ̇ (0) = ν.
Let e1, . . . , en−m be anON-basis on S around p. Further let E1, . . . , En−m be the parallel
translates of e1(p), . . . , en−m(p) along γ , which are C1 since they satisfy the parallel
transport equation. We will use this notation for the following results. It will be clear
from the context which surface the Ei refer to.

Lemma 5.3. Let (M, g) be a smooth spacetime and let S be a codimension-m (1 <

m < n) spacelike C2 submanifold of M. Let γ be a geodesic starting in S such that
ν := γ̇ (0) ∈ T M |S is a future null normal to S. Suppose that c := kS(ν) > 0 and let
b > 1/c. Then there is δ = δ(b, c) > 0 such that, if for Ei as described above

n−m∑

i=1

g(R(Ei , γ̇ )γ̇ , Ei ) ≥ −δ

along γ , then γ |[0,b] is not maximising from S, provided that γ exists up to t = b.

Lemma 5.4. Let (M, g) be a smooth spacetime and let S be a codimension-2 spacelike
C2 submanifold of M. Let γ be a geodesic starting in S such that ν := γ̇ (0) is a
future null normal to S. Suppose that c := kS(ν) > 0 and let b > 1/c. Then there is
δ = δ(b, c) > 0 such that, if

Ric(γ̇ , γ̇ ) ≥ −δ

along γ , then γ |[0,b] is not maximising from S, provided that γ exists up to t = b.

The following result is the C1-analogue of [8, Prop. 6.5]. As was the case for the
distributional genericity condition, cf. Definition 2.15, also here we have to assume
that the distributional curvature condition at hand is stable underC0-perturbations of the
vector fields involved. This ensures that we can derive the necessary curvature conditions
for the smooth approximating metrics in order to be able to use Lemmas 5.3 and 5.4 .

Proposition 5.5 (Light rays froma submanifold). Let (M, g)bea strongly causal,MNNB
C1-spacetime and let S̃ ⊆ M beaC2-spacelike submanifold of codimension 1 < m < n.
Suppose kS̃(ν) = g(ν, Hp) > c > 0 and let b > 1/c. Suppose there is a null geodesic γ

with γ̇ (0) = ν, a neighbourhood U of γ |[0,b] and C1-extensions Ei of Ei and N of γ̇ to
U such that for each δ > 0 there exists η > 0 such that for all collections of C1-vector



The Hawking–Penrose Singularity Theorem 1165

fields {Ẽ1, . . . , Ẽn−m, Ñ } on U with ‖Ẽi − Ei‖h < η for all i and ‖Ñ − N‖h < η, we
have

n−m∑

i=1

g(R(Ẽi , Ñ )Ñ , Ẽi ) ≥ −δ in D′(1)(U ). (5.1)

Then γ |[0,b] is not maximising from S̃.

Note that condition (5.1) localises in a similar manner as the genericity condition.
For the latter see Remark 2.16.

Proof. Let gε = ǧε, Rε = R[ǧε]. Clearly, kS̃ is continuous and kS̃,ε
→ kS̃ uniformly

on compact sets. Hence, there is a neighbourhood V of ν in T M |S̃ and ε0 such that
∀ε ≤ ε0 and ∀v ∈ V : kS̃,ε

(v) > c. Note that g-spacelikeness implies gε-spacelikeness.

HenceU ∩ S̃ is gε-spacelike and we may assume thatW := π(V ) is contained inU ∩ S̃.
Suppose now to the contrary that γ |[0,b] maximises the distance from U ∩ S̃. Let

1/c < b′ < b′′ < b and let q = γ (b′′). Find qk ∈ ∂ J+k (U ∩ S̃) (where ∂ Jk := ∂ Jgεk
and

εk → 0) with qk → q. By Corollary A.12 there are gεk -null geodesics γk : Ik → M
(in future directed parametrisation) with γk(b′′) = qk either intersecting U ∩ S̃ or past
inextendible. We may assume that ‖γ̇k(b′′)‖h are all equal to ‖γ̇ (b′′)‖h , hence we may
assume that the γ̇k(b′′) converge to a g-null vector v and the geodesics converge to
a g-null geodesic γv in C2

loc by Corollary 2.6. Strong causality allows us to invoke
Lemma A.30, so we can find a neighbourhood W of γ (0) withW ⊆ U such thatW ∩ S̃
is acausal in M . By (the proof of) Proposition 3.4(ii) (see also Remark 3.5(i)) we obtain
that γ = γv , and that (up to picking a subsequence) γk reaches S̃ for k large at tk ↓ 0.

Since any of the gεk -geodesics γk reaches S̃ for all εk < ε0 (for some suitable ε0 > 0)
at points γk(tk) ∈ S̃, by C1

loc convergence of γk to γ we also have γ̇k(tk) ∈ V . Note that,
due to γk(tk) → γ (0), we can pick gεk -orthonormal bases for Tγk (tk ) S̃ converging to a
g-orthonormal basis for Tγ (0) S̃. Denote by Eεk

i and Ei the gεk - and g-parallel transports
of these bases along γk and γ , respectively. By Lemma B.2 there exist C1-extensions
Ẽεk
i and Ẽi to the (possibly shrunk) neighbourhood U . By a similar argument one can

extend the velocity vector fields along γk and γ to all of U , they will be denoted by Ñ ε

and Ñ , respectively.
Assume alsowithout loss of generality thatU is relatively compact and that γk([tk, b])

