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Abstract: We demonstrate that random tensors transforming under rank-5 irreducible
representations of O(N ) can support melonic large N expansions. Our construction
is based on models with sextic (5-simplex) interaction, which generalize previously
studied rank-3 models with quartic (tetrahedral) interaction (Benedetti et al. in Com-
mun Math Phys 371:55, 2019. arXiv:1712.00249; Carrozza in JHEP 06:039, 2018.
arXiv:1803.02496). Beyond the irreducible character of the representations, our proof
relies on recursive bounds derived from a detailed combinatorial analysis of the Feyn-
man graphs. Our results provide further evidence that the melonic limit is a universal
feature of irreducible tensor models in arbitrary rank.
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1. Introduction

In recent years, tensor models have been shown to admit a specific kind of large N limit,
known as themelonic limit [3–5]. Itsmain appeal is that it is both richer than that of vector
models [6,7] and simpler than the planar limit of matrix models [8–10]. As a result, it
has proven uniquely valuable as an analytic tool to explore strong coupling effects
in many-body quantum physics. Tensor models have for instance found applications to
strongly-coupled quantummechanics [11–21] (see also [5,22] for reviews), by providing
alternatives to the SYKmodel which do not rely on a disorder average [23–27]. In higher
dimensions, they can be investigated as proper quantum field theories, and have given
rise to a new family of conformal field theories known as melonic CFTs [28–36] (see
also [37,38] for reviews).

For such applications, the key feature is the existence of a large N expansion domi-
nated by melon diagrams. When tensor models were first introduced, in zero dimension
and in the context of random geometry and quantum gravity [39,40], such a limit was
initially lacking. A proper generalization of the genus expansion of matrix models was
only discovered later, in the context of so-called colored tensor models [41–43]. This
program, motivated by random geometry in dimension d ≥ 3, led to different realiza-
tions of the melonic limit, all dominated by the same type of tree-like Feynman graph
structure (see e.g. [44,45]). So-called uncolored tensor models [46] have been particu-
larly well-studied (see [47–49] for reviews), and triggered rigorous developments in the
broader context of tensorial group field theory [50–55]. In such models, each index of
the tensor transforms independently under its own symmetry group. Indices with differ-
ent positions in the tensor are therefore not allowed to mix; they carry different colors,
which significantly constrains the combinatorial structure of the theory. The subclass of
uncolored tensor models of interest for large N quantum field theory applications are the
ones that generate bilocal melonic radiative corrections [56–61], rank-3 tensors trans-
forming under the tri-fundamental representation of O(N ) being a simple and popular
choice [57].

More recently, and in rank 3, it was understood how to generalize the bilocal melonic
limit to ordinary tensor representations of O(N ) and Sp(N ) [1,2,21,62,63], thereby
going beyond colored and uncolored models. It might at first appear that completely
symmetric rank-3 tensor models (such as the ones initially introduced in the nineties
[39,40]) cannot support a bilocal melonic limit. Indeed, they instead support a vector-
like (and ultralocal) large N limit [1]. However, removing the vector modes contained in
the traces of the tensor is sufficient to reach a melonic regime, as was initially proposed
in [62] and proven in [1]. In a similar way, one can conjecture that any irreducible
tensor representation (of O(N ) or Sp(N )) can support a melonic large N limit, as was



Melonic Large N Limit of 5-Index Irreducible Random Tensors 1221

proven rigorously in rank-3 [1,2,21]. Steps have also been taken to extend those results
to Hermitian multi-matrix models [64], in the spirit of [58].

In the present work, we make an additional contribution to this program, by con-
firming that O(N ) irreducible tensor representations of rank 5 also support (bilocal)
melonic limits. To this effect, we follow the combinatorial methods developed in [1],
with suitable adaptations. As in rank 3, technical difficulties arise from the existence of
Feynman graphs which violate the maximum scaling naively allowed by the large N
limit. The irreduciblity condition implies that such contributions necessarily cancel out
upon resummation, and are ultimately harmless. However, their mere existence greatly
complicates the (standard) recursive strategy we use to bound the other Feynman ampli-
tudes. Some aspects of the combinatorial construction we end up with are more elemen-
tary than in rank-3 (e.g. triangle subgraphs play no role here), but others are much more
involved (e.g. in addition to two- and four-point functions, the present analysis involves
bounds on eight-point functions).

1.1. Outline of the results. We start off with a real O(N ) tensor transforming in one of
the seven inequivalent irreducible representations of rank 5. These consist of the sym-
metric traceless representation, the antisymmetric representation, and five additional
representations with mixed index symmetries. The orthogonal projector on one of these
irreducible subspaces defines a (degenerate) covariance PPP . The resulting Gaussian dis-
tribution is then perturbed by a sextic interaction with the combinatorics of a 5-simplex.

Our main results are stated in Theorem 1, establishing the existence of a large N
expansion, and Theorem 2, stating that the leading order graphs are melons. As a guide
to the reader, we now outline the main steps of the proof.

Perturbative expansion. We first expand the free energy into Feynman amplitudes
which, here, are labeled by rooted connected combinatorial maps. We then go to a
more detailed representation in terms of stranded graphs. Indeed, each half-edge in a
map carries five indices and can therefore be represented with five strands. In turn, each
term in the propagator has a specific tensorial structure inducing a particular pairing of
the strands propagating along the edge. We can then re-write the perturbative expan-
sion in terms of those stranded graphs. Given that each propagator edge can take up to
945 configurations, this representation is highly uneconomical. However, the merit of
stranded graphs is that their large N asymptotics is transparently encoded into their com-
binatorial structure. This leads to the following estimate of the amplitude of a stranded
graph G:

A(G) = K (G)N−ω(G) (1 +O(1/N )) , (1)

where K (G) is a non-vanishing rational number independent from N , andω is the degree
of the graph (see Eq. (16)).

The degreeω is an integer quantity. If we could prove it to be bounded from below, the
existence of a large N expansion would immediately follow. However, this conjecture
is not true in general: stranded graphs with arbitrarily negative degrees do exist. We will
therefore need to rely on a subtler strategy: for any map, we will prove that none of its
stranded configurations with negative degree (if they exist) actually contribute to the full
amplitude.
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Subtracting and deleting. The proof of our main results then proceeds in two steps.

• We first identify a family of stranded graphs supporting arbitrarily negative degrees.
Those problematic graphs happen to be generated bymelon and double-tadpolemaps.
Thanks to the irreducibility of the representation, we can straightforwardly prove that
the amplitudes of thosemaps are in fact well-behaved at large N . For convenience, we
will subtract them through a partial resummation of the perturbative series, governed
by a closed and algebraic Schwinger–Dyson equation.

• We then prove that, once the problematic configurations have been subtracted, all
the remaining stranded graphs have non-negative degree. This is done by induction
on the number of vertices of the graphs, through suitable combinatorial deletions
of subgraphs. The important condition that no melon or double-tadpole should be
generated by such moves makes the construction rather delicate and technical.

Leading-order. After proving the existence of the large N expansion, the last step con-
sists in showing that it is dominated by melon diagrams. At this stage, one might be
tempted to prove the following improved statement: any stranded graph with no melon
and no double-tadpole has in fact strictly positive degree. Again, this is not so simple, as
stranded graphs with no melon or tadpole can have vanishing degrees. However, there
are again cancellations, and it turns out that none of those configurations can actually
contribute to the full amplitudes of their parent maps. We will implicitly account for
such cancellations by mean of Cauchy–Schwarz inequalities which, once the large N
expansion has been established, can be used to directly bound the full amplitudes of
non-melonic Feynman maps (without having to resort to the stranded representation).
We will conclude that a Feynman map is leading order if and only if it is melonic.

Plan of the paper. In Sect. 2, we introduce the models and our main results: Theorem 1
andTheorem2. In Sect. 3,we perform the perturbative expansion and define twodifferent
types of diagrams: Feynman maps and stranded graphs.We also introduce in more detail
the problematic subgraphs that could potentially lead to violations of the maximum
scaling in N . In Sect. 4, we introduce the important notion of boundary graph, as well
as various particular subgraphs that will play important roles in the rest of the proof.
In Sect. 5, we perform the explicit subtraction of melons and double-tadpoles. We then
arrive to an equivalent theorywith renormalized covariance inwhichmelons and double-
tadpoles have been subtracted from the Feynman expansion. In Sect. 6, we establish a
number of lemmas and propositions enabling the recursive deletion of certain subgraphs,
that will be instrumental to ultimately prove Theorem 1. Finally, in Sect. 7, we prove
Theorem 2 and show that melons dominate the large N expansion. In Appendix A, we
prove some useful bounds on the number of faces of stranded graphs, while Appendix B
provides a proof of Lemma 8 (which handles a number of particular cases). Finally, for
the reader’s convenience, some of our main definitions and notations are summarized in
the following nomenclature.

Nomenclature

G Feynman map: connected 6-regular combinatorial map; see Sect. 3.1.
G Stranded graph: Feynman map, together with a choice of one tensor structure per

edge; see Sect. 3.2.
G∂ Boundary graph of G; see Sect. 4.1.

Unbroken edge. Edge of a stranded graph with all strands traversing; see Fig. 2.
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Broken edge. Edge of a stranded graph with exactly three traversing strands; see Fig. 3.

Doubly-broken edge. Edge of a stranded graph with exactly one traversing strand; see
Fig. 4.

Single-tadpole. Four-point Feynman map or stranded graph with one vertex and one
self-loop; see Fig. 9.

Double-tadpole. Two-point Feynman map or stranded graph with one vertex and two
self-loops; see Fig. 9.

Dipole. Eight-point Feynman map or stranded graph with two vertices, two edges
(which we call internal edges) and no self-loop; see Fig. 12.

Melon. Two-point Feynman map or stranded graph with two vertices, five edges, and
no self-loop; see Fig. 13.

Dipole-tadpole. Four-point Feynman map or stranded graph with two vertices, four
edges, and exactly one self-loop on each vertex; see Fig. 14.

Flip distance. Minimal number of successiveflips required tomap twoboundarygraphs;
see Sect. 6.1.

2. The Models and the Main Results

We consider a real tensor Tabcde, transforming in the tensor product of five fundamental
representations of the orthogonal group O(N ) (hence, a, b, c, d, e = 1, . . . , N ). The
action of the symmetric group S5 and the trace operation allows to decompose Tabcde
into irreducible components, which are themselves tensors of rank 5, 3 or 1. In this work,
we will focus on the seven inequivalent representations of rank 5. They are the traceless
representations with index symmetry given by the following Young tableaux:

The first two correspond to the antisymmetric and symmetric traceless representations,
respectively, while the other five have mixed index permutation symmetries (that is, they
carry representations of S5 of dimension higher than 2). Given such a representation,
a central object in our construction will be the orthogonal projector on the associated
linear subspace of tensors, with respect to the canonical scalar product: 〈T |T ′〉 :=
TabcdeT ′

abcde.
1 The kernel of this projector will serve as a degenerate covariance, it is

therefore crucial for it to be symmetric. As an illustration, let us find the orthogonal
projectors on completely symmetric traceless tensors and completely antisymmetric
tensors.

1 We assume Einstein’s summation convention throughout this work.
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Symmetric traceless representation Let us start from a completely symmetric tensor
Tabcde. We can decompose T into a traceless part T 0

abcde, a symmetric traceless tensor
of rank tree T 1

abc, and a vector T 2
a :

2

Tabcde = T 0
abcde + 10T 1

(cdeδab) + 30T 2
(aδbcδde) .

By taking successive traces over pairs of indices, we obtain

Tabcdd = (N + 6)T 1
abc + 2(N + 4)(T 2

a δbc + T 2
b δac + T 2

c δab)

and

Tabbdd = 2(N + 2)(N + 4)T 2
a ,

which, combined, leads to the following expressions for T 1 and T 2:

T 1
abc = 1

N + 6

(
Tabcdd − 1

(N + 2)
(Taddeeδbc + Tbddeeδac + Tcddeeδab)

)
,

T 2
a = 1

2(N + 2)(N + 4)
Tabbdd .

This allows us to define a projector on symmetric traceless tensors as the projector on
symmetric tensors minus the projector on traces. We find:

SSSaaa,bbb = 1

5!

⎡
⎢⎢⎢⎣

∑
σ∈S5

5∏
i=1

δai bσ( j) − 2

N + 6

∑
{i1,i2,i3}∪{i4,i5}=�1,5�

∑
{ j1, j2, j3}∪{ j4, j5}=�1,5�

δai4ai5
δb j4b j5

∑
σ∈S3

3∏
k=1

δaik b jσ(k)

+
2

(N + 4)(N + 6)

∑
{i1}∪{i2,i3}∪{i4,i5}=�1,5�

∑
{ j1}∪{ j2, j3}∪{ j4, j5}=�1,5�

δai1b j1
δai2ai3

δai4ai5
δb j2 b j3

δb j4b j5

⎤
⎥⎥⎥⎦ ,

(2)

where we use the short-hand notation aaa = (a1, a2, a3, a4, a5), bbb = (b1, b2, b3, b4, b5)
(and so on).

Moreover, one can readily check that SSSaaa,bbb = SSSaaa,bbb, so that SSS is the looked-for orthog-
onal projector.

