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Abstract: In Schweigert and Yang (Methods Appl Symmetry Integr Geom, 2021) it
was shown how string-net spaces for the Cardy bulk algebra in the Drinfeld center Z(C)

of amodular tensor categoryC give rise to a consistent set of correlators.We extend their
results to include open-closed world sheets and allow for more general field algebras,
which come in the form of (C|Z(C))-Cardy algebras. To be more precise, we show that a
set of fundamental string-nets with input data from a (C|Z(C))-Cardy algebra gives rise
to a solution of the sewing constraints formulated in Kong et al. (Adv Math 262:604–
681, 2014) and that any set of fundamental string-nets solving the sewing constraints
determine a (C|Z(C))-Cardy algebra up to isomorphism. Hence we give an alternative
proof of the results in Kong et al. (2014) in terms of string-nets.
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1. Introduction

String-net spaces were originally introduced by Levin and Wen in [LW05] in order to
describe phenomena of topological phases of matter on surfaces. Roughly speaking a
string-net is an equivalence class of an embedded graph on a surface S with boundary.
Based on earlier works [KKR10,KMR10] a precise mathematical formulation of string-
nets was given by Kirillov in [Kir11] and it can be seen as a higher genus enhancement
of the graphical calculus for tensor categories where the usual relations hold on any
embedded disk. Similar discussions of categories on surfaces have appeared in [HK19,
Har19] for the case of a cylinder. In a series of papers [BK10,Bal10a,Bal10b,Kir11]
it was shown how an appropriately defined vector space of formal linear combinations
of string-nets is equivalent to the state space of the Turaev–Viro three dimensional
topological field theory (TFT) based on C or equivalently to the state space of the
Reshetikhin–Turaev (TFT) for Z(C).

Two dimensional rational conformal field theory (RCFT) on the other hand has a cate-
gorical description in the form of the FRS (Fuchs-Runkel-Schweigert)-formalism devel-
oped in [Fuc02,Fje06,Fuc05,Fuc04b,Fuc04a], where the state space of theReshetikhin–
Turaev TFT features prominently. The monodromy data of an RCFT is described by a
modular tensor category and the bulk field algebra is a Frobenius algebra Hcl in Z(C).
The space of closed conformal blocks on a compact surface Sgn|m of genus gwith n incom-
ing and m outgoing boundaries is given by the state-space of the Reshetikhin–Turaev
TFT on Sgn|m , ZRT,Z(C)(H∗

cl , . . . ,H∗
cl ,Hcl , . . . ,Hcl), with n copies of H∗

cl coloring
incoming boundary components and m copies ofHcl coloring outgoing boundary com-
ponents. A consistent set of correlators in the RCFT is an assignment of an element in
ZRT,Z(C)(H∗

cl , . . . ,H∗
cl ,Hcl , . . . ,Hcl) for all surfaces S

g
n|m s.th. the vectors are invari-

ant under the action of the mapping class group and behave equivariant under sewings
of surfaces. That is, there should exist a map for sewing correlators and sewn correlators
should agree with the correlator on the sewn surface. The equivalence between string-net
spaces and spaces of conformal blocks was used in [SY21] to show that a given set of
genus zero string-nets with boundary value given by the Cardy-Frobenius algebra in
Z(C) indeed give rise to consistent correlators.

In this paper we generalize their result in two directions: Firstly we allow for world
sheets with open and closed field insertions. This leads to a formulation of sewing
constraints in terms of the category WS of open-closed world sheets given in [Fje06].
String-nets on open-closed world sheets still give a symmetric monoidal functor B :
WS → Vect. Solving sewing constraints for such a symmetric monoidal functor was
reduced in [KLR14] to a set of 32 relations, which have to be satisfied. The second
generalization concerns the input data for the construction.We allow arbitrary (C|Z(C))-
Cardy algebras as inputs. Based on an operadic formulation for vertex operator algebras
(VOA), Cardy algebras were introduced in [Kon08a] and formulated entirely in terms of
category theory in [KR09]. A (C|Z(C))-Cardy algebra encodes the necessary data for an
open-closed RCFT in genus one and zero and consists of a triple (Hcl ,Hop, ιclop), where
Hop, Hcl are Frobenius algebras in C and Z(C) respectively, together with an algebra
map ιcl−op : Hcl → L(Hop). Here L : C → Z(C) is the adjoint functor to the forgetful
functor. This data has to satisfy three conditions: modularity, the center property and
finally the Cardy condition. In [KLR14] it was shown, using the Reshetikhin–Turaev
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TFT, that Cardy algebras give rise to a consistent set of correlators and vice versa. The
category WS is generated by a set

{
Om, O�, Oη, Oε, Oprop,Cm,C�,Cη,Cε,Cprop, I, I

†
}

(1.1)

of fundamental world sheets. With the help of the (C|Z(C))-Cardy algebra we define
correlators

corr =
{
corropprop, corr

op
m corrop� , corropη , corropε , corrclprop, corr

cl
m , corrcl�,

corrclη , corrclε , corr I , corr I †
}

(1.2)

in terms of string-nets and the first main result, whose precise formulation in the main
text is Theorem 6.4, is
Theorem I The set of correlators corr gives a solution to the sewing constraints for the
conformal block functor B with boundary coloring determined by the (C|Z(C))-Cardy
algebra.

Assuming a solution to the sewing constraints forB exists, we also show that the con-
verse is true, which is our secondmain result (for the precise statement see Theorem 6.11
in the text).
Theorem II An assignment of fundamental string-net correlators based on bound-
ary colorings (Ĥcl ,̂Hop) in C, and Z(C), solving the sewing contraints, determines
a (C|Z(C))-Cardy algebra (Hcl ,Hop, ιcl−op), which is unique up to isomorphism.

The proofs of the theorems very much use the fact that the graphical calculus in C
carries over to string-nets on surfaces. Hence the graphical representation of consistency
relations for Cardy algebras appear directly as string-nets on surfaces and can be manip-
ulated accordingly. This renders the proof very tractable. As an example, Fig. 1 shows
a correlator world sheet. Purple curves denote open insertions, orange ones correspond
to closed insertion. Vertices stand for structure morphisms of the Frobenius algberas

Fig. 1. Example of an open-closed correlator on a genus 1 surface with two open insertions and one closed
insertion. The colored graph runs on the front of the surface
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in The Cardy algebras and squares denote open-closed embedding maps. In addition
there are circle decorations where world sheets are glued. All of these ingredients will
be explained in the core of the text.

The paper is organized as follows. In Sect. 2 we give an account of the necessary
categorical preliminaries, including modular tensor categories, the Drinfeld center and
Frobenius algebras in tensor categories. In Sect. 3 wemotivate Cardy algebras and recall
their definition from [KR09]. In Sect. 4 string-net spaces are discussed based on [Kir11].
In all of the paper we abusively use the term string-net to refer to an whole equivalence
class of string-nets. The definition of the category of world sheetsWS from [Fje06] and
the formulation of sewing constraints given in [KLR14] is recalled in Sect. 5. Section 6
is the main part of the paper and contains the precise formulation of the above theorems,
as well as their proofs. In the appendix we display the generating world sheets.

2. Categorical Preliminaries

As stated in the introduction two dimensional (rational) conformal field theory can be
conveniently described in categorical terms. This section serves as a reminder of the
necessary terms, together with the relevant graphical calculus. A classical source for the
material presented here is e.g. [EGNO16]. In all about to come, K is an algebraically
closed field of characteristic 0.

