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Abstract: It is argued that the Schrödinger equation does not yield a correct description
of the quantum-mechanical time evolution of states of isolated physical systems featuring
events. A general statistical law replacing unitary Schrödinger evolution of states is
then formulated within the so-called ET H -Approach to QuantumMechanics. This law
eliminates the infamous “measurement problem.” Our general concepts and results are
illustrated by an analysis of simple models describing a very heavy atom coupled to
the quantized radiation field. In the limit where the speed of light tends to infinity these
models can be treated quite explicitly.
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1. Introduction: In Search of a New Law of Nature

“... their attempts to see in the very inadequacy of the conventional interpretation
of quantum theory a deep physical principle have often led physicists to adopt
obscurantist, mystical, positivist, psychical, and other irrational worldviews.”
(David Deutsch [1])

In this paper we attempt to add a missing piece that has long been searched for to
the puzzle of Quantum Mechanics (henceforth abbreviated as QM), namely an appro-
priate notion of states1 and a general statistical law governing the time evolution of
states of isolated physical systems featuring events, (i.e., of what we call “isolated, but
open systems”). Along the way we intend to dispose of the misconception that unitary
Schrödinger evolution of unit rays in Hilbert space, and of density matrices describing
mixed states, provides that missing piece.

Disagreement concerning the right notion of states in QM and the nature of a general
law describing their time evolution has persisted for almost a century, despite various
proposals of how to resolve it; see, e.g., [2–8] and references given there. This has
perpetuated a never ending debate about the deeper meaning of QM and has caused a
lot of confusion—as deplored by David Deutsch. Indeed, Sean Carroll has expressed
the following pessimistic assessment of the present level of understanding Quantum
Mechanics: “What we don’t do is claim to understand quantum mechanics. Physicists
don’t understand their own theory any better than a typical smartphone user understands
what’s going on inside the device.” (Sean Carroll, in: New York Times 2019)

But the problem is not that wemay not have understood the deeper meaning of QM—
in other words that we may not have found the correct interpretation of QM, yet. The
problem is that we have not accomplished a complete formulation of the theory called
Quantum Mechanics, yet, as pointed out, e.g., by Paul Adrien Maurice Dirac (quoted
below)! Perhaps, this is also what Richard Feynman may have vaguely had in mind when
he said: “I cannot define the real problem; therefore I suspect there’s no real problem;
but I’m not sure there’s no real problem.”—We actually think there is a real problem,
and the present state of affairs in our comprehension of Quantum Theory is really most
unsatisfactory, indeed, and should be changed for the better, as soon as possible!

The main purpose of this paper is not only to formulate a general law describing the
evolution of states in non-relativistic QM, but to exemplify it by analyzing a class of
simple models of a very heavy atom coupled to the radiation field (in a limit where the
speed of light tends to∞), building on ideas described in [9–12]. Although a superior
theory, as compared to non-relativistic QM, local relativistic quantum theory is techni-
cally more complicated; and we do not know any four-dimensional models of this theory
with non-trivial interactions that have been shown to be mathematically consistent. The
relativistic theory has been considered in [13] and will be studied in more detail in
forthcoming work.

Here is a metaphor for the present situation and the task to be accomplished: Until
now, QM rests on only three pillars, to be recalled in the next section, and its foundations

1 With a clear ontological meaning.
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remain shaky. Our task is to construct a Fourth Pillar2 that will render the foundations of
QM complete and stable. Built into our approach towards accomplishing this task is the
fundamental dichotomy of future, as the realm of potentialities, versus past, as the realm
of actualities and facts. It thus incorporates Aristotle’s distinction between potentialities
and actualities.

One of the basic insights underlying our approach is that, while, in the Heisenberg
picture, the time evolution of operators representing physical quantities of an isolated
system continues to be described by conjugation with its unitary propagator (Heisenberg
time evolution), the physical states of the system are not constant in time, but evolve
stochastically. The fact that, in the Heisenberg picture, a non-trivial time evolution of
states turns out to be compatible with the standard deterministic Heisenberg evolution of
operators representing physical quantities is derived as a consequence of a fundamental
principle—called the Principle of Diminishing Potentialities—which says that poten-
tialities become fewer, as time increases. As in the relativity principle, massless modes
might play a crucial role in substantiating our pinciple.

Next, we describe the main ideas underlying our approach to Quantum Mechanics
by summarizing the contents of this paper.

In Sect. 2, some essential but standard elements of QuantumMechanics are reviewed:
As usual, we represent physical quantities characteristic of a physical system by self-
adjoint operators acting on a separable Hilbert space. The Heisenberg picture and the
usual Heisenberg equations3 for the time evolution of operators representing physical
quantities of isolated systems are described. (We remark that, for a system interacting
with its environment, the time evolution of operators representing physical quantities of
that system is not given by the usual Heisenberg equations and, because of the influence
of the environment on the system, can be arbitrarily complicated. This motivates us to
limit our general analysis of the quantum-mechanical time evolution of operators and
states to isolated systems.) We emphasize the important property that, in the Heisenberg
picture, potentially measureable physical quantities are localizable in bounded intervals
of the time axis.

The Copenhagen Interpretation of Quantum Mechanics, including the “state
reduction-, or collapse postulate,” is briefly recapitulated, criticized and put in perspec-
tive.