2 Here we use the notation:

V(a1...an ) = 1

n!
∑
p∈Sn

Vap(1)...ap(n)

for V a tensor with n indices. In particular, we have

T 1
(cdeδab) = 1

10

(
T 1
cdeδab + T 1

bdeδac + T 1
bceδad + T 1

bcdδae + T 1
adeδbc + T 1

aceδbd + T 1
acdδbe

+T 1
abeδcd + T 1

abdδce + T 1
abcδde

)
.
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Antisymmetric representation.The orthogonal projector on completely antisymmetric
tensors takes the form:

AAAaaa,bbb = 1

5!
∑
σ∈S5

ε(σ )

5∏
i=1

δai bσ( j) (3)

A covariance for the other five inequivalent irreducible representations can be ob-
tained in a similar fashion. As it turns out, the explicit form of this projector is not
necessary for our proofs to go through, so we only provide a brief sketch of the general
construction. As a first step, one can construct the canonical projector associated to the
target Young tableau, by first symmetrizing over indices appearing in a same row, then
antisymmetrizing over indices appearing in a same column. After projecting out the trace
components, one obtains a projector with the desired image. However, in contrast towhat
happened with the completely symmetric and symmetric traceless representations, this
first projector will not in general be orthogonal. If so, one needs to orthogonalize it as a
last step in the construction.

The generic tensor model with 5-simplex (or complete graph) interaction is defined
by the action:

S(T ) = 1

2

∑
a1, ..., a5

Ta1a2a3a4a5Ta1a2a3a4a5 − λ

6N 5

∑
a1, ..., a15

Ta1a2a3a4a5Ta5a6a7a8a9

Ta9a4a10a11a12Ta12a8a3a13a14Ta14a11a7a2a15Ta15a13a10a6a1 (4)

We will denote the 5-simplex pattern of contraction by

δhaaabbbcccdddeee fff = δa1 f5δa2e4δa3d3δa4c2δa5b1δb2 f4δb3e3δb4d2δb5c1δc3 f3δc4e2δc5d1δd4 f2δd5e1δe5 f1 ,

(5)

such that the action can be simplified to:

S(T ) =1

2
TaaaTaaa − λ

6N 5
δhaaabbbcccdddeee fff TaaaTbbbTcccTdddTeeeTfff . (6)

Wealsodenote by111 the identity operator111aaa,bbb = 111a1a2a3a4a5,b1b2b3b4b5 = ∏5
i=1 δai bi =

δaaabbb, and by ∂T the tensor of derivative operators (∂T )aaa ≡ ∂
∂Taaa

. With these notations at
hand, we can write the partition function, the free energy and its first derivative as:

Z111(λ) =
∫

[dT ]e−S(T ) =
[
e
1
2 ∂T111∂T e

λ

6N5 δhaaabbbcccdddeee fff TaaaTbbbTcccTddd TeeeTfff

]
T=0

,

ln Z111(λ) = ln{
∫

[dT ]e−S(T )}, F111(λ) = 6

N 5
λ∂λ ln Z111(λ) . (7)

In the following, PPP will denote any one of the seven orthogonal projectors on irreducible
rank-5 tensor representations. We will sometimes illustrate our calculations with PPP = AAA
or SSS, but our main results hold for any irreducible representation. The irreducible tensor
model of interest can be obtained from the generic model by disallowing the propagation
of modes which are in the kernel of PPP . This in turn amounts to replacing the non-
degenerate covariance 111 by the degenerate covariance PPP:

FPPP (λ) = 6

N 5
λ∂λ ln

{[
e
1
2 ∂T PPP∂T e

λ

6N5 δhaaabbbcccdddeee fff TaaaTbbbTcccTddd TeeeTfff

]
T=0

}
. (8)
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Note that, in this equation, the tensor T has no symmetry property under permutation of
its indices. However, as only the projected modes PPPT propagate, we can equivalently
change variables to P = PPPT as done in [1]. We can then write:

FPPP (λ) = 6

N 5
λ∂λ ln

{[
e
1
2 ∂P PPP∂P e

λ

6N5 δhaaabbbcccdddeee fff Paaa Pbbb Pccc Pddd Peee Pfff

]
P=0

}
,

∂

∂Paaa
Pbbb ≡ PPPaaa,bbb , (9)

where the tensor P is in the image of PPP and thereby irreducible, and the second line is a
definition. The factor 6/N 5 is for later convenience; it will in particular ensure that FPPP
is an order 1 quantity in the large N limit.

2.1. Main theorems. The main result of this paper is the existence of a 1/N expansion
for all seven irreducible rank-5 tensor models with complete graph interaction. It is given
by the following theorem.

Theorem 1. We have (in the sense of perturbation series):

FPPP (λ) =
∑
ω∈N

N−ωF (ω)
PPP (λ) . (10)

Proof. This follows from Eq. (33), Remark 2 and Proposition 3. 	

In Sect. 7, we further prove that these models are dominated by melon diagrams

(which we introduce in Sect. 4). This is given by the following theorem.

Theorem 2. In Eq. (10), the leading order contribution F (0)
PPP (λ) is a sum over melonic

stranded graphs. For small enough λ, it is the unique continuous solution of the polyno-
mial equation

1 − X + mPPPλ2X6 = 0 (11)

such that F (0)
PPP (0) = 1, and where mPPP is a model-specific real constant. In particular,

mSSS = mAAA = ( 1
5!

)4
.

Proof. This follows from Proposition 4, as well as Eqs. (27) and (30) in Sect. 5. 	

For completeness, we note that we could consider other 5-simplex interactions, that

differ from our choice in Eq. (5) by a permutation of the strands on each half-edge.
Namely, in general, we could introduce the modified kernel:

δ̃haaabbbcccdddeee fff = δh(σ1·aaa)(σ2·bbb)(σ3·ccc)(σ4·ddd)(σ5·eee)(σ6· fff ) (12)

where {σk} are permutations in S5, and · denotes the natural action of S5 on a 5-tuple. If
PPP = SSS or AAA, any two such choices differ at most by a sign, and are therefore equivalent.
A priori, this is not necessarily so for other irreducible representations, since permut-
ing two indices which are neither in a same column nor in a same row of the Young
tableau involves non-trivial linear combinations of tensors. We leave the evaluation of
the dimension of the space of 5-simplex invariants for each irreducible representation
to future work. However, we note that our main theorems remain valid for any such
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interaction, and in fact any linear combination thereof. The only reason we decide to
focus exclusively on the kernel of Eq. (5) is to keep the combinatorial structure of the
Feynman diagrams (see the next section) as elementary as possible. Indeed, the modified
5-simplex of Eq. (12) is in general not symmetric under cyclic permutation of its half-
edges, and would therefore require the introduction of vertices with marked half-edges
in the Feynman rules. A particularly interesting example of such a non-cyclic kernel is

δ̃haaabbbcccdddeee fff = δhaaa(σ ·bbb)(σ 2·ccc)(σ 3·ddd)(σ 4·eee)(σ 5· fff ) (13)

= δa1 f1δa2e2δa3d3δa4c4δa5b5δb3 f3δb4e4δb2d2δb1c1δc2 f2δc3e3δc5d5δd4 f4δd1e1δe5 f5 ,

where σ = (15)(234). A specificity of this pattern of contractions is that every tensor
index in position k is contracted with another tensor index in position k, and is known
as a colorable interaction in the random tensor literature. Up to a permutation of the
half-edges and of a global permutation of the tensor indices, the kernel of Eq. (13) is in
fact the unique colorable 5-simplex interaction [59]. With this choice of interaction, it is
actually possible to prove a slightly improved version of Theorem 1, guaranteeing that
mPPP > 0 for any irreducible representation PPP .3 In particular, this observation implies
that the colorable interaction (13) is non-vanishing for any irreducible representation,
and therefore, that our results have non-trivial implications for any choice of irreducible
propogator.4 While straightforward, we leave the detailed treatment of non-cyclic ver-
tices, as well as the general proof that mPPP > 0 in the case of a colorable interaction to
the interested reader.

3. Perturbative Expansion

3.1. Feynman maps. Given the structure of the propagator PPP , which is in general not
invariant under index permutations, it will be convenient to view the Feynman expansion
as a weighted sum of combinatorial maps (or embedded graphs) rather than ordinary
graphs. Even though combinatorial maps always provide a natural way of represent-
ing Wick contractions, they are often dispensed with in field theory because, in many
instances, the Feynman amplitudes themselves only depend on the graph structure. In
our context, this will remain true in representations such as the symmetric traceless
or antisymmetric ones, but not in general [2].5 We therefore resort to the language of
combinatorial maps.

There are three steps to obtain the perturbative expansion of FPPP . First, we Taylor
expand in λ and compute the Gaussian integrals. This leads to a sum over six-valent
combinatorial maps. We then take the logarithm, which results in a sum over only
connected combinatorial maps. Finally, we apply the operator 6λ∂λ, which leads to

3 This stems from the fact that we can prove a slightly improved version of Lemma 1, see Remark 1.
4 From our current understanding, we cannot guarantee that mPPP is necessarily non-vanishing with the

cyclic vertex (5) (unless PPP = SSS or AAA). In particular, we cannot exclude the possibility that this vertex might
identically vanish for some specific choice of representation PPP .

5 Under permutation of the first and second half-edges of the vertex (and similarly for any other pair), we
find that

δhbbbaaacccdddeee fff = δh
(γ ·aaa)(γ −1·bbb)((12)·ccc)((23)·ddd)((34)·eee)((45)· fff ) ,

where γ = (12345). The product of the signatures of the permutations appearing on the right-hand side being
even, the invariance of the vertex under permutation of its half-edges follows for PPP ∈ {AAA, SSS}.
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Fig. 1. Three of the fifteen first order contributions to FPPP (λ)

Fig. 2. Two examples of unbroken edges (out of 5! = 120)

Fig. 3. Two examples of simply-broken edges (out of
(5
2
)2 × 3! = 600)

Fig. 4. Two examples of doubly-broken edges (out of
[
1
2
(5
2
)(3
2
)]2 = 225)

rooted connected combinatorial maps. We call a rooted map a map with a half-edge on
a vertex marked with an incoming arrow.

At first order in λ, FPPP corresponds to 6×5
2 = 15 rooted, connected, combinatorial

maps. Contrary to non-rooted maps, unlabeled rooted maps M come with a combina-
torial weight 1. This is why we chose to study FPPP instead of ln ZPPP (λ) (Fig. 1).

We can then write FPPP (λ) as:

FPPP (λ) =
∑

M connected, rooted

λV (M)A(M) (14)

with V (M) the number of vertices of M.

3.2. Stranded graphs. We will now go from this representation to a more detailed one
in terms of stranded graphs G. Indeed, each half-edge in a map M carries five indices
and can therefore be represented by five strands. In turn, each term in the propagator
has a specific tensor structure, which induces a particular pairing of the strands being
propagated along an edge. Since there are q = 10 half-strands to be paired along a
propagator, there are (2q − 1)!! = 945 such tensor structures, all of which appear in the
symmetric traceless propagator (2). A stranded graph is a combinatorial map, together
with a choice of one such tensor structure per edge. As a result, a combinatorial map G
with E edges gives rise to 945E stranded graphs, which we will sometimes call stranded
configurations of G. Note that, depending on the model, only a subset of those stranded
configurations may be relevant. This is clear from the expression of AAA in (3), which only
features 5! = 120 of the 945 possible tensor structures of the propagator.

We will distinguish three types of edge configurations:

• In an unbroken edge, all the strands are traversing and connecting half-strands at
the two ends
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Fig. 5. Stranded graph representation of the interaction vertex

• In a broken edge a pair of half-strands is connected at each end of the edge, and the
three other strands are traversing

• In a doubly-broken edge, two pairs of half-strands are connected at each end of the
edge, and the fifth strand is traversing

In particular, the 5! tensor structures common to AAA and SSS lead to unbroken edges.
Furthermore, in SSS, the 600 terms proportional to 1

N+6 are associated to broken edges,
while the 225 terms proportional to 1

(N+4)(N+6) lead to doubly-broken edges. Moreover,
the large N scaling of each type of edge is universal: for any choice of propagator PPP ,
unbroken tensor structures appear with a coefficient of order one, while broken (resp.
doubly-broken) contributions are rescaled by factors of order 1/N (resp. 1/N 2).

We now turn to the stranded representation of the interaction vertex. We call each
pair of indices contracted in the 5-simplex interaction a corner. The whole pattern of
contractions is represented as a six-valent vertex with fifteen corners, as shown in Fig. 5.
The vertices are then combined with the stranded edges to form a complete stranded
diagram. A closed cycle of strands in such a diagram is called a face. Finally, we will
respectively denote by F(G), U (G), B1(G) and B2(G) the number of faces, unbroken
edges, simply-broken edges and doubly-broken edges of G.

With these definitions in place, we canwrite the amplitude of a Feynmanmap as a sum
of amplitudes of its standed configurations and thus recast the perturbative expansion in
terms of stranded graphs:

FPPP (λ) =
∑

G connected, rooted

λV (G)A(G) ,

where A(G) is the amplitude of the stranded graph G. A key advantage is that the
large N behaviour of A(G) is explicitly encoded in the stranded structure of G. By
inspection of the Feynman rules, each vertex contributes a scaling factor N−5, while each
broken (resp. doubly-broken) propagator isweighted by a factor N−1 (resp. N−2) relative
to unbroken propagators. Moreover, after contracting the Kronecker delta functions
entering the definition of the propagator and vertex kernels, one is left with one free sum
and therefore one factor of N per face. This leads to the following large N asymptotics
of the amplitudes:

A(G) = K (G)N−ω(G) (1 +O(1/N )) , (15)
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where K (G) is a non-vanishing rational number independent from N , and the degree ω

of the stranded graph G is:6

ω(G) = 5 + 5V (G) + B1(G) + 2B2(G) − F(G) . (16)

For a given choice of PPP , we can work out an exact formula forA(G). For instance, when
PPP = AAA or SSS, we find:

A(G) =
(

ε(G)2B1(G)2B2(G)

5!U (G)+B1(G)+B2(G)
(
1 + 6

N

)B1(G)+B2(G) (
1 + 4

N

)B2(G)

)
N−ω(G) (17)

where ε(G) = (−1)B1(G)
∏

e∈G unbroken ε(σ e), σ e is the permutation associated to the
unbroken edge e, and ε = 1 (when PPP = SSS) or sgn (when PPP = AAA).