⊆ U for large k. Pick δ = δ(b′, c) according to Lemma 5.3. Since they restrict to the
same vector fields along γ , by shrinking U and by continuity of Ei and Ẽi resp. N and
Ñ , we can assume these vector fields to be arbitrarily close in ‖ . ‖h onU . Moreover, by
the convergence of Ẽεk

i and Ñ εk to Ẽi and Ñ , respectively, also these vector fields can be
made arbitrarily ‖ . ‖h-close to Ei and N , respectively, onU for large k. The assumption
of the Proposition therefore implies that

n−m∑

i=1

g(R(Ẽεk
i , Ñ εk )Ñ εk , Ẽεk

i ) ≥ −δ/2

in D′(U ) for k large. Since �Mρεk respects inequalities, we conclude that also

n−m∑

i=1

g(R(Ẽεk
i , Ñ εk )Ñ εk , Ẽεk

i ) �M ρεk ≥ −δ/2
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on U for large k.
By the same reasoning as in Lemma 2.17 we obtain (once again writing Rεk for

R[gεk ])
g(R(Ẽεk

i , Ñ εk )Ñ εk , Ẽεk
i ) �M ρεk − gεk (Rεk (Ẽ

εk
i , Ñ εk )Ñ εk , Ẽεk

i ) → 0

uniformly on U as εk → 0, i = 1, . . . , n − m. But then, for large k,

n−m∑

i=1

gεk (Rεk (Ẽ
εk
i , Ñ εk )Ñ εk , Ẽεk

i ) ≥ −δ.

In particular, the above holds along γk , so

n−m∑

i=1

gεk (Rεk (E
εk
i (t), γ̇k(t))γ̇k(t), E

εk
i (t)) ≥ −δ

for all t ∈ [tk, b′], where we may assume that k is so large that all γk are defined on
[tk, b′].

Due to our choice of δ, Lemma 5.3 implies that, for k sufficiently large, each γk
stops maximising at parameter b′ + tk at the latest (if γk is not gε-normal to S̃, then γk
stops maximising the distance immediately, see Remark 5.9 below). By construction
the γk maximize from tk to b′′, hence if k is so large that b′ + tk < b′′ we obtain a
contradiction. ��
Remark 5.6. By arguments analogous to those given for the genericity condition, cf.
Remark 2.19, namely essentially by boundedness of R on compact sets, one can see that
if g ∈ C1,1, then the curvature condition (5.1) in Proposition 5.5 is equivalent to the one
given in [8, Prop. 6.5].

Proposition 5.7 (The case of trapped surfaces). Let (M, g) be a strongly causal, MNNB
C1-spacetime satisfying the distributional null energy condition. Let S̃ ⊆ M be a
codimension-2 C2-spacelike submanifold such that kS̃(ν) > c > 0, where ν is a null

normal to S̃, and let b > 1/c. If γ is a null geodesic with γ̇ (0) = ν, then γ |[0,b] is not
maximising from S̃.

Proof. The proof is completely analogous to that of Proposition 5.5, with the sole differ-
ence that one needs to use Lemma 5.4 instead of Lemma 5.3. Let us give a brief outline:
Approximate g again by gεk ≡ ǧεk and the compact segment γ |[0,b] as before by gεk -null
geodesics γk . Then by Lemma 2.14 (see also the proof of [7, Thm. 5.7]), for all δ > 0
and large k we have Ricεk (γ̇k, γ̇k) > −δ. Using this, combined with Lemma 5.4 and
proceeding as in Proposition 5.5, one arrives at a contradiction as before. ��
Remark 5.8. The corresponding C1,1-version of Proposition 5.7 was dealt with in [8,
Remark 6.6(i)], however, a similar line of reasoning is not available in our case of C1-
metrics:While it is still possible to extend anON-framealong a curve to a neighbourhood,
this does not suffice to derive condition (5.1) of Proposition 5.5, as the needed rigidity
of the condition cannot be guaranteed. More precisely: For any ON-frame {Ēi , N̄ } on
U the equality (as before N̄ denotes the extension of γ ′ in the frame)

n−m∑

i=1

g(R(Ēi , N̄ )N̄ , Ēi ) = Ric[g](N̄ , N̄ ) ≥ −δ
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still holds and the final inequality is due to the distributional null energy condition.
However, to carry out a proof similar to the one of Proposition 5.5, this estimate would
need to hold for all collections of vector fields close to the frame in the sense given in
the Proposition. This cannot be guaranteed for C1-metrics anymore as R is, in general,
unbounded. So instead, the slightly different focusing result used in Proposition 5.7 is
required.

Remark 5.9. If, in the situation of Proposition 5.5, ν is null but not a null normal, then
geodesics in that direction immediately enter I +: This is shown in the same way as in the
smooth case, e.g. by using ideas from [39, Lem. 10.45, Lem. 10.50]: Let c be a geodesic
in direction ν, hence in particular C2. By [43, Lem. 3.1] for a (piecewise) C1-vector
field X along c with g(X ′, ċ) < 0, any variation cs with variation field X is timelike and
longer than c (for small s).

Now for any vector v at p not a null normal to a spacelike surface S, w.l.o.g. there
exists y ∈ TpS with g(y, v) > 0. Define V (t) = (1 − t

b )Y (t), where Y is the parallel
translate of y along c. A straightforward calculation shows g(V ′, ċ) < 0. Now choose
a variation cs of c with variational vector field V such that cs(0) ∈ S. We obtain that cs
is timelike from S to c(b) and as b was arbitrary the statement follows.

The main result on trapped submanifolds in C1-spacetimes now is the following:

Proposition 5.10. Let (M, g) be a strongly causal, MNNBC1-spacetime and let S ⊆ M
be a trapped C0-submanifold of codimension m, 1 < m < dim(M) = n. If m = 2,
suppose that (M, g) satisfies the distributional null energy condition, and if m �= 2,
suppose that any support submanifold S̃ of S satisfies the condition in Proposition 5.5
in any null normal direction ν and for any null geodesic γ with γ̇ (0) = ν. Then E+(S)

is compact or (M, g) is null geodesically incomplete.