Section 3 is devoted to a short summary of the so-called ET H -Approach to Quantum
Mechanics, (where “ET H” stands for “Events, Trees andHistories”). This approach has
been developed with the intention to provide a completion of Quantum Mechanics that
gets rid of conundrums such as the so-called “measurement problem.” Further details
concerning the ET H -Approach can be found in earlier papers; see [9–14]. Precise
notions of potential events/potentialities and of actual events/actualities are introduced;
(for earlier work introducing various notions of “events” in QM, see [15–18] and refer-
ences given there). Our notions of potentialities and actualities reflect the fundamental
dichotomy of future and past. A physically meaningful concept of states of isolated
physical systems is proposed. We then describe the so-called Principle of Diminishing
Potentialities and offer a concise formulation of the state-reduction-, or collapse pos-
tulate (Axiom CP). These ingredients enable us to formulate a general statistical law
describing the time evolution of states of isolated physical systems.

2 During the Song Dynasty, Xú Zi Píng reformed Li Xu-Zhong’s “Three Pillars of Destiny” by adding the
birth time as the “fourth pillar.”... Source: wikipedia.org/wiki/Four Pillars of Destiny.

3 i.e., conjugation of operators representing physical quantities by the unitary propagator of the system.
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The Principle of Diminishing Potentialities says, roughly speaking, that the algebra
generated by all operators describing potentialities possibly occurring at some time
t ′ or later is properly contained in the algebra generated by all the operators encoding
potentialities thatmight occur at a time t or later,with t < t ′. It turns out that this Principle
canbeunderstood to be a consequenceofHuygens’ Principle in local relativistic quantum
theories with massless particles, which has been analyzed and used in interesting work
by Detlev Buchholz and John Roberts; see [19,20]. (The only result in their joint work
relevant for the present paper is one that says that, in a local relativistic quantum field
theory withmassless modes onMinkowski spaceM

4, such as quantum electrodynamics,
the algebra generated by all operators localized in the future of a space-time point P
strictly shrinks, as P moves into the future along a time-like curve.)

In Sect. 4, the connection between Huygens’ Principle and the Principle of Dimin-
ishing Potentialities is recalled in the example of the free quantized electromagnetic
field.4 We then introduce a simple semi-relativistic model (with discrete time) illustrat-
ing the ET H -Approach and, in particular, the Principle of Diminishing Potentialities.
We also comment on the form this principle takes in the limit where the speed of light
tends to infinity. In this form it is profoundly relevant for the analysis of models of
non-relativtistic Quantum Mechanics, such as the ones studied in Sect. 5.

The most novel section of this paper is Sect. 5. It is devoted to a rather detailed study
of non-relativistic quantum-mechanical models illustrating the ET H -Approach. These
models can be interpreted as describing a very heavy atom with a finite-dimensional
Hilbert space of internal states coupled to a caricature of the quantized electromagnetic
field, calledR-field, arising in the limit of the speed of light tending to infinity. Themodels
are chosen so as to minimize technical complexity, but not to loose essential aspects of
the ET H -Approach. Time is chosen to be discrete, and operators representing physical
quantities localized in subsets of the discrete time axis, Z, containing only finitely many
times generate finite-dimensional matrix algebras. For these models, an explicit law for
the time evolution of states is derived, assuming that the R-field is prepared in a state
“without memory”. In this special situation, the resulting effective time evolution of the
state of the atom turns out to be “Markovian.” This is however not the case if the R-field
is prepared in a state entangling modes localized at different times.

We then discuss some key implications of our law for the time evolution of states in
two limiting regimes: a regimewhere the atom is only very weakly coupled to the R-field
and, as a consequence, linear unitary Schrödinger evolution is a good approximation to
the true evolution of states, except for rare “quantum jumps”; and a regime where the
degrees of freedom of the atom are very strongly coupled to the degrees of freedom
of the R-field and, as a consequence, the evolution of states is well approximated by
a classical Markov chain. The section concludes with an explanation of how, in these
models, “projective measurements” can be described in a very natural way.

In Sect. 6, we comment on the ontology that underlies a quantum-mechanical descrip-
tion of Nature according to the ET H -Approach. We then sketch how the models dis-
cussed in Sect. 5 can be extended to non-relativistic models with a continuous time. We
observe that, in such models, the spectrum of the Hamiltonian is unbounded from above
and below. Finally, we comment on the problem of understanding whether there are
alternatives to Huygens’ Principle in deriving the Principle of Diminishing Potentiali-
ties.

4 We regard it as an interesting and rather fundamental problem of quantum physics to better understand
this connection in a general context and to explore its relations to the structure of space-time, as well as to
study alternative foundations of the Principle of Diminishing Potentialities.
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A tantalizing conclusion of our analysis is that a quantum theory based on a classical
flat space-time satisfying this principle, as well as the spectrum condition, which says
that the energy spectrum of the Hamiltonian of the theory must be bounded from below
(i.e., contained in a half-bounded interval of the real line), appears to be necessarily a
local relativistic quantum theory.

Remark: In this paper we do not review the quantum theory of indirect (weak) mea-
surements, which is well developed, taking certain results in a theory of direct (projec-
tive) measurements and events for granted. See [21,22] for recent results and plenty of
references.

2. Three of the Four Pillars Quantum Mechanics Rests Upon

“It seems clear that the present quantum mechanics is not in its final form.” (Paul Adrien
Maurice Dirac)5

In this section we summarize a few well known basic facts about non-relativistic
Quantum Mechanics, focussing on the quantum-mechanical description of physical
quantities characteristic of a physical system and their dynamics in the Heisenberg
picture.

Since we consider non-relativistic quantum mechanics, with gravity turned off (or
treated as an instantaneous interaction between particles, as conceived by Newton), we
may assume that the concept of an absolute time, t ∈ R, parametrising evolution is
meaningful; (see [13] for a sketch of a space-time approach to local relativistic quantum
theory).

2.1. The usual three pillars.
“If you are receptive and humble, mathematics will lead you by the hand.” (Paul

Adrien Maurice Dirac)
In this subsection we recall some well known elements (or “pillars”) of a quantum-

mechanical description of Nature.

