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Abstract: In this paper, we study random representations of fundamental groups of
surfaces into special unitary groups. The random model we use is based on a symplectic
form on moduli space due to Atiyah, Bott and Goldman. Let �g denote a topological
surface of genus g ≥ 2. We establish the existence of a large n asymptotic expansion, to
any fixed order, for the expected value of the trace of any fixed element of π1(�g) under
a random representation of π1(�g) into SU(n). Each such expected value involves a
contribution from all irreducible representations ofSU(n). The main technical contribu-
tion of the paper is effective analytic control of the entire contribution from irreducible
representations outside finite sets of carefully chosen rational families of representations.
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1. Introduction

Let g ∈ N with g ≥ 2 and let �g denote a closed topological surface of genus g. If x0
is a point in �g , then we have

π1(�g, x0) ∼= �g
def= 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉.

The group �g is called the surface group of genus g. For n ∈ N, the group U(n) is the
group of n × n complex unitary matrices with respect to the standard Hermitian inner
product on Cn . Then SU(n) is the subgroup of U(n) consisting of matrices with unit
determinant.

The space of homomorphisms Hom(�g,SU(n)) is given the topology coming from
the embedding

Hom(�g,SU(n)) ↪→ SU(n)2g, φ 	→ (φ(a1), φ(b1), . . . , φ(ag), φ(bg)). (1.1)

This embedding shows that Hom(�g,SU(n)) is an algebraic variety, but it is a variety
with singularities [Gol84, pg. 204 Prop.]. We let Hom(�g,SU(n))irr denote the collec-
tion of homomorphisms φ such that φ is irreducible as a linear representation of �g . The
space Hom(�g,SU(n))irr then inherits the structure of a smooth non-complete manifold
from (1.1) (ibid.).

There is an action of SU(n) on Hom(�g,SU(n)) by postcomposition with inner
automorphisms; from the point of view of (1.1), this is just the diagonal action of SU(n)

by conjugation. This action factors through an action of PSU(n), that is, SU(n) modulo
its finite center. The quotient by this action is denoted by Hom(�g,SU(n))/PSU(n). It
is shown by Goldman in (ibid.) that the action of PSU(n) on Hom(�g,SU(n))irr is free
and the moduli space

Mg,n
def= Hom(�g,SU(n))irr/PSU(n)

is a smooth real manifold. This moduli space is the underlying set of random represen-
tations of �g discussed in this paper. By a theorem of Narasimhan and Seshadri [NS65],
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if a complex structure on �g is fixed, Mg,n corresponds via a natural map to a moduli
space of stable holomorphic rank-n vector bundles on �g .

To describe the law of the random representation, we need to recall some further
results of Goldman. In (ibid.), Goldman shows that there is a natural symplectic form
ωg,n onMg,n , defined up to a scalar normalization that we fix in §§2.7. This symplectic
form arose previously in thework ofAtiyah andBott [AB83]. It is analogous to theWeil–
Petersson form on the Teichmüller space of complex structures on �g and is defined
precisely in §§2.7 of this paper. The symplectic form ωg,n yields a volume form

dVolMg,n

def= ∧ 1
2 dimMg,n (ωABG

g,n )

( 12 dimMg,n)! .

The random representations in this paper are sampled according to this volume form,
normalized to be a probability measure. We call the normalized measure the Atiyah–
Bott–Goldman measure.

The statistics of random representations we are interested in come from functions on
Hom(�g,SU(n)) that are invariant under conjugation by SU(n). The natural functions
to integrate on moduli spaces like Mg,n are geometric functions (as studied, e.g., by
Mirzakhani [Mir07] in the Weil–Petersson context). These functions are also called
Wilson loops in the theoretical physics literature.

We now fix a concrete instance of a family of geometric functions. For g ∈ U(n), let
tr(g) denote the trace of g as an n × n matrix. Given any element γ ∈ �g , we obtain a
continuous function

trγ : Hom(�g,SU(n)) → C, trγ (φ)
def= tr(φ(γ )).

Clearly trγ is invariant under conjugation by SU(n) and hence yields a continuous
bounded function that we give the same name

trγ : Mg,n → C.

In this paper, we instigate a study of the expected value of trγ , that is,

Eg,n[trγ ] def=
∫
Mg,n

trγ dVolMg,n
∫
Mg,n

dVolMg,n

. (1.2)

For fixed γ , we are interested in the large n behavior of this expected value. One has the
simple bound

|Eg,n[trγ ]| ≤ n

and this bound is attained if γ = id�g . On the other hand, if γ ∈ �g is not the identity,
then a basic prediction is

lim
n→∞

|Eg,n[trγ ]|
n

= 0. (1.3)

The significance of this prediction is that it extends a celebrated result of Voiculescu
[Voi91, Theorem 3.8] on the asymptotic ∗-freeness of Haar unitary matrices, suitably
interpreted, from free groups to surface groups. The current paper lays the groundwork
for the proof of (1.3) in the next paper in the series [Mag21].

Not only that, but herewewill expose a separate phenomenon for the valuesEg,n[trγ ]:
they can be approximated to any order O(n−M ) as n → ∞ by a Laurent polynomial in
n depending on γ . The formal theorem is the following:
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Theorem 1.1. For any g ≥ 2 and γ ∈ �g, there is an infinite sequence of rational
numbers

a−1(γ ), a0(γ ), a1(γ ), a2(γ ), . . .

such that for any M ∈ N, as n → ∞

Eg,n[trγ ] = a−1(γ )n + a0(γ ) +
a1(γ )

n
+ · · · + aM−1(γ )

nM−1 + O(n−M ). (1.4)

Example 1.2. Let γ ∈ �2 denote an element of the fundamental group of�2 correspond-
ing to a simple1 closed curve that separates the surface into two genus one surfaces with
one boundary component each. In this case,

E2,n[trγ ] = 2

n
+

5

n3 + O

(
1

n5

)

as n → ∞. This calculation is given in Appendix A.

Remark 1.3. As Example 1.2 suggests, and as is known to be the case for the correspond-
ing result about unitary representations of free groups [MP19a, Rmk. 1.9], it is natural
to expect that all even coefficients a2k(γ ) are zero, for any γ .

Theorem 1.1 has the following direct corollary.

Corollary 1.4. For any γ ∈ �g, the limit

lim
n→∞

Eg,n[trγ ]
n

exists.

The main technical result we prove in order to establish Theorem 1.1 is interesting
in its own right so we discuss this now. The quantity in the denominator of (1.2), i.e.,
the symplectic volume of Mg,n , was calculated non-rigorously by Witten in [Wit91].
Witten’s result is in terms of Witten zeta functions, so named by Zagier in [Zag94]. The
Witten zeta function of SU(n) is defined by the series

ζ(s; n)
def=

∑

(ρ,W )∈̂SU(n)

1

(dim W )s
. (1.5)

Here ŜU(n) is the set of equivalence class of irreducible representations of SU(n). The
sum in (1.5) converges absolutely for Re(s) > 2

n by a result of Larsen and Lubotzky
[LL08, Thm. 5.1] (see also [HS19, §2] for an alternative proof of this fact). The following
formula that Witten obtained was rigorously established to hold by Sengupta in [Sen03].

1 Simple means non-self-intersecting.
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Theorem 1.5 (Witten’s formula). With the normalization of VolMg,n fixed as in §§2.7,
we have

∫

Mg,n

dVolMg,n = nζ(2g − 2; n).

In fact, Sengupta also provided a method to compute the integral of any continuous
function onMg,n with respect to VolMg,n and this is the starting point of our work. We

let F2g
def= 〈a1, b1, . . . , ag, bg〉 be the free group on the generators a1, b1, . . . , ag, bg .

Let Rg
def= [a1, b1] · · · [ag, bg] ∈ F2g . Therefore, we have a surjective homomorphism

F2g
qg−→ �g obtained from quotient by the normal subgroup generated by Rg . We say

that w ∈ F2g represents the conjugacy class of γ ∈ �g if qg(w) is conjugate to γ in �g .
For any w ∈ F2g , there is a word map w : SU(n)2g → SU(n) obtained by substituting
elements of SU(n) into the letters of w. We write dμHaar

SU(n)2g (x) for the probability Haar

measure on SU(n)2g , and this is the product of the probability Haar measures on the 2g
factors.

One has the following corollary of Sengupta’s main result [Sen03, Thm.1].

Corollary 1.6. Let g ≥ 2 and γ ∈ �g. Suppose that w ∈ F2g is an element representing
the conjugacy class of γ . Then

Eg,n[trγ ] = ζ(2g − 2; n)−1
∑

(ρ,W )∈̂SU(n)

(dim W )I(w, ρ), (1.6)

where

I(w, ρ)
def=
∫

tr(w(x))tr(ρ(Rg(x)))dμHaar
SU(n)2g (x) (1.7)

if the sum on the right-hand side of (1.6) is absolutely convergent.

We explain how to obtain Corollary 1.6 from [Sen03, Thm.1] in §§2.7 using ideas
already presented in [Sen03]. Let [�g, �g] denote the commutator subgroup of�g . Using
Corollary 1.6, it is not hard to show:

Proposition 1.7. If γ /∈ [�g, �g], then there exists n0 = n0(γ ) such that for n ≥ n0

Eg,n[trγ ] = 0.

Proposition 1.7 is proved in §§3.2. This proves Theorem 1.1 in the case that γ /∈
[�g, �g].

We now explain how we prove Theorem 1.1 in general by using Corollary 1.6. We
first discuss the zeta function factor in (1.6). One has the following theorem due to
Guralnick, Larsen and Manack.

Theorem 1.8. ([GLM12, Thm. 2]) For any s > 0, limn→∞ ζ(s; n) = 1.

The limiting value arises from the trivial representation in (1.5); it is possible to boost
the methods of [GLM12] to show that ζ(2g − 2; n) can be approximated to any order
O(n−M ) by a Laurent polynomial in n. In fact, the results of this paper can be viewed as
a far generalization of this result and accordingly, the just-mentioned result is established
as a byproduct of our proofs in §§5.4.
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Thus, the proof of Theorem 1.1 amounts to showing that
∑

(ρ,W )∈̂SU(n)

(dim W )I(w, ρ) (1.8)

is absolutely convergent and can be approximated to any order by some Laurent poly-
nomial. The obvious bad feature of the sum (1.8) is that it runs over infinitely many
representations of SU(n), and moreover, there are more and more of these as n in-
creases. We aim to approximate (1.8) by finitely many of its terms and this requires an

ordering of the representations of ŜU(n).
The correctway to do this is as follows. For every k, � ∈ N and pair ofYoung diagrams

μ � k, ν � �, with number of rows given by �(μ), �(ν), for every n ≥ �(μ) + �(ν) there

is a rational family of irreducible representations2 denoted by (ρ
[μ,ν]
n , W [μ,ν]

n ) ∈ ŜU(n)

defined in §§2.4. If we define for B ∈ N

�(B; n)
def= { (ρ[μ,ν]

n , W [μ,ν]
n ) : �(μ), �(ν) ≤ B, μ1, ν1 ≤ B2}, (1.9)

then �(B; n) is in one-to-one correspondence with the (μ, ν) such that �(μ), �(ν) ≤
B, μ1, ν1 ≤ B2 when n is sufficiently large. This specific choice of �(B; n) is for
technical convenience, becoming useful in §§5.4.

We prove bounds on the I(w, ρ) in Theorem 4.1. The main challenges are that not
only that estimates for I(w, ρ) must overcome the weights dim W in (1.8) but also
that these bounds must remain effective for dim W much larger than n. It is quite well
understood that matrix integrals such as I(w, ρ) are challenging in this regime as the
mainmethod of performing such integrals, known as theWeingarten calculus, often fails
to produce understandable answers there. This is because theWeingarten functionWgn,k
defined in (2.12) becomes increasingly complicated for k � n, drawing on more and
more different representations of large symmetric groups. We overcome this inherent
difficulty as follows.

Firstly there is a minor observation that in all cases of interest,SU(n) can be replaced
by U(n) in (1.7) (Proposition 3.1). The main idea is then that after some splitting up,
parts of I(w, ρ) can be evaluated by integrating first tr(ρ(Rg(x))) over all double cosets
for a very large subgroup U(n −D) ≤ U(n) whereD is bounded depending only on w,
which is fixed. During this first integration, the structure of the word Rg can be exploited
to produce a lot of cancelation.

After this initial integral, we then apply the Weingarten calculus through a novel
strategy (cf. §§4.3) making heavy use of representation theory of both symmetric groups
and U(n). What we achieve is the following technical result.

Theorem 1.9. Suppose that g ≥ 2, w ∈ F2g and B ∈ N.

1. For n ≥ n0(w, g), the sum in (1.6) is absolutely convergent.
2. As n → ∞

∑

(ρ,W )∈̂SU(n)\�(B;n)

(dim W )I(w, ρ) �B,w,g n|w|n−2 log B (1.10)

where |w| denotes the length of w as a reduced word.

2 These families of representations already feature in physics literature related to the problems of this paper;
they are called ‘composite representations’ by Gross and Taylor in [GT93].
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The point of (1.10) is not the exact form of the right-hand side, but rather, it gives
effective control of the tail. Theorem 1.9 shows that by taking B sufficiently large and

fixed depending onw, the contribution to Eg,n[trγ ] from (ρ, W ) ∈ ŜU(n)\�(B; n) can
be made to decay as fast as any n−M , for M ∈ N. We have the following direct corollary
of Theorem 1.9, Theorem 1.8, and Corollary 1.6.

Corollary 1.10. Suppose that g ≥ 2, γ ∈ �g, and w ∈ F2g represents the conjugacy
class of γ . For any B ∈ N, we have as n → ∞
Eg,n[trγ ] = ζ(2g − 2; n)−1

∑

(ρ,W )∈�(B;n)

(dim W )I(w, ρ) + OB,w,g

(
n|w|n−2 log B

)
.

1.1. Related works I: Spaces of representations. The existence of an asymptotic expan-
sion ofEg,n[trγ ] as in Theorem1.1 follows a long line of related results. Themost closely
related of these is the analog of Theorem 1.1 when SU(n) is replaced by the family of
symmetric groups Sn . For π ∈ Sn , let fix(ρ) denote the number of fixed points of π ,

and for γ ∈ �g , let fixγ : Hom(�g, Sn) → N be the function fixγ (φ)
def= fix(φ(γ )). The

representation space Hom(�g, Sn) is finite and we let Eg,Sn [fixγ ] denote the expected
value of fixγ with respect to the uniform probability measure on Hom(�g, Sn). An ex-
actly analogous result to Theorem 1.1 for Eg,Sn [fixγ ] was established by the author and
Puder in [MP20, Thm. 1.1].

Similarly, if instead of using a surface group �g , we consider a free group Fr with
r ≥ 2, for any compact Lie group G the representation space Hom(Fr , G) can be
identified with Gr and hence can be given the corresponding probability Haar measure.
If G is finite, this is simply the uniform probability measure. For any character χ of G
and w ∈ Fr , we obtain a function

χw : Hom(Fr , G) → C, χw(φ)
def= χ(φ(w)).

Then we can define EFr ,G[χw] to be the expected value of χw with respect to the Haar
probabilitymeasure. Not only is the analog of Theorem1.1 true formany natural families
of (G(n), χ(n)), but actually, in the case of free groups, EFr ,G(n)[χ(n)γ ] is a rational
function of n for n sufficiently large. Indeed, for fixed w ∈ Fr , EFr ,G(n)[χ(n)γ ] agrees
with a rational function of n for n �w 1 when

• G(n) = Sn and χ(n) = fix [Nic94,LP10]
• G(n) is a family of generalized symmetric groups, e.g., hyperoctahedral groups,
and χ(n) is the trace in a natural defining representation [MP19c]

• G(n) = U(n) and χ(n) = tr [MP19a]
• G(n) = O(n) or Sp(n) and χ(n) = tr [MP19b].

1.2. Related works II: 2D Yang–Mills theory. The expected values Eg,n[trγ ] are very
closely connected with the expected value ofWilson loops in 2D Yang–Mills theory. We
briefly explain these connections and some prior work done by theoretical physicists in
the area. It is explained by Sengupta in [Sen03, Appendix A] that if �g is endowed with
a Riemannian metric with associated area A = A(�g) then

∑

(ρ,W )∈̂SU(n)

e−
C(ρ)t A

2n (dim W ) I(w, ρ) (1.11)
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is, in the context of a quantum SU(n) Yang–Mills theory on �g , a heuristic definition
of the expected value of the Wilson loop measuring the trace of the holonomy around
the loop in �g that w ∈ F2g represents. Here C(ρ) is the Casimir eigenvalue of the
representation (ρ, W ) and t is a coupling constant. (We have inserted the factor 1

n in
the above exponent so that it matches with, e.g., [GT93].) It is worth pointing out that
the methods of the current paper should also allow one to effectively and rigorously
approximate (1.11) although this is not pursued here.

The emphasis in the physics literature is not on the rigorous analytic approximation of
integrals such as (1.11), but rather, on the interpretation of (1.11) as a formal power series
and then reordering the terms and truncating in a formalway. Thesemanipulations are not
intended as having rigorousmathematical consequences. For example, aswe understand,
none of the ‘ 1n -expansions’ of (1.11) obtained before in any sense rigorously approximate
(1.11); nonetheless, they are significant to physicists. Since the values Eg,n[trγ ] that we
focus on here correspond to the t = 0 case of (1.11) via Corollary 1.6, we briefly survey
what is known to physicists for general t , with the disclaimer that the author is by no
means an expert in the concepts of theoretical physics.