The degree ω is an integer quantity, which can a priori take arbitrarily negative
values. If one were able to prove it to be bounded from below, the existence of a large
N expansion would immediately follow. We will see that this is not true in general:
stranded graphs with arbitrarily negative degrees do exist. However, for any map G, we
will prove that none of its stranded configurations G with ω(G) < 0 (if they exist)
actually contribute to the full amplitude A(G).

The stranded graphs and combinatorial maps appearing in the rest of the paper will
always be assumed to be connected, unless specified otherwise.

3.3. Problematic cases. Consider a stranded graphG, and let us simplify the expression
of its degree. We denote by Fp the number of faces of length p, that is, the number of
faces that have exactly p corners. Each vertex contributing exactly 15 corners to the
graph, we have the relation:

15V =
∑
p≥1

pFp . (18)

Together with F = ∑
p≥1 Fp, this leads to the following expression for the degree:

ω = 5 + B1 + 2B2 +
∑
p≥1

Fp

( p

3
− 1

)
. (19)

We thus obtain the elementary but important proposition:

Proposition 1. Let G be a stranded graph. If F1(G) = F2(G) = 0, then

ω(G) ≥ 0 . (20)

Proof. This immediately follows from (19): the only terms that are not explicitly non-
negative are proportional to F1 and F2. 	


In Sect. 6, wewill prove that an even larger class of stranded graphs have non-negative
degrees. As we will be working by induction on the number of vertices, it is convenient
to introduce the notion of ring graph, defined as a stranded graph with a single edge
closed onto itself, and therefore, no vertex (see Fig. 6). The degree of a ring graph is
then defined by Eq. (19), and is clearly non-negative.

We finally introduce some nomenclature.

6 Note that the first term in (16) reflects the (conventional) N−5 scaling introduced in the definition of FP;
see Eq. (9).
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Fig. 6. Two stranded graphs associated to a ring map, in unbroken (left) and simply-broken (right) configura-
tions

Definition 1. A short face is a face of length one or two. An end graph is either a graph
with no short face, or a ring graph. End graphs have non-negative degrees.

We have reduced our problem significantly. The rest of the paper is dedicated to the
analysis of graphs containing short faces and vertices.

4. Combinatorial Structure of Subgraphs with Short Faces

The purpose of this section is to introduce specific submap and subgraph structures
which may support short faces, and will therefore require special attention. Before that,
we also introduce the general notion of boundary graph, which conveniently captures
the relation between external legs and external faces of a stranded subgraph.

4.1. Boundary graph. To any n-point stranded graph G, we associate a canonically
constructed 5-regular graph with n-vertices G∂ , which we call the boundary graph of
G [65]. It is constructed in such a way as to faithfully represent the tensorial structure
of the correlator G contributes to, up to permutations of the indices appearing in a same
tensor.

More precisely, we define G∂ through the following procedure. First, each external
leg of G is represented in G∂ by a 5-valent vertex. Then, for every external strand
connecting two external legs of G, we draw an edge between the corresponding vertices
inG∂ . For example, the stranded six-point graph consisting in a single interaction vertex
has for boundary graph the complete graph on six vertices K6, as represented in Fig. 7.
Graphically, one can obtain G∂ from G by deleting all its internal faces, and pinching
its external legs to form vertices as represented in Fig. 8. Finally, insofar as the external
legs of G are labeled, we will consider G∂ as a labeled graph.

4.2. Faces of length one: tadpoles. A stranded graph can only have faces of length one
if its parent map contains tadpole lines. For convenience, we will distinguish two types
of elementary tadpole submaps or subgraphs.

Definition 2. A single-tadpole (or, equivalently, a tadpole) is a four-point Feynman map
or stranded graph with one vertex and one self-loop. A double-tadpole is a two-point
Feynman map or stranded graph with one vertex and two self-loops. See Fig. 9.

By extension, a graph or map obtained from a single-tadpole (resp. double-tadpole)
by substituting internal edges with non-trivial two-point submaps or subgraphs will be
called a generalized single-tadpole (resp. generalized double-tadpole).
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Fig. 7. The boundary graph of the stranded interaction vertex is the complete graph K6

1

2

3

41

2

3

4

Fig. 8. A four-point stranded graph and its corresponding boundary graph

Fig. 9. The unique single-tadpole map (left); and two examples of double-tadpole maps that differ through
their embedding (right)

Bad double-tadpoles. A double-tadpole graph has at most four internal faces: two of
length one, and two of length two. Taking the factor N−5 from the vertex into account,
we conclude that a double-tadpole graph scales at most like N−1. At first sight, it
therefore seems that double-tadpoles cannot lead to graphs with negative degrees. But
this conclusion is not warranted, which we can illustrate by considering the stranded
graph represented in Fig. 10. Such a configuration supports four faces and hence saturates
our scaling bound. Furthermore, its boundary graph is that of a doubly-broken edge. We
call any such configuration a bad double-tadpole.

A serious difficulty arises from the fact that we can construct chains of bad double-
tadpoles, arranged in such a way that: for every double-tadpole we add to the chain, two
additional faces are being closed (see Fig. 11).

With p double-tadpoles, the scaling of such a chain is:

(
1

N

)p

N 2p−1 = N p−1 , (21)

which is unbounded from above.
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Fig. 10. An example of bad double-tadpole subgraph (left panel). The equivalent representation provided in
the central panel gives a clearer picture of the face structure. The associated boundary graph is represented in
the rightmost panel

Fig. 11. A chain of bad double-tadpoles: two additional faces are being closed for each double-tadpole one
adds to the chain

Fig. 12. Examples of (planar and non-planar) dipoles

As a result, we observe that the degree is unbounded from below in the class of
all stranded graphs. Nevertheless, we will see that the irreducible nature of the tensor
representations we are working with allows to tame the contributions of such diagrams.

4.3. Face of length two: melons, dipoles and dipole-tadpoles. We will focus on three
particular submap structures that can support faces of length two. We start with the
minimal one.

Definition 3. A dipole is an eight-point Feynman map or stranded graph with two ver-
tices, two edges (which we call internal edges) and no self-loop. See Fig. 12.

As will become clear later on, we will have to pay extra attention to dipole subgraphs
which appear in two other types of structures, which we now introduce. The first one is
the familiar melon.

Definition 4. Amelon is a two-point Feynman map or stranded graph with two vertices,
five edges, and no self-loop. See Fig. 13.
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Fig. 13. Examples of (planar and non-planar) melon two-point maps

Fig. 14. Examples of dipole-tadpole maps. The rightmost dipole-tadpole is separating

Fig. 15. Type-I I tadpole (left) and dipoles (middle and right). By exclusion, a tadpole or dipole in any other
configuration is of type I

As for tadpoles and double-tadpoles, a graph or map obtained from amelon by dress-
ing its propagator edges with non-trivial two-point functions will be called a generalized
melon.

We finally introduce a particular subgraph containing a dipole and two tadpoles,
which we call a dipole-tadpole.

Definition 5. A dipole-tadpole is a four-point Feynman map or stranded graph with two
vertices, four edges, and exactly one self-loop on each vertex. See Fig. 14. A dipole-
tadpole will be called separating if it is adjacent to a generalized double-tadpole, as
represented in the right panel of Fig. 14.

We will also talk of generalized dipole-tadpole if we allow the internal edges of a
dipole-tadpole to be dressed by non-trivial two-point functions.

4.4. Type-I and type-I I configurations. Finally, it will later prove convenient to distin-
guish two types of tadpoles and dipoles: those which appear as subgraphs of generalized
double-tadpoles, generalized melons or generalized dipole-tadpoles, as represented in
Fig. 15; and all the others. We will label the latter as type-I , the former as type-I I .

5. Subtraction of Double-Tadpoles and Melons

In this section, we show that the irreduciblemodel with propagator PPP in Eq. (9) is equiva-
lent to a theorywith renormalized covariance, in whichmelons and double-tadpoles have
been subtracted from the Feynman expansion. While not strictly necessary to prove the
existence of the large N expansion [2], this reformulation is convenient. It cleanly sep-
arates Feynman maps that support stranded configurations with non-positive degrees,
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from those that do not. Only the latter can be accurately estimated by analyzing the
combinatorial structure of their stranded configurations, a task we will turn to in Sect. 6.

Let us start by estimating the amplitude of melon and double-tadpole maps.

Lemma 1. Let G be a (non-amputated) two-point Feynman map. The associated ampli-
tude A(G)aaa,bbb can be written as:

A(G)aaa,bbb = λV (G) fG(N )PPPaaa,bbb , (22)

where fG is some (rational) function. Furthermore:

• if G is a double-tadpole, then fG(N ) = O(1/N );

• if G is a melon, then fG(N ) = f (0)
G + O(1/N ) where f (0)

G ∈ R. Moreover, when

PPP ∈ {SSS, AAA}, one necessarily has f (0)
G > 0.

Proof. The functional form of Eq. (22) is a direct consequence of the irreducibility of
the representation. It follows from Schur’s lemma for any two-point graph G.

Let us first assume thatG is a double-tadpole. It is clear that any stranded configuration
of G has at most four faces (this can be formalized with the help of e.g. the bounds of
Appendix A). They contribute a factor of order at most N 4, which is compensated by
the 1/N 5 scaling of the vertex. Hence fG(N ) = O(1/N ).

Next, we assume G to be a melon. Consider one of its stranded configurations G. As
will be clear fromRemark 2 below, we can assume thatG contains only unbroken edges.
We have (5×4)/2 = 10 internal corners at our disposal on each vertex to build up faces,
so 20 corners in total. From the structure of the melon and the unbroken character of the
edges of G, it is also clear that any face must have length at least two. It immediately
follows that F(G) ≤ 10, leading to a contribution to the amplitude scaling like N 10 at
most. Taking the two factors of 1/N 5 coming from the vertices into account, we infer
that fG(N ) = O(1). Let us finally specialize to PPP ∈ {SSS, AAA}. Given that any unbroken
edge configuration contributes to PPP , it is straightforward to show that: a) this bound
can be saturated; b) the configurations that do so have only unbroken edges and the
same boundary graph, namely, that of an unbroken edge; c) despite having identical
boundary graphs, the way in which the external strands are being paired up in any two
such configurations differ by a permutation. As a result, there can be no cancellation
between leading order stranded configurations, which implies that f (0)

G �= 0.7 Given
the symmetric structure of the melon and of its leading order contributions, it is also
possible to show that f (0)

G > 0, irrespectively of the choice of irreducible representation.
This is direct for the symmetric traceless propagator since there are no signs involved
in its unbroken stranded contributions. For the antisymmetric representation, we can
infer from the structure of a leading-order melon stranded graph that the product of the
signatures of the permutations labeling its unbroken edges (including the external one)
is necessarily even, leading to an overall positive sign. We leave the details of the proof,
which follows from footnote 5, to the interested reader. 	

Remark 1. If one works with the colorable interaction kernel (13) instead of (5), it is
possible to prove that f (0)

G ≥ 0 for any melon G, and f (0)
G > 0 for at least one such G.

Indeed, it can be shown that, in this particular case, the unique leading-order stranded
configuration of a closed melon happens to be decorated by the same unbroken edge

7 This is a crucial difference with double-tadpoles. For the latter, leading order stranded configurations are
of the doubly-broken type, and as a result, necessarily cancel out once resummed into the full amplitude.
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(that is, the same permutation σ ∈ S5) on all six propagators. Hence, the coefficient
associated to this particular unbroken edge is raised to an even power, and the overall
sign of the amplitude is always positive. Moreover, it is straightforward to see that any
σ can contribute to a leading-order melon in such a way, as there is always at least one
non-zero unbroken contribution in each propagator. We then conclude that at least one
melon is non-vanishing at leading order.

In light of the previous Lemma, it is clear that double-tadpole submaps are well-
behaved in the large N limit, even though some of their stranded configurations are not.
To prove the existence of the large N limit, wemust therefore make sure to always bound
a double-tadpole Feynman map as a whole. Moreover, it is also clear from Lemma 1
that melon two-point functions will contribute to the leading order. By dressing double-
tadpole subgraphs with such two-point functions, we can generate a family of stranded
graphs with arbitrarily negative degrees, but no double-tadpoles. This indicates that the
whole family of two-point functions generated by double-tadpoles and melons needs to
be treated with care: the existence of the large N expansion cannot be deduced from
bounds on their individual stranded configurations.