Pillar 1 Physical quantities characteristic of a system.
In quantum mechanics, a physical system, S, is characterized by a list of abstract

self-adjoint operators,

OS =
{

X̂i = X̂∗i | i ∈ IS
}
, (1)

with IS a set of indices depending on S, where every operator X̂ ∈ OS represents a
physical quantity characteristic of S, such as the total momentum, energy or spin of all
particles localized in a specified bounded region of physical space and belonging to an
ensemble of (possibly infinitely many) particles constituting the system S.6 It is assumed
that if X̂ ∈ OS and F is a real-valued, bounded continuous function on the real line then
F(X̂) belongs to OS , too. Apart from that, OS does not have any interesting structure.
It is usually not a (real) linear space, let alone an algebra.

5 We acknowledge that many of the quotations in this paper are taken from Wikipedia.
6 In order to comprehend the notion of physical quantities underlying the analysis presented in this paper,

the reader may find it useful to recall the description of, for example, a quantum gas, such as the electon gas
in a metal or a gas of bosonic atoms, in the formalism of second quantization. See also Sect. 5.
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We assume that, at every time t , there is a representation ofOS by selfadjoint operators
acting on a separable Hilbert space HS :

OS � X̂ �→ X (t) = X (t)∗ ∈ B(HS) , (2)

where B(HS) is the algebra of all bounded operators acting on HS . Usually, a physical
quantity X̂ ∈ OS can be localized in space and in time (Haag [23] speaks of “local
observables,” Bell [6,7] of “local beables”). It can be constructed by testing some her-
mitian operator-valued density, x̂(x, τ ), on space-time, such as a mass-, momentum-,
energy- or spin density of a quantum gas, with a real-valued test function h(x, τ ), yield-
ing a self-adjoint operator:

X̂ = F
[ ∫

d3x
∫

dτ h(x, τ ) x̂(x, τ )
]
�→

X (t) := F
[ ∫

d3x
∫

dτ h(x, τ ) x(x, τ + t)
]
, t ∈ R, (3)

where F is an arbitrary real-valued, bounded continuous function on R, and x(x, t +τ) is
an operator-valued distribution (acting on HS) representing the abstract density x̂(x, τ )

at time t . Assuming that we only consider test functions h with compact support in the
time direction, we conclude that the operator X (t) is localized in a time-slice, I ×E

3, of
finite width, where I ≡ IX (t) is a bounded interval of the time axis (assumed to contain
the time t in its interior), and E

3 is physical space.

Pillar 2 Heisenberg-picture dynamics of operators.
Next,we recall how the time evolution of physical quantities in theHeisenberg picture

is described. For this purpose we have to introduce the notion of an isolated (physical)
system. An isolated system S is one whose degrees of freedom have negligibly weak
interactions with the degrees of freedom of its complement, Sc, i.e., with the rest of the
Universe, during the period in timewhen the evolution of S ismonitored. (Yet, the state of
S∨Sc can be entangled!)As discovered byHeisenberg andDirac, it is only for an isolated
system, S, that we are able to formulate a general dynamical law for the time evolution
of physical quantities characteristic of S. For simplicity, we temporarily assume that the
system S is autonomous. Then there exists a selfadjoint operator, HS ≡ H = H∗, acting
on the Hilbert space HS , the Hamiltonian of the system S, such that the concrete self-
adjoint operators on HS representing some physical quantity X̂ ∈ OS at two different
times, t and t ′, are unitarily conjugated to each other by the propagator generated by H ,
i.e.,

X (t ′) = ei(t ′−t)H X (t) e−i(t ′−t)H , for arbitrary times t, t ′ , (4)

where X (t) represents X̂ at time t (see Eq. (2)). This equation is commonly referred to
as the Heisenberg equation. It encapsulates the deterministic law of time evolution of
operators on HS representing physical quantities in OS characteristic of the system S.
Notice that if X (t) is localized in the time interval IX (t) then X (t ′) is localized in the
interval IX (t ′) = IX (t) + (t ′ − t).

Equation (4) is usually extended to arbitrary bounded operators onHS :

A(t) = eit H A e−i t H , ∀A ∈ B(HS) , (5)

for arbitrary times t ∈ R. It is straightforward to extend Eqs. (4) and (5) to non-
autonomous isolated systems, whose Hamiltonians are time-dependent.
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Remark. If there are substantial interactions between the degrees of freedom of S and
degrees of freedom describing the “environment”, Sc, of S the description of the time
evolution of physical quantities characteristic of S, i.e., of operators representing ele-
ments ofOS , can be arbitrarily complicated. (A description of the dynamics of systems
interacting with their environment in terms of, for example, quantum Markov semi-
groups generated by Lindblad operators is an approximation that, most of the time, is
not justified. However, since it may be adequate, qualitatively, it is widely used.)

Pillar 3 Expectation values of physical quantities in “states.”
In order to extract concrete information about the behavior of (an ensemble of identi-

cal) isolated physical systems, S, as described in Pillars 1 and 2, one has to be able to take
expectation values of self-adjoint operators X (t) onHS representing physical quantities
X̂ ∈ OS . For this purpose, one introduces some notion of “state”. In non-relativistic
quantum mechanics, “states” are usually taken to be density matrices onHS , which are
non-negative, trace-class operators, �̃, acting on HS of trace 1, i.e.,

�̃ = �̃∗ ≥ 0, with tr(�̃) = 1 . (6)

(In the following, we usually refer to these states as normal states. For all possibly
unfamiliar notions concerning abstract functional analysis see, e.g., [24,25].) Pure states
are given by orthogonal projections, P = P∗ = P2, of rank 1 corresponding to unit
rays in HS . The expectation, ω(X (t)), of a physical quantity, X̂ ∈ OS , at time t in a
“state” given by a density matrix �̃ is defined by

ω(X (t)) := tr(�̃ · X (t)) , (7)

where X (t) represents X̂ at time t . Equation (7) is then extended to arbitrary bounded
operators on HS , i.e.,

ω(A) := tr(�̃ · A), ∀A ∈ B(HS) .

