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Abstract: One of the most profound questions of mathematical physics is that of es-
tablishing from first principles the hydrodynamic equations in large, isolated, strongly
interacting many-body systems. This involves understanding relaxation at long times
under reversible dynamics, determining the space of emergent collective degrees of
freedom (the ballistic waves), showing that projection occurs onto them, and establish-
ing their dynamics (the hydrodynamic equations). Wemake progress in these directions,
focussing for simplicity on one-dimensional systems. Under a model-independent defi-
nition of the complete space of extensive conserved charges, we show that hydrodynamic
projection occurs in Euler-scale two-point correlation functions. A fundamental ingre-
dient is a property of relaxation: we establish ergodicity of correlation functions along
almost every direction in space and time. We further show that to every extensive con-
served charge with a local density is associated a local current and a continuity equation;
and that Euler-scale two-point correlation functions of local conserved densities satisfy
a hydrodynamic equation. The results are established rigorously within a general frame-
work based on Hilbert spaces of observables. These spaces occur naturally in the C∗
algebra description of statistical mechanics by the Gelfand–Naimark–Segal construc-
tion. Using Araki’s exponential clustering and the Lieb–Robinson bound, we show that
the results hold, for instance, in every nonzero-temperature Gibbs state of short-range
quantum spin chains. Many techniques we introduce are generalisable to higher dimen-
sions. This provides a precise and universal theory for the emergence of ballistic waves
at the Euler scale and how they propagate within homogeneous, stationary states.
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1. Introduction

The passage from short-scale, microscopic motion to large-scale, emergent collective
behaviours is at the heart of some of the deepest questions in modern theoretical physics.
The problemmay be framed as determining, from the intricate microscopic dynamics of
a myriad constituents in interaction, the emergent degrees of freedom that are relevant
for observations at large scales of space and time, and their own dynamics.

Take the example of travelling surface-water waves. A local disturbance on a steady
water surface – say a finger touching it – produces a complicated rearrangement of water
molecules at microscopic distances. But the strongest effect on any local probe that is far
enough away – say a nearby floating leaf – occurs when the surface wave, propagating
out of the local disturbance, hits it. The surface wave is an emergent behaviour, with
its own, new dynamics. In this case, it is obtained by linear response from the Euler
equations with boundary conditions at the surface. Similarly, in a large class of many-
body systems, strong correlations are expected to occur along trajectories associatedwith
the propagation of ballistic, or slowly decaying modes, such as surface water waves or
sound waves, and hydrodynamics is their emergent theory [1].
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Despite the simplicity of the above example, a full mathematical understanding of
how ballistic correlations emerge from the microscopic dynamics of particles ruled by
the fundamental, deterministic equations of physics is still missing – this is in contrast to
significant progress for stochastic systems, see [2,3]. Probing behaviours at long times
is a monumental task. As far as the author is aware, the ergodicity property of correlation
functions – that long-time averages do not fluctuate – remains without a rigorous proof.
Fully relating Euler-scale correlations to a universally defined space of ballistic modes
has also been beyond reach. Further, there are only a few rigorous proofs ofhydrodynamic
equations: certain particle systemswith conservative noise [4–7], and special examples in
strongly interacting systemswhosedynamics isHamiltonianormoregenerally reversible
and deterministic, including the completely integrable hard rod gas [8], classical and
quantum disordered anhamornic chains [9,10], and the Rule 54 cellular automaton [11].
These are some of the most important challenges of mathematical physics

The goal of this paper is to make progress on these problems. We focus on one-
dimensional systems, both for their relevance to recent research (see the reviews [12–
17]), and in order to illustrate the techniques in the simplest possible setting. We con-
centrate on correlation functions at large wavelengths and large times, and the linearised
Euler equations they satisfy. All results are established within a general framework en-
coding basic properties of many-body systems. They apply to all short-range quantum
spin chains with Hamiltonian dynamics, but are not restricted to these.

Crucially, we make no a priori assumption as to the type of ballistic modes emerging.
Intuitively, it is well understood that ballistic modes are related to conserved charges ad-
mitted by the model. The conventional assumption that mass, momentum and energy are
the only relevant quantities, leads to the standard Euler equations (with natural relativis-
tic generalisations). However, it is now well established that this assumption is broken
in integrable models, where an infinity of conserved charges must be taken into account,
such as in classical soliton gases [18,19] and many-body quantum systems [20–23], as
confirmed by experiments [24–28]. This highlights the importance of characterising the
space of ballistic modes, in a manner that does not depend on the specific properties of
the dynamics.

1.1. Linearised Euler equation and Boltzmann–Gibbs principle. The problem of estab-
lishing hydrodynamics is fruitfully divided as such: (1) obtaining the universal theory of
emergent ballistic waves in a model-independent fashion, and (2) specialising the space
of ballistic waves and their dynamics to given sub-families of models, such as integrable
and non-integrable models. In this paper, we address the first point.

A crucial step is to prove the universal form of the linearised Euler equation. Con-
sider a statistical model on the one-dimensional lattice1 Z: a C∗-algebra of “local”
observables U, a state (positive linear functional) ω giving their statistical averages,
and space and time-translation ∗-isomorphisms under which ω is invariant; a(x, t) is
the translate of a ∈ U by distance x ∈ Z and time t ∈ R (see e.g. [29–33]). Under
what conditions and for what (say countable) set of observables {qi } ⊂ U – repre-
senting ballistic waves – do the Fourier transforms of two-point correlation functions
Ci j (k, t) = ∑

x∈Z eikx
[
ω

(
qi (x, t)q j (0, 0)

) − ω(qi )ω(q j )
]
satisfy the linear differential

equation

1 This setup is natural for describing quantum and classical chains, but can also be applied to gases and
field theories lying on the line R, by grouping observables into adjacent cells parametrised by Z.
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∂

∂t
Ci j (k, t) = ik

∑

l

A l
i Cl j (k, t) ? (1)

The flux Jacobian A l
i [1,17,34,35] is usually defined by assuming that for every qi there

exists a current ji such that a continuity equation holds,

∂qi (x, t)

∂t
+ ji (x, t) − ji (x − 1, t) = 0 (2)

(that is, qi ’s are densities of extensive conserved charges), and thenA l
i = ∂ω(ji )/∂ω(ql),

where variations of ω are taken within a manifold of (generalised) Gibbs states. In
interacting models, Eq. (1) is expected to hold at large scales, k → 0, t → ∞, possibly
under space and time averaging to be specified [1,36,37]. Equation (1) describes ballistic
propagation,with “propagator”A l

i . Proving the linearisedEuler equation is a particularly
difficult problem.Results have been obtained by adding conservative noise [38], but there
are up to now no results for purely hamiltonian microscopic dynamics.

The linearised Euler equation is a consequence of the principle of hydrodynamic
projection, or the Boltzmann-Gibbs principle [1]. The linear Eq. (2) emerges from the
generically highly nonlinear microscopic dynamics thanks to the projection of currents
onto ballistic waves – the reduction of the effective space of degrees of freedom at
large scales. Determining the set {qi } on which this projection occurs is nontrivial.
As mentioned, by conventional assumptions, in Galilean gases it comprises the mass,
momentum and energy densities, giving the standard Euler equations. Many studies of
the emergence of hydrodynamics start with such assumptions (see the seminal works
on Mori-Zwanzig projections [39,40]). These are broken in integrable systems, where
many channels for ballistic transport emerge in classical and quantum gases and chains
[22,23,41,42], and the set {qi } is larger.

Mathematically formulating the universal forms of the linearised Euler equation and
hydrodynamic projection principle, and establishing their emergence from the reversible
dynamics of many-body systems, remain challenging tasks.

In this paper, three main statements are proven: an ergodicity statement for time aver-
ages of correlation functions, a principle of hydrodynamic projections, and the linearised
Euler equation. These are proven in a general framework, applicable to short-range quan-
tum spin chains (with finite local space) of infinite lengths. For the latter, the results are
expressed in a self-consistent manner in Sects. 2 and 3.

It is known that ergodic states cluster at large distances (see in particular [29]), and
with the Lieb–Robinson bound [43] clustering holds on space-like cones bounded by
the Lieb–Robinson velocity vLR,

ω(a(±vt, t)b(0, 0)) → ω(a)ω(b) (|t | → ∞, v > vLR)

Examples are Kubo–Martin–Schwinger (KMS) states at nonzero temperature [44]. We
use this along with von Neumann’s ergodic theorem [45] and countable dimensionality
of the space of observables in order to show clustering under averages along almost all
space and time rays (almost-everywhere ergodicity), including outside space-like cones
(Theorem 3.1). This is we believe the first clustering result in time-like directions in
quantum many-body systems.

We then consider correlation functions in an appropriate limit of large wavelengths
and long times, and we show that hydrodynamic projections occur (Theorem 3.2). The
space projected onto is a Hilbert space of conserved charges Q0. This is a subspace of
the space of extensive observables considered in [46,47] and defined by a process akin
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to the Gelfand–Naimark–Segal construction; it is based on the notion of pseudolocal
charges [48–51]. Hydrodynamic projection is seen to be a consequence of almost ev-
erywhere ergodicity. The proof requires uniform enough power-law clustering and the
Lieb–Robinson bound in order to control time evolution on extensive observables. For
thermal states, Araki and others have shown that clustering is in fact uniformly expo-
nential in KMS states [44,52]. This is the first proof of the Boltzmann-Gibbs principle
in Hamiltonian systems. The space Q0 is rigorously defined, and is infinite-dimensional
in integrable models; showing that it is finite-dimensional in non-integrable models
remains an important open problem.

Finally, we show the linearised Euler equations for every local conserved density
(Theorem 3.3.II). The proof of this statement is based on hydrodynamic projections.
It also requires the existence of continuity equations (2), which is nontrivial. A local
conserved density is a local observable whose total sum over the chain gives rise to a
conserved charge, and we show that it is always possible to define the space of local
observables such that every local conserved density satisfies a continuity Eq. (2) with a
local current (Theorem 3.3.I). This latter statement requires clustering faster than any
power law (e.g. KMS states).

We expect all results to be extendable to higher-dimensional lattice models with finite
local spaces at large enough temperatures, and to long-range models with appropriate
algebraic decay of correlation functions [53]; part of this extension is done in [54,55].
The only possible exception, where one-dimensionality and strong decay of correlation
functions seem to play a role, is the statement that every local conserved density satisfies
a continuity equation with a local current.

The paper is organised as follows. In Sect. 2 we review the algebraic formulation
of quantum spin chains of infinite lengths and the theorems which are used to establish
our main results. In Sect. 3 we express our main results in the context of quantum
spin chains with finite-dimensional local Hilbert space and short-range interactions. In
Sect. 4 we setup basic aspects of our general framework and show almost-everywhere
ergodicity. In Sect. 5 we further develop the general framework and study the space
of conserved charges. In Sect. 6 we present the hydrodynamic projection result and its
proof. In Sect. 7 we construct conserved currents and present the Euler equation result
and proof. In Sect. 8 we show how to apply the general framework to the particular
context of quantum chains. We discuss the results in Sect. 9.

2. Review of the Algebraic Formulation of Quantum Spin Chains

In this section we review the algebraic formulation of quantum spin chains and express
the crucial known results in this context.

2.1. Algebraic formulation. The algebraic formulation of quantum statisticalmechanics
is based on the algebra of observables, on which time evolution and states are defined.
The monographs [29,30,56,57] overview some of the far-reaching results obtained from
the C∗ algebra formulation of statistical mechanics. We review the construction for
infinite-length quantum spin chains with finite interaction range, see [30, Chap 6].

A quantum spin chain is an infinite chain of sites, in bijection with Z, each site
admitting a finite-dimensional space of degrees of freedom. The linear operators acting
on any finite subset X ⊂ Z form the C∗ algebra of finite matrices VX = End

( ⊗x∈X

Hx
)
, Hx � C

dsite ∀ x, dsite ∈ N, with anti-linear ∗-involution the hermitian conjugation
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†, and with the operator norm. The normed ∗-algebra
V = VZ (3)

represents all linear operators acting nontrivially on some finite number of sites on the
chain, including the identity 1. It is made into a C∗ algebra U by completion,

U = V. (4)

Thus, U also contains limits of Cauchy sequences, which may act nontrivially on un-
bounded subsets ofZ.We denote the norm ||·||U. Space translations ιUx : U → U, x ∈ Z,
with ιUx (VX ) = VX+x , are naturally defined ∗-automorphisms of U forming a represen-
tation of the group Z.

We consider a dynamics generated by a finite-range homogeneous Hamiltonian. In
this case, time translations τUt : U → U, t ∈ R are ∗-automorphisms forming a strongly
continuous representation of R, and commute with ιUx . The space V lies within the
domain of the generator δU, which is obtained by the commutator with the Hamiltonian:
denoting the Hamiltonian density by h ∈ V,

dτUt a

dt

∣
∣
∣
t=0

= δUa = i
∑

x∈Z
[ιUx h, a] (5)

where only a finite number of terms are nonzero. One can show that elements of V
are analytic with nonzero radius: τUt a = ∑∞

n=0 tn
(
δU

)n
a/n! has a nonzero radius of

convergence for every a ∈ V, see [30, Thm 6.2.4]. For a ∈ U we denote a(x, t) =
ιUx τUt a the space and time translate of a.

A state ω is a continuous, positive linear functional on U, which we normalise to
ω(1) = 1. It is bounded as |ω(a)| ≤ ||a||U. It is convenient to define, for a, b ∈ V, the
sesquilinear form

〈a, b〉 = ω(a†b) − ω(a†)ω(b). (6)

For any finite β ≥ 0, the (β, τU)-KMS state ωβ of a finite-range quantum chain is
unique [44,58,59] (see also [30, Chap 6]). This is the thermal state at temperature β−1;
in particular, the unique normalised trace state is Tr = ω0 (normalised as Tr(1) = 1).

Quantities that play important roles are the support of a local operator,

supp(a) =
⋂

{X ⊂ Z : a ∈ VX } (a ∈ V); (7)

the distance

dist(a, b) = dist(supp(a), supp(b)) (a, b ∈ V); (8)

where for subsets, dist(X, Y ) = min{|x − y| : x ∈ X, y ∈ Y }, and we will use a mix
notation as well, e.g. dist(a, X); the diameter

diam(a, b, . . .) = diam(supp(a) ∪ supp(b) ∪ · · · ) (a, b, . . . ∈ V) (9)

where for subsets diam(X) = max{|x − y| : x, y ∈ X}; and the size of local operators

|a| = | supp(a)| (a ∈ V). (10)
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Another important notion for our analysis is that of projections onto the observables
supported on finite subsets of the chain [60,61]. Following [61] the projections PX :
U → VX , X ⊂ Z (we only need the cases |X | < ∞) may be defined by the property

PX (ab) = aTr(b) (a ∈ VX , b ∈ VZ\X ), (11)

and by extending by linearity and continuity to U. In particular, PX is bounded, and in
fact it is a contraction,

||PXa||U ≤ ||a||U (a ∈ U). (12)

It is worth giving an elementary proof of this. OnV it is obtained by elementary means,
and then extended to U by continuity. Consider c = ∑

i aibi (ai ∈ VX , bi ∈ VZ\X ),
a generic element of V. We see that PX preserves the property of non-negativity, as
PX (c†c) ≥ 0 because Tr(b†i b j ) is non-negative as a matrix with indices i, j . If c is
hermitian, then ||c||U1 − c ≥ 0, and therefore PX c ≤ ||c||U 1 hence (12) holds for
hermitian operators in V. Finally, for generic c we have PX (c†c) − PX (c†)PX (c) ≥ 0
because Tr(b†i b j )−Tr(b†i )Tr(b j ) = Tr((b†i −Tr(b†i )1)(b j −Tr(b j )1)) is non-negative as
a matrix with indices i, j . Hence, by the C∗ property, ||PX c||2U = ||PX (c†)PX (c)||U ≤
||PX (c†c)||U ≤ ||c†c||U = ||c||2U.

2.2. Lieb–Robinson bound and clustering. An important property of the dynamics is
the Lieb–Robinson bound [43]. For our purposes, we need a slight improvement of the
original theorem, where the exponential bound is explicitly controlled by the size of the
operators. We take the Lieb–Robinson bound [33, Cor 3.1], also found earlier in [60].
Further, instead of a bound on commutators, we need a formulation which specifies how
much of a time-evolved operator is supported on some set X , using the projections PX .
Such a statement first appeared in [60], although with a notion of projection which is
defined on finite chains. For the notion defined by (11) we use instead [61, Cor 4.4]. See
also [30,57].

Theorem 2.1. There exists vLR > 0 and b, d > 0 such that, for every a ∈ V, t ∈ R and
X ⊂ Z,

||τUt a − PXτUt a||U ≤ b |a| ||a||U exp
[

− d
(
dist(a,Z\X) − vLR|t | )

]
. (13)

Proof. This follows immediately from [33, Cor 3.1] with [61, Cor 4.4], where in the
latter we may take ε = |a|, and by specialising to the lattice Z. ��

All KMS statesωβ are space and time translation invariant and exponentially cluster-
ing, by an old result of Araki [44, Thm 2.3]. In fact many results exist in various families
of states, see the books [29,30] as well as [32,46,52,60,62–68]. For our purposes, the
most relevant result is [52, Thm III.2], which extends Araki’s to uniform exponential
clustering (and also to a larger family of models, but this is not important for us).

Theorem 2.2. [44, Thm 2.3], [52, Thm III.2]. Every KMS state ωβ , β ≥ 0 is space and
time translation invariant, ωβ ◦ ιUx = ωβ ◦ τUt = ωβ for all x ∈ Z, t ∈ R, and uniformly
exponentially clustering: there exists c > 0 and q > 0 such that

|〈a, b〉| ≤ c ||a||U ||b||U exp
[

− q dist(a, b)
]

(14)

for every a, b ∈ V.
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3. Main Results in Quantum Spin Chains

We now describe the main results of this work, as specialised to the context of quantum
spin chains. The results are obtained in a general framework developed in Sects. 4–7,
and the exact relation between this framework and quantum spin chains is explained in
Sect. 8. We believe the general framework has far wider applicability, but we leave this
for future works.

In this section we take a thermal state ω = ωβ for some β ≥ 0, with respect to a
finite-range Hamiltonian with density h ∈ V. The proofs of all theorems in this section
are given in Sect. 8.4.

3.1. The various completions of the space of local spin chain operators. The space
of (strictly) local spin chain operators V is physically relevant but not topologically
complete. As usual, it is useful to have completeness in order to establish rigorous
results. Starting from V and ω, at least three completions are possible, with different
physical interpretations.

First, one may construct the C∗ algebra U itself, the completion with respect to the
operator norm, as reviewed in Sect. 2. In a sense, U is the smallest complete algebra of
observables that are “local enough”.

Second, one may instead introduce a sesquilinear form on V defined from the state
ω itself, Eq. (6),

〈a, b〉 = ω(a†b) − ω(a†)ω(b).

It is positive semi-definite as 〈a, b〉 = ω( f (a)† f (b)) where f (a) = a − 1ω(a). On
V it possesses a null space N (which contains at least C1). The equivalence classes
a +N (a ∈ V) form a new vector space V. For our purposes we do not need to consider
algebraic structures on V; this is simply a vector space. On V the sesquilinear form
induces a norm || · || = √〈·, ·〉, with respect to which we complete V to a Hilbert
space H. Thus, instead of V and U, we have V and H. By boundedness of the state,
||a|| ≤ || f (a)||U ≤ 2||a||U, and thus to every element of U corresponds an element of
H (but, generically, there are elements in H that do not correspond to elements in U).
As the spaceV of local spin chain operators is countable dimensional, so is V, and thus
H. Further, because the state ω and the map f are both continuous and linear, ιUx and
τUt induce invertible isometries, therefore unitary groups, ιx and τt on H, and τ forms
a strongly continuous unitary representation of R. In particular, 〈τta, b〉 is analytic in t
in a neighbourhood of 0 for every a, b ∈ V. For a ∈ H we denote a(x, t) = ιxτta its
space and time translate.

The Hilbert spaceH is simply related to the Gelfand–Naimark–Segal (GNS) Hilbert
space (see e.g. [30]). The GNS construction is a powerful technique for studying C∗
algebras and their representations. Here,H is to be interpreted as the smallest complete
space of observables that have well-behaved two-point correlations with respect to the
state ω; it cannot be smaller than U. We refer to elements of V as “local observables”.

Finally, thanks to clustering, Theorem 2.2, we may construct yet another Hilbert
space, denoted H0 (Sect. 5.3), also studied2 in [46,47]. For this purpose, we consider

2 In [46] the spaceH0 was denotedHω , emphasising its dependence on the state ω; in [47] it was denoted
H′, emphasising that it is first-order, in contrast with the second order spaceH′′ also considered there. Further
in [47] the space Q0 was denotedHbal, emphasising that it relates to ballistic modes, in contrast with another
space Hdif , relating to diffusive modes.
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the new positive semi-definite [46, Lem 4.2] sesquilinear form on V

〈a, b〉0 =
∑

x∈Z
〈a(x, 0), b(0, 0)〉 (15)

which converges by Theorem 2.2. Again, it may have a null space N0, and we construct
the vector space V0 of equivalence classes [a]0 = a + N0 (a ∈ V), on which there is a
norm, ||a||0 = √〈a, b〉0. We complete it to a Hilbert space H0. Thus, instead of V and
H, we have V0 and H0. Translating structures from the GNS Hilbert space H to H0 is,
however, nontrivial. Clearly, space translations act trivially onH0 (by space-translation
invariance of the state and clustering). Characterising time translations requires more
work. But in quantum spin chains, thanks to the Lieb–Robinson bound, we show that
time evolution τ may be defined to form a strongly continuous one-parameter unitary
group onH0 (Theorems 5.11 and 8.9).

The inner product (15) is naturally interpreted as a susceptibility, and theHilbert space
H0 is the smallest complete space of extensive, thermodynamic observables. Every local
observable a ∈ V is a “density” of the extensive observable [a]0 ∈ H0.

Using these structures, we express three results concerning the large-scale dynamics
and hydrodynamics in quantum spin chains. These hold (at least) in every quantum spin
chain with finite-range interactions. The results and proofs are completely agnostic to
the presence or not of integrability or any other specific feature of the interaction. All
proofs are provided in Sect. 8.4, and based on the general results established for the
general framework in Sects. 4–7.