We then follow themethod of [1] and adapt it to rank 5.We consider amodified theory
with covariance KPPP where K is a real number. Let us denote by 
(2) the contribution
of melon and double-tadpole maps to the self-energy. By Lemma 1, we have:



(2)
aaa,bbb =

(
λK f PPP1 + λ2K 5 f PPP2

)
PPPaaa,bbb , (23)

where f PPP1 (N ) and f PPP2 (N ) are series in 1/N verifying

f PPP1 (N ) = O(1/N ) and f PPP2 (N ) = mPPP +O(1/N ) . (24)

Moreover, for PPP ∈ {SSS, AAA}, the constant mPPP is necessarily non-vanishing and positive.8

Up to symmetry factors, it essentially counts the number of leading order melon stranded
graphs.

As an illustration, for PPP = AAA or SSS, we have the exact formula:9



(2)
aaa,bbb=15

λK 2

N 5

∑
c

PPPa1a2a3a4a5,c1c2c3c4c5PPPc5c6c7c8c9,c9c4c10c11c12PPPc10c6c3c13c14,c14c11c7c2c15

PPPc15c13c12c8c1,b1b2b3b4b5 + 120
λ2K 5

N 10

∑
c,d

PPPa1a2a3a4a5,c1c2c3c4c5

PPPc5c6c7c8c9,d5d6d7d8d9PPPc9c4c10c11c12,d9d4d10d11d12PPPc12c8c3c13c14,d12d8d3d13d14

PPPc14c11c7c2c15,d14d11d7d2d15PPPc15c13c16c2c1,d15d13d10d6d1PPPd1d2d3d4d5,b1b2b3b4b5 (25)

8 Owing to Remark 1, we also have mPPP > 0 for any PPP with the alternative choice of vertex kernel (13).
9 Analogous formulas exist for mixed representations, but they are slightly more involved as in those cases

the Feynman amplitudes may depend on the embedding information of the Feynman maps.
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Using the explicit expression of the propagators, we can find exact expressions for f PPP1
and f PPP2 . For instance, we determined (by numerical methods) that:10

f AAA1 = (N − 4)2(N 2 − 13N + 34)

115200N 5
,

f SSS1 = (N + 8)2(N 5 + 19N 4 + 50N 3 − 356N 2 + 8N + 672)

960N 4(N + 4)2(N + 6)2
. (26)

More interestingly for the large N limit itself, we can in fact evaluatemPPP = lim
N→∞ f PPP2 (N )

exactly, which we briefly sketch. Consider a melon map G. A leading order stranded
configuration of G with unbroken boundary graph can only have unbroken edges. Fur-
thermore, once we fix the structure of the external strands, there is a unique choice of
configuration of the five internal edges that makes the graph leading order. Since in both
SSS and AAA, an unbroken edge is weighted by the combinatorial factor 1/5! (up to a sign),
we conclude that the contribution of G to mPPP is (1/5!)5. Given that there are 5! melon
maps, this finally leads to:

mSSS = mAAA = (1/5!)4 . (27)

Following [1], we denote 
(2) = λK f PPP1 + λ2K 5 f PPP2 , T 6 the interaction of Eq. (8),
and define the subtracted interaction:

λ

6N 5
: T 6 :K= λ

6N 5
T 6 − 1

2

(2)T PPPT . (28)

As is clear from the notation, this enforces a form of Wick ordering with respect to the
covariance KPPP , which subtracts the double-tadpole and melon interactions. As a result,
the model with covariance KPPP and interaction : T 6 :K can be expanded in terms of
Feynman maps which have neither double-tadpoles nor melons subgraphs.

The last step amounts to choosing K in such a way that the model with covariance
KPPP and subtracted interaction is nothing but our original model of Eq. (9).

FPPP (λ) = 6

N 5
λ∂λ ln

{[
e
1
2 ∂T PPP∂T e

λ

6N5 T
6
]
T=0

}

= 6

N 5
λ∂λ ln

{[
e
1
2 ∂T PPP∂T e

λ

6N5 :T 6:K +
(2)
2 T PPPT

]
T=0

}

= 6

N 5
λ∂λ ln

{[
e
1
2

1
1−
(2) ∂T PPP∂T e

λ

6N5 :T 6:K
]
T=0

}
(29)

From the last line,weneed to ensure that K = (1−
(2))−1,which results in a polynomial
equation for K :

1 − K + λ f PPP1 K 2 + λ2 f PPP2 K 6 = 0 . (30)

Equivalently, this equation can be deduced from the Schwinger–Dyson equation of
melon and double-tadpole two-point functions, which we have illustrated in Fig. 16. For
N large and λ small enough this equation admits a unique solution K (λ, N ) with the

10 The computation could in principle be performed for f PPP2 as well, but it is more costly.
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Fig. 16. Schematic structure of the Schwinger–Dyson equation resumming arbitrary two-point melon and
double-tadpole maps (for simplicity, we are ignoring embedding information)

following properties: it is a series in both λ and 1/N , it is uniformly bounded in both N
and λ, and

lim
λ→0

[
lim

N→∞ K (λ, N )

]
= 1 . (31)

Furthermore, limN→∞ K (λ, N ) is a series in λ2 which coincides with the generating
function of Fuss–Catalan numbers An(6, 1).

We can then write Eq. (9) as:

FPPP (λ) = 6

N 5
λ∂λ ln

{[
e

K (λ,N )
2 ∂T PPP∂T e

λ

6N5 :T 6:K (λ,N )

]
T=0

}
, (32)

and obtain the looked-for perturbative expansion in terms of Feynman maps with no
double-tadpoles or melons:

FPPP (λ) =
∑

Ĝ connected, rooted
with no double-tadpoles or melons

λV (Ĝ) [K (λ, N )]U (Ĝ)+B1(Ĝ)+B2(Ĝ) A(Ĝ) . (33)

In this equation, A designates the same amplitude map as defined in Eq. (15). Given
that K (λ, N ) is also a series in 1/N , the 1/N expansion in Theorem 1 follows from
Remark 2 and from Proposition 3.

6. Non-negativity of the Degree

In this section, we prove that the degree of a stranded graph with no melon and no
double-tadpole is non-negative. Because the distinction between graphs and embedded
graphs does not matter for this purpose, wewill ignore it. In particular, our figures should
now be understood as representing equivalent classes of maps which only differ through
their embedding.

6.1. Flip distance between boundary graphs and scaling bounds. In the following, it
will be convenient to extract large N scaling information by direct inspection of the
boundary graph of a given stranded configuration.

To this effect, we first introduce combinatorial moves acting on pairs of edges in a
boundary graph, which we call flips. Given two distinct edges e1 and e2 in a boundary
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e1 e2

Fig. 17. The two possible flips of edges e1 and e2 in a boundary graph

graph B, a flip amounts to: 1) cutting e1 and e2 open; and 2) recombining the resulting
four half-edges in one of two possible channels, to obtain a new boundary graph B̃.
This is illustrated in Fig. 17. It is easy to see that the set of (not necessarily connected)
boundary graphs with prescribed number of vertices is stable under flips. Moreover,
these moves are ergodic in this space: given two 5-regular graphs, it is always possible
to transform one into the other through a finite number of successive flips. As a result,
we can introduce a notion of flip distance between such graphs.

Definition 6. Let B1 and B2 be boundary graphs with n ≥ 2 vertices. We define the flip
distance between B1 and B2, denoted by d(B1, B2), as theminimal number of successive
flips required to map B1 to B2.

It is elementary to check that d defines a proper notion of distance on the space of
boundary graphs with n vertices. By convention, we will also postulate that d(B1, B2) =
∞ whenever B1 and B2 do not have the same number of vertices. The relation between
flip distance and scaling is captured by the following proposition.

Proposition 2. Consider a stranded graph G, and a strict subgraph S ⊂ G. Let B be a
boundary graph such that d(B, S∂ ) < ∞. Then, there exists a stranded graph S′ such
that S′

∂ = B and

|F(G ′) − F(G)| ≤ |F(S) − F(S′)| + d(B, S∂ ) , (34)

where G ′ is the graph obtained by substitution of S by S′ into G.
In particular, if G and G ′ contain only unbroken edges, F(S′) = 0, and G ′ remains

connected, we find:

ω(G) ≥ ω(G ′) + 5
(
V (S) − V (S′)

) − F(S) − d(S∂ , S
′
∂ ) . (35)

Proof. The idea is to perform a succession of cut-and-glue operations on the internal
strands of S (while leaving the rest of the graph unchanged), until we obtain a new
subgraph with boundary B. Since each cut-and-glue operation is reflected by a flip at
the level of boundary graphs, this can be done in at most d(B, S∂ ) steps. We then insert
or remove internal faces to change F(S) into F(S′), and obtain the target stranded
subgraph S′. This last step is responsible for the first term in the right-hand-side of
Eq. 34. Furthermore, it is clear that each cut-and-glue operation changes the number of
faces in the graph by −1, 0 or 1, which explains the second term. Finally, if we assume
that G and G ′ contain only unbroken edges, then B1 = B2 = 0 for both graphs, and
together with F(S′) = 0, Eq. (35) follows from Eqs. (34) and (16). 	


Equation (35) will be particularly relevant because it will allow us to derive inductive
bounds of the form ω(G) ≥ ω(G ′) from the local combinatorial condition:

d(S∂ , S
′
∂ ) ≤ 5

(
V (S) − V (S′)

) − F(S) . (36)
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1 flip 1 flip

Fig. 18. Flip distance between the boundary graphs of the doubly-broken, broken and unbroken propagators

As a simple illustration of Eq. (34), consider the boundary graph of a single edge
e. If e is doubly-broken, it is at flip distance one from the boundary graph of a broken
edge, which is itself at flip distance one from the boundary graph of an unbroken edge;
see Fig. 18.

Therefore, we can replace a broken edge by an unbroken one in such a way that
the number of faces decreases at most by one. As a result, the number of broken edges
decreases by one, which implies that the degree (16) can only decrease. Likewise, we
can replace a doubly-broken edge by an unbroken one in such a way that the number of
faces decreases at most by two, whereas the number of doubly-broken edges decreases
by one. Again, the degree can only decrease. This leads to the following observation.

Remark 2. For any stranded graph G, there exists a stranded graph G ′ with B1(G ′) =
B2(G ′) = 0, and such that

ω(G) ≥ ω(G ′) . (37)

Hence, for the purpose of finding lower bounds on the degree, we can restrict ourselves
to graphs with only unbroken edges. This property is assumed in the remainder of the
present section.

We now turn to the definition of basic combinatorial moves, which we will use in
combination in the proof of Sect. 6.5. A first straightforward example concerns double-
tadpoles.

Lemma 2. Consider a stranded graphG with a double-tadpole subgraph S. It is possible
to replace S by an unbroken edge in such a way that the resulting graph G ′ verifies:

ω(G) ≥ ω(G ′) − 1 . (38)

Proof. We notice that: F(S) ≤ 4 if S∂ is of the doubly-broken type; F(S) ≤ 3 if S∂ is of
the simply-broken type; and F(S) ≤ 2 otherwise. The result then follows from Eq. (35).

	

Less straightforward examples will be the focus of the next four subsections.

6.2. Single-tadpole deletions. We first look for combinatorial moves that replace a
single-tadpole subgraph with two (unbroken) propagators, and delete as few faces as
possible. If we ignore for the moment the permutations labeling the two edges after the
deletions, there are exactly three ways of doing so, which amount to a choice of pairing
of the external legs of the subgraph: we call these deletion channels, or simply channels.
They are the parallel (pairing (a, c) and (b, d)), cross (pairing (a, d) and (b, c)) and
orthogonal (pairing (a, b) and (c, d)) channels, as illustrated in Fig. 19. Note that this
nomenclature is purely conventional: it depends on an arbitrary labeling of the external
legs of the tadpole. In the following, we will fix a canonical labeling for each possible
structure of the boundary graph.

To find a suitable deletion along the lines of Proposition 2, we first need to determine
the structure of the boundary graph S∂ . Up to a relabeling of the vertices, we find the five
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Fig. 19. The three deletion channels of a single-tadpole. From top to bottom: parallel, cross and orthogonal
channels
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Fig. 20. The five possible boundary graphs of a single-tadpole

possibilities represented in Fig. 20. Indeed, first notice that the structure of the vertex
imposes the presence of a K4 subgraph (the complete graph on 4 vertices). We have
represented this subgraph in grey in Fig. 20. We are left with a choice of pairing of eight
remaining half-edges (two per vertex), to form the four edges that we have represented
in black. The five configurations we end up with are distinguished by the lengths of
the cycles formed by the black edges, and can be labeled by the partitions of 4. Indeed,
we have a budget of four edges, which can be split up into: four cycles of length one
(1 + 1 + 1 + 1); two cycles of length one and one of length two (1 + 1 + 2); one cycle of
length one and one of length three (1 + 3); two cycles of length two (2 + 2); or one cycle
of length four (4).

We can now write the following Lemma.

Lemma 3. Let G be a stranded graph, and S a strict single-tadpole subgraph of G. Call
G ′ the graph obtained after a deletion of S in the channel c, and assume that G ′ remains
connected.

1. If S∂ is in the configuration 1 + 1 + 2, it is possible to choose G ′ such that:
(a) ω(G) ≥ ω(G ′) + 1 when c is the parallel channel;
(b) ω(G) ≥ ω(G ′) − 1 when c is any other channel.