We will see shortly that this notion of “state” does not have any ontological meaning.7

It is common to claim that, in the Heisenberg picture, only operators evolve non-
trivially in time, but statesω are time-independent. One then usually goes on to claim that
theHeisenberg picture is equivalent to the Schrödinger picture, where physical quantities
are time-independent but “states” evolve in time according to the Schrödinger-Liouville
equation

�(t) = e−i(t−t ′)H �(t ′) ei(t−t ′)H , for arbitrary times t, t ′ , with �(0) ≡ �̃ . (8)

One then obviously has that

tr
(
�̃ · A(t)

) = tr
(
�(t) · A

)
, ∀A ∈ B(HS) ,

see Eqs. (5), (8).

Remark. In the following, we use a “tilde” to indicate that we refer to a density matrix in
the Heisenberg picture, while we drop the “tilde” in the Schrödinger picture. We usually
identify a densitymatrix in the Heisenberg picture with the corresponding densitymatrix
in the Schrödinger picture at time t = 0.

7 If a notion of “state” is supposed to have concrete physical (ontological) meaning then a “state” should
be a functional that is only evaluated on operators describing “future potentialities” (rather than on arbitrary
operators acting onHS ); see Sect. 3.
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2.2. Measurements and the collapse postulate.
“The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite sur-

prising to have it appearing in physical theory ...” (John Stewart Bell)
We note that Eqs. (4), (5) and (8) are linear and deterministic evolution equations.

However, most physicists agree with the claim that the predictions of QM are statistical
(probabilistic). So, what is going on? Well, according to the Copenhagen Interpreta-
tion of QM, the Schrödinger-Liouville evolution of states given by Eq. (8) is interrupted
whenever“a measurement takes place,” and in such amoment the Schrödinger-Liouville
evolution is replaced by a non-linear change of state described—at least heuristically—
by the so-called state-reduction-, or collapse postulate: If a physical quantity X̂ is mea-
sured at some time t , with the outcome that it has a measured value ξ belonging to the
spectrum, spec(X̂), of the operator X̂ , then the state, �̃, occupied by the system S right
before the measurement of X̂ is carried out is supposed to be replaced by the state, �̃ξ,t ,
given by

�̃ �→ �̃ξ,t :=
[
tr
(
�̃ �ξ (t)

)]−1
�ξ(t) �̃�ξ (t) , (9)

right after the measurement of X̂ , where �ξ(t) is the spectral projection corresponding
to the eigenvalue ξ of the self-adjoint operator X (t) representing X̂ at time t ; and the
probability of measuring the value ξ is given by tr

(
�̃�ξ (t)

)
—Born’s Rule.

The question then arises what the precise quantum-mechanical law is that determines
under what conditions a “measurement” takes place (is carried out), and at what time the
state-collapse (9) resulting from themeasurement happens. Answering this question will
amount to adding a “Fourth Pillar” to the formulation of QM. Actually, the prescription
in Eq. (9) is at best a reasonable heuristic recipe, but does obviously not have the status
of a general law, as long as the notion of “measurement” remains totally vague and does
not correspond to a well-defined operation in the mathematical formalism of QM, and
as long as the time when a measurement happens cannot be predicted by the theory!8

2.3. Inadequacy of unitary Schrödinger evolution of states of physical systems.
“I insist upon the view that ‘all is waves’.” (Erwin Schrödinger, letter to J.L. Synge)
Before we will describe a precise general law governing the quantum-mechanical

time evolution of states of isolated systems (see Sects. 3, 4, 5) we stress that we do not
consider unitary Schrödinger evolution to provide such a law—even if all the experi-
mental equipment used to perform measurements on a given sub-system of interest is
included in the quantum-mechanical description (so that the resulting total system is
isolated). This view has already been emphasized by some of the founding fathers of
Quantum Mechanics; (see Heisenberg’s lucid discussion in [26]9 and refs. given there).
An interesting argument showing that nothing but unitary Schrödinger evolution of states
of isolated systems leads to paradoxes is the so-called“Wigner’s friend paradox”. Rather
than recalling it here, we refer the reader to the original paper [27], and to [28,29] for
more recent variants of the original argument. In [14], an alternative argument showing

8 This would not be too serious a problem if all we intended to do is to describe a single measurement (at
the “end of time”), but gave up the requirement that the theory ought to also consistently describe repeated
measurements.

9 “[The probability wave] ... introduced something standing in the middle between the idea of an event and
the actual event, a strange kind of physical reality just in the middle between possibility and reality.” (Werner
Heisenberg).
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that unitary Schrödinger evolution of states of isolated systems is often incompatible
with what is observed in experiments has been described. This argument is based on a
quantitative analysis of correlations between the outcomes of measurements of physical
quantities (spins) referring to two different sub-systems that have been prepared in an
entangled state. The analysis in [14] also illustrates what people call the “non-locality”
of Quantum Mechanics; for a recent study, see, e.g., [30]. (For a discussion of the cru-
cial role of locality in relativistic quantum theory, in the sense of Einstein causality, as
opposed to the “non-locality” just referred to, the reader may consult [13,23].)