3.2. Ergodicity. The projection onto conserved charges in the Euler scaling limit needs a
process of relaxation to occur at large times.Anatural, butweak, expression of relaxation,
is the equivalence between time averaging and statistical averaging, or “ergodicity”. This
is a subject that has been widely discussed, see e.g. [69,70].

Our first main result is a form of ergodicity. It says that the long-time averaging of
correlation functions gives the product of averages, along almost every ray (i.e. velocity)
in space and time.Note that this does not imply ergodicity for averaging in time, along ray
v = 0, but that there exist rays v as near to 0 as desired alongwhich ergodicity holds. This
is a universal result about relaxation for dynamical correlation functions, valid for any
finite-range quantum spin chain. This result is nontrivial, because ergodicity results in
the context ofC∗ algebras are based on the algebra being asymptotically abelian [71–73],
see also [29]. For time evolution in quantum spin chains, only the Lieb–Robinson bound
is available, where abelianness may be obtained in space-like cones only. Technically,
von Neumann’s ergodic theorem [45, Thm 12.44] guarantees, under long-time averages,
the projection in the GNS Hilbert space onto the invariant subspace of time translation,
but we are not aware of any previous result establishing that this subspace is C1. We
use von Neumann’s ergodic theorem combined with countable dimensionality of the
operator algebra. This is, we believe, the first real-time ergodicity result in strongly
interacting models.

The general theorem on which this is based is Theorem 4.3.

Theorem 3.1 (Almost-everywhere ergodicity). Let a, b ∈ U. Then for almost every
v ∈ R with respect to the Lebesgue measure,

lim
T →∞

1

T

∫ T

0
dt ω(a(�vt�, t)b(0, 0)) = ω(a)ω(b). (16)
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The result is expected on physical grounds, and encodes relaxation processes of the
many-body system. Referring to linear response, it implies that for almost every v, the
long-time average, along the ray v, of the observable a after a small perturbation by b,
reverts to its ensemble average before perturbation: the perturbation is negligible over
long times. It also implies a vanishing at large T of the variance of the observable
1
T

∫ T
0 a(vt, t) with respect to ω: long-time averages along almost all rays are non-

fluctuating.We refer to [54,55] for a full discussion and extension to arbitrary dimensions
and to arbitrary frequencies and wavenumbers.

3.3. Hydrodynamic projections. The second set of results concerns hydrodynamic pro-
jections. It says that the Euler-scale correlation functions decompose into the conserved
charges admitted by the quantum spin chain.

In order to express these results, we introduce the Fourier transforms of connected
correlation functions,

Sa,b(k, t) =
∑

x∈Z
eikx(ω(a†(x, t)b(0, 0)) − ω(a†)ω(b)

)
. (17)

We are interested in the large-t , small-k limit, with kt fixed. Currently we do not know
how to show the existence of this limit, or of anyCesàro version of it (long-time averages,
or time averages of time averages, etc.), in quantum spin chains. However, we can show
that Sa,b(k, t) is uniformly bounded for all (k, t) ∈ R

2 3. Thus we can use the notion of
Banach limit, which assigns a “limit” value to any bounded function. We describe the
particular type of Banach limit we need in Appendix A, and unless otherwise stated, all
results hold independently from the choice of this limit:

Sa,b(κ) = l̃im
t→∞ Sa,b(κ/t, t). (18)

There areBanach limitswhichgive theCesàro limit, l̃im
t→∞ f (t) = limt→∞ t−1

∫ t
0 ds f (s),

whenever the latter exists. Our Banach limit is chosen as such. If the Cesàro limit exists
for Sa,b(0), then, by the conventional Kubo formula, this gives the “Drude weight” for
the observables a, b (see Sect. 6.1),

Da,b = Sa,b(0) (Cesàro limit). (19)

We then define the space of conserved charges Q0 as the set of elements of H0 that
are τt -invariant: Q0 = {q ∈ H0 : τtq = q ∀ t ∈ R} (see Sect. 5.4). The space Q0 is a
closed subspace, and we define the orthogonal projection

P : H0 → Q0. (20)

A density q ∈ V of [q]0 ∈ Q0 is a local conserved density, and such [q]0 form the
subspace of local conserved charges Qloc

0 ⊂ Q0. By [46, Thm 5.2], there is a bijection
relating Q0 to the space of conserved “pseudolocal charges” [46, Def 5.1], quantities
discussed in [48–51] in the context to non-equilibrium states and relaxation, see the
review [74]; although we do not need this bijection here.

3 We have the identity Sa,b(k, t) = 〈τta, b〉k using the inner product (45), which is bounded by
|Sa,b(k, t)| ≤ ||a||k ||b||k and thus uniformly bounded for all (k, t) ∈ R

2 by Lemma 5.6.
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We note that as Q0 has at most countable dimensionality, we may choose a basis
{qi : i ∈ N} ⊂ Q0, and form the (possibly infinite-dimensional) matrix Ci j = 〈qi , q j 〉0,
which is positive-definite and invertible, and we have

P· =
∑

i j

qiCi j 〈q j , ·〉0 (21)

where Ci j is the inverse matrix.
By Theorem 5.14 and Remark 5.17 below, any local spin chain operator q ∈ V that

satisfies a continuity equation with local current j, Eq. (2), gives rise to a local conserved
density according to our definition. Of course, the quantum chain’s energy density h is
a conserved density; in integrable models, infinitely many conserved densities can be
constructed by Bethe ansatz methods [75], and thus Q0 is infinite-dimensional.

Our results Theorem 3.2 show that Q0 may indeed be seen as the space of emergent
ballistic modes of the theory, which carry correlations between local observables. Again,
these are universal results, which we prove in particular for every quantum spin chain
with finite range interactions. Using (21), Points I and II take their standard forms found
in the literature [35,37]. Points I and II specialise Theorem 6.1, and Theorems 6.5 and
6.7, respectively. We believe that Point I was already well understood in the literature,
however Point II is proven here for the first time.

Theorem 3.2 (Hydrodynamic projection). The following statements hold:

I. For every a, b ∈ H0, the Drude weight exists (that is, the Cesàro limit for Sa,b(0)
exists), and satisfies

Da,b = lim
t→∞

1

t

∫ t

0
ds Sa,b(0, s) = DPa,Pb . (22)

II. For every κ ∈ R, the sesquilinear function Sa,b(κ) of (a, b) ∈ V ⊗ V is bounded
by ||a||0 ||b||0, and can be extended to a unique sesquilinear function, also denoted
Sa,b(κ), of (a, b) ∈ H0 × H0. For every a, b ∈ H0, the Euler-scale correlation
function satisfies

Sa,b(κ) = SPa,Pb(κ). (23)

The result Point II is a hydrodynamic projection formula. The projection P represents
the amount of ballistic wave produced by the local observables, and SPa,Pb(κ), which
involves only the conserved charges projected onto, represents the ballistic correlations
due to the propagating ballistic waves. In particular, we find that Euler-scale correlation
functions have good continuity properties with respect to the Hilbert space H0. Phys-
ically, this means that these correlation functions, for any value of κ , are determined
by the behaviour of the system at zero wavenumber k = 0. At κ = 0, we recover the
projection formula for the Drude weights: the saturated Mazur bound or Suzuki equality
[35,76–80]. For κ �= 0, projection occurs thanks to almost-everywhere ergodicity.

3.4. Currents and linearised Euler equations. We prove the linearised Euler equations
themselves as an application of the general hydrodynamic projection result. Contrary to
traditional linear-response arguments, the linearised Euler equations are seen to arise not
by state perturbations, but by hydrodynamic projections (see the discussion in Sect. 7.3).
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A nontrivial aspect of obtaining the Euler equations is to establish the existence of
currents, with a continuity equation, for every local conserved density. Although local
spin chain operators satisfying (2) give local conserved densities, there is no guarantee
that a local conserved density q (i.e. [q]0 ∈ Qloc

0 ) possesses a current j ∈ V with a
continuity equation (2). We find, however, that it is possible to extend the space of local
observables in such a way that every local conserved density indeed has a local current
and satisfies (2). This extension holds at the level of the GNS space; thus we adjoin to
V elements ofH. This, again, is a universal result, valid for every finite-range quantum
spin chain. The general theorem for the existence of currents is Theorem 7.6.

Combining the existence of local currents and the main hydrodynamic projection
theorem, we obtain the linearised Euler equation. This is a specialisation of the main
aspects of the general Theorem 7.11.

Theorem 3.3 (Linearised Euler equation). The following statements hold:

I. It is possible to extend the definition of local observables to V# with V ⊂ V# ⊂ H
in such a way that (1) all time-evolutes are local, τt (V

#) ⊂ V# for all t ∈ R; (2)
correlation functions of local observables vanish faster than any power law: for every
a, b ∈ V#, p > 0 there is u > 0 such that |〈ιxa, b〉| ≤ u(|x | + 1)−p ∀x ∈ Z; (3)
every local conserved density q ∈ V# has an associated local current j ∈ V#, such
that a continuity equation holds:

∂

∂t
q(x, t) + j(x, t) − j(x − 1, t) = 0. (24)

II. Let {qi } form a basis for Q0. For every local conserved densities q, q′ ∈ V# and every
κ ∈ R, the following derivative exists and gives:

dSq,q′(κ)

dκ
= iSj,q′(κ) = i

∑

k

Ak Sqk ,q′(κ), Ak =
∑

l

〈j, ql〉0Clk (25)

where j is the current associated to q.

Differentiability in κ is a nontrivial part of the statement in Part II.We have not shown
that there necessarily exists a local basis {[qi ]0} ⊂ Qloc

0 for Q0. But if there is, then we
may apply the result for this basis, with q = qi , q

′ = q j , j = ji , and we have a closed
set of evolution equations for Sqi ,q j (κ). The (possibly infinite-dimensional) matrix

A k
i =

∑

l

〈ji , ql〉0Clk (26)

is the flux Jacobian, and this expression for A k
i is a standard form that agrees with the

definition by state variation [35].
Note that the heuristic version of the linearised Euler equation (1) essentially implies

(25). We believe our result is the first rigorous formulation and proof of a form of the
linearised Euler equation in unitary, interacting many-body quantum systems.

4. Space and Time Symmetries and Ergodicity

In this section and the following sections, we consider a general framework, in which
general results are established. These results ultimately lead to the main results for
quantum spin chains expressed above, proved in Sect. 8.
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We consider a countable-dimensional Hilbert spaceH with inner product 〈a, b〉 and
norm ||a|| = √〈a, a〉 (a, b ∈ H). As illustrated in the previous section, this Hilbert
space has the interpretation as a space of observables within a thermodynamically large
physical system, and the inner product, as the connected correlation function of two
observables. We express below the minimal requirements onH, including the presence
of groups of unitary space and time translations operators. We then consider the notion
of ergodicity. We show that ergodicity along almost all rays in space and time must hold
if a weak version of ergodicity along all space-like rays holds. This will play a crucial
role in the hydrodynamic projection mechanism described in Sect. 6.

4.1. Space and time translations. Homogeneous and stationary states of thermodynam-
ically large systems are invariant under space and time translations. In the terms of the
Hilbert space H, this translates into the presence of corresponding groups of unitary
operators.

We assume that for every x ∈ Z, there is an invertible linear isometry, equivalently
a unitary map, ιx : H → H

〈ιxa, ιx b〉 = 〈a, b〉 ∀ a, b ∈ H, x ∈ Z. (27)

We assume that this set of maps forms a representation of the group Z, with ιx+y = ιx ιy
and ι0 = 1. This is interpreted as the group action of space translations, and (27) is the
condition of homogeneity of the state.

We likewise assume that for every t ∈ R there is a unitary map τt : H → H,

〈τta, τt b〉 = 〈a, b〉 ∀ a, b ∈ H, t ∈ R. (28)

We also assume that this set of maps forms a representation of the group R, with τt+s =
τtτs and τ0 = 1. This is interpreted as the group of time translations, or time evolution,
and (28) is the condition of stationarity of the state. For technical reasons, it is convenient
to assume that for every a, b ∈ H, the function 〈τta, b〉 is Lebesgue measurable on
t ∈ R. We also assume that time evolution is homogeneous,

ιxτt = τt ιx ∀ x ∈ Z, t ∈ R. (29)

Remark 4.1. Here space is taken to be discrete, and time continuous. This is adapted to
applications to quantum spin chains. However the theory developed can also be applied
to systems with continuous space R, by simply concentrating on a discrete subset Z.
Further, many aspects of the theory do not require time to be continuous; however we
leave this for future works.Continuity properties in t are discussed in Sect. 5.2.

4.2. An ergodicity theorem. We consider the notion of ergodicity in terms of correlation
functions: the vanishing of the large-scale averaged connected correlation. We provide a
full proof of ergodicity in almost all directions in space and time under the sole condition
that ergodicity holds within a space-like neighbourhood. That is, ergodicity in space-like
cones, a property which is similar to but much weaker than the Lieb–Robinson bound, is
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sufficient in order to conclude that ergodicity holds along almost every ray. In particular,
the latter conclusion then applies to quantum spin chains (thanks to the Lieb–Robinson
bound), see Sect. 8.

Ergodicity is naturally studied using spectral theory. In particular, the decomposition
structure of ergodic measures translates, in the context of C∗ algebras, into a decom-
position theory for states of many-body systems. There are strong, general ergodicity
results for topological symmetry groups within any extremal state, under the condition
that the algebra of observables be asymptotically abelian. See the papers [71–73] as
well as the beautiful discussion in the book [29]. However, in many-body systems, the
strongest bound on asymptotic abelianness we are aware of, concerning the time trans-
lation group, are those related to the Lieb–Robinson bound [43]. Under this, the algebra
is seen to be asymptotically abelian only within space-like cones. The theorem below
provide the first result for ergodicity along time-like rays.

Let us denote the extended reals by R̂ = R ∪ {∞}.
Definition 4.2. The triplet H, τ, ι (or simply H) is space-like ergodic if there exists a
dense subspace V ⊂ H and vc > 0 such that, for every a, b ∈ V, every r ∈ Z\{0} and
every v ∈ R̂ with |v| > vc, we have

lim
N→∞

1

N

N∑

n=1

〈ιnr τ n
v−1ra, b〉 = 0. (30)

Note that ιrτv−1r is a unitary operator representing a discrete translation in space and
time along the ray of velocity v (that is, along the line x = vt), and that v = ∞ is
allowed, and gives translations in space. In applications, the subspace V may be taken
as the subspace of local observables. In quantum spin chains, the limit of the summand
in (30) vanishes for every local observables a, b, so that Definition 4.2 holds, with any
vc larger than the Lieb–Robinson velocity (see Theorem 8.9).

In Eq. (16) below, note that the integrand is integrable over [0, T ], as it is measurable
(by our framework’s assumption) and bounded (as |〈ι�vt�τta, b〉| ≤ ||a|| ||b||). The
statement is that the limit exists and vanishes.

Theorem 4.3. Assume that H is space-like ergodic (Definition 4.2). Let a, b ∈ H. Then
for almost all v ∈ R with respect to the Lebesgue measure,

lim
T →∞

1

T

∫ T

0
dt 〈ι�vt�τta, b〉 = 0. (31)

For every v ∈ R̂\{0}, we denote the unitary operator

σv = ι1τv−1 , (32)

and we denote σ0 = τ1; again, these represent translations in space and time along the
rays x = vt . For every r ∈ Z and v ∈ R̂, we denote by Pσ r

v
the orthogonal projection

onto the null space ker(σ r
v − 1) of σ r

v − 1. Its range ranPσ r
v
is equal to ker(σ r

v − 1),
and is different from {0} if, and only if, the spectrum of σ r

v contains the unit eigenvalue:
there exists a ∈ H with ||a|| = 1 such that σ r

v a = a.

Lemma 4.4. For all v ∈ R̂ with |v| > vc, and all r ∈ Z\{0},
ranPσ r

v
= {0}. (33)
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Proof. By space-like ergodicity, for every a, b ∈ V and |v| > vc, the following limit
exists and vanishes:

lim
N→∞

1

N

N∑

n=1

〈σ rn
v a, b〉 = 0. (34)

By von Neumann’s ergodic theorem [45, Thm 12.44], the result of the limit gives rise
to the orthogonal projection onto the kernel, hence

〈Pσ r
v
a, b〉 = 0. (35)

By continuity and density of V ∈ H this is extended to all b ∈ H, thus Pσ r
v
a = 0; and

by continuity of the projection this is extended to all a ∈ H. ��
Lemma 4.5. Let v,w ∈ R̂ with v �= w, and let a ∈ ker(σv − 1) and b ∈ ker(σw − 1).
Then 〈a, b〉 = 0.

Proof. Without loss of generality we may choosew �= ∞ and v �= 0. Thenw, v−1 ∈ R.
First, assume w = 0. Then for all p, q ∈ Z, we have

〈a, b〉 = 〈a, τpb〉 = 〈τ−pa, b〉 = 〈ιqτqv−1−pa, b〉. (36)

For every v−1 ∈ R, it is possible to find p, q ∈ Z with q > 0 such that |qv−1 − p| <

qv−1
c . Indeed, choose q > vc, and then choose p = �qv−1�. Therefore, we find

〈a, b〉 = 〈σ q
z a, b〉, z−1 = v−1 − p/q, |z| > vc. (37)

By repeated use of this formula, we obtain a normalised sum as in (34) and use the
ergodic theorem. As a consequence,

〈a, b〉 = 〈Pσ
q
z
a, b〉 = 0 (38)

where the last equality holds by Lemma 4.4.
Second, assume w �= 0. As the rationals Q are dense in R, for every η > 0 there

exists infinitely many p/q ∈ Q lying in [wv−1, w(v−1 + η)]. Choose 0 < ε <
|1−w/v|
vc+|w|

such that

w(v−1 + ε) = p/q ∈ Q, (39)

with p, q ∈ Z\{0} and p �= q. Then

〈a, b〉 = 〈σ q
v a, b〉 = 〈τ−qειqτq(v−1+ε)a, b〉 = 〈ιq−pτ−qειpτpw−1a, b〉

= 〈ιq−pτ−qεa, σ−p
w b〉 = 〈σ q−p

z a, b〉 (40)

where z = −(q−p)/(qε) = −ε−1(1−w/v)+w. Clearly, |z| > ε−1|1−w/v|−|w| > vc
by the assumptions on ε. Hence

〈a, b〉 = 〈P
σ

q−p
z

a, b〉 = 0 (41)

where again the last equality follows from Lemma 4.4. ��
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Proof of Theorem 4.3. Theorem 4.3 follows from a set-theoretic argument. Consider
the set � = {v ∈ R : ranPσv �= {0}}. For every v ∈ �, choose av ∈ ranPσv with
||av|| = 1. Clearly, the completion of span{av : v ∈ �} is a closed subspace of H.
Further, by Lemma 4.5, we have 〈av, aw〉 = 0 for every v,w ∈ � with v �= w. Hence
� parametrises a set of linearly independent unit vectors spanning a closed subspace of
H. As H is countable dimensional (by our framework’s assumption), the set � must
be countable. Therefore, it has Lebesgue measure zero in R. Now choose v ∈ R, and
consider (16). For the theorem, it is sufficient to assume that v �= 0. Let a, b ∈ H. First
take v > 0. Then

lim
T →∞

1

T

∫ T

0
dt 〈ι�vt�τta, b〉 = lim

N�N→∞
1

N

∫ N

0
dx 〈ι�x�τxv−1a, b〉

= lim
N→∞

1

N

N−1∑

n=0

∫ 1

0
dy 〈ιnτnv−1τyv−1a, b〉

= lim
N→∞

1

N

N−1∑

n=0

∫ 1

0
dy 〈σ n

v τyv−1a, b〉

=
∫ 1

0
dy 〈Pσv τyv−1a, b〉 (42)

where the first equality, on whose right-hand side the limit is taken over the integers
instead of the reals, follows by boundedness of the integrand. In the second equality
we have separated the integral over [0, N ] into a sum over n = 0, 1, . . . , N − 1 of
integrals over y ∈ [0, 1), writing x = n + y; and in the last, we used the bounded
convergence theorem in order to exchange the limit of the sum and the integral, and von
Neuman’s ergodic theorem in order to write the large-N average as a projection. For the
case v < 0, write ι�vt� = ι−1

�−vt�+1 (valid almost everywhere on t ∈ [0, T ]). This gives
∫ 1
0 dy 〈Pσv ι−1τy|v|−1a, b〉. The result is zero whenever v ∈ R\�, by definition of �. As

� has measure zero, the theorem follows. ��

5. Clustering and the Space of Conserved Charges

The Hilbert space structure of Sect. 4 is not sufficient in order to describe the space of
conserved charges onto which hydrodynamic projection occurs. We need an additional
structure: that of a dense subspace

V ⊂ H. (43)

Physically, the subspace V is that of observables, within H, which possess stronger
locality properties. In the context of quantum spin chains, these may be identified with
the set of operatorswhose supports are finite subsets ofZ: the local operators (see Sects. 3
and 8). Theymay also be identified with quasi-local operators (see e.g. [74]). The Hilbert
space H is the completion of V with respect to || · ||.

The choice of the subspaceV affects the various structures constructed below, but the
theory holds for any such choicewhich satisfies all the required properties. In this section,
we describe the requirements on V andH and define the basic structures, including the
family of new Hilbert spaces Hk, k ∈ R, and the space of conserved charges Q0. We
express a variety of fundamental results that will be of use afterwards.
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The main requirements on V and H are expressed in Sect. 5.1: observables in V
should cluster strongly enough in space. If strong continuity and stronger properties of
clustering hold on time evolution, then stronger results can be obtained; these properties
are explained in Sect. 5.2. In Sect. 5.3 we study the various Hilbert spaces Hk used to
describe large-scale behaviours, and in Sect. 5.4 we define, using these, the subspace
of conserved quantities. The conserved quantities will be identified with the emergent
degrees of freedom in the hydrodynamic projection formulae. All requirements onH,V
are established in the context of quantum spin chains in Sect. 8.

For brevity, we refer toH, V, {τt : t ∈ R} and {ιx : x ∈ Z}, or simplyH,V, with the
properties that V ⊂ H is dense and that all requirements expressed around (27)–(29)
are satisfied, as a dynamical system.