Proof. Suppose (M, g) is null geodesically complete.
E+(S) is relatively compact: Assume, to the contrary, that there are qk ∈ E+(S)

with qk →∞. Lemma A.5 guarantees the existence of future directed maximising null
geodesics γk : [0, tk] → M connecting pk ∈ S to qk , which we may assume to be
parametrised by h-unit speed. By compactness we may further assume that γk(0) =
pk → p ∈ S, and we write γk(tk) = qk . Due to qk → ∞, only finitely many γk are
contained in a fixed neighbourhood U of p. So we may apply Theorem A.10, implying
that (a subsequence, not relabeled, of) γk converges to a g-null curve γ : [0,∞) → M
(in h-unit speed parametrisation) from p. Since the γk are S-maximising, so is γ . In
particular, γ is a g-null pre-geodesic. Reparametrising γ as a geodesic, it is still defined
on [0,∞) due to null geodesic completeness and so γ : [0,∞) → M is a future
complete g-null S-ray. Let S̃ be a future support submanifold of S at p, then γ maximises
the distance from S̃ everywhere, because otherwise there would be some T such that
γ (T ) ∈ I +(S̃) ⊆ I +(S), contradicting the fact that γ is an S-ray. As this cannot happen
due to Proposition 5.5 resp. Proposition 5.7, E+(S) is relatively compact.

E+(S) is closed: Letqk ∈ E+(S),qk → q. Letγk : [0, tk] → M benull pre-geodesics
(in h-unit speed parametrisation) from some pk ∈ S to qk . By compactness of S, we
may assume that pk → p ∈ S. If q = p, then we are done. Otherwise, there are two
possibilities: If the tk are bounded, then by going over to subsequences, tk → t ∈ (0,∞).
Since q �= p, we are in a position to invoke Theorem A.11 to get a maximising causal
limit geodesic γ : [0, t] → M connecting p to q. γ cannot be timelike, as this would
imply q ∈ I +(S) and hence qk ∈ I +(S) for large k. Hence q ∈ J+(S) \ I +(S) = E+(S).
The other possibility is that the tk are unbounded, i.e. w.l.o.g. tk →∞. Since (M, g) is
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strongly causal, this means that the γk leave every compact set, i.e., γk(tk) → ∞ (after
possibly relabelling tk). However, as E+(S) is contained in some compact set, this is not
possible. ��
Corollary 5.11. Let the assumptions be as in Proposition 5.10. Then E+(S) ∩ S is
achronal, and E+(E+(S) ∩ S) is compact or M is null geodesically incomplete.

Proof. This is shown as in the smooth case, see [10, Prop. 4] or [46, Prop. 4.3] and using
that for any p ∈ S there is some neighbourhoodU such that S∩U is achronal inU . ��

We now start with our discussion of “trapped points”. In [8, Sec. 6.3], a faithful
way to generalise the classical condition, which uses Jacobi tensor classes—a tool no
longer available already for C1,1-metrics—is presented: It uses the mean curvature of
spacelike 2-surfaces given as the level sets of the exponential map that generate the light
cone. While the latter tool presently is not at our disposal, the very formulation of the
corresponding condition again uses support manifolds and can be adopted verbatim.
However, it is now more delicate to derive that the horismos of a trapped point is a
trapped set.

Definition 5.12 (Trapped points).
A point p ∈ M is future trapped if for any future pointing null vector v ∈ TpM and for
any null geodesic γ with γ (0) = p, γ̇ (0) = v, there exists a parameter t and a spacelike
C2-submanifold of codimension m = 2 with S̃ ⊆ J+(p), γ (t) ∈ S̃ and kS̃(γ̇ (t)) > 0.

Proposition 5.13. Let (M, g) be a strongly causal, MNNB C1-spacetime satisfying the
distributional null energy condition. If p ∈ M is a future trapped point and (M, g) is
null geodesically complete then E+(p) is compact.

Proof. Since trapped points are defined by means of codimension-2 submanifolds S̃,
we will use Proposition 5.7 for which (only) the distributional null energy condition is
needed. The proof is analogous to that of Proposition 5.10.

E+(p) is relatively compact: Suppose q j ∈ E+(p), q j → ∞. Let γ j : [0, t j ] →
M be maximising null geodesics connecting p to q j , cf. Lemma A.5. Then, up to a
subsequence, the γ j converge to a g-null ray γ : [0,∞) → M from p (the domain is
[0,∞) even in g-affine parametrisation since (M, g) is null geodesically complete). By
assumption, there is a C2-spacelike submanifold S̃ of codimension 2 and a parameter
t such that kS̃(γ̇ (t)) > c > 0 and we let b > 1/c. γ is indeed an S̃-ray: If not, it
would enter I +(S̃) ⊆ I +(p), a contradiction. But by the previous results in this section,
γ cannot maximise from S̃ past b, a contradiction since it is a ray.

E+(p) is closed: This is shown in exactly the same way as closedness was shown in
the proof of Proposition 5.10. ��

6. The Main Result

Given the results established so far, the general mechanics of the proof of the Hawking–
Penrose theorem remains the same as in the smooth case. There do, however, remain
notable differences in the details in this lower regularity (e.g. the use of [7, Prop. 2.13]
in the proof of Theorem 6.2), so we include the full argument.

Lemma 6.1. Let (M, g) be a strongly causal C1-spacetime such that no inextendible
null geodesic in M is maximising. Let A ⊆ M be achronal such that E+(A) is compact,
and let γ be a future inextendible timelike curve contained in D+(E+(A))◦. Then F :=
E+(A) ∩ J−(γ ) is achronal and E−(F) is compact.
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Proof. Due toLemmaA.16wemay assume that A = A. Since E+(A) is always achronal
and F ⊆ E+(A), it is also achronal. By compactness of E+(A), F is compact. Note
that E−(F) ⊆ F ∪ ∂ J−(γ ) by similar arguments as in [21, Lem. 9.3.4], so to show
compactness of E−(F), it suffices to show compactness of E−(F) ∩ ∂ J−(γ ).