To conclude this section, we remark that we do not consider the so-called relative
state formulation, ormany-worlds interpretation, of QuantumMechanics, due to Everett
[4,5], as a valid justification of the idea that unitary Schrödinger evolution, amended by
some rules for “branching” in the evolution of the state of an isolated system, of which
a precise formulation appears to be lacking, may lead to a satisfactory description of
reality. Everett’s formalism does not appear to provide a logically coherent formulation
of Quantum Mechanics apt to eliminate persistent difficulties, such as the “measure-
ment problem,” and to correctly describe the emergence of events and the outcome of
experiments.

We do not wish to further discuss the thorny subject of “Interpretations of Quantum
Mechanics.”

3. The Fourth Pillar of Quantum Mechanics—Summary of the ETH-Approach

“Surely, after 62 years, we should have an exact formulation of some serious part
of quantum mechanics. ... By ‘serious’ I mean that some substantial fragment of
physics should be covered.” (John Stewart Bell)
In this section we endeavor to sketch a pragmatic formulation of QM, the ETH-

Approach, which is intended to eliminate those undesirable worldviews David Deutsch
has been referring to in [1]. In particular, it is intended to replace “interpretations” of
QM by a completion of QM freed from puzzles such as the “measurement problem.”
We view the ET H -Approach to QM as representing the Fourth Pillar QM rests upon.
It is expected to provide stable foundations to the theory.

The scope of this paper is limited to non-relativistic QM; see [10,11]. The general
ideas underlying the ET H -Approach can be extended to local relativistic quantum
theory, but the analysis becomes more subtle; for a beginning see [13].

3.1. Algebras of potentialities and quantum probability measures.
“It is not the past that matters but the future.” (Varun Ravikumar)
From Sect. 2 we recall that operators, X (t), representing physical quantities, X̂ ,

characteristic of a system S at some time t are self-adjoint operators, i.e., X (t) =
X (t)∗, acting on a separable Hilbert space HS . As argued in Sect. 2, one can associate
a bounded interval IX (t) of the time axis containing t with every such operator X (t);
see Eqs. (2), (3) and (4). It is natural to introduce algebras, EI , I ⊂ R, as the algebras
generated by arbitrary complex linear combinations of arbitrary products of operators
X (t) representing physical quantities X̂ ∈ OS (see Eqs. (1), (2)), with the property that
IX (t) ⊆ I , and of the identity, 1, on HS ; (the identity 1 belongs to all the algebras EI ).
We then define algebras E≥t as follows.

E≥t :=
∨

I⊂[t,∞)

EI , (10)
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where (to be specific) the closure on the right side is taken in the topology of weak
convergence on HS . The algebra E≥t is called the algebra of all potentialities at times
≥ t . (It is a von Neumann algebra.) It follows directly from the definition that

E≥t ′ ⊆ E≥t , ∀t ′ > t . (11)

We also define E to be the norm-closure of the algebra generated by
{E≥t

}
t∈R; (E is the

algebra of all potentialities in the history of the system S).

Remark. Let S be an isolated autonomous system with Hamiltonian H , and let t ′ > t .
Then Eq. (4) for the time evolution of operators in the Heisenberg picture implies that

E≥t ′ =
{
ei(t ′−t)H X e−i(t ′−t)H | X ∈ E≥t

} ⊆ E≥t , (12)

i.e., time evolution of operators in the Heisenberg picture by an amount t ′ − t > 0
determines a ∗endomorphism of E≥t whose image is the algebra E≥t ′ . It turns out that this
important feature distinguishes the ET H -Approach from various rather vague schemes
based on the observation that time evolution of a system may entangle its degrees of
freedom with those of an unobserved or unobservable environment. (We will come back
to this point in Sect. 6)

Definition 1 (Potentialities). A potential event or potentiality associatedwith the system
S that might set in at time t (i.e., is localized at times≥ t) is given by a partition of unity
by orthogonal projections onHS ,

{
πξ | ξ ∈ X

} ⊂ E≥t ,

where X is a countable set, with the following properties:

πξ = π∗ξ ∈ E≥t , ∀ξ ∈X , πξ · πη = δξη πξ , ∀ ξ, η in X , and
∑

ξ∈X
πξ = 1 .

(13)

��
From now on, the reader is invited to think of the algebra E≥t as the (von Neumann)
algebra generated by all potential events setting in at times ≥ t , for any t ∈ R.10

Let P≥t be the lattice of all orthogonal projections in E≥t .

Definition 2 (Quantum probabilities). A quantum probability measure on the potential-
ities localized at times ≥ t is a map μ : P≥t → [0, 1] with the following properties:

(i) 0 ≤ μ(π) ≤ 1 ,∀π ∈ P≥t , with μ(0) = 0 and μ(1) = 1 ;
(ii) μ

(∑
ξ∈X0

πξ

) =∑ξ∈X0
μ
(
πξ

)
, for an arbitrary potentiality

{
πξ | ξ ∈ X

} ⊂ E≥t
and an arbitrary subset X0 ⊆ X .

��
The following generalization of Gleason’s theorem [31] follows directly from a gen-

eral theorem due to Maeda [32].

10 Operators representing physical quantities do not play an important role in the following analysis, any-
more. The question how events can be monitored by measuring physical quantities has been studied in detail
in [11,13].
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Theorem 1 (Gleason-Maeda). We assume that the algebras E≥t do not have any direct
summand given by the algebra of all complex 2 × 2 matrices. Then every probability
measure, μ, on the potentialities setting in at time t is given by a normal state, ωμ, on
the von Neumann algebra E≥t , with

μ(π) = ωμ(π), ∀π ∈ P≥t . ��
(A normal state on a vonNeumann algebraM is defined to be a positive linear functional,
ω, on M continuous in the weak topology and normalized such that ω(1) = 1.)

Remarks. 1. If
{
πξ | ξ ∈ X

} ⊂ E≥t is a potential event localized at times ≥ t then{
eis H πξ e−is H | ξ ∈ X

} ∈ E≥(t+s) is a potential event localized at times ≥ (t + s);
(H is the Hamiltonian of the system).