Remark 5.1. In applications, space translations often map local observables into them-
selves, V → V, and one naturally defines them simply as invertible isometries on V.
Since an invertible isometry ιx : V → V is continuous on V, and therefore has a unique
continuous extension toH, in (27) we define it on H already. [For the continuity state-
ment: if ιx : V → V is an invertible isometry, let a = limn an and a, an, b ∈ V. Then
limn〈ιxan, b〉 = limn〈an, ι

−1
x b〉 = 〈a, ι−1

x b〉 = 〈ιxa, b〉 and since ||ιxan|| = ||an|| is
bounded and V is dense this implies limn ιxan = ιxa, thus ιx is continuous].

Remark 5.2. In applications, time evolution often does not map local observables into
themselves. But τta ∈ H for every a ∈ V, and our assumptions imply that V is dense in
H. That is, although τta might not be a local observable, we assume that it is possible
to approximate it with arbitrary precision by local observables.

5.1. Clustering. On the the dynamical system H,V, we will require certain clustering
properties with respect to space translations. We define clustering in a weak enough
fashion, as follows.

Definition 5.3. We say that a pair (a, b) ∈ H×H is p-clustering, respectively a subset
C ⊂ H × H is uniformly p-clustering, for some p > 0, if there exists c > 0 such that

|〈ιxa, b〉| ≤ c(|x | + 1)−p ∀ x ∈ Z, resp. ∀ x ∈ Z and (a, b) ∈ C. (44)

If (a, b) ∈ H × H is p-clustering for some p > 1, then for every k ∈ R we define

〈a, b〉k =
∑

x∈Z
eikx 〈ιxa, b〉 (45)

(the series converges).

In most situations, one might expect that it be too strong to ask for every pair inH×H to
be p-clustering for p > 1, as elements ofH that are obtained by completion from local
elements might not have good enough clustering properties anymore. However, for time
translations of local elements in V, clustering is a natural condition. The space V must
in fact be a “good” subspace of local elements: appropriate uniformity of clustering is
important for τt to give rise to a unitary group on the Hilbert spaces we construct below.
Therefore, let us define

V̂ = span{τta : a ∈ V, t ∈ R} ⊂ H. (46)

We assume that there exists a strict lower bound pc ≥ 1 for the clustering power law,
such that every pair in V̂ is p-clustering for some p > pc. Further, we assume that
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for every element a ∈ V̂, we may associate a converging sequence σna ∈ V, with
limn σna = a, such that for every pair of elements in V̂, p-clustering, for some p > pc,
holds uniformly on the set of pairs of elements of their associated converging sequences
(σn may be seen as a linear operator V̂ → V). All this is expressed in the following
definition.

Definition 5.4. We say that the dynamical system H,V is pc-clustering if, to every
a ∈ V̂, we may associate a sequence σna ∈ V with

lim
n

σna = a,

such that for every a, b ∈ V̂, the set of pairs {(σna, σmb)} is uniformly p-clustering for
some p > pc. For every a ∈ V we take σna = a ∀ n.

Clearly, if the dynamical system is pc-clustering, then it is p′
c-clustering for every p′

c ∈
[0, pc]. We will say that it is ∞-clustering if it is pc-clustering for every pc ∈ [0,∞).
In the rest of this section, we assume that:

the dynamical systemH,V is 1-clustering.

We now establish simple fundamental lemmas from the above structure.

Lemma 5.5. Let k ∈ R, let a ∈ H, and assume that the pair (a, a) is p-clustering for
some p > 1. Then 〈a, a〉k is non-negative:

〈a, a〉k ≥ 0. (47)

Proof. See for instance the proof of [46, Lem 4.2]. Consider the observables b =
∑L

x=−L eikx ιxa ∈ H, for L ∈ N. Then we have

0 ≤ 〈b, b〉 =
L∑

x,y=−L

e−ik(x−y)〈ιxa, ιya〉 =
2L∑

x=−2L

(2L + 1 − |x |) e−ikx 〈ιxa, a〉. (48)

We write 1 − |x | = 2 − (|x | + 1). Clearly,

∣
∣
∣

2L∑

x=−2L

2 e−ikx 〈ιxa, a〉
∣
∣
∣ ≤ 2c

∞∑

x=−∞
(|x | + 1)−p = O(L0). (49)

Further,

∣
∣
∣

2L∑

x=−2L

(|x | + 1) e−ikx 〈ιxa, a〉
∣
∣
∣ ≤ c

2L∑

x=−2L

(|x | + 1)−p+1 = O(L2−p). (50)

Therefore, 0 ≤ 〈b, b〉 = 2L〈a, a〉k + O(L2−p, L0). The result (47) is obtained by
dividing by L and taking the limit L → ∞. ��
Lemma 5.6. Let (a, b) ∈ H × H be p-clustering for some p > 1. Then 〈a, b〉k is
uniformly bounded on k ∈ R, and

lim
k→0

〈a, b〉k = 〈a, b〉0. (51)
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Proof. For every x ∈ Z, we have limk→0 eikx 〈ιxa, b〉 = 〈ιxa, b〉. We bound the sum-
mand in

∑
x∈Z eikx 〈ιxa, b〉 by |〈ιxa, b〉|. The latter is summable by p-clustering for p >

1. Hence by the bounded convergence theorem, we have limk→0
∑

x∈Z eikx (ιxa, b) =∑
x∈Z(ιxa, b). ��

Remark 5.7. It is simple to see that V̂ itself can be chosen as the space of local observ-
ables, and H, V̂, {τt : t :∈ R}, {ιx : x :∈ Z} is a dynamical system. In this case, the set
of local observables is stable under time evolution. In particular, for this system to be
pc-clustering, Definition 5.4, it is sufficient to require p-clustering pairwise (there is no
need for uniformity), as in this case one can choose σnτta = τta for all n. Using H, V̂

for the dynamical system simplifies the discussion, and we will take V = V̂ in Sect. 7.
This however affects certain structures, for instance changing the meaning of the Hilbert
spacesHk introduced below. In Sects. 5 and 6 we keep the separation between V and V̂
for generality.

5.2. Strongly continuous one-parameter groups. Besides the assumptions expressed in
Sects. 4.1 and 5.1, it is often the case that finer properties of time evolution holds, and this
leads to finer statements about the Hilbert spaces constructed below, and the subspace
of conserved charges. Although these are not necessary in order to establish our main
projection theorem, it is useful to consider such finer properties.

Assume that τta is continuous in t with respect to the norm topology for every a ∈ H
and t ∈ R. Then {τt : t ∈ R} forms what is called a strongly continuous one-parameter
unitary group – we will simply say that “τ is strongly continuous”. As a consequence,
Stone’s theorem [45, Thm 13.35] implies that there is an anti-self-adjoint operator δ,
the generator of the group, which is not necessarily continuous, with (dense) domain
V′ ⊂ H such that τta ∈ V′ and τta is differentiable for every a ∈ V′, and

d

dt
τta = τtδa = δτta. (52)

Stationarity then implies

〈δa, b〉 = −〈a, δb〉 ∀ a, b ∈ V′ (53)

Below, when assuming that τ is strongly continuous, we will also assume that

V ⊂ V′ and δ(V) ⊂ V. (54)

In order for the presence of a strongly continuous one-parameter unitary group to lead
to finer results below, strong enough clustering properties are required. It is convenient
to give precise definitions here, that can be proven in particular situations (such as
in spin chains); this will make the requirements for the finer results below clearer. We
consider two such stronger clustering properties: continuous clustering anddifferentiable
clustering.

Definition 5.8. The following definitions apply with respect to the pc-clustering dynam-
ical system H,V, with time evolution τ .

We say that τ is continuously clustering if for every a, b ∈ V, there is ε > 0 such
that the family {(τta, b) : t ∈ [−ε, ε]} is uniformly p-clustering for some p > pc.

We say that τ is differentiably clustering if it is strongly continuous (in particular
Eq. (54) holds) and continuously clustering, and if for every a, b ∈ V, there is ε > 0
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such that both families {(t−1(τt − 1)a, b) : t ∈ [−ε, ε]} and {(t−2(τt + τ−t − 2)a, a) :
t ∈ [−ε, ε]} are uniformly p-clustering for some p > pc.

Note that, by strong continuity, t−1(τt − 1)a and t−2(τt + τ−t − 2)a for t ∈ [−ε, ε] are
continuous families of elements of H, hence the condition for differentiable clustering
makes sense; in particular, at t = 0 we get δa and δ2a, respectively. Note also that
differentiable clustering does not follow from continuous clustering: for instance, if τ

is continuously clustering, then so is τ − 1, and thus there is a uniform power p > pc
for the clustering of (t−1(τt − 1)a, b); however, because of the factor t−1, there isn’t
necessarily a uniform coefficient c (see Eq. 44). Finally, note that the second condition
in differentiable clustering involves a pair formed out of a only; this is indeed sufficient
for our purposes.

One particularly useful lemma for applications gives differentiable clustering from a
stronger, but sometimes more natural, condition.

Lemma 5.9. Let τ be strongly continuous. Suppose that for every a, b ∈ V, the function
〈τta, b〉 can be analytically continued in t to a neighbourhood of 0, and there is ε > 0
such that the family {(τta, b) : t ∈ C, |t | < ε} is uniformly p-clustering for some
p > pc. Then τ is differentiably clustering.

Proof. Under the assumptions of the lemma, 〈τt ιxa, b〉 is analytic in a neighbourhood
|t | < ε, and there exists c > 0 and p > pc such that

|〈τt ιxa, b〉| ≤ c(|x | + 1)−p (55)

for all |t | < ε and x ∈ Z. By analyticity, for all |t | < ε/4,

t−1〈(τt − 1)ιxa, b〉 =
∮

|s|=|t |/2
ds

2π i

1

s(t + s)
〈(τt+s − 1)ιxa, b〉

=
∮

|s|=ε/2

ds

2π i

1

s(t + s)
〈(τt+s − 1)ιxa, b〉 (56)

where in the second line we used the fact that, in particular, there is no singularity at
t + s = 0. Therefore

|t−1〈(τt − 1)ιxa, b〉| ≤ 1

2π
× 2

ε
× 4

ε
× 2c(|x | + 1)−p (57)

for all |t | < ε/4, which shows the first part of the definition of differentiable clustering.
Likewise, for all |t | < ε/4,

t−2〈(τt + τ−t − 2)ιxa, b〉 =
∮

|s|=ε/2

ds

2π i

1

s(t + s)2
〈(τt+s + τ−t−s − 2)ιxa, b〉 (58)

and therefore

|t−2〈(τt + τ−t − 2)ιxa, b〉| ≤ 1

2π
× 2

ε
× 16

ε2
× 4c(|x | + 1)−p. (59)

This shows (a slightly stronger version of) the second part of the definition of differen-
tiable clustering. ��

Below we will show that such strong clustering properties are sufficient to map
{τt : t ∈ R} into a strongly continuous one-parameter unitary group on the new Hilbert
spaces constructed.
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5.3. Hilbert spaces Hk . For k ∈ R and a ∈ H such that (a, a) is p-clustering with
p > 1, we denote

||a||k = √〈a, a〉k . (60)

Our assumption that the dynamical systemH,V is 1-clustering (see Definitions 5.3 and
5.4) implies that 〈a, b〉k exists for all a, b ∈ V, k ∈ R, and thus gives a positive semi-
definite sesquilinear form on V. There may be a nontrivial null space Nk = {a ∈ V :
||a||k = 0}; by the Cauchy-Schwarz inequality 〈a, b〉k = 0 for all a ∈ Nk, b ∈ V (we
discuss the spaceN0 in Sect. 7). The space of equivalence classes is denotedV/Nk = Vk ,
on which || · ||k is a norm. The completion of Vk with respect to || · ||k gives rise to a
Hilbert space, denoted Hk . We still denote by 〈·, ·〉k the inner product on this Hilbert
space. When confusion may arise, we will denote by

[a]k = a + Nk ∈ Vk (a ∈ V) (61)

the equivalence class of a. These are the “local elements” in Hk . A basic property of
antisymmetric linear operators on such equivalence classes is as follows.

Lemma 5.10. Let δ : V → V be a linear map such that the antisymmetry (53) holds.
Then

〈δa, b〉k = −〈a, δb〉k (62)

for all a, b ∈ V. Further, δ is well defined on Vk for every k ∈ R, and δ[a]k = [δa]k for
every a ∈ V.

Proof. The first part is immediate. For the second part, let a ∈ V with ||a||k = 0. Then
by antisymmetry we find 〈δa, δa〉k = −〈δ2a, a〉k ≤ ||δ2a||k ||a||k = 0, wherefore
||δa||k = 0. ��

Clustering implies, in fact, that 〈a, b〉k , as defined in (45), exists for all a, b ∈ V̂ (see
Eq. 46). That is, we can time-evolve elements of V, and consider the form 〈·, ·〉k on such
time-evolved elements.Wewould like to assess if τta can be identified, in an appropriate
way, with an element ofHk . More precisely, given a ∈ V and t, k ∈ R, is there a unique
element cHk ∈ Hk – a Cauchy-converging sequence with respect to || · ||k in the space of
equivalence classes of local observables Vk – such that 〈cHk , b〉k = 〈c, b〉k for c = τta
and every b ∈ V (by density arguments, it is sufficient to consider b ∈ V)? By the Riesz
representation theorem, it is simple to show that such an element must exist, and that it is
bounded by ||a||k . We may denote it τHk

t [a]k , and τ
Hk
t is a continuous linear functional

on Hk , with ||τHk
t [a]k || ≤ ||a||k . However, this is not sufficient in order to establish

unitarity and the group property of τ
Hk
t . As we show below, the stronger conditions of

uniform clustering on converging sequences σnτta, as in Definition 5.4, allows us to
establish unitarity and the group property. Further, strong continuity also translates to
τ
Hk
t if the differentiable clustering holds (Definition 5.8). A partial proof is given for
instance in the last part of the proof of [46, Thm 6.3]. We give here a full statement and
proof. The following theorem is the main structural result for this paper.

Theorem 5.11. For every t, k ∈ R, there is a unique unitary map τ
Hk
t : Hk → Hk such

that

〈τHk
t [a]k, τ

Hk
s [b]k〉k = 〈τta, τsb〉k (a, b ∈ V, t, s ∈ R). (63)

For every k ∈ R and a, b ∈ Hk , the function t �→ 〈τHk
t a, b〉k is Lebesgue measurable

on R. Further, for every k ∈ R:
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I. the group property holds, τ
Hk
t τ

Hk
s = τ

Hk
t+s for all t, s ∈ R;

II. let a ∈ V, t ∈ R, then the following limit exists in Hk and gives limn[σnτta]k =
τ
Hk
t [a]k;

III. if τ is strongly continuous and continuously clustering (Definition 5.8), then τ
Hk
t

forms a strongly continuous one-parameter unitary group, and continuity is uniform
on k ∈ R; and

IV. if τ is differentiably clustering (Definition 5.8), then the generator δHk of τHk
t satisfies

δHk [a]k = [δa]k = δ[a]k (64)

for all a ∈ V.

Proof. First, once (63) is established, measurability is obtained by the measurability
assumption of Sect. 4.1: for every a, b ∈ V, the function 〈τta, b〉k is measurable as it
is the point-wise limit of a sequence of measurable functions (the finite sums), and for
every a, b ∈ Hk , by density there is an, bn ∈ Vk with limn an = a and limn bn = b,
and thus 〈τta, b〉k = limm,n〈τtam, bn〉k is measurable.

Here and in other proofs below, we use the following two facts. Consider a Hilbert
space H and a dense subspace V. If the sequence 〈an, b〉 converges for all b ∈ V, and
if ||an|| is uniformly bounded, then, by the Riesz representation theorem, there exists
b ∈ H such that weak convergence an ⇀ b holds. If an ⇀ b and ||an|| → ||b||, then
an → b (norm topology inH).

Fix k ∈ R. Let a, b ∈ V and t ∈ R. By definition, limn σnτta = τta (convergence
on H). But also, limn〈ιxσnτta, b〉 = 〈ιxτta, b〉 by continuity of ιx ; and the quantity
〈ιxσnτta, b〉 is uniformly (over n) bounded by a summable function of x , by the unifor-
mity requirement of Definition 5.4. Hence, by the bounded convergence theorem, the
series

∑
x∈Z eikx 〈ιxσnτta, b〉 converges to that of the pointwise limit of the summand.

Therefore, passing to the quotient space, for every b ∈ Vk the limit limn〈σnτta, b〉k
exists and gives 〈τta, b〉k (as evaluated by the series (45)). A similar argument shows
that ||σnτta||k is uniformly bounded over n. Since Vk is dense in Hk , we conclude that
[σnτta]k converges weakly in Hk . In fact, we find limn ||σnτta||k = ||τta||k = ||a||k
(using stationarity (28)), thus

[σnτta]k ⇀ τ
Hk
t [a]k, (65)

with ||τHk
t [a]k || ≤ ||a||k . This defines a bounded linear map τ

Hk
t : Vk → Hk which

satisfies (63) with s = 0. This map extends by continuity to τ
Hk
t : Hk → Hk .

Using weak convergence in Hk , for a, b ∈ V and s, t ∈ R we have 〈τHk
t [a]k, τ

Hk
s

[b]k〉k = limn〈σnτta, τ
Hk
s [b]k〉k = limn limm〈σnτta, σmτsb〉k . Thanks to the uniform

clustering assumption, the right-hand side can be evaluated by pointwise convergence by
the bounded convergence theorem, giving 〈τta, τsb〉k . This gives (63) in its generality.
By density and continuity, and by the one-parameter group property of τt , the group
property τ

Hk
t τ

Hk
s = τ

Hk
t+s follows, and this implies that τ

Hk
t is unitary (as it is then an

invertible isometry). In particular, ||τHk
t [a]k ||k = ||a||k = limn ||σnτta||k , therefore,

combined with weak convergence (65), we have limn[σnτta]k = τ
Hk
t [a]k inHk .

Assume that for every a ∈ V, we have limt→0 τta = a on H (strong continuity at
t = 0), and that for every a, b ∈ V, there exists ε > 0 such that {(τta, b) : t ∈ [−ε, ε]}
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is uniformly p-clustering for some p > 1 (continuous clustering). Fix a, b ∈ V. Then
by the result just established,

lim
t→0

〈τHk
t [a]k, [b]k〉k = lim

t→0
〈τta, b〉k = lim

t→0

∑

x

eikx 〈ιxτta, b〉.

We have the bound

|〈τta, b〉k − 〈a, b〉k | ≤
∑

x

|〈ιxτta, b〉 − 〈ιxa, b〉|

By strong continuity, the summand on the right-hand side converges to zero pointwise.
By uniform p-clustering on the interval t ∈ [−ε, ε], the summand is further uniformly
bounded by a summable sequence. Hence, by the bounded convergence theorem, the
limit of the series exist and gives zero. As the right-hand side does not depend on k, the
limit exists uniformly in k. Therefore,

lim
t→0

〈τHk
t [a]k, [b]k〉k = 〈a, b〉k (66)

for all a, b ∈ V, uniformly on k ∈ R. Note that ||τHk
t [a]k ||k = ||a||k is uniformly

bounded on k ∈ R by Lemma 5.6. Therefore, ||τHk
t [a]k ||k is uniformly bounded in

any neighbourhood of t = 0, and this, uniformly on k ∈ R. As Vk is dense in Hk ,
the limit (66) for all b ∈ V and the bound on ||τHk

t [a]k ||k , both uniform in k, imply
that τ

Hk
t [a]k ⇀ [a]k as t → 0 uniformly on k ∈ R. Since ||τHk

t [a]k || = ||a||k , we
conclude limt→0 τ

Hk
t [a]k = [a]k on Hk , uniformly on k ∈ R. Hence {τHk

t : t ∈ R}
forms a strongly continuous one-parameter unitary group, and this shows Point III.
Stone’s theorem can be applied (note that continuity at t = 0 is sufficient); we denote
the associated generator by δHk .

Finally, assume further that (54) holds, and that for every a, b ∈ V, there exists ε > 0
such that {(t−1(τt − 1)a, b) : t ∈ [−ε, ε]} is uniformly p-clustering for some p > pc
(the first statement of differentiable clustering). We use a similar line of arguments. Fix
a, b ∈ V. Then

lim
t→0

t−1〈(τHk
t − 1)[a]k, [b]k〉k

= lim
t→0

t−1〈(τt − 1)a, b〉k = lim
t→0

∑

x

eikx t−1〈ιx (τt − 1)a, b〉.

Bydifferentiability, the limit exists pointwise in the series andgives limt→0 eikx t−1〈ιx (τt−
1)a, b〉 = eikx 〈ιxδa, b〉. By uniform p-clustering on the interval t ∈ [−ε, ε], the sum-
mand eikx t−1〈ιx (τt − 1)a, b〉 is uniformly bounded by a summable sequence. Hence,
by the bounded convergence theorem, the limit of the series exist and we find

lim
t→0

t−1〈(τHk
t − 1)[a]k, [b]k〉k = 〈δa, b〉k

for all a, b ∈ V. A similar line of arguments, which we do not repeat, gives, by the
second statement of differentiable clustering, a uniform bound for

||t−1(τ
Hk
t − 1)[a]k ||2k = t−2〈(2 − τ

Hk
t − τ

Hk−t )[a]k, [a]k〉k (67)
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on t ∈ [−ε, ε]. Since Vk is dense in Hk and we have a uniform bound, we find the
following weak limit inHk

t−1(τ
Hk
t − 1)[a]k ⇀ [δa]k (t → 0).

Taking the limit in (67) we further obtain limt→0 ||t−1(τ
Hk
t −1)[a]k ||2k = −〈δ2a, a〉k =

〈δa, δa〉k (Lemma 5.10), and thus we have convergence inH, hence differentiability,

lim
t→0

t−1(τ
Hk
t − 1)[a]k = [δa]k .

Therefore, [a]k lies within the domain of δHk for all a ∈ V, and we have (64) (the last
equality is by Lemma 5.10) . ��

For lightness of notation, below we denote τ
Hk
t simply by τt (and, in the strongly

continuous case, δHk by δ), as by Theorem 5.11 there should be no confusion.We denote

V̂k = span{τHk
t [a]k : a ∈ V, t ∈ R}. (68)

We note that Theorem 5.11 gives a surjective map V̂ → V̂k , and we extend the symbol
[·]k from (61) to V̂ in order to denote this map:

[·]k : V̂ → V̂k . (69)

Remark 5.12. In applications to quantum chains, the spaces Hk , for k ∈ R, are a gen-
eralisation of the Hilbert spaces constructed in [46,47], where the case k = 0 was
considered.