Suppose now that v ∈ T M |F is past pointing causal and let cv : [0, a) → M
be any past inextendible, past directed geodesic with ċv(0) = v (recall that in C1-
spacetimes we no longer have unique solvability of the geodesic initial value problem).
Then cv ⊆ J−(γ ), and J−(γ ) = I−(γ ) ∪ ∂ J−(γ ). We show that cv meets I−(γ ):
Suppose, to the contrary, that cv is a null geodesic entirely contained in ∂ J−(γ ). Since
γ is a future inextendible timelike curve, we have J−(γ ) = I−(γ ), hence cv lies entirely
in ∂ J−(γ ) \ J−(γ ). By Corollary A.12, there is a future directed, future inextendible
null geodesic λ starting at cv(0) entirely in ∂ J−(γ ) (γ is closed in M by Corollary A.33
and Lemma A.32). This means that either cvλ is an inextendible broken null geodesic,
hence not maximising by Lemma A.4, or an inextendible unbroken maximising null
geodesic. By assumption such a geodesic cannot exist, hence in either case cvλ cannot
lie entirely in ∂ J−(γ ) and so cv must enter I−(γ ).

Thus we have shown that for any v and any geodesic cv as above there is tv =
tv(v, cv) (for which cv is still defined) such that cv(tv) ∈ I−(γ ). It remains to show that
E−(F) ∩ ∂ J−(γ ) is compact.

E−(F) ∩ ∂ J−(γ ) is relatively compact: Suppose there are qk ∈ E−(F) ∩ ∂ J−(γ )

withqk →∞. Then there are past-directedmaximising null pre-geodesics ck : [0, tk] →
M in h-unit speed parametrisation with ck(0) = pk ∈ F and ck(tk) = qk . Since
qk →∞, also tk →∞By compactness, wemay assume pk → p ∈ F . Since qk →∞,
there is a neighbourhood U which almost all ck leave and we are in a position to apply
the Theorem A.10. We get a past-directed inextendible null limit curve c : [0,∞) → M
from p and a subsequence of the ck (w.l.o.g. ck itself) which converges to c locally
uniformly. It is easy to see that all ck have to lie entirely in ∂ J−(γ ), hence so does
the limit c. In particular, c is everywhere maximising and may be reparametrised as
an inextendible geodesic c : [0, a) → M entirely contained in ∂ J−(γ ). This is a
contradiction since we showed before that each past directed null geodesic with initial
velocity in T M |F has to enter I−(γ ).

E−(F) ∩ ∂ J−(γ ) is closed: Let q j ∈ E−(F) ∩ ∂ J−(γ ), q j → q, where we may
assume q �∈ F , otherwise there is nothing to prove. Connect F & p j → q j via max-
imising null geodesics. Up to a subsequence, their limit has to be a maximising null
geodesic from p to q, hence q ∈ E−(F)∩ ∂ J−(γ ), because otherwise one would again
obtain an inextendible maximising null geodesic entirely in ∂ J−(γ ), which would lead
to the same contradiction as before. ��

Now we are ready to give the C1-version of the causal Hawking-Penrose theorem. It
is the direct analog of [17, p. 538, Thm.] and [8, Thm. 7.4], respectively.

Theorem 6.2. Let (M, g) be a C1-spacetime. Then the following conditions cannot all
hold:

(i) (M, g) is causal.
(ii) No inextendible timelike geodesic in an open globally hyperbolic subset is every-

where maximising.
(iii) No inextendible null geodesic is everywhere maximising.
(iv) There is an achronal set A ⊆ M such that E+(A) or E−(A) is compact.

Proof. Suppose all of the above conditions hold. Then by Lemma A.31, (i) and (iii)
imply that (M, g) is strongly causal. W.l.o.g. we assume that E+(A) is compact. By
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Lemma A.35 there exists a future inextendible (in M) timelike curve γ ⊆ D+(E+(A))◦.
Set F := E+(A)∩ J−(γ ), which byLemma 6.1 is achronal and E−(F) is compact. Once
more by LemmaA.35 there is some past-inextendible timelike curve λ ⊆ D−(E−(F))◦.
Exactly as in the smooth case, see e.g. the second paragraph of [8, Proof of Thm. 7.4],
one can show γ ⊆ D+(E−(F))◦, by invoking Proposition A.20 and Lemma A.24. So
γ, λ ⊆ D(E−(F))◦ which by Proposition A.28 is globally hyperbolic. Now we pick
sequences pk = λ(sk) and qk = γ (tk) with tk, sk ↗ ∞, leaving every compact set,
which is possible because γ and λ are inextendible curves in M contained in a strongly
causal set (Lemma A.32). Also because λ ⊆ J−(E−(F)) ⊆ J−(F) ⊆ J−(J−(γ )) and
because γ is timelike, we can choose pk ∈ I−(qk).

By [7, Prop. 2.13] there exist maximising timelike geodesics γ̃k in D(E−(F))◦ from
pk to qk , which must intersect E−(F), say at rk . By compactness of E−(F) we can
assume rk → r and by Corollary 2.6 there exists an inextendible, causal limit geodesic
γ̃ , which is also maximising (as a limit of maximisers).

By (iii), γ̃ cannot be null, so it must be timelike. As a limit of curves in D(E−(F))◦ it
is contained in D(E−(F)). Again using Proposition A.20 and LemmaA.24 one can now
proceed as in the last step in [8, Proof of Thm. 7.4] to arrive at the desired contradiction
(to (ii)). ��

Finally, we formulate and prove the main result of this work, the analytical Hawking-
Penrose theorem for maximally causally non-branching C1-spacetimes.

Theorem 6.3. (The Hawking-Penrose singularity theorem for C1-metrics)
Let (M, g) be a C1-spacetime of dimension n with the following properties.

(i) (M, g) is causal.
(ii) (M, g) satisfies the distributional timelike and null energy conditions.
(iii) (M, g) satisfies the distributional genericity condition along any inextendible

causal geodesic.
(iv) (M, g) is maximally causally non-branching.
(v) (M, g) contains one of the following.