2. For autonomous systems, S, with finitely many degrees of freedom, the algebras E≥t
coincide with the algebra B(HS) of all bounded operators on HS and, hence, are
independent of t . It turns out that, for such systems, it is impossible to introduce a
non-trivial notion of events actually happening (actualities) at some time t or later,
and the so-called measurement problem cannot be solved by considering only
such systems. The situation is radically different if one considers systems for which
the inclusions in (11) are strict, which can happen for systems with infinitely many
degrees of freedom including ones describing massless modes, such as photons
and gravitons, that can escape to infinity, at the limiting speed, c, without being
detected; see Sect. 4.

Definition 3 (Closed systems). A physical system S is said to be a closed system iff the
algebras E≥t of all potentialities setting in at time t are independent of t , for all times
t ∈ R (i.e., equality holds in (11), for all times t and t ′). Closed systems have the same
defects as systems with finitely many degrees of freedom: The measurement problem
cannot be solved for such systems.

3.2. The Principle of Diminishing Potentialities.
“Indeed, it is evident that the mere passage of time itself is destructive rather than

generative ..., because change is primarily a ‘passing away.’ ” (Aristotle, Physics)
In order to introduce a good notion of events actually setting in at some time t

(for short: actualities) and to clarify how such events can be recorded in projective
measurements, we require the following

Principle of Diminishing Potentialities (P D P). An isolated system S featuring actu-
alities, i.e., events that set in at some (finite) time, has the property that

E≥t ′ � E≥t � E , whenever t ′ > t . (P D P) (14)

��
This principle has been introduced and carefully analyzed in [9–13].11 Our main

concern in this paper is to describe a concrete family of models satisfying (P D P); see
Sects. 4 and 5 . In the models of Sect. 4, the algebras E≥t are associated with physical
quantities localized inside future light cones in Minkowski space M

4 nested inside
one another, and (P D P) turns out to be a consequence of the existence of massless
modes, e.g., photons, whose dynamics satisfies locality or Einstein causality (Huygens’
Principle; for a general analysis see [19,20]). The models studied in Sect. 5 arise in the

11 In earlier work, see [10], (P D P) has been called Loss of Access to Information (LAI).
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limit of the speed of light tending to∞. We expect that, in all models of non-relativistic
Quantum Mechanics with a continuous time, (P D P) only holds if the spectrum of the
Hamiltonian, H , of the system is unbounded above and below; see Sect. 6. However,
as argued in [13], in local relativistic quantum theory, (P D P) is compatible with the
spectrum condition H ≥ 0.

Description of isolated open systems.

Definition 4 (Isolated open systems). In QuantumMechanics, an isolated, but open sys-
tem, S, is described in terms of a co-filtration (i.e., a decreasing filtration), {E≥t }t∈R, (or
{E≥t }t∈Z, in case t ime is assumed to be discrete, see Sects. 4, 5), of von Neumann alge-
bras, E≥t , satisfying property (12) and (P D P), Eq. (14), all represented on a common
Hilbert space HS , whose lattices of projections describe potentialities. ��

Let ω be a state occupied by S, as introduced in Eq. (7) of Sect. 2; (see [33] for an
analysis of how to prepare a system in a specific state). The state, ωt , of S at time t ,

ω t (X) := ω(X), ∀X ∈ E≥t , (15)

is defined to be the restriction of the state ω to the algebra E≥t . By the Gleason-Maeda
theorem, ω t corresponds to a quantum probability measure on P≥t . The state ω t of S
at some time t , as defined in (15), will usually be a mixed state even if ω is a pure state
on E . This is a consequence of (P D P), Eq. (14), and entanglement; (see Sects. 4 and
5 for explicit examples). We should then clarify what we mean by saying that ω t is a
mixed state, and what the implications of this property for the appearance of “actual
events” are. We begin by formulating a criterion enabling us to decide whether an actual
event sets in at time t , assuming that we know which state ωt the system S occupies at
a time immediately before t .12 More precisely, the criterion formulated below enables
us to decide whether, given a state ωt on the algebra E≥t , there exists a potential event
localized at times ≥ t that describes an actual event setting in at time t .

Definition 5 (The centralizer of a state, and the center of the centralizer). (5.i) Given a
∗-algebra A and a state ω on A, the centralizer, Cω(A), of the state ω is the subalgebra
of all operators Y ∈ A with the property that

ω([Y, X ]) = 0, ∀X ∈ A,

i.e.,

Cω(A) := {Y ∈ A | ω([Y, X ]) = 0, ∀X ∈ A} .
��

We note in passing that the stateω defines a finite (normalized) trace on its centralizer
Cω(A). This enables one to classify all those von Neumann algebras that can arise as
centralizers of normal states on von Neumann algebras.

(5.ii) The center of the centralizer Cω(A) of the state ω, denoted by Zω(A), is the
abelian subalgebra of Cω(A) consisting of all operators that commute with all other
operators in Cω(A), i.e.,

Zω(A) := {Y ∈ Cω(A)| [Y, X ] = 0 , ∀X ∈ Cω(A)
}
. ��

12 Our criterion is inspired by the desire to rescue asmany of themore reasonable features of theCopenhagen
interpretation of quantum mechanics as possible.
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We note that the center, Z(A), of an algebra A is contained in Zω(A), for all states
ω on A. After these preparations, we define actual events/actualities in a system S in
the following way.