Remark 5.13. If we choose V large enough so that V̂ = V (see Remark 5.7), then
τt (V) ⊂ V and τt (Vk) ⊂ Vk , and the action of time evolution simplifies to

τ
Hk
t [a]k = [τta]k . (70)

In this case, if a ∈ Nk , then τta ∈ Nk for all t ∈ R.

5.4. The subspace of conserved charges. With the above constructions, we are now able
to define the most important objects for hydrodynamic projections.

We define the subspace of conserved charges Q0 as all elements q ∈ H0 that are
invariant under the time evolution unitaries τt :

Q0 = {q ∈ H0 : τtq = q ∀ t ∈ R}. (71)

By the group property of τt , it is sufficient to require τtq = q for all t in a non-empty
interval. If τ is strongly continuous, then it is sufficient to require τtq = q for all t in
a subset of R with a finite accumulation point. In general, since τt is a continuous map
for every t , then ker(τt − 1) is closed for every t by the open mapping theorem, hence
∩t∈R ker(τt − 1) is closed, so that Q0 is a closed subspace.

It will be convenient to define the space of local conserved charges as the space of
conserved charges that are equivalence classes of local elements, that is

Qloc
0 = Q0 ∩ V0 (subspace of local conserved charges). (72)
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Further,wewill refer to local conserved density any representative of such an equivalence
class, q ∈ q̌ with q̌ ∈ Qloc

0 . The space is equivalently described as

Qloc = {q ∈ V : [q]0 ∈ Q0} (subspace of local conserved densities). (73)

One question is as to the relation of Q0 with the generator δ of time evolution, such
as arises in the strongly continuous case, Sect. 5.2. This is established in the following
theorems.

Theorem 5.14. Let time translation τ be differentiably clustering (Definition 5.8). Then

Qloc
0 = ker δV0 , ker δV0 ⊂ Q0 ⊂ im δV0

⊥
(74)

where ker δV0 = {a ∈ V0 : δa = 0} and im δV0 = {δa : a ∈ V0} (recall, by Lemma 5.10,
that δ can be seen as acting on V0).

Proof. For Qloc
0 ⊂ ker δV0 , we note that if q ∈ Qloc

0 , then by strong continuity and
Theorem 5.11.IV, dτtq/dt

∣
∣
t=0 = δq. Hence by conservation, δq = 0, thus q ∈ ker δV0 .

For ker δV0 ⊂ Qloc
0 ,we let q ∈ ker δ0, andwehave δq = 0.By strong continuity, Theorem

5.11.III, we get dτtq/dt = τtδq = 0, and integrating, τtq − q = ∫ t
0 ds dτsq/ds = 0 for

all t ∈ R. Thus q ∈ Qloc
0 .

Let q ∈ ker δV0 . Then q = limn qn with qn ∈ ker δV0 . Again by Theorem 5.11.IV,
we have dτtb/dt = τtδb for all b ∈ V0, t ∈ R. Integrating this equation with b = qn ,
we find (τt − 1)qn = 0. By continuity, we obtain (τt − 1)q = 0, hence q ∈ Q0.
On the other hand, assume that q ∈ Q0. Then, for all a ∈ V0 and t ∈ R, we have
0 = 〈τtq − q, a〉0 = 〈q, τ−ta − a〉0, and taking the derivative at t = 0, this gives

〈q, δa〉0 = 0. By continuity, 〈q, b〉0 = 0 for all b ∈ im δV0 , thus q ∈ im δV0
⊥
. ��

One can say a bit more if V is chosen large enough to contain all time-evolved local
observables, V̂ = V (see Remarks 5.7 and 5.13).

Theorem 5.15. Let time translation τ be differentiably clustering. If τt (V0) ⊂ V0 for all
t ∈ R, then

Q0 = im δV0
⊥
. (75)

Proof. Thanks to Theorem 5.14, we only need to prove that im δV0
⊥ ⊂ Q0. Hence,

assume that q ∈ im δV0
⊥
. By density of V0, we can represent q = limn qn for qn ∈ V0.

Therefore, for every ε > 0 there exists N > 0, independent of a ∈ V0, such that
|〈δqn, a〉0| = |〈qn, δa〉0| = |〈q − qn, δa〉0| < ε||δa||0 for all n > N , where the

second equality follows from q ∈ im δV0
⊥
. In particular, |〈δqn, τta〉0| < ε||δτta||0 =

ε||τtδa||0 = ε||δa||0 for all n > N and t ∈ R. By differentiability, we have, for every
ε > 0 and t ∈ R

|〈τtq − q, a〉0| = lim
n

|〈τtqn − qn, a〉0| = lim
n

∣
∣
∣

∫ t

0
ds 〈τsδqn, a〉0

∣
∣
∣

= lim
n

∣
∣
∣

∫ t

0
ds 〈δqn, τ−sa〉0

∣
∣
∣ < ε

∫ t

0
ds ||δa||0

= εt ||δa||0 (76)

for all ε > 0, and therefore 〈τtq−q, a〉0 = 0. SinceV0 is dense, this implies τtq−q = 0.
��
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Remark 5.16. It is expected to happen, in some cases, that the first inclusion in (74) be
strict. That is, it may be that the space of conserved charges Q0, is not the completion
of the space of all local conserved charges Qloc

0 . Indeed, in integrable quantum chains,
with local observables being as usual those supported on finitely many sites, it is known
that there can be quasi-local conserved densities that are not obtained as limits of local
conserved densities, see [74]. However, we expect that one can circumvent this by
extending the space V (and thus V0) to include quasi-local observables.

Remark 5.17. Let q ∈ V. We claim that a time-independent [q]0 ∈ H0 should indeed
be interpreted as a conserved charge, in the terminology normally used in many-body
physics; and that q is an associated conserved density. In order to see this, we recall
that the inner product may be defined in terms of a statistical mechanics state ω as in
(15). The quantity 〈q, a〉0 is the expectation, in ω, of the total charge

∑
x ιxq times the

zero-average local observable a − ω(a). It should thus indeed be invariant under time
evolution of q – that is, [q]0 should be time independent – if the total charge is conserved.
In this sense, then, the null space N0 corresponds to the ambiguity in the definition of
the local density for a given conserved charge. The elements ofH0 are shown in [46] to
be in bijection with the pseudolocal charges [48,49], and are framed within the theory
of linearly extensive charges in [47].

Another way of understanding the conserved densities is to recall that every element
of the form ιx+1a − ιxa for a ∈ V has image under the quotient map [·]0 that vanishes,
simply by using telescopic summation and clustering in the definition (45) of 〈·, ·〉0 with
k = 0. If q ∈ V is a conserved density, and if τtq is differentiable in t , then in local
models one expects a continuity equation,

d

dt
τtq + ιxj − ιx−1j = 0 (77)

for some current j ∈ H. If j has appropriate clustering properties, then in 〈·, ·〉0 the
derivative vanishes: τt [q]0 is indeed independent of t if q satisfies a continuity equation.
A general theorem on the existence of local currents is obtained in Sect. 7.

6. The Hydrodynamic Projection Formula

In this section, we express and prove the general hydrodynamic projection formula for
Euler-scale correlation functions. The necessary assumptions are those expressed in
Sects. 4.1 and 5.1, along with Property 1 below. This property simply asks for almost-
everywhere ergodicity, as shown in Theorem 4.3 from space-like ergodicity, and for
correlations functions to have an appropriate behaviour as functions of the ray. For sim-
plicity, the dynamical systemH,V is tacitly assumed to be 1-clustering (see Definition
5.4), and it is explicitly stated when stronger conditions are required. All assumptions,
including Property 1, are shown to hold in KMS states of quantum spin chains in Sect. 8.

As an introduction to hydrodynamic projections, in Sect. 6.1, we show how the
simpler and well known projection formula for the Drude weights arise from our general
framework. In Sect. 6.2, we state Property 1, and the relation it bears with a stronger
space-like clustering property of the Lieb–Robinson type; this is useful in applications
to spin chains. In Sect. 6.3 we consider the problem of the existence of the Euler scaling
limit. In Sect. 6.4 we define the Euler map, which is used to obtain appropriate continuity
properties. Finally, in Sect. 6.5 the main projection results are obtained.
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6.1. Drude weights. Before obtaining the general projection results for Euler-scale cor-
relation functions, a much simpler result can immediately be obtained, which requires
only the structures of Sects. 4.1 and 5.1. This is the hydrodynamic projection formula
for the Drude weights.

As per the conventional Kubo formula, a Drude weight is the quantity

Dj1,j2 = lim
t→∞(t − t0)

−1
∫ t

t0
ds 〈τsj1, j2〉0 (78)

for j1, j2 being the currents associated to conserved densities. Theorem 7.6 in Sect. 7
shows the existence of local currents for every local conserved density in systems that
are “complete” (as per Definition 7.5). Once local currents are given, for the general
result presented here it is not necessary for the system to be complete.

Instead of local currents j1, j2,wemay in fact take generic local observablesa, b ∈ V.
Further, we may extend the concept of Drude weights to a, b ∈ H0 by continuity, as,
if the limit exists (proven below), the right-hand side of (78) makes sense for such
an extension. Thus, we see Da,b as a “generalised” Drude weight for any extensive
observable a, b ∈ H0.

The projection formula for the Drude weight, and for the Euler-scale correlation
functions below, involves the orthogonal projection

P : H0 → Q0 (79)

onto the subspace of conserved charges Q0, see (71). The projection formula for the
Drude weight has been studied for a long time [35,76,79,80], and it is in fact a quite
direct consequence of von Neumann’s mean ergodic theorem as applied to unitary oper-
ators [45, Thm 12.44]. In particular, the expression Eq. (21) for P holds, as we assume
countable dimensionality ofV, which implies countable dimensionality ofH0.Using this
expression, the standard projection formula for the Drude weight [35] is an immediate
consequence of (80).

Theorem 6.1. For every t0 ∈ R and every a, b ∈ H0, the Drude weight Da,b exists and
is obtained by projecting onto the space of conserved charges,

Da,b = 〈Pa, b〉0 = DPa,Pb . (80)

Proof. We wish to show that

Da,b = lim
t→∞(t − t0)

−1
∫ t

t0
ds 〈τsa, b〉0 = 〈Pa, b〉0. (81)

Since the integrand is bounded and measurable (by Theorem 5.11), and the measure is
finite for t finite, then the Lebesgue integral exists. Since the integrand is bounded, then
it is sufficient to take t0 = 0, and to take the limit over t = nε ∈ Nε for some ε > 0, as
if this limit exists, then it does over t ∈ R as well, and gives the same result. Then, we
have

Da,b = lim
N�n→∞

1

n

∫ n

0
ds 〈τεsa, b〉0 = lim

n→∞

∫ 1

0
ds

1

n

n−1∑

m=0

〈τm
ε τεsa, b〉0. (82)

Note that τε is unitary onH0 (Theorem 5.11). By von Neumann’s mean ergodic theorem
[45, Thm 12.44], the limit over n exists on the integrand and gives 〈τεsPτεa, b〉0, where
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Pτε is
4 the orthogonal projection onto the null space of τε − 1. This is Lebesgue mea-

surable. Since the integrand in (82) is uniformly bounded over s and n by the quantity
||b||0||a||0, which is integrable, by the bounded convergence theorem the limit over n and
the integral over s can be interchanged. The result exists and is

∫ 1
0 ds 〈τεsPτεa, b〉0. Since

this holds for all ε > 0, we may replace a by Pa (note that ker(τε − 1) = ker(τ−ε − 1),
so it is indeed sufficient to consider ε > 0). Thus we obtain

Da,b =
∫ 1

0
ds 〈τεsPa, b〉0 =

∫ 1

0
ds 〈Pa, b〉0 = 〈Pa, b〉0. (83)

��

6.2. Relaxation from space-like clustering. Our main projection theorem will need two
additional conditions: almost everywhere ergodicity, proven in Theorem 4.3 from space-
like ergodicity (Definition 4.2), and appropriate integrability over the set of rays, uniform
in time. These two additional conditionsmay be interpreted as demanding a certain relax-
ation property for the system, indeed a natural requirement for hydrodynamic projection
to occur.

Property 1. The dynamical systemH,V satisfies the following two conditions:

a. Let a, b ∈ H. Then for almost all v ∈ R with respect to the Lebesgue measure,

lim
T →∞

1

T

∫ T

0
dt 〈ι�vt�τta, b〉 = 0. (84)

b. H,V is 2-clustering, and for every a, b ∈ V, there exist T > 0 and a Lebesgue
integrable function f : R → R+ such that

|〈ι�vt�τta, b〉| ≤ f (v) ∀v ∈ R, t > T with the property that
∫

R

dv (|v| + 1) f (v) < ∞. (85)

Note that Property 1a is a property of the Hilbert spaceH, and not of the choice of local
observables V.

Interestingly, thanks to Theorem 4.3, a somewhat weak condition of uniform cluster-
ing along all rays within space-like cones is sufficient for the above relaxation property
to hold. This condition is akin to the Lieb–Robinson bound, but weaker, and will be
shown to hold in quantum spin chains (Theorem 8.9).

Definition 6.2. We say that the dynamical systemH,V is space-like pc-clustering with
velocity vc > 0, if it is pc-clustering, and if for every a, b ∈ V, there exist p > pc,
0 < v < vc and c > 0 such that

|〈ιxτta, b〉| ≤ c(|x | + 1)−p ∀ x ∈ Z, t ∈ v−1[−|x |, |x |]. (86)

Lemma 6.3. If the dynamical system H,V is space-like 2-clustering, then it satisfies
Property 1.

4 By [45, Thm 12.44], the result is Pτε = f (τε) with f (1) = 1 and f (x) = 0 for all complex x �= 1. If
the spectral decomposition of τε is E , this gives Pτε = 0 if 1 is not in the spectrum of τε , and Pτε = E({1})
otherwise; the statement then follows by [45, Thm 12.29].
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Proof. Property 1a is a consequence of Theorem 4.3. For Property 1b, with the bound
(86), we choose p > 2 and T > 0, and

f (v) =
{ ||a|| ||b|| (|v| < V )

c(|vT | + 1)−p (|v| ≥ V ).
(87)

��
Remark 6.4. Recall that one may takeH, V̂ as a dynamical system (that is, including all
time-evolutes within the space of local observables, see Remark 5.7). If the dynamical
system H,V is space-like pc-clustering with velocity vc, then so is H, V̂. Indeed, for
any given a, b ∈ V, in (86) we may replace a by τsa for any s ∈ R, and V by V + ε for
any ε > 0, and the bound stays true5.

6.3. Banach limits. In the hydrodynamic projection formula (23), the Euler-scale cor-
relation function (18) is involved, where a certain large-time limit is taken. Establishing
properties for the dynamics of observables at large time is a particularly difficult prob-
lem in many-body systems. For instance, showing that the Euler scaling limit in (18)
exists as an ordinary limit requires subtle relations between space translations ιx and
time translations τt . However, it turns out that we do not need the limit to exist.

Fix κ ∈ R. Thanks to the Hilbert space structuresHk and to Theorem 5.11, for every
κ, t ∈ R and for every a, b ∈ Hκ/t , the quantity 〈τta, b〉κ/t is bounded, |〈τta, b〉κ/t | ≤
||a||κ/t ||b||κ/t , as per the Cauchy-Schwartz inequality. Further, by Lemma 5.6, for every
local observables and their time evolutes a, b ∈ V̂, the bound is uniform for all t > 0.
Yet, the large-time limit might not exist, for instance the function might be oscillating
indefinitely. Physically, in order to obtain the Euler scale, one expects that it be needed to
take appropriate fluid-cell averages, in order to “wash out” potential oscillations in space
and time. Although the Fourier transform in x provides a space averaging, an additional
time averaging may be required in order to avoid such oscillations.

In order to average in time, one may look, for instance, at the Cesàro limit (or Cesàro
mean)

lim
t→∞

1

t − t0

∫ t

t0
ds 〈τsa, b〉κ/s, (88)

which is independent of t0. There are strong results for time-averaged quantities in
statistical mechanics, as part of ergodic theory. However, as far as we are aware, the
above is still not guaranteed to exist, and neither do any higher-order Cesàro limit (the
recursive time-averages of time-averages).Wedonot knowat presentwhat is theminimal
procedure for fluid cell averaging.

Instead, a universal concept is that of Banach limits (or Mazur-Banach limits), see
[81]. For our purposes, a Banach limit φ is a continuous linear functional on the Banach
space of bounded functions f : R+ → C (with norm || f || = lim supt→∞ | f (t)|), with
the properties of positivity, if f (t) ≥ 0 for all t > 0 then φ( f ) ≥ 0, invariance under
affine transformations t �→ at + b for a > 0 and b ∈ R, and compatibility with the
limit, φ( f ) = limt→∞ f (t) if the limit exists. Banach limits exist thanks to the Hahn-
Banach theorem (a proof is given in Appendix A for our specific definition), and satisfy

5 This follows, as for every s ∈ R and ε > 0, there is X > 0 large enough such that, for every v with
|v| ≥ V + ε, there exists v′ with |v′| ≥ V , such that |v−1 + s/x |−1 > |v′| for all |x | > X .
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|φ( f )| ≤ || f ||. There isn’t a unique Banach limit: many limits might be attributable to a
given bounded function. If a function does have a unique Banach limit, then it is said to
be almost-convergent. If the nth order Cesàro limit of the function exists, then there is a
Banach limit that gives it (although even in this case, the function does not necessarily
have a unique Banach limit).

We will show that the hydrodynamic projection formula can be established for any
composition of a Banach limit with a Cesàro limit. Thus, there is no necessity for the
limit in (18) to actually exist, although if it does, then the projection formula holds for
the result of the limit. Below we choose one Banach limit φ throughout, and we denote
the composition with the Cesàro limit as

l̃im
t→∞ f (t) = φ(F), F(t) = 1

t

∫ t

0
ds f (s). (89)

See Appendix A. By the above discussion, it has the property

| l̃im
t→∞ f (t)| ≤ lim sup

t→∞

∣
∣
∣
1

t

∫ t

0
ds f (s)

∣
∣
∣ ≤ lim sup

t→∞
| f (t)|. (90)

We then define, for every a, b ∈ V̂ (every local observables and their time-evolutes) and
every κ ∈ R,

Sa,b(κ) = l̃im
t→∞〈τta, b〉κ/t . (91)

In particular, we note that the Drude weights (78) are Da,b = Sa,b(0), the Euler-scale
correlation function at κ = 0; in this case by Theorem 6.1 the result does not depend on
the choice of the Banach limit l̃im

t→∞.

6.4. The Euler map. In this subsection, we show that there exists a continuous linear
map �eul

κ : H0 → H0 representing the Euler scaling limit of correlation functions
(91). The existence of this continuous map will then allow for an appropriate projection
argument leading to (23). Below, we will use the notation Sa,b(κ) in a flexible way, with

Sa,b(κ) = 〈�eul
κ a, b〉0 (92)

if a and b lie inH0 or in V̂ ; thanks to the following theorem, there is no ambiguity with
Eq. (91).

Theorem 6.5. For every κ ∈ R, there exists a unique continuous linear map �eul
κ :

H0 → H0 such that

Sa,b(κ) = 〈�eul
κ [a]0, [b]0〉0 (93)

for all a, b ∈ V̂, with the map [·]0 as defined in (61) and (69). The family of maps
{�eul

κ : κ ∈ R} is equicontinuous.

Proof. Let a, b ∈ V̂. Then, for every κ ∈ R,

lim sup
t→∞

|〈τta, b〉κ/t | ≤ lim sup
t→∞

||τta||κ/t ||b||κ/t = lim
k→0

||a||k ||b||k = ||a||0||b||0 (94)
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where the last step is by Lemma 5.6. With the bound (90), the result (94) says, by
specialising to b ∈ V, that Sa,·(κ) can be seen as a linear map V0 → C. This linear map
is bounded with respect to || · ||0:

sup
b∈V\{0}

|Sa,b(κ)|
||b||0 ≤ ||a||0 < ∞. (95)

Thus it is a continuous linear functional on V0, and can be extended by continuity to
H0. By the Riesz representation theorem, there exists an element, which we denote
�eul

κ a ∈ H0, such that

Sa,b(κ) = 〈�eul
κ a, [b]0〉0 (a ∈ V̂, b ∈ V). (96)

Further, by (95), the linear map a → �eul
κ a can be seen as acting on V0, and is bounded

as

||�eul
κ || = sup

a∈V\{0}
||�eul

κ [a]0||
||a||0 ≤ 1. (97)

Hence it is continuous and can be extended by continuity to H0. Thus, there exists a
unique continuous linear map �eul

κ : H0 → H0 such that

Sa,b(κ) = 〈�eul
κ [a]0, [b]0〉0 (a, b ∈ V). (98)

Equicontinuity of the family of maps on κ ∈ R is clear from the bounds established.
The right-hand side of (98) can be extended by continuity toH0, that is, by replacing

[a]0 and/or [b]0 by elements of H0. In particular, we may take a, b ∈ V̂ and consider
[a]0, [b]0 ∈ V̂0, see (68) and the map (69). The left-hand side can be evaluated for
a, b ∈ V̂ by taking the large-time limit (91) for such elements. However, we need to
establish that the result of the left-hand side for a, b ∈ V̂ agrees with the result of the
right-hand side for [a]0, [b]0 ∈ V̂0 ⊂ H0.

Let c = τsa ∈ V̂ and d = τs′b ∈ V̂, and recall that all elements of V̂ are of this form.
As |〈τt (c−σmc), d〉κ/t | ≤ ||c−σmc||κ/t ||d||κ/t , and as ||d||κ/t is uniformly bounded on
t ∈ R (Lemma 5.6), Theorem 5.11.II implies that limm〈τt (c−σmc), d〉κ/t = 0 uniformly
in t . Similarly, limn〈τt c, d − σnd〉κ/t = 0 and limm,n〈τt (c − σmc), d − σnd〉κ/t = 0
uniformly in t . Hence, limm,n〈τtσmc, σnd〉κ/t = 〈τt c, d〉κ/t uniformly in t . Therefore,
we can exchange the limits on t and on m, n:

| l̃im
t→∞〈τt c, d〉κ/t − lim

m,n
l̃im

t→∞〈τtσmc, σnd〉κ/t |
= lim

m,n
| l̃im

t→∞
(〈τt c, d〉κ/t − 〈τtσmc, σnd〉κ/t

)|
≤ lim

m,n
lim sup

t→∞
∣
∣〈τt c, d〉κ/t − 〈τtσmc, σnd〉κ/t

∣
∣

= 0 (99)

where in the last line, the uniform limit statement has been used. As a consequence,

l̃im
t→∞〈τt c, d〉κ/t = lim

m,n
l̃im

t→∞〈τtσmc, σnd〉κ/t

= lim
m,n

Sσmc,σnd(κ)

= 〈�eul
κ [c]0, [d]0〉0 (100)

where in the last line we used Eq. (98), Theorem 5.11.II, and the map (69). ��
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6.5. Projection onto the subspace of conserved charges. The main lemma, which uses
Property 1, says that taking the Euler scaling limit after making a finite time-shift of
one of the elements of the correlation function, does not depend on this time-shift. This
is natural, as at the Euler scale, the long-time limit has been taken; but it is nontrivial,
as this limit is taken simultaneously with the long wavelength limit. The result is at the
basis of the projection mechanism.