2.1. Basic categorical identities. LetC be an abelianK-linear category, i.e. for anymor-
phism φ, Ker(φ), Coker(φ) and Im(φ) exist and moreover for A, B ∈ C, homC(A, B)

is a K-vector space. A monoidal structure on C is a bilinear bifunctor ⊗ : C × C → C
with associativity and unit natural isomorphisms which are assumed to be identities in
this paper. Thus we always consider strictly monoidal categories. The unit object for ⊗
is denoted by 1. A braiding on (C,⊗) is a natural isomorphism βA,B : A⊗ B → B⊗ A.
In the graphical calculus about to be introduced, all diagrams run from bottom to top.
Graphically βA,B is depicted by (Figs. 2, 3)

Besides a braiding, C is required to have dualities. For A ∈ C a right (left) dual is a
triple (A∗, evA, coevA) (∗A, ẽvA, c̃oevA) of an object A∗ (∗A) with morphisms

Fig. 2. βA,B
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Fig. 3. β−1
B,A

The morphisms satisfy straightening properties

with similar pictures for left duality. A monoidal category for which every object has

right and left duals is called rigid. In a rigid category there is the obvious isomorphism
∗ (A∗) � A � (∗A)∗. A pivotal structure in (C,⊗) is a natural isomorphism π : IdC →
(•)∗∗. In fact any pivotal category is equivalent to a strict pivotal category, i.e. π = IdIdC .
It easily follows that for a strict pivotal category left and right dualities coincide. In a
rigid, strictly pivotal category there are left and right traces for endomorphisms

If tr( f ) = trr ( f ) = trl( f ) holds in C, C is called spherical. We introduce the
notation dA = tr(IdA). A twist on (C,⊗, β) is a natural isomorphism θ : IdC ⇒ IdC
satisfying θA⊗B = (θA ⊗ θB) ◦ βB,A ◦ βA,B . The twist isomorphism is depicted as

A rigid, pivotal, braided tensor category is ribbon if it has twist. Having defined all
the necessary structure on C we also want to control its size. Thus we require mor-
phism vector spaces to be finite dimensional. Recall that an object A ∈ C is simple
if homC(A, A) � K IdC. If the set of isomorphism classes of simple objects is finite
and every object is isomorphic to a direct sum of finitely many simple objects, the
category is called semisimple. A ribbon category C is fusion if it is semisimple and
1 is simple. Let {Ui }i∈I(C), Ui ∈ C, be the simple objects of C. In string-diagrams,
a label by a simple object Ui will be abbreviated by just labeling the edge with i .
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Being semisimple has far reaching consequences, e.g. for any object there are maps

bα
i : A

�→ ⊕
i∈I(C) U

⊕ni
i → Ui , with α ∈ {1, . . . , ni }, where the second map is the

projection to the α’s Ui summand and a dual map b j
β : Ui → ⊕

i∈I(C) U
⊕ni
i

�→ A.
These maps are dual in the following sense

∑
i∈I(C)

ni∑
α=1

biα ◦ bα
i = IdA, bα

i ◦ b j
β = δi jδαβ IdUi . (2.1)

Graphically we represent the duality as

and

In addition, for a semisimple category, di = tr (Ui ) 
= 0, and the global dimension

is defined as D2 = ∑
i∈I(C) di . Besides that, we introduce a basis

{
θα
(i j);k

}
α=1,...,Nk

i j

for hom(Ui ⊗ Uj ,Uk), where Nk
i j = dim hom(Ui ⊗ Uj ,Uk) are the fusion coef-

ficients. There is a dual basis
{
θ
k;(i j)
β

}
β=1,...,Nk

i j

, s.th. in graphical notation we have
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and

One more ingredient for a modular tensor is needed, namely the S-isomorphism

Definition 2.1. A modular tensor category is a spherical, ribbon fusion category, s.th.
(si j ) is an invertible |I | × |I |-matrix.

We state one more relation, which will be used in the proof of Theorem 6.4. A proof
can be found in e.g. [Bak01, Corollary 3.1.11].

Lemma 2.2. For C a modular tensor category and l ∈ I(C) it holds

In C there exists a pairing

homC(A, B) ⊗K homC(B, A) → K

f ⊗ g �→ ( f, g) ≡ tr(g ◦ f )
(2.2)

which, for C semisimple, is non-degenerate. We are mainly interested in morphism
spaces homC(1, •) for which we introduce some notation.

Definition 2.3. Let A1, . . . , An ∈ C, then we define

〈A1, . . . , An〉 ≡ homC(1, A1 ⊗ · · · ⊗ An) . (2.3)

Lemma 2.4. There is a functorial isomorphism of vector spaces 〈A1, . . . , An〉 �
〈An, A1, . . . , An+1〉.
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Proof. A functorial isomorphism is given by

which clearly has an inverse given by composing inverses of braiding and twist. ��

As only the cyclic order of 〈A1, . . . , An〉 matters, instead of rectangular boxes for
morphisms φ ∈ 〈A1, . . . , An〉, we introduce coupons in the graphical calculus

For an arrow oriented towards the coupon with label A, the respective element gets
replaced by A∗. Coupons can be composed with the help of the evaluation morphisms

The following lemma can be found in [BK10]

Lemma 2.5. For any A ∈ C there are isomorphisms

a)

b) For
{
biα

}
a basis in

〈
i, A∗

n, . . . A
∗
1

〉
with dual basis

{
bα
i

}
in 〈i, A1, . . . An〉 in the sense

that (biα, bβ
j ) = δi jδαβ it holds

where the b-b

cupons stand for a summation

The second relation is called completeness property and will be used several times.
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2.2. Frobenius algebras in tensor categories. Frobenius algebras are usually defined
as associative algebras on finite dimensional vector spaces having a non-degenerate
bilinear form, compatiblewith the algebramultiplication. In this formFrobenius algebras
correspond to two dimensional TFTs, see e.g. [LP08]. The notion of a Frobenius algebra
has an enhancement to categories and the above notion corresponds to a Frobenius
algebra in Vect, the category of finite dimensional vector spaces.

Definition 2.6. Let (A,⊗, 1) be a tensor category. A Frobenius algebra in A with un-
derlying object A consists of morphisms

where all strands are colored with A. These have to satisfy:

I) (m, η) define an associative algebra on A:

II) (�, ε) define a coassociative coalgebra on A:

III) The Frobenius properties hold

If A is in addition pivotal, we can ask for (A,m, η,�, ε) to be symmetric, i.e. there is
an equality of morphisms
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For A braided, we can require (A,m, η,�, ε) to be (co-)commutative, i.e.

For a morphism f ∈ homC(A, B), if A and B are Frobenius algebras, one can define a
Frobenius adjoint f † ∈ homC(B, A).

Definition 2.7 [KR09, Definition 2.17]. Let (A,mA, ηA,�A, εA) and (B,mB, ηB,�B,

εB) be Frobenius algebras in a monoidal category C and f ∈ homC(A, B). The mor-
phism f † ∈ homC(B, A) is defined as

We will use Frobenius algebras in modular tensor categories. If the category in ques-
tion is the representation category of a rational vertex operator algebra, this corresponds
toRCFTs verymuch like commutative Frobenius algebras inVect correspond to oriented
TFTs.

2.3. Drinfeld-center. For B a strictly monoidal category, its Drinfeld center Z(B) has
objects (B, βB,•), where βB,• : B ⊗ • ⇒ • ⊗ B is a natural isomorphism called half
braiding s.th.

βA,B⊗C = (IdB ⊗ βA,C ) ◦ (βA,B ⊗ IdC ) . (2.4)

Morphisms in Z(B) are morphisms f ∈ homB(A, B) s.th.

βB,C ◦ ( f ⊗ IdC ) = (IdC ⊗ f ) ◦ βA,C . (2.5)

The Drinfeld center becomes a monoidal category with tensor product

(A, βA,•)⊗(B, βB,•) = (A⊗B, βA⊗B,•), βA⊗B,C = (βA,C ⊗IdB)◦(IdA⊗βB,C ) .

(2.6)
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Note that B does not need to be braided. But Z(B) is naturally braided with braiding
given by

β
Z(B)
(A,βA,•),(B,βB,•) = βA,B . (2.7)

There exists an obvious forgetful functor F : Z(B) → B forgetting the half braiding.
For B a modular tensor category it is shown in [KR09] that the adjoint of the forgetful
functor reads

L : B → Z(B)

B �→
⎛
⎝L(B) =

⊕
i∈I(B)

B ⊗U∗
i ⊗Ui , β

ou
L(B),•

⎞
⎠ (2.8)

with over-under half braiding

βou
L(B),A =

⊗
i∈I(C)

(βB,A ⊗ IdU∗
i ⊗Ui ) ◦ (IdB ⊗ βU∗

i ,A ⊗ IdUi ) ◦ (IdB⊗U∗
i

⊗ β−1
Ui ,A

) (2.9)

which has graphical representation

On morphisms the functor is defined as L( f ) = ⊕
i∈I(C) f ⊗ IdU∗

i ⊗Ui . Note that this
is a faithful functor [KR09, Lemma 2.22], but not a tensor functor, since it doesn’t map
the identity on B to the identity of Z(B). Nevertheless, it transports Frobenius algebras
from one category to the other preserving symmetry.