(a) a compact, achronal, edgeless set.
(b) a future trapped point.
(c) a future trapped C0-submanifold of codimension 2.
(d) a future trapped C0-submanifold of codimension 2 < m < n such that its

support submanifolds satisfy the condition in Proposition 5.5.

Then (M, g) is causally geodesically incomplete.

Proof. Assuming causal geodesic completeness,wewould like to deduce a contradiction
by using Theorem 6.2.

Note that due to Theorems 4.2 and 4.3 the assumptions (ii) and (iii) of Theorem 6.2
are satisfied and it remains to establish the existence of a future or past trapped set, i.e.
an achronal set with compact future or past horismos. This will be implied by (v), but
we have to distinguish the different cases:

ByPropositionA.36, (a) implies the existenceof a trapped set.Note that byLemmaA.31
(which can be applied by Theorem 4.3 ) (M, g) is strongly causal and hence Proposition
5.13 covers the case (b), whereas Proposition 5.10 covers cases (c)
and (d). ��
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A. Appendix: Causality Results in C1-Spacetimes

In this section, we collect various results on the causality of C1-Lorentzian metrics
that will be needed in the proof of the main result. Unless stated otherwise, throughout
this section (M, g) consists of a connected smooth (Hausdorff and second countable)
manifold M , and a C1-Lorentzian metric g that is time-orientable (i.e. there exists a
smooth timelike vector field on M). Many of the results in this section hold in even
greater generality, namely either for Lorentzian metrics that are merely Lipschitz or
even in the general setting of closed cone structures [35]. Although we will occasionally
note this, in proving the results in this section we will stay close to smooth causality
theory (mainly based on the comprehensive reference work [34]) and only make those
changes from classical proofs that are required due to the absence of certain tools (e.g.,
convex normal neighbourhoods) in the C1-setting.

We begin with two elementary results, namely the openness of timelike futures and
pasts and the push-up property. Both of these hold for causally plain spacetimes, which
include spacetimes with Lipschitz continuous metrics [5, Cor. 1.17].

Lemma A.1. For any A ⊆ M, the sets I±(A) are open in M.

Proof. See [5, Prop. 1.21]. ��
Lemma A.2. Let p, q, r ∈ M such that p ≤ q � r or p � q ≤ r . Then p � r .

Proof. See [5, Lem. 1.22]. ��
Remark A.3. Note that from this one can show as in the smooth case, e.g. [39, Lem.
14.03]6, that the timelike relation is open, i.e., if p � q then there are neighbourhoods
Up,Uq of p and q respectively, such that for all x ∈ Up and all y ∈ Uq , we have x � y.

Lemma A.4. Let (M, g) be a C1-spacetime and let γ : [a, b] → M be a maximising
causal curve. Then γ is a (reparametrisation of a) causal geodesic. In particular, it is a
C2-curve and has a causal character.

Proof. See [27, Thm. 1.1] or [43, Thm. 3.3]. ��
For any point q ∈ M , we denote by E+(q) := J+(q) \ I +(q) its future horismos. Its

past horismos E−(q) is defined analogously.

Lemma A.5. If p ∈ E+(q) then there exists a maximising null geodesic segment from
q to p.

6 the use of convex sets is not necessary once openness of I+ in is established

http://creativecommons.org/licenses/by/4.0/
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Proof. Let c be a future causal curve from q to p. Since p /∈ I +(q), c is null and
maximising from q to p (because of push-up), hence it is (a reparametrisation of) a
maximising null geodesic by Lemma A.4. ��
Lemma A.6. For any subset A ⊆ M, we have I±(A) = J±(A)◦ and ∂ I±(A) =
∂ J±(A). Moreover, the sets E±(A) and ∂ J±(A) are achronal.

Proof. This follows by the same proofs as in the smooth case (cf. [34, Thm. 2.27], [39,
Cor. 14.27]). ��
Definition A.7. (Edge)
Let A ⊆ M be achronal. The edge of A, denoted by edge(A), is the set of all x ∈ A
such that for any neighbourhood U of x , there is a timelike curve from I−U (x) to I +U (x)
that does not meet A.

Lemma A.8. Let (M, g) be a C1-spacetime. An achronal set A ⊆ M is a topological
hypersurface if and only if A ∩ edge(A) = ∅. Moreover, A is a closed topological
hypersurface if and only if edge(A) = ∅.
Proof. The proofs for smooth metrics (cf. [39, Prop. 14.25, Cor. 14.26]) still hold
in C1. ��
Lemma A.9. For any A ⊆ M, ∂ J+(A) is a (topologically) closed, achronal topological
hypersurface.

Proof. This follows from the fact that ∂ J+(A) is achronal and edge(∂ J+(A)) = ∅,
which is proven in precisely the same way as in the smooth case. ��

Recall the notion of a limit maximising sequence of causal curves: A sequence γk :
[ak, bk] → M of future directed causal curves is called limit maximising if there is
εk → 0 such that

L(γk) ≥ dg(γ (ak), γ (bk))− εk,

where dg is the time separation function induced by g. In particular a sequence of
maximising curves is limit maximising. We shall employ the following version of the
limit curve theorem:

Theorem A.10. (Limit Curve Theorem)
Let h be a complete Riemannian metric on M and let γk : [ak, bk] → M be future
directed, h-arc length parametrised causal curves with 0 ∈ [ak, bk] such that the se-
quence {γk(0)} has an accumulation point y. Suppose there are a ≤ 0 and b ≥ 0 such
that ak → a, bk → b. If there is a neighbourhood U of y such that almost all γk leave
U, then a subsequence of γk converges h-uniformly on compact sets to a future directed
causal Lipschitz curve γ : [a, b] → M. γ is future resp. past inextendible iff b = ∞
resp. a = −∞. If {γk} is limit maximising, then γ is maximising.