Lemma 6.6. Assume that the dynamical systemH,V satisfies Property 1. Then for every
a, b ∈ V and s ∈ R, there exists T0 > 0 such that for every κ ∈ R, the following holds:

lim
T →∞

1

T

∫ T

T0
dt g(t) = 0, g(t) =

∑

x∈Z

(
eiκx/t − eiκx/(t+s)

)
〈τt ιxa, b〉. (101)

Proof. We evaluate

g(t) =
∑

x∈Z
2i exp

[ iκx

2

(
1

t
+

1

t + s

)]
sin

[κx

2

(
1

t
− 1

t + s

) ]
〈τt ιxa, b〉

=
∑

v∈t−1Z

iκv

t
exp

[ iκv

2

(

1 +
t

t + s

) ] 2t

κv
sin

[κv

2t

(

t − t2

t + s

) ]
〈τt ιvta, b〉

=
∫

R

dv iκvt exp
[ iκvt

2

(

1 +
t

t + s

) ] 2t

κvt
sin

[κvt

2t

(

t − t2

t + s

) ]
〈τt ι�vt�a, b〉.

(102)

In the second line we defined v = x/t , and in the third line we used the notation

vt = �v�t−1 (103)

where, for ε > 0,

�y�ε = ε
⌊ y

ε

⌋
(104)

is the “ε-part” of y.
Using the assumption of ray-integrable lineshapes, Property 1b, we now show that

the absolute value of the integrand in (102) is uniformly bounded, for t large enough,
by an integrable function. A simple analysis shows that for every u > 0 the bound
|t − t2/(t + s)| ≤ |s| + u holds for all t large enough, and for every γ > 0 the bound
y−1| sin γ y| ≤ γ holds for all y ∈ R\{0}. Therefore, there exists u > 0 such that

∣
∣
∣
2t

κv
sin

κv

2t

(

t − t2

t + s

) ∣
∣
∣ ≤ |s| + u (105)

for all t large enough. We can assume t > 1, and thus |vt | ≤ |v| + 1. As a consequence,
the absolute value of the integrand in (102) is bounded by

(|s| + u)κ(|v| + 1)|〈τt ι�vt�a, b〉| ≤ (|s| + u)κ(|v| + 1) f (v) (106)

and, by Property 1b, this gives a finite integral over v ∈ R. Therefore, there exists T0 > 0
such that |g(t)| is uniformly bounded for t > T0 and κ in any compact subset of R, and
in particular, for every κ ∈ R, the function g(t) is integrable on any compact subset of
the region t > T0.
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We apply the Cesàro limit limT →∞ T −1
∫ T

T0
dt on the right hand side of (102). As the

integrand is uniformly bounded by an integrable function of v, we may use the bounded
convergence theorem and apply the limit on the integrand6. We use the fact that the
following ordinary limits exist for every v ∈ R:

lim
t→∞

2t

κvt
sin

[κvt

2t

(

t − t2

t + s

)]
= s, lim

t→∞ vt exp
[ iκvt

2

(

1 +
t

t + s

) ]
= veiκv

(107)

and we obtain

lim
T →∞

1

T

∫ T

T0
dt g(t) =

∫

R

dv iκsveiκv
(

lim
T →∞

1

T

∫ T

T0
dt 〈τt ι�vt�a, b〉

)
. (108)

By almost-everywhere ergodicity Property 1a (along with the uniform bound on
〈τt ι�vt�a, b〉), we have

lim
T →∞

1

T

∫ T

T0
dt 〈τt ι�vt�a, b〉 = 0

a.e. on v ∈ R, and therefore the result vanishes. ��
This is now sufficient in order to obtain the hydrodynamic projection formula (23),

which uses the orthogonal projection P : H0 → Q0. Recall that by Theorem 6.5, Sa,b(κ)

is the continuation to a, b ∈ H0 of the Banach limit of Fourier-transforms of correlation
functions of local observables and their time evolutes, Eq. (91). Recall also that Sa,b(0)
is related to the Drude weights, Sect. 6.1.

Theorem 6.7. Assume that the dynamical system H,V satisfies Property 1. For every
a, b ∈ H0 and κ ∈ R,

Sa,b(κ) = SPa,Pb(κ). (109)

Property 1 is not required for the case κ = 0.

Proof. Lemma 6.6 (which holds trivially for κ = 0 without the need for Property 1)
implies that, for every a, b ∈ V and κ, s ∈ R,

0 = l̃im
t→∞

(〈τta, b〉κ/t − 〈τta, b〉κ/(t+s)
)

= l̃im
t→∞〈τta, b〉κ/t − l̃im

t→∞〈τta, b〉κ/(t+s)

= l̃im
t→∞〈τta, b〉κ/t − l̃im

t→∞〈τt−sa, b〉κ/t

= l̃im
t→∞〈τta, b〉κ/t − l̃im

t→∞〈τta, τsb〉κ/t . (110)

The first line follows from the first bound in (90) and Lemma 6.6; the second from
linearity and the third from shift invariance of the Banach limit; the fourth from the
group property and unitarity of τs , Theorem 5.11. Therefore, by Theorem 6.5, for every
a, b ∈ V0 and s ∈ R,

〈�eul
κ (τ−s − 1)a, b〉0 = 〈�eul

κ a, (τs − 1)b〉0 = 0. (111)

6 The Cesàro limit involves a Lebesgue integral. The limit definition of the Lebesgue integral can also be
applied to the integrand of the v integral by another use of the bounded convergence theorem.
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By density of V0 and continuity of �eul
κ , this extends to a, b ∈ H0. Hence, for every

t, κ ∈ R, we have the inclusions im(τt − 1) ⊂ ker�eul
κ and im�eul

κ ⊂ (im(τt −
1))⊥ = ker(τ−t − 1), the last equality by unitarity. With the orthogonal decompositions
H0 = ker(τ−t − 1) ⊕ im(τt − 1), for every t ∈ R, we conclude that

�eul
κ = P�eul

κ P. (112)

��
As Q0 has at most countable dimensionality, we can choose a basis {qi } for i in

some countable set, with positive-definite, invertible infinite-dimensional matrix Ci j =
〈qi , q j 〉0, and we have

P =
∑

i j

qiCi j 〈q j , ·〉0 (113)

where Ci j is the inverse infinite-dimensional matrix (that is,
∑

k CikCk j = δ
j

i ). We
conclude:

Corollary 6.8. Under the conditions of Theorem 6.7,

Sa,b(κ) =
∑

i jkl

〈a, qi 〉0 Ci j Sq j ,qk (κ)Ckl〈ql , b〉0. (114)

We emphasise that there does not always exist a basis of conserved charges that lies
entirely within the set of local elements V0. See Remark 5.16.

7. Conserved Currents and Linearised Euler Equations

In many-body systems, one often argues that if the sum over all positions of a local
observable vanishes in some sense, “

∑
x∈Z b(x, t) = 0”, then the local observable must

be a “total derivative”, b = ∂a. Here we define the discrete derivative by ∂ = 1 − ι−1,
that is

∂a(x, t) = a(x, t) − a(x − 1, t). (115)

Indeed, one argues that, in this case, the sum specialises to the “boundary terms” at
infinity, which heuristically don’t contribute. We will denote such an element a as a =
∂−1b, and refer to it as the anti-derivative of b.

The precise sense in which the series
∑

x∈Z b(x, t) vanishes can naturally be taken
to be ||b||0 = 0. In this section, we show that indeed, in this case there exists an
anti-derivative ∂−1b with strong enough clustering properties. This has two important
consequences.

First, this gives a characterisation of the set of null elements N0, and thus of the
equivalence classes from which the Hilbert space H0 is constructed. That is, the null
elements are exactly the total derivatives of observables which can be viewed as local,
and thus the Hilbert spaceH0 is the Cauchy completion of the space of “local elements
V up to total derivatives”.

Second, this gives a (small part of) the Noether theorem in this very general con-
text, without the need for Lagrangians or Hamiltonians. Indeed, assume that there is a
generator δ for time translations as in (52). If b = q is a local conserved density, then
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||δq||0 = 0 (see (74)). Hence, δq + ∂j = 0 for the current j = −∂−1δq, and thus there
is a continuity equation (see Remark 5.17): to every local conserved density, there is an
associated continuity equation.

In fact, continuity equations are in turn a powerful tool in order to evaluate correlation
functions. Combined with hydrodynamic projections, they give rise to hydrodynamic
equations.Obtaining the linearisedEuler equations for correlation functions of conserved
densities from our hydrodynamic projection result, Theorem 6.7, is perhaps its most
important application.

The goal of this section is, first to determine precisely the notion of anti-derivative
and when it exists (Sect. 7.1), and the context in which all local conserved densities
have an associated local current (Sect. 7.2); and second, to show that the linearised Euler
equation are obtained from Theorem 6.7, using continuity equations emerging from the
existence of anti-derivatives (Sect. 7.3).

For simplicity, in Sects. 7.2 and 7.3 we assume that the space of local observables V
is stable under time evolution, τt (V) ⊂ V, that is,

V̂ = V. (116)

This can always be achieved by adjoining to V all time-evolutes of local observables;
see Remarks 5.7 and 5.13. In the context of Gibbs states in quantum spin chains, (116)
could also be achieved by taking, instead of the space of local spin-chain operators V
from which V is constructed (Sects. 3 and 8), the space of quasi-local operators [74];
however we will not explicitly use this construction here. Although in quantum spin
chains, under (116), the operators represented by V are no longer supported on finite
numbers of sites, we still refer to V as the space of local observables.

As we will see, the existence of anti-derivatives and of continuity equations require
stronger clustering properties than 1-clustering (used in the previous sections, see Def-
inition 5.4). The strongest conclusions are reached if the dynamical system H,V is
∞-clustering (pc-clustering for pc arbitrarily large). Note that this requirement is satis-
fied in the construction ofH based on Gibbs states in quantum spin chains, as shown in
Sect. 8, because exponential clustering is proven for such states; and thus in this context,
the strongest conclusions apply.

7.1. Anti-derivatives of null elements. In this subsection, for lightness of notation, we
denote ιxa = ax .

Null elements are elements of N0 = {b ∈ V : ||b||0 = 0}: the null subspace of V
under 〈·, ·〉0. This is the space moded out to form H0, see Sect. 5.3. It is convenient
here to extend it by adjoining elements of H that cluster fast enough and that are null
under || · ||0. The main general lemma expresses the fact that every such element must be
expressible has a derivative: it possesses an “anti-derivative” in H. This anti-derivative
can be defined, naturally, as a sum from −∞. In Lemma 7.1 we also extend clustering
properties to anti-derivative, including, and, in Lemma 7.2, extend space-like clustering.
These lemmas do not require the simplifying assumption (116).

Lemma 7.1. Let Nc
0 ⊂ H be the space of “clustering null element”: all b ∈ H such

that (1) the pair (b, b) is p-clustering for some p > 2, (2) for every a ∈ V, the pair
(a, b) is p-clustering for some p > 1, and (3) ||b||0 = 0.
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I. Let b ∈ Nc
0. Its anti-derivative is the unique element ∂−1b ∈ H obtained as a result

of the weak convergence

0∑

y=−z

by ⇀

0∑

y=−∞
by = ∂−1b (z → ∞). (117)

Further, ∂b ∈ Nc
0, and ∂∂−1b = ∂−1∂b = b. In particular, if b = ∂a for some local

element a ∈ V, then ∂−1b = a. Finally, if τtb satisfies Points (1) and (2) of the
definition of Nc

0, then τtb ∈ Nc
0, and

τt∂
−1b = ∂−1τtb. (118)

II. LetC ⊂ H×Nc
0 be a uniformly p-clustering family for p > 1. The family {(a, ∂−1b) :

(a, b) ∈ C} is uniformly (p − 1)-clustering.
III. Let C ⊂ Nc

0 × Nc
0 be a uniformly p-clustering family for p > 2. The family

{(∂−1b, ∂−1b′) : (b, b′) ∈ C} is uniformly (p − 2)-clustering.

Proof. By theRiesz representation theorem, in order to proveweakconvergence,Eq. (117),
to a unique element ∂−1b ∈ H, since V is dense in H, it is sufficient to show that
limz→∞

∑0
y=−z〈by, a〉 exists in C for all a ∈ V, and that ||∑0

y=−z by || is uniformly
bounded for z ∈ N. The former holds by the clustering assumption of the theorem. For
the latter, we use the fact that ||b||0 = 0 in order to write

∣
∣
∣

0∑

y=−z

0∑

y′=−z

〈by, by′ 〉
∣
∣
∣ ≤

∣
∣
∣

0∑

y=−z

−z−1∑

y′=−∞
〈by, by′ 〉

∣
∣
∣ +

∣
∣
∣

0∑

y=−z

∞∑

y′=1

〈by, by′ 〉
∣
∣
∣. (119)

We then use translation invariance as well as the assumed clustering form (44): there
exists c > 0 and p > 2 such that

∣
∣
∣

0∑

y=−z

0∑

y′=−z

〈by, by′ 〉
∣
∣
∣ ≤

∣
∣
∣

0∑

y=−z

−z−1−y∑

y′=−∞
〈b, by′ 〉

∣
∣
∣ +

∣
∣
∣

0∑

y=−z

∞∑

y′=1−y

〈b, by′ 〉
∣
∣
∣

≤
⎛

⎝
−1∑

y′=−∞

min{−z−1−y′,0}∑

y=−z

+
∞∑

y′=1

0∑

y=max{−z,1−y′}

⎞

⎠ c(|y′| + 1)−p

≤
⎛

⎝
−1∑

y′=−∞
+

∞∑

y′=1

⎞

⎠ |y′|c(|y′| + 1)−p < ∞ (120)

where finiteness follows from p > 2. Since the bound is independent of z, it is uniform.
It is clear that bx ∈ Nc

0 for every x ∈ Z, and thus ∂b ∈ Nc
0. By the weak limit

definition (117) of ∂−1 and unitarity of the space translation operator ιx , it is clear that
∂−1bx = (∂−1b)x ∈ H for every x ∈ Z. Further, b−z ⇀ 0 (z → ∞), as V is dense,
by clustering the limit vanishes weakly with respect to V, and b−z has norm uniformly
bounded by ||b||. Therefore,
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∂
(
∂−1b

) = ∂−1(∂b
)

↼ b +
−1∑

y=−z

by −
−1∑

y=−z−1

by = b − b−z−1 ⇀ b (z → ∞).

(121)

Now, assume b = ∂a for a ∈ V. Then, again by telescopic summation and clustering,
we have ∂−1b = a. Finally, it is clear that ||τtb|| = ||b|| = 0, hence if τtb satisfies
Points (1) and (2), then it is in Nc

0. Then, the equality

τt∂
−1b = ∂−1τtb (122)

follows by the weak limit definition (117) of ∂−1 and unitarity of the operator τt . Thus
we have shown Point I.

In order to show the clustering property of the pair (a, ∂−1b), we use again the form
(44). First we let x ≥ 1, and find that there exist c > 0 and p > 1 such that

|〈ax , ∂
−1b〉| =

∣
∣
∣

0∑

y=−∞
〈ax , by〉

∣
∣
∣ ≤

0∑

y=−∞
c(x − y + 1)−p ≤

∫ 1

−∞
dy c(x − y + 1)−p

= c

p − 1
x−p+1. (123)

As x ≥ 1 and p > 1, we have x−p+1 ≤ 2p−1(x + 1)−p+1. Second, we let x ≤ 0 and use
||b||0 = 0, and find that there exist c > 0 and p > 1 such that

|〈ax , ∂
−1b〉| =

∣
∣
∣

∞∑

y=1

〈ax , by〉
∣
∣
∣ ≤

∞∑

y=1

c(y − x + 1)−p ≤
∫ ∞

0
dy c(y − x + 1)−p

= c

p − 1
(|x | + 1)−p+1. (124)

Therefore, the clustering form (44) holds with the new coefficient c′ = 2p−1c/(p − 1)
and the exponent p′ = p − 1. Hence (a, ∂−1b) is (p − 1)-clustering, and Point II
holds. Further, the explicit formulae for the power p′ and the coefficient c′ make the
corresponding uniform clustering statement clear.

In order to show the clustering property of (∂−1b, ∂−1b′), note that the quantity
〈∂−1bx , ∂

−1b′〉 can be evaluated, by weak convergence, as the converging double series

〈∂−1bx , ∂
−1b′〉 =

x∑

y=−∞
〈by, ∂

−1b′〉 = −
∞∑

y=x+1

〈by, ∂
−1b′〉

= − lim
z→∞

z∑

y=x+1

0∑

y′=−∞
〈by, b

′
y′ 〉 (125)

where the second equality holds as ||b||0 = 0. Let us assume x ≥ 1. Using the clustering
form (44) with p > 2, this is bounded, again by bounding sums by integrals, as

|〈∂−1bx , ∂
−1b′〉| ≤ lim

z→∞

z∑

y=x+1

0∑

y′=−∞
c(y − y′ + 1)−p ≤

∞∑

y=x+1

c

p − 1
y−p+1
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≤ c

(p − 1)(p − 2)
x−p+2. (126)

Further, as x ≥ 1 and p ≥ 2, we have x−p+2 ≤ 2p−2(x + 1)−p+2. By a similar set of
arguments, we have

〈∂−1bx , ∂
−1b′〉 = − lim

z→∞

z∑

y′=1

x∑

y=−∞
〈by, b

′
y′ 〉 (127)

which, for x ≤ 0, is bounded as

|〈∂−1bx , ∂
−1b′〉| ≤ lim

z→∞

z∑

y′=1

x∑

y=−∞
c(y′ − y + 1)−p ≤

∞∑

y′=1

c

p − 1
(y′ − x)−p+1

≤ c

(p − 1)(p − 2)
|x |−p+2 (128)

and again we may use |x |−p+2 ≤ 2p−2(|x |+1)−p+2. As a result, Point III holds, with the
clustering form (44) with the new coefficient c′ = 2p−2c/((p−1)(p−2)) and exponent
p′ = p − 2. Again, the explicit formulae make the corresponding uniform clustering
statement clear. ��
Lemma 7.2. Assume that the dynamical system H,V is space-like 2-clustering with
velocity vc > 0. Let a ∈ V and b, b′ ∈ N0 ⊂ Nc

0. There exists p > pc, 0 < V < vc and
c > 0 such that

|〈ι�x�τxv−1a, ∂−1b〉| ≤ c(|�x�| + 1)−p, |〈ι�x�τxv−1∂−1b, ∂−1b′〉|
≤ c(|�x�| + 1)−p ∀ |v| ≥ V, x ∈ R. (129)

Proof. We use the bound (86). This implies, in particular, that if y, z ∈ Z, x ∈ R and
ε ∈ [0, 1), with z + ε ≥ x > 0, y ≤ 0, then

|〈τxv−1az, by〉| = |〈τxv−1az−y, b〉|
= |〈τ(z−y+ε)( x

z−y+ε
)v−1az−y, b〉|

≤ c(z − y + 1)−p ∀ |v| ≥ V (130)

and if y, z ∈ Z, x ∈ R and ε ∈ [0, 1), with z + ε ≤ x ≤ 0, y > 0, then

|〈τxv−1az, ιyb〉| ≤ c(y − z + 1)−p ∀ |v| ≥ V (131)

with similar inequalities involving b, b′ instead of a, b. We make the same arguments as
those made around Eqs. (123)–(128), but replacing, in (123) and (124), a by τ(x+ε)v−1a,
and in (125)–(128), b by τ(x+ε)v−1b, for any ε ∈ [0, 1) (representing the fractional part
of x in (129)). Thanks to pc-clustering, τtb, τtb

′ ∈ Nc
0 for any t ∈ R, hence by Lemma

7.1.I the arguments can be applied under these replacements. The same bounds hold
thanks to (130) and (131), and (129) is obtained. ��
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7.2. Continuity equations. In this subsection we assume that the space of local observ-
ables include all time-evolutes, so that Eq. (116) holds, V̂ = V. Recall that this may be
done simply by augmenting the space appropriately, Remark 5.7. It is important to point
out that the stronger continuous and differentiable clustering properties of Definition
5.8, that may be true with respect toH,V (before augmentation), are not automatically
carried through to H, V̂. However, in the particular case of quantum spin chains, we
show in Sect. 8 both differentiable clustering with respect toH,V (where V represents
the space of operators supported on a finite number of sites), and with respect to H, V̂.

The existence of anti-derivatives of null elements shown in Lemma 7.1 implies the
existence of appropriate continuity equations. The simplest and most general form is
as follows. Let q ∈ H be such that its discrete time derivative (τt − 1)q, for some
given t ∈ R, is a clustering null element, as per the definition in Lemma 7.1. Then
j(t) = ∂−1

(
(τt − 1)q

) ∈ H is such that

(τt − 1)q + (1 − ι−1)j
(t) = 0 (132)

in H (here we have written explicitly the discrete space derivative ∂ = 1 − ι−1 for
symmetry of the equation). That is, a discrete continuity equation exists in H. If τ is
strongly continuous, q lies inV (which is in the domain of the generator δ, see Sect. 5.2),
and δq is a clustering null element, then we may set j = −∂−1δq ∈ H such that

δq + ∂j = 0. (133)

Note that by Theorem 5.14, if in fact τt is differentiably clustering (Definition 5.8), the
element q is a conserved density, as the corresponding equivalence class [q]0 ∈ H0 is
a conserved charge, [q]0 ∈ Q0. That is, we have a continuous-time continuity equation
for every local conserved density with appropriate clustering property.

