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Abstract: We study threefolds Y fibred by Am-surfaces over a curve S of positive
genus. An ideal triangulation of S defines, for each rank m, a quiver Q(�m), hence a
CY3-categoryC(W ) for any potential W on Q(�m).We show that forω in an open subset
of the Kähler cone, a subcategory of a sign-twisted Fukaya category of (Y, ω) is quasi-
isomorphic to (C, W[ω]) for a certain generic potential W[ω]. This partially establishes
a conjecture of Goncharov (in: Algebra, geometry, and physics in the 21st century,
Birkhäuser/Springer, Cham, 2017) concerning ‘categorifications’ of cluster varieties of
framed PGLm+1-local systems on S, and gives a symplectic geometric viewpoint on
results of Gaiotto et al. (Ann Henri Poincaré 15(1):61–141, 2014) on ‘theories of class
S’.

1. Introduction

Fix a pair of positive integers (g, d) and consider a closed surface S of genus g > 0 with
a non-empty collection of d > 0 marked points P ⊂ S. Fix in addition a positive integer
m > 0, called the ‘rank’. We work over the characteristic zero field K = �C which is
the one-variable Novikov field over C. Associated to this data, there is

(1) a K-linear CY3 A∞-category (C, W ), obtained from a choice of potential W on a
quiver Q(�m) associated to a choice of ideal triangulation � of S with vertices at
P and with no self-folded triangles, see [Gin06,Gon17] and Sect. 2;

(2) a non-compact Kähler Calabi-Yau threefold (Y, ω), which is the total space of a
fibration by Am-surfaces over S with fibres over P being disjoint unions of m + 1
planesC

2, and a further collection of Lefschetz singular fibres, see [Abr18,DDP07]
and Sect. 3.

Both the above depend on choices: the potential W on the quiver (up to gauge equiva-
lence) in the first case, and the (cohomology class of) Kähler form ω in the second. We
will make a further choice, which is an ordering of the m + 1 connected components
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of the reducible singular fibre of Y over each point of P. The sum of the even-indexed
components in this ordering, summed over each such reducible fibre, defines a class
b ∈ H2(Y ; Z/2). Relative to this background class, there is a sign-twisted Fukaya cate-
gory F((Y, ω); b), which is an A∞-category over K whose objects are b-relatively spin
graded ω-Lagrangian submanifolds equipped with suitable brane data. (The choice of
cycle representative for b is natural in a particular setting encountered later, but mon-
odromy considerations show that up to quasi-isomorphism the category only depends
on the number of components at each p ∈ P.)

Theorem 1.1. There is a non-empty open subset U ⊂ H2(Y ; R) of the Kähler cone,
and a map U → {potentials}/{gauge}, [ω] �→ W[ω], such that for [ω] ∈ U there is a
fully faithful embedding (C, W[ω]) ↪→ F((Y, ω); b).

The hypothesis g(S) > 0 simplifies the holomorphic curve theory (it implies the
Fukaya category can be constructed using classical transversality theory). After passing
to twisted complexes on both sides, the image of the embedding of Theorem 1.1 is a
split-closed triangulated subcategory. We conjecture that image co-incides with the full
subcategory of TwF(Y, ω; b) generated by Lagrangian spheres, and is therefore intrinsic
to the symplectic topology of (Y, ω). One could view the algebraic model (C, W[ω]) as
a ‘non-commutative mirror’ to (Y, ω), and Theorem 1.1 as a statement of homological
mirror symmetry in this setting.1

Goncharov conjectured in [Gon17, Conjecture 6.2] that the CY3-category associated
to Q(�m) and the ‘canonical’ potential W = W (�m) on the underlying bipartite graph
(as introduced in [FHV+06]) should be realised as a subcategory of a Fukaya category.
Goncharov’s conjecture, stemming from general expectations around ‘categorifications’
of cluster varieties, was futher elaborated by Abrikosov [Abr18, Conjecture 1.4]; Theo-
rem 1.1 proves the formulation given there. The result also relates to questions of Shende,
Treumann and Williams [STW, Problems 1.15 & 1.16] on the existence of potentials
governing local Calabi-Yau 3-folds associated to surfaces. It should be possible to relate
the canonical potential, which defines a C-linear category, to the one coming from sym-
plectic topology when the surface S is punctured and the associated threefold is exact as
a symplectic manifold (this is true in the simplest case when there are punctures and no
marked points/reducible fibres, in which case the canonical potential has only cubic and
quartic terms; one can more generally work in a ‘relative Fukaya category’, cf. Remark
4.12). In the non-exact case, holomorphic curves are weighted by their areas encoded
in the Novikov variable; the resulting potential never has trivial Novikov valuation. One
can still recover the cohomology class [ω] from the potential, cf. Remark 4.11.

The theorem is proved, following [Smi15] for m = 1, by finding a collection of
Lagrangian 3-spheres {Lv | v ∈ Vert(Q(�m))} in Y whose Floer cohomology algebra
⊕v,v′ H F∗(Lv, Lv′) agrees with the Koszul dual to the Ginzburg algebra associated to
Q(�m). (The open subset U = U (�) ⊂ H2(Y ; R) of the Kähler cone, which in prin-
ciple depends on �, is any for which the relevant configuration of Lagrangian spheres
exists. It is not clear if ∪�U (�) covers the Kähler cone.) The general theory of cyclic
A∞-structures then implies that the subcategory F(L) ⊂ F(Y ; b) generated by {Lv}
is governed by some potential W[ω] on Q(�m). Further study of non-vanishing holo-
morphic polygon counts shows that W[ω] = Wc(�m) + W ′ for a K-coefficient vector c
recording areas of polygons associated to certain distinguished ‘primitive’ (chordless)

1 A related result for Am -fibrations over S = C, but concerning derived categories rather than Fukaya
categories, appears in [VB10].
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cycles, and some ‘nonlocal’ terms W ′, which cannot a priori be controlled. (The ‘canon-
ical’ potential W (�m) is exactly Wc(�m) for a vector of coefficients each of which is
±1; in the non-exact case we record information on [ω] in c.) We conclude that some
A∞-deformation of (C, Wc(�m)) embeds into the Fukaya category, without specifying
exactly which; resolving this ambiguity is a version of fixing a mirror map.

On the geometric side, the crucial new ingredient when passing fromm = 1 tom > 1
is the presence of ‘tripod’ Lagrangian spheres in Am-Milnor fibres, see Sect. 3.2, and
their appearance in the sphere configurations associated to �m .

Theorem 1.1 relates towork of Gaiotto et al. [GMN13a,GMN14] on ‘theories of class
S’, certain four-dimensional N = 2 field theories. They relate the BPS degeneracies
of solitons in such theories to ‘spectral networks’ on a Riemann surface equipped with
a tuple of meromorphic differentials. In the rank m = 1 case, this relates BPS states
and saddle connections of meromorphic quadratic differentials [GMN13b,BS15]. Long-
standing expectations in both mathematics and physics suggest that the counting of BPS
states should be formalised by counts of stable objects in triangulated categories such as
Fukaya categories. The tripod spheres which enter into the proof of Theorem 1.1 exactly
correspond to the simplest spectral networks after saddle connections, see [GMN13a,
Figure 3]. The possible embedded graded Lagrangians in Y� are constrained by results
of [GP16], and one only obtains connect sums of copies of S1 × S2 and 3-tori. It would
be interesting to construct unobstructed immersed special Lagrangian representatives
for more general spectral networks.