Proof. This follows from [30, Thm. 3.1] and [5, Thm. 1.6] by the same proof as in [8,
Thm. A.6]. ��
For a much more general version of the limit curve theorem, valid in closed cone struc-
tures, we refer to [35, Thm. 2.14]. We shall also require the following variant of the limit
curve theorem for a sequence of curves with converging past and future endpoints, cf.
[30, Thm. 3.1(2)].
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Theorem A.11 (Limit Curve Theorem: two converging endpoints).
Let γk : [0, bk] → M be a sequence of future-directed, causal curves in h-arc length
parametrisation connecting xk to zk , with xk → x and zk → z. Suppose that bk → b ∈
(0,∞). If there is a neighbourhoodU of x such that only a finite number of γk are entirely
contained in U, then there is a Lipschitz future-directed, causal curve γ : [0, b] → M
connecting x to z such that a subsequence of the γk converges to γ h-uniformly on
compact sets. Moreover, if {γk} is limit maximising, then γ is maximising.

Proof. This is contained in the statement of [30, Thm. 3.1(2)], whose proof is easily
seen to hold for C1-metrics once Theorem A.10 is established. ��
Corollary A.12. Let A ⊆ M. For any point x ∈ ∂ J+(A) \ A, there is a causal curve
γ ⊆ ∂ J+(A) with future endpoint x that is either past inextendible and does not meet A
or has a past endpoint in A. It is a (reparametrisation of a) maximising null geodesic.
If A is closed and x /∈ J+(A), then γ ⊆ ∂ J+(A) \ J+(A) and it is past inextendible.

Proof. Using Theorem A.10 and Lemma A.5, this follows as in [8, Prop. A.7]. ��
Lemma A.13. Let (M, g) be a C1-spacetime and let {gk} be either the sequence {ĝεk }
or {ǧεk } with εk ↓ 0. Let p, q ∈ M and let γk be a gk-maximising curve from p to q,
so γk is in particular a gk-geodesic. Suppose that γk converge to a curve γ in C1

loc. If{gk} = {ǧεk }, suppose in addition that (M, g) is globally hyperbolic and p �g q. Then
γ is a g-maximising geodesic from p to q.

Proof. The case {gk} = {ĝεk } follows immediately from [41, Prop. 6.5], so we will
only consider the case {gk} = {ǧεk } together with the additional assumptions of (M, g)
being globally hyperbolic and p �g q in this case. Due to global hyperbolicity, the
space C(p, q) of future directed causal curves from p to q (considered up to orientation
preserving reparametrisations) is compact with respect to its natural topology (see [41,
Thm. 3.2]). Consequently, the h-speeds of curves in C(p, q) are uniformly bounded by
some constant C1 > 0, where h is some complete Riemannian metric on M .

Since (M, g) is globally hyperbolic, there is an Lg-maximising g-geodesic c :
[0, 1] → M with c(0) = p, c(1) = q [41, Prop. 6.4]. Also, p �g q implies that
c is g-timelike. By compactness, there is a constant C2 > 0 such that g(ċ, ċ) < −C2 on
[0, 1], and hence gk(ċ, ċ) < 0 for k large, implying that c is gk-timelike for such k. If
we set δk := dh(g, gk) (the h-distance of g, gk as in [5, (1.6)]), then

Lg(c) =
∫ 1

0

√−g(ċ, ċ)dt ≤
∫ 1

0

√
−gk(ċ, ċ) + C2

1δkdt ≤ Lgk (c) + C1
√

δk

≤ dgk (p, q) + C1
√

δk = Lgk (γk) + C1
√

δk → Lg(γ ) (k →∞),

so Lg(γ ) ≥ Lg(c), which proves that also γ is maximising from p to q. ��
Lemma A.14. Letγk ⊆ J+(p)be causal curves converging locally uniformly to a causal
curve γ with future endpoint q. If dg(p, q) = 0, then γ is a maximising null geodesic.

Proof. Clearly γ ⊆ J+(p). If γ would meet I +(p), then there would exist some r ∈
I +(p) ∩ J−(q) and using push-up we could conclude that q ∈ I +(p), contradicting
dg(p, q) = 0. Hence γ ⊆ ∂ J+(p), which is achronal and γ is a maximising null
geodesic by Lemma A.4. ��
Lemma A.15. Let gk = ǧεk and let γk ⊆ J+(p) be gk-null geodesics converging in C1

loc
to a g-geodesic γ that ends in q. Assume that dg(p, q) = 0. Then γ is a maximising
g-null geodesic.
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Proof. This follows immediately fromLemmaA.14uponnoting that any gk -null geodesic
is g causal. ��
Lemma A.16. Let A be achronal. Then so is A. Moreover, if E+(A) is closed, then
E±(A) = E±(A).

Proof. This follows by the same proof as in [8, Lem. A.8]. ��
Lemma A.17. Let (M, g) be a C1-spacetime. Then every point in M has a neighbour-
hood base of globally hyperbolic neighbourhoods.

Proof. Fix any smooth, time-orientable Lorentzian metric ĝ with g ≺ ĝ. For x ∈ M ,
[34, Thm. 2.7] gives a neighbourhood base Vm of neighbourhoods of x that are globally
hyperbolic with respect to ĝ|Vm . Any Cauchy hypersurface for ĝ in Vm is also a Cauchy
hypersurface for g, so the claim follows from [41, Thm. 5.7]. ��
Lemma A.18. Let S be a spacelike (C2-) hypersurface and let p ∈ S. Then there exists
a neighbourhood V of p in M such that V ∩ S is a Cauchy hypersurface in V .

Proof. The proof of the analogous result [25, LemmaA.25] alsoworks in theC1-setting.
��
Definition A.19. (Cauchy development and Cauchy horizon)
Let A be an achronal set. The future Cauchy development of A is the set

D+(A) := {x ∈ M : every past inextendible causal curve through x meets A}.
The future Cauchy horizon of A is defined as

H+(A) := D+(A) \ I−(D+(A)).

The past Cauchy development and past Cauchy horizon are defined analogously.