2. If S∂ is in any other configuration, it is possible to chooseG ′ such thatω(G) ≥ ω(G ′).
Proof. The single-tadpole S can support at most one internal face, and exactly one vertex
is lost upon deletion. G ′ being connected, Proposition 2 guarantees that we can arrange
the strands in such a way that:

ω(G) ≥ ω(G ′) + 4 − d(S∂ , Bc) , (39)
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Fig. 21. Distance between the five single-tadpole configurations: any two partitions connected by an edge are
at flip distance one from each other
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Fig. 22. Flip distance between a tadpole in the configuration 1 + 1 + 1 + 1 and the parallel channel

where Bc is the boundary graph characterizing the channel c. For instance, if c is the
parallel channel, Bc is the four-vertex graph in which vertices a and c are connected
by five edges, and likewise for vertices b and d. It remains to bound the flip distance
between S∂ and Bc. It helps to first determine the flip distance between the various
possible configurations of S∂ , which we have represented in Fig. 21. It is then apparent
that the Lemma follows from the following sufficient conditions:

• if S∂ is in the configuration 1 + 1 + 1 + 1, d(S∂ , Bc) ≤ 4 for any c;
• if S∂ is in the configuration 2 + 2 and c is the parallel channel, then d(S∂ , Bc) ≤ 2;
• if S∂ is in the configuration 4, d(S∂ , Bc) ≤ 3 if c is the parallel or orthogonal
channel, and d(S∂ , Bc) ≤ 4 otherwise;

• if S∂ is in the configuration 3 + 1 and c is the cross channel, then d(S∂ , Bc) ≤ 4.

If S∂ is in the configuration 1 + 1 + 1 + 1, we need 2 flips to disconnect the graph
in the appropriate channel, and 2 more flips to remove the self-loops. Hence, we have
d(S∂ , Bc) ≤ 4 . This is illustrated in Fig. 22, for the parallel channel.

If S∂ is in the configuration 2 + 2 and c is the parallel channel, we can infer that
d(S∂ , Bc) ≤ 2 by first flipping the edges (a, b) and (c, d), then the edges (a, d) and
(b, c).

Likewise, if S∂ is in the configuration 4, we can show that d(S∂ , Bc) ≤ 3 if c is the
parallel or orthogonal channel. One needs an extra flip in the cross channel, because a
and d (resp. b and c) are initially connected by a single edge; hence, d(S∂ , Bc) ≤ 4 in
that case.

If S∂ is in the configuration 3 + 1 and c is the cross channel, we need 3 flips to
disconnect. This has the effect of creating a second self-loop. We can then perform
one more flip to remove the self-loops, and obtain the boundary graph Bc. As a result,
d(S∂ , Bc) ≤ 4. This is illustrated in Fig. 23. 	
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Fig. 23. Flip distance between a tadpole in the configuration 1 + 3 and the cross channel
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Fig. 24. The four deletion channels we consider for a dipole; from left to right: channels (1), (2a), (2b) and
(2c)

6.3. Dipole deletions. We will now look for combinatorial moves that replace a dipole
subgraphwith four (unbroken) propagators anddelete as few faces as possible. In contrast
to the single-tadpole deletions of the previous section, there aremanymoreways of doing
so, leading to many more than three channels of deletions. However, for our purpose,
it will be sufficient to consider only four of those channels. Indeed, all we need is
a sufficiently rich set of deletion moves to ensure that, in all situations, at least one of
them can be performedwhile maintaining our combinatorial constraints (connectedness,
and the absence of melons or double-tadpoles). This subset of channels is presented in
Fig. 24. Note that, apart from the fact that the groups of half-edges {1, 2, 3, 4} and
{5, 6, 7, 8} are attached to different vertices, the labeling is purely conventional at this
stage. This will be taken advantage of and made more precise in the proof of Lemma 4
(see also Fig. 27).

The reason for choosing these four channels is that, if we assume that the dipole
is of type I , then at least one of them does not disconnect the graph. Indeed, suppose
channel (2a) disconnects. Then the graph is in either one of the configurations depicted
in Fig. 25a–c, with subgraphs A and B not necessarily connected.

• If it is in the first configuration, then channels (2b) and (2c) also disconnect but
channel (1) does not. Indeed, otherwise there would be generalized double-tadpoles
on both vertices of the dipole, which means that the latter would be of type I I .

• If it is in the second configuration, channels (2b) and (2c) do not disconnect. Oth-
erwise, the subgraphs A and B would have to be disconnected, in a way that would
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Fig. 25. Possible configurations of a dipole which disconnects the graph upon deletion in channel (2a)

Fig. 26. Two types of configurations of the dipole when F(S) = 0: the two internal corners can lie on the
same external face (left), or on two distinct ones (right). In both cases, we can reconfigure this subset of strands
in such a way as to ensure F(S) = 1, without affecting the rest of the graph G

either generate two generalized double-tadpoles, or a generalized melon. Both cases
are excluded given that the dipole is of type I .

• If it is in the third configuration, suppose that channel (2b) also disconnects. Then,
the subgraph B must be disconnected and the dipole is in the configuration of Fig. 25d
with A, B and C subgraphs not necessarily connected. Then, channel (2c) does not
disconnect, otherwise C would have to be disconnected and there would again be
two generalized double-tadpoles.

All in all, at least one channel does not disconnect if the dipole is of type I .
The following lemma gives us tools to recursively remove dipoles from a stranded

graph.

Lemma 4. Let G be a stranded graph and S a strict dipole subgraph of G. Call G ′ the
graph obtained after deletion of S in the channel c, and assume G ′ remains connected.
There exists a conventional labeling of the external legs of S (see Fig. 24) such that: if c is
channel (1), (2a), (2b) or (2c), then it is possible to chooseG ′ such thatω(G) ≥ ω(G ′).

Proof. We have two cases to consider: the dipole contains one internal face or none.
In the latter case (F(S) = 0), the two corners of the dipole can either be on the same
external face or on two distinct ones, as represented in Fig. 26. In both those cases,
this subset of strands can be reconfigured in such a way as to ensure that the dipole
contains an internal face. Moreover, such a move does not affect the rest of the graph.
We obtain in this way a graph G̃ containing a dipole subgraph S̃ such that: F(S̃) = 1
and ω(G) ≥ ω(G̃) + 1. It is then clear that the Lemma will hold in general if we can
prove it for configurations like G̃, which we now turn too.

We can thus assume, without loss of generality, that F(S) = 1, which makes it
easier to determine the structure of the boundary graph S∂ . We can proceed similarly
as for single-tadpoles, and associate a K4 subgraph to each of the two vertices in the
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Fig. 27. The five possible boundary graphs of a dipole

dipole, which we represent in gray. We are left with a choice of pairing between eight
additional half-edges, four of themattached to each K4 subgraph,whichwe can represent
in black. Given that the two internal corners of the dipole have been used to build up
the internal face, any pairing of the black half-edges must connect one K4 subgraph to
the other. Consequently, we can again classify the allowed contractions in terms of the
number and lengths of cycles with support on black edges only. The resulting boundary
graphs can be labeled by partitions of 8 into even integers, yielding five possibilities:
8 = 6 + 2 = 4 + 4 = 4 + 2 + 2 = 2 + 2 + 2 + 2. See Fig. 27.

Given that G ′ remains connected, F(S) = 1 and V (S) = 2, Proposition 2 guarantees
that we can arrange the strands in such a way that:

ω(G) ≥ ω(G ′) + 9 − d(S∂ , Bc) , (40)

where Bc is the boundary graph characterizing the channel c. Hence, the looked-for
bound will follow from d(S∂ , Bc) ≤ 9, which we now prove.

We can first determine the flip distance between the five boundary graphs of Fig. 27,
which is reported in Fig. 28. As a result, it is sufficient to prove that:

• if c = 1 and S is in the configuration 2 + 2 + 2 + 2, then d(S∂ , Bc) ≤ 6;
• if c = 2a and S is in the configuration 4 + 2 + 2 or 4 + 4, then d(S∂ , Bc) ≤ 8;
• if c = 2b and S is in the configuration 8 or 4 + 2 + 2, then d(S∂ , Bc) ≤ 8;
• if c = 2c and S is in the configuration 2 + 2 + 2 + 2 or 4 + 4, then d(S∂ , Bc) ≤ 8; if,
on the other hand, S is in configuration 6 + 2, then d(S∂ , Bc) ≤ 9.

Channel 1 (parallel channel). To map the 2 + 2 + 2 + 2 configuration to the parallel
configuration, we need to cut all twelve grey edges. This can be achieved in 6 flips. The
other four dipole configurations being at distance at most 3 from 2+2+2+2, we always
have d(S∂ , B1) ≤ 9.

Channel (2a). Let us first look at the grey edges. In the two configurations 4 + 4 and
4 + 2 + 2, we need to cut eight of the twelve grey strands; this requires 4 flips. We then
have to perform four more flips on pairs of black edges to obtain the boundary graph
Bc. We thus have d(S∂ , Bc) ≤ 8 in the configurations 4 + 4 and 4 + 2 + 2. Since 8 is at
distance one from 4 + 4, while 6 + 2 and 2 + 2 + 2 + 2 are at distance one from 4 + 2 + 2,
we conclude that d(S∂ , Bc) ≤ 9 in all cases.
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Fig. 28. Distance between the five dipole configurations: any two partitions connected by an edge are at flip
distance one from each other
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Fig. 29. Graphical proof that the configuration 6 + 2 is at flip distance (at most) 9 from B2c

Channel (2b). We again need to perform 4 flips on grey edges. In configurations 8
and 4 + 2 + 2, we can then obtain B2b after 4 more flips on black edges. As 4 + 2 + 2 is
at distance one from 4 + 4, 6 + 2 and 2 + 2 + 2 + 2, we always have d(S∂ , Bc) ≤ 9.

Channel (2c). As before, we have to cut eight of the twelve grey strands, which can
be achieved in 4 flips. Then, for the configurations 2+2+2+2 and 4+4, we can implement
4 additional flips on black strands to obtain the boundary graph B2c. Given that 8 and
4 + 4 are at distance one from either 2 + 2 + 2 + 2 or 4 + 4, we infer that d(S∂ , B2c) ≤ 9
for these four configurations. We can finally check that the configuration 6 + 2 can also
be mapped to B2c in 9 flips (4 flips on grey edges, and 5 on black edges), as illustrated
in Fig. 29). 	


6.4. Dipole-tadpole and quartic rung deletions. We will now proceed with the deletion
of the four-point dipole-tadpole subgraphs. As for the deletion of single-tadpoles, there
are three possible channels: parallel, cross and orthogonal. They are represented in
Fig. 30.

In the following Lemma, we prove that it is always advantageous to delete a dipole-
tadpole in the orthogonal channel, and in at least one of the parallel or cross channels.

Lemma 5. Let G be a stranded graph and S a strict dipole-tadpole subgraph of G.
Call G ′ the graph obtained after deletion of S in the channel c and assume G ′ remains
connected.
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Fig. 30. The three channels of deletion for the dipole-tadpole four-point subgraph

(a) Suppose c is the orthogonal channel. Then, it is possible to choose G ′ such that
ω(G) ≥ ω(G ′).

(b) Suppose c is the parallel (resp. cross) channel, and call G ′′ the graph obtained after
deletion of S in the cross (resp. parallel) channel. Then, if it is not possible to choose
G ′ such that ω(G) ≥ ω(G ′), provided that G ′′ remains connected, it is possible to
choose G ′′ such that ω(G) ≥ ω(G ′′).

Proof. Call v1 the vertex connected to (x, y) and v2 the other vertex. We first observe
that a number of situations can be dealt with Lemma 3, through successive deletions of
the tadpoles at v1 and v2. We distinguish three cases.

• If neither v1 nor v2 are of type 1+1+2, then we can perform themove in any channel
(and in particular in the orthogonal channel): delete v1 in the parallel channel, then
v2 in the desired channel. This is illustrated in Fig. 31a.

• If one of them (say v1) is of type 1+1+2, there is a single channel c in which v1 can
be deleted (in which case we gain a factor 1/N ). We then distinguish two subcases. If
the channel c pairs (x, y) and (a, b), we first delete v2 in the parallel channel, then v1
in the channel c. This implements the orthogonal deletion, as illustrated in Fig. 31b.

If, on the other hand, the channel c is parallel/cross (say, it pairs (x, a) and (y, b)), we
delete v1 in this channel, and then v2 in any desired channel, as shown in Fig. 31c.

• Assume, finally, that both v1 and v2 are of type 1 + 1 + 2. If at least one of them
(say v1) can be deleted in the parallel or cross channel, we perform this move and
then delete v2 in the appropriate channel: the first deletion yields a 1/N suppression,
while the second deletion brings at most a factor of N . We can therefore perform the
deletion in all three channels, as illustrated in Fig. 31d.

On the other hand, if both v1 and v2 can only be deleted in the orthogonal channel, we
are still able to implement the orthogonal channel: delete v1 in the orthogonal channel
(yields a 1/N suppression), then v2 in the parallel channel (results in an additional factor
of N ). This is illustrated in Fig. 31e.

All in all, the only subcases left to investigate are about the parallel/cross channels,
in the following situation: v2 is of type 1 + 1 + 2 and can be deleted in the orthogonal
channel; furthermore, if v1 is of type 1 + 1 + 2, its easy channel is also the orthogonal
one. In particular, we can now assume that v2 is in one of the two configurations shown
in Fig. 32.

We now determine the allowed boundary graphs in the remaining configurations.
The Lemma will follow if we can prove that d(S∂ , Bc) ≤ 10 − F(S), with c either the
parallel or cross channel. For this purpose, it will be sufficient to consider equivalent
classes of boundary graphs under exchanges of x and y, z and t , as well as (x, y) and
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Fig. 31. Dipole-tadpole deletions from tadpole deletions (Lemma 5)
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Fig. 32. Special configurations of v2

Fig. 33. Two special configurations for the boundary graph of a dipole-tadpole

Fig. 34. The six inequivalent boundary graphs with two connected components

(z, t). As v2 can only be in the configurations of Fig. 32, the full boundary graph must
have one of the two structures depicted in Fig. 33. We distinguish three cases.