Definition 6 (Actual events/actualities). Let S be an isolated open system described by
a co-filtration

{E≥t
}

t∈R of von Neumann algebras. Given a state ωt on the algebra E≥t ,
an actual event corresponding to a potential event described by a partition of unity{
πξ | ξ ∈ X

} ⊂ E≥t is setting in at time t iff Zωt (E≥t ) is non-trivial,13

{
πξ | ξ ∈ X

}
generates Zω t

(E≥t
)
, (16)

and the Born probabilities

ω t (πξ j ) are strictly positive, for points ξ j ∈ X, j = 1, 2, . . . , n , (17)

for some n ≥ 2. ��
According to this definition, for a potential event

{
πξ | ξ ∈ X

} ⊂ E≥t to be an actual
event featured by the system S during a time period contained in [t,∞) it is apparently
necessary and sufficient that the projections

{
πξ | ξ ∈ X

}
generate the center, Zωt (E≥t ),

of the centralizer of the state ωt on the algebra E≥t .
Next, we propose to analyze the consequences of the statement that, in some isolated

open system S, an actual event or actuality sets in at time t .

3.3. Actual events and the state-reduction-/collapse postulate.
“Every experiment destroys some of the knowledge of the system which was obtained

by previous experiments.” (Werner Heisenberg)
Let ω t be the state of S right before time t . Let us assume that an actual event{

πξ | ξ ∈ X
}
generating Zωt (E≥t ) sets in (i.e., begins to unfold) at time t . This implies

that

ω t (A) =
∑

ξ∈X
ω t (πξ A πξ ), ∀A ∈ E≥t , (18)

i.e., ω t is an incoherent superposition of states in the range of the projections πξ , ξ ∈ X;
(no off-diagonal terms appear on the right side of Eq. (18)). In other words, the quantum
probability measure determined byω t on the potentialities,P≥t , at times≥ t is a convex
combination of quantum probability measures indexed by the points ξ ∈ X that label the
projections of the actual event setting in at time t . (In this precise sense, ωt is a mixture
indexed by the points of X.)

Pillar 4 In the ET H -Approach to QM, the following axiom (see [11]) is required in
order to complete the formulation of Quantum Mechanics:

Axiom CP (Collapse Postulate). Let S be an isolated open system satisfying (P D P).
Let ωt be the state on the algebra E≥t right before time t . Let

{
πξ | ξ ∈ X

} ⊂ Zωt (E≥t )

13 The algebraZωt (E≥t ) is an abelian vonNeumann algebra. On a separable Hilbert space, it is generated by
a single self-adjoint operator X (an “observable”), whose spectral projections yield the projections {πξ | ξ ∈ X}
describing a potential event. This is the motivation behind (16). For simplicity, we do not consider operators,
X , with continuous spectrum, and the spectraX are assumed to be discrete. Generalizations will be considered
elsewhere.
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be the actual event (actuality) setting in at time t . Then the state on E≥t occupied by S
right after the event has set in is given by

ω t,ξ∗(·) := [ω t (πξ∗)]−1 ω t
(
πξ∗(·)πξ∗

)
,

for some point ξ∗ ∈ X with ω t (πξ∗) > 0. The probability for the system S to be found
in the state ω t,ξ∗ right after time t is given by Born’s Rule, i.e., by

prob{ξ∗, t} = ω t (πξ∗). (19)

��
Remark. In local relativistic quantum theory, this axiom has to be replaced by a some-
what similar, though rather more subtle one, which incorporates the structure of the
bundle of light cones in space-time and Einstein causality in a non-trivial way; see [13].
We will return to this topic in forthcoming work.

The ET H -Approach to QM yields the following picture of the dynamics of states in
QuantumMechanics:The evolutionof states of an isolatedopen system S featuring actual
events, in the sense of Definition 6 stated above, is determined by a (continuous-time)
stochastic branching process, whose state space is referred to as the non-commutative
spectrum, ZS , of S (see [11]). Assuming that all the algebras E≥t are isomorphic to
one specific (universal) von Neumann algebra, denoted by N ,14 the non-commutative
spectrum, ZS , of S is defined by

ZS :=
⋃

ω

(
ω,Zω(N )

)
, (20)

where the union over ω is a disjoint union, and ω ranges over all states of S of physical
interest.15 Born’sRule (19), togetherwithEqs. (12) and (16), then specifies thebranching
probabilities of the process. (See also Sects. 5 and 6.)

Remarks. 1. Here is an explanation of the meaning of the name “ET H -Approach”:
“E” stands for “events”, “T ” for “trees”—referring to the tree-like structure of the
space of all actualities an isolated physical systemcould in principle encounter in the
course of its evolution—, and “H” stands for “histories”—referring to the actual
trajectory of states occupied by the system in the course of its evolution.—The
ET H -Approach represents a completion ofQuantumMechanics, which solves, for
example, the “measurement problem,” rather than merely another “interpretation.”

2. Axiom CP (the State-Reduction-, or Collapse Postulate) formulated above, in com-
bination with Eqs. (18) and (19), is reminiscent of the collapse postulate in the
Copenhagen interpretation of QM. But, thanks to the Principle of Diminishing
Potentialities (P D P), its status in the ET H -Approach to QM is not only logically
consistent, but perfectly natural (i.e., not ad hoc). That the non-commutative spec-
trum ZS plays a very important role in an analysis of the time evolution of states
becomes strikingly clear in local relativistic quantum theory; see [13].
One might argue that the ET H -Approach to QM, in particular (P D P) and the
Collapse Postulate, provides a mathematically precise version of the Many-Worlds
Interpretation of QM, in that it specifies a precise rule for “branching.” However,
in the ET H -Approach, there is no reason, whatsoever, to imagine that many alter-
native worlds actually exist!