In physics literature, the chiral expansion means that the (ρ, W ) are parameterized
by (ρλ

n , W λ
n ) where λ runs over Young diagrams. For this parameterization to work (cf.

§§2.4), one should restrict to Young diagrams with less than n rows. This is referred to
as the finite-n expansion. However, in some cases this restriction is lifted and (1.11) is
interpreted as a sum over all Young diagrams. This is called the large-n expansion. In
the chiral expansion, the Young diagrams are ordered by the number of boxes that they
contain.

The partition function of the quantum Yang–Mills theory corresponds to (1.11) in
the case w = id, up to a factor 1

n , and is given by [GT93, 2.4]

Z(G, t A, n)
def=

∑

(ρ,W )∈̂SU(n)

e−
C(ρ)t A

2n
1

(dim W )2g−2 .

A large-n chiral expansion of the partition function was obtained by Gross and Taylor
in [GT93]. The coefficients of this expansion are interpreted in terms of branched covers
of surfaces, and from this, Gross and Taylor deduce their titular statement that ‘Two
dimensionalQCD is a StringTheory.’Afinite-n chiral expansion of the partition function
in terms of branched covers with some extra data was obtained by Baez and Taylor in
[BT94]. In [Ram96], Ramgoolam gives a large-n chiral expansion of (1.11) in terms of
branched covers of surfaces.

In the language of these papers, the expansion we obtain in Theorem 1.1 is a finite-n,
fully non-chiral expansion of the expected value of a Wilson loop, when the coupling
constant is set to zero. The main point is that this asymptotic expansion is established
rigorously through Theorem 1.9.

To conclude this section, we mention that there are some other important rigor-
ous results about Wilson loop expectations in Yang–Mills theories; see [AS12,DN20,
DGHK17,Hal18,L17] for rigorous results about Wilson loop expectations in 2D quan-
tum Yang–Mills and [Cha19] for a rigorous computation of Wilson loop expectations in
strongly coupled lattice Yang–Mills theory in higher dimension.

Notation WewriteN for the natural numbers (not including zero),N0
def= N∪{0}, andQ

denotes the rationals.Wewrite [n] def= {1, . . . , n} for n ∈ N and [k, �] def= {k, k+1, . . . , �}
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for k, � ∈ N, k ≤ �. If A and B are sets A\B is the set of elements of A that are not in
B. We write

(n)�
def= n(n − 1) · · · (n − �).

We let e(θ)
def= exp(2π iθ) for θ ∈ R. If G is a group, and g1, g2 ∈ G, we let [g1, g2] def=

g1g2g−1
1 g−1

2 . We write [G, G] for the subgroup of G generated by elements of the form
[g1, g2] for g1, g2 ∈ G. If V is a complex vector space and q ∈ N, we let

V ⊗q def= V ⊗C · · · ⊗C V︸ ︷︷ ︸
q

;

in general, if we write a tensor product without explicit subscript it is over C. We write
Q(t) for the ring of rational functions in an indeterminate t , i.e., ratios of polynomials.

We use Vinogradov notation as follows. If f and h are functions of n ∈ N, we write
f � h to mean that there are constants n0 ≥ 0 and C0 ≥ 0 such that for n ≥ n0,
f (n) ≤ C0h(n). We write f = O(h) to mean f � |h|. We write f � h to mean
both f � h and h � f . If in any of these statements the implied constants depend on
additional parameters, we add these parameters as subscript to�, O, or�. Throughout
the paper, we view the genus g as fixed and so any implied constant may depend on g.

2. Background

2.1. Young diagrams and tableaux.

Young diagrams A Young diagram (YD) is a collection of left-aligned rows of identical
square boxes in the plane, where the number of boxes in each row is non-increasing from
top to bottom. Hence, we use the English convention for Young diagrams throughout the
text. Any YD λ also gives a non-increasing sequence of natural numbers (λ1, λ2, . . . ,
λ�(λ)) where λi is the number of boxes in the i th (from top to bottom) row of λ, and �(λ)

is the number of rows of λ. A finite non-increasing sequence of natural numbers is called
a partition. We think of partitions and YDs interchangeably in this paper via the above
correspondence. For example, the partition (k) corresponds to the Young diagram with
one row consisting of k boxes. The empty YD with no boxes is denoted by ∅. The size
of a YD λ is the number of boxes that it contains, or

∑�(λ)
i=1 λi . The size of λ is denoted

by |λ|, and the statement |λ| = k is sometimes written λ � k.
Given two Young diagrams λ and μ, we say μ ⊂ λ if every box of μ is a box of λ.

A skew Young diagram (SYD) is a pair λ, μ of Young diagram such that μ ⊂ λ. This is
usually written as λ/μ and λ/μ is thought of as the collection of boxes of λ that are not
boxes of μ. A Young diagram λ is identified with λ/∅, and in this way, YDs are special
cases of SYDs.

Wewill have use for the following relations betweenYoung diagrams.We sayμ ⊂k λ
if μ ⊂ λ and λ/μ contains k boxes. We say μ ⊂1 λ if μ ⊂ λ and no two boxes of λ/μ

are in the same column. We say μ ⊂r λ if there is a sequence μ1, . . . , μr−1 of YDs
such that

μ ⊂1 μ1 ⊂1 · · · ⊂1 μr−1 ⊂1 λ.

Finally, we write μ ⊂r
k λ if both μ ⊂k λ and μ ⊂r λ.
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Semistandard Young tableaux Given a SYD λ/μ (which may in fact be a YD) and a
subset S ⊂ N, a semistandard tableau of shape λ/μ with entries in S is a filling of
the boxes of λ/μ with the numbers of S such that the numbers in the boxes are strictly
increasing along columns from top to bottom and non-strictly increasing along rows
from left to right. If λ/μ is a SYD, we write

SST [k,�](λ/μ)

for the semistandard tableaux of shape λ/μwith entries in [k, �]. We also use all obvious
variants of this notation, e.g., for YD λ and n ∈ N, SST [n](λ) is the collection of
semistandard tableaux of shape λ with entries in [n]. There is by convention a unique
semistandard tableau (with any entry set) of shape the empty YD (or an empty SYD).

If λ/μ is a SYD, n > m, T1 ∈ SST [m](μ) and T2 ∈ SST [m+1,n](λ/μ), we write
T1 � T2 for the semistandard tableau obtained by adjoining the numbers-in-boxes of T2
to those of T1. It is easy to see this is always a valid semistandard tableau of shape λ.

Given T ∈ SST [k,m](λ/μ), the weight of T is the function

ωT : [k, m] → N0,

where ωT ( j) is the number of occurrences of j in T .
Given T ∈ SST [n](λ), λ a YD, and m ∈ N0 with m ≤ n, we write T |>m for the

skew semistandard tableau formed by the numbers-in-boxes of T with numbers > m,
and similarly write T |≤m for the semistandard tableau formed by the numbers-in-boxes
of T with numbers ≤ m.

2.2. General representation theory. Here we clarify the language of representation the-
ory that will appear throughout the paper.

A unitary representation of a compact Lie group3 G consists of a Hilbert space4 H
and a homomorphism ρ1, G → U(H) where U(H) is the group of unitary operators
on H. Any compact Lie group has a trivial unitary representation (trivG,C) with inner
product on C given by 〈z1, z2〉 = z1z2 and trivG(g) = 1 for all g ∈ G.

If (ρ1,H1) and (ρ2,H2) are two finite-dimensional representations of a compact Lie
group G, an intertwiner between (ρ1,H1) and (ρ2,H2) is a linear map I : H1 → H2
such that for all g ∈ G, Iρ1(g) = ρ2(g)I . If there is an invertible intertwiner between
(ρ1,H1) and (ρ2,H2), we say (ρ1,H1) and (ρ2,H2) are linearly isomorphic. If there is
an invertible isometric intertwiner between the two, we say they are unitarily equivalent
or isomorphic as unitary representations.

In many cases, the maps ρ1 and ρ2 will be tacitly inferred from the group G and the
spaces H1 and H2. When this is the case, we write

HomG(H1,H2)

for the vector space of linear intertwiners between (ρ1,H1) and (ρ2,H2).
For (ρ, W ) a unitary representation of a compact Lie group G, and H ≤ G a compact

Lie subgroup with unitary representation (π, V ), we define the (π, V )-isotypic subspace
of W for the subgroup H to be the subspace spanned by the images of all elements of

HomH (V, W )
def= HomH (V,ResG

H W )

3 Note that compact Lie groups include all finite groups.
4 In this paper, all Hilbert spaces appearing are finite-dimensional.
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where ResG
H W is the restriction of ρ to H . Any such isotypic space is itself a unitary

subrepresentation of ResG
H W (for the group H ). If V is an irreducible representation of

H , the dimension of HomH (V, W ) is the multiplicity with which V appears in ResG
H W .

Let (π, W ), (π1, W1) and (π2, W2) be finite-dimensional unitary representations of
a compact Lie group. We explain some basic constructions.

There is a dual unitary representation on the space of complex linear functionals on
W with inner product induced by that on W ; this representation is also irreducible if
(π, W ) is. The action of g on a linear functional ϕ on W is by g[ϕ](w) = ϕ(g−1w). If
w ∈ W , we write w̌ ∈ W̌ for the linear functional

w̌ : v 	→ 〈v,w〉.
We denote the dual representation by (π̌, W̌ ) or simply W̌ . Given two finite-dimensional
unitary representations (π1, W1) and (π2, W2) of a compact Lie group G, the tensor

product W1 ⊗ W2
def= W1 ⊗C W2 has an action of G that is ‘diagonal’ by π1 on the first

factor and π2 on the second factor. The tensor product inherits a Hermitian inner product

from that on W1 and W2 where 〈w1 ⊗ w2, w
′
1 ⊗ w′

2〉 def= 〈w1, w
′
1〉〈w2, w

′
2〉 that makes

W1⊗W2 a unitary representation of G under the diagonal action. This extends to tensor
powers of W ; any W⊗k for k ∈ N is in this way a unitary representation of G under the
diagonal action.

There is a canonical isomorphism

W1 ⊗ W̌2 ∼= Hom(W2, W1) (2.1)

of linear representations, where the right-hand side is the vector space of linear maps
from W2 to W1, where G acts ‘diagonally’ on the left-hand side, and by conjugation
(g : A 	→ π1(g)Aπ2(g)−1) on the right-hand side. If W ′

1, W ′
2 are subrepresentations of

W1, W2, then we view Hom(W ′
2, W ′

1) as a subrepresentation of Hom(W2, W1) via (2.1).
This corresponds to extending linear maps by 0 on the orthogonal complement of W ′

2 in
W2.

In the case W1 = W2 = W (2.1) is moreover an isomorphism of unitary repre-
sentations W ⊗ W̌ ∼= End(W ) if End(W ) is given the Hilbert–Schmidt inner product

〈A, B〉 def= tr(AB∗), B∗ standing for the Hermitian transpose of B.

2.3. Representation theory of symmetric groups. Although the problems of this paper
are not initially posed in a way that involves symmetric groups, the representation the-
ory of unitary groups is intimately connected via Schur–Weyl duality (see §2.4) to the
representation theory of symmetric groups, so it plays a large part in this paper.

We write Sk for the symmetric group of permutations of the set [k], and C[Sk] for
the group algebra of Sk . As a technicality, the group S0 is the group with one element.

The equivalence classes of irreducible representations of Sk are in one-to-one corre-
spondence with YDs λ � k [FH91, §4.2]. The irreducible unitary representation of Sk
corresponding to λ � k will be denoted by (πλ, V λ) and simply referred to as V λ. We
write χλ for the character of V λ, i.e.,

χλ(σ )
def= tr(πλ(σ )), σ ∈ Sk .

All characters of irreducible representations of symmetric groups are real-valued (e.g.,
by [FH91, Frobenius Formula 4.10]).
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The dimension of V λ is given by the Frame–Robinson–Thrall hook length formula
as follows. The hook of a box � in λ � k is the collection of boxes either to the right
of, or below, λ, including the box itself. We write hλ(�) for the number of boxes in the
hook of �. The hook length formula [FRT54] states

dλ
def= dim V λ = k!

∏
�∈λ hλ(�)

. (2.2)

Before proceeding, we fix some notation. If we refer to S� ≤ Sk with � ≤ k we
always view S� as the subgroup of permutations that fix every element of [� + 1, k]. As
a consequence, we obtain fixed inclusions C[S�] ⊂ C[Sk] for � and k as above. When
we write S� × Sk−� ≤ Sk , the first factor is S� as defined above and the second factor
is S′

k−� which is our notation for the subgroup of permutations that fix every element of
[�].

Given λ � �, the element

pλ
def= dλ

�!
∑

σ∈S�

χλ(σ )σ ∈ C[S�]

is a central idempotent in C[S�] with the following important property. If (π, V ) is
any unitary irreducible representation of Sk with k ≥ �, then by linear extension π :
C[Sk] → End(V ). Under the fixed inclusion C[S�] ⊂ C[Sk], π(pλ) is the orthogonal
projection onto the V λ-isotypic subspace of V for the subgroup Sk .

Suppose that � ≤ k, �, k ∈ N0, with λ � k and μ � �. We write

dλ/μ
def= dimHomS�

(V μ, V λ).

The branching rules for Sk imply that dλ/μ = 0 unless μ ⊂ λ. Applying Frobenius
reciprocity to the pair (V μ, V λ) then taking the dimension of the induced representation
IndSk

S�
V μ gives the formula, for μ � � fixed and b = k − �,

∑

μ⊂bλ

dλ/μdλ = (� + b)!
�! dμ. (2.3)

Suppose that �1, �2 ∈ N0 and �1+�2 = k. The irreducible representations of S�1×S�2

are of the form V μ1 ⊗ V μ2 with μi � �i for i = 1, 2; S�1 acts on the first factor and S′
�2

acts on the second factor. The numbers

LRλ
μ1,μ2

def= dimHomS�1×S�2
(V μ1 ⊗ V μ2 , V λ) ∈ N0

are called Littlewood–Richardson coefficients. They are notoriously difficult to work
with, but thankfully, in this paper the most detail we need about them is the following:

Lemma 2.1 (Recast of Pieri’s formula). Suppose that �1, �2 ∈ N0 and �1 + �2 = k. Let
μ � �1 and λ � k with μ ⊂1 λ. We have

LRλ
μ,(�2)

= dimHomS�1×S�2
(V μ ⊗ trivS�2

, V λ) = 1.

Proof. This is a standard fact but normally presented slightly differently. To obtain
this version, one needs to know that LRλ

μ,(�2)
is also the coefficient of the Schur poly-

nomial sμ in the expansion of sλs(�2) in Schur polynomials (see [FH91, eq. (A.8),
Ex. 4.43] for the equivalence of these definitions of Littlewood–Richardson coeffi-
cients). Then the lemma follows from the version of Pieri’s formula for sλs(�2) given in
[FH91, eq. (A.7)]. ��
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2.4. Representation theory of U(n) and SU(n). Here we give a brief account of the
representation theory of U(n) and SU(n). The details as well as more background can
be found in [FH91].

The equivalence classes of irreducible representations of U(n) are in one-to-one
correspondence with their highest weights by the theorem of the highest weight. These
highest weights are given by linear combinations

λ1ω̂1 + · · · + λnω̂n

where (λ1, . . . , λn) ∈ Zn is a non-increasing sequence of integers and ω̂1, . . . , ω̂n is
a system of fundamental weights for U(n). The sequence (λ1, . . . , λn) is called the
signature of the representation. If all λi ∈ Z≥0, then the signature corresponds to a
Young diagram λ with �(λ) ≤ n, and conversely, any YD λ with �(λ) ≤ n gives rise to
an equivalence class of irreducible representation of U(n) denoted by (ρ̃λ

n , W λ
n ).

Every irreducible representation of U(n) restricts to an irreducible representation of
SU(n), and every irreducible representation of SU(n) arises by restriction from U(n).
Two irreducible representations of U(n) restrict to equivalent representations of SU(n)

if and only if their signatures differ by an integer multiple of (1, 1, . . . , 1). This imme-
diately shows that the equivalence classes of irreducible representations of SU(n) are in
one-to-one correspondence with YDs λ such that �(λ) ≤ n − 1, since there is a unique
signature (λ1, . . . , λn) whose representation restricts to the given one of SU(n) with
λn = 0 and this corresponds to a YD by deleting trailing zeros. For such a λ, we write
(ρλ

n , W λ
n ) for the restriction of this representation of SU(n).

To be less verbose, in the rest of the paper we will tend to refer to representations
simply by the vector space whenever the module structure can be inferred.

The trace of g ∈ U(n) on W λ
n is given by sλ(e(θ1), . . . , e(θn)) where sλ is the Schur

polynomial associated with the YD λ and e(θ1), . . . , e(θn) are the eigenvalues of g. As
such, the dimension of W λ

n is given by the specialization of the Schur polynomial, letting

1n def= (1, 1, . . . , 1︸ ︷︷ ︸
n

)

Dλ(n)
def= dim W λ

n = sλ(1n). (2.4)

There is a formula for sλ(1n) due to Stanley called the hook content formula. Given a
YD λ, for any box � of λ, we define the content of the box to be

c(�)
def= j (�) − i(�)

where i(�) is the row number (starting at 1, counting from top to bottom) of the box
and j (�) is the column number (starting at 1, counting from left to right). Recall the
quantities hλ(�) from §§2.3. The hook content formula [Sta99, Cor. 7.21.4] says

Dλ(n) = sλ(1n) =
∏

�∈λ(n + c(�))
∏

�∈λ hλ(�)
. (2.5)

By a slight abuse of notation, if g is any element of U(n), we also write sλ(g) for
trWλ

n
(ρ̃λ(g)); strictly speaking this is the Schur polynomial evaluated at the eigenvalues

of g. The hook content formula (2.5) implies that for a fixedYD λ, Dλ(n) is a polynomial
function of n with coefficients in Q.
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There is an important formula expressing sλ(g) in terms of power sum symmetric
functions. Given a partition λ = (λ1, . . . , λr ), and g ∈ U(n), we define

pλ(g)
def= tr(gλ1)tr(gλ2) · · · tr(gλr ).