Assume first that S∂ has two connected components. In that case, we necessarily have
F(S) ≤ 3. Indeed, we infer from the boundary structure of tadpoles in Fig. 20 that at
most three corners are available at v1 (resp. v2) to support faces of length two or higher.
Furthermore, each such face will use at least one corner. But when S∂ is disconnected,
two of those corners must already be occupied by strands that connect z to t (resp. x to
y). We have therefore at most one face of length two or higher. Remembering that each
tadpole line can support an additional face, we obtain the claimed bound: F(S) ≤ 3.
The six inequivalent boundary graphs which can be realized under those conditions are
represented in Fig. 34. It is straightforward to check that d(S∂ , Bc) ≤ 7 ≤ 10 − F(S),
where c is e.g. the parallel channel.

We can now assume that S∂ is connected. We note that there is at least two edges
connecting the pair of vertices (x, y) and (z, t). Indeed, if there were only one such edge,
we would have an additional seven half-edges to match from the pair (x, y), which by
parity is impossible. Let us first assume that there are exactly two edges connecting (x, y)
to (z, t), and that furthermore, they are not both in the same parallel/cross channel. For
definiteness, and without loss of generality, we can suppose those edges are between y
and t , and between y and z. There are then four possible boundary graphs, as represented
in Fig. 35. Compared to the previous paragraph, one additional corner is available at v1
(resp. v2) to build up faces of length two or higher. This leads to the weaker bound
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Fig. 35. The four inequivalent boundary graphs with exactly one edge in the cross channel, and one edge in
the parallel channel

Fig. 36. The sixteen inequivalent boundary graphs with at least two edges in the parallel channel

F(S) ≤ 4. However, a straightforward inspection of the graphs of Fig. 35 shows that
d(S∂ , Bc) ≤ 6 ≤ 10 − F(S) always holds (and is saturated for the last configuration),
where c is the parallel channel.

Let us finally suppose that there are at least two edges in the same parallel or cross
channel. Without loss of generality, we can assume it to be the parallel channel. After a
straightforward (but tedious) inspection, we find another sixteen inequivalent boundary
graphs, which we have depicted in Fig. 36. Any such configuration verifies d(S∂ , Bc) ≤
5 ≤ 10 − F(S), where we have used that F(S) ≤ 5 for any dipole-tadpole S.

This concludes the proof. 	

We will also need to delete a particular type of four-point subgraph represented in

Fig. 37. We call this type of graph quartic rung. There are three different channels of
deletion but we will only consider one (as represented in Fig. 37).

Lemma 6. Let G be a stranded graph and S a strict quartic rung subgraph of G. Call
G ′ the graph obtained after deletion of S in the channel depicted in Fig. 37 and assume
G ′ remains connected.

It is always possible to perform the deletion in such a way that ω(G) ≥ ω(G ′).
Proof. We want to prove the following bound:

d(S∂ , B) ≤ 10 − F(S) (41)
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Fig. 37. Deletion of a quartic rung subgraph

Fig. 38. The five possible boundary graphs of a quartic rung S with F(S) = 6
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Fig. 39. Deletion of two-particle reducible components

with B the boundary graph of the deletion channel depicted in Fig. 37 with no self-loops.
First notice that we can apply the argument of Fig. 26 (from the proof of Lemma 4) to

each of the six dipole subgraphs of S. This allows to assume, without loss of generality,
that F(S) = 6. In such a situation, S∂ is one of the five boundary graphs represented
in Fig. 38: there is one edge from x to y, one edge from z to w, and each of the eight
remaining edges connects a vertex of the pair (x, y) to a vertex of the pair (z, w). It is
then clear that eight edges need to be reconfigured to map S∂ to B. Given that those do
not include any self-loop, we conclude that d(S∂ , B) ≤ 4 = 10 − F(S). 	


6.5. Two-point subgraph deletions. The followingLemmawill allowus to find inductive
bounds on two-particle reducible graphs.

Lemma 7. Let G be a two-particle reducible stranded graph. That is, G has the structure
represented in Fig. 39, where S1 and S2 are (non-empty) two-point subgraphs. Denote
by G1 (resp. G2) the graph obtained by closing S1 (resp. S2) with an unbroken edge e1
(resp. e2). It is possible to choose e1 and e2 such that:

ω(G) ≥ ω(G1) + ω(G2) − 4 . (42)

Moreover, if S2 has no tadpole and no dipole, then

ω(G) ≥ ω(G1) + 1 . (43)

Proof. The boundary graph of S1 (resp. S2) is one of the three configurations shown in
Fig. 18. It is then apparent that we can choose e1 and e2 such that:11

F(G1) ≥ F(S1) + 3 and F(G2) ≥ F(S2) + 3 . (44)

11 Note that we are constrained by the fact that e1 and e2 are required to be unbroken.Without this restriction,
we could ensure that F(G1) = F(S1) + 5 and F(G2) = F(S2) + 5.
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H0 H1 H2 H3

H4 H5 H6 H7

H8 H9 H10 H11

H12

Fig. 40. Particular two-point subgraphs which can always decrease the degree upon deletion

Furthermore, it is clear that F(G) ≤ F(S1)+ F(S2)+5 (there are ten strands in G\(S1∪
S2), and they all belong to faces of length atmost two). Hence, F(G1)+F(G2)−F(G) ≥
1, which is equivalent to ω(G1)+ω(G2)− 4 ≤ ω(G). Finally, if we assume that S2 has
no tadpole or dipole, it is clear that G2 has at most one dipole or one tadpole. Hence,

ω(G2) = 5 +
∑
k≥1

k − 3

3
Fk(G2) ≥ 5 − 2/3 (45)

which implies ω(G2) ≥ 5 (since ω ∈ N). As a consequence, ω(G) ≥ ω(G1) + 1. 	

Finally, to prove the main result of this section (Proposition 3), we will also rely on

a number of special two-point moves, which we gather in the next Lemma.

Lemma 8. Let G be a stranded graph and S a strict subgraph of G. Suppose S is one of
the two-point subgraphs of Fig. 40. Call G ′ the graph obtained from G by substituting
S with an unbroken edge e. Then, it is always possible to choose e in such a way that
ω(G) ≥ ω(G ′) + 1.

Proof. See Appendix B. 	

Lemma 9. Let G be a stranded graph with no double-tadpole, no melon, and no sepa-
rating dipole-tadpole (as introduced in Definition 5 and Fig. 14). Suppose there exists a
proper two-point subgraph H ⊂ G, which can be deleted (i.e. replaced by an unbroken
edge) in a way that strictly decreases the degree. Then, there exists a graph G ′, with no
double-tadpole and no melon, such that:

V (G ′) < V (G) and ω(G) ≥ ω(G ′) . (46)
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H

Fig. 41. Configuration of the graph generating a melon upon deletion of H

H

G G1 G2

−→
win N

−→
lose N

Fig. 42. Steps for deleting H if it appears within a generalized double-tadpole. We gain a factor N with the
first step and lose one with the second step

Fig. 43. Configuration leading to a melon when deleting the generalized double-tadpole containing H

Proof. Let us callG1 the (connected) graph obtained fromG by deletion of H , and such
that ω(G) ≥ ω(G1) + 1.

If G1 does not contain double-tadpoles or melons, we take G ′ = G1.
If, on the other hand,G1 contains a melon, thenG was in the configuration of Fig. 41,

namely: the subgraph H is adjacent to a quartic rung. In this case, we define G ′ as the
graph obtained by deletion of the quartic rung, following Lemma 6. It is clear that this
move cannot create melons or double-tadpoles, and by Lemma 6, ω(G) ≥ ω(G ′).

Finally, G1 can contain a double-tadpole, in which case G contains the subgraph
depicted on the left side of Fig. 42. As illustrated in the same figure, we can subsequently
remove the double-tadpole from G1 to obtain a graph G2 such that ω(G1) ≥ ω(G2)−1
(following Lemma 2). As a result, ω(G) ≥ ω(G2). G2 cannot contain a double-tadpole,
otherwiseG would contain a separating dipole-tadpole (as illustrated in Fig. 44a), which
is excluded by assumption. If G2 does not contain a melon either, we define G ′ = G2
and conclude. If, on the other hand, G2 contains a melon, then G contains a subgraph
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G = −→ = G′

(a)

G = −→ = G′

(b)

Fig. 44. The two possible primary configurations of a dipole-tadpole. It can be separating (top), in which case
the graph remains connected upon deletion in the parallel/cross channel; or non-separating (bottom), in which
case the graph remains connected upon deletion in the orthogonal channel

with a quartic rung as represented in Fig. 43. In that case, we can again invoke Lemma 6
to delete the quartic rung, and obtain a graph G ′ with no double-tadpole or melon. 	


6.6. Main proposition.

Proposition 3. Let G be a stranded graph. If G has no double-tadpole and no melon,
then ω(G) ≥ 0.

Proof. If G has no short face or no vertex, we have already seen that ω(G) ≥ 0. In
all other cases, we proceed by induction on the number of vertices. From now on, we
assume that V (G) ≥ 1, and that G contains at least one tadpole or one dipole.

Even if G cannot have double-tadpoles or melons, generalized double-tadpoles and
melons are still allowed. To avoid difficulties with such subgraphs, we will first deal with
type-I dipoles and tadpoles, and study the more involved case of type-I I configurations
separately (see Sect. 4.4 and Fig. 15 for definitions).

We now proceed with an exhaustive graph-theoretic distinction of cases. In each
situation, we will look for a strict subgraph ofG which can be deleted without increasing
the degree, and while preserving our combinatorial constraints (namely: connectedness,
the absence of melons or double-tadpoles, as well as the absence of broken or doubly-
broken edges). From the induction hypothesis, it will then follow that ω(G) ≥ 0.

Case A. First suppose that there exists a separating dipole-tadpole inG (see Fig. 44a).
Performing a deletion of this dipole-tadpole in the parallel or cross channel, we
obtain a graph G ′ which cannot contain double-tadpoles or melons. Furthermore, by
Lemma 5 (b), we can make sure that ω(G) ≥ ω(G ′) ≥ 0 (the last inequality follows
from the induction hypothesis, because G ′ has strictly fewer vertices than G).

We can now assume that there are no more separating dipole-tadpoles.

Case B. Suppose that there exists a non-separating dipole-tadpole inG (see Fig. 44b).
We can then use Lemma 5 to delete the latter in the orthogonal channel, and obtain a
connected graph G ′ with ω(G) ≥ ω(G ′). If G ′ has no double-tadpole and no melon,
then we are done. If, on the other hand, G ′ has a double-tadpole, then G is in either
one the configuration represented in Fig. 45a or contains the subgraph H2. If, instead,
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(a) (b)

Fig. 45. Two configurations of a non-separating dipole-tadpole that can create double-tadpoles or melons
upon deletion in the orthogonal channel

Fig. 46. Configuration of a dipole-tadpole subgraphwhich can generate amelon in the parallel or cross channel

G ′ has a melon, then G either contains the two-point subgraph H4 (see Fig. 40) or
contains the four-point function depicted in Fig. 45b.

In the two situations of Fig. 45, we can try to perform the deletion of the dipole-tadpole
in the parallel channel, which cannot disconnect the graph. One may however create
double-tadpoles or melons, in which case G contains one of the subgraph H1, H2, H3,
or the two-point subgraph depicted in Fig. 46. In the latter case, we can use Lemma 6
to remove the quartic rung, and reduce the problem to the situation in which G contains
the subgraph H0. In conclusion, we have shown that G always contains a subgraph Hi
covered by Lemma 8. We can therefore apply Lemma 9 as a last step, which outputs a
suitable graph G ′′ with ω(G) ≥ ω(G ′′).

We can now assume that there are no more dipole-tadpole subgraphs in G.

Case C. Suppose that there exists a type-I tadpole in G. Then the graph remains
connected upon deletion of this tadpole in any channel. By application of Lemma 3,
we obtain a graph G ′ with ω(G) ≥ ω(G ′).

• IfG ′ has a double-tadpole, thenG either contained a dipole-tadpole or the subgraph
H4 depicted in Fig. 40. The first situation has already been excluded, and we can use
Lemmas 8 and 9 in combination to deal with the second.

• IfG ′ has a melon, thenG either contained the subgraph H5 from Fig. 40 or the four-
point graph of Fig. 47. In the second case, we can use Lemma 6 to delete the quartic
rung. This last step cannot create amelon. If it does not create a double-tadpole either,
we conclude. If it does, then G necessarily contained the subgraph H6 from Fig. 40.
We can deal with this situation, as well as with the configuration H5, by application
of Lemmas 8 and 9.

From now on, we assume that there is no type-I tadpole in G.

Case D. Suppose that G contains a type-I dipole. We can then attempt to delete this
dipole in one of the channels covered by Lemma 4.