Remark 1.2. One can have pairs of tripodswhichmeet at all three feet, and give rise to La-
grangian 3-spheres L0, L1 whichmeet at 3 transverse intersection points of equalMaslov
grading, and bounding no holomorphic discs. The subcategory 〈L0, L1〉 ⊂ F(Y�; b) is
quasi-isomorphic to the Ginzburg category of the three-arrow Kronecker quiver. It then
follows from [Rei11], see also [Mai16], that there are classes η ∈ K (F(Y�; b)) for
which the DT-invariant of d · η grows exponentially with d, a phenomenon that does
not occur for the 3-folds in rank one [BS15]. (The associated field theories of class S
have ‘wild BPS spectra’ and ‘BPS giants’.) The 3-folds Y� for rank m > 1 contain
graded Lagrangian submanifolds diffeomorphic to (S1 × S2)#(S1 × S2), obtained from
Lagrange surgery L0#L1 on L0 and L1. Irreducible modules over the based loop space
�(L0#L1) give rise to candidate stable objects to realise wild BPS states in the Fukaya
category.

2. Quivers and Potentials from Ideal Triangulations

2.1. Categories from quivers with potential. Awell-knownconstructiondue toGinzburg
[Gin06] associates to a quiver with potential (Q, W ) a 3-dimensional Calabi-Yau cyclic
A∞-categoryC(Q, W ). The categoryC(Q, W ) is the total A∞-endomorphismalgebra of
a collection of spherical objects Sv indexed by the vertices v ∈ Q0 of Q; it is concentrated
in degrees 0 ≤ ∗ ≤ 3, the degree one morphism spaces are based by the arrows Q1 of
Q, and the potential gives a cyclic encoding of the non-trivial A∞-products, see [Smi15,
Section 2] for a summary of the construction.We denote byD(Q, W ) the corresponding
derived category. Mutations of (Q, W ) induce equivalences of the derived categories by
[KY11].

Lemma 2.1. Let (X, ω) be a symplectic manifold with a well-defined Fukaya category
F(X). Suppose we have objects {Lv ∈ F(X) | v ∈ Q0} for which the total (cohomolog-
ical) endomorphism algebras

⊕v,v′∈Q0 H F∗(Lv, Lv′) ∼= ⊕v,v′∈Q0 HomC(Sv, Sv′)
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are isomorphic as graded algebras over the semisimple ring ⊕v∈Q0Kv (with idempotents
the units of the objects Li respectively Si ). Then the full A∞-subcategory L ⊂ F(X)

generated by the {Lv} is encoded up to quasi-isomorphism by a potential WL on Q.

Proof. This is almost tautological. The A∞-structure onFloer cochains⊕i. j C F∗(Li , L j )

can always be taken to be strictly unital, since the reduced Hochschild complex is quasi-
isomorphic to the full Hochschild complex over a field, and that strictly unital structure
can be pushed to cohomology by homological perturbation. The fact that R ⊂ K means
that the A∞-structure can also be taken to be strictly cyclic (this holds by abstract theory
over any characteristic zero field [KS09], but can be achieved for geometric reasons for
fields K ⊃ R [Fuk10]). The book-keeping in the Ginzburg construction then shows that
the subcategory L is encoded by a cyclic potential on Q. ��

In the setting of Lemma 2.1, the cubic terms in the potential encode the Floer product,
which is well-defined; the higher order terms determine the higher A∞-products which
depend on choices of almost complex structure and perturbation data. Lemma2.1 implies
that, given a finite collection {Lv | v ∈ Q0} of Lagrangian rational homology spheres in
a CY 3-fold for which the morphism spaces H F∗(Lv, Lv′) are concentrated in degrees
1, 2 for all v �= v′, then the A∞-structure on ⊕v,v′ H F∗(Lv, Lv′) is encoded by a cyclic
potential on the quiver with vertices Q0 and arrow spaces Q1 indexed by bases for
H F1(Lv, Lv′).

2.2. Gauge transformations. Potentials are called right-equivalent if they are related by
an automorphism of the completed path algebra; right equivalent potentials W and W ′
on Q yield quasi-isomorphic A∞-categories C(Q, W ) � C(Q, W ′), cf. [Gin06,KS09].
There are A∞-equivalences which do not arise from right equivalences, for instance
ones acting non-trivially on cohomology, and ones arising from the canonical K∗-action
on A∞-structures which rescales mk by λk−2.

The group G of right equivalences of the completed path algebra decomposes as a
semidirect product

G = Gun
� Gdiag

where the second factor of ‘diagonal’ automorphisms are those which arise from auto-
morphisms of the vector space of arrows (as bimodules over the semisimple ring given
by the idempotent lazy paths at the vertices), and the first factor of ‘unitriangular’ auto-
morphisms are those induced bymaps from the arrow space into the subspace of paths of
length≥ 2. When the arrow space between any two vertices is at most one-dimensional,
then Gdiag ∼= (K∗)|Vert(Q)| acts just by diagonally rescaling the arrows.

A quiver has a finite distinguished set of ‘chordless’ cycles, see [DWZ08]. A potential
is ‘primitive’ if it is a combination of chordless cycles, and every chordless cycle appears
with non-zero coefficient. A potential is ‘generic’ if its projection to the span of chordless
cycles is primitive. Using the fact that the set of chordless cycles is intrinsic to the quiver,
[Abr18, Section 5.1] asserts that projection to the primitive part of a potential yields a
Gdiag-equivariant projection

{Generic potentials}/G −→ {Primitive potentials}/Gdiag. (1)

Return to the situation of Lemma 2.1. Lagrangian 3-spheres will persist as Lagrangians
under any sufficiently small deformation of the symplectic form [ω] ∈ U ⊂ H2(X; R)
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Fig. 1. The inscribed quiver in one ideal triangle (A3-case, i.e. for Q(�2))

on X , and (appealing to sufficient technology in the non-weakly-exact case) will remain
unobstructed. Suppose furthermore that the Floer cohomologies ⊕v,v′ H F∗(Lv, Lv′) do
not change, as graded K-vector spaces, as one varies the symplectic form in U . Then
one obtains maps

H2(X; R) ⊃ U −→ {Potentials}/G −→ {Primitive potentials}/Gdiag. (2)

The RH group above is a priori finite dimensional, whilst the set {Potentials}/G of
all cyclic A∞-structures need not be. Our aim is to determine the composite map (2);
giving its lift to {Potentials}/G is somewhat like finding a ‘mirror map’, which we leave
undetermined.

Remark 2.2. The map (2) is not a local isomorphism (the domain and codomain have
different dimensions). For one thing, the coefficients of the potential—which record
areas of holomorphic polygons determined by areas of polygonal regions in the dual
cellulation �∨

m – are governed by [ω] ∈ H2(Y�,�v Lv; R), whilst the Fukaya category
F(Y�) only depends on [ω] ∈ H2(Y�; R).

2.3. Quivers with potential from triangulations. We summarise some results from
[Abr18]. Take an ideal triangulation� ofSwith vertices atP ⊂ S andwith no self-folded
triangles (i.e. all triangles have three distinct edges). We place m vertices on each edge
of the ideal triangulation, and then subdivide the triangulation (cf. Fig. 1, showing the
case m = 3) to obtain a new triangulation �m . We view this as bicoloured as in Fig. 1,
so each triangle of � now has inscribed within it m(m + 1)/2 black triangles. We then
orient the edges of these inscribed black triangles as in Fig. 1; doing this for each ideal
triangle in� yields a quiver drawn on the surface S, each vertex of which is one of those
originally placed on �. We denote the resulting quiver by Q(�m); it depends on � and
the choice of rank m ≥ 1.