Proposition 2.8 [KR09, Proposition 2.25]. For A a Frobenius algebra in B, the object
L(A) has the structure of a Frobenius algebra in Z(B). In addition, A is symmetric, if
and only if L(A) is symmetric.

For finite categories A, B there exist a tensor product of categories.

Definition 2.9 The Deligne tensor product A � B has objects finite sums
⊕

Ai � Bi , Ai ∈ A, Bi ∈ B (2.10)

and morphism spaces

homA�B(A1 � B1, A2 � B2) = homA(A1, A2) ⊗K homB(B1, B2) . (2.11)

If A,B are fusion, their tensor product is also fusion with representatives for simple
objects given by Ui � Vj where Ui (Vj ) are representatives of simple objects in A (B).
For A,B braided tensor categories, A � B is also a braided tensor category with tensor
product

(A1 � B1) ⊗ (A2 � B2) ≡ (A1 ⊗ A2) � (B1 ⊗ B2) (2.12)
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and braiding
βA�B

(A1�B1),(A2�B2)
= βA1,A2 � βB1,B2 . (2.13)

For a finitie ribbon category C, let C be the category with the same objects and mor-
phisms, but with inverse braiding and twist. In its most general form (even dropping
semisimplicity) the following theorem is proven in [Shi19]. For semisimple categories,
a proof is given in [M03].

Theorem 2.10 [Shi19, Theorem 3.3] [M03]. Let C be a finite ribbon category. If C is
modular, there is a braided equivalence

C � C → Z(C)

(A � B) �→ (A ⊗ B, βou
A⊗B,•) .

(2.14)

Conversely, if C � C � Z(C) are braided equivalent, C is modular.

This implies in particular that the finite set of simple objects in Z(C) is given by
(Ui ⊗Uj , β

ou
i j,•), for i, j ∈ I(C).

3. Cardy Algebras

3.1. Motivation fromphysics. In a series of paper [HK07,Kon08b,HK10,Hua91,Hua97a,
Hua03,Hua05a,HK04] Huang and Kong gave a rigorous formulation of genus 0,1 two
dimensional open-close conformal field theory in the language of partial operads. A text-
book account of the results appeared in [Hua97b]. The major outcome can be described
in purely categorical terms and is given by the notion of a Cardy algebra. The abstract
formulation and its relation to sewing constraints was developed in [KR09,KLR14].
Though we don’t need it in the core of the paper, we still spend the next paragraph
giving some intuition from CFT for the abstract formulation about to come.

One way of formalizing two dimensional CFT is given by vertex operator algebras
(VOA) which describe the chiral and antichiral symmetry algebras in full CFT. Roughly
speaking, a VOA encodes the operator-state correspondence and operator product ex-
pansions (OPEs). It has an underlying graded state space V and a vertex operator map
Y : V → End(V )[[z−1, z]], where z is a (formal) coordinate on the complex plane.
There is a well studied notion of representations of VOAs, including fully reducible
and irreducible representations. Under the assumption that V is a rational VOA,1 its
representation categoryRV is a modular tensor category. Assuming that a CFT at hand
has chiral symmetry algebra V L and antichiral symmetry algebra V R , both of which
are rational, the closed state space decomposes into a sum Hcl = ⊕

i j Ni j H L
i × HR

j ,

where HL
i , H

R
j are the simple representations in RV L and RV R , respectively. Hence it

is naturally an object in RV L � RV R . From a physics perspective the crucial object to
compute are correlation functions, which in our situation split into products of chrial
and antichiral correlation functions. It is well know that chiral correlation functions have
an expansion in terms of so called conformal blocks which contain all the information
about conformal weights and insertion points of the chiral insertions. For a vector space
V and a complex number z we denote

V {z} =
⎧⎨
⎩
∑
n∈Q

vnz
n

∣∣∣∣∣∣
vn ∈ V

⎫⎬
⎭ (3.1)

1 For the precise definition see e.g. [HUA05b, Theorem 3.9].
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Fig. 4. The closed field insertion is moved along the half circle through the bulk past the open insertion (red
dot)

for the space of fractional power series with coefficients in V . Three point conformal
blocksB(v1, v2, v3) on the sphere for field insertions vi ∈ HL

i at (z3, z2, z1) = (∞, z, 0)
can be described in terms of intertwining operators

Y3
12(•, z) : H1 → hom(H2, H3) {z} (3.2)

satisfying
B(v1, v2, v3) = 〈v3,Y(v1, z)v2〉H3 , (3.3)

where 〈 • , • 〉H3 is a well defined invariant inner product on H3.2 The map Y3
12(•, z)

is said to be of type
( H3
H1H2

)
and the dimension of the vector space of intertwiners of

type
( Hk
Hi Hj

)
are precisely the fusion rules Nk

i j . Intertwining operators have an algebra
structure, the so called intertwining operator algebra (IOA). The upshot is that the OPE
algebra in the CFT can be conveniently casted in the form of intertwining operators and
the state spaceHcl inherits an algebra structure inRV L �RV R from the tensor product
of chiral and antichiral IOAs. Under the assumption that Hcl carries a non degenerate
invariant bilinear form (which we assume in the presentation of intertwiners above
already)Hcl becomes a commutative Frobenius algebrawith trivial twist inRV L �RV R .
The genus one enhancement is possible if it is in fact a modular invariant Frobenius
algebra, a notion we discuss shortly in categorical terms. So far the discussion was
solely for closed states.

Including boundaries one also has to consider open states, which due to their lo-
calization on some boundary, have only half of the symmetry of closed states. Hence
a boundary CFT with symmetry algebra V has an open state space Hop = ⊕

i Ni Hi .
Following the same lines as in the closed case, the open state space becomes a symmetric
Frobenius algebra in RV . Note that it will in general not be commutative owing to the
fact that field insertions on an interval can’t be interchanged along the interval.

Lastly boundary and bulk fields should interact, i.e. there are bulk-boundary OPEs for
bulk fields approaching the boundary. This should correspond to a map ιcl−op : Hcl →
Hop satisfying certain compatibility relations. For this to work, we have to assume that
left and right symmetry algebra of the closed theory agree. First of all, ιcl−op should
be an algebra map, since taking first bulk OPEs and then approaching the boundary
and taking bulk-boundary OPEs better give the same as first approaching the boundary
and taking bulk-boundary OPEs followed by taking boundary OPEs. Next it should be
compatible with boundary OPEs and lastly it should commute with boundary OPEs as
bulk fields can be transported along the bulk as shown in Fig. 4.

Dually we could consider a map ι∗cl−op : Hop → Hcl mapping open field insertions
to boundary states in the closed theory. Though only discussed heuristically we note that
this can be made entirely concrete. It is shown e.g. in [Kon08a, Proposition 2.8] that

2 We again refer to e.g. [HK07, section 3] for the precise details of invariant bilinear forms on representations
of VOAs.
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modulo technicalities ι∗cl−op constructs Ishibashi states. It is well known that Ishibashi
states in general don’t correspond to true boundary states. Only linear combinations of
Ishibashi states satisfying the Cardy condition are valid boundary states due to open-
close duality.

3.2. Categorical definition of Cardy algebras. As stated in Sect. 2, for a modular tensor
category C, there is a braided equivalence C � C � Z(C). As an open-closed CFT
necessarily has coincident left and right symmetry algebras, the appropriate represen-
tation category for the closed theory to take place, is RV⊗V � RV � RV . To match
the description for string-net spaces we formulate Cardy algebras in terms of Z(RV )

instead of RV � RV .

Definition 3.1 [KR09, Definition 3.7]. LetC be a modular tensor category. A (C|Z(C))-
Cardy algebra (Hcl ,Hop, ιcl−op) is the data of

A) a commutative symmetric Frobenius algebra (Hcl ,mcl , ηcl ,�cl , εcl) in Z(C).
B) a symmetric Frobenius algebra (Hop,mop, ηop,�op, εop) in C.
C) a morphism ιcl−op ∈ homZ(C)(Hcl , L(Hop)).