Given λ � k, the change of base formula is [FH91, Ex. A.29]

sλ(g) = 1

k!
∑

π∈Sk

χλ(π)pμ(π)(g) (2.6)

where μ(π) � k is the partition given by the cycle type of π ∈ Sk .
Besides the polynomial families of representations of U(n), as n varies, obtained

by fixing λ and varying n, there are similar rational families that we explain now. Let
μ � k and ν � � be fixed Young diagrams. Then for every n ≥ �(μ) + �(ν), there is an
irreducible unitary representation of U(n) with signature

(μ1, μ2, . . . , μ�(μ), 0, . . . , 0︸ ︷︷ ︸
n−�(μ)−�(ν)

,−ν�(ν),−ν�(ν)−1, . . . ,−ν1).

WewriteW [μ,ν]
n for this representation ofU(n), D[μ,ν](n) for its dimension, and s[μ,ν](g)

for the character of this representation at g ∈ U(n). The representations W [μ,ν]
n directly

generalize the case of W λ
n with λ fixed by taking μ = λ and ν to be the empty Young

diagram. The character s[λ,μ](g) can bewritten in terms of Schur polynomials by a result
of Koike.

Theorem 2.2 ([Koi89, eq.(0.2)]). For μ � k and ν � �, n ≥ �(μ) + �(ν), g ∈ U(n), we
have

s[μ,ν](g) =
∑

p1,p2,p3∈N0
p1+p2=k, p1+p3=�

∑

ν1�p1,ν2�p2,ν3�p3
ν2⊂μ,ν3⊂ν

LRμ
ν1,ν2

LRν
ν̌1,ν3

sν2(g)sν3(g
−1)

where ν̌1 denotes the transposed YD of ν1 (obtained from ν1 by switching rows and
columns).

Inspection of Theorem 2.2 shows that D[μ,ν](n) = s[μ,ν](1n) is a finite linear com-
bination, with integer coefficients, of

sν2(1
n)sν3(1

n), ν2 � p2 ≤ k, ν3 � p3 ≤ �. (2.7)

The linear combination itself does not depend on n, and by the hook content formula
(2.5), each of the terms in (2.7) is a polynomial function of n with coefficients in Q
for n ≥ �(μ) + �(ν). Moreover, the term in (2.7) is � n p2+p3 so the contribution to
s[λ,μ](1n) of maximal growth corresponds to p2 = k and p3 = � hence is a unique term
with nonzero (in fact, unity) coefficient. These arguments yield the following corollary
to Theorem 2.2.

Corollary 2.3. Let μ � k and ν � �. For n ≥ �(μ) + �(ν), D[μ,ν](n) is given by a
polynomial function of n with coefficients in Q and

D[μ,ν](n) � nk+�

as n → ∞.

Corollary 2.3 shows that in any organization of the irreducible representations of
U(n) or SU(n) into families of ‘small’- or ‘large’-dimensional representations, the rep-
resentations W [μ,ν]

n with μ, ν fixed should be considered alongside the representations
W λ

n with λ fixed.
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Schur–Weyl duality We always understand that Cn has the standard Hermitian inner
product and U(n) acts unitarily on Cn in its defining representation. This representation
coincides with (ρ̃λ, W λ

n )where λ consists of one box in the formalism of §2.4. We write

{e1, . . . , en} for the standard basis of Cn . The tensor power (Cn)⊗k def= Cn ⊗ · · · ⊗ Cn
︸ ︷︷ ︸

k
has an induced inner product that makes it into a unitary representation of U(n), where
U(n) acts diagonally. The space (Cn)⊗k is also a unitary representation of Sk where Sk
acts by permuting indices. The actions of U(n) and Sk commute, and hence, (Cn)⊗k

is a unitary representation of U(n) × Sk . We write πk
n : U(n) → End((Cn)⊗k) for the

diagonal action of U(n) and ρk
n : Sk → End((Cn)⊗k) for the action that permutes coor-

dinates. Schur–Weyl duality gives the following full description of the decomposition of
(Cn)⊗k into irreducible representations of U(n)× Sk , which are a priori tensor products
W ⊗ V where W (resp. V ) is an irreducible representation of U(n) (resp. Sk).

Proposition 2.4 (Schur–Weyl duality [Wey39, Chapt. IV]). There is an isomorphism F
of linear representations of U(n) × Sk

F : (Cn)⊗k ∼−→
⊕

λ�k
�(λ)≤n

W λ
n ⊗ V λ.

Branching rules For any n > r ≥ 0 we view U(n − r) as the subgroup of U(n) of
elements that fix pointwise the standard basis elements en−r+1, . . . , en of Cn in the
defining representation of U(n). We have [FH91, Ex. 6.12] for �(λ) ≤ n

ResU(n)

U(n−1)W
λ
n

∼=
⊕

μ :μ⊂1λ
�(μ)≤n−1

W μ
n−1. (2.8)

By iterating (2.8), we obtain a orthogonal direct sum decomposition

W λ
n =

⊕

∅⊂1μ1⊂1...⊂1μn−1⊂1λ
�(μi )≤i

W λ
n,(μ1,...,μn−1)

where

W λ
n,(μ1,...,μn−1)

def=
n−1⋂

i=1

(W λ
n )μi

is one-dimensional and (W λ
n )μi denotes the W μi

i -isotypic subspace of W λ
n for U(i). We

make the observation that a sequence

∅ def= μ0 ⊂1 μ1 ⊂1 . . . ⊂1 μn−1 ⊂1 μn
def= λ (2.9)

gives a semistandard tableau of shape λ by filling in the boxes of μi+1/μi with the
number i . This gives a one-to-one correspondence (μ1 , . . . , μn−1) 	→ T (μ1, . . . , μn−1)

between such sequences of YDs as in (2.9) andSST [n](λ); for T = T (μ1, . . . , μn−1) ∈
SST [n](λ) we define

W λ
n,T

def= W λ
n,(μ1,...,μn−1)
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and pick a unit-norm vector wT in each W λ
n,T (this is unique up to a unit complex

number). We do this now once and for all for all λ and T ∈ SST [n](λ). The resulting
orthonormal basis

{wT : T ∈ SST [n](λ) }
of W λ

n is called a Gelfand–Tsetlin basis.
Given m, n ∈ N0 with m ≤ n, YDs λ, μ with μ ⊂n−m λ, �(μ) ≤ m, �(λ) ≤ n, and

R1, R2 ∈ SST [m+1,n](λ/μ) we define

Eλ,μ,m
R1,R2

def= 1
√

Dμ(m)

∑

T∈SST [m](μ)

wT�R1 ⊗ w̌T�R2 ∈ End(W λ
n ). (2.10)

We have use for the following fact, analogous to [MP20, Lemma 2.4].

Lemma 2.5. Let λ be a Young diagram with �(λ) ≤ n. Suppose m ∈ [n]. Let Z(λ, m) ⊂
End(W λ

n ) denote the algebra generated by U(m) acting on W λ
n . The commutant of

Z(λ, m) in End(W λ
n ) has an orthonormal basis given by

{
Eλ,μ,m

R1,R2
: μ ⊂n−m λ, �(μ) ≤ m, R1, R2 ∈ SST [m+1,n](λ/μ)

}
.

Proof. The proof is essentially the same as that of [MP20, Lemma 2.4]. ��

2.5. The Weingarten calculus. The Weingarten calculus is a method of calculating in-
tegrals of the form

∫

u∈U(n)

ui1 j1 · · · uik jk ūi ′1 j ′1 · · · ūi ′k j ′k dμHaar
U(n)(u) (2.11)

where dμHaar
U(n)

is the probability Haar measure on U(n). A large-n asymptotic estimate
for (2.11) was first obtained by Weingarten in [Wei78] and this was expanded upon by
Xu in [Xu97] where a full large-n asymptotic expansion was given. A new method of
evaluating (2.11) in terms of characters of symmetric groups was developed by Collins
[Col03] andCollins and Śniady [CŚ06] and this iswhatwe refer to here as theWeingarten
calculus. The work [CŚ06] involves reinterpreting (2.11) as a problem in calculating the
orthogonal projection onto the U(n)-invariant vectors in End((Cn)⊗k), where u ∈ U(n)

acts on A ∈ End((Cn)⊗k) by A 	→ πk
n (u)Aπk

n (u−1), πk
n : U(n) → End((Cn)⊗k) the

diagonal action. This is actually the point of view that will be relevant to this paper.
The Weingarten function, depending on parameters n, k is the following element of

C[Sk]

Wgn,k
def= 1

(k!)2
∑

λ�k
�(λ)≤n

d2
λ

Dλ(n)

∑

σ∈Sk

χλ(σ )σ = 1

k!
∑

λ�k
�(λ)≤n

dλ

Dλ(n)
pλ. (2.12)

Write Pn,k for the orthogonal projection in End((Cn)⊗k) onto theU(n)-invariant vectors.
Henceforth, tr will always denote the usual trace of a linearmap fromafinite-dimensional
vector space to itself. We have the following proposition of Collins and Śniady [CŚ06,
Prop. 2.3].
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Proposition 2.6 (Collins-Śniady). Let n, k ∈ N. Suppose A ∈ End((Cn)⊗k). Then

Pn,k[A] = ρk
n

(
�[A] ·Wgn,k

)

where

�[A] def=
∑

σ∈Sk

tr(Aρk
n (σ−1))σ.

2.6. Free groups and surface groups. Recall that �g is a closed topological surface of
genus g with base point x0 and we have identified π1(�g, x0) ∼= �g =
〈a1, b1, . . . , ag, bg|[a1, b1] · · · [ag, bg]〉.

Given w ∈ F2g , we view w as a combinatorial word in a1, a−1
1 , b1, b−1

1 , . . . , ag,

a−1
g , bg, b−1

g by writing it in reduced (shortest) form; i.e., a1 does not follow a−1
1 , etc.

The commutator subgroup [F2g,F2g] (resp. [�g, �g]) is the group generated by all

elements of the form [h1, h2] def= h1h2h−1
1 h−1

2 with h1, h2 ∈ F2g (resp. �g). A simple
fact is that w ∈ [F2g,F2g] if and only if ai (resp. bi ) appears the same number of times
as a−1

i (resp. b−1
i ) in the reduced word of w, for each 1 ≤ i ≤ g. The abelianization

of �g coincides with the first singular homology group of �g and is isomorphic to Z2g ,
generated by the images of a1, b1, . . . , ag, bg . As such, the map induced by qw from
F2g to the abelianization of �g has kernel [F2g,F2g]; hence, w ∈ [F2g,F2g] if and only
if qg(w) ∈ [�g, �g]. Therefore, if γ ∈ [�g, �g], anyw representing γ , or the conjugacy
class of γ,must be in [F2g,F2g].

2.7. The Atiyah–Bott–Goldman measure. We first follow Goldman [Gol84] to define
the Atiyah-Bott–Goldman measure onMg,n . Consider the word map

Rg : SU(n)2g → SU(n)

Rg : (A1, B1, . . . , Ag, Bg) 	→ [A1, B1] · · · [Ag, Bg].
We view Hom(�g,SU(n)) as R−1

g (id) ⊂ SU(n)2g via the embedding (1.1). The diag-
onal action of SU(n) on SU(n)2g by conjugation factors through an action of PSU(n).
This action preserves Hom(�g,SU(n)).

Let Hom(�g,SU(n))irr denote the set of φ ∈ Hom(�g,SU(n)) that are irreducible
as linear representations. The conjugation action of PSU(n) on Hom(�g,SU(n))irr is
clearly free and the action is also proper [Gol84, pg. 205]. Hence,

Mg,n
def= Hom(�g,SU(n))irr/PSU(n)

is a smooth real manifold of dimension

dimMg,n = (2g − 2) dimSU(n)

[Gol84, §1.3]. The complement of Mg,n in Hom(�g,SU(n))/PSU(n) is the union of
finitely many manifolds of strictly lower dimension than Mg,n .

By [Gol84, §1.4] for [φ] ∈ Mg,n , there is an identification of the tangent fiber

T[φ](Mg,n) ∼= H1(�g,Ad[φ]) (2.13)
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where Ad[φ] is su(n)with the action of�g given by composing φ with the adjoint action
of SU(n) on su(n), and H1(�g,Ad[φ]) denotes group cohomology with coefficients
in a module (see, e.g., [Bro82, Chapt. 3 §1] for a definition of group cohomology with
coefficients). A key property of group cohomology of �g with coefficients in Ad[φ] is
that it identifies naturally with the singular cohomology of �g with coefficients in the
local system corresponding to Ad[φ] (for the homology version of this statement see
[Bro82, Chapt. 7, Prop. 7.3 and Thm. 7.9, Rmk.]; the cohomology version follows from
analogous results).

We normalize the Killing form on su(n) so that the induced Riemannian volume
on SU(n) has unit total mass, i.e., it gives the probability Haar measure on SU(n).
Cup product together with the Killing form on su(n) and Poincaré duality induces an
alternating non-degenerate bilinear form

H1(�g,Ad[φ]) × H1(�g,Ad[φ]) → H0(�g,Ad[φ]) ∼= R

where the last isomorphism used that φ is irreducible (see [Gol84, §1.4] for more details
on this argument). This yields via (2.13) a differential two-form ωABG

g,n on Mg,n that
turns out to be closed and hence symplectic ([Gol84, pg. 208]; the closedness of the
form was originally proved by Atiyah and Bott [AB83]).

The Atiyah–Bott–Goldman (ABG) measure μABG
g,n is the probability measure on

Mg,n induced by the symplectic volume form:

dVolMg,n

def= ∧ 1
2 dimMg,n (ωABG

g,n )

( 12 dimMg,n)! .

If f is a continuous function onMg,n then the expected value of f with respect toμABG
g,n

is given by

Eg,n[ f ] def=
∫

f dμABG
g,n

def=
∫
Mg,n

f dVolMg,n
∫
Mg,n

dVolMg,n

. (2.14)

Having defined the ABGmeasure, we now explain how to deduce Corollary 1.6 from
Sengupta’s work [Sen03]. For mostly technical reasons, this involves the introduction
of the heat kernel5 on SU(n). The heat kernel is a one parameter family of functions
Qt : SU(n) → R for t ∈ (0,∞) that, as a function on (0,∞)×SU(n), is a fundamental
solution to the heat equation on SU(n) (cf. [Sen03, §§1.2] for the precise definition).
What is important here is that the heat kernel has the expansion

Qt (h) =
∑

(ρ,W )∈̂SU(n)

e−
C(ρ)t
2 dim W tr(ρ(h)) (2.15)

whereC(ρ) ≥ 0 is the eigenvalue of the Casimir operator ofSU(n) on the representation
(ρ, W ). This expansion is uniformly convergent on SU(n) for each fixed t > 0 [Bus10,
Thm. 7.2.6].

The following theorem was proved by Sengupta [Sen03, Thm. 1].

5 The heat kernel will only be involved for a short time before being dispensed of.
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Theorem 2.7. (Sengupta) Let g ≥ 2 and suppose f is a continuousSU(n)-conjugation-
invariant function on SU(n)2g, and f̃ the function induced by f on Mg,n. Then

lim
t→0+

∫

SU(n)2g
f (x)Qt (Rg(x))dμHaar

SU(n)2g (x) = 1

n

∫

Mg,n

f̃ dVolMg,n .

The notation limt→0+ means the limit is taken along positive values of t .

Proof. (Deduction of Corollary 1.6 from Theorem 2.7)
Under the same assumptions as Theorem 2.7, using (2.15), one may write for fixed

t > 0
∫

SU(n)2g
f (x)Qt (Rg(x))dμHaar

SU(n)2g (x)

=
∫

SU(n)2g
f (x)

⎛

⎜
⎝

∑

(ρ,W )∈̂SU(n)

e−
C(ρ)t
2 dim W tr(ρ(Rg(x)))

⎞

⎟
⎠ dμHaar

SU(n)2g

=
∑

(ρ,W )∈̂SU(n)

e−
Cλ(ρ)t

2 dim W
∫

f (x)tr(ρ(Rg(x)))dμHaar
SU(n)2g (x) (2.16)

where the interchange of sum and integral is valid by uniform convergence of the heat
kernel expansion. We are given γ ∈ �g and w ∈ F2g representing the conjugacy class
of γ . We take f = tr ◦ w (w denoting the word map of w) so that f̃ = trγ . Recall the
notation I(w, ρ) from 1.7, in this case, Theorem 2.7 together with (2.16) gives

1

n

∫

Mg,n

trγ dVolMg,n = lim
t→0+

∑

(ρ,W )∈̂SU(n)

e−
C(ρ)t
2 dim W I(w, ρ). (2.17)

Since we assume the hypothesis that
∑

(ρ,W )∈̂SU(n)
dim W I(w, ρ) is absolutely con-

vergent, using dominated convergence in (2.17) proves
∫

Mg,n

trγ dVolMg,n = n
∑

(ρ,W )∈̂SU(n)

dim W I(w, ρ).