14 This is the case in the models considered in Sect. 5 and in relativistic Quantum Electrodynamics [20].
15 “States of physical interest” of a physical system are those normal states the system can actually be

prepared in. Here we leave this notion a little vague; but see [23,33].
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3. In [11,13],wehave explained inwhichway the occurrence of an actual eventmaybe
detected through a (projective) measurement of a physical quantity. But, in general,
there are plenty of actualities happening that are not related to the measurement of
a previously specified physical quantity. Furthermore there is no fundamental role
to be played by “observers” (let alone their consciousness) in the ET H -Approach
to QM.
An analysis of observations and measurements in QM and of how measurements
are used to record events in the ET H -Approach has been presented in [11,13]
(see, in particular, Sect. 5 of [13]). It will not be repeated here. Suffice it to say
that an actuality setting in at time t , described by a partition of unity

{
πξ | ξ ∈

X
} ⊂ E≥t , corresponds to measuring a physical quantitiy X̂ ∈ OS (see Eq. (1)) iff

the projections
{
πξ | ξ ∈ X

}
can be well approximated (in the norm on the linear

space B(HS) given by the scalar product induced by the state ωt—see [11,13])
by spectral projections of the self-adjoint operator X (t ′) ∈ E≥t representing X̂ at
some time t ′ � t . This will be clarified in Sect. 5 in the context of simple models.

4. We hope that the stochastic branching processes on the non-commutative spectra of
isolated open systems derived from (P D P) and the Collapse Postulate, along with
Eqs. (16), (17) and (19), will attract the interest of mathematicians. A beginning of
an analysis of the simplest such processes is presented in Sect. 5.

4. Huygens’ Principle and the Principle of Diminishing Potentialities

“... principles are tested by inferences which are derivable from them. The nature
of the subject permits of no other treatment.” (Christiaan Huygens)

In this section, we explain why and how the existence of massless modes (photons
or gravitons) in an isolated physical system implies the validity of the Principle of
Diminishing Potentialities (P D P). We introduce a class of models of isolated systems
for which this claim can be verified explicitly. The material discussed in this section also
serves to motivate the models studied in Sect. 5.

We consider an isolated system, S, consisting of a very heavy (actually infinitely
heavy) atom interacting with the quantized electromagnetic field. The atom is located in
a compact region centered at the origin, x = 0, of physical spaceE

3. Gravitational effects
are neglected. Points in space-time, M

4, (Minkowski space) are denoted by x = (x0 ≡
c t, x), where c is the speed of light, and x = (x1, x2, x3) is a point in physical space E

3.
Let Fμν(x) ≡ Fμν(x, t) be the field tensor of the quantized free electromagnetic field,
which is an operator-valued distribution. If

{
hμν(x, t) |μ, ν = 0, 1, 2, 3

}
are real-valued

test functions on M
4 then

F(h) :=
∫

M4
d4x Fμν(x, t) hμν(x, t) (21)

turns out to be a self-adjoint operator on the Fock space, F , of the free electromagnetic
field; (see, e.g., [34]). We may then consider bounded functions of the operators F(h),
which are bounded operators on F .

In a space-time description, the system S is located, at time t , in a compact region
of M

4 centered at x = (c t, x = 0). Let V +
t be the (closure of the interior of the)

forward light cone with vertex at the space-time point (c t, 0), and, likewise, let V−t be
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the backward light cone with vertex at (c t, 0). For t < t ′, we define the (space-time)
diamond Dt,t ′ by setting

Dt,t ′ := V +
t ∩ V−t ′ . (22)

We define A[t,t ′] to be the von Neumann algebra generated by all bounded functions
of the operators F(h), where

{
hμν(x) |μ, ν = 0, 1, 2, 3, x ∈ M

4
}
are real-valued test

functions on M
4 with support in the diamond Dt,t ′ . For an arbitrary time t ∈ R, we

define the algebra A≥t to be the von Neumann algebra generated by all the algebras
A[t,t ′], t ′ > t ; i.e.,

A≥t :=
∨

R�t ′>t

A[t,t ′] . (23)

We suppose that, besides the quantized electromagnetic field, S has “internal” degrees
of freedom corresponding to excited states of the atom. Transitions between these states
are described by operators acting on a (possibly only finite-dimensional) Hilbert space
hS . The Hilbert space of pure state vectors of S is thus given by

HS = F ⊗ hS .

Operators representing physical quantities characteristic of S generate algebras of oper-
ators acting on HS that are defined as follows:

D(0)
[t,t ′] :=A[t,t ′] ⊗ 1|hS , E (0)

[t,t ′] := A[t,t ′] ⊗ B(hS) , for arbitrary t < t ′,

E (0)
≥t := A≥t ⊗ B(hS), for all times t, E (0) ≡ E := B(HS) . (24)

The algebra E (0)
≥t may be interpreted as the algebra of all potentialities at times ≥ t , as

long as the internal degrees of freedomof the atom are not coupled to the electromagnetic
field; (see Eqs. (10), (11), Sect. 3).

If M ⊂ B(HS) is a (von Neumann) algebra of operators acting on HS then M ′ is
defined to be the (von Neumann) algebra of all bounded operators on HS commuting
with all operators in M. The following lemma is a straightforward exercise.

Lemma 2 (“Huygens’ Principle”). For arbitrary times t and t ′, with t ′ > t ,

[E (0)
≥t ′
]′ ∩ E (0)

≥t = D(0)
[t,t ′] (25)

Sketch of proof: Obviously, every operator in
[E (0)
≥t ′
]′ must commute with all operators

of the form 1|F ⊗ C, C ∈ B(HS), i.e., it must have the form A ⊗ 1|hS , where A is
a bounded function of the electromagnetic field operators. If A belongs to A≥t , as it
must if A⊗ 1 belongs to E (0)

≥t , then A is a bounded function of the field operators F(h),
for test functions

{
hμν
}
supported in V +