The first part of the following result is partly a C1-analogue of [39, Lem. 14.51], where
it is proved using convex normal neighbourhoods, a tool that we do not have at our
disposal in the C1-setting. The use of such neighbourhoods can, however, be avoided,
as our arguments below illustrate.

Proposition A.20. Let A be a closed, achronal set. Then

D+(A) = {x ∈ M : every p.i. t.l. curve through x meets A}
and

∂D+(A) = A ∪ H+(A).

Proof. Let T be the set on the right hand side in the first equation.
D+(A) ⊆ T : Suppose there is a point p ∈ D+(A) \ T . Then there is some past inex-
tendible timelike (future directed) curve α : (a, 0] → M with α(0) = p not meeting A.
Let pk ∈ D+(A), pk → p and letUk be open neighbourhoods of p withUk → {p}. By
choosing subsequences, we may assume that pk ∈ I +Uk

(α(−1/k)) and α|[−1/k,0] ⊆ Uk
for all k.
Construct now past inextendible causal curves αk by connecting α(−1/k) to pk in a
timelike way such that these curves stay in Uk , and let the rest of αk (i.e. the part to the
past of α(−1/k)) be the original curve α. Then the αk are all past inextendible timelike,
and since pk ∈ D+(A) they must meet A at some ak . Since α does not meet A, the
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ak have to lie on the replaced piece. But these pieces are entirely in Uk , which go to
{p}, so we see that ak → p. Since A is closed, we have p ∈ A, which is absurd since
p /∈ T ⊇ A by assumption.
D+(A) ⊇ T : Suppose q /∈ D+(A), and let r ∈ I−

M\D+(A)
(q). Since in particular

r /∈ D+(A), there is a past inextendible causal curve α from r missing A. Precisely as
in the smooth case [39, Lem. 14.30(1)], noting that pushup still holds in C1), there is a
past inextendible timelike curve from q not meeting A. Thus q /∈ T .

Finally, ∂D+(A) = A ∪ H+(A) follows exactly as in the smooth case (cf. [39, Lem.
14.52]). ��
We note that the previous result in fact remains true even for locally Lipschitz proper
cone structures [35, Thm. 2.35, 2.36].

Lemma A.21. Let A be achronal. Then H+(A) is a closed, achronal set.

Proof. The proof of [34, Prop. 3.15] carries over unchanged to C1 metrics. ��
Lemma A.22. Let A be closed and achronal. If x ∈ D+(A) \ H+(A), then every past
inextendible causal curve through x meets I−(A). Moreover, if x ∈ D(A)◦, then every
future (resp. past) inextendible future (resp. past) directed causal curve emanating from
x intersects I +(A) (resp. I−(A)).

Proof. This follows from [34, Prop. 3.27] and [34, Prop. 3.42], which still hold for
C1-metrics. ��
Lemma A.23. Let A be closed, achronal. Let x ∈ J+(A) \ D+(A) or x ∈ I +(A) \
D+(A)◦. Then every causal curve from x to A meets H+(A).

Proof. Theproof forC1,1-metrics [8,Lem.A.12] still holds inC1 becauseofLemmaA.1,
Lemma A.2, and Proposition A.20. ��

Using these results, one establishes the following formula for the timelike future of
the Cauchy horizon of a closed, achronal set precisely as in the C1,1-case, cf. [8, Lem.
A.13].

Lemma A.24. Let A be closed and achronal. Then I +(H+(A)) = I +(A) \ D+(A).

Lemma A.25. Let A be closed and achronal. Then edge(H+(A)) ⊆ edge(A).

Proof. Based on Lemmas A.23 and A.24 , the proof of [8, Lem. A.14] carries over to
the C1-setting. ��
Lemma A.26. Let A be an achronal set, then H+(∂ J+(A)) is a closed, achronal, topo-
logical hypersurface.

Proof. H+(∂ J+(A)) is closed and achronal by Lemma A.21, and by the previous result,
combined with Lemmas A.8 and A.9 , edge(H+(∂ J+(A))) ⊆ edge(∂ J+(A)) = ∅, so
the claim follows from Lemma A.8. ��
Lemma A.27. Let A be closed, achronal. Then H+(E+(A)) ⊆ H+(∂ J+(A)).

Proof. The proof of [8, Lem. A.16] carries over, using Corollary A.12, Proposition A.20
and Lemmas A.23, A.24. ��
Proposition A.28. Let (M, g) be a C1-spacetime and let A ⊆ M be a closed, achronal
set. Then the interior of itsCauchydevelopment, i.e. the set D(A)◦ = (D+(A)∪D−(A))◦,
if nonempty, is a globally hyperbolic C1-spacetime when considered with the induced
metric.
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Proof. Based on Theorem A.10 and Lemma A.22, this follows from the same proof as
in [34, Thm. 3.45]. ��
Definition A.29. (Strong causality)
A C1-spacetime (M, g) is called strongly causal at p ∈ M if for any neighbourhood U
of p there is a neighbourhood V of p with V ⊆ U such that any causal curve starting
and ending in V is contained inU . (M, g) is called strongly causal if it is strongly causal
at every point.

Lemma A.30. (M, g) is strongly causal at p if and only if for any neighbourhood U of
p there is a neighbourhood V of p with V ⊆ U such that no causal curve leaving V
ever returns.

Proof. This follows from [33, Lem. 3.21], which continues to hold in the C1-case. ��
Lemma A.31. Let (M, g) be chronological and suppose there are no inextendible max-
imising null geodesics in M. Then (M, g) is strongly causal.

Proof. Using Theorem A.10, this follows by the same argument as [8, Lem. A.19]. ��
Lemma A.32. A strongly causal C1-spacetime (M, g) is non-totally and non-partially
imprisoning: No future or past inextendible causal curve is contained in a compact set
and no future or past inextendible causal curve returns to a compact set infinitely often.

Proof. The classical proof for the smooth case (see [39, Lem. 14.13]) holds even for
continuous metrics. ��
Corollary A.33. Let (M, g)beanon-totally andnon-partially imprisoningC1-spacetime.
Then the image of every inextendible causal curve is closed in M.