Combining this with Witten’s formula (Theorem 1.5) we obtain Corollary 1.6. ��

3. Organization of Representations

3.1. Models of representations. In light of Corollary 1.6, we must evaluate I(w, ρ) for

(ρ, W ) ∈ ŜU(n). We use different models of (ρ, W ) throughout the paper: recalling the
definition of �(B; n) from (1.9), viewing B as fixed and assuming n is large enough
depending on B

• If (ρ, W ) ∈ �(B; n), we identify (ρ, W ) ∼= (ρ
[μ,ν]
n , W [μ,ν]

n ) for some μ, ν with
|μ|, |ν| ≤ B3 uniquely determined by (ρ, W ). Hence,

I(w, ρ) = I(w, [μ, ν]) def=
∫

tr(w(x))s[μ,ν](Rg(x))dμHaar
SU(n)2g (x).
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• If (ρ, W ) ∈ ŜU(n)\�(B; n), then we identify (ρ, W ) ∼= (ρλ
n , W λ

n ) for some λ
with �(λ) ≤ n − 1 uniquely determined by (ρ, W ). Hence,

I(w, ρ) = I(w, λ)
def=
∫

tr(w(x))sλ(Rg(x))dμHaar
SU(n)2g (x). (3.1)

3.2. Integrating over SU(n)2g vs U(n)2g. At various points, it is convenient to execute
the integral defining I(w, λ) or I(w, [μ, ν]) as an integral over U(n)2g rather than
SU(n)2g . This is indeed possible in all cases that the large-n behavior of Eg,n[trγ ] is
interesting. Recall that [F2g,F2g] is the commutator subgroup of F2g .

Proposition 3.1.

1. If w ∈ [F2g,F2g], then

I(w, λ) =
∫

x∈U(n)2g
tr(w(x))sλ(Rg(x))dμHaar

U(n)2g (x),

I(w, [μ, ν]) =
∫

x∈U(n)2g
tr(w(x))s[μ,ν](Rg(x))dμHaar

U(n)2g (x).

In other words, the integrals can be computed using U(n) instead of SU(n).
2. On the other hand, if w ∈ F2g and w /∈ [F2g,F2g], then there is n0 = n0(w) such

that for n ≥ n0, for any (ρ, W ) ∈ ŜU(n),

I(w, ρ) = 0.

Proof. By uniqueness of the Haar measure on U(n)2g , we have

μHaar
U(n)2g = μHaar

Z(U(n)2g)
∗ μHaar

SU(n)2g (3.2)

where ∗ denotes convolution of measures. Therefore,
∫

x∈U(n)2g
tr(w(x))sλ(Rg(x))dμHaar

U(n)2g (x)

=
∫

z∈Z(U(n)2g)

∫

x∈SU(n)2g
tr(w(zx))sλ(Rg(zx))dμHaar

SU(n)2g (x)dμHaar
Z(U(n)2g)

(z)

=
∫

z∈Z(U(n)2g)

∫

x∈SU(n)2g
tr(w(zx))sλ(Rg(x))dμHaar

SU(n)2g (x)dμHaar
Z(U(n)2g)

(z)

=
∫

x∈SU(n)2g

(∫

z∈Z(U(n)2g)

tr(w(zx))dμHaar
Z(U(n)2g)

(z)

)

sλ(Rg(x))dμHaar
SU(n)2g (x).

The first equality used (3.2), the second used Rg(zx) = Rg(x) for all x ∈ U(n)2g and z ∈
Z(U(n)2g), and the last used Fubini’s theorem. Ifw ∈ [F2g,F2g], then by the discussion
in §§2.6 the letters of w are ‘balanced’ and the inner integrand is tr(w(zx)) = tr(w(x)).
Thus, we obtain

I(w, λ) =
∫

x∈U(n)2g
tr(w(x))sλ(Rg(x))dμHaar

U(n)2g (x).
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In other words, the Fourier coefficient can be computed using U(n) instead of SU(n).
The proof for I(w, [μ, ν]) is exactly the same. This proves Part 3.1.

For the second part, suppose w is not in [F2g,F2g]. Then the letters of w are not

balanced, and for z =
(

e
(

k1
n

)
id, . . . , e

(
k2g
n

)
id
)
∈ Z(SU(n)2g), we have

tr(w(zx)) = e

(

m1
k1
n

+ · · · + m2g
k2g

n

)

tr(w(x))

where all mi ∈ Z and at least one mi �= 0. On the other hand, Rg(zx) = Rg(x) as
before. Suppose without loss of generality in the following that m1 �= 0. Let z0 =(
e
( 1

n

)
id, . . . , id

)
. We have by left invariance of Haar measure

I(w, ρ) =
∫

x∈SU(n)2g
tr(w(x))tr(ρ(Rg(x)))dμHaar

SU(n)2g (x)

=
∫

x∈SU(n)2g
tr(w(z0x))tr(ρ(Rg(z0x)))dμHaar

SU(n)2g (x)

= e
(m1

n

) ∫

x∈SU(n)2g
tr(w(x))tr(ρ(Rg(z0x)))dμHaar

SU(n)2g (x)

= e
(m1

n

) ∫

x∈SU(n)2g
tr(w(x))tr(ρ(Rg(x)))dμHaar

SU(n)2g (x) = e
(m1

n

)
I(w, ρ).

Hence, for n > m1(w) we obtain I(w, ρ) = 0 for any (ρ, W ) ∈ ŜU(n). ��
This means the main theorem is proved when γ /∈ [�g, �g].

Proof of Proposition 1.7. Weobserve that the series defining ζ(2g−2; n) converges to a
nonzero valuewhen n ≥ 2 [LL08, Thm. 1.5]. Assume γ /∈ [�g, �g]. Pickw representing
the conjugacy class of γ as above. Since γ /∈ [�g, �g], this implies w /∈ [F2g,F2g] by
the discussion in §§2.6. Hence, Corollary 1.6 together with Proposition 3.1 Part 3.1
shows

Eg,n[trγ ] = 0

when n ≥ n0(w). ��
As Theorem 1.1 has now been proved for γ /∈ [�g, �g], in the rest of the paper, we

may assume γ ∈ [�g, �g], and hence, any w representing the conjugacy class of γ is
in [F2g,F2g].

3.3. Rationality of the contribution from �(B; n). Hereweprove the following theorem.
Let Q(t) denote the ring of rational functions in an indeterminate t with coefficients in
Q. For f ∈ Q(t) and t0 ∈ Q we write f (t0) for the evaluation of the rational function at
t0, provided that t0 is not a pole of f . Let w ∈ [F2g,F2g] represent the conjugacy class
of γ ∈ [�g, �g].
Theorem 3.2. There is a rational function Q B,w ∈ Q(t) such that for n ≥ |w| + 2B3

∑

(ρ,W )∈�(B;n)

(dim W )I(w, ρ) = Q B,w(n).
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Proof. Fix B ≥ 0. Following the discussion in §§3.1, we have

∑

(ρ,W )∈�(B;n)

(dim W )I(w, ρ) =
∑

μ,ν : �(μ),�(ν)≤B,μ1,ν1≤B2

D[μ,ν](n)I(w, [μ, ν]).

Since the index set of the sum is finite and does not depend on n, it now suffices to prove
that each D[μ,ν](n)I(w, [μ, ν]) agrees with a rational function of n for fixed μ, ν as
above. By Corollary 2.3, each D[μ,ν](n) agrees with a polynomial function of n with
coefficients in Q when n ≥ 2B. Therefore, the proof of the theorem is reduced to the
following:

Claim: For each (μ, ν) ∈ �(B), when n ≥ |w| + 2B3, I(w, [μ, ν]) agrees with a
rational function of n with coefficients in Q.

Proof of claim. We first use Proposition 3.1 to write

I(w, [μ, ν]) =
∫

x∈U(n)2g
tr(w(x))s[μ,ν](Rg(x))dμHaar

U(n)2g (x).

For x ∈ U(n)2g , we use Theorem 2.2 followed by the formula (2.6) to obtain with
k = |μ|, � = |ν|

s[μ,ν](Rg(x)) =
∑

YDs μ1,μ2

|μ1|≤�,|μ2|≤k

α
μ,ν

μ1,μ2 pμ1(Rg(x))pμ2(Rg(x)−1)

where the α
μ,ν

μ1,μ2 ∈ Q. Therefore,

I(w, [μ, ν]) =
∑

YDs,μ2

|μ1|≤�,|μ2|≤k

α
μ,ν

μ1,μ2

∫

x∈U(n)2g
tr(w(x))pμ1 (Rg(x))pμ2 (Rg(x)−1)dμHaar

U(n)2g (x).

For every fixed μ1, μ2 appearing in the finite sum above,
∫

x∈U(n)2g
tr(w(x))pμ1(Rg(x))pμ2(Rg(x)−1)dμHaar

U(n)2g (x) (3.3)

agreeswith a rational functionofn by6 [MP19a, Prop. 1.1], forn ≥ |w|+2B3 ≥ |w|+k+�.
This proves the claim and hence the theorem. ��

4. The Contribution from a Single Family of Representations

4.1. Statement of main sectional result and setup. For n, � ∈ N, let [n]� def=
[n] × · · · × [n]
︸ ︷︷ ︸

�

; this set has a diagonal action of Sn and we write Sn\[n]� for the quo-

tient set. The main theorem of this §4 is the following key estimate that will be used for

(ρλ
n , W λ

n ) ∈ ŜU(n)\�(B; n).

6 This is a straightforward application of the Weingarten calculus.
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Theorem 4.1. For w ∈ [F2g,F2g]

|I(w, λ)| ≤
∑

[I ]∈Sn \[n]|w|
(n)D(I )

1

Dλ(n)2g

∑

μ⊂D(I )λ
�(μ)≤n−D(I )

Dμ(n −D(I )) (|λ/μ| + |w|)4g|w| |SST [n−D(I )+1,n](λ/μ)|4g

where for I = (i1, i2, . . . , i|w|) ∈ [n]|w|, D(I ) denotes the number of distinct entries of
I .

In the rest of this §4, we assume g = 2 for simplicity of exposition. The proofs extend
in a straightforward way to g ≥ 3. We write {a, b, c, d} for the generators of F4 and
R = [a, b][c, d]. We write w in reduced form:

w = f ε1
1 f ε2

2 . . . f
ε|w|
|w| , εu ∈ {±1}, fu ∈ {a, b, c, d}, (4.1)

The expression (4.1) implies that for h
def= (ha, hb, hc, hd) ∈ U(n)4

tr(w(h)) =
∑

i1,··· ,i|w|∈[n]
(hε1

f1
)i1i2(h

ε2
f2
)i2i3 · · · (hε|w|

f|w|)i|w|i1 .

Define for I = (i1, i2, . . . , i|w|) ∈ [n]|w|

wI (h)
def= (hε1

f1
)i1i2(h

ε2
f2
)i2i3 · · · (hε|w|

f|w|)i|w|i1 .

After interchanging summation and integration in (3.1), we obtain

I(w, λ) =
∑

I∈[n]|w|
I∗(wI , λ). (4.2)

where

I∗(wI , λ)
def=
∫

h∈U(n)4
wI (h)sλ(R(h))dμHaar

U(n)4
.

Since we have an inclusion Sn ⊂ U(n) via 0-1 matrices, for σ ∈ Sn we can change
variables

(ha, hb, hc, hd) 	→ (h′
a, h′

b, h′
c, h′

d)
def= (σhaσ−1, σhbσ

−1, σhcσ
−1, σhdσ−1).

The measure dμHaar
U(n)4

is invariant by this change of variables and

sλ(R(h′
a, h′

b, h′
c, h′

d)) = sλ(σ R(ha, hb, hc, hd)σ−1)

= sλ(R(ha, hb, hc, hd)).

For I = (i1, i2, . . . , i|w|) and σ ∈ Sn , we define σ(I ) = (σ (i1), σ (i2), . . . , σ (i|w|)) and
we have

wI (h
′) = wσ(I )(h)
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so we obtain in total

I∗(wI , λ) =
∫

h∈U(n)4
wI (h)sλ(R(h))dμHaar

U(n)4

=
∫

h∈U(n)4
w

σ(I ) (h)sλ(R(h))dμHaar
U(n)4

=I∗(wσ(I ), λ).

We can therefore rewrite (4.2) as

I(w, λ) =
∑

[I ]∈Sn \[n]|w|
|Sn .I |I∗(wI , λ)

=
∑

[I ]∈Sn \[n]|w|
(n)D(I )I∗(wI , λ) (4.3)

where D(I ) is the number of distinct entries in I . Most of the rest of the section will
be devoted to estimating I∗(wI , λ); the point of the previous calculations is that we can
assume I ∈ [n −D(I ) + 1, n]|w| and this will be exploited in §§4.2.

4.2. First integrating over a large subgroup. We keep the assumptions of the previous
section and also assume

I ∈ [n −D(I ) + 1, n]|w|.

We fix I and hence write D = D(I ). This assumption means that the function wI :
U(n)4 → C is bi-invariant for U(m)4 where

m
def= n −D.

To simplify notation, all integrals over groups are done with respect to the probability
Haar measure and this will be denoted by dg where g is the group element.

Our goal is to calculate I∗(wI , λ). The bi-invariance of dμHaar
U(n)4

and the U(m)4-bi-
invariance of wI means we can write

I∗(wI , λ) =
∫

h∈U(n)4
wI (h)sλ(R(h))dh

=
∫

h1,h2∈U(m)4

(∫

h∈U(n)4
wI (h1hh2)sλ(R(h1hh2))dh

)

dh1dh2

=
∫

h1,h2∈U(m)4

∫

h∈U(n)4
wI (h)sλ(R(h1hh2))dh dh1 dh2

=
∫

h∈U(n)4
wI (h)

(∫

h1,h2∈U(m)4
sλ(R(h1hh2))dh1dh2

)

dh. (4.4)

The first cancelation we will obtain comes from the integral
∫

h1,h2∈U(m)4
sλ(R(h1hh2))dh1dh2, h ∈ U(n)4. (4.5)
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Our approach to this integral follows the same lines as [MP20, §4.4]. We consider the
vector space

Wλ
R

def= W λ
a ⊗ W̌ λ

a ⊗ W λ
b ⊗ W̌ λ

b ⊗ W λ
c ⊗ W̌ λ

c ⊗ W λ
d ⊗ W̌ λ

d (4.6)

which is a unitary representation of U(n)4, the subscripts indicating which elements of
(ha, hb, hc, hd) act on which factor, so each h f acts diagonally on two factors.

Let Bλ ∈ End(Wλ
R ) be defined via matrix coefficients by the formula

〈
Bλ

(
v1 ⊗ v̌2 ⊗ v3 ⊗ v̌4 ⊗ v5 ⊗ v̌6 ⊗ v7 ⊗ v̌8

)
, w1 ⊗ w̌2 ⊗ w3 ⊗ w̌4

⊗w5 ⊗ w̌6 ⊗ w7 ⊗ w̌8
〉 def=

〈v5, w7〉 〈w5, w8〉 〈w6, v8〉 〈v3, v6〉 〈v1, w3〉 〈w1, w4〉 〈w2, v4〉 〈v7, v2〉 . (4.7)

We have the following lemma analogous to [MP20, Lemma 4.7].

Lemma 4.2. For any h = (ha, hb, hc, hd) ∈ U(n)4, we have

trWλ
R

(Bλ ◦ (ha, hb, hc, hd)) = sλ ([ha, hb][hc, hd ]) = sλ([hd , hc][hb, ha]).
The purpose of Lemma 4.2 is that it turns the integral in (4.5) into a projection

operator. Indeed, let Q denote the orthogonal projection inWλ
R onto theU(m)4-invariant

vectors.

Lemma 4.3. We have
∫

h1,h2∈U(m)4
sλ(R(h1hh2))dh1dh2 = trWλ

R
(hQ BλQ)

.

Proof. By Lemma 4.2
∫

h1,h2∈U(m)4
sλ(R(h1hh2))dh1dh2 =

∫

h1,h2∈U(m)4
trWλ

R
(Bλ ◦ h1hh2) dh1dh2

= trWλ
R

(

Bλ ◦
(∫

h1∈U(m)4
h1

)

h

(∫

h2∈U(m)4
h2

))

= trWλ
R

(BλQhQ) = trWλ
R

(hQ BλQ) .

��
Recalling the definition of Eλ,μ,m

R1,R2
from (2.10), we are able to calculate trWλ

R
(hQ BλQ)

as follows.

Proposition 4.4. We have

trWλ
R

(hQ BλQ) =
∑

μ⊂Dλ
�(μ)≤m

1

Dμ(m)3

∑

S1,S2,S3,S4,T2,T4,s1,s2∈SST [m+1,n](λ/μ)

〈h[Eλ,μ,m
s1,T2

⊗ Eλ,μ,m
S1,s1

⊗ Eλ,μ,m
s2,T4

⊗ Eλ,μ,m
S3,s2

], Eλ,μ,m
S1,S4

⊗ Eλ,μ,m
S2,T2

⊗ Eλ,μ,m
S3,S2

⊗ Eλ,μ,m
S4,T4

〉.
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Proof. An orthonormal basis for the U(m)4-invariant vectors inWλ
R is given by

Eλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

where theμi rangeover allμi ⊂D λwith�(μi ) ≤ m and each Si , Ti ∈ SST [m+1,n](λ/μi ).