The above discussion hides one subtlety: even if q ∈ V, the currents lie inH, but not
necessarily in V. Consider the second case discussed above, with Eq. (133). In general,
even if q is a local conserved density as defined in Eq. (73), it is not guaranteed that
δq is the discrete derivative of a local element; Theorem 7.1 is a formal construction of
∂−1δq as a weakly converging limit inH, and does not require it to be local. Of course, it
may be that, from explicit calculations in a quantum chain for instance, δq is manifestly
the discrete derivative of a local element, δq = ∂a for some a ∈ V, in which case (by
Theorem 7.1.I) j = ∂−1δq = −a is local. However this is not guaranteed. Therefore, a
priori, it is not clear how to construct elements of the Hilbert space H0 associated with
∂−1δq: the construction of this Hilbert space is based on the local observables V, since it
is the completion of the space of equivalence classes V0 = V/N0. As our main theorems
in Sects. 5 and 6 for the dynamical system H,V necessitate the Hilbert space H0, in
order to express continuity equations in the most useful fashion, we need to solve this
problem.

One can further see the difficulty by the fact that if b ∈ V is a null element, ||b||0 = 0,
then it is not possible to directly construct inH0 its anti-derivative [∂−1b]0. Indeed, the
definition (117) does not make sense if interpreted in H0, as it involves an infinite sum
over space-translates, while space-translation acts trivially in H0 (thus this would be
multiplication by infinity); and the element to which b maps inH0, the equivalence class
[b]0, is the zero elementN0 (that is, b ≡ 0 inH0). It is of course this combination of zero
times infinity that gives, in the right construction, a nontrivial element of a new space
H0.
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We simply need to choose an adequate space of local observables V ⊂ H in which
lie all anti-derivatives of null elements. This is done by (possibly) enlarging our initial
choice of V so as to include anti-derivatives. We emphasise again that this gives rise to
a non-trivial change of the resulting Hilbert space H0.

Assume that the dynamical systemH,V is 3-clustering (Definition 5.4). As V̂ = V,
this simply says that each pair of elements in V is p-clustering for some p > 3. Then
N0 ⊂ Nc

0: every null element b ∈ N0 is a clustering null element, as per the definition
in Lemma 7.1. Let us adjoin all anti-derivatives of such elements that are not already in
V: we enlarge V to V+ = V ∪ span{∂−1b : b ∈ N0} ⊂ H. Then, it is clear that H,V+

is a new dynamical system according to the discussion in Sect. 4.1. In fact, by Lemma
7.1, this dynamical system retains all of the properties of H,V, except for a weaker
clustering.

Lemma 7.3. Assume V̂ = V, and let the dynamical system H,V be pc-clustering for
some pc ≥ 3. Let V+ = V ∪ span{∂−1b : b ∈ N0}. Then the dynamical system H,V+ is
(pc − 2)-clustering, and V̂+ = V+. If τ is continuously (differentiably) clustering with
respect to H,V, then it also is with respect to H,V+. If H,V is space-like pc-clustering
with velocity vc, then H,V+ is space-like (pc − 2)-clustering with velocity vc.

Proof. As mentioned, direct consequence of Lemma 7.1 is that N0 ⊂ Nc
0 (thus the defi-

nition of V+ makes sense), and that the dynamical systemH,V+ is (pc − 2)-clustering.
Further, thanks to Lemma 7.2, the conclusion about space-like clustering also holds. As-
sume (116). Then V+ is also stable under time evolution, V̂+ = V+. Indeed, if ||b||0 = 0
(b ∈ V), then ||τtb||0 = 0 for all t ∈ R, and thus ∂−1τtb ∈ V+ exists. Further, any
element in V̂+/V+ must be of the form

τt∂
−1b + V+ = ∂−1τtb + V+ = V+, b ∈ V (134)

where we used (118). Thus there are no elements in V̂+ that are not in V+. Further, if the
finer clustering properties of Definition 5.8 hold for the dynamical system H,V, then
they hold forH,V+. Indeed suppose τ is continuously clustering with respect toH,V.
Any element inV+ that has been adjoined toV is of the form ∂−1b for some b ∈ N0.By the
uniformity statement of Lemma7.1, Point II, and the assumption of pc-clustering, for any
a ∈ V, b ∈ N0, the family {(a, ∂−1(τtb)) : t ∈ [−ε, ε]} = {(a, τt∂

−1b) : t ∈ [−ε, ε]}
is uniformly p-clustering for p > pc − 1, and by Point III, for any b ∈ N0, b′ ∈ N0, the
family {(∂−1b, ∂−1(τtb

′)) : t ∈ [−ε, ε]} = {(∂−1b, τt∂
−1b′) : t ∈ [−ε, ε]} is uniformly

p-clustering for p > pc − 2. Thus τ is continuously clustering with respect to the
new dynamical system H,V+. Similar arguments hold, with strong continuity, for the
families involving ∂−1

(
t−1(τt − 1)b

)
and ∂−1

(
t−2(τt + τ−t − 2)b

)
. ��

Clearly, in V+ there may be new elements with zero norm; that is, N+
0 = {b ∈ V+ :

||b||0 = 0} may be larger than N0 = {b ∈ V : ||b||0 = 0}. However, if the system
is pc-clustering for pc large enough, we may repeat the process. Either after a finite
number of steps stability is reached, or an infinite number of steps must be executed.
In both cases, the result is a space that contains all its anti-derivatives. Therefore, under
∞-clustering, it is always possible to enlarge the space of local observables in order to
ensure that all anti-derivatives are present. This shows the following theorem.

Theorem 7.4. Assume V̂ = V. If the dynamical system H,V is ∞-clustering, then it is
possible to enlarge V to a new space V# ⊂ H such that

I. H,V# is ∞-clustering;
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II. V̂# = V# (that is, τt (V
#) ⊂ V# for all t ∈ R);

III. if b ∈ V# and ||b||0 = 0, then ∂−1b ∈ V#;
IV. if τ is continuously (differentiably) clustering with respect to H,V, then it also is

with respect to H,V#; and
V. if H,V is space-like ∞-clustering with velocity vc, then so is H,V#.

With this enlargement, we then have a discrete-time continuity equation for all local
conserved densities – those that lie within V# –, and all currents are local. With differ-
entiable clustering, then the more usual continuous-time continuity equation holds. This
is expressed in the following theorem.

Points II and III of Theorem 7.4 have interesting consequences, thus it is useful, first,
to give a name for any dynamical systemH,V# that satisfies them.

Definition 7.5. If a dynamical systemH,V# is 3-clustering, and is such thatV# satisfies
Points II and III of Theorem 7.4 (that is, the space of local observables V# contains all
time-evolutes and all anti-derivatives), we say that it is complete.

Theorem 7.6. Assume that the dynamical system H,V is complete (Definition 7.5). Let
q ∈ Qloc be a local conserved density (Eq. 73). Then for every t ∈ R, a discrete-time
continuity equation holds

(τt − 1)q + (1 − ι−1)j
(t) = 0 (135)

with local “time-integrated current”

j(t) = −∂−1((τt − 1)q
) ∈ V. (136)

If τ is differentiably clustering (Definition 5.8), with generator δ (Eq. 52), then there
is a continuous-time continuity equation (recall that ∂ = 1 − ι−1 is the discrete space
derivative)

δq + ∂j = 0 (137)

with local current

j = −∂−1δq ∈ V. (138)

In this case,

j(t) =
∫ t

0
ds τsj (139)

where the integral exists in H.

Proof. The first part, Eq. (135), follows from Lemma 7.1 with Definition 7.5. The
second part, Eq. (137), follows further from Theorem 5.11.IV, which shows that for
q̌ = [q]0 ∈ Qloc

0 , we have 0 = dτt q̌/dt |t=0 = δq̌ = [δq]0, implying ||δq||0 = 0. Finally,
thanks to differentiability of τsδq as a function of s, we have (τt − 1)δq = ∫ t

0 ds τsδq.
Therefore, for all ε > 0 we have

∫ t

0
ds τsj = −

∫ t

0
ds τs∂

−1δq = −
∫ t

0
ds ∂−1τsδq
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by (118). As ||∂−1τsδq|| = ||∂−1δq|| is uniformly bounded on s, by the bounded con-
vergence theorem, the weak limit defining ∂−1 and the s-integral can be exchanged,

∫ t

0
ds τsj = −∂−1

∫ t

0
ds τsδq = −∂−1(τt − 1)δq.

This shows Eq. (139). ��
The relation between j(t) and j can also be expressed as follows:

Lemma 7.7. In the context of Theorem 7.6, if τ is differentiably clustering, then (139)
holds as an equality in H0, and

lim
t→0

t−1j(t) = j in H0 (that is, with respect to the metric induced by || · ||0). (140)

See Eqs. (136) and (138).

Proof. On H, we have

j(t) =
∫ t

0
ds τsj = lim

ε↘0

∫ t

0
ds τ�s�εj (141)

where we recall that �y�ε is the “ε-part” of y, Eq. (104). Noting that for every ε > 0
the integral is a finite sum of elements in V, we use linearity of the quotient map [·]0, as
well as Eq. (70), in order to obtain the equality in H0, with τ�s�ε acting on H0. Strong
continuity of τt on H0 (Theorem 5.11.III) then implies that the limit on ε can be taken
and gives the integral

∫ t
0 ds τsj onH0 (Eq. (139) onH0). As the integrand is continuous,

the result is differentiable in t , and we obtain (140). ��

7.3. Two-point functions of conserved densities. The most important application of the
continuity equations, for our purposes, is to obtain the Euler-scale hydrodynamic equa-
tion for two-point functions of local conserved densities qi ∈ Q(loc) (the linearised Euler
equation).

First, let us review the standard formulation. By linear response arguments, two-point
correlation functions of conserved densities are argued to satisfy a dynamical equation
at large scales. Consider a state ω(·) (see Sects. 3 and 8). Then this takes the form

∂

∂t
ω

(
qi (x, t)b(0, 0)

)
+

∑

j

A j
i

∂

∂x
ω

(
q j (x, t)b(0, 0)

) = 0 (142)

for arbitrary local observable b, where the flux Jacobian is

A j
i =

∑

k

〈ji , qk〉0Ck j . (143)

The quantities qi are local conserved densities, representing the “slow modes” of the
system. In the sum in (143), they are to be identified with a basis of Q0. For the static
covariance matrix Ci j and its inverse Ci j , see the discussion around (113).

Equation (142) can be argued for as follows. The continuity equations for local
conserved densities give a similar equation where the second term in (142) is, instead,
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∂
∂x ω

(
ji (x, t)b(0, 0)

)
, with ji the current associated to qi . By linear response, one inter-

prets the insertion of ji via a small variation of the state. One evaluates how this insertion
affects the state by assuming that ω(· · · ) is completely characterised by one-point aver-
ages ω(q j ). Under this assumption, one obtains (142), with

A j
i = ∂ω(ji )

∂ω(q j )
. (144)

One-point averages of conserved densities characterise the state, as they determine the
Lagrange parameters β i , or thermodynamic potentials, that in turn determine the state

in the usual Gibbs form, Tr(e−∑
i,x βiqi (x,0) · · · )/Tr(e−∑

i,x βiqi (x,0)). Derivatives with
respect to Lagrange parameters give integrated two-point functions7:

∂ω(a)

∂β i
= 〈qi , a〉0. (145)

Using the chain rule, one gets (143). See e.g. [1,17].
Equations (142) and (143), as presented here, are heuristic, and establishing these

in a rigorous fashion is nontrivial. In particular, they are only expected to hold in some
sense, after appropriate fluid-cell averaging, at large space and time separations.

In this subsection, we show rigorously a version of Eq. (142), for the Fourier trans-
forms of correlation functions at large wavelength and large time: we prove the Euler
equation for Sqi ,q j (κ), where qi , q j are local conserved densities,

dSqi ,q j (κ)

dκ
= i

∑

k

A k
i Sqk ,q j (κ). (146)

The proof relies entirely on hydrodynamic projections, and does not require the lin-
ear response idea. Noticeably, the emergence of an Euler equation, which involves the
derivative in κ , does not require the time evolution to be strongly continuous (hence
differentiable): uniform enough properties of clustering are sufficient. Even without
microscopic differentiability of the time evolution, at large scales, differentiability is
recovered.

Slightly stronger results can be obtained if we assume the existence of a local basis
for the space of conserved charges Q0 (see the discussion around (73)); that is, if Qloc

0
is dense in Q0. In this case, we may replace q j above with any element of H0, by
hydrodynamic projection and basis decomposition. Thus for this result we will appeal
to this property:

Property 2. Qloc
0 is dense inQ0. That is, there exists a countable basis of local conserved

charges {[qi ]0} ⊂ Qloc
0 for the space of conserved charges Q0, with associated local

densities {qi } ⊂ Qloc.

7 Here, using the inner products (6) and (15), we must assume all total charges Qi = ∑
x qi (x, 0) to

commute with the density matrix. If this is not the case, the present argument would lead to the Kubo-Mori-
Bogoliubov inner product instead. Our general theory is insensitive to the choice of the inner product, as long as
all basic properties are satisfied. Importantly, in finite-range quantum spin chains, the linearised Euler equation
is rigorously proven below with the chosen inner products (6) and (15), without the condition that the Qi s
commute with the density matrix, even though the naïve linear-response argument fails in this case. Intuitively,
in the linear-response argument, one would have to define abstract deformation directions βi associated to
〈qi , a〉0.
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If the space of local observables V is taken to be large enough, then this is expected
to hold in most systems. For instance, in non-integrable systems, where only a finite
number of local conserved charges exist, this would be immediate – although proving
that a system admits only a finite number of conserved charges is a nontrivial task. In
integrable systems, one may include all quasi-local observables within the space V, and
quasi-local charges are expected to form a basis for Q0. A full proof, however, would
need much further analysis.

Establishing (146) is one step towards the exact Euler-scale correlation function. If
the space of conserved charges is finite dimensional, as expected in most non-integrable
models, then one can solve (146) easily. However, in the infinite-dimensional case,
further analysis is required. If Property 2 holds, then a solution is the action, onC, of the
strongly continuous one-parameter group generated by the (not necessarily bounded)
operator A, whose domain includes the dense subspace Qloc

0 ⊂ Q0; formally

S(κ) = eiκAC. (147)

This solution, though, is not necessarily unique.
The first set of results, Lemmas 7.8, 7.9 and 7.10, are technical results concerning

continuity of the Euler-scale correlation function Sa,b(·). The second set, Theorem 7.11,
is our main theorem concerning the existence of a linearised Euler equation.

Lemma 7.8. Assume that the dynamical system H,V is complete (Definition 7.5), and
that τ is continuously clustering (Definition 5.8). Let q ∈ Qloc. For every b ∈ V,
ε > 0, κ ∈ R and η > −1, and every bounded functions t ∈ R �→ at ∈ [−a, a] and
t ∈ R �→ bt ∈ [−b, b] (a, b > 0), we have the following bounds (for both signs):

lim sup
t→±∞

|〈τt (τηt+bt − τat )q, b〉κ/t | ≤ ε−1|κη| ||j(ε)||0 ||b||0 (148)

and

lim sup
t→±∞

|〈τtq, b〉κ/t − 〈τtq, b〉0| ≤ ε−1|κ| ||j(ε)||0 ||b||0 (149)

where j(ε) is the current associated to q as per (136).

Proof. We note that the reverse-time dynamical systemH,V, τ̃ , ι, with τ̃ = τ−1, satis-
fies the same properties as H,V, τ, ι. Hence if (148) and (149) hold for one sign, then
they hold for both. Thus, without loss of generality we take t > 0.

Using

lim sup
t→∞

|〈τt (τηt+bt − τat )q, b〉κ/t | = lim sup
t→∞

|〈τ(1+η)t (τ−ηt+at − τbt )q, b〉κ/t |
= lim sup

t→∞
|〈τt (τ− η

1+η
t+at/(1+η)

− τbt/(1+η)
)q, b〉κ(1+η)/t |

we also assume η > 0 without loss of generality.
We have

〈τt (τηt+bt − τat )q, b〉κ/t = −
∑

x∈Z
eiκx/t 〈τt ιx∂(j(tη+bt ) − j(at )), b〉

=
(
eiκ/t − 1

) ∑

x∈Z
eiκx/t 〈τt ιx (j

(tη+bt ) − j(at )), b〉 (150)
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where we used the continuity equation (135) of Theorem 7.6. In the last step we used
“summation by parts”: the fact that if (a, b) is p-clustering for p > 1, the following
telescopic sum vanishes,

∑

x∈Z

(
eiκ(x+1)/t − eiκx/t

)
〈ιxa, b〉 +

∑

x∈Z
eiκx/t 〈ιx∂a, b〉 = 0. (151)

Let ε > 0. We have the finite-sum representation

j(tη+bt ) − j(at ) =
�η�ε/t −ε/t∑

s=0
�s=ε/t

τts j (ε) + τ�tη�εj
({tη}ε ) + τtηj

(bt ) − j(at )

= t
∫ η

0
ds τ�ts�εjε + c, jε = ε−1j(ε) (152)

which holds by telescopic summation from the definition (136), linearity of ∂−1 and the
relation (118). Here, we use the notation (104), as well as {x}ε = x − �x�ε , and we
define

c = τ�tη�εj
({tη}ε ) − {tη}ετ�tη�εjε + τtηj

(bt ) − j(at ). (153)

Continuing, we obtain, from (150),

〈τt (τηt − τat )q, b〉κ/t = t
(
eiκ/t − 1

)
∫ η

0
ds 〈τt+�ts�εjε, b〉κ/t +

(
eiκ/t − 1

)〈τt c, b〉κ/t .

(154)

We bound the factor in the second term on the right-hand side as

|〈τt c, b〉κ/t | ≤ ||c||κ/t ||b||κ/t

≤ (||j({tη}ε )||κ/t + ε||jε ||κ/t + ||j(bt )||κ/t + ||j(at )||κ/t
) ||b||κ/t .

By continuous clustering, Definition 5.8, it is clear that the family of pairs ( (τt −
1)q, (τt − 1)q ) : t ∈ I is uniformly p-clustering for some p > 3 for any compact
subset I ⊂ R. Therefore, by the uniform clustering statement of Lemma 7.1.III, the
family ( j(t), j(t) ) : t ∈ I is uniformly (p − 2)-clustering. Hence, with an argument
as in Lemma 5.6, the quantities ||j({tη}ε )||κ/t , ||j(at )||κ/t and ||j(bt )||κ/t are all bounded
on t ∈ R (as {tη}ε ∈ [0, ε], at ∈ [−a, a] and bt ∈ [−b, b] lie in compact subsets).
Further, by Lemma 5.6, both ||jε ||κ/t and ||b||κ/t are also bounded for t ∈ R. Therefore,
lim supt→∞ |〈τt c, b〉κ/t | < ∞, and thus the usual limit can be taken on the prefactor(
eiκ/t − 1

)
in the second term in (154), giving 0:

lim sup
t→∞

∣
∣
∣
(
eiκ/t − 1

)〈τt c, b〉κ/t

∣
∣
∣ = 0. (155)

Thus,

lim sup
t→∞

∣
∣〈τt (τηt − τat )q, b〉κ/t

∣
∣ = lim sup

t→∞

∣
∣
∣t

(
eiκ/t − 1

)
∫ η

0
ds 〈τt+�ts�εjε, b〉κ/t

∣
∣
∣.

(156)
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Thanks to the bound
∣
∣
∣

∫ η

0
ds 〈τt+�ts�εj, b〉κ/t

∣
∣
∣ ≤

∫ η

0
ds ||jε ||κ/t ||b||κ/t = η ||jε ||κ/t ||b||κ/t , (157)

as well as Lemma 5.6, the supremum limit can be bounded in (156). Taking the ordinary
limit on the pre-factor, this gives

lim sup
t→∞

∣
∣〈τt (τηt − τat )q, b〉κ/t

∣
∣ ≤ |κ| η ||jε ||0 ||b||0. (158)

This shows (148).
Equation (149) is shown similarly. Again we may restrict to t > 0. We write

lim sup
t→∞

|〈τtq, b〉κ/t − 〈τtq, b〉0| = lim sup
t→∞

|〈(τt − 1)q, b〉κ/t − 〈(τt − 1)q, b〉0|
(159)

using Lemma 5.6, which implies limt→∞〈q, b〉κ/t = 〈q, b〉0. Further,

〈(τt − 1)q, b〉κ/t − 〈(τt − 1)q, b〉0 = −
∑

x∈Z

(
eiκx/t − 1

)
〈ιx∂j(t), b〉

=
(
eiκ/t − 1

) ∑

x∈Z
eiκx/t 〈ιxj(t), b〉

= t
(
eiκ/t − 1

)
∫ 1

0
ds 〈τ�ts�εjε, b〉κ/t +

(
eiκ/t − 1

)〈c, b〉κ/t

where c is (153) with bt = at = 0 and η = 1. With the bounds on c made above, the
result (149) follows. ��
Lemma 7.9. In the context of Lemma 7.8, for every b ∈ H0, the functions Sq,b(·) and
Sb,q(·) are Lipschitz continuous on R.

Proof. Let κ ∈ R, u > 0, and b ∈ V. We write

Sq,b(uκ) − Sq,b(κ) = l̃im
t→∞

(〈τtq, b〉uκ/t − 〈τtq, b〉κ/t
)

= l̃im
t→∞〈τt (τt (u−1) − 1)q, b〉κ/t (160)

where we used linearity and invariance of the Banach limit under scale transformations.
Therefore, by (90) and (148) (with at = bt = 0), we have

|Sq,b(uκ) − Sq,b(κ)| ≤ ε−1|κ| |u − 1| ||j(ε)||0 ||b||0 (161)

and thus Lipschitz continuity for Sq,b(·) on R\{0}. Further, by (149), we have
|Sq,b(κ) − Sq,b(0)| ≤ ε−1|κ| ||j(ε)||0 ||b||0, (162)

thus Lipschitz continuity for Sq,b(·) at 0.
As the Lipschitz bound is controlled by ||b||0, and Sq,b(κ) can be extended by conti-

nuity to b ∈ H0 by Theorem 6.5, so can Lipschitz continuity. The same result applies as
well to the reverse-time Euler-scale correlation function S̃q,b(κ). By definition we have
Sb,q(κ) = S̃q,b(κ)∗, which shows Lipschitz continuity for Sb,q(·). ��
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Lemma 7.10. In the context of Lemma 7.8, if Properties 1 and 2 hold, for every a, b ∈
H0, the function Sa,b(·) is continuous on R.