• If the channels (2a), (2b) and (2c) all disconnect the graph, we instead perform the
deletion in the parallel channel to obtain a new graph G ′. Thanks to our assumption
that the deleted dipole was of type-I , G ′ is necessarily connected (see our earlier
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Fig. 47. A four-point subgraph that can lead to the creation of a melon when deleting a type-I tadpole

(i) (ii) (iii)

e1

e2
e3

e4

(iv) (v)

e′
1

e′
2

e1

e2
e3

e4
e′
3

e′
4

(vi) (vii)

Fig. 48. Seven configurations of a dipole (in bold) that lead to the creation of a melon or a double-tadpole.
The first three lead to the creation of a double-tadpole while the four other lead to the creation of a melon

discussion around Fig. 25). Moreover, G ′ cannot have double-tadpoles or melons.
By application of Lemma 4, we can ensure that ω(G) ≥ ω(G ′).

• If one of the three channels 2 does not disconnect the graph, for example the channel
(2a) (which we can assume without loss of generality), we perform the deletion in
this channel. However, this can create a double-tadpole. In this case G was in one of
the first three configurations of Fig. 48.

This can also create a melon. In this case, G was either in one of the last four configu-
rations of Fig. 48 or contains the subgraph H10 depicted in Fig. 40.
H10 can be dealt with by application of Lemmas 8 and 9. We have to look at the other
configurations in more detail.

(i) Wedelete the dipole in the parallel channel instead. If this creates a double-tadpole,
the graph is either in the configuration of Fig. 49a or contains the subgraph H7 of
Fig. 40.

The first graph contains a type-I tadpole (at its left end) so it has already been excluded.
We can deal with H7 by means of Lemmas 8 and 9.
If this creates a melon, the graph is in one of the configurations of Fig. 49b and 49c.
We can first use Lemma 6 to delete a quartic rung in both of these graphs. The first
one reduces to H4, the second one to H0. In both situations, we can then conclude by
invoking Lemmas 8 and 9.
(ii) We perform the move of Fig. 50, which can be justified from Lemma 4 as follows.

We first try to delete the dipole in the (unique) channel 2 that connects a to w

and b to x . If this move turns out to connect c to y (resp. z) and d to z (resp. y),
we are done. If not, c is mapped to d, which may result in a disconnected graph.
In that situation, we instead perform a deletion in the (again unique) channel that
connects a to x and b to y. We are then guaranteed that c is not mapped to d, and
we have successfully implemented the combinatorial move of Fig. 50.
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(a) (b) (c)

(d)

e1

e2 e3
e4

(e)

(f) (g)

Fig. 49. The interesting configurations when deleting a type-I dipole. The type-I dipole we want to delete is
represented in bold

e f

a

b

c

dw x y z

c

d

fe

b

a−→
Fig. 50. Graphical representation of the move used to delete a type-I dipole (in bold) in the configuration (ii)

If this creates a double-tadpole, then G must contain one of the subgraphs H8 or H9, as
depicted in Fig. 40.
If this creates a melon, we are instead led to the two-point subgraph H10.
Again, these special cases are dealt with Lemmas 8 and 9.
(iii) The configuration with a generalized tadpole on the vertex that already has a

tadpole is forbidden, otherwise G ′ would be disconnected. Hence G contains a
type-I tadpole, which we have already excluded.

(iv) We delete the dipole in the unique channel 2 that sends e1 onto e3 (and e2 onto
e4). We either obtain a dipole-tadpole or a quartic rung.

This can create a melon or a double-tadpole only if G contains H10.
(v) We perform the deletion in the parallel channel. This cannot create a double-

tadpole but can create a melon if the graph was in one of the two configurations
depicted in Fig. 49d and 49e.

The first one is incompatible with our assumption that the dipole can be deleted in one
of the channels 2 without disconnecting the graph. For the second one, we delete instead
the grey dipole in an appropriate channel 2, for instance the one that sends e1 onto e3
and e2 onto e4. This reduces to the particular case H4, which is covered by Lemmas 8
and 9.
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Fig. 51. Canonical two-point subgraphs associated to type-I I dipoles and tadpoles. Given a type-I I tadpole
or dipole S, CS is uniquely determined by the requirement that the root edge is not contained in it

(vi) We instead implement a deletion in an appropriate channel 2. In more detail, we
first try the deletion that sends e1 to e3 (and e2 to e4). The graph is guaranteed
to remain connected unless this move maps e′

1 to e′
2. In that case, we can instead

implement a deletion in the channel 2 that maps e1 to e4, in which case e′
1 is

mapped to e′
3 or e

′
4. In both situations, the graph remains connected. However, a

melon could be created, in which case the graph is the two-point subgraph H11
depicted in Fig. 40.

We then conclude with Lemmas 8 and 9.
(vii) We start by deleting the quartic rung subgraph on the right using Lemma 6. This

can create a double-tadpole if G was in one of the configurations depicted in
Fig. 49f and 49g. The first one is excluded because it contains a melon. The
second one is excluded because the graph disconnects in all three channels 2 of
the dipole we started from.

This can also create a melon if the graph contains either of the subgraphs H11 and H12
of Fig. 40. We can deal with both of these with Lemmas 8 and 9.

We can now assume that there are no type-I dipoles left.

Case E.We finally assume that G contains a type-I I tadpole or dipole.
Consider a type-I I tadpole or dipole S ⊂ G, and assume that the root edge is not
contained in S. By definition, we know that S is included in a two-point subgraph with
one of the structures depicted in Fig. 51. Moreover, there is a unique such subgraph that
does not contain the root edge. We call it the canonical two-point subgraph associated
to S, and denote it by CS .
We then claim that the family of subgraphs CS forms an inclusion forest. That is, given
two type-I I tadpoles or dipoles S1 and S2, one of the following conditions holds:

• CS1 ⊂ CS2 or CS2 ⊂ CS1 ;• CS1 and CS2 are (vertex and edge) disjoint.
As a result, provided that this set of subgraphs is non-empty, there exists a dipole or
tadpole S0 such thatCS0 is minimal for the inclusion.Moreover,CS0 necessarily contains
a proper two-point function (i.e. one of the two-point subgraphs represented by blobs
in Fig. 51, otherwise G would contain a double-tadpole or a melon), which we call H .
Given that H ⊂ CS0 and CS0 is minimal for the inclusion among all CS subgraphs, it
follows that H cannot contain any type-I I tadpole or dipole. Since we have already
assumed the absence of type-I tadpoles or dipoles in G, H cannot contain any short
face. Consequently, we can use Lemmas 7 and 9 to construct a suitable graph G ′ such
that ω(G) ≥ ω(G ′).
We are left with one last case to examine: when there is no other type-I I tadpole or
dipole than one containing the root edge. But in this case G contains at most one short
face, so we can immediately conclude that ω(G) > 0.

This concludes the proof. 	
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BA

C

Fig. 52. Vacuum graph with a generalized double-tadpole

7. Melonic Dominance

Proposition 3 and Sect. 5 immediately imply the existence of the large N expansion.
We now set to prove that leading order graphs are melonic. We start with the following
simple observation.

Lemma 10. Let G be a (non-amputated) two-point Feynman map. The associated am-
plitude A(G)aaa,bbb can be written as:

A(G)aaa,bbb = λV (G) fG(N )PPPaaa,bbb

where fG(N ) is uniformly bounded.

Proof. The irreducibility of the tensor representation, together with Schur’s lemma,
immediately imply that the amplitude is proportional to the projector PPP . Furthermore,
consistencywith the existence of the large N expansion requires that fG(N ) is uniformly
bounded. 	


The next two lemmas demonstrate that many of the stranded configurations which
we could not exclude to be of vanishing degree in the previous section, in fact cannot
contribute to the leading order. This results from the same type of cancellations we
already relied on in Sect. 5. But now that the existence of the large N expansion has
been established, we can be more systematic.

Lemma 11. Let G be a (connected and vacuum) Feynman map. If G has a generalized
double-tadpole then it is subleading, that is:

|A(G)| ≤ K N 4 . (47)

for some constant K > 0.

Proof. Up to embedding information (which does not affect large N scalings), G must
have the configuration depicted in Fig. 52, where A, B and C are two-point Feynman
maps. By Lemma 10, there exists three uniformly bounded functions fA, fB and fC
such that:

A(G) = λV (A)+V (B)+V (C) fA(N ) fB(N ) fC(N )A(G′) , (48)

where G′ is the map obtained by replacing A, B and C with bare propagators PPP . G′ is
nothing but a double-tadpole graph, so from the computations of Sect. 5, we also know
that A(G′) ∼ f PPP1 (N )PPPaaa,aaa = O(N 4). 	
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S

Fig. 53. G contains a tadpole, and the submap S is assumed to be connected

Lemma 12. Let G be a (connected and vacuum) Feynman map. If G contains a gener-
alized tadpole or a type-I dipole, then it is subleading.

Proof. Let usfirst assume thatG contains a generalized tadpole. FromLemmas10and11,
it is sufficient to deal with the situation of a single-tadpole, as depicted in Fig. 53, where
S is a connected four-point map. We can then apply the Cauchy–Schwarz inequality to
find:

A(G)2 = A
(

S

)2
≤ A

(
S S

)
A

( )
.

(49)

The first term on the right is the amplitude of a connectedmap, and is therefore inO(N 5).
Furthermore, from Lemma 8 (subcase H0), the degree of any stranded configuration
contributing to the second term is at least 1. Hence this term is in O(N 4). As a result,
A(G) is at most in O(N 9/2), which implies it is subleading.

Let us now assume that G contains a type-I dipole. Without loss of generality, and up
to embedding, we can assume that we are in one of the situations represented in Fig. 54,
where the submaps Si are all connected12. In the first case (Fig. 54a), we can again
invoke the Cauchy–Schwarz inequality, which implies:

A(G)2 = A
(

S1

)2

≤ A
(

S1 S1

)
A

( )
.

(50)

The first term on the right is the amplitude of a connected map, and the second term
is subleading by Lemmas 6 and 8 (subcase H0). As before, we conclude that G is
subleading.

The second case (Fig. 54b) can be dealt with by successive applications of the
Cauchy–Schwarz inequality:

A(G)2 = A
(

S2 S3

)2

≤ A
(

S2 S2

)
A

(
S3 S3

)
,

(51)

and

A
(

Si Si

)2

≤ A
⎛
⎝ Si Si

SiSi

⎞
⎠ A

( )
.

(52)

12 In Fig. 54c, we have used Lemma 10 to suppress one potentially non-trivial two-point subgraph.
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S1

(a)

S2 S3

(b)

S4

(c)

Fig. 54. Three configurations of a type-I dipole submap

The fact that all the graphs in these relations are connected, while one of them is sub-
leading, allows to conclude that G is itself subleading.

We proceed in a similar way for the last case (Fig. 54c) and obtain:

A(G)2 = A
(

S4

)2

≤ A
(

S4 S4

)
A

( )
.

(53)

It is then sufficient to show that the second term on the right is subleading. We can in
fact prove that any of the stranded configurations of this map has strictly positive degree.
Indeed, this map has no tadpole and twelve dipoles, thus F1 = 0 and F2 ≤ 12.Moreover,
any other face has length at least four: F3 = 0. Using the bounds of Appendix A with
I = 15× 4 and k = 3, we have F ≤ � 60+24

4 � = 21. Therefore ω ≥ 5 + 5× 4− 21 = 4,
which concludes the proof. 	

Proposition 4. Let G be a (connected and vacuum) Feynman map. G is leading order if
and only if it is melonic.

Proof. From Sect. 5, we already know that melonic graphs are leading order. To prove
the converse, let us consider a leading order Feynmanmap G. We can start by recursively
removing all melon two-point functions from G, to obtain a leading-order map G′ with
no melon. By definition, G is melonic if and only if G′ is the ring map. Let us assume
it is not. Then G′ must be able to support short faces, otherwise it could not be leading
order. Given Lemma 12, the only possibility left is that G′ contains type-I I dipoles
whose canonically associated two-point functions are generalized melons (as in the
right panel of Fig. 51). Considering a minimal such submap for the inclusion, which
we call S, leads to a contradiction. Indeed, at least one of the two-point functions
in the generalized melon S must be non-empty, otherwise G′ would contain a melon
submap. By minimality, this two-point function cannot contain any dipole or tadpole,
therefore it is necessarily subleading. By Lemma 10, G′ itself must be subleading, which
yields the desired contradiction. Consequently, G′ is the ring map and G is melonic, as
claimed.

8. Further Comments and Outlook

We have established that irreducible tensor models with 5-simplex interaction admit a
melonic large N expansion. Along the way, we had to estimate the large N behaviour
of a number of four- and eight-point functions. From this analysis, it is straightforward
to include other effective interactions in our models. Any boundary graph we have
explicitly investigated may lead to non-vanishing interaction terms if it does not contain
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self-loops. This includes, for instance, the boundary graphs represented in Figs. 20d, 20e,
or 27. With a bit more effort, one could determine the optimal scaling of all effective
n-point interactions which contribute at leading order, for (say) n ≤ 6. This would be
a prerequisite for potential applications of our results to large N QFT, where any such
interaction that is also relevant in the renormalization sense would have to be included in
the bare action. Even thoughwe chose to work in vanishing dimension for simplicity, our
main theorems hold in higher dimensions with minimal changes, namely: the algebraic
equation defining F (0)

PPP in Theorem 2 should in general be replaced by a suitable (integro-
differential) Schwinger–Dyson equation.

In a similar spirit, it would be interesting to investigate whether our results can be
generalized to fermionic tensor fields transforming under the compact symplectic group
Sp(N ), by analogy with the rank-3 construction of [21].