This can be extended to a full orthonormal basis of Wλ
R , and hence,

trWλ
R

(hQ BλQ) =
∑

μi⊂Dλ
�(μi )≤m

∑

Si ,Ti∈SST [m+1,n](λ/μi )

〈hQ BλEλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

, Eλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

〉. (4.8)

The matrix coefficient

〈hQ BλEλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

, Eλ,μ1,m
S1,T1

⊗Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

〉
will now be calculated in stages. Firstly

BλEλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

= 1
√

Dμ1(m)Dμ2(m)Dμ3(m)Dμ4(m)
Bλ

∑

Ri∈SST [m](μi )

wR1�S1 ⊗ w̌R1�T1 ⊗ wR2�S2 ⊗ w̌R2�T2

⊗ wR3�S3 ⊗ w̌R3�T3 ⊗ wR4�S4 ⊗ w̌R4�T4

= 1
√

Dμ1(m)Dμ2(m)Dμ3(m)Dμ4(m)
∑

Ri∈SST [m](μi )

1{R2 � S2 = R3 � T3, R1 � T1 = R4 � S4}
∑

t1,t2∈SST [n](λ)

wt1 ⊗ w̌R2�T2 ⊗ wR1�S1 ⊗ w̌t1 ⊗ wt2 ⊗ w̌R4�T4 ⊗ wR3�S3 ⊗ w̌t2 .

We have

Q[wt1 ⊗ w̌R2�T2 ⊗ wR1�S1 ⊗ w̌t1 ⊗ wt2 ⊗ w̌R4�T4 ⊗ wR3�S3 ⊗ w̌t2 ]
= 1{t1|≤m= R2 = R1, t2|≤m= R4 = R3}√

Dμ1(m)Dμ2(m)Dμ3(m)Dμ4(m)

Eλ,μ2,m
t1|>m ,T2

⊗ Eλ,μ1,m
S1,t1|>m

⊗ Eλ,μ4,m
t2|>m ,T4

⊗ Eλ,μ3,m
S3,t2|>m

.

Combining the previous two calculations, we obtain

Q Bλ[Eλ,μ1,m
S1,T1

⊗ Eλ,μ2,m
S2,T2

⊗ Eλ,μ3,m
S3,T3

⊗ Eλ,μ4,m
S4,T4

]
= 1

Dμ1(m)Dμ2(m)Dμ3(m)Dμ4(m)
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∑

Ri∈SST [m](μi )

1{R2 � S2 = R3 � T3, R1 � T1 = R4 � S4}
∑

t1,t2∈SST [n](λ)

1{t1|≤m= R2 = R1, t2|≤m= R4 = R3}Eλ,μ2,m
t1|>m ,T2

⊗ Eλ,μ1,m
S1,t1|>m

⊗ Eλ,μ4,m
t2|>m ,T4

⊗ Eλ,μ3,m
S3,t2|>m

= 1{S2 = T3, T1 = S4, μ1 = μ2 = μ3 = μ4}
Dμ1(m)3

∑

s1,s2∈SST [m+1,n](λ/μ1)

Eλ,μ2,m
s1,T2

⊗ Eλ,μ1,m
S1,s1

⊗ Eλ,μ4,m
s2,T4

⊗ Eλ,μ3,m
S3,s2

.

Therefore, from (4.8)

trWλ
R

(hQ BλQ) =
∑

μ⊂Dλ
�(μ)≤m

1

Dμ(m)3

∑

Si ,Ti∈SST [m+1,n](λ/μ)

1{S2 = T3, T1 = S4}
∑

s1,s2∈SST [m+1,n](λ/μ)

〈h[Eλ,μ,m
s1,T2

⊗ Eλ,μ,m
S1,s1

⊗ Eλ,μ,m
s2,T4

⊗ Eλ,μ,m
S3,s2

], Eλ,μ,m
S1,T1

⊗ Eλ,μ,m
S2,T2

⊗ Eλ,μ,m
S3,T3

⊗ Eλ,μ,m
S4,T4

〉.

��
Now combining (4.4), Lemma 4.3, and Proposition 4.4, we obtain:

Proposition 4.5. For I ∈ [m + 1, n]|w|

I∗(wI , λ) =
∑

μ⊂Dλ
�(μ)≤m

1

Dμ(m)3

∑

S1,S2,S3,S4,T2,T4,s1,s2∈SST [m+1,n](λ/μ)

∫

h∈U(n)4
wI (h)〈h[Eλ,μ,m

s1,T2
⊗ Eλ,μ,m

S1,s1
⊗ Eλ,μ,m

s2,T4
⊗ Eλ,μ,m

S3,s2
], Eλ,μ,m

S1,T1

⊗ Eλ,μ,m
S2,T2

⊗ Eλ,μ,m
S3,T3

⊗ Eλ,μ,m
S4,T4

〉dh.

This is progress because now the integrand is U(m)4-bi-invariant, and hence, the
integral is now essentially over U(m)4\U(n)4/U(m)4 rather than the full U(n)4. In the
process of integrating over U(m)4, by exploiting the structure of the relator R of �g we
picked up a helpful factor of 1

Dμ(m)3
and forced μ to be the same in each tensor factor

of the equation stated in Proposition 4.5. We show how to proceed further in the next
section.

4.3. Second integration: strategy. The only method we really have to proceed from
Proposition 4.5 is to use the Weingarten calculus from §§2.5. The caveat is that this
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works well when integrating functions that are finite products of matrix coefficients in
the standard representation of U(n). Here we are concerned with the integral

∫

h∈U(n)4
wI (h)〈h[Eλ,μ,m

s1,T2
⊗ Eλ,μ,m

S1,s1
⊗ Eλ,μ,m

s2,T4
⊗ Eλ,μ,m

S3,s2
], Eλ,μ,m

S1,T1

⊗Eλ,μ,m
S2,T2

⊗ Eλ,μ,m
S3,T3

⊗ Eλ,μ,m
S4,T4

〉dh (4.9)

appearing in Proposition 4.5. So to use the Weingarten calculus we must write the
integrand of (4.9) as a product of matrix coefficients in some End((Cn)⊗K ).

Since we assume w ∈ [F4,F4], by the observation about the exponents of letters in
the reduced word of w from §§2.6, (4.9) is equal to the product of four independent
integrals over U(n) of the form

∫

U(n)

hi1 j1 · · · hi p jp h̄i ′1 j ′1 · · · h̄i ′p j ′p 〈h[Eλ,μ,m
s,t ], Eλ,μ,m

s′,t ′ 〉dh, (4.10)

one for each a, b, c, d, and where

ik, jk, i ′k, j ′k ∈ [m + 1, n], ∀k ∈ [p]
s, s′, t, t ′ ∈ SST [m+1,n](λ/μ). (4.11)

So we will estimate (4.10) under the assumptions (4.11) and later take the product of
the four resulting bounds to estimate (4.9).

We now outline the strategy that we will follow to estimate the integral (4.10).

1. We can write

hi1 j1 · · · hi p jp h̄i ′1 j ′1 · · · h̄i ′p j ′p = 〈π p,p
n (h)X, X ′〉

where X , X ′ ∈ (Cn)⊗p ⊗ (Čn)⊗p are pure tensors of the standard basis elements
and dual standard basis elements; moreover, they only involve

ek, ě�, k, l ∈ [m + 1, n].
This means that

hi1 j1 · · · hi p jp h̄i ′1 j ′1 · · · h̄i ′p j ′p 〈h[Eλ,μ,m
s,t ], Eλ,μ,m

s′,t ′ 〉 = 〈h[Eλ,μ,m
s,t ⊗ X ], Eλ,μ,m

s′,t ′ ⊗ X ′〉.
The implication for this to our key integral (4.10) is that

(4.10) = 〈P[Eλ,μ,m
s,t ⊗ X ], Eλ,μ,m

s′,t ′ ⊗ X ′〉 = 〈P[Eλ,μ,m
s,t ⊗ X ], P[Eλ,μ,m

s′,t ′ ⊗ X ′]〉
where P is the self-adjoint orthogonal projection on End(V λ) ⊗ (Cn)⊗p ⊗ (Čn)⊗p

onto the U(n)-invariant vectors. Here, we accept some loss of accuracy by using the
Schwarz inequality to deduce

|(4.10)| ≤ ‖P[Eλ,μ,m
s,t ⊗ X ]‖‖P[Eλ,μ,m

s′,t ′ ⊗ X ′]‖. (4.12)

2. For any s, t ∈ SST [m+1,n](λ/μ) we will construct a vector Aλ,μ
s,t ∈ End((Cn)⊗B) in

§§4.4 such that under the Schur–Weyl intertwiner (cf. Proposition 2.4) we have

(F ⊗ F̌)[Aλ,μ
s,t ] = Eλ,μ,m

s,t ⊗ zλ,μ
s,t ∈ End(W λ) ⊗ End(V λ),

for some zλ,μ
s,t ∈ End(V λ). This property is established in Proposition 4.7.
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3. In Proposition 4.8, we calculate ‖Aλ,μ
s,t ‖. As Eλ,μ,m

s,t has unit norm, this is the same

as ‖zλ,μ
s,t ‖.

4. We now calculate P̂[Aλ,μ
s,t ⊗ X ] where P̂ is the projection onto the U(n)-invariant

vectors in End((Cn)⊗B) ⊗ (Cn)⊗p ⊗ (Čn)⊗p. We are able to do this using the
Weingarten calculus; this is the reason for the construction of Aλ,μ

s,t . This calculation
takes place in §§4.6.

5. We estimate ‖P̂[Aλ,μ
s,t ⊗ X ]‖ in Proposition 4.9.

6. On the other hand, after suitable identifications, we have

(F ⊗ F̌ ⊗ Id
(Cn)⊗p⊗(Čn)⊗p )[P̂[Aλ,μ

s,t ⊗ X ]] = P[Eλ,μ,m
s,t ⊗ X ] ⊗ zλ,μ

s,t ,

and hence,

‖P[Eλ,μ,m
s,t ⊗ X ]‖ = ‖P̂[Aλ,μ

s,t ⊗ X ]‖
‖Aλ,μ

s,t ‖
. (4.13)

Since we have calculated the denominator on the right-hand side above, and bounded
the numerator, we have bounded ‖P[Eλ,μ,m

s,t ⊗ X ]‖. We can use exactly the same

method to bound ‖P[Eλ,μ,m
s′,t ′ ⊗ X ′]‖, and putting these estimates into (4.12), we

obtain an upper bound on |(4.10) |, as desired.
Remark 4.6. It does not seem possible to exactly evaluate (4.9) using thismethod. Indeed
one might hope that

(4.9) = 〈P̂[Aλ,μ
s,t ⊗ X ], P̂[Aλ,μ

s′,t ′ ⊗ X ′]〉
‖Aλ,μ

s,t ‖‖Aλ,μ

s′,t ′ ‖
.

The construction of Aλ,μ
s,t , Aλ,μ

s′,t ′ we give here means that the numerator above does not

in general coincide with 〈P[Eλ,μ,m
s,t ⊗ X ], P[Eλ,μ,m

s′,t ′ ⊗ X ′]〉. The use of the Schwarz
inequality bypasses this problem, at the cost of introducing an inequality.

The components of this strategy will be carried out in the following sections.

4.4. Construction of Aλ,μ
s,t . Now fix m,D, b, B ∈ N0, n = m + D, b ≤ B. Also fix

λ � B and μ � b with �(λ) ≤ n and μ ⊂D λ with �(μ) ≤ m. We also fix

s, t ∈ SST [m+1,n](λ/μ).

From these data,wewill construct a special vector in (Cn)⊗B⊗(Čn)⊗B ∼= End((Cn)⊗B).
This will be done in stages.

Recall the weight functions ωs, ωt : [m + 1, n] → N0 from §2.1. For z ∈ C[Sk], we
will write ρk

n (z) for the resulting element of End((Cn)⊗k) according to the representation
of Sk on (Cn)⊗k . We also have fixed linear embeddings for M ≤ n

CM = 〈e1, . . . , eM 〉 ⊂ Cn = 〈e1, . . . , en〉;
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similarly, ČM ⊂ Čn , hence using the type of isomorphism as in (2.1) for M1, M2 ≤ k
we obtain a fixed linear embedding

Hom((Cn)⊗M1 , (Cn)⊗M2) ⊂ End((Cn)⊗k).

The skew tableaux s yields a sequence of tableaux

μ = ν0(s) ⊂1 ν1(s) ⊂1 · · · ⊂1 νD(s) = λ

where ν j (s) is the YD given byμ along with the boxes of s containing numbers≤ m+ j .

Let B j (s)
def= |ν j (s)| and similarly define ν j (t), B j (t) for 0 ≤ j ≤ D using the boxes

of t . We have

b = B0(s) ≤ · · · ≤ BD(s) = B.

Recall the projection operators pν from §§2.3. We use the natural inclusions, e.g.,
SBi (s) ⊂ SB to view, e.g., pνi (s) ⊂ C[SB].

Let

A0
def= ρb

m(pμ) ∈ End((Cm)⊗b)

· · ·
Ai

def= ρ
Bi (t)
m+i (pνi (t))

(
Ai−1 ⊗ e⊗ωt (m+i)

m+i ⊗ ě⊗ωs (m+i)
m+i

)
ρ

Bi (s)
m+i (pνi (s)) i ≥ 1

Ai ∈ Hom((Cm+i )⊗Bi (s), (Cm+i )⊗Bi (t))

· · ·
Aλ,μ

s,t
def= AD ∈ Hom((Cn)⊗BD(s), (Cn)⊗BD(t)) ∼= End((Cn)⊗B).

Wehave the following proposition. Recalling the intertwinerF fromSchur–Weyl duality
(Proposition 2.4), we obtain a map

F ⊗ F̌ : End((Cn)⊗B) →
∑

λ1,λ2�B
�(λi )≤n

W λ1
n ⊗ ˇ

W λ2
n ⊗ V λ1 ⊗ ˇV λ2

∼=
∑

λ1,λ2�B
�(λi )≤n

Hom(W λ2
n , W λ1

n ) ⊗ Hom(V λ2 , V λ1); (4.14)

this map is an intertwiner for U(n) ×U(n) × SB × SB . The second isomorphism is the
canonical one explained in §§2.2.

Proposition 4.7. Under F ⊗ F̌ , Aλ,μ
s,t maps to

(F ⊗ F̌)[Aλ,μ
s,t ] = Eλ,μ,m

s,t ⊗ zλ,μ
s,t ∈ End(W λ

n ) ⊗ End(V λ)

for some zλ,μ
s,t ∈ End(V λ).

Proof. The proof relies on the fact that up to scalar multiplication, Eλ,μ,m
s,t ∈ End(W λ

n )

is uniquely characterized by the following properties:

a. For 0 ≤ i ≤ D, Eλ,μ,m
s,t is in the W νi (t)

m+i ⊗ W̌ νi (s)
m+i -isotypic component of End(W λ)

for U(m + i) × U(m + i).
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b. Eλ,μ
s,t commuteswithU(m), or in otherwords, is invariant under the diagonal subgroup

�U(m) ≤ U(m) × U(m).

Consider the linear map by which Ai+1 is obtained from Ai for i ≥ 0, that is,

fi (Ai )
def= ρ

Bi+1(t)
m+i+1 (pνi+1(t))

(
Ai ⊗ e⊗ωt (m+i+1)

m+i+1 ⊗ ě⊗ωs (m+i+1)
m+i+1

)
ρ

Bi+1(s)
m+i+1 (pνi+1(s)).

This is a linear intertwiner for the group U(m + i) × U(m + i) × SBi (t) × SBi (s).

Claim A. For all 0 ≤ i ≤ D, Aλ,μ
s,t = AD is in the W νi (t)

m+i ⊗ W̌ νi (s)
m+i -isotypic subspace

of End((Cn)⊗B) for U(m + i) × U(m + i).
Proof of Claim A. We prove by induction on j the following statement:

S(i, j) : For 0 ≤ i ≤ j ≤ D, A j is in the W νi (t)
n ⊗ W̌ νi (s)

n -isotypic subspace of
Hom((Cm+ j )⊗B j (s), (Cm+ j )⊗B j (t)) for the group U(m + i) × U(m + i).

Consider the base cases j = i . By Schur–Weyl duality, and in particular (4.14), the fact
that Ai has the form

ρ
Bi (t)
m+i (pνi (t))Yiρ

Bi (s)
m+i (pνi (s)), Yi ∈ Hom((Cm+i )⊗Bi (s), (Cm+i )⊗Bi (t))

implies that it is in the V νi (t) ⊗ V̌ νi (s)-isotypic component for SBi (t) × SBi (s), but this

is the same as the W νi (t)
n ⊗ W̌ νi (s)

n -isotypic subspace for U(m + i) × U(m + i). For the
inductive step, by the intertwining properties of fi stated above, if S(i, j) is true for
some i ≤ j, it is true for all (i, j ′) with j ′ ≥ j . Now taking j = D proves Claim A. The
proof of Claim A is complete.

Claim B. Aλ,μ
s,t commutes withU(m),or in other words, is invariant under the diagonal

subgroup �U(m) ≤ U(m) × U(m).

Proof of Claim B. Using the intertwining properties of the maps fi again, we have
for u ∈ U(m)

π B
n (u)Aλ,μ

s,t π B
n (u−1) = π B

n (u) fD−1( fD−2(· · · ( f0(ρ
b
m(pμ)) · · · ))π B

n (u−1)

= fD−1( fD−2(· · · ( f0(π
b
n (u)ρb

m(pμ)πb
n (u−1)) · · · ))

= fD−1( fD−2(· · · ( f0(ρ
b
m(pμ)) · · · ))

= Aλ,μ
s,t .

This completes the proof of Claim B.
Now by Claim A with i = D we have that, in reference to (4.14),

(F ⊗ F̌)[Aλ,μ
s,t ] ∈ End(W λ

n ) ⊗ End(V λ),

and the analogs of ClaimA and Claim B hold for this element asF⊗F̌ is aU(n)×U(n)

intertwiner. Therefore, by the fact that Eλ,μ,m
s,t is uniquely characterized by a and b, we

must have

(F ⊗ F̌)[Aλ,μ
s,t ] ∈ CEλ,μ,m

s,t ⊗ End(V λ).