Proof. Since Property 1 is assumed, the main projection theorem holds, and in particular
its Corollary 6.8. Thus we have

Sa,b(κ) =
∑

j

c j Sq j ,b(κ), c j =
∑

i

〈a, qi 〉0 Ci j . (163)

Since
∑

j c jq j converges inH0 and the family {Sa,b(κ) : κ ∈ R} isH0-equicontinuous
(Theorem 6.5), for every η > 0 there exists N ∈ N such that for all κ ∈ R,

∣
∣
∣Sa,b(κ) −

N∑

j=1

c j Sq j ,b(κ)

∣
∣
∣ ≤ η (164)

(assuming without loss of generality that the index set for q j is j ∈ N). Therefore, using
(161),

|Sa,b(uκ) − Sa,b(κ)| ≤ 2η + |κ| |u − 1|
N∑

i=1

ciε−1||j(ε)
i ||0 ||b||0. (165)

For every η > 0 and N ∈ N, there exists a neighbourhood X of 0 such that for all
κ (u − 1) ∈ X , we have |κ| |u − 1| ∑N

i=1 ciε−1||j(ε)
i ||0 ||b||0 < η. Hence, for every

η > 0, there exists a neighbourhood X of 0 such that for all κ (u − 1) ∈ X ,

|Sa,b(uκ) − Sa,b(κ)| < 3η. (166)

This shows continuity. ��
Theorem 7.11. Assume that the dynamical system H,V is complete (Definition 7.5),
and that τ is continuously clustering (Definition 5.8).

For every local conserved densities q, q′ ∈ Qloc, the function Sq,q′(·) is continuously
differentiable on R, and its derivative is

dSq,q′(κ)

dκ
= iSk,q′(κ). (167)

where we may take

k =
{

ε−1j(ε) as per Eq. (136), for any ε > 0, or
j as per Eq. (138), if τ is differentiably clustering.

(168)

If Property 1 holds, then

dSq,q′(κ)

dκ
= i

∑

i

Ai Sqi ,q′(κ), Ai =
∑

j

〈k, q j 〉0C j i (169)

where {qi } forms a basis for Q0. If in addition Property 2 holds, then for every b ∈ H0,

dSq,b(κ)

dκ
= iSk,b(κ) = i

∑

i

Ai Sqi ,b(κ). (170)

If, further, the space of conserved charges Q0 is finite dimensional, then

Sqi ,b(κ) =
∑

j

(
eiκA

) j
i 〈q j , b〉0, A j

i =
∑

k

〈ki , qk〉0Ck j . (171)
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Proof. We consider κ ∈ R and u > 0. We may use (160) along with (154) (with at = 1)
from Lemma 7.8. As the second term in (154) has vanishing supremum limit at t → ∞,
Eq. (155), and as the factor multiplying the integral in the first term of (154) has the
finite limit iκ as t → ∞, by the bound (90) we find

Sq,q′(uκ) − Sq,q′(κ) = iκ l̃im
t→∞

∫ u−1

0
ds 〈τt+�ts�εjε, q

′〉κ/t . (172)

We would like to apply the Banach limit on the integrand, in order to extract the
Euler-scale correlation function. If the Banach limit were in fact an ordinary limit, or a
Cesàro limit of any finite order, then we could use the bounded convergence theorem,
as the integrand is bounded. However, the bounded convergence theorem does not hold
for Banach limits in general. It is possible to show, instead, that one can interchange
the Banach limit and the integral if the integrand is, in addition, continuous, or at least
has appropriate continuity properties asymptotically as t → ∞. Thanks to Lemma 7.8,
using the fact that q′ is a local conserved density, this is the case here. We provide the
explicit steps using Lemma 7.8 for the precise situation at hand; the general statement
about exchanging integrals and Banach limits under continuity requirements may be
obtained similarly.

For the derivation below, let us define:η = |u−1|/n for somen ∈ N,γ = −{s−1}η/s
and as,t = −{ts}ε , with |γ | ≤ η/s (note that s > 0 in the third step and onwards) and
|as,t | ≤ ε. Then we write

∣
∣
∣ l̃im

t→∞
( ∫ u−1

0
ds 〈τt+�ts�εjε, q

′〉κ/t −
∫ u−1

0
ds 〈τt+t�s�ηjε, q

′〉κ/t

)∣
∣
∣

≤
∫ u−1

0
ds lim sup

t→∞

∣
∣
∣〈τt+�ts�εjε, q

′〉κ/t − 〈τt+t�s�ηtjε, q
′〉κ/t

∣
∣
∣

=
∫ u−1

0
ds lim sup

t→∞

∣
∣
∣〈τt+ts(τ−t{s}η − τas,t )jε, q

′〉κ/t

∣
∣
∣

=
∫ u

1
ds lim sup

t→∞

∣
∣
∣〈τt (τγ t − τas−1,t/s )jε, q

′〉κs/t

∣
∣
∣

=
∫ u

1
ds lim sup

t→−∞

∣
∣
∣〈τt (τγ t − τ−as−1,−t/s )q

′, jε〉−κs/t

∣
∣
∣

≤ |κ| ||jε || ||j′
ε ||

∫ u

1
ds s|γ |

→ 0 (n → ∞). (173)

In the first step we used (90), in the third step we changed variables s �→ s − 1 then
t �→ t/s, in the fourth step we took the complex conjugate of the inner product and used
unitarity of time evolution, and in the fifth step we used Lemma 7.8. For every n > 0, the
second integral on the left-hand side of the first step of (173) is a finite sum of n terms.
Hence on this, the Banach limit can be applied to the integrand, by linearity. Thus,

l̃im
t→∞

∫ u−1

0
ds 〈τt+t�s�ηjε, q

′〉κ/t =
∫ u−1

0
ds l̃im

t→∞〈τt+t�s�ηjε, q
′〉κ/t

=
∫ u−1

0
ds Sjε ,q′(κ(1 + �s�η))
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→
∫ u

1
ds Sjε ,q′(κs) (n → ∞) (174)

where in the last step, we used continuity from Lemma 7.9. Therefore, combining (173)
with (174),

l̃im
t→∞

∫ u−1

0
ds 〈τt+�ts�εjε, q

′〉κ/t =
∫ u

1
ds Sjε ,q′(κs). (175)

With (172), we then find

Sq,q′(uκ) − Sq,q′(κ) = iκ
∫ u

1
ds Sjε ,q′(κs). (176)

For every κ �= 0, we change variable to obtain

Sq,q′(κ2) − Sq,q′(κ1) = i
∫ κ2

κ1

ds Sjε ,q′(s) (177)

where κ2 = uκ and κ1 = κ . As u > 0, this holds whenever κ1κ2 > 0. By Lemma 7.9
(continuity at 0), we may take the limit κ1 → 0 from above or below, and the same
formula holds. Therefore, (177) holds for all κ1, κ2 ∈ R.

By Lemma 7.9, the integrand in (177) is continuous. This shows continuous differ-
entiability, and Eq. (167) for the first choice of k in (168). By Lemma 7.7 and Theorem
6.5, the second choice of j can be taken if τ is differentiably clustering. By Corollary
6.8 of Theorem 6.7, if Property 1 holds then we have Eq. (169). If in addition Property 2
holds, then in (177) wemay take anyH0 convergent series on q′, and we obtain Eq. (177)
for arbitrary q′ ∈ Q0; in particular on the right-hand side the equicontinuity statement
of Theorem 6.5 allows us to use the bounded convergence theorem. We obtain (170)
by using the hydrodynamic projection formula (109) from Theorem 6.7. If the basis is
finite dimensional, the solution to (169) is (171), using Sqi ,b(0) = 〈qi , b〉0. ��

8. Proofs for Quantum Spin Chains

In this section we prove the main Theorems 3.1, 3.2 and 3.3 for quantum spin chains
with finite-range interactions. For this purpose, we now show that all requirements of
Sects. 4.1, 5.1, 5.2 and 6.2 are satisfied in theC∗-algebra formulation (Sects. 2.1 and 3.1).
That is, we show space-like pc-clustering (Definition 6.2), and differentiable clustering
(Definition 5.8), including strong continuity of the time evolution group on H0 with
Eq. (54). We show that this holds both if we identify the set of local observables V with
the set of all finitely-supported operators as in Sect. 3.1, and also if we identify V with
all finitely-supported operators along with all their time-evolutes (that is, with the choice
V = V̂).

Below we fix b, d, vLR as per Theorem 2.1.

8.1. Quantum chain systems and sizeable clustering. Consider the sesquilinear form (6)
and the construction of V andH from the state ω and the algebra of local operatorsV in
Sect. 3.1. When confusion may arise, for a ∈ V we will denote [a] ∈ V the associated
equivalence class. Note that in quantum spin chains, τ is strongly continuous; Eq. (52)
holds with δ induced from δU by (6); Eq. (54) holds; 〈τta, b〉 is analytic in t in a
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neighbourhood of 0 for every a, b ∈ V; and 〈τta, b〉 is measurable as a function of t
(see Sect. 2.1). The construction in Sect. 3.1 was done for ω = ωβ a KMS state, but it is
easy to see that it is valid for more general states. Thus, we have the following general
statements.

Lemma 8.1. Let ω be a space and time translation invariant state, ω◦ ιUx = ω◦τUt = ω

for all x ∈ Z, t ∈ R. Then the construction of H,V in Sect. 3.1 makes this a dynamical
system (definition in Sect. 5) where τ is strongly continuous and Eq. (54) holds; we call
this a quantum chain system.

Proof. V ⊂ H is dense, and by the discussion above, all requirements expressed around
(27)–(29) hold. ��
Corollary 8.2. For every KMS state ωβ , β ≥ 0, H,V is a dynamical system.

Proof. This follows by using Theorem 2.2. ��
Going beyond, we need clustering properties. Theorem 2.2 guarantees uniform ex-

ponential clustering for KMS states. A more general set of states which have sufficient
properties for our purposes are those which are sizeably clustering, and whose clus-
tering bound is a power law; these include the KMS states, as the exponential bound
is stronger. The concept of sizeably clustering was introduced in [46], and allows for
a controlled dependence on the size of the supports of the operators in the clustering
bound. Therefore, instead of restricting ourselves to uniformly exponentially clustering
states, for generality we consider the following.

Definition 8.3. [46]. A state ω is sizeably clustering for some p > 0, r ≥ 0 if there
exists u > 0 such that for every a, b ∈ V, we have

|〈a, b〉| ≤ u |a|r |b|r ||a||U ||b||U (dist(a, b) + 1)−p. (178)

Theorem 8.4. Every KMS state ωβ , β ≥ 0 is sizeably clustering for every p > 0, r ≥ 0
(Definition 8.3).

Proof. We use Theorem 2.2, fixing q as per (14). For every p ≥ 0, there exists
u′ > 0 such that exp[−qz] ≤ u′(z + 1)−p for all z ≥ 0. Therefore |〈a, b〉| ≤
cu′ ||a||U ||b||U (dist(a, b) + 1)−p, and noting that |a|, |b| ≥ 1, the theorem follows. ��

8.2. Properties of sizeably clustering states. The most nontrivial aspects of the notions
introduced in the general framework are those related to clustering. We now show that
the strongest clustering notions are all satisfied for quantum chain systems, whenever
the state is appropriately sizeably clustering. This includes all KMS states. Below we
assume ω to be space and time translation invariant,

ω ◦ ιUx = ω ◦ τUt = ω (x ∈ Z, t ∈ R).

We express three theorems, whose proofs are given below. First, with the Lieb–
Robinson bound (Theorem 2.1), clustering can be shown to hold not just in space, but
in space and time uniformly outside light-cones; that is, in space-like regions. This is in
fact a generally known result, and we express it for sizeably clustering states.
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Theorem 8.5. Let ω be sizeably clustering for some p > r ≥ 0. Set r ′ = max{r, 1}. For
every v > vLR (see Theorem 2.1), there exists u′ > 0 such that, for all a, b ∈ V and
t ∈ v−1[−dist(a, b), dist(a, b)],

|〈τUt a, b〉| ≤ u′ min{|a|r ′ |b|r , |a|r |b|r ′ } ||a||U ||b||U (dist(a, b) + 1)−(p−r). (179)

Corollary 8.6. Let ω = ωβ be a KMS state. For every v > vLR and p > 0, there exists
u′ > 0 such that, for all a, b ∈ V and t ∈ v−1[−dist(a, b), dist(a, b)],

|〈τUt a, b〉| ≤ u′ min{|a|, |b|} ||a||U ||b||U (dist(a, b) + 1)−p. (180)

Second, it turns out that clustering holds as well on small complex time neighbourhoods.

Theorem 8.7. Let ω be sizeably clustering for some p > 0, r ≥ 0, and let � > 0. There
exists ε > 0, which only depends on ω and �, such that for all T ⊂ R compact and
every 0 < q < p, there exists u′′ > 0 such that for all t ∈ T , s ∈ C with |s| < ε, and
a, b ∈ V with |a|, |b| < �, the quantity 〈τUt+sa, b〉 is analytic in s and

|〈τUt+sa, b〉| ≤ u′′ ||a||U ||b||U (dist(a, b) + 1)−q . (181)

Corollary 8.8. Let ω = ωβ be a KMS state and � > 0. There exists ε > 0 such that for
all T ⊂ R compact and p > 0, there exists u′′ > 0 such that for all t ∈ T , s ∈ C with
|s| < ε, and a, b ∈ V with |a|, |b| < �, the quantity 〈τUt+sa, b〉 is analytic in s and

|〈τUt+sa, b〉| ≤ u′′ ||a||U ||b||U (dist(a, b) + 1)−p. (182)

Finally, the main theorem establishes all necessary properties for the quantum chain
system.

Theorem 8.9. Let ω be sizeably clustering for some p > r ≥ 0. Then for every 0 ≤ pc <

p − r , both the quantum chain system H,V, and its extension to all time evolutes H, V̂
(see Remark 5.7), are space-like pc-clustering (Definition 6.2), and the time evolution
group τ is differentiably clustering (Definition 5.8). If instead of p > r ≥ 0 we only
impose p > 0, r ≥ 0, then the same statement holds with space-like pc-clustering
replaced by pc-clustering (Definition 5.4).

Corollary 8.10. For every KMS state ωβ , β ≥ 0, the quantum chain system H,V, and

its extension to all time evolutes H, V̂, are space-like ∞-clustering (Definition 6.2), and
the time evolution group τ is differentiably clustering.

Corollaries 8.10, 8.6 and 8.8 follow by using Theorem 8.4. Corollaries 8.6 and 8.8
can be strengthened to exponential bounds, but this fact is not required here.

The proof of Theorems 8.5, 8.7 and 8.9 will use the following lemma. For every
a ∈ V and n ∈ N, we define

Xa
n = {x + y : x ∈ supp(a), y ∈ [−n, n] ∩ Z}. (183)
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Lemma 8.11. Let a ∈ U. Assume that there exists a function V � b �→ d(b) =
d̃(supp(b)) ≥ 1, which satisfies the properties

d̃(X) ≥ d̃(Y ) if X ⊂ Y

d̃(X b
n) ≥ max{d(b) − n, 1}, (184)

and that there exist w > 0, r ≥ 0 and p > 0, such that, for all b ∈ V, the following
holds:

|〈a, b〉| ≤ w |b|r ||b||U d(b)−p. (185)

Then for every 0 < q < p, b ∈ V, n ∈ N and t ∈ R,

|〈a,PXb
n
τUt b〉| ≤ w′ |b|r ′ ||b||U d(b)−q (186)

where r ′ = max{r, 1} and

w′ = kw + 2bed(1+vLR|t |) ||a|| (187)

k = sup
{ (1 + 2(p/d) log z)r zq

(max{z − (p/d) log z, 1})p
: z ∈ [1,∞)

}
< ∞ (188)

(recall that b, d, vLR are from Theorem 2.1).

Proof. This is a slight extension of the statements established in the proof of [46, Thm
6.3]. We note that, using in particular supp(PXb

n
τUt b) ⊂ X b

n ,

|PXb
n
τUt b| ≤ |X b

n| ≤ |b|(1 + 2n), d(PXb
n
τUt b)

≥ max{d(b) − n, 1}, ||PXb
n
τUt b||U ≤ ||b||U. (189)

The first inequality is obtained by considering the “worst case scenario”, where supp(b)
is composed of points in Z separated by distances greater than n, and by using |b| ≥ 1.
Below we denote z = d(b).

For every n ≤ p
d log z, from (185) follows

|〈a,PXb
n
τUt b〉| ≤ w |b|r (1 + 2n)r ||b||U (max{z − n, 1})−p

≤ w |b|r (1 + 2(p/d) log z)r ||b||U (max{z − (p/d) log z, 1})−p.

For every 0 < q < p, the function

[1,∞) � z �→ (1 + 2(p/d) log z)r (max{z − (p/d) log z, 1})−p

z−q

is bounded from above, because it is bounded on every compact subsets and it converges
to 0 as z → ∞. Let us denote the supremum by k > 0 (it only depends on p, q, d).
Then, for every 0 < q < p, there exists k > 0 such that for all b ∈ V, n ≤ p

d log z, and
t ∈ R,

|〈a,PXb
n
τUt b〉| ≤ kw |b|r ||b||U z−q . (190)

Using (13), the triangle inequality, and the fact that dist(b,Z\X b
n) = n for all n ∈ N,

we find that for all t ∈ R, m, n ∈ N, b ∈ V and x ∈ Z,

|〈a,PXb
n
τUt b〉| ≤ |〈a,PXb

m
τUt b〉|
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+ b |b| ||a|| ||b||U
(
exp

[
− d

(
m − vLR|t | )

]
+ exp

[
− d

(
n − vLR|t | )

])
.

(191)

For |〈a,PXb
n
τUt b〉| let us use the bound (190) if n < � p

d log z�, and, otherwise, the bound
(191) with (190) for |〈a,PXb

m
τUt b〉| and with

m = � p

d
log z� >

p

d
log z − 1. (192)

Therefore in this latter case, we find that for every 0 < q < p, there exists k > 0 such
that for all b ∈ V, n ≥ p

d log z and t ∈ R,

|〈a,PXb
n
τUt b〉| ≤ |〈a,PXb

m
τUt b〉| + 2b |b| ||a|| ||b||U exp

[
− d

(
m − vLR|t | )

]

≤ kw |b|r ||b||U z−q + 2bed |b| ||a|| ||b||U edvLR|t | z−p. (193)

With r ′ = max{r, 1}, we conclude the bound (186) from (190) and (193). ��

8.3. Proofs of Theorems 8.5, 8.7 and 8.9. We assume that ω is sizeably clustering for
some p > 0, r ≥ 0, and fix the values of p and r . We denote r ′ = max{r, 1}. We prove
in turn five statements.

I. The dynamical systemH,V is pc-clustering for every 0 ≤ pc < p (Definition 5.4).
This is part of space-like clustering, and contains a clustering statement for local

observables, and uniform clustering statement for families approximating the time evo-
lution in terms of local observables.

Clustering holds on all local pairs of elements (a, b) ∈ V×V, for any p > 0. Indeed,
we relate the translation length x inDefinition 5.3 to the distance between the observables
as follows. For nonzero elements [a], [b] ∈ V, choose representatives a, b ∈ V. By a
simple geometrical analysis, it is clear that dist(ιUx a, b) ≥ max{|x | − diam(a, b), 0}
(recall diam(a, b) = diam(supp(a) ∪ supp(b))). Hence,

(dist(ιUx a, b) + 1)−p ≤ (
max{|x | + 1 − diam(a, b), 1})−p

≤ (|x | + 1)−p(diam(a, b) + 1)p. (194)

Therefore, thanks to sizeable clustering Definition 8.3, for every a, b ∈ V, clustering
holds as in Definition 5.3 with

c = u |a|r |b|r ||a||U ||b||U (diam(a, b) + 1)p. (195)

For the uniformity statement of Definition 5.4, we use the Lieb–Robinson bound as
expressed in (13), and apply Lemma 8.11 to a ∈ V. We choose d(b) = dist(a, b) + 1
and clearly the requirements (184) and (185) are satisfied thanks to (178), with w =
u |a|r ||a||U. The explicit result of the lemma, considered for every such a and using
||a|| ≤ ||a||U, implies that for every 0 < q < p and compact T ⊂ R, there existsw > 0
such that for all a, b ∈ V, n ∈ N and t ∈ T ,

|〈a,PXb
n
τUt b〉| ≤ w |a|r |b|r ′ ||a||U ||b||U (dist(a, b) + 1)−q . (196)

We now use this in order to apply again the lemma with the replacement a → PXa
m
τUs a

for a ∈ V. We conclude, using in particular the last inequality in (189), that for every
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0 < q < p and compact T ∈ R, there exists w > 0 such that for all a, b ∈ V, all
m, n ∈ N and all s, t ∈ T ,

|〈PXa
m
τUs a,PXb

n
τUt b〉| ≤ w |a|r ′ |b|r ′ ||a||U ||b||U (dist(a, b) + 1)−q . (197)

Specialising this to s = t , passing to the space V, we can therefore define σn (see
Definition 5.4) as follows:

For each [a] ∈ V, select a ∈ [a] ⊂ V and set σnτt [a] = [PXa
n
τUt a]. (198)

Thanks to (13) we have limn PXa
n
τUt a = τUt a in U. Hence (by boundedness of the state)

limn[PXa
n
τUt a] converges in H, and it is simple to see that it converges to τt [a], thus

limn σnτta = τta on H � a. Using (194), we have shown the uniformity statement in
Definition 5.4.Hence, the dynamical systemH,V is pc-clustering for every 0 ≤ pc < p.

II. Both dynamical systems H,V and H, V̂, are pc-clustering for every 0 ≤ pc < p,
and with respect to both, τ is continuously clustering (Definition 5.8).

Taking the limit on n and m, we find from (197),

|〈τUs a, τUt b〉| ≤ w |a|r ′ |b|r ′ ||a||U ||b||U (dist(a, b) + 1)−q . (199)

Therefore, for every ε > 0 a clustering bound is obtained uniformly for all s, t ∈
R, |s|, |t | < ε, and continuous clustering holds, Definition 5.8, for all 0 ≤ pc < p. In
particular, this also implies that the dynamical systemH, V̂, where the local observables
include all time-evolutes, is also pc-clustering and continuously clustering.