This has to satisfy the following conditions

I) Hcl has to be modular, i.e. there is the equality

II) ιcl−op is an algebra homomorphism.
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III) The center condition holds:

IV) The Cardy condition holds:

Definition 3.2. A morphism between (C|Z(C))-Cardy algebras (Hcl ,Hop, ιcl−op) and
(Gcl ,Gop, ι′cl−op) is a pair of maps fcl ∈ homZ(C)(Hcl ,Gcl), fop ∈ homC(Hop,Gop)
s.th.:

I) Both, fcl and fop, are homomorphisms of Frobenius algebras.
II) The following diagram commutes

Using the map (•)†, it is not hard to show that any morphism of Frobenius algebras
has an inverse (see [KR09, Lemma 2.18]). Thus, any morphism of Cardy algebras is in
fact an isomorphism.
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4. String-Net Spaces

String-net spaces can be seen as a higher genus enhancement of graphical calculus for
spherical categories which reduces to the usual graphical calculus on every embedded
disk. For a surface S with boundary ∂S, let 
 ⊂ S be an embedded, finite, oriented
graph, which we always consider up to isotopy. Intersection points of 
 with ∂S are
required to be vertices of valence one of 
. For an oriented edge e the same edge with
reversed orientation is denoted by e.

Definition 4.1. Let C be a spherical fusion category. A C-coloring of 
 consists of two
parts: First, an assignment of an object A(e) ∈ C to any oriented edge e s.th. A(e) =
A(e)∗. Second, to a vertex v with incident edges e1, . . . , en , taken in counterclockwise
order, the C-coloring assigns an element

φv ∈ 〈A(o1), . . . , A(on)〉 , (4.1)

where oi is the edge ei oriented away from v. Hence, if an edge is oriented towards a
vertex and colored with A, the morphism corresponding to the vertex is an element in
〈· · · A∗ · · ·〉. As an example, consider a vertex v with 6 incident edges {e1, · · · , e6}, two
of which are incoming, the rest outgoing. A C-coloring is then given by

An isomorphism of C-colorings is a collection of isomorphisms fe : A(e) → B(e)
respecting orientations and mapping φv = f ◦φ′

v . Here, φv , φ′
v are the maps assigned to

the vertex v by the twoC-colorings. The boundary value for aC-colored graph is a tuple
({p1, · · · , pn} , {A1, · · · , An}), with {p1, · · · , pn} � {
 ∩ ∂S}, and Ai is the C-color
of the edge incident to the boundary vertex vi , which corresponds to the intersection
point pi .

Colored vertices have the graphical representation as coupons introduced in Sect. 2.
Let 
 be an embedded graph as above and D ⊂ S be an embedded closed disk whose
boundary ∂D is transversal to 
. Let {A(e1), . . . , A(en)} be the colors of edges of

 intersecting ∂D, taken in counterclockwise order. Then there is a unique surjective
evaluation map [Kir11, Theorem 2.3]

〈•〉D : 
 ∩ D → 〈A(o1), . . . , A(on)〉 , (4.2)

satisfying a list of natural properties explicitly given in [Kir11, Theorem 2.3]. Here,
similar to the definition of a C-coloring, we use the notation oi for the edge ei with
orientation towards the boundary ∂D. The properties stated in [Kir11, Theorem 2.3]
include local relations 
1 ∩ D = 
2 ∩ D, which have to be understood in the sense that
〈
1 ∩ D〉D = 〈
2 ∩ D〉D . One of these relations is e.g.
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Another property is e.g. the fact, that vertices lying in a disk can always be merged
into a single coupon.

Definition 4.2. To any surface S there is an associated vector space

VGraph(S,A) = formal finite K-linear combinations of colored graphs with

boundary value A
(4.3)

Definition 4.3. Let
i beC-coloredgraphs and xi ∈ K, let
 = ∑
xi
i ∈ VGraph(S,A).

The vector 
 is called a null graph, if there exists an embedded disk D ⊂ S intersecting

 transversally, s.th. 
i |S\D = 
 j |S\D and

〈
〉D =
∑

xi 〈
i 〉D = 0 . (4.4)

The vector space of all null graphs with fixed boundary value will be denoted
NGraph(S,A).

Definition 4.4. The string-net space on a surface with boundary value A is defined to
be

H(S,A) = VGraph(S,A)

NGraph(S,A)
. (4.5)

So far boundary conditions are just sets of points on the boundary labeled by objects
of C. Of course boundary conditions should be subject to some natural relation as
described in [Kir11, section 6], which turn them into a category of boundary conditions.
Let N be an oriented one dimensional manifold and {p1, . . . , pn} ⊂ N a finite subset
of points. Let B(N ) be the category with objects ({p1, . . . , pn} , {B1, . . . , Bn}) ≡ B,
where Bi ∈ C and morphism spaces are given by

homB(N )(B,B′) ≡ H(N × I ;B∗,B′), (4.6)

where we denote B∗ = ({p1, . . . , pn} ,
{
B∗
1 , . . . , B∗

n

})
. Composition of morphisms is

given by stacking cylinders on top of each other and concatenating string-nets across the
internal copy of N , followed by a rescaling of the cylinder to unit length. The category
of boundary values is defined to be the Karoubi envelope of B(N ), which by abuse of
notation will be denoted by the same symbol. This category has all the nice properties
to be expected, e.g. B(N ) � B(N ′) for N � N ′ and B(N � N ′) � B(N ) � B(N ′).
Lemma 4.5 [Kir11, Theorem 6.4]. There are equivalences of categories B(S1) � Z(C)

and B(R) � C.

Using this, one can give an enhancement of string-net spaces taking excited states3

on the boundary of a surface into account. Let S be a surface with boundary ∂S and
B ∈ B(∂S). The extended string-net space is defined as the quotient

Ĥ s(S,B) = VGraph(S,B)

NGraph(S,B)
(4.7)

3 For the terminology we refer to [Kir11].
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Fig. 5. Drinfeld-center projector

where

VGraph(S,B) = formal vector space of finite K-linear combinations of pairs ( f, 
)

with
 a graph on Swith boundary valueA
and f ∈ homB(∂S)(A,B)

(4.8)
and

NGraph(S,B) = subspace of null graphs under local relations as before plus

relation ( f γ, 
) = ( f, γ 
)where γ ∈ homB(∂S)(B,B′),
f ∈ homB(∂S)(B

′,A)

(4.9)

The following is a result of a series of papers [BK10,Bal10b,Bal10b] and [Kir11, The-
orem 7.3].

Theorem 4.6. Let S be a compact oriented surface of genus g with boundary parame-
terized circles and objects A = {

A1, . . . , A|π0(∂S)| = An
}
objects in Z(C). Then there

are isomorphisms

Ĥ s(S,A) � ZTV,C(S,A) � ZRT,Z(C)(S,A) = homZ(C)(1, A1 ⊗ · · · ⊗ An ⊗ (L)g)

(4.10)
where in the last vector space L = ⊗

i∈I(Z(C)) Ui ⊗U∗
i .

The following lemma is straightforward.

Lemma 4.7. Let D be a closed disk and A ∈ C. Then Ĥ s(D, L(A)) = homC(1, A).

Let P ∈ homB(S1)(A, A) be the string-net
which we call the projector and the circle winding around the circumference we call

the projector circle. In [Kir11] it is shown, that the extended string-net space is the image
of the projector P in the string-net space. Graphically this means, that elements of the
extended string-net spaces are represented by string-nets with additional projectors P
placed at each boundary component, as shown in Fig. 6.

5. World Sheets, Sewing Constraints and the Block Functor

5.1. The category of open-closed world sheets. In order to define a consistent system
of correlators we have to give an appropriate category of open-closed world sheets for
which our construction computes correlators. Since we are considering open-closed
world sheets, this needs a fair bit of data. Luckily an appropriate category is defined
in [Fje08,KLR14] and the first part of this section recalls this definition as well as
the notion of sewing constraints given in [KLR14, section 3.2]. Most of the problems
concerningopen-closedworld sheets is causedbyproperly disentanglingopen and closed
boundaries, which leads to the orientation double.
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Fig. 6. Example of a projected string-net on a genus 1 surface

Definition 5.1. An open-closed world sheet is the data

Ŝ = (S̃, ιS, B
i
S, B

o
S, orS, δS, ord) (5.1)

where

A) S̃ is an oriented topological surface with boundary ∂ S̃.
B) ιS is an orientation reversing involution whose fixed point set is a submanifold. The

quotient S = S̃/ {x ∼ ιS(x)} is a manifold and πS : S̃ → S is a Z2-bundle. Thus,
S̃ is the orientation double of S.

C) Bi
S , B

o
S is a disjoint partition of π0(∂ S̃) in incoming and outgoing boundary compo-

nents which is fixed by ιS . Fixed points of the induced map ιS : π0(∂ S̃) → π0(∂ S̃)

are called open boundaries. The set of open boundaries is denoted Bop and its
complement in π0(∂ S̃) is Bcl .

D) orS : S → S̃ is a global section of πS .
E) δS : ∂ S̃ → S1 is a boundary parameterization being a homeomorphism on ev-

ery connected component s.th. δS ◦ ιS(y) = δS(y), where • denotes complex
conjugation and y ∈ ∂ S̃. For a fixed point b ∈ π0(S̃) of ιS , it has to hold
δ|−1
b (S1 ∩ H) = Im(or)|b.

F) ord : π0(∂ S̃) →
{
1, . . . , |π0(S̃)|

}
is an ordering function of boundary components

for which we first demand that ord(o) < ord(c) for o ∈ Bop and c ∈ Bcl . Second,
for a connected set P ⊂ ∂S having non-trivial intersectionwith a physical boundary
(see the next paragraph) and P̃ ⊂ ∂ S̃op with πS(P̃) ⊂ P there has to exist an n ∈{
1, . . . , |π0(S̃)|

}
s.th. ord(P̃) =

{
n, n + 1, . . . , n + |P̃| − 1

}
where the ordering

of components is cyclically along the orientation of P .

Definition 5.2. A sewing of a world sheet Ŝ has data

A) a subset SB ⊂ Bi
S × Bo

S s.th. if (i, o) ∈ SB there are no elements (i, o′) or (i ′, o) in
SB .

B) for (i, o) ∈ SB it follows that (ιS(i), ιS(o)) ∈ SB .
C) either (i, o) ∈ Bi

op × B0
op or (i, o) ∈ Bi;l,r

cl × Bo;l,r
cl .

The sewn world sheet ̂S(S) has

I) ˜S(S) = S̃/ ∼, where δ|−1
i (z) ∼ δ−1|o

(−z
)
. Let pS : S̃ → ˜S(S) be the projection.
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Fig. 7. The quotient surface of a genus 3 open-closed world sheet with closed boundaries shown in purple.
Open boundaries are colored green and physical boundaries are red

II) condition B) ensures that there is a well defined involution ιS(S), defined via ιS(S) ◦
pS = pS ◦ ιS .

III) Bi
S(S)

= {
i ∈ Bi

S|(i, •) /∈ SB
}
and Bo

S(S)
= {

o ∈ Bo
S |(•, o) /∈ SB

}

IV) orS(S) is the unique section whose image in ˜S(S) is the image of πS(S) ◦ orS .

There is an additional requirement on the ordering function. For the details we refer
to [KLR14]. Note that the glueing defined above gives in addition a glueing projection
SS : S → S(S) given by SS = πS(S) ◦ πS ◦ orS . We will be mainly concerned with
S instead of its orientation double S̃. Its boundary components decompose into three
different types: open, closed and physical (Fig. 7).

i) Closed boundaries: A point p ∈ ∂S is on a closed boundary if its preimages under
πS lie on different connected components of ∂ S̃. This implies that connected com-
ponents of closed state boundaries are homeomorphic to S1. Their preimages are
pairs (bcl , ιS(bcl)) of connected components of boundaries in S̃ and orS identifies
them with one of the two boundaries.

ii) Open boundaries: A point p ∈ ∂S is on an open boundary if its preimages under πS

are on the same connected component in ∂ S̃. Hence its preimage is on a component
bop ∈ Bop. Since ιS was orientation reversing it acts on bop as a reflection. A
reflection on S1 has two fixed points and connected components of open boundaries
map to one of the open intervals stretching between the fixed points.

iii) Physical boundaries: p ∈ ∂S is on a physical boundary if its preimage is on the
fixed point set of ιS . In particular, preimages of physical boundaries aren’t boundary
components of S̃ except for the fixed points of ιS on open components of π0(S̃).
Rather they correspond to curves on S̃ s.th. cutting S̃ along the curves results in two
copies of S mapped to each other by the involution.

Definition 5.3. A homeomorphism of world sheets is a homeomorphism F : S̃ → T̃
s.th.

F ◦ ιS = ιT ◦ F, δT ◦ F = δS, F(Bi;o
S ) = Bi,o

T , F (Im(orS)) = Im(orT ) (5.2)

The last point implies in particular, that f steps down to a homeomorphism f : S → T
preserving all types of boundaries.
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Definition 5.4. The category of world sheets WS has objects world sheets and mor-
phisms homWS(Ŝ, T̂ ) are given by pairs (S, F) where S is a sewing of Ŝ and F :
˜S(S) → T̃ is a homeomorphism of world sheets. For the definition of the composition
we refer to [KLR14].

WS is a symmetric monoidal category with the usual tensor product given by disjoint
union. In addition two morphisms (S1, F1), (S2, F2) in WS are homotopic if S1 = S2
and F1, F2 are isotopic maps.

Definition 5.5. Let Fun⊗(WS,Vect) be the category of symmetric monoidal functors
assigning the same map to homotopic sewings. Morphisms are monoidal natural trans-
formations.

5.2. Generating set and sewing constraint relations. The category WS has a set of
generating world sheets {Si | i ∈ G} which we give in appendix A. It is generating in
the sense that for any other world sheet S, there exists a list of generating world sheets
S1, . . . , Sn and a morphism (S, F) : S1 ⊗ · · · ⊗ Sn → S. None of this data needs to
be unique. The generating set allows to reduce the discussion of functors and natural
transformations almost completely to the generating set and a set of relations among
them. To be precise, consider triples of generating data (S, {Si , } , (S, F)) and functors
�,� ∈ Fun⊗(WS,Vect). In addition assume that �((S, F)) is an invertible linear
map. Consider a collection of linear maps

Gi : �(Si ) → �(Si ), i ∈ G (5.3)

defined for the generating set. To any world sheet S one can associate the map

G(S) ≡ �((S, F)) ◦ (Gi1 ⊗ · · · ⊗ Gir ) ◦ �((S, F))−1 (5.4)

where (S, F) : Si1 ⊗· · ·⊗ Sir → S is the morphism from the generating property. Next,
there are 32 important different glueings of world sheets. We present them in terms of 32
relations {Ri }, where the lhs Ri,l , and rhs Ri,r , of the i-th relation are different glueings
of the same underlying manifold, or together indicate an action of the mapping class
group (R24, R25 and R32). In the following we present the relations in terms of the
corresponding quotient surfaces of world sheets (cf. [KLR14]). Red curves indicate how
the world sheet displayed is glued from easier parts. The blue flag on glueing curves
indicates the direction of glueing. For the part containing the flag, an incoming boundary
is glued. In the figures blue boundaries denote in-boundaries and green ones correspond
to out-boundaries.
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(I) Open Relations
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(II) Closed Relations

In the picture of the Dehn-twist and braid move, the red dashed lines are not glueing
lines, but auxiliary curves to display the action of the elements of the mapping class
group corresponding to the moves.
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III) Open-Closed Relations

IV) Genus 1 Relation The genus one move takes place on a torus with one boundary
component and interchanges a- and b-cycle of the torus as indicated by the colors.

The following theorem is the crucial simplification for the discussion of natural
transformations.

Theorem 5.6 [KLR14, Theorem2.8].Let�,� ∈ Fun⊗(WS,Vect),Gi andG as above.
Then G is a monoidal natural transformation if

G(Ri,l) = G(Ri,r ) (5.5)

for {Ri } the 32 fundamental world sheet sewings given above.

There is an obvious symmetric monoidal functor 1 : WS → Vect called the trivial
functor. It maps any world sheet to K and any morphism to the identity on K. The
following definition of a solution to the sewing constraints is originally due to [Fje08].
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Definition 5.7. A symmetric monoidal functor � ∈ Fun⊗(WS,Vect) satisfies the
sewing constraints if there is a monoidal natural transformation

� : 1 ⇒ � . (5.6)

We briefly explain why this is a sensible definition for a solution of the sewing
constraints. First of all, the monoidal natural transformation � picks a vector in �(Ŝ)

for any world sheet Ŝ. In physics terms, one may call this the correlator of the surface.
Recall, that correlators in CFT on any surface should be invariant under the action of the
mapping class group. An element of the mapping class group gives a morphism (∅, f )
and the functor 1 assignes the identity to it. Thus �(∅, f ) has to map the correlator onto
itself by naturality. By the same argument of triviality for 1 and naturality, correlators
on lower genus surfaces are sewn to correlators on higher genus surfaces. Hence this
definition nicely captures all the features expected from a consistent set of correlators.

6. Consistent Correlators from String-Nets

6.1. Functor of conformal blocks. For a consistent set of correlators we need a functor of
open-closed conformal blocks B ∈ Fun⊗(WS,Vect). This is achieved with the help of
string-nets spaces. Let (Hcl ,Hop, ιcl−op) be a (C|Z(C))-Cardy algebra. For a compact
surface � with non empty boundary we write g� for the genus of the corresponding
closed surface �′ obtained from � by glueing disks to all boundary components.

I) Let Ŝ be aworld sheet s.th. for bi ∈ π0

(
∂ S̃

)
it holds ιS(bi ) = bi and gS̃ = 0. Hence

Bcl = ∅ and we denote n = |Bi
op|,m = |Bo

op|. The associated quotient surface Sn,m
is just a disk with n incoming and m outgoing open boundary components. We set

B(Ŝ) = Ĥ s (S,Hop
)

(6.1)

where

Hop = ˜Hop ⊗˜Hop︸ ︷︷ ︸
n+m

, ˜Hop =
{

Hop, for outgoing boundary
H∗

op, for incoming boundary
. (6.2)

The tensor product Hop is ordered according to the ordering function ord.
II) Next we consider world sheets Ŝ with Bcl 
= ∅, gS = 0, with all open boundary

components on a single boundary circle and no connected component of the bound-
ary of the quotient surface is a physical boundary. These are world sheets, whose
quotient surfaces are of the form

In Fig. 8, there are three closed boundary components, shown in purple. In addition,
there are three open boundary components, sitting on the same connected component
of the boundary. These are colored red. The green part of the boundary shows physical
boundary components.We label closed boundary components withHcl and open bound-
ary components with L(Hop). The string-net space on the quotient surface is then given
by Ĥ s(S,Hcl , L(Hop)) = homZ(C)(1,Hcl ⊗ L(Hop)). In this case a subspace of the
string-net space has to be chosen in order to get a well defined functor for composition of
morphisms. This is due to the fact that L , though being a Frobenius functor, is not a ten-
sor functor, hence homZ(C)(1, L(Hop)) � homC(1,Hop). But L is lax and colax tensor
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Fig. 8. Example of type II) world sheet quotient surface

functor thus there aremorphisms φL
1 : 1Z(C) → L(1C), φL : L(A)⊗L(B) → L(A⊗B)

and ψ l
1 : L(1) → 1Z(C), ψ L : L(A ⊗ B) → L(A) ⊗ L(B). They are given explicitly

by [Kon08a]

and

where we depict the monoidal unit by a dashed line. Since we don’t need it in the

following we just give the formula for ψ L
1 = D2 Id1Z(C)

and not its explicit graphical
representation. We define linear maps

Z : homZ(C)

(
1,Hop

)

→ homZ(C)

(
1, L(Hop)

)

f �→ Z( f ) ≡ (ψ L ⊗ Id ⊗ · · · ⊗ Id) ◦ · · · ◦ (ψ L ⊗ Id) ◦ ψ L ◦ L( f ) ◦ φL
1

(6.3)
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Y : homZ(C)

(
1, L(Hop)

)

→ homC
(
1,Hop

) � homZ(C)

(
1,Hop

)

g �→ Y (g) ≡ d ◦ F
[
φL ◦ (Id ⊗ φL) ◦ · · · ◦ (Id ⊗ · · · ⊗ Id ⊗ φL) ◦ g

] (6.4)

where d is the map

The map Y is a left inverse to Z .

Lemma 6.1. Y ◦ Z = Id
homZ(C)

(
1,Hop

).

Proof. First note that

thus by induction it holds
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where red strands are labeled Hop or H∗
op. Next it holds

and composing with (Id ⊗ d) ◦ (ψ L ⊗ Id) gives

We dropped and will drop red strands in the next picture as they are irrelevant to the

argument and clutter pictures. Applying (Id ⊗ d) ◦ (ψ L ⊗ Id) again gives

By induction we get
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The dots in the first and second row indicate further applications of ψ L , hence we have

written a summation in the second row indicating summing over basis elements {bα}
similar to the summation in the first row. In addition all prefactors fromψ L are collected
in the coefficients C1, C2. ��

The vector space B(Ŝ) can now be defined as follows. DenoteH∗
cl for the object dual

toHcl (the closed labels of Ŝ). Let f ∈ homZ(C)

(
1,H∗

cl

)
, using evaluation morphisms,

there is a map

◦̃ : homZ(C)

(
1,H∗

cl

)
⊗ homZ(C)

(
1,Hcl ⊗ L(Hop)

)
→ homZ(C)

(
1, L(Hop)

)
.

(6.5)
We define

B(Ŝ) =
{
g ∈ homZ(C)

(
1,Hcl ⊗ L(Hop)

)
| ∀ f ∈ homZ(C)

(
1,H∗

cl

)
, ∃h ∈ homZ(C)

(
1,Hop

)
s.th. f ◦̃g = Z(h)

}
.

(6.6)

III) To any other world sheet Ŝ with nop = |Bi
op|, ncl = |Bi

cl | incoming open/ closed
boundaries and mop = |Bo

op|, mcl = |Bo
cl | outgoing open / closed boundaries we
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associate the vector space

B(Ŝ) = Ĥ s
(
S, L(Hop),Hcl

)
(6.7)

Factors of incoming and outgoing insertions in the tensor product are inserted in
the order given by the ordering function on the world sheet.

Hence, modulo minor technicalities we assign to a world sheet the string-net space on
its quotient surface decorated by the ingredients of the Cardy algebra. Tree level open
world sheets (case I)) are singled out to properly disentangle the open and closed theory.
We have to treat the case II) separetly, as the adjoint functor L is not a tensor functor,
but only a Frobenius functor. Hence, if one simply concatenates string-nets, one doesn’t
land in the right vector space, when glueing disks to the closed boundary components
of a type II) world sheet. This is cured by choosing the restricted vector space for world
sheets of type II). This defines B on objects. To define it on morphisms, we first note that
any homeomorphism of world sheets gives a homeomorphism of the quotient surfaces.
This induces a linear map in string-net spaces. Thus we really only have to define B
for the sewing part of a morphism (S, F) in WS. To define the gluing we need a small
lemma.

Lemma 6.2. L(A∗) � L(A)∗.

Proof. Evaluation and coevaluation morphisms are defined by

evL(A) = ψ L
1 ◦ L(evA) ◦ φL : L(A∗) ⊗ L(A) → 1

coevL(A) = ψ L ◦ L(coevA) ◦ φL
1 : 1 → L(A) ⊗ L(A∗) (6.8)

and their graphical representation reads

One easily checks that the straightening relations hold. ��
We have to distinguish five cases when defining sewing in terms of string-nets.

i) Gluing two world sheets of type I) such that the resulting world sheet is again of
type I). Then the linear map is just concatenation of string-nets.

ii) Gluing two world sheets of type I) s.th. the result is of type III). In this case we
first apply the map Z to the string-nets on the surfaces, then concatenate and add
projector circles to new boundary components.

iii) Gluing a world sheet of type III) and type II) s.th. the resulting world sheet is of
type I). This is the case if the quotient surface of the first world sheet is a sphere
with closed boundary components, open boundary components sitting on a single
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connected component of the boundary and no connected component of the boundary
is a physical boundary. The other world sheet is a disjoint union of disks with a
single closed boundary. Gluing the disks to the sphere gives a disk. In this case,
string-nets are concatenated and the result is post-composed with Y .

iv) Gluing a world sheet of type I) and II) s.th. the result is of type II). Again we first
replace the string-net on the type I) surface by applying Z followed by stacking
string-nets. The same definition applies to the case where we replace Type II) with
type III) world sheets.

v) Any other gluing is just concatenation of string-nets across glued boundaries (see
e.g. Fig. 1).

This defines B on morphisms of WS.

Proposition 6.3. B : WS → Vect is a symmetric monoidal functor.

Proof. We only need to check that the linear maps for gluings respect compositions.
Firstly we check that first gluing of type i) and then applying Z in fact gives the
same as applying Z and then stacking. Recall from Sect. 2 that concatenation of string-
nets is defined using the evaluation morphism. Let f ∈ homZ(C)(1,Hop ⊗ Hop) and
g ∈ homZ(C)(1,H∗

op ⊗ Hop), then it holds Z( f ) ∈ homZ(C)(1, L(Hop) ⊗ L(Hop)
∗),

Z(g) ∈ homZ(C)(1, L(Hop) ⊗ L(Hop)). For the gluing of Z( f ), Z(g) we compute
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Red strands are colored with A or A∗, depending on the orientation. In the first

equality we use the definition of the basis elements
{
θ

(i j);k
α

}
and their duals. But the

final picture is nothing else than Z applied to the gluing of f and g. Next, we note that
compositions of gluing disks to closed boundary components of type II) world sheets
and gluing along open boundary components of the same world sheet is well defined
due to Lemma 6.1. Hence, compositions including open boundary components are well
defined. Compositions of gluing along closed boundary compositions are obviously well

defined. Finally, a disjoint union of world sheets
∐

Ŝ gets mapped to
⊗B

(
Ŝ
)
. Thus,

B is a symmetric monoidal functor. ��
Note thatB(Ŝ) for type II) world sheets is non-zero and contains all interesting cases.

Since homZ(C)

(
1, L(Hop)

) � homC
(
1,Hop

)
, B(Ŝ) contains all string-nets obtained

from gluing type I) world sheets to a type II) world sheet with a single open bound-
ary component. It is worthwhile analyzing which vector spaces the functor assigns to
generating world sheets.

I) Open World Sheets The quotient surfaces of open generating world sheets are all
homeomorphic to a disk, though with different numbers of incoming and outgoing
open boundaries. For a disk D(ni , no) with ni incoming open boundaries and no
outgoing open boundaries we get the vector space

B(D(ni , n0)) = Ĥ s(D,Hop) = homZ(C)(1,Hop) � homC(1,Hop) . (6.9)

II) Closed World Sheets In this case the quotient surface is topologically a sphere
with ni incoming closed boundaries and no outgoing closed boundaries. With the
same notation as in the open case we get the vector space

B(S2(ni , no)) = Ĥ s(S2,Hcl) = homZ(C)(1,Hcl) . (6.10)

III) Open-ClosedWorldSheetsFinally open-closedgeneratingworld sheets getmapped

B(I ) = Ĥ s(I, Lop(Hop) ⊗ H∗
cl) � homZ(C)(1, Lop(Hop) ⊗ H∗

cl)

B(I †) = Ĥ s(I †, Lop(Hop)
∗ ⊗ Hcl) =� homZ(C)(1, Lop(Hop)

∗ ⊗ Hcl) .
(6.11)

Thus B associates to generating world sheets the vector spaces expected from the cate-
gorical description of RCFTs.
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Fig. 9. Open fundamental correlators

Fig. 10. Closed fundamental correlators

6.2. Fundamental correlators on generating world sheets. For a consistent system of
correlators we have to give fundamental correlators on generating world sheets and
show the sewing constraints for this set of correlators. We start by defining fundamental
correlators for Cardy algebra (Hcl ,Hop, ιcl−op). In the following red curves correspond
to edges colored with Hop, purple curves always denote edges of graphs colored by
L(Hop) and orange curves are edges colored byHcl . Incoming and outgoing boundaries
should be clear from the orientation of edges. Trivalent disk-shaped vertices either denote
multiplication or comultiplication in Frobenius algebras Hcl , L(Hop), Hop. Similarly
one-valent disk-shaped vertices are either unit or counit. In both cases orientation of
edges fix the kind of morphism assigned, so we suppress another graphical distinction
between the two.

I) Open World Sheets

Note that for these world sheets the inserted projector P (see Fig. 5) is absent as it
can be isotoped to a point and therefore vanishes.

II) Closed World Sheets

III) Open-Closed World Sheets
World sheets I , I † are topologically cylinders and a single projector line is inserted.
Boxes denote the morphisms ιcl−op or ι

†
cl−op, where again the orientation of edges

displayed fixes the type of morphism.

We are now ready to state and prove the first main result of the paper.
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Fig. 11. Open-closed fundamental correlators

Theorem 6.4. The correlators

{
corropprop, corr

op
m , corrop� , corropη , corropε , corrclprop, corr

cl
m , corrcl�,

corrclη , corrclε , corr I , corr I †
}

(6.12)

satisfy the sewing constraints.

In order to show the theorem, we have to show that the correlators on both world
sheets for all 32 relations in Sect. 5.2 agree. We split the proof in several lemmas.

Lemma 6.5. The correlators

{
corropprop, corr

op
m , corrop� , corropη , corropε

}
(6.13)

satisfy all open relations.

Proof. This is the easiest part of the theorem as string-nets on disks can be manipulated
according to the graphical calculus of its coloring category. It is immediate that the
relations directly follow from the fact that Hop is a symmetric Frobenius algebra in
C, which is fully faithfully embedded in Z(C). Relations R1)-R4) are unit and counit
properties. R5) is satisfied asHop is a symmetric Frobenius algebra. Relations R6) and
R7) are (co-)associativity for (co-)multiplications. Next, R8) and R9) are the Frobenius
property and finally the last four relations R10)-R13) are just the fact that composing
with corropprop leaves any morphism invariant in the graphical calculus. ��
Lemma 6.6 [SY21, Lemma 3.8]. The correlators

{
corrclprop, corr

cl
m , corrcl�, corrclη , corrclε

}
(6.14)

satisfy all closed relations.

Lemma 6.7. All open-closed relations are satisfied.

Proof. We start with relation R26). As the picture suggests this will follow from the
center condition of ιcl−op.
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Where we again use completeness followed by the center condition.
Next we prove relation R27):
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where we see the obvious equality from ιcl−op being an algebra homomorphism. Form
the same reasoning it follows that relation R30) is satisfied. Relations R29) and R28)
are consistency checks for the definition of ιcl−op and ι

†
cl−op. We show R28), the other

one goes exactly the same.

In the first picture red dashed lines indicate where we glued world sheets. In the
second equality we used the projector property and in the third equality we inserted the
definition of the morphism ι†. For the Cardy condition R31) we again have to drag along
projection circles:
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��

Lemma 6.8. The genus one one point correlator is invariant under the S-move.

Proof. The proof of R32) is again graphical and given by the following steps.
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The first equality uses the complete basis for elements in the Drinfeld-center but in a

different normalization. Graphically this is indicated by using squares instead of round
coupons. Note that there is no extra factor for the quantum dimension in this case. The
second step is the modular property forHcl . In the third step we transported the projector
circle along the torus and inserted the completeness relation in order to drag the Hcl -
colored curve along the circle in the fourth step. Using again completeness and finally
Lemma 2.2 yields the result. ��

This completes the proof of Theorem 6.4.
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Fig. 12. A genus 3 surface S3,6 with a-cycles respectively b-cycles shown in green and blue. Red circle show
boundary generators in H1(S3,6)

6.3. From sewing constraints on string-net spaces to Cardy algebras. In the previous
section we defined a fixed set of fundamental correlators and showed that the properties
of a Cardy algebra leads to a solution of the sewing constraints for these fundamental
correlators. In this sectionwe go the other way round, i.e. we assume that a solution to the
sewing constraints for the functor B exists and show that this gives in fact a (C|Z(C))-
Cardy algebra. A string-net on a surface of genus g with n boundary components can
have finitely many connected components winding non-contractible 1-cycles on the
surface. However, on projector decorated surfaces things simplify considerably. Recall
that the first homology group of a compact surface Sg,n of genus g with n boundary
components has 2g + n generators. The first 2g-generators are the usual a- and b-cycle
running around holes of tori. The other n generators are simple closed curves homotopic
to the boundary (see Fig. 12.).
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Table 1. The first row states the type of world sheet and the second row the corresponding maps

Om O� Oη Oε Cm C� Cη Cη I I †

mop �op ηop εop mcl �cl ηcl εcl ι ι†

Proposition 6.9. Let Sg,n be a compact surface of genus g with n boundary components
and A1, . . . , An ∈ Z(C). Any element in Ĥ s(Sg,n, A1, . . . , An) is equivalent to a string-
net with trivial winding around boundary generators of H1(Sg,n).

Corollary 6.10. For S0,n a spherewith n boundary components any string-net in Ĥ s(S0,n,
A1, . . . , An) is equivalent to a string-net with a single coupon.

Proof. This is the same argument as [SY21, Lemma 3.7]. Assume a string-net has
non-trivial winding along a boundary component. In an annular neighborhood of the
boundary the string-net can be manipulated as follows

Orientation of curves is chosen arbitrarily in the picture. For any other orientation
the computation is exactly the same. ��

The proposition and its corollary imply that any string-net on a generating world
sheet is of the form shown in Figs. 9, 10 and 11 where disk-shaped vertices are now
fixed morphisms of the right type. Assume a boundary coloring by the closed object Ĝcl
and open objects Ĝop, L(Ĝop), i.e. closed boundaries of a world sheet have boundary
value Ĝcl and open ones Ĝop, L(Ĝop), depending on the type ofworld sheet. For example,
on the world sheet Cm the vertex corresponds to a morphism m̂cl : Ĝcl ⊗ Ĝcl → Ĝcl in
Z(C). On C� the vertex is a morphism �̂cl : Ĝcl → Ĝcl ⊗ Ĝcl and so on. We have to
take special care of world sheets Oprop and Cprop. Those give rise to maps

p̂op ∈ homZ(C)(Ĝop, Ĝop), p̂cl ∈ homZ(C)(Ĝcl , Ĝcl). (6.15)

Assuming the sewing constraints hold it readily follows that p̂op and p̂cl are idempotent
maps. In the previous discussion these maps were fixed to be the identity maps. Thus we
may make the additional assumption that p̂op, p̂cl are invertible, which by finiteness of
the morphism spaces implies that p̂op = Id and p̂cl = Id. But we don’t have to. Since
Z(C) is abelian we can choose a retract (Gcl , ecl , rcl) for p̂cl , i.e.

ecl : Gcl → Ĝcl , rcl : Ĝcl → Gcl
ecl ◦ rcl = p̂cl , rcl ◦ ecl = IdGcl

(6.16)

and similar a retract (Gop, eo, ro) for po in C. On their images Gcl , Gop the propagator
morphisms act as the identity and sewing constraints realize a (C |Z(C))-Cardy algebra
on Gcl , Gop rather than on Ĝcl , Ĝop.
Theorem 6.11. Any set of fundamental string-nets on generating world sheets with
closed boundary values Ĝcl , open boundary valueŝGop and L(̂Gop), respectively, which
satisfy the sewing constraints, define a (C|Z(C))-Cardy algebra (Gcl ,Gop, ιcl−op), which
is unique up to isomorphism.

Proof. As discussed above from fundamental world sheets we get the following ten
maps (Table 1)
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where the morphisms are

mop = ro ◦ m̂op ◦ (eo ⊗ eo) : Gop ⊗ Gop → Gop
�op = (ro ⊗ ro) ◦̂�op ◦ eo : Gop → Gop ⊗ Gop
ηop = ro ◦ η̂op : 1 → Gop
εop = ε̂op ◦ eo : Gop → 1
mcl = rcl ◦ m̂cl ◦ (ecl ⊗ ecl) : Gcl ⊗ Gcl → Gcl
�cl = (rcl ⊗ rcl) ◦ �̂cl ◦ ecl : Gcl → Gcl ⊗ Gcl
ηcl = rcl ◦ η̂cl : 1 → Gcl
εcl = ε̂cl ◦ ecl : Gcl → 1

ιcl−op = L(ro) ◦ ι̂cl−op ◦ ecl : Gcl → L(Gop)
ι
†
cl−op = rcl ◦ ̂

ι
†
cl−op ◦ L(eo) : L(Gop) → Gcl .

(6.17)

The hatted morphisms are the maps appearing in the coupons for the string-nets. Since
the graphical representation of fundamental correlators stays the same, the proofs in
Sect. 6.2 can be just run backwards giving the defining relations of a (C|Z(C))-Cardy
algebra for these morphisms. In order to show that this carries over to a Cardy algebra
on (Gcl ,Gop, ιcl−op), we first note that relations R3), R8) and R10) give

p̂op ◦ m̂op = m̂op ◦ ( p̂op ⊗ Id) = m̂op ◦ (Id ⊗ p̂op) = m̂op . (6.18)

Similar relations hold for ̂�op, η̂op, ε̂op, m̂cl , �̂cl , η̂cl and ε̂cl . Furthermore sewing
relation R29) and the preceding discussion yields

L( p̂op) ◦ ι̂cl−op = ι̂cl−op ◦ p̂cl = ι̂cl−op . (6.19)

Using these relations one readily checks that (Gop,mop,�op, ηop, εop) is symmetric
Frobenius algebra, (Gcl ,mcl ,�cl , ηcl , εcl) is a symmetric, commutative Frobenius al-
gebra and ιcl−op is an algebra homomorphism. To check modularity we introduce the
graphical notation
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and note that similar to [KLR14, Lemma 4.4] we have

Using this we compute

which shows modularity.
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The center and Cardy condition follow by similar computations. For the uniqueness
part suppose we have chosen another set of retracts (G′

cl , e
′
cl , r

′
cl) and (G′

op, e
′
o, r

′
o), then

it is easy to see that fo = ro ◦ e′
o : G′

op → Gop and fcl = rcl ◦ e′
cl : G′

cl → Gcl are
isomorphisms of Frobenius algebras and in addition the diagram

commutes. ��

7. Conclusion

In this paperwe have shown how string-nets on topological surfaces generate solutions to
open-closed sewing relations. The major advantage of string-nets is the transportation of
categorical graphical calculus onto surfaces, which allows to use the defining conditions
for Cardy algebras directly when solving the sewing constraints. There are some open
ends related to this work. First of all, as noted in [SY21] one could further generalize the
results including defects. This seems likely to be possible using the description of defect
world sheets given in [Fje12]. Furthermore the qualifyer "rational" may be given up,
leading to a more general notion of modular tensor categories, which are not fusion. As
shown in [Fuc17,Fuc18] many of the categorical description can be transported to this
situation by replacing sums over simple objects by coends. Since dragging curves along
projector circles was the crucial point in manipulating string-nets for fusion categories
there should be an appropriate procedure for string-nets with non-fusion colorings.

Constructions of open-closed interactions using curves on surfaces have appeared
in [Kau03,Kau06] in the form of the Arc-operad. Since the graphical representation of
the construction very much resembles string-nets, there may be a connection between
the two approaches. In general one may wonder about a (wheeled) PROP-description of
string-nets, since null graphs give a pasting scheme for string-net diagrams. We plan to
address some of these questions in future work.
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Appendix A. Generating World Sheets

In this appendix we give all the generating world sheets in WS. The following figures
display the quotients of the orientation double for generating world sheets.

I) Open World Sheets

Purple colored parts of the boundary correspond to open boundaries. Black bound-

aries are physical boundaries.

II) Closed World Sheets

III) Open-Closed World Sheets
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