This proves Proposition 4.7. ��
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4.5. Normalization of Aλ,μ
s,t . The goal of this section is to calculate ‖Aλ,μ

s,t ‖, where the
norm is the standard norm on End((Cn)⊗B).

Proposition 4.8. We have

‖Aλ,μ
s,t ‖2 = Dμ(m)

d2
λ(b!)2

dμ(B!)2
D∏

i=1

ωt (m + i)!ωs(m + i)! �= 0.

Proof. We do this calculation in stages. Firstly, the norm of A0 coincides with the
Hilbert–Schmidt norm on End((Cn)⊗b) so is given by

‖A0‖2 = tr(A0A∗
0) = tr(Cm )⊗b (ρ

b
m(pμ)ρb

m(pμ)∗) = tr(Cm )⊗b (ρ
b
m(pμ)2) = tr(Cm )⊗b (ρ

b
m(pμ))

since ρb
m(pμ) is self-adjoint and idempotent. Using Schur–Weyl duality (Proposition

2.4), we obtain

‖A0‖2 = tr(Cm )⊗b (ρm(pμ)) = Dμ(m)dμ.

We proceed to A1. We have

‖A1‖2 = ‖ρB1(t)
m+1 (pν1(t))

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
ρ

B1(s)
m+1 (pν1(s))‖2

= 〈ρB1(t)
m+1 (pν1(t))

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
ρ

B1(s)
m+1 (pν1(s)),

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
〉

= dν1(t)dν1(s)

B1(s)!B1(t)!
∑

gt∈SB1(t),gs∈SB1(s)

χν1(t)(gt )χν1(s)(gs)

× 〈ρB1(t)
m+1 (gt )

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
ρ

B1(s)
m+1 (gs),

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
〉

= dν1(t)dν1(s)

B1(s)!B1(t)!
∑

gt∈Sm×Sωt (m+1),gs∈Sm×Sωs (m+1)

χν1(t)(gt )χν1(s)(gs)

× 〈ρB1(t)
m+1 (gt )

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
ρ

B1(s)
m+1 (gs),

(
A0 ⊗ e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1

)
〉

= dν1(t)dν1(s)

B1(s)!B1(t)!
∑

gt∈Sb×Sωt (m+1),gs∈Sb×Sωs (m+1)

gt=(g1t ,g2t ),gs=(g1s ,g2s )

χν1(t)(gt )χν1(s)(gs)

〈ρb
m(g1

t )A0ρ
b
m(g1

s ), A0〉 (4.15)

The second equality used that ρ
B1(t)
m+1 (pν1(t)), ρ

B1(s)
m+1 (pν1(s)) are self-adjoint projections

and the fourth equality used that A0 is a linear combination of basis elements involving
only ei , ěi with i ≤ m and hence orthogonal to e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1 .



Random Unitary Representations of Surface Groups I 151

Now for each gr = (g1
r , g2

r ) ∈ Sb × Sωr (m+1), r ∈ {s, t} write

χν1(r)(gr ) =
∑

τ1(r)�b,τ2(r)�ωr (m+1)

LRν1(r)
τ1(r),τ2(r)χτ1(r)(g

1
r )χτ2(r)(g

2
r ). (4.16)

Note that

〈ρb
m(g1

t )A0ρ
b
m(g1

s ), A0〉

is a matrix coefficient in End(V μ) as a representation of Sb × Sb. Thus, when we insert
(4.16) into (4.15), the only terms that survive, by orthogonality of matrix coefficients
and Schur orthogonality, have

τ1(t) = τ1(s) = μ, τ2(t) = (ωt (m + 1)), τ2(s) = (ωs(m + 1)).

By Pieri’s formula (Lemma 2.1) LRν1(r)
μ,(ωr (m+1)) = 1 as μ ⊂1 ν1(r). So (4.15) together

with these observations gives

‖A1‖2 = dν1(t)dν1(s)

B1(t)!B1(s)!
∑

gt∈Sb×Sωt (m+1),gs∈Sb×Sωs (m+1)

gt=(g1t ,g2t ),gs=(g1s ,g2s )

χμ(g1
t
)χμ(g1s )〈ρb

m(g1t )A0ρ
b
m(g1s ), A0〉

= dν1(t)dν1(s)(b!)2
B1(t)!B1(s)!d2μ

ωt (m + 1)!ωs(m + 1)!〈ρb
m(pμ)A0ρ

b
m(pμ), A0〉

= dν1(t)dν1(s)(b!)2
B1(t)!B1(s)!d2μ

ωt (m + 1)!ωs(m + 1)!‖A0‖2.

Repeating these arguments, mutatis mutandis, gives

‖A2‖2 = dν2(t)dν2(s)

B2(t)!B2(s)!
ωt (m + 2)!ωs(m + 2)!B1(t)!B1(s)!

dν1(t)dν1(s)
‖A1‖

= dν2(t)dν2(s)(b!)2
d2
μ B2(t)!B2(s)!ωt (m + 2)!ωs(m + 2)!ωt (m + 1)!ωs(m + 1)!‖A0‖2.

Continuing to iterate this up to AD = Aλ,μ
s,t gives the required

‖Aλ,μ
s,t ‖2 = ‖A0‖2 d2

λ(b!)2
d2
μ(B!)2

D∏

i=1

ωt (m + i)!ωs(m + i)!

= Dμ(m)
d2
λ(b!)2

dμ(B!)2
D∏

i=1

ωt (m + i)!ωs(m + i)!.

��
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4.6. Projection of Aλ,μ
s,t ⊗X to invariant vectors. We now calculate P̂[Aλ,μ

s,t ⊗X ]where
P̂ is the projection onto the U(n)-invariant vectors in End((Cn)⊗B) ⊗ End((Cn)⊗p),
and

X = ei1 ⊗ · · · ⊗ ei p ⊗ ě j1 ⊗ · · · ⊗ ě jp ∈ End(
(
Cn)⊗p

)

with

ir , jr ∈ [m + 1, n], r ∈ [p].
We identify End((Cn)⊗B) ⊗ End((Cn)⊗p) ∼= End((Cn)⊗(B+p)) via canonical isomor-
phisms as in (2.1) and the map

ei1 ⊗ · · · ⊗ eiB ⊗ ě j1 ⊗ · · · ⊗ ě jB ⊗ eiB+1 ⊗ · · · ⊗ eiB+p ⊗ ě jB+1 ⊗ · · · ⊗ ě jB+p

	→ ei1 ⊗ · · · ⊗ eiB ⊗ eiB+1 ⊗ · · · ⊗ eiB+p ⊗ ě j1 ⊗ · · · ⊗ ě jB ⊗ ě jB+1 ⊗ · · · ⊗ ě jB+p .

(4.17)

Using this identification, we view End((Cn)⊗B) ⊗ End((Cn)⊗p) as a unitary represen-
tation of U(n) × SB+p × U(n) × SB+p; the map P̂ is a C[SB+p]-bimodule morphism.
Hence,

P̂[Aλ,μ
s,t ⊗ X ] = P̂[ρB

n (pνD(t))
(

AD−1 ⊗ e⊗ωt (m+D)
m+D ⊗ ě⊗ωs (m+D)

m+D

)
ρB

n (pνD(s)) ⊗ X ]
= ρB

n (pνD(t))P̂[
(

AD−1 ⊗ e⊗ωt (m+D)
m+D ⊗ ě⊗ωs (m+D)

m+D

)
⊗ X ]ρB

n (pνD(s))

= ρB
n (pνD(t))P̂[AD−1 ⊗ X1]ρB

n (pνD(s))

where X1
def= e⊗ωt (m+D)

m+D ⊗ ě⊗ωs (m+D)
m+D ⊗ X . Repeating this argument gives

P̂[Aλ,μ
s,t ⊗ X ] = ρB

n (pνD(t))P̂[AD−1 ⊗ X1]ρn(pνD(s))

= ρB
n (pνD(t)pνD−1(t))P̂[AD−2 ⊗ X2]ρB

n (pνD−1(s)pνD(s))

= · · · (4.18)

= ρB
n (pνD(t) · · · pν1(t))P̂[A0 ⊗ XD]ρB

n (pν1(s) · · · pνD(s))

= ρB
n (pνD(t) · · · pν1(t))P̂[ρb

m(pμ) ⊗ XD]ρB
n (pν1(s) · · · pνD(s)) (4.19)

where

XD
def= e⊗ωt (m+1)

m+1 ⊗ ě⊗ωs (m+1)
m+1 ⊗ · · · ⊗ e⊗ωt (m+D)

m+D ⊗ ě⊗ωs (m+D)
m+D ⊗ X.

So it remains to calculate P̂[ρb
m(pμ) ⊗ XD].

The Weingarten calculus (Proposition 2.6) yields

P̂[ρb
m(pμ) ⊗ XD] = ρ

B+p
n (�[ρb

m(pμ) ⊗ XD]Wgn,B+p) (4.20)

where

�[ρb
m(pμ) ⊗ XD] =

∑

σ∈SB+p

tr[ρB+p
n (σ )−1(ρm(pμ) ⊗ X ′

D)]σ
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and X ′
D ∈ End(〈em+1, . . . , en〉⊗B−b+p) is the element corresponding to XD under the

fixed isomorphism

(
Cn)⊗ωt (m+1) ⊗ ˇ(Cn)

⊗ωs (m+1) ⊗ · · · ⊗ (
Cn)⊗ωt (m+D)

⊗ ˇ(Cn)
⊗ωs (m+D) ⊗ End(

(
Cn)⊗p

)

∼= End(
(
Cn)⊗B−b+p

)

that preserves the order of the factors in both

(
Cn)⊗ωt (m+1) ⊗ · · · ⊗ (

Cn)⊗ωt (m+D) ⊗ (Cn)⊗p, ˇ(Cn)
⊗ωs (m+1)

⊗ · · · ⊗ ˇ(Cn)
⊗ωs (m+D) ⊗

(
Čn
)⊗p,

so that

X ′
D

def= e⊗ωt (m+1)
m+1 ⊗ · · · ⊗ e⊗ωt (m+D)

m+D ⊗ ei1 ⊗ · · · ⊗ ei p ⊗ ě⊗ωs (m+1)
m+1 ⊗ · · ·

⊗ě⊗ωs (m+D)
m+D ⊗ ě j1 ⊗ · · · ⊗ ě jp . (4.21)

Wemake an observation that if qr denotes the number of � ∈ [p] such that j� = m+r ,
and pr denotes the number of � ∈ [p] such that i� = m + r , if we do not have

(ωs(m + 1) + q1, ωs(m + 2) + q2, . . . , ωs(m +D) + qD)

=(ωt (m + 1) + p1, ωt (m + 2) + p2, . . . , ωt (m +D) + pD) (4.22)

then tr[ρB+p
n (σ )−1(ρb

m(pμ)⊗X ′
D)] = 0 for all σ ∈ SB+p; hence,�[ρb

m(pμ)⊗XD] = 0,

P̂[ρb
m(pμ) ⊗ XD] = 0, and P̂[Aλ,μ

s,t ⊗ X ] = 0.
So now assume (4.22) holds.
To calculate�[ρb

m(pμ)⊗XD], we note that since X ′
D is a tensor of vectors orthogonal

to Cm ,

tr[ρB+p
n (σ )−1(ρb

m(pμ) ⊗ X ′
D)] = 0

unlessσ = (σ1, σ2) ∈ Sb×SB−b+p, and in this case, by Schur–Weyl duality (Proposition
2.4)

tr[ρB+p
n (σ )−1(ρb

m(pμ) ⊗ X ′
D)] = tr[ρb

m(σ−1
1 pμ) ⊗ (ρ

B−b+p
n (σ−1

2 )X ′
D)]

= tr[ρB−b+p
n (σ−1

2 )X ′
D)]tr[ρb

m(σ−1
1 pμ)]

= tr[ρB−b+p
n (σ−1

2 )X ′
D)]

∑

μ′�b
�(μ′)≤m

Dμ′(m)χμ′(σ−1
1 pμ)

= tr[ρB−b+p
n (σ−1

2 )X ′
D)]Dμ(m)χμ(σ−1

1 ).

Therefore,

�[ρb
m(pμ) ⊗ XD] =

∑

(σ1,σ2)∈Sb×SB−b+p

tr[ρB+p
n (σ )−1(ρb

m(pμ) ⊗ X ′
D)]σ
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= Dμ(m)
∑

(σ1,σ2)∈Sb×SB−b+p

tr[ρB−b+p
n (σ−1

2 )X ′
D]χμ(σ−1

1 )(σ1, σ2).

(4.23)

Herewewrite (σ1, σ2) for the element of SB+p corresponding to (σ1, σ2) ∈ Sb×SB−b+p.

Given (4.21), the value of tr[ρB−b+p
n (σ−1

2 )X ′
D] is either 1 or 0. The values of σ2 for

which tr[ρB−b+p
n (σ−1

2 )X ′
D] = 1 are a right coset

π0S�

where π0 ∈ SB−b+p and S� ≤ SB−b+p is the subgroup of elements respecting a certain
partition � of [B − b + p] dictated by the indices of X ′

D. The blocks of � have sizes

given by either side of (4.22). Note
∑D

i=1 pi =∑D
i=1 qi = p. Moreover, we have

Ss
def= Sωs (m+1) × Sωs (m+2) × · · · × Sωs (m+D−1) × Sωs (n) ≤ S�.

From (4.23), we now have

�[ρb
m(pμ) ⊗ XD] = Dμ(m)

∑

(σ1,σ2)∈Sb×SB−b+p

tr[ρB−b+p
n (σ−1

2 )X ′
D]χμ(σ−1

1 )(σ1, σ2)

= Dμ(m)
∑

(σ1,σ2)∈Sb×S�

χμ(σ−1
1 )(σ1, π0σ2)

= Dμ(m)
∑

[τ ]∈S�/Ss

∑

(σ1,σ2)∈Sb×Ss

χμ(σ−1
1 )(σ1, π0τσ2)

= Dμ(m)
∑

[τ ]∈S�/Ss

(idSb , π0τ)
∑

(σ1,σ2)∈Sb×Ss

χμ(σ−1
1 )(σ1, σ2)

= b!
dμ

|Ss |Dμ(m)
∑

[τ ]∈S�/Ss

(idSb , π0τ)qs (4.24)

where

qs
def= dμ

b!
1

|Ss |
∑

(σ1,σ2)∈Sb×Ss

χμ(σ−1
1 )(σ1, σ2) ∈ C[SB] ⊂ C[SB+p]

is an element which in any unitary representation of SB+p gives the orthogonal projection
onto the V μ ⊗ trivSs -isotypic subspace for Sb × Ss .

Combining (4.20) and (4.24) and recalling the definition of Wgn,B+p from (2.12)
give

P̂[ρb
m(pμ) ⊗ XD] = ρ

B+p
n (�[ρb

m(pμ) ⊗ XD]Wgn,B+p)

= b!
dμ

|Ss |Dμ(m)
∑

[τ ]∈S�/Ss

ρ
B+p
n (idSb , π0τ)ρ

B+p
n (qs)ρ

B+p
n (Wgn,B+p)

= b!
dμ

|Ss |
(B + p)! Dμ(m)

∑

λ′�B+p
�(λ′)≤n

dλ′

Dλ′(n)
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∑

[τ ]∈S�/Ss

ρ
B+p
n (idSb , π0τ)ρn(qspλ′).

Combined with (4.19) this gives

P̂[Aλ,μ
s,t ⊗ X ] = b!

dμ

|Ss |
(B + p)! Dμ(m)

∑

λ′�B+p
�(λ′)≤n

dλ′

Dλ′(n)
ρ

B+p
n

⎛

⎝pνD(t) · · · pν1(t)

∑

[τ ]∈S�/Ss

(idSb , π0τ)qspλ′pν1(s) · · · pνD(s)

⎞

⎠

(4.25)

that is the main result of this section.

4.7. The norm of the projection of Aλ,μ
s,t ⊗ X. We now turn to the calculation of

‖P̂[Aλ,μ
s,t ⊗ X ]‖where the norm is the natural one induced by the standard inner product

on Cn . We identify End((Cn)⊗B+p) ∼= End((Cn)⊗B) ⊗ End((Cn)⊗p) using the iso-
morphism (4.17); after this identification the norm on End((Cn)⊗B) ⊗ End((Cn)⊗p)

coincides with the Hilbert–Schmidt norm on End((Cn)⊗B+p). The main result of this
section is:

Proposition 4.9. If (4.22) holds, we have

‖P̂[Aλ,μ
s,t ⊗ X ]‖2 ≤ (b!)2|S�|2Dμ(m)2

dμ((B + p)!)2
∑

λ′�B+p
�(λ′)≤n

d2
λ′dλ′/λ
Dλ′(n)

.

Otherwise, ‖P̂[Aλ,μ
s,t ⊗ X ]‖ = 0.

We view (Cn)⊗B+p with its given inner product as a unitary representation ofU(n)×
SB+p in the usual way involved in Schur–Weyl duality. For λ′ � m + p with �(λ′) ≤ n,
we let Zλ′

denote the W λ′
n × V λ′

-isotypic subspace of (Cn)⊗B+p for U(n) × SB+p. By
Schur–Weyl duality (Proposition 2.4), this space is itself an irreducible representation
of U(n) × SB+p isomorphic to W λ′

n × V λ′
. Since P̂[Aλ,μ

s,t ⊗ X ] ∈ ρ
B+p
n (C[SB+p]), it

preserves each Zλ′
. Therefore, we have

‖P̂[Aλ,μ
s,t ⊗ X ]‖2 =

∑

λ′�B+p
�(λ′)≤n

‖P̂[Aλ,μ
s,t ⊗ X ]‖2λ′ (4.26)

where ‖P̂[Aλ,μ
s,t ⊗ X ]‖λ′ is the Hilbert–Schmidt norm of P̂[Aλ,μ

s,t ⊗ X ] acting on Zλ′
.