III. With respect to H,V, the time evolution τ is differentiably clustering (Definition
5.8).

We recall that {τt : t ∈ R} form a strongly continuous one-parameter unitary group
on H; that Eq. (52) holds with δ induced from δU by (6); that Eq. (54) holds; and that
〈τta, b〉 is analytic in t in a neighbourhood of 0 for every a, b ∈ V. Differentiable
clustering with respect to H,V is then established by showing the analytic clustering
statement in Lemma 5.9.

Consider the convergent Taylor series representation of τUt a,

〈τUt a, b〉 =
∞∑

n=0

tn

n! 〈(δ
U)na, b〉 (a, b ∈ V, t ∈ C small enough). (200)

With sizeable clustering, for every a, b ∈ V and t ∈ C near enough to 0, we have

∣
∣
∣
tn

n! 〈(δ
U)na, b〉

∣
∣
∣ ≤ u |b|r ||b||U |t |n

n! |(δU)na|r ||(δU)na||U (dist((δU)na, b) + 1)−p.

(201)

By considering each term in the explicit commutator (5), it is easy to see that (δU)na
has a support of size at most |a| + 2n|h|, and thus

|(δU)na| ≤ |a| + 2n|h|. (202)

Further, we have (see e.g. [46, App B])

||(δU)na||U ≤ n! 2n|h|n(|a| + |h|)n ||h||nU ||a||U. (203)
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Also,

(dist((δU)na, b) + 1)−p ≤ (
max{dist(a, b) + 1 − n|h|, 1})−p

≤ (dist(a, b) + 1)−p(1 + n|h|)p. (204)

Putting these bounds together,

∣
∣
∣
tn

n! 〈(δ
U)na, b〉

∣
∣
∣ ≤ u |b|r ||a||U ||b||U(dist(a, b) + 1)−p(2|h|(|a| + |h|)||h||U |t |)n

(|a| + 2n|h|)r (1 + n|h|)p. (205)

Therefore the series on the right-hand side of (200) is absolutely convergent whenever

|t | < ta := (
2|h|(|a| + |h|)||h||U

)−1
. (206)

This implies that 〈τUt a, b〉 can be analytically continued in t to this region. Also, in this
region,

|〈τUt a, b〉| ≤ c (dist(a, b) + 1)−p (207)

where

c = u |b|r ||a||U ||b||U
∞∑

n=0

|t/ta |n(|a| + 2n|h|)r (1 + n|h|)p < ∞. (208)

Replacing a → ιUx a, using (194), and passing to the space V, we find that for every
a, b ∈ V, there is ε > 0 such that clustering holds uniformly for the family of pairs
{(τta, b) : t ∈ C, |t | < ε}. Thus Lemma 5.9 applies, and the dynamical system H,V
is differentiably clustering.

IV. With respect to H, V̂, the time evolution τ is differentiably clustering (Definition
5.8). Proof of Theorem 8.7.

Let

an(s) = sn

n! (δ
U)na ∈ V (a ∈ V, n ∈ N, s ∈ C). (209)

We apply the bound Eq. (196) (with n → ∞ in this equation), and thus for every
0 < q < p and compact T ⊂ R, there exists w > 0 such that for all a, b ∈ V and
t ∈ T ,

|〈an(s), τ
U
t b〉| ≤ w |an(s)|r |b|r ′ ||an(s)||U ||b||U (dist(an(s), b) + 1)−q . (210)

From (202), (203) and (204), we get a bound as in (205):

|〈an(s), τ
U
t b〉| ≤ w |b|r ′ ||a||U ||b||U (dist(a, b) + 1)−q |s/ta |n(|a| + 2n|h|)r

×(1 + n|h|)q . (211)

Therefore, for every |s| < ta , the series

〈τUt+sa, b〉 =
∞∑

n=0

〈an(s), τ
U−tb〉 (212)
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is absolutely convergent, showing analyticity in s. As ta (Eq. (206)) only depends on
|a| and not on other properties of a or on b, the analyticity statement of Theorem 8.7
follows. Further, we also conclude that for every 0 < q < p and compact T ⊂ R, we
have for all a, b ∈ V, t ∈ T and |s| ≤ ε < ta ,

|〈τUt+sa, b〉| ≤ c (dist(a, b) + 1)−q (213)

where

c = w |b|r ′ ||a||U ||b||U
∞∑

n=0

(ε/ta)n(|a| + 2n|h|)r (1 + n|h|)q < ∞. (214)

This shows the bound in Theorem 8.7, thus completing the proof of the theorem.
Replacing a → ιUx a, using (194), and passing to the space V, we find that for every

a, b ∈ V and t ∈ R, there is ε > 0 such that clustering holds uniformly for the family
of pairs {(τt+sa, b) : s ∈ C, |s| < ε}. By the group properties of τt , Lemma 5.9 implies
that the the time evolution τ is differentiably clustering with respect to the dynamical
systemH, V̂.

V. If p > r , then both the dynamical systemsH,V andH, V̂ are space-like q-clustering
with velocity vc, for every 0 < q < p − r and vc > vLR (Definition 6.2). Proof of
Theorem 8.5.

By Remark 6.4, it is sufficient to establish this for the dynamical system H,V. For
this purpose, we need the assumption that p > r .t

Recall the argument for Eq. (191): using the expression (13) of the Lieb–Robinson
bound, the triangle inequality, and the fact that dist(b,Z\X b

n) = n for all n ∈ N, it
follows that for all t ∈ R, all m, n ∈ N and all a, b ∈ V,

|〈a,PXb
n
τUt b〉| ≤ |〈a,PXb

m
τUt b〉| + b |b| ||a||U ||b||U

×
(
exp

[
− d

(
m − vLR|t | )

]
+ exp

[
− d

(
n − vLR|t | )

])
.

(215)

Set z = dist(a, b) + 1, choose 0 < ε′ < ε < 1, and set the compact Tz = v−1
LRε′ [−z, z].

With the inequalities (189) and sizeable clustering, we obtain for all N � n ≤ εz

|〈a,PXb
n
τUt b〉| ≤ u |a|r |b|r (1 + 2εz)r ||a||U ||b||U (max{z − εz, 1})−p. (216)

The function

[1,∞) � z �→ (1 + 2εz)r (max{z − εz, 1})−p

z−(p−r)
(217)

has a finite upper bound. Therefore, there exists k > 0 such that for all t ∈ R, all
N � n ≤ εz and all a, b ∈ V,

|〈a,PXb
n
τUt b〉| ≤ ku |a|r |b|r ||a||U ||b||U z−(p−r). (218)

Let us consider |〈a,PXb
n
τUt b〉|. We use the bound (218) if n < �εz�, and, otherwise,

the bound (215) with m = �εz�, which becomes
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|〈a,PXb
n
τUt b〉| ≤ |〈a,PXb

m
τUt b〉| + 2b |b| ||a||U ||b||U exp

[
− d

(
m − vLR|t | )

]
.

(219)

In this case (n ≥ �εz�), we use (218) (at n = m) for |〈a,PXb
m
τUt b〉|, and we further

have, for all t ∈ Tz and using m > εz − 1,

exp
[

− d
(
m − vLR|t | )

]
≤ exp

[
− d (ε − ε′)z + d

]
. (220)

Note that the power law decay z−(p−r) dominates the exponential decay, and we may
use |b|r ≤ |b|r ′

and |b| ≤ |a|r |b|r ′
.

We conclude that for all vc > vLR (taking vc = vLR/ε′), there exists u′ > 0 such
that for all n ∈ N, a, b ∈ V and t ∈ v−1

c [−dist(a, b), dist(a, b)],

|〈a,PXb
n
τUt b〉| ≤ u′ |a|r |b|r ′ ||a||U ||b||U (dist(a, b) + 1)−(p−r). (221)

Taking the limit on n, we have limn PXb
n
τUt b = τUt b, and symmetrising on a, b, this

shows Theorem 8.5. Using (194), we may pass to the space V. Let vc > vLR. Then
for every a, b ∈ V, there exists c > 0 and 0 < v < vc such that, for all x ∈ Z and
t ∈ v−1[−|x |, |x |]

|〈ιxτta, b〉| ≤ c (|x | + 1)−(p−r). (222)

Thus we have space-like pc-clustering for every pc < p − r and velocity vc > vLR. ��

8.4. Ergodicity, hydrodynamic projections and Euler equations. We finally provide,
with the above results, the proofs of the quantum spin chain theorems expressed in
Sect. 3.

Proof of Theorem 3.1. By Corollary 8.10, the dynamical systemH,V is space-like ∞-
clustering, hence by Lemma 6.3 it satisfies Property 1a. As for any a ∈ U there corre-
sponds an element of H, the result follows using (6). ��
Proof of Theorem 3.2. As the dynamical systemH,V is∞-clustering (Corollary 8.10),
hence 1-clustering, Point I follows from Theorem 6.1, and the first part of Point II
from Theorem 6.5. As the dynamical system is in fact space-like clustering, it satisfies
Property 1 (Lemma 6.3), hence the last part of Point II follows from Theorem 6.7. ��
Proof of Theorem 3.3. Point I: By Corollary 8.10, the dynamical systemH, V̂ is space-
like∞-clustering, andwith respect to it, τ is differentiably clustering. Thus by Theorems
7.4 and 7.6 it can be extended so that points (1)–(3) hold. By Theorem 7.4, the dynamical
system H, V̂# is still space-like ∞-clustering, and with respect to it, τ is still differen-
tiably clustering. Point II then follows from Theorem 7.11, as space-like clustering
guarantees that Property 1 holds (Lemma 6.3). ��
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9. Discussion

We have developed a general framework, based on Hilbert space structures, for the
long-time, small-wavenumber behaviours of strongly interacting many-body systems.
We have shown an almost-everywhere ergodicity theorem, as well as a hydrodynamic
projection formula and a linearised Euler equation. We have shown in particular that
all properties of the general framework hold in quantum spin chains with finite-range
interactions, thus proving in all generality the above resuls in this family of models.

We make a number of remarks about the results.

1. There is time-like ergodicity, thus decay of operator strength almost everywhere within
the light cone. In our proof, projection is seen to arise thanks to almost-everywhere
ergodicity, which is thus a sufficient relaxation property. In fact – see the last discussion
point below – large-time vanishing holds not only for zero-frequency time-averages,
but also at any frequency. Physically, almost-everywhere ergodicity can be pictured
as follows. By the Lieb–Robinson bound, the time evolute of a local observable is an
observable supported on a growing region, lying within a “light cone” in space and
time [43]. Intuitively, the strength of the observable, or at least its time-average, should
nevertheless decay over time, within this light-cone, as the observable carries a finite
quantity of information, energy, etc. The theorem says that, for any given frequency, the
observable may in fact divide up into non-decaying parts at, say, a countable number of
velocities within this light-cone. However, it must indeed decay at almost every velocity.
This theorem is discussed in more depth and generalised in [54,55].

2. The space of ballistic waves is universally defined as the space of extensive (or
pseudolocal) conserved charges. The idea that projections onto slowmodes gives rise to
hydrodynamics has been discussed widely in the past, especially starting with the works
of Zwanzig and Mori [39,40]. We have defined unambiguously the degrees of freedom
Q0 onto which projection must occur at the Euler scale: the space of thermodynamically
extensive conserved charges. It is important to note that these are properties not only
of the dynamics, but also of the state ω: extensivity is a notion that is state-dependent.
Further, they are properties of statistical models on infinite space; there is no such notion
on finite lengths. Physically, the projection onto the correct, reduced space of large-
scale degrees of freedom occurs, because the infinite length of the system allows the
asymptotic regions to absorb the infinite amount of information lost in going to the Euler
scale.

3. The space of ballistic waves is infinite-dimensional in integrable models. In integrable
models, the space Q0 can be shown to be infinite-dimensional, using various standard
methods [75,82]. The above is then expected to reproduce the results of generalised
hydrodynamics for correlation functions, obtained in [35,37]. However, establishing
this precise link would require establishing rigorously the connection between the space
Q0 and the space of root densities of the thermodynamicBethe ansatz (see the discussions
in [12,83,84]), which is still missing. Another open problem, in the case where Q0 is
infinite-dimensional, is that of establishing the existence and uniqueness of solutions to
the linearised Euler equation (25).

4. The problem of finite-dimensionality is nontrivial in non-integrable models. Perhaps
the most important open problem, a seemingly very difficult one, is that of determining
finite-dimensionality of Q0 in non-integrable systems. The recent progress [85] in prov-
ing the absence local conserved charges in certain non-integrable quantum spin chains
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is an interesting first step. One may in fact conjecture that finite-dimensionality is inti-
mately related to non-integrability. Thus, in particular, integrability, or the lack thereof,
must be defined with respect to a choice of both a dynamics and a state. It would be
particularly interesting to apply the framework to quantum and classical gases, which,
even without integrability, possess a nontrivial Euler hydrodynamic limit, thanks to a
conserved momentum.

5. The Drude weights are a simple special case. As mentioned, the projection result (23)
at κ = 0, when applied to current observables ji , is a result for the Drude weights. In
fact, for general observables, at κ = 0, the limit in (18) exists and the result (23) holds
by a simple application of von Neumann’s mean ergodic theorem for unitary operators
[45]. The question of what conserved charge is involved in saturating the Mazur bound
(the Suzuki equality) has been discussed recently [86]; Eq. (23) gives a rigorous answer
in models on infinite space.

6. The algebraic structure of conserved charges does not influence the Euler scale. We
find that all conserved charges – be their algebra abelian or not – contribute emergent
ballistic degrees of freedom. In particular, no requirement is made for the charges to
commute with the density matrix used to define the Gibbs state. This is despite the fact
that the heuristic linear-response argument requires this, or otherwise involves the Kubo-
Mori-Bogoliubov inner product [40,87] (but we expect the same results to hold using this
inner product). The question of how non-abelian charges affect hydrodynamics has been
discussed in the literature, see the recent viewpoints given in [88,89], and in particular
their connection with super-diffusion [90].

7. Only homogeneous conserved charges contribute. Further, we show that the charges
must be homogeneous (translation invariant), a point which does not seem to have
been emphasised yet; non-homogeneous conserved charges, such as the “strictly local
conservation laws” discussed in [91], do not enter the linearised Euler scale with respect
to homogeneous states.

8. The linearised Euler scale near to arbitrary frequencies and wavelengths can be
accessed by the same theory. Finally, as our theorems are based on a very general
abstract framework, there is room for many possible extensions. In particular, different
definitions of the notion of space- and time-translations may be used, with respect to
which homogeneity and stationarity may be imposed. This suggests that the general
Euler-scale structure holds not just at large wavelengths and low frequencies, but rather
as an expansion around given wavelengths and frequencies: if τt and ιx are the usual,
homogeneous time and space translation isomorphisms, then eiωtτt and eikx ιx also are
appropriate time and space translation isomorphisms, satisfying all required properties.
These give access to hydrodynamic quantities near to frequency ω and wavenumber k.
This is relevant in respect of recent works [91–93]. Our results therefore establish that
the linearised Euler-scale structure is extremely universal. For our ergodic result, this
extension is performed explicitly in [54,55].

9. Many extensions are possible. We assumed the statistical model to lie on a the discrete
space Z. The framework can nevertheless be applied to models lying on the line R, by
for instance restricting to observables lying on any subset ∼= Z, or by gathering degrees
of freedom (such as field configurations) into cells. We also assumed the space of local
observables to be countable dimensional. If the space is larger, then our proof of almost-
everywhere ergodicity fails. Under the assumption of almost-everywhere ergodicity,
however, it is simple to see that the general hydrodynamic projection result still holds.
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We assumed time translations to form a group isomorphic to R. We expect that a large
part of the theory can be adapted to models with a discrete group of time translations
isomorphic to Z. This would be of interest in current research on the dynamics of
cellular automata [94]. A large part of the framework is immediately generalisable to
higher dimensions, and is applicable to a wider family of quantum chains and states than
those considered, as algebraic decay of correlations is sufficient for many of the results.
It is also possible that, combining with the construction of hydrodynamic spaces in [47],
similar arguments as those presented here can lead to diffusive-scale hydrodynamic
equations.
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A. Banach Limits

We are first looking for a Banach limit φ on the Banach space of bounded functions
f : R+ → C, with norm || f || = lim supt→∞ | f (t)|, with the properties of positivity,
if f (t) ≥ 0 for all t > 0 then φ( f ) ≥ 0, invariance under affine transformations, for
all s(t) = at + b (a > 0 and b ∈ R) we have φ( f ◦ s) = φ( f ), and compatibility
with the limit, φ( f ) = limt→∞ f (t) if the limit exists. Note that it is also possible
to define Banach limits with the restriction of re-parametrisation invariance, s(t) with
limt→∞ s(t) = ∞; however it is not useful to do so here. See [81] for a discussion of
Banach limits.

On the linear space of bounded functions f : R+ → C, we consider the equivalence
under the relation f ≡ g if, for f, g, there exists, at large enough t , a re-parametrisation
s(t) = at + b such that f (t) = g(s(t)):

f ≡ g ⇔ ∃ t0 ∈ R, a > 0, b ∈ R
∣
∣ f (t) = g(s(t)) ∀ t ≥ t0. (223)

The linear space S of equivalence classes f̂ under this equivalence relation is normed by
|| f̂ || = || f || = lim supt→∞ | f (t)| (for any representative f of f̂ ). The limit operation
is a linear functional on the subspace { f̂ } formed of equivalence classes of converging

http://creativecommons.org/licenses/by/4.0/
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functions f , and the result of the limit operation on an equivalence class f̂ that has a
limit is bounded by the norm || f̂ ||. By [45, Thm 3.3], there exists a linear functional φ̂
on S that extends the limit operation, whose result is also bounded by the norm, hence
||φ̂|| = 1. In order to show the property of positivity, let f (t) ≥ 0 ∀t ∈ R+. Then
||ê − f̂1|| ≤ 1 where e(t) = 1 and f1(t) = f (t)/|| f || has norm 1. But if φ̂( f̂ ) < 0,
then φ̂(ê − f̂1) = 1 − φ̂( f̂1) = 1 − φ̂( f̂ )/|| f || > 1, which is impossible as ||φ̂|| = 1.
Finally, we just have to set φ( f ) = φ̂( f̂ ).

We then consider the space of bounded functions f : R+ → C with the additional
property that f be measurable. On this, we define the limit l̃im

t→∞ by composition of some

given Banach limit φ as above, with the Cesàro limit:

l̃im
t→∞ f (t) = φ(F), F(t) = 1

t

∫ t

0
ds f (s). (224)

Clearly, this preserves positivity, affine invariance and compatibility with the limit. Fur-
ther, we have the bound

∣
∣ l̃im

t→∞ f (t)
∣
∣ ≤ lim sup

t→∞
1

t

∣
∣
∣

∫ t

0
ds f (s)

∣
∣
∣ ≤ lim sup

t→∞
| f (t)|. (225)

Hence l̃im
t→∞ is a Banach limit.
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92. Buča, B., Tindall, J., Jaksch, D.: Non-stationary coherent quantum many-body dynamics through dissi-
pation. Nat. Commun. 10, 1730 (2019). https://doi.org/10.1038/s41467-019-09757-y

93. Medenjak, M., Prosen, T., Zadnik, L.: Rigorous bounds on dynamical response functions and time-
translation symmetry breaking. SciPost Phys. 9, 003 (2020). https://doi.org/10.21468/SciPostPhys.9.1.
003

94. Prosen, T., Mejía-Monasterio, C.: Integrability of a deterministic cellular automaton driven by stochastic
boundaries. J. Phys.AMath. Theor.49, 185003 (2016). https://doi.org/10.1088/1751-8113/49/18/185003

Communicated by A. Giuliani

https://doi.org/10.1007/BF01645409
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(69)90185-2
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/0031-8914(71)90226-6
https://doi.org/10.1016/0031-8914(71)90105-4
https://doi.org/10.1016/0031-8914(71)90105-4
https://doi.org/10.1103/PhysRevLett.74.972
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1103/PhysRevB.55.11029
https://doi.org/10.1006/aphy.1995.1101
https://doi.org/10.1103/PhysRevB.95.115128
https://doi.org/10.1088/1742-5468/aa82c1
https://doi.org/10.1209/0295-5075/128/17002
https://doi.org/10.1016/j.chaos.2020.110618
https://doi.org/10.1143/JPSJ.9.888
https://doi.org/10.1103/PhysRevLett.125.240607
https://doi.org/10.21468/SciPostPhys.10.1.015
https://doi.org/10.21468/SciPostPhys.10.1.015
https://doi.org/10.1103/PhysRevX.11.031023
http://arxiv.org/abs/2008.11166
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.21468/SciPostPhys.9.1.003
https://doi.org/10.21468/SciPostPhys.9.1.003
https://doi.org/10.1088/1751-8113/49/18/185003

	Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems
	Abstract:
	1 Introduction
	1.1 Linearised Euler equation and Boltzmann–Gibbs principle

	2 Review of the Algebraic Formulation of Quantum Spin Chains
	2.1 Algebraic formulation
	2.2 Lieb–Robinson bound and clustering

	3 Main Results in Quantum Spin Chains
	3.1 The various completions of the space of local spin chain operators
	3.2 Ergodicity
	3.3 Hydrodynamic projections
	3.4 Currents and linearised Euler equations

	4 Space and Time Symmetries and Ergodicity
	4.1 Space and time translations
	4.2 An ergodicity theorem

	5 Clustering and the Space of Conserved Charges
	5.1 Clustering
	5.2 Strongly continuous one-parameter groups
	5.3 Hilbert spaces calHk
	5.4 The subspace of conserved charges

	6 The Hydrodynamic Projection Formula
	6.1 Drude weights
	6.2 Relaxation from space-like clustering
	6.3 Banach limits
	6.4 The Euler map
	6.5 Projection onto the subspace of conserved charges

	7 Conserved Currents and Linearised Euler Equations
	7.1 Anti-derivatives of null elements
	7.2 Continuity equations
	7.3 Two-point functions of conserved densities

	8 Proofs for Quantum Spin Chains
	8.1 Quantum chain systems and sizeable clustering
	8.2 Properties of sizeably clustering states
	8.3 Proofs of Theorems 8.5, 8.7 and 8.9
	8.4 Ergodicity, hydrodynamic projections and Euler equations

	9 Discussion
	Acknowledgements.
	A Banach Limits
	References