Beyond rank-5, a number of generalizations could be explored. First, it would be
interesting to study irreducible rank-4 models with 4-simplex interaction. The main dif-
ficulty we may expect in this case is that, just like in rank-3, problematic configurations
requiring a detailed combinatorial analysis will also include triangle submaps.13 Finally,
it does not seem completely unrealistic to imagine that the present proof could be gener-
alized to arbitrary rank r ≥ 6. This could be a worthwhile endeavour in view of potential
applications of symmetric random tensors to statistics and applied mathematics [66,67].
However, at a minimum, one would need to find a more systematic way of investigating
and bounding particular two-point stranded subgraphs, such as those of Lemma 8. Even
if one could succeed in this, this would presumably lead to a very technical proof. From
this point of view, it would be highly desirable to develop alternative methods that do
not rely so heavily on inductive combinatorial moves.
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A. Bounds on the Number of Faces

We wish to bound the number of faces of a generic two-point graph. In order to do so,
we will follow a method developed in Appendix C of [1]. We label x, y the external legs

13 This was actually one of the reasons why we decided to focus on rank-5 in the present work.
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Fig. 55. The special case H0

of the graph. We call V , E , F and Fi , the number of vertices, edges, faces and faces of
length i in the subgraph. We also define l as the sum of the length of the open strands of
the subgraph. Then, we can write the sum of the length of the internal faces as:

I = 5E − l = 15V − 5 − l (54)

because for a 6-valent 2-point graph, 6V = 2E + 2.
Moreover, as stated in [1], for F = ∑

i Fi and I = ∑
i i Fi , we have the following

bounds:

∀k ≥ 2 , F ≤ � I
k + 1

+
∑

1≤i≤k

k + 1 − i

k + 1
Fi� (55)

For k = 2, we obtain F ≤ �(I + 2F1 + F2)/3�.
Likewise, we can write:

l =
∑
i≥0

ili , 5p =
∑
i

li , (56)

where li is the number of external strands of length i , and 2p is the number of external
legs (here, p = 2). We then have the bounds:

∀k ≥ 1, 5p ≤ � l

k + 1
+

∑
0≤i≤k

k + 1 − i

k + 1
li� (57)

For k = 1 and p = 2, this yields in particular: l ≥ 20 − 2l0 − l1.

B. Proof of Lemma 8

Proof. Wewant to gain a factor N by deleting the two-point graphs of Fig. 40. Therefore,
the lemma will follow if we can prove d(S∂ , Bu) ≤ 5V − 1 − F(S) for each subgraph
S of Fig. 40 and with Bu the boundary graph of the unbroken propagator. In order to
bound the number of internal faces, we are going to follow the method of [1] and use
the bounds of Appendix A.
Graph H0. Here (Fig. 55) V = 2 and I = 25− l. We must have d(S∂ , Bu) ≤ 9− F(S).
We have two tadpoles and three dipoles thus F1 ≤ 2 and F2 ≤ 3.

• Unbroken case: All external strands traverse and d(S∂ , Bu) = 0. We can thus delete
at most 9 internal faces. We have at most three external strands of length one and two
of length two. We thus have l ≥ 7 and I ≤ 18. Then we have F ≤ � 18+4+3

3 � ≤ 8.
• Broken case: Two external strands loop back. In this case, d(S∂ , Bu) = 1 so we can
delete at most 8 internal faces. We can have all five external strands of length one:
l ≥ 5 and I ≤ 10. Here we have to consider faces of length three. We will need
Eq. (55) for k = 3:

F ≤ �I + 3F1 + 2F2 + F3
4

� (58)
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Fig. 56. The special case H1

Fig. 57. The special case H2

Fig. 58. The special case H3

We have F3 ≤ 6. However, if F2 = 3, F3 = 0, if F2 = 2, F3 ≤ 2, if F2 = 1, F3 ≤ 4
and if F2 = 0, F3 ≤ 6. Therefore, 2F2 + F3 ≤ 6 and F ≤ � 20+6+6

4 � ≤ 8.
• Doubly-broken case: Four external strands loop back. In this case, d(S∂ , Bu) = 2
so we can delete at most 7 internal faces. We can have three external strands of length
one and two of length two: l ≥ 7 and I ≤ 18. We thus have F ≤ � 18+6+6

4 � ≤ 7.

Graph H1. We now look at the two-point subgraph H1 represented in Fig. 56. It has 3
vertices: I = 40 − l. We now want d(S∂ , Bu) ≤ 14 − F(S).

• Unbroken case: In this case we can delete at most 14 internal faces. The five external
strands have at least length one. There can be at most one of length one and two of
length two. We thus have l ≥ 11 and I ≤ 29. There are three tadpoles and two
dipoles, thus F1 ≤ 3 and F2 ≤ 2. We then have F ≤ � 29+6+2

3 � ≤ 12.
• Broken case: we can delete at most 13 internal faces. Now, there can be at most
three external strands of length one and two of length two. Thus l ≥ 7 and I ≤ 33.
We still have F1 ≤ 3 and F2 ≤ 2. We then have F ≤ � 33+6+2

3 � ≤ 13.
• Doubly-broken case: we can delete at most 12 internal faces and we still have l ≥ 7.
We need again to consider the faces of length three. We can have at most eight faces
of length three (four using the tadpoles and four using the strands between the two
external points). However, if F2 = 2 then F3 ≤ 4, if F2 = 1 then F3 ≤ 6 and if
F2 = 0, F3 ≤ 8. Thus we have 2F2 + F3 ≤ 8 and F ≤ � 33+9+8

4 � ≤ 12.

Graph H2. Again V = 3 and I = 40 − l. There are two tadpoles and three dipoles so
F1 ≤ 2 and F2 ≤ 3. We again want to prove d(S∂ , Bu) ≤ 14 − F(S) (Fig. 57).
For this subgraph, in all cases (unbroken, broken and doubly broken), there is always
an external strand of length zero between the two external points as there are connected
to the same vertex. There are at most two external strands of length 2. Thus l ≥ 10 and
I ≤ 30. We then have F� 30+4+3

3 � ≤ 12. This gives us the right bounds for all three
cases.



Melonic Large N Limit of 5-Index Irreducible Random Tensors 1265

Fig. 59. The special case H4

Fig. 60. The special case H5

Graph H3. Here (Fig. 58) V = 4 and I = 55 − l. We now need to prove the following
bound: d(S∂ , Bu) ≤ 19 − F(S). Moreover, we have two tadpoles and four dipoles so
F1 ≤ 2 and F2 ≤ 4.

• Unbroken case: We have at most three external strands of length one and two of
length two. Thus l ≥ 7 and I ≤ 48. Therefore, we have F ≤ � 48+4+4

3 � ≤ 18.
• Broken case: We have at most three external strands of length one. Then the two
remaining external strands must loop back so they have at least length three. In this
case l ≥ 9 and I ≤ 46. Therefore, F ≤ � 46+4+4

3 � ≤ 18.
• Doubly-broken case: We have at most one external strand of length one as four
strands must loop back. We have at most two strands of length two (we only have
the two internal corners of the dipole that was not used for the external strand of
length one) and two strands of length three. So, l ≥ 11 and I ≤ 44. Thus we have
F ≤ � 44+4+4

3 � ≤ 17.

Graph H4. Here, V = 2 and I = 25− l. We need to prove that d(S∂ , Bu) ≤ 9− F(S).
There are one tadpole and six dipoles so F1 ≤ 1 and F2 ≤ 6 (Fig. 59).
For all cases (unbroken, broken or doubly-broken), we always have on external strand
of length zero as they are connected to the same vertex. The other have at least length
two. So l ≥ 8 and I ≤ 17.

• If l = 8: we have four external strands of length two. Thus four internal corners
of the dipoles are used for the external strands: there are at most two faces of length
two. Thus, F ≤ � 17+2+2

3 � ≤ 7.
• If l = 9: there is one external strand of length three. The corners of only three dipoles
are now taken by the external strands: F2 ≤ 3. Thus we have F ≤ � 16+3+2

3 � ≤ 7.
• If l ≥ 10, F2 ≤ l − 4 thus we have F ≤ � 25−l+2+l−4

3 = 23
3 � ≤ 7.

Graph H5. Here (Fig. 60) V = 3 and I = 40− l. Again, we want to prove the following
bound d(S∂ , Bu) ≤ 14 − F(S). There are one tadpole and five dipoles so F1 ≤ 1 and
F2 ≤ 5.

• Unbroken case: We can have at most three external strands of length one so l ≥ 7
and I ≤ 33. Thus, F ≤ � 33+2+5

3 � ≤ 13.
• Broken case: We still have l ≥ 7 and thus F ≤ 13.
• Doubly-broken case: As only one strand traverses, we can have at most one external
strand of length one. Then, l ≥ 9 and I ≤ 31. Thus, F ≤ � 31+2+5

3 � ≤ 12.
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Fig. 61. The special case H6

Fig. 62. The special case H7

Fig. 63. The special case H8

Graph H6. Here (Fig. 61) V = 3 and I = 40−l.We still need to prove that d(S∂ , Bu) ≤
14 − F(S). There are one tadpole and seven dipoles so F1 ≤ 1 and F2 ≤ 7.

• Unbroken case: We have at most one external strand of length one and two of length
two (each using one of the edges of the dipole on the left of the graph). Then, l ≥ 11
and I ≤ 29. Thus, we have F ≤ � 29+2+7

3 � ≤ 12.
• Broken case: As two strands loop back, we can have one more external strand of
length one and three external strand of length two. Then, l ≥ 8 and I ≤ 32. Thus,
we have F ≤ � 32+2+7

3 � ≤ 13.
• Doubly-broken case: we still have l ≥ 8. Let us consider the faces of length three.
There are at most 3 faces of length three. However, if F2 = 7 then F3 ≤ 2 and if
F2 ≤ 6, F3 ≤ 3. Thus 2F2 + F3 ≤ 16 and F ≤ � 32+3+16

4 � ≤ 12.

Graph H7. Here V = 3 and I = 40−l. Again, wewant to have d(S∂ , Bu) ≤ 14−F(S).
There are no tadpoles and seven dipoles so F1 = 0 and F2 ≤ 7. For this graph, in all
cases (unbroken, broken and doubly-broken), there is always an external strand of length
zero and there are at most two external strands of length two. So we then have l ≥ 10
and I ≤ 30. Thus, F ≤ � 30+0+7

3 � ≤ 12 which is okay for unbroken, broken and
doubly-broken propagators (Fig. 62).
Graph H8. Here (Fig. 63) V = 3 and I = 40 − l. We still need to have d(S∂ , Bu) ≤
14 − F(S). There are no tadpoles and seven dipoles so F1 = 0 and F2 ≤ 7.

• Unbroken case: There can be two external strands of length one and three of length
two: l ≥ 8 and I ≤ 32. Thus, we have F ≤ � 32+0+7

3 � ≤ 13.
• Broken case: Two external strandsmust loop back but we still have l ≥ 8 so F ≤ 13.
• Doubly broken case: Four strands must loop back: we can have only one external
strand of length one and two of length two. Indeed, calling x the external strand on
the left and a, b, c the three edges on the left, if we have an external strand xabx we
cannot have a second one using c as both corners xa and xb are already used. Thus,
l ≥ 11 and F ≤ � 29+0+7

3 � ≤ 12.

Graph H9. Here V = 3 and I = 40 − l and we again have to prove that d(S∂ , Bu) ≤
14 − F(S). There are no tadpoles and eight dipoles so F2 ≤ 8 and F1 = 0. Here for
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Fig. 64. The special case H9

Fig. 65. The special case H10

Fig. 66. The special case H11

all cases (unbroken, broken and doubly broken), we always have one external strand of
length zero. We can also have at most two external strands of length two and two of
length three. Then, l ≥ 10 and I ≤ 30. This gives F ≤ � 30+0+8

3 � ≤ 12 (Fig. 64).
Graph H10. Here V = 4 and I = 55 − l. We need to prove the following bound
d(S∂ , Bu) ≤ 19 − F(S). There are no tadpoles and five dipoles so F1 = 0 and F2 ≤ 5.
In all cases, there can be at most one external strand of length one and four of length
two. Then, l ≥ 9 and I ≤ 46. This gives F ≤ � 46+0+5

3 � ≤ 17 (Fig. 65).
Graph H11. Here (Fig. 66) V = 4 and I = 55 − l. In this case we also need to prove
that d(S∂ , Bu) ≤ 19 − F(S). There are no tadpoles and nine dipoles so F1 = 0 and
F2 ≤ 9.

• Unbroken case: We can have at most three strands of length one and two of length
two. Thus, l ≥ 7 and I ≤ 48. We then have F ≤ � 48+9

3 � ≤ 19.
• Broken case: We can now have three external strands of length one and two of
length three or one of length one and four of length two. Thus we have l ≥ 9 and
F ≤ � 46+9

3 � ≤ 18.
• Doubly-broken case: We can now have one external strand of length one, two of
length two and two of length three. Thus l ≥ 11 and we have F ≤ � 44+9

3 � ≤ 17.

Graph H12. Here V = 4 and I = 55 − l. In this case we again need to prove that
d(S∂ , Bu) ≤ 19 − F(S). There are no tadpoles and twelve dipoles so F1 = 0 and
F2 ≤ 12 (Fig. 67).
For all cases (unbroken, broken and doubly-broken), we can have five external strands
of length two. Thus, l ≥ 10. Let us consider faces of length 3: there can be at most
two faces of length three (one using the corner ab and one edge of the bottom quartic
rung and one using the corner bc and one edge of the top quartic rung). We thus have:
F ≤ � 45+24+2

4 � ≤ 17. 	
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a cb

Fig. 67. The special case H12
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