We may assume (4.22) holds, otherwise P̂[Aλ,μ
s,t ⊗ X ] = 0 and Proposition 4.9 is

proved. In this case, using that pλ′ is central in C[SB+p], inspection of (4.25) gives that

‖P̂[Aλ,μ
s,t ⊗ X ]‖λ′ = b!

dμ

|Ss |
(B + p)! Dμ(m)

dλ′√
Dλ′(n)

‖pνD(t) · · · pν1(t)
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∑

[τ ]∈S�/Ss

(idSb , π0τ)qspν1(s) · · · pνD(s)‖V λ′ (4.27)

where for z ∈ C[SB+p] we write ‖z‖V λ′ for the Hilbert–Schmidt norm of z acting on

V λ′
. Notice that we obtained a factor

√
Dλ′(n) from the multiplicity of V λ′

in Zλ′
. Due

to the presence of pνD(s) = pλ in (4.27), the right-hand side of (4.27) is zero unless
λ ⊂p λ′, and hence,

‖P̂[Aλ,μ
s,t ⊗ X ]‖2 =

∑

λ⊂pλ′
�(λ′)≤n

‖P̂[Aλ,μ
s,t ⊗ X ]‖2λ′ . (4.28)

To calculate the Hilbert–Schmidt norm in (4.27), we study in detail the operator

Q
def= qspν1(s) · · · pνD(s).

Let πλ′ denote the representation of SB+p on V λ′
.

Lemma 4.10. With notation as above, πλ′(Q) is a self-adjoint idempotent element of
End(V λ′

). Similarly, πλ′(pν1(t) · · · pνD(t)) is a self-adjoint idempotent.

Proof. Recall that qs is the orthogonal projection onto the V μ⊗ trivSs -isotypic subspace
for

Sb × Ss = Sb × Sωs (m+1) × Sωs (m+2) × · · · × Sωs (m+D−1) × Sωs (n) ≤ SB ≤ SB+p.

One see that this commutes with all pν1(s), . . . , pνD(s) in C[SB+p], because for any
i ∈ [D], we can write

qs = Q1Q2

where Q1, Q2 are commuting projections supported, respectively, on the two factors of
SB = SBi (s) × SB−Bi (s). But pνi (s) commutes with all elements of SB in the SB−Bi (s)
factor, so commutes with Q2. It also commutes with Q1 since pνi (s) is a central ele-
ment of C[SBi (s)]. The pν1(s), . . . , pνD(s) are easily seen to commute with each other:
pνi (s) is central in C[SBi (s)] and hence commutes with all elements pν j (s) with j ≤ i .
Thus, πλ′(Q) is a product of commuting self-adjoint idempotents and so is itself a self-
adjoint idempotent. The same arguments show that πλ′(pν1(t) · · · pνD(t)) is a self-adjoint
idempotent. ��
We now calculate the dimension of πλ′(Q)V λ′

. This is the eigenspace of πλ′(Q) with
eigenvalue 1 and also the orthogonal complement to the kernel of πλ′(Q).

Lemma 4.11. With notation as above, if λ ⊂p λ′ � B + p, dim
(
πλ′(Q)V λ′) =

dλ′/λdμ.

Proof. Firstly, as Q ∈ C[SB] and contains the factor

pνD(s) = pλ,

we have

dim
(
πλ′(Q)V λ′) = dimHomC[SB ](V λ, V λ′

) dim
(
πλ(Q)V λ

)
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= dλ′/λ dim
(
πλ(Q)V λ

)
. (4.29)

Given this, we now consider Q acting on V λ. This is the same as

πλ(Q1), Q1
def= qspν1(s) · · · pνD−1(s).

We have πλ(Q1) is a self-adjoint idempotent by the same proof as that of Lemma 4.10.
Then Q1 is supported on, and preserves, the V νD−1(s) ⊗ triv-isotypic component for
SBD−1 × Sωs (n) ≤ SB . By Pieri’s formula (Lemma 2.1), as νD−1 ⊂1 νD = λ, this
isotypic component consists of a unique isomorphic copy of V νD−1(s) ⊗ triv in V λ.
Moreover, when identifying this space with V νD−1(s), the action of πλ(Q1) is given by

πνD−1(s)(Q2), Q2
def= q2pν1(s) · · · pνD−2(s)

where q2 is the projection onto the V μ ⊗ triv-isotypic subspace for

Sb × Sωs (m+1) × Sωs (m+2) × · · · × Sωs (m+D−1).

This gives

dim
(
πλ(Q)V λ

)
= dim(πνD−1(s)(Q2)V νD−1(s)).

Iterating this argument, using Pieri’s formula each time, gives eventually that

dim
(
πλ(Q)V λ

)
= dim(πμ(pμ)V μ) = dμ.

Thus, in total, going back to (4.29), we obtain the required

dim
(
πλ′(Q)V λ′) = dλ′/λdμ.

��
Proof of Proposition 4.9. Pick an orthonormal basis {v1, . . . , vD} for πλ′(Q)V λ′

with
D = dλ′/λdμ and extend this to an orthonormal basis of V λ′

. In regard to (4.27), we
have

‖pνD(t) · · · pν1(t)

∑

[τ ]∈S�/Ss

(idSb , π0τ)qspν1(s) · · · pνD(s)‖2V λ′

= ‖pνD(t) · · · pν1(t)

∑

[τ ]∈S�/Ss

(idSb , π0τ)Q‖2
V λ′

=
D∑

i=1

‖πλ′(pνD(t) · · · pν1(t))
∑

[τ ]∈S�/Ss

πλ′(idSb , π0τ)πλ′(Q)vi‖2

=
D∑

i=1

‖πλ′(pνD(t) · · · pν1(t))
∑

[τ ]∈S�/Ss

πλ′(idSb , π0τ)vi‖2. (4.30)
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Now, each πλ′(idSb , π0τ) is unitary, and by the second statement of Lemma 4.10,
πλ′(pνD(t) · · · pν1(t)) is a self-adjoint idempotent and hence has operator norm bounded
by one. Hence, for i ∈ [D]

‖πλ′(pνD(t) · · · pν1(t))
∑

[τ ]∈S�/Ss

πλ′(idSb , π0τ)vi‖ ≤ [S� : Ss].

Combining this with (4.30), we obtain

‖pνD(t) · · · pν1(t)

∑

[τ ]∈S�/Ss

(idSb , π0τ)qspν1(s) · · · pνD(s)‖V λ′ ≤ √
D[S� : Ss]

=
√

dλ′/λdμ[S� : Ss].

Using this in (4.27) gives

‖P̂[Aλ,μ
s,t ⊗ X ]‖λ′ ≤ b!

dμ

|Ss |
(B + p)! Dμ(m)

dλ′√
Dλ′(n)

√
dλ′/λdμ[S� : Ss]

= b!
√

dμ

|S�|
(B + p)! Dμ(m)

dλ′√
Dλ′(n)

√
dλ′/λ.

Finally incorporating this estimate into (4.26) gives

‖P̂[Aλ,μ
s,t ⊗ X ]‖2 ≤ (b!)2|S�|2Dμ(m)2

dμ((B + p)!)2
∑

λ′�B+p
�(λ′)≤n

d2
λ′dλ′/λ
Dλ′(n)

.

��

4.8. Completing the outlined strategy.

Proposition 4.12. With notation as in the previous sections,

‖P[Eλ,μ,m
s,t ⊗ X ]‖2 ≤ (|λ/μ| + p)2p Dμ(m)

Dλ(n)
.

Proof. From the argument of our strategy in §§4.3, we have

‖P[Eλ,μ,m
s,t ⊗ X ]‖2 = ‖P̂[Aλ,μ

s,t ⊗ X ]‖2
‖Aλ,μ

s,t ‖2
. (4.31)

If (4.22) fails to hold, then Propositions 4.8 and 4.9 give ‖P[Eλ,μ,m
s,t ⊗ X ]‖ = 0,

proving Proposition 4.12 in this instance.
Now suppose (4.22) holds. Then Propositions 4.8 and 4.9 combined with (4.31) give

‖P[Eλ,μ,m
s,t ⊗ X ]‖2 ≤

(

Dμ(m)
d2
λ(b!)2

dμ(B!)2
D∏

i=1

ωt (m + i)!ωs(m + i)!
)−1
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(b!)2|S�|2Dμ(m)2

dμ((B + p)!)2
∑

λ⊂pλ′
�(λ′)≤n

d2
λ′dλ′/λ
Dλ′(n)

= |S�|2
∏D

i=1 ωt (m + i)!ωs(m + i)! Dμ(m)
(B!)2

((B + p)!)2
∑

λ⊂pλ′
�(λ′)≤n

d2
λ′dλ′/λ

d2
λ Dλ′(n)

.

(4.32)

Recalling that the block sizes of � are given by either side of (4.22), we have

|S�|2
∏D

i=1 ωt (m + i)!ωs(m + i)! =
D∏

i=1

(ωt (m + i) + pi )!
ωt (m + i)!

(ωs(m + i) + qi )!
ωs(m + i)!

≤
D∏

i=1

(ωt (m + i) + pi )
pi (ωs(m + i) + qi )

qi

≤
D∏

i=1

(|λ/μ| + p)pi (|λ/μ| + p)qi

≤ (|λ/μ| + p)2p (4.33)

using that
∑D

i=1 pi =∑D
i=1 qi = p.

Next, by using twice both the hook length formula (2.2) and the hook content formula
(2.5) we obtain

(B!)2
((B + p)!)2

∑

λ⊂pλ′
�(λ′)≤n

d2
λ′dλ′/λ

d2
λ Dλ′(n)

= (B!)
(B + p)!

1

dλ Dλ(n)

∑

λ⊂pλ′
�(λ′)≤n

∏
�∈λ(n + c(�))

∏
�∈λ′(n + c(�))

dλ′dλ′/λ

≤ B!
(B + p)!

1

dλ Dλ(n)

∑

λ⊂pλ′
�(λ′)≤n

dλ′dλ′/λ

≤ 1

Dλ(n)
, (4.34)

where the last inequality used (2.3). Inserting (4.33) and (4.34) into (4.32) gives the
result stated in the proposition. ��

4.9. Proof of Theorem 4.1. Following our strategy, applying Proposition 4.12 to both
P[Eλ,μ,m

s,t ⊗ X ] and P[Eλ,μ,m
s′,t ′ ⊗ X ′] and using the Schwarz inequality we obtain the

following

|(4.10)| ≤ (|λ/μ| + p)2p Dμ(m)

Dλ(n)
.
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Therefore, for any I ⊂ [m+1, n]|w|, using the argument from the beginning of §§4.3,
writing f for an element of {a, b, c, d}, we have

|
∫

h∈U(n)4
wI (h)〈h[Eλ,μ,m

s1,T2
⊗ Eλ,μ,m

S1,s1
⊗ Eλ,μ,m

s2,T4
⊗ Eλ,μ,m

μ,S3,s2
],

Eλ,μ,m
S1,S4

⊗ Eλ,μ,m
S2,T2

⊗ Eλ,μ,m
S3,S2

⊗ Eλ,μ,m
S4,T4

〉dh|

≤ Dμ(m)4

Dλ(n)4

∏

f ∈{a,b,c,d}
(|λ/μ| + p f )

2p f

≤ Dμ(m)4

Dλ(n)4
(|λ/μ| + |w|)8|w| (4.35)

where the last inequality used

(|λ/μ| + p f )
2p f ≤ (|λ/μ| + |w|)2|w|

for each f ∈ {a, b, c, d}. (For general g the exponents 8|w| and 4 in (4.35) are 4g|w|
and 2g, respectively.)

Next using Proposition 4.5, we obtain for m(I ) = n −D(I )

I∗(wI , λ) ≤
∑

μ⊂D(I )λ
�(μ)≤m(I )

1

Dμ(m(I ))3
∑

S1,S2,S3,S4,T2,T4,s1,s2∈SST [m(I )+1,n](λ/μ)

Dμ(m(I ))4

Dλ(n)4
(|λ/μ| + |w|)8|w|

= 1

Dλ(n)4

∑

μ⊂D(I )λ
�(μ)≤m(I )

Dμ(m) (|λ/μ| + |w|)8|w| |SST [m(I )+1,n](λ/μ)|8.

(For general g, |SST [m(I )+1,n](λ/μ)|8 is replaced by |SST [m(I )+1,n](λ/μ)|4g .) Hence,
from (4.3) we obtain Theorem 4.1. �

5. The Total Contribution from Large-Dimensional Families

5.1. Statement of main sectional results. The main task of this section is to estimate the
sum

∑

(ρ,W )∈̂SU(n)\�(B;n)

(dim W )I(w, ρ)

appearing in the left-hand side of (1.10). Let �(B; n) denote the collection of Young
diagrams of length at most n − 1 such that

λ ∈ �(B; n) 	→ (ρλ
n , W λ

n ) ∈ ŜU(n)\�(B; n)

is a one-to-one parametrization. The goal of this section is to prove Theorem 1.9, which
amounts to establishing a bound for

�2(w, B, n)
def=

∑

λ∈�(B;n)

Dλ(n)I(w, λ)
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and proving its absolute convergence.
Theorem 1.9 has the following corollary that will be useful later.

Corollary 5.1. Let g ≥ 2 and B ∈ N be fixed. We have

ζ(2g − 2; n) =
∑

(ρ,W )∈�(B;n)

1

(dim W )2g−2 + Og,B

(
1

n

(
n−2 log B

))

as n → ∞.

Proof of Corollary 5.1. given Theorem 1.9. Let w = idF2g . We use the result, for any

(ρ, W ) ∈ ŜU(n)
∫

tr(ρ((Rg(x))))dμHaar
SU(n)2g (x) = 1

(dim W )2g−1 (5.1)

which is due to Frobenius [Fro96] when g = 1; see [PS14, §2] or [CMP21, eq. (2.2)]
for the (easy) extension to general g ≥ 2. Since tr(idF2g (x)) = n for all x ∈ SU(n)2g ,

we obtain from (5.1) that for any (ρ, W ) ∈ ŜU(n), I(w, ρ) = n
(dim W )2g−1 ; hence,

�2(idF2g , B, n) = n
∑

(ρ,W )∈̂SU(n)\�(B;n)

1

(dim W )2g−2 . (5.2)

Now the corollary follows directly7 from Theorem 1.9. ��

5.2. Preliminary estimates. Even in the simple case of γ = id (5.2) shows that the
problemof estimating�2 is related to the large-n convergence of theWitten zeta function
as in Theorem 1.8. The techniques used in [GLM12] can be adapted to deal with (5.2),
and indeed, are also useful in dealing with general γ (or w). The key estimate we take

from (ibid.) is the following. Given a YD λwith �(λ) < n, we define xi (λ)
def= λi −λi+1,

setting λi = 0 for i > �(λ). These are the coefficients of the highest weight of (ρλ
n , W λ

n )

with respect to a system of fundamental weights for SU(n).

Lemma 5.2 ([GLM12, eq. (1), Lemma 8]). For a YD λ with �(λ) < n, we have

Dλ(n) ≥
n−1∏

i=1

(1 + xi (λ))vi

where vi are positive real numbers satisfying for 0 ≤ j ≤ n
2

v j = vn− j ≥ j max(1, log(n − 1) − log j).

For the reader’s convenience, Lemma 5.2 follows from applying the AM–GM in-
equality to the Weyl dimension formula. It will turn out, because of Lemma 5.2, to be
useful to work with the coordinates x(λ) ∈ Nn−1

0 from now on, instead of λ. On the
other hand, Theorem 4.1 involves quantities |λ/μ| and |SST [m+1,n](λ/μ)| for μ ⊂D λ,
m +D = n. We now estimate these quantities in terms of x(λ).

7 Admittedly, this is overkill. The full arguments needed to prove Theorem 1.9 are not required for Corollary
5.1: the entirety of §4 is bypassed by (5.2).
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Lemma 5.3. If D ∈ N0, λ and μ are YDs with �(λ) ≤ n − 1 and μ ⊂D λ, then

|λ/μ| ≤ D

n−1∑

j=1

x j (λ) ≤ D

n−1∏

j=1

(1 + x j (λ)).

Proof. The condition that μ ⊂D λ means that there is a chain of YDs μ = μD ⊂1

μD−1 ⊂1 . . . ⊂ μ1 ⊂1 μ0 = λ. First note that |λ/μ1| ≤ λ1 since to obtain μ1 from λ,
one can delete at most one box from each column and there are λ1 non-empty columns
of λ. One also has μ1

1 ≤ λ1 and so repeating the argument gives |μ1/μ2| ≤ μ1 ≤ λ1
and iterating further gives |μi/μi+1| ≤ λ1 for all 0 ≤ i ≤ D− 1. Hence,

|λ/μ| =
D−1∑

i=0

|μi/μi+1| ≤ Dλ1 = D

n−1∑

j=1

xi (λ).

��
Lemma 5.4. If D ∈ N0, n ≥ D, λ and μ are YDs with �(λ) ≤ n − 1 and μ ⊂D λ, and
m = n −D, then

|SST [m+1,n](λ/μ)| ≤
(

n−1∏

i=1

(xi (λ) + 1)

)2D

.