Proof. Let γ be any inextendible causal curve. Since M is a manifold, the topology
on M is compactly generated. Let K ⊆ M be any compact subset. By non-total and
non-partial imprisonment, γ ∩ K is a finite union of closed segments of γ , hence γ ∩ K
is closed in K . Since K was arbitrary, γ is closed in M . ��
Lemma A.34. Let (M, g) be a strongly causal C1-spacetime and let A ⊆ M be a closed,
achronal subset. If H+(E+(A)) is nonempty, then it is noncompact.

Proof. The proof of the smooth case goes through, because all the necessary preliminary
results continue to hold in C1 (see the outline in [8, Lem. 7.1]). ��
Lemma A.35. Let (M, g) be a strongly causalC1-spacetime. Let A ⊆ M bean achronal
subset such that E+(A) is compact. Then there is a future inextendible timelike curve γ

contained in D+(E+(A))◦.

Proof. The proof of the smooth case goes through in C1, see e.g. [17, Lem. 2.12], or
also [21, Lem. 9.3.3], combined with Lemma A.16. ��
Proposition A.36. Let (M, g) be a C1-spacetime and let A ⊆ M be achronal and
edgeless. Then E+(A) = A, in particular if A is compact so is E+(A).

Proof. This was shown e.g. in [34, Cor. 2.145] and the proof carries over to C1 space-
times. ��
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B. Appendix: Extending Vector Fields in C1-Spacetimes Uniformly

When applying the genericity condition (Definition 2.15) we need to extend vectors or
vector fields along curves to neighbourhoods, due to the fact that distributional (or also
L∞) curvature quantities are not well defined on points or along curves (as these are
sets of measure zero). It is rather straightforward to extend a vector field along a curve
to a neighbourhood. For C1-metrics one can still use parallel transport along certain
curves spanning an open set. Alternatively, one can also use “cylindrically constant”
(see below) extensions in coordinates around a (part of a) curve.

In our case, we need to simultaneously extend vector fields along a sequence of
converging curves. To be more precise, let γk be a sequence converging in C1 to some
γ and let Vk be vector fields along γk and V along γ such that Vk → V in C1 as
k → ∞. Then given a point on γ , does it possess a neighbourhood U such that all Vk
can be extended to vector fields on U and such that their extensions converge in C1 to
the extension of V ?

To begin with, we consider the situation of extending vector fields around a point of
a curve to a neighbourhood by cylindrically constant extension in coordinates.

Lemma B.1 (Cylindrically constant extension of vector fields on curves). Let γ : I →
M be a C1-curve which is regular at 0, i.e. γ̇ (0) �= 0 and set p := γ (0). Then there
exists a chart (U, (x1, . . . , xn)) around p with the following property: For any C1 vector
field V along γ there exists a C1 extension Ṽ of V to U such that, in these coordinates,
Ṽ is independent of x2, . . . , xn.

Proof. Since the claim is local we may assume that M = R
n , that p = 0, and that

γ = (γ 1, . . . , γ n) with γ ′
1(t) > c > 0 for some c and all t ∈ (a, b), where a < 0 < b.

Thus γ 1 is a C1-diffeomorphism from (a, b) onto some interval J . Then we set U :=
J × Bn−1

R (0), where R > 0 is such that γ ((a, b)) ⊆ U . Given a C1-vector field V
along γ , i.e., a C1-map V : (a, b) & t �→ (γ (t), v(t)) with v ∈ C1((a, b),Rn), set
Ṽ : U → U × R

n ,

Ṽ (x) := (x, v((γ 1)−1(x1)))

to obtain the desired extension. ��
Now that we have set up a way of extending vector fields in a cylindrically constant

fashion, we can implement an analogous procedure uniformly on a sequence of curves.

Lemma B.2. Let γk : [−1, 1] → M be a sequence of C1-curves converging in
C1([−1, 1]) to the regular C1-curve γ : [−1, 1] → M and let Vk and V be C1 vector
fields along γk and γ , respectively. Further, let Vk → V in C1, i.e., both Vk → V and
V ′
k → V ′ in T M, uniformly on [−1, 1]. Then there exists some open neighbourhood U

of γ (0) and C1 extensions Ṽk of Vk and Ṽ of V to U such that Ṽk → Ṽ in C1
loc(U ).

Proof. Again we may assume that M = R
n . As in the previous Lemma we write

γ = (γ 1, . . . , γ n) and can assume without loss of generality that γ (0) = 0, and that
(γ 1)′(t) > c > 0 for some c and all t ∈ (a, b), where a < 0 < b. Due to the
assumption on the C1-convergence of the γk , we may additionally suppose that the
same inequality holds on (a, b) for each (γ 1

k )′. Thus each γ 1
k and γ 1 itself are C1-

diffeomorphisms from (a, b) onto their respective image. In addition (restricting to n
large if necessary), there exists a nontrivial interval J around 0 that is contained in
⋂

k γ 1
k ((a, b)) ∩ γ ((a, b)). Then we set U := J × Bn−1

R (0), where R > 0 is chosen
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such that
⋃

k γk((a, b)) ∪ γ ((a, b)) ⊆ U . We can write V in the form t �→ (γ (t), v(t))
with v ∈ C1((a, b),Rn), and analogously Vk(t) = (γk(t), vk(t)), with vk → v in C1.
For x ∈ U we set

Ṽ (x) := (x, v((γ 1)−1(x1))) Ṽk(x) := (x, vk((γ
1
k )−1(x1))),

givingC1-extensions of V resp. Vk toU . By [2, Cor. 1] we have that (γ 1
k )−1 converges to

(γ 1)−1 locally uniformly, and that the same is true for the first derivatives. Consequently,
Ṽk → Ṽ in C1

loc(U ). ��
As the proof shows, if the Vk converge to V merely in C0

loc then one can still find
C1-extensions to U that also converge in C0

loc.
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