Remark 2.3. An ideal triangulationof a surface of genus gwithd markedpoints (vertices)
has 6g − 6 + 3d edges and 4g − 4 + 2d faces.

There are three visible collections of closed cycles on the inscribed quiver Q(�m)

(see Figs. 1, 2 and 3). We will call these ‘primitive cycles’. Namely, one has

• anticlockwise-oriented 3-cycles {tb}, each the boundary of a single inscribed black
triangle b;

• clockwise-oriented 3- and 4-cycles {qw}, boundaries of the white regions w which
are those complementary regions on S to the black triangles which do not contain a
point p ∈ P; see Fig. 2 for a four-cycle qw;

• for each point p ∈ P, which has valence k as a vertex of�, larger clockwise-oriented
k-cycles L( j)

p for 1 ≤ j ≤ m; see Fig. 3.
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Fig. 2. The cycle L(1)
p (red) and a quadrilateral qw (blue)

Fig. 3. The cycles L(1)
p and L(2)

p (red)

When m = 1, the middle class is not present ; when m = 2, there are only quadrilaterals
in the middle class, and no 3-cycles.

Remark 2.4. The primitive cycles are exactly the chordless cycles for Q(�m).

The decomposition of S into the black and white regions of the quiver and its comple-
ment amounts to giving abipartite graphonS, and leads to a ‘canonical’ potential Q(�m),
originating in the string theory community [FHV+06] and emphasised in this setting by
Goncharov in [Gon17]. We will write N for the total number of primitive cycles, so N =
[(4g−4+2d)m(m+1)/2]+[(6g−6+3d)(m−2)+(4g−4+2d)(m−2)(m−1)/2]+[dm]
for the numbers of tb, qw, L( j)

p respectively.

Definition 2.5. For a vector c ∈ (K∗)N of pointwise non-zero coefficients, we will write
Wc(�m) = ∑

cb · tb +
∑

cw · qw +
∑

p, j c( j)
p L( j)

p .

In them = 1 case, and assuming |P| > 1, [GLFS16] show that every generic potential
is right-equivalent to a generic primitive potential, i.e. one with zero non-primitive part.
This fails when m > 1: then the moduli space of A∞-structures on the cohomological
category underlying C(Q(�m)) has positive dimension.

Remark 2.6. By diagonal automorphisms, any generic potential can be related to a ‘nor-
malised’ one in which the coefficients of all primitive cycles other than the L( j)

p are equal
to 1. If m = 2, a normalised generic potential W is strongly generic if, for each of the
points p ∈ P, the (necessarily non-zero) coefficients c(1)

p and c(2)
p of L(1)

p and L(2)
p in W

satisfy the non-degeneracy condition

c(1)
p + (−1)valence(p)c(2)

p �= 0. (3)
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Right-equivalence preserves generic potentials, and the subset of those generic po-
tentials which when normalised satisfy strong genericity. The space of strongly generic
potentials with fixed primitive part, up to right equivalence, is isomorphic to A

1
K
, cf.

[Abr18, Theorem 2] and [Abr18, Proposition 5.14]. When m > 2, there is no explicit
description of the generic fibre of (1).

Any two ideal triangulations � and �′ of (S, P) (without self-folded triangles) can
be related by a sequence of flips. Goncharov [Gon17] showed that the effect of a flip on
the pair (Q(�m), W (�m)) could itself be effected by a sequence of m(m + 1)(m + 2)/6
mutations, and that the mutation of the canonical potential is right-equivalent to the
canonical potential on the mutated quiver. Mutations induce auto-equivalences of the
associated CY3-categories [KY11]. It follows that there is a well-defined CY3-category
D(S, P, m), quasi-isomorphic to the derived category of C(Q(�m), W (�m)) for any
choice of ideal triangulation � of (S, P). More generally, the family of CY3-categories
associated to all possible generic potentials can be realised by generic potentials on a
fixed quiver Q(�m).

3. Quiver 3-folds and Lagrangian Sphere Configurations

3.1. Am-fibred 3-folds. In this section we discuss the symplectic topology of the three-
folds Y (S, P, m). These threefolds were introduced in [Abr18], and are associated to
tuples of meromorphic differentials (φ2, . . . , φm+1) on a Riemann surface S underly-
ing S with poles at a subset D ⊂ S of cardinality |P|; thus φ j ∈ H0(KS(D)⊗ j ). The
threefolds associated to tuples of holomorphic differentials were previously introduced
in [DDP07], and those associated to meromorphic quadratic differentials in [Smi15].

Fix a Riemann surface S of genus g, and a section δ ∈ H0(OS(D)) which vanishes
to order 1 at a divisor D of degree d (we think of D as lying at the points of P ⊂ S,
where S is the topological surface underlying the Riemann surface S). Note that δ is
unique up to scale. We also fix a decomposition of the log canonical bundle

KS(D) = L1 ⊗ L2. (4)

We consider the rank 3 vector bundle

W = L⊗(m+1)
1 (−D) ⊕ L1L2 ⊕ L⊗(m+1)

2 (5)

over S. Given a tuple

� = (φ2, . . . , φm+1) with φ j ∈ H0(KS(D)⊗ j )

we consider the hypersurface

Y� =
⎧
⎨

⎩
(a, b, c) ∈ W ∣

∣ (δ · a) · c = bm+1 −
∑

j

bm+1− j · φ j

⎫
⎬

⎭

Here (a, b, c) are written with respect to the decomposition (5) of the rank 3 bundle
W . The terms (δ · a)c and bm+1 − ∑

j bm+1− j · φ j both belong to KS(D)⊗(m+1), so the
defining equation makes sense. (We ask that the sum of the roots of �(b) = 0 vanishes
for compatibility and comparison with [GMN14].)
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Fig. 4. The dual Lagrangian cellulation in one ideal triangle for �3

Fig. 5. The dual Lagrangian cellulation in a hexagon of ideal triangles for �2

Lemma 3.1. Y� has vanishing canonical class, so is a quasi-projective Calabi-Yau
variety.

Proof. See [Abr18, Section 6]. ��
The spectral curve � ⊂ Tot(KS(D)) is the vanishing locus {b | �(b) = 0}. We

say that � is generic when � is smooth and projection � → S is a simple branched
covering; it then has covering degree m + 1 and m(m + 1)(2g − 2 + d) simple branch
points, arising from the zeroes of det(�). The threefold is almost a conic C

∗-bundle
over Tot(KS(D)) with singular fibres C∨C along the spectral curve �: this is precisely
true after a finite number of affine modifications of the bundle KS(D) at the fibres over
points of D, see [Abr18, Section 6.3].

Wewill workwithKähler forms onY� which are small perturbations of those induced
from a choice of Kähler form on S and on the total space of W → S; in particular our
Kähler forms tame integrable complex structures for which the projection Y� → S is
holomorphic. Because the defining equation for Y� is weighted homogeneous, parallel
transport vector fields have polynomial growth on the fibres with respect to a Kähler
metric on Y� induced from a metric on the vector bundle W , and there are globally
defined parallel transport maps of the fibres of Y� over paths in S. Furthermore, there
are parallel transport maps defined on compact subsets of Y� over compact subsets in
the universal family of threefolds obtained by varying �. (Neither the monodromy of
Y� → S, nor of the universal family, is naturally compactly supported; in the former
case this is because if one compactifies the fibration vertically, the divisor at infinity is
not locally trivial but degenerates over D.)

Given an ideal triangulation of S with vertices at P, and its inscribed quiver, we pass
to the dual graph of the quiver, as in Figs. 4 and 5.

The vertices of this dual ‘Lagrangian’ cellulation�∨
m are at the centres of the inscribed

black triangles of �m ; there are m(m + 1)/2 vertices of �∨
m in each ideal triangle of �.
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Thus, the total number of vertices of the Lagrangian cellulation is

m(m + 1)/2 · (4g − 4 + 2d) = m(m + 1)(2g − 2 + d)

which co-incides with the number of branch points of � → S, cf. Remark 2.3.

Lemma 3.2. Given an ideal triangulation � of (S, P), there is a tuple � such that, up
to isotopy, the associated fibration Y� → S has reducible fibres at the points of P, and
has Lefschetz singular fibres over the vertices of �∨

m.

Proof. Recall from [GMN13b,BS15] that a generic choice of quadratic differential φ2
on S with double poles at D ⊂ S defines an ideal triangulation �, with a (simple) zero
of φ2 at the centre of each triangle. We consider a point of the higher rank Hitchin base
(φ2, . . . , φm), with φ j ∈ H0(KS(D)⊗ j ), which is a small perturbation of the degenerate
tuple (φ2, 0, β1 · φ2

2 , 0, β2 · φ4
2 , . . .) for constants β j ∈ C

∗ chosen so that the associated
spectral curve factorizes:

�0 = {(b2 − φ2)(b
2 − α1φ2) · · · (b2 − αkφ2) = 0} ⊂ Tot(KS(D)) m = 2k + 1;

�0 = {b (b2 − φ2)(b
2 − α1φ2) · · · (b2 − αkφ2) = 0} ⊂ Tot(KS(D)) m = 2k + 2;

(6)

where b denotes a co-ordinate on KS(D) and the α j are pairwise distinct and not equal
to 0 or 1. These curves are reducible, and the 3-fold conic fibration over KS(D) with
discriminant �0 has (for sufficiently general α j ) an isolated singularity at each zero of
φ2. In local co-ordinates near a zero of φ2 ≈ z on S (and recalling the zeroes of δ and
of φ2 are different so locally δ ≈ 1), the local model for the 3-fold is

{ac = (b2 − z) · · · (b2 − αk z)} ⊂ C
4 or {ac = b(b2 − z) · · · (b2 − αk z)} ⊂ C

4,

which is the stabilisation of aweighted homogeneous plane curve singularitywithMilnor
number m(m − 1)/2. A small perturbation of the degenerate tuple to a generic tuple �

of differentials will both smooth the threefold, and yield a smooth spectral curve which
is generically branched over the z-plane, the branch points encoding the positions of
the Lefschetz singularities of Y� → S. (The affine modifications which relate Y� to a
conic bundle singular along the spectral curve do not affect the current local discussion,
since they take place in fibres over D, which lie far from the singularities of the total
space for the degenerate tuple, and from the locations of the Lefschetz singularities of
the fibration after small perturbation of that tuple.)

The topology of the threefold is thus encoded, up to birational modifications far from
the Lefschetz singularities, by the braid monodromy of the smoothed spectral curve
� ⊂ KS(D). Away from points of D ⊂ S, the initial 3-fold has fibre locally modelled
on {ac = bm+1} near an isolated simple zero of the differential φ2; the singularity in
the total space is an Am-singularity in the fibre. A small generic perturbation of the
tuple gives rise to a smooth 3-fold locally cut out by {ac = bm+1 + P(b, z)} in which
the corresponding map from the z-plane to configurations of roots is transverse to the
discriminant locus of repeated roots; the Lefschetz singular fibres of the projection
Y → S local to the given zero of φ2 then arise from values z where bm+1 + P(b, z)
has a double root. The discriminant of (6) has degree (2k + 2)(2k + 1)/2 respectively
(2k + 3)(2k + 2)/2 (as a function of z) in the two cases, which in both cases yields the
valuem(m+1)/2. After a smooth area-preserving isotopy of the base, which can be lifted
to a symplectic isotopy of the total space, one can arrange that these Lefschetz critical
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points lie at the vertices of �∨
m . Compare to [GMN14, Figures 1–3], and Proposition

3.10 below.
Over points of P, i.e. points of the divisor D where δ vanishes (simply), a local model

for the 3-fold is given by {δ ac = bm+1 − 1} ⊂ C
4, and the δ = 0 fibre is given by m + 1

pairwise disjoint copies of C
2 with co-ordinates (u, v). ��

Remark 3.3. The case g = 1 and |P| = 1 of an elliptic curve S = E with one
marked point D = {p} is exceptional; in that case δ and b both belong to the same
one-dimensional space H0(OE (p)), and the equation for the threefold associated to a
reducible spectral curve becomes degenerate. However, after including the perturbation
terms the corresponding threefold is still smooth.

Remark 3.4. Wedo not assert that there is a tuple� forwhich the holomorphic projection
has the described structure, only that it is symplectically isotopic to such.

Lemma 3.5. The rational cohomology H2(Y�; Q) has rank dm + 1, and is spanned by
the components of the reducible fibres over points of P ⊂ S, modulo the relation that
their sum is independent of p ∈ P.

Proof. The rank computation is given in [Abr18, Section 6]. The generators can be
extracted from his argument. Note that the total fibre class, which co-incides with the
sum of the classes of the components of a fixed reducible fibre, agrees with the pullback
of an area form on S of total area 1. ��

When m = 2, the space of Kähler forms on Y� is an open cone of dimension 2d + 1,
whilst the space of right equivalence classes of potentials has dimension d+2 by Remark
2.6. This underscores the fact that one cannot expect the ‘mirror’ map in (1) to be a local
isomorphism.

Remark 3.6. There is a family of 3-folds Y� over the space of generic tuples �, and
it is natural to consider Kähler forms which vary locally trivially over the family. The
monodromy permutes components of the reducible fibres, and the monodromy-invariant
subspace of H2(Y�; R) has rank 2. Up to global rescaling, there is thus just a one-
parameter family of invariant Kähler forms.

3.2. Tripod spheres. We recall Donaldson’s ‘matching sphere’ construction. Consider
a symplectic Lefschetz fibration X2n → C with two singular fibres lying over ±1, and a
path γ : [−1, 1] → C with γ (±1) = ±1 and γ (t) �∈ {−1,+1} for t ∈ (−1, 1). Parallel
transport along γ gives rise to two Lagrangian Sn−1 vanishing cycles in the fibre Xγ (0).
If these are Hamiltonian isotopic, then after a deformation of the symplectic connexion
on X in a neighbourhood of the preimage of γ , one can arrange that the vanishing
cycles agree exactly, and glue to form a Lagrangian Sn ⊂ X , which is well-defined
up to Hamiltonian isotopy. In this case, γ is called a ‘matching path’; see [AMP05,
Lemma 8.4] and [Sei08, Section 16g] for the details of the construction. Because of
the deformation of symplectic connexions, the matching sphere will in general only
approximately lie over γ for the original symplectic form ω.

If X → B is a symplectic Lefschetz fibration with fibre T ∗S2 = A1, then since
the fibre contains a unique Lagrangian sphere up to Hamiltonian isotopy [Hin12], any
path between critical values in the base (disjoint from critical values in its interior)
is a matching path. For Am fibred 3-folds with m > 1, the fibre contains infinitely
many Hamiltonian isotopy classes of Lagrangian sphere. It will be useful to have a
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Fig. 6. Matching paths in the A2-surface

L

q
a

τ−1
a (b) b

q
a

b

b

Fig. 7. Matching paths for the Lagrangian tripod (left); the tripod sphere (middle); the tripod sphere as a
matching sphere (right)

minor generalisation of the matching path construction, namely a ‘matching tripod’
construction giving rise to ‘tripod’ Lagrangian spheres.

The Am-surface {x2 + y2 +
∏m+1

j=1(z − j) = 0} ⊂ C
3 inherits an exact Kähler structure

from (C3, ωst). It deformation retracts to a compact core (or skeleton) comprising an Am -
chain of Lagrangian spheres, which arise as matching spheres for the paths [ j. j + 1] ⊂
R ⊂ C for 1 ≤ j ≤ m. Let a and b denote a pair of Lagrangian 2-spheres in Am which
meet transversely at a single point, for instance (but not necessarily) a consecutive pair
of spheres in the compact core, see Fig. 6.

Lemma 3.7. Let p : X → C be a symplectic Lefschetz fibration with three singular
fibres and fibre Am with m > 1. Suppose that the vanishing cycles are as shown in the
first image of Fig. 7, i.e. a, τ−1

a (b), b for paths as drawn. Then there is a Lagrangian
sphere which maps under p to a small neighbourhood of the tripod spanning the three
critical points.

Proof. The existence of a Lagrangian 3-sphere L mapping to the tripod neighbourhood
follows from the construction of a Lagrangian cobordism from a Lagrange surgery. We
apply this to the Polterovich surgery of the core spheres a and b in the A2-Milnor fibre;
this yields a cobordism in the total space of the product of an A2-surface and a disc,
whose three ends carry the three Lagrangians a, b, τ−1

a (b). The cobordism completes
to a smooth closed Lagrangian submanifold of a Lefschetz fibration with three critical
points as in the left picture, compare to [BC17]. It is straightforward to check that the
resulting closed Lagrangian is a smooth sphere.

On the right side of Fig. 7, the two outer paths both have vanishing cycle b, so their
concatenation defines a matching path γ and Lagrangian 3-sphere Lγ in the total space
of the Lefschetz fibration. The fact that Lγ is Hamiltonian isotopic to the tripod sphere L
constructed previously is proved by isotoping the matching path γ through the ‘lowest’
critical value, see [AS19, LemmaA.25] for details. (Cancelling one critical point and one
handle in the fibre by a Weinstein surgery as in [CE12], the total space of the Lefschetz
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Fig. 8. Symmetry of matching spheres from tripod spheres: in A2, τ
−1
a (b) = τb(a) and ττb(a)(b) = a
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Fig. 9. A cycle of tripod Lagrangians; labels denote vanishing cycles associated to dashed/radial paths

fibration X is symplectomorphic to T ∗S3, with the matching sphere for γ and hence the
tripod sphere L Hamiltonian isotopic to the zero-section.) ��

The tripod sphere does not map exactly to a tripod of arcs, but to a neighbourhood
of that which is fattened near the vertex; we will call such spheres ‘essentially fibred’.

Remark 3.8. If we had taken the matching paths 〈b, τa(b), a〉 as the input ordered triple
(for the same vanishing paths), rather than 〈b, τ−1

a (b), a〉, then we would still obtain a
Lagrangian sphere in the total space, but the corresponding description as a matching
sphere would break, since the leftmost vanishing path on the right image of Fig. 7 would
have associated vanishing cycle τ 2a (b) �� b. (More precisely, the matching sphere would
now lie over a path in a different homotopy class on the right hand picture.)

Remark 3.9. The right hand picture of Fig. 7 is symmetric in a waywhich is not manifest.
See Fig. 8. There are matching spheres over both non-dashed paths (or the analogous
3rd path, not shown), using the fact that τ−1

a (b) � τb(a) in the A2-fibre, compare to
Fig. 6.

The essential point of the symmetry of the ‘good’ tripod on the right of Fig. 7 is
that one can arrange a collection of tripods around a polygon so that the corresponding
vanishing cycles agree and the configuration ‘closes up’, cf. Fig. 9.

The arrangement displayed in Fig. 9 is local and topological: given two Lagrangian
spheres La, Lb ⊂ Am which meet transversely once, one can construct a Lefschetz
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fibration over a disc with the given critical fibres and vanishing cycles. We need a
globalisation of this local picture.

3.3. Spectral networks and sphere configurations. Recall that the threefoldY� is defined
by an equation δac = bm+1 −∑m+1

j=2 φ j bm+1− j = 0 in the total space of a vector bundle
W over S. Because we have well-defined parallel transport over paths in S, we can
consider matching and tripod spheres in the total space.

Proposition 3.10. Fix an ideal triangulation � and the dual Lagrangian cellulation �∨
m

of its subdivision �m. There is a configuration of Lagrangian spheres essentially fibred
over �∨

m, in which each ideal triangle in � contains m(m − 1)/2 tripod Lagrangians,
and these clusters are joined by m matching spheres for each edge of �.

Proof. This is an extension of Lemma 3.2, and is again implicit in the work of Gaiotto-
Moore-Neitzke relating their spectral networks to ideal triangulations [GMN14]. Focus
first on the geometry inside a single ideal triangle. In the A1 situation, the spectral cover
is a double cover and the monodromy at a simple zero of φ2 swaps the sheets. We are
taking a perturbation of a degenerate case in which we replace b2 − φ by (6), for which
the monodromy around a zero of φ2 completely reverses the order of the sheets, giving
the longest element (1, m)(2, m − 1)(3, m − 2) · · · of the symmetric group. The braid
monodromy for such a reducible curve was computed in [CS97, Section 5] [Dun99,
Lemma 4.1], and yields the Garside element of the braid group. This is the lift of the
longest element of the symmetric group, which admits a factorization as the canonical
sequence of m(m + 1)/2 half-twists lifting the permutations

[(m, m − 1)(m − 1, m − 2) . . . (4, 3)(3, 2)(2, 1)]
·[(m, m − 1)(m − 1, m − 2) . . . (4, 3)(3, 2)]
·[(m, m − 1) . . . (4, 3)] · . . . · [(m, m − 1)(m − 1, m − 2)] · [(m, m − 1)], (7)

compare to [BS72], [Loo08, Section 2] and the labellings of the pairs of sheets in Fig. 11.
The above factorisation defines a local smooth symplectic surface in the four-ball simply
branched over the z-plane, compare to [LP01,Ore98], and gives a local model for the
smoothing of the spectral curve in the proof of Lemma 3.2.

In any ideal triangle for �∨
2 , three sheets of the spectral cover interact. The vertices

of �∨
m can be grouped into (overlapping) triples governed by the same local geometry,

see Fig. 11 (and compare to the corresponding discussion around [GMN14, Figure 1]).
Each such triple then bounds a Lagrangian tripod sphere, and the previous discussion
implies these tripods fit together as in (the perhaps higher rank analogue of) Fig. 4.

Before perturbation, the only branching of the reducible spectral curve happens at
the zeroes of φ2 or equivalently the centres of the ideal triangles. These have fibrewise
Am-singularities in which the whole compact core of the fibre degenerates into the
critical point. For any given edge between two ideal triangles, one can place the branch
cuts away from that edge, so the labelling of sheets is consistent along the paths of the
cellulation which cross the edge of the given ideal triangle; indeed, for a given point
p ∈ D and associated vertex of the ideal triangulation, one can place all branch cuts
across the edges of triangles which are not adjacent to p. (This labelling of sheets is
incorporated into the data of the ‘eigen-ordering’ at p introduced below in Definition
4.5.) This yields a system of matching paths across all edges of triangles adjacent to p
after perturbation; compare to Fig. 9, cf. also the discussion in [GMN14, Section 4] of
the ‘asymptotic behaviour of the S-walls for lifted theories’.
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b

a

Fig. 10. The configuration �(�∨
2 ) for g = 1 and |P| = 1, in four fundamental domains. The core spheres

{a, b} ⊂ A2 are the vanishing cycles for dotted black respectively purple paths indicated, so the thick red arcs
carry corresponding matching spheres. The monodromy along the meridian longitude exchanges a and b

The localmodel near the reducible fibres from the end of Lemma3.2 isC
∗-equivariant

for a C
∗-action of weight one in δ. The local Kähler form can be deformed to be S1-

invariant, and the monodromy around the reducible fibre over a point p ∈ D is then
symplectically trivial on the Am-surface. The monodromy around the outer boundary
of the configuration of ideal triangles adjacent to p is a power of the Garside element,
and acts either trivially on the compact core of the Am-surface or preserving the core
but reversing the chosen order of its components, depending on the parity of the valence
of p in the ideal triangulation. In either case, the configuration of matching spheres
constructed from the viewpoint of p is compatible with that one would construct around
another point q ∈ D. ��
Remark 3.11. Consider the case m = 2, g = 1 and |P| = 1, see Fig. 10. As indicated
by the labelled vanishing cycles, the monodromy around the boundary of a fundamental
domain of the torus is the square �2 = (τbτaτb)

2 of the Garside element, which is
central in the braid group. There is non-trivial monodromy around both generating
loops2 for π1(T 2), i.e. the meridian and longitude depicted as the black boundaries of
the fundamental domain; indeed, the underlying m = 1 theory in this case has a single
branch cut along each side, and themonodromyon both edges of the fundamental domain
induces the permutation (1, 3)(2) of the three sheets of the spectral curve, compare to
[HN16, Figure 10]. For a global Kähler form, the monodromy around the reducible fibre
is non-trivial but centralises the braid group. TheC

∗-invariant model in Proposition 3.10
trivialises this monodromy by an isotopy which is not compactly supported at infinity.

Remark 3.12. Recall from Lemma 3.2 that the 3-fold associated to the reducible spectral
curve (6) has isolated singularities of Milnor number m(m − 1)/2 at the zeroes of φ2;
the set of m(m − 1)/2 tripod spheres in the corresponding ideal triangle presumably
gives a distinguished basis of vanishing cycles of the singularity (this should follow
from [ACa75], but we will not need it).

2 These loops do not have canonical lifts to elements of the fundamental group of the smooth locus.
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Fig. 11. Branching data for the spectral cover over �m in one ideal triangle of � (with branch cuts below)

The total number of Lagrangian spheres in the configuration of tripods and matching
spheres is then

(6g − 6 + 3d) · m + (2g − 2 + d) · m(m − 1).

Let �(�∨
m) denote this set of Lagrangian spheres in Y�.

4. The Cyclic Potential from Holomorphic Polygons

4.1. Floer theory background. By construction, Y� is equipped with an integrable com-
plex structure I , arising as an algebraic subvariety of an algebraic C

3-bundle over the
Riemann surface S. We can take its closure in the fibrewise completion, a CP

3-bundle
over S, to obtain a projective compactification. This is in general singular, but resolving
singularities yields a projective compactification Ȳ which comes with a map p : Ȳ → S
to S and has normal crossing boundary.

We are assuming g(S) > 0, so any rational curve in Ȳ maps by a constant map to S so
lies in a fibre of p, hencemeets the boundary. Since thefibre p−1(x)\{p−1(x)∩Bd(Y )} is
affine, the boundary is relatively ample on the singular compactification, hence relatively
nef on the resolution.

For Floer theory, it will be useful to perturb the complex structure I . We work with
the class Jπ of almost complex structures on Y which tame an I -Kähler form on Y and
which make projection π : Y� → S holomorphic, and which agree with I outside a
compact set. In this case, polygons with boundary conditions on the Lagrangians�(�∨

m)

map to holomorphic discs with boundary on the edges of the cellulation �∨
m , to which

one can apply the open mapping theorem. Since the fibres of π are exact, and contain no
rational curves, it is standard that one can achieve transversality in the class Jπ . Although
Y� is non-compact and not manifestly of contact type at infinity, we have:

Lemma 4.1. The moduli space of holomorphic polygons in Y� with Lagrangian bound-
ary conditions belonging to a compact subset (e.g. to a given finite set of closed La-
grangian submanifolds) is compact.
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Proof. This follows by considering intersections with the singular divisor Bd(Y ) ⊂ Ȳ�

at infinity. More precisely, given a sequence u j of holomorphic discs with boundary
conditions in a compact subspace and converging to a stable map u∞, if u∞ does not
have image contained in Y� it must have either a disc component or a rational curve
component which meets Bd(Y ) but is not wholly contained in the boundary. Such
components meet Bd(Y ) strictly positively by positivity of intersection, and relative
nefness of Bd(Y ) on rational curves (in particular on components contained in the
boundary) shows that u∞ · Bd(Y ) > 0. This contradicts u j · Bd(Y ) = 0 for finite j . ��

The Lagrangians we consider are tautologically unobstructed in Y� for almost com-
plex structures making projection Y� → S holomorphic. Given this, and with compact-
ness from Lemma 4.1, a version of the Fukaya category F(Y ) containing Lagrangian
matching and tripod spheres can be constructed following the methods of [Sei08], but
working over a Novikov field to take account of convergence issues for holomorphic
polygons. Since all the Lagrangians we consider are spin, and indeed relatively spin
for any background class b ∈ H2(Y ; Z/2) supported on the reducible fibres and hence
disjoint from �(�∨

m), we may define F(Y ; b) over �C.

4.2. Holomorphic triangles. Once m > 2 there are pairs of Lagrangian spheres in the
Am-Milnor fibre which are disjoint. Nonetheless:

Lemma 4.2. At any vertex b of �∨
m, the three adjacent Lagrangian spheres Lu, Lv, Lw

meet pairwise transversely at a single point b̂ of the corresponding fibre of Y�. The con-
stant holomorphic triangle to b̂ is regular and contributes to the product H F(Lv, Lw)⊗
H F(Lu, Lv) → H F(Lu, Lw) (where Lu, Lv, Lw project to arcs ordered clockwise lo-
cally at b; all three Floer groups are K).

Proof. There is a unique Lefschetz singularity in the Am-fibre lying over a vertex of
�∨

m , and locally the three Lagrangians are given by different Lefschetz thimbles near
that point. (The isotopy in the construction of the matching spheres which makes them
only essentially fibred can be taken to be supported away from the common critical
end-point.) It follows that they meet pairwise transversely, and indeed can be locally
described by three linear Lagrangian subspaces in C

n . Such a triple of Lagrangian
subspaces meeting at a point can be modelled on a product of copies of three real lines
in C meeting at the origin. Regularity of the constant map for the correct cyclic order is
standard, see [Smi15, Lemma 4.9]. ��

For m > 2 there are internal ‘white’ triangles in the quiver Q(�m), i.e. primitive
3-cycles of the form qw, which contribute regions to the Lagrangian cellulation �∨

m
which have three tripod Lagrangian boundary components (cf. the internal ‘hexagons’
in Fig. 4, note these have only three geometrically distinct Lagrangian boundaries).

Lemma 4.3. Suppose m > 2. Consider a primitive 3-cycle qw with tripod Lagrangian
boundaries Lu, Lv, Lw in cyclic order. The Floer product H F1(Lv, Lw)⊗H F1(Lu, Lv)

→ H F2(Lu, Lw) is non-zero.

Proof. Since only four sheets of the spectral cover are involved in the geometry of Fig. 4,
it suffices to consider the case m = 3. By Lemma 3.7, the three tripod spheres can be
replaced by matching spheres for the local structure of Y� as an A3-fibred Lefschetz
fibration. The matching paths can moreover be taken to meet at a unique point, the centre
of the white triangle, see Fig. 12. Then the corresponding 3-spheres meet only in the
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Fig. 12. Deforming a triple of tripod spheres (blue) to matching spheres (red) which meet at a point, defining
a constant holomorphic triangle

fibre over that point (more precisely, this is true after a symplectomorphism of an exact
subdomain containing the given triple of spheres, after which they can be taken to be
exactly fibred over arcs in the base). The Hamiltonian isotopies from tripods to matching
spheres induce quasi-isomorphisms of the corresponding objects in the Fukaya category,
and one can arrange that there is no wall-crossing since the isotopies are through weakly
exact Lagrangians.We need to determine the vanishing 2-spheres in the smooth A3-fibre
F over the central point in Fig. 12.

From the original configuration of the tripods, these 2-spheres meet pairwise with
rank one Floer cohomology. By [KS02] this is only possible for matching spheres in
Ak if the spheres are fibred over paths which pairwise share a single end-point (so meet
geometrically once). This reduces us to the geometry which entered into the discussion
of the constant triangle in Lemma 4.2. ��

4.3. Geometry near the reducible fibre. Webriefly recall the geometry near the reducible
fibre. After deformation, there is a local model for Y

{δ(a2 + c2) +
m∏

j=1

(b − j) = 0} ⊂ C
3 × Cδ (8)

in which the projection Y → S is modelled on projection to the δ-plane. The general
fibres are type Am-surfaces bm + O(bm−1) + (const.)(a2 + c2) = 0, whilst the fibre over
δ = 0 is given by the m-tuple of planes {b = j} × C

2
a,c, for j ∈ {1, . . . , m}. There is a

Lagrangian boundary condition

δ = eiθ , a, c ∈ e−iθ/2 · (−1)mi · R, b ∈ [ j, j + 1]
for each 1 ≤ j ≤ m − 1, defining a totally real S1 × S2 lying over the unit circle in
the δ-plane. One can deform the standard symplectic structure in a neighbourhood of
this totally real submanifold to make it Lagrangian, and fixed by an antiholomorphic
involution, cf. [Smi15, Section 4.6]. The only holomorphic discs with boundary on this
Lagrangian cylinder are given by (multiple covers of) the constant sections over the unit
disc in the δ-plane:

u : (D, ∂ D) → (Y, (S1 × S2) j ), u(z) = (0, ∗, 0, z), ∗ ∈ { j, j + 1}. (9)
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There is another viewpoint which can be helpful. There is a unitary local change of
co-ordinates which transforms the local model (8) to the form

{δ · uv +
∏

j

(b − j) = 0} ⊂ C
4

and one can consider projection to the b-plane. The generic fibre is now {δuv = const} ⊂
C
3, which is a copy of (C∗)2; the fibres over b = j are isomorphic to the union of the

three co-ordinate planes δuv = 0 ⊂ C
3. The local model of the map xyz : C

3 → C has
been studied extensively in [AAK16]. Again consider the matching path [ j, j + 1] ⊂ R

between two critical values of the projection. One can parallel transport the Lagrangian
T 2 ⊂ T ∗T 2 = (C∗)2 along this path, to obtain a Lagrangian S1 × S2 which is another
model for that considered above. The two holomorphic discs with boundary on the
Lagrangian now lie entirely over the end-points: the Lagrangian meets the fibre over j
in the unit circle in the δ-plane, and bounds the obvious disc lying entirely in the singular
locus of the j-fibre. Note that from the second viewpoint, there are three Lagrangian
(S1 × S2)’s associated to [ j, j + 1], given the symmetry in the co-ordinates δ, u, v; only
one of these is fibred with respect to the δ-plane projection.

The second viewpoint makes it especially clear that the holomorphic discs with
boundary on S1 × S2 have vanishing Maslov class, by comparing to the toric model
xyz : C

3 → C.

Lemma 4.4. Given a choice of spin structure on L j ∼= S1 × S2 and hence orientation
of the moduli space of rigid discs with boundary on L j , the two holomorphic discs from
(9) have opposite sign.

Proof. The geometry is local near the given S1 × S2, and the argument from [Smi15,
Section 4.6] applies. ��
Definition 4.5. An eigen-ordering of a generic tuple � is a choice of ordering of the
roots of �(b) = 0 near each point p ∈ D. One can equivalently think of an eigen-
ordering as giving an ordering of the irreducible components of the fibre (Y�)p over
each point p ∈ D ⊂ S.

The space of eigen-ordered generic tuples is an unramified Sym×d
m cover of an open

subset of the Hitchin base. In analogy with [BS15], one expects eigen-ordered generic
tuples to define stability conditions on the category C.

Note that each one of the discsmeets exactly one component of the reducible fibre ofY
over 0 ∈ Cδ .Moreover, consideration of the branching behaviour in Fig. 11 shows that as
one varies the value j when considering sections over L( j)

p , different pairs of irreducible
components of the fibre over p ≡ 0 ∈ Cδ meet the corresponding holomorphic discs;
compare to the final co-ordinate in (9). Given an ordering of the components of the
fibres over P, there is an associated choice of cycle Zb comprising �(m + 1)/2� of the
irreducible components for which the total signed intersection number of the discs of
(9) with Zb is necessarily non-zero (because only one of each pair of discs hits one of
the components included in Zb). Up to monodromy in the space of eigen-ordered tuples,
which induces a permutation representation of the components of the reducible fibres,
we can assume that this choice of cycle is just the even-indexed components as specified
in the Introduction (which is a suitable cycle choice if the local geometry agrees with
the labelling of sheets from Fig. 11).
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Fig. 13. Reducing the disc count over L(2)
p to one analogous to that over L(1)

p , compare to Fig. 9

4.4. Holomorphic discs for other primitive cycles. Fix an ideal triangulation � and the
collection {Lv | v ∈ �(�∨

m)} of Lagrangian spheres associated to the dual Lagrangian
cellulation. We wish to understand the holomorphic discs which contribute to the A∞-
structure on A� . There are constant holomorphic triangles indexed by the primitive
cycles cb of the quiver, which we have already encountered. The other two classes of
primitive cycle also give rise to holomorphic discs.

Proposition 4.6. Fix a vertex p ∈ P of �. For each 1 ≤ j ≤ m, the moduli space of
rigid holomorphic discs with boundary L( j)

p is non-empty. Moreover, there is a choice
of cycle representative for the background class b ∈ H2(Y�; Z/2) of (10) for which the
algebraic count of such discs is non-zero.

Proof. The argument for counting discs over L(1)
p is almost the same as in [Smi15],

relying on a degeneration technique to reduce to the count of discs on a Lagrangian S1×
S2, as found in (9), and the behaviour of holomorphic discs under Lagrange surgery from
[FOOO09, Chapter 10]. For the higher L( j)

p , there is a trick to reduce to the computation
to the previously studied case, indicated schematically in Fig. 13 in the case j = 2.
Namely, if one replaces the tripod spheres by their Hamiltonian deformations as shown
in red in the figure, then one reduces to the case of a region of the base S containing
a single point of P and with boundary a polygon of matching paths, each labelled by
the same Lagrangian vanishing cycle in the fibre. This is exactly the situation of the
disc count over L(1)

p , except the particular components of the reducible fibre which the
holomorphic sections intersect will depend on j , compare to the discussion at the end
of the previous section. Note that when j > 2 (which arises only when m > 2), the
boundary configuration of L( j)

p involves adjacent tripod spheres, and not only alternating
tripod and matching spheres. However, this doesn’t affect the argument. ��

It would be reasonable to expect that there is a holomorphic 3-form on Y� with
respect to which all the Lagrangian spheres in the configuration �(�∨

m) admit gradings
making them special of phase zero. At least the topological analogue of this holds:

Lemma 4.7. One can grade the Lagrangians in the configuration �(�∨
m) consistently

so that all polygons in the cellulation have Maslov index zero, and the Floer algebra is
concentrated in degrees 0 ≤ ∗ ≤ 3.
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Proof. Fix an element p ∈ P and grade all but one of the Lagrangians encircling
p – the boundaries of a polygon projecting to L(1)

p – so that their intersections have
degree 1 as Floer inputs. The existence of the rigid disc of Proposition 4.6 implies that
the Floer output has degree 2, so the gradings are in fact cyclically symmetric. The
existence of the rigid polygons over L( j)

p with j ≥ 1, together with the fact that every

matching sphere belongs to the boundary of a unique L( j)
p , imply that the gradings

propagate consistently to yield a grading satisfying the required conditions. (It follows
by additivity of Maslov index that the gradings are consistent with the existence of the
rigid quadrilaterals constructed in Proposition 4.9 below.) ��

We now fix the background class b ∈ H2(Y�; Z/2) which is Poincaré dual to a
four-cycle Zb defined by ‘half’ the irreducible components at all the singular fibres.
Precisely,

b = P D[Zb], Zb =
∑

p∈P
C
2
(ev) (10)

where the fibre π−1(p) ⊂ Y� of p : Y� → S is a disjoint union of (m + 1) ordered
copies of C

2, the union of the even-indexed components of which we have labelled
C
2
(ev). If there are no 3-valent vertices in the ideal triangulation, one can compute the

endomorphism algebraA� equivalently by working either in F(Y ) or in F(Y ; b); but in
the presence of 3-valent vertices and L(1)

p triangles, twisting by b potentially affects the
cohomological algebra.

Proposition 4.8. The algebra A� := ⊕v,v′∈�(�∨
m ) H F∗(Lv, Lv′) is isomorphic to the

total endomorphism algebra of the category C(Q(�m), Wc(�m)) for a vector c of non-
zero coefficients.

Proof. There are three types of holomorphic triangles which contribute to the Floer
product in the algebra:

(1) constant triangles with image a vertex of �∨
m ;

(2) the triangles of Lemma 4.3;
(3) triangles which map to a cycle L(1)

p for a vertex p of � of valence 3 (if any such
exist).

Each of these three triangle types has a non-zero count, and all the corresponding terms
appear in the potential Wc(�m). Working over �C, we take the coefficients of the first
set of triangles to be +1, the second set of triangles to be of lowest order valuation (since
the triangles become constant only after a Hamiltonian isotopy of the spheres in the
configuration). The coefficients in c for a triangular L(1)

p -region R will be ‘large’, in the
sense that it will be counted by q〈[ω],R〉. ��
Proposition 4.9. For a primitive cycle associated to a white quadrilateral bw the cor-
responding count of holomorphic discs is non-trivial.

Proof. See Fig. 14. The count of holomorphic discs is obtained by an invertible continu-
ation isomorphism from the count in which the tripod boundary conditions are replaced
by their red Hamiltonian images. The relation between holomorphic discs and polygons
before and after Lagrange surgery [FOOO09, Chapter 10] relates this to the count of
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b

a
bb

a
b

Fig. 14. The count of discs over a primitive quadrilateral region bw is non-zero

holomorphic strips on the right hand side of the Figure. In this picture, the two La-
grangian 3-sphere boundary conditions are Hamiltonian disjoinable; the Floer complex
has total rank two, with exactly one intersection point lying over each intersection of
the black and red curves in the image. The Floer differential must be non-trivial (and
hence an isomorphism). Putting one marked point in the interior of the strip R × [0, 1]
to stabilise the domain, since we are counting sections of the fibration Y� → S over the
quadrilateral, it follows that the count of holomorphic quadrilaterals over the original
domain bw is algebraically ±1. ��
Corollary 4.10. The A∞-structure on A� is encoded by a generic potential, i.e. one of
the form W = Wc(�b)+W ′ for some c ∈ (K∗)N and W ′ concentrated on non-primitive
cycles.

Proof. The previous lemmata show that the coefficients of all the primitive cycles are
non-zero; in the case of the L( j)

p this relies on twisting by the background class b to
ensure that, for each j , the two contributing holomorphic discs (which have the same
area) cannot cancel. ��
Remark 4.11. Lemma 3.5 implies that the cohomology class of a Kähler form [ω] ∈
H2(Y�; R) is determined by the total area of the base S and its evaluation on a collection
ofm closed surfaces at each reducible fibrewhose intersectionmatrixwith the irreducible
components has rank m. Such a collection of surfaces can be obtained as follows: at a
point of D, fix some 1 ≤ j ≤ m, and consider the two holomorphic discs lying over
L( j)

p . Interpolating their boundaries fibrewise inside a component of the core Am -chain of
spheres in the fibres gives a 2-sphere meeting exactly two of the irreducible components.
The symplectic area of such a sphere is just twice the coefficient in the potential of the
primitive cycle L( j)

p . It follows that the map H2(Y�; R) ⊃ U → {primitive potentials}
is locally injective.On the other hand, if we divide out by gauge equivalence, then one can
normalise the coefficient of L(1)

p to be 1, so the ‘mirror map’ U → {potentials}/{gauge}
is not injective even after factoring out global rescaling of [ω].
Remark 4.12. One could consider the subcategory A� inside the ‘relative Fukaya cat-
egory’ F(Y�,D; b), see [She], for D ⊂ Y� the divisor given by the union of fibres
over D ⊂ S. The coefficients of holomorphic polygons in the relative Fukaya category
record intersection numbers withD; one can then take all the coefficients for L( j)

p equal.
Similarly, if one works with a monodromy-invariant Kähler form as in Remark 3.6, then
the coefficients of all the L( j)

p in the potential will be some fixed power qa of the Novikov
variable, which brings one closer to the ‘canonical’ potential.
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