Proof. Choosing an element of SST [m+1,n](λ/μ) is the same as choosing a sequence
μ = μD ⊂1 μD−1 ⊂1 . . . ⊂ μ1 ⊂1 μ0 = λ. We regard all x(μi ) ∈ Nn−1

0 by extending
by zeros. The number of choices of μ1 is

∏n−1
i=1 (xi (λ) + 1) since one removes from the

i th row of λ between 0 and xi (λ) boxes inclusive. Regardless of how μ1 is chosen, we
have

xi (μ
1) = μ1

i − μ1
i+1 ≤ λi − λi+2 = xi (λ) + xi+1(λ) ≤ (1 + xi (λ))(1 + xi+1(λ)) − 1

so

n−1∏

i=1

(xi (μ) + 1) ≤
(

n−1∏

i=1

(xi (λ) + 1)

)2

.

Thus, repeating the previous argument gives that the number of choices of μ2, given

μ1, is at most
(∏n−1

i=1 (xi (λ) + 1)
)2
. Iterating further, the number of choices of the chain

μ1, μ2, . . . , μD−1 is at most

n−1∏

i=1

(xi (λ) + 1)

(
n−1∏

i=1

(xi (λ) + 1)

)2 (n−1∏

i=1

(xi (λ) + 1)

)4

· · ·
(

n−1∏

i=1

(xi (λ) + 1)

)2D−2

=
(

n−1∏

i=1

(xi (λ) + 1)

)∑D−2
k=0 2k

≤
(

n−1∏

i=1

(xi (λ) + 1)

)2D

.

��
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We can use Lemmas 5.3 and Lemma 5.4 to tidy up Theorem 4.1.

Proposition 5.5. For w ∈ [F2g,F2g], we have

|I(w, λ)| �w,g n|w|
(∏n−1

j=1(1 + x j (λ))
)

Dλ(n)2g−1

C(w,g)

as n → ∞, where

C(w, g)
def= 4g|w|(1 + 2|w|).

Proof. Recalling thatD(I ) is the number of distinct indices of some I ∈ [n]|w|, we have
D(I ) ≤ |w|. We begin by using Lemmas 5.3 and 5.4 in Theorem 4.1 to obtain

|I(w, λ)| ≤
∑

[I ]∈Sn \[n]|w|
(n)D(I )

1

Dλ(n)2g

∑

μ⊂D(I )λ
�(μ)≤n−D(I )

Dμ(n −D(I )) (|λ/μ| + |w|)4g|w|

|SST [n−D(I )+1,n](λ/μ)|4g|w|

�w,g

∑

[I ]∈Sn \[n]|w|
nD(I )

(∏n−1
j=1(1 + x j (λ))

)4g|w|(1+2|w|)

Dλ(n)2g

∑

μ⊂D(I )λ
�(μ)≤n−D(I )

Dμ(n −D(I )).

Here the notation �w is with respect to n → ∞. Since given λ with �(λ) ≤ n − 1, for
every μ ⊂D(I ) λ with �(μ) ≤ n − D(I ), dim HomU(n−D(I ))(W μ

n−D(I ), W λ
n ) ≥ 1 by

the branching rules, we have
∑

μ⊂D(I )λ
�(μ)≤n−D(I )

Dμ(n −D(I )) ≤ Dλ(n);

hence,

|I(w, λ)| �w,g

∑

[I ]∈Sn \[n]|w|
nD(I )

(∏n−1
j=1(1 + x j (λ))

)4g|w|(1+2|w|)

Dλ(n)2g−1 .

Moreover,

|Sn\[n]|w|| ≤ |w||w|,
so we obtain

|I(w, λ)| �w,g n|w|
(∏n−1

j=1(1 + x j (λ))
)

Dλ(n)2g−1

4g|w|(1+2|w|)

= n|w|
(∏n−1

j=1(1 + x j (λ))
)

Dλ(n)2g−1

C(w,g)

(5.3)

as required. ��
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5.3. Proof of Theorem 1.9. We begin by considering the sum �2(w, B, n)

=∑
λ∈�(B;n) Dλ(n)I(w, λ). Fix g ≥ 2. We use Proposition 5.5 in this sum to obtain

�2(w, B, n) �w,g n|w| ∑

λ∈�(B;n)

(∏n−1
j=1(1 + x j (λ))

)

Dλ(n)2g−2

C(w,g)

where C(w, g) > 0. Let C = C(w, g). We need a key observation relating the weight
coefficients x(λ) to the set �(B; n) and hence �(B; n). It is not hard to check that if
λ ∈ �(B; n) then either

• xi (λ) > B for some i ≤ B or i ≥ n − B or
• xi (λ) > 0 for some B < i < n − B,

and given x ∈ Zn−1
≥0 satisfying these conditions there is at most one corresponding

λ ∈ �(B; n). (Obtaining these conditions was the reason for the original choice of
�(B, n).)

Now by Lemma 5.2

�2(w, B, n) �w,g n|w| ∑

λ∈�(B;n)

1
∏n−1

j=1(1 + x j (λ))(2g−2)v j−C

≤ n|w| ∑

λ∈�(B;n)

1
∏n−1

j=1(1 + x j (λ))2v j−C
(5.4)

≤ n|w| ∑

x∈Nn−1
0 :

x j >0 for some B< j<n−Bor
x j >B for some j∈[B]∪[n−B,n−1]

1
∏n−1

j=1(1 + x j (λ))2v j−C
. (5.5)

Here v j are the constants from Lemma 5.2 satisfying for 0 ≤ j ≤ n
2

v j = vn− j ≥ j max(1, log(n − 1) − log j).

Notice that if j ∈ [ n−1
e , n − n−1

e ] we have v j ≥ n−1
e . The function x 	→ x log

( n−1
x

)

has nonnegative derivative on [1, n−1
e ], so the minimum value of v j for j ∈ [1, n−1

e ] ∪
[n − 1− n−1

e , n − 1] is v1 ≥ log(n − 1). We have n−1
e ≥ log(n − 1) for n � 1 so for

n � 1 we have

v j ≥ log(n − 1), j ∈ [n − 1]. (5.6)

The sum in (5.5) can be crudely estimated by disregarding the constraints on x to obtain
for n � 1

�2(w, B, n) �w n|w|
n−1∏

j=1

ζ(2v j − C) (5.7)

where for Re(s) > 1

ζ(s)
def=

∞∑

k=1

1

ns
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is an absolutely convergent sumdefiningRiemann’s zeta function.Notice that for n �w,g
1, 2v j − C ≥ 2 log(n − 1) − C > 1, so (5.7) shows that �2(w, B, n) is defined by an
absolutely convergent sum. This proves the first statement of Theorem 1.9.

We now turn to finer estimates for�2. Assume n ≥ 2B max(2B, C +1) and 2 log(n−
1) − C > 2, so that 2v j − C ≥ 3 .

Incorporating the constraints on x in (5.5) gives the improved estimate

�2(w, B, n)

n|w| �w,g

B∑

j=1

ζ (B+1)(2v j − C)
∏

i∈[n−1], i �= j

ζ(2vi − C)

+
n−B−1∑

j=B+1

ζ (2)(2v j − C)
∏

i∈[n−1], i �= j

ζ(2vi − C)

+
n−1∑

j=n−B

ζ (B+1)(2v j − C)
∏

i∈[n−1], i �= j

ζ(2vi − C)

�
⎛

⎝
B∑

j=1

ζ (B+1)(2v j − C) +

 n
2 "∑

j=B+1

ζ (1)(2v j − C)

⎞

⎠
∏

i∈[n−1]
ζ(2vi − C)

where the last estimate used v j = vn− j and ζ(2− C) ≥ 1, and

ζ (p)(s)
def=

∞∑

k=p

1

ns
.

Moreover, for s ≥ 3 the simple bound [GLM12, pg. 1826] ζ(s) ≤ 1 + 2 · 2−s and
our assumptions on n imply

log(
∏

i∈[n−1]
ζ(2vi − C)) ≤ 2

 n
2 "∑

j=1

log(1 + 2 · 2−2v j+C )

≤ 4

 n
2 "∑

j=1

2−2v j+C

≤ 2C+2

⎛

⎝
∑

1≤ j≤ n
2 "
2−2 j

⎞

⎠�w 1.

Hence,

�2(w, B, n)

n|w| �w

B∑

j=1

ζ (B+1)(2v j − C) +

 n
2 "∑

j=B+1

ζ (2)(2v j − C). (5.8)

We next need bounds for the ζ (p). By comparison with an integral, we have for s > 1
and p ≥ 2

ζ (p)(s) ≤ (p − 1)1−s

s − 1
.
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This gives

B∑

j=1

ζ (B+1)(2v j − C) ≤
B∑

j=1

B1+C−2v j

2v j − C
≤ 1

2
B1+C

B∑

j=1

B−2v j

�B,w

B∑

j=1

B
−2 j log

(
n−1

j

)

≤
B∑

j=1

B
−2 j log

(
n−1

B

)

�B B
−2 log

(
n−1

B

)

=
(

n − 1

B

)−2 log B

�B (n − 1)−2 log B .

(5.9)

To deal with the second part of (5.8), we use a different bound. One has the bound
[GLM12, proof of Lemma 6]

ζ (2)(s) ≤ 2 · 2−s

for s ≥ 3. Under our current assumptions on n, this gives

 n
2 "∑

j=B+1

ζ (2)(2v j − C) ≤ 2

 n
2 "∑

j=B+1

2C−2v j �w,g

 n
2 "∑

j=B+1

2−2v j

≤
#√n−1$∑

j=B+1

2
−2 j log

(
n−1

j

)

+

 n
2 "∑

j=#√n−1$+1
2−2 j

�
#√n−1$∑

j=B+1

2− j log(n−1) + 2−2
√

n−1 � (n − 1)(B+1) log 2 + 2−2
√

n−1.

(5.10)

Thus, in total by combining (5.8), (5.9) and (5.10) we achieve

�2(w, B, n) �B,w,g n|w| ((n − 1)−2 log B + (n − 1)(B+1) log 2 + 2−2
√

n−1
)

�B,w,g n|w|−2 log B

as n → ∞. This proves the second statement of Theorem 1.9. �

5.4. Proof of Theorem 1.1.

Proof of Theorem 1.1. We are given M ∈ N and we choose B ∈ N such that

2 log B ≥ M + |w| ≥ M.

We first take care of the term ζ(2g − 2; n)−1 appearing in Corollary 1.6. Corollary 5.1
shows that

ζ(2g − 2; n) =
∑

(ρ,W )∈�(B;n)

1

(dim W )2g−2 + Og,B

(
1

n

(
n−2 log B

))
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=
∑

μ,ν

�(μ),�(ν)≤B,μ1,ν1≤B2

1

D[μ,ν](n)2g−2 + Og,B

(
n−M−1

)
.

Now as the sum is over a fixed finite set, Corollary 2.3 implies that for n > 2B3 we
have

∑

(μ,ν)∈�(B)

1

D[μ,ν](n)2g−2 = Fg,B(n) (5.11)

for Fg,B ∈ Q(t) with only possible poles in [−2B3, 2B3] and no zeros in (2B3,∞).
From Theorem 1.8, limn→∞ Fg,B(n) = 1; this can also be seen directly from (5.11).
Therefore, we have

ζ(2g − 2; n)−1 = 1

Fg,B(n)

(
1 + Og,B

(
Fg,B(n)−1n−M−1

))−1

= 1

Fg,B(n)
+ Og

(
n−M−1

)
(5.12)

as n → ∞.
By Theorem 3.2, Theorem 1.9 and Corollary 1.6, we have

Eg,n[trγ ] = 1

ζ(2g − 2; n)

(
Q B,w(n) + Ow,g

(
n|w|−2 log B

))

= 1

ζ(2g − 2; n)

(
Q B,w(n) + Ow,g

(
n−M

))
(5.13)

as n → ∞, where Qw,B ∈ Q(t). Combining (5.12) with (5.13) gives as n → ∞

Eg,n[trγ ] =
(

1

Fg,B(n)
+ Og(

(
n−M−1

))(
Qw,B(n) + Og,w

(
n−M

))

= Qw,B(n)

Fg,B(n)
+ Og

(
Qw,B(n)n−M−1

)
+ Og,w

(
n−M

)
. (5.14)

Using Fg,B(n) → 1asn → ∞ again, andEg,n[trγ ] ≤ n,weobtain Qw,B(n) = Og,w(n)

as n → ∞, and hence, we bootstrap (5.14) to

Eg,n[trγ ] = Qw,B(n)

Fg,B(n)
+ Og,w

(
n−M

)
.

This completes the proof; Qw,B (n)

Fg,B (n)
is O(n) and can be expanded as a Laurent polynomial

as in (1.4) up to order O
(
n−M

)
. Moreover, it is clear that the Laurent polynomials

arising from different M must be coherent, i.e., arise from a fixed infinite sequence
a−1(γ ), a0(γ ), a1(γ ) . . . of rational numbers. ��
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A. Calculation of Example 1.2

Let w = [a, b] ∈ F4 = 〈a, b, c, d〉 and let γ denote the projection of w to �2 =
〈 a, b, c, d | [a, b][c, d] 〉. We will calculate the asymptotic expansion of E2,n[trγ ] up to
and including order n−4.
Corollary 5.1 and Corollary 1.10 tell us that for some large enough fixed B ∈ N we
have

ζ(2; n) =
∑

(ρ,W )∈�(B;n)

1

(dim W )2
+ O

(
1

n4

)

, (A.1)

E2,n[trγ ] =ζ(2; n)−1
∑

(ρ,W )∈�(B;n)

(dim W )I(w, ρ) + O

(
1

n5

)

. (A.2)

as n → ∞. Here we identify the set �(B; n) with pairs (μ, ν) of YDs as in §§3.1.
The first step is to calculate the first few terms of the asymptotic expansion of ζ(2; n).
Unless the family (ρ

[μ,ν]
n , W [μ,ν]

n ) is trivial (μ = ν = ∅, dim(W [μ,ν]
n ) = 1), standard

(μ = �, ν = ∅, dim(W [μ,ν]
n ) = n), or dual to standard (μ = ∅, ν = �, dim(W [μ,ν]

n ) =
n) we have dim(W [μ,ν]

n ) � n2 as n → ∞. Since the set �(B; n) is finite, these
observations give

ζ(2; n) = 1 +
2

n2 + O

(
1

n4

)

, ζ(2; n)−1 = 1− 2

n2 + O

(
1

n4

)

(A.3)

as n → ∞.
Now, to use (A.2) we must calculate each

I(w, ρ[μ,ν]
n )

=
∫

(A,B,C,D)∈SU(n)4
tr([A, B])s[μ,ν]([A, B][C, D])dμHaar

SU(n)4
((A, B, C, D)).

(A.4)

appearing therein. We use the following two formulas:
∫

D∈SU(n)

s[μ,ν]([A, B][C, D])dμHaar
SU(n)(D) = 1

dim W [μ,ν]
n

s[μ,ν]([A, B]C)s[μ,ν](C−1),

∫

C∈SU(n)

s[μ,ν]([A, B]C)s[μ,ν](C−1)dμHaar
SU(n)(C) = 1

dim W [μ,ν]
n

s[μ,ν]([A, B])
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The first of these follows from [BtD95, Prop. 4.2] and the second by orthogonality of
matrix coefficients. Using these in (A.4) to integrate out C and D gives

I(w, ρ[μ,ν]
n ) = 1

(dim W [μ,ν]
n )2

∫
(A,B)∈SU(n)2

tr([A, B])s[μ,ν]([A, B])dμHaar
SU(n)2

((A, B)). (A.5)

It follows from Pieri’s rule [FH91, (A.7)] that

tr([A, B])s[μ,ν]([A, B]) =
∑

μ′,ν′
s[μ′,ν′]([A, B])

whereμ′ and ν′ areYDs formed by either removing one box fromμ (leaving ν unaltered)
or adding a box to ν (leavingμ unaltered). Finally, using a formula of Frobenius [Fro96]
to obtain

∫

(A,B)∈SU(n)2
s[μ′,ν′]([A, B])dμHaar

SU(n)2
((A, B)) = 1

dim W [μ′,ν′]
n

,

we obtain from (A.5) that

(dim W [μ,ν]
n )I(w, ρ[μ,ν]

n ) = 1

dim W [μ,ν]
n

∑

μ′,ν′

1

dim W [μ′,ν′]
n

. (A.6)

Below we list the contributions from (A.6) to the sum
∑

(ρ,W )∈�(B;n)(dim W )I(w, ρ)

from each quadruple (μ, ν, μ′, ν′) whose contributions are not O(n−5). In the fol-
lowing, we use dim W [(1),(1)]

n = (n + 1)(n − 1), W [(2),∅]
n = dim W [∅,(2)]

n = n(n+1)
2 ,

dim W [(1,1),∅]
n = W [∅,(1,1)]

n = n(n−1)
2 .

(μ, ν, μ′, ν′) Contribution
(∅, ∅, ∅, (1)) n−1

((1), ∅, ∅, ∅) n−1

((1), ∅, (1), (1)) 1
n(n+1)(n−1)

(∅, (1), ∅, (2)) 2
n2(n+1)

(∅, (1), ∅, (1, 1)) 2
n2(n−1)

((2), ∅, (1), ∅) 2
n2(n+1)

((1, 1), ∅, (1), ∅) 2
n2(n−1)

Using all these, we get

∑

(ρ,W )∈�(B;n)

(dim W )I(w, ρ) = 2

n
+

9

n(n2 − 1)
+ O

(
1

n5

)

= 2

n
+

9

n3 + O

(
1

n5

)

.

Combining this with (A.3) gives

E2,n[trγ ] =
(

1− 2

n2 + O

(
1

n4

))(
2

n
+

9

n3 + O

(
1

n5

))

= 2

n
+

5

n3 + O

(
1

n5

)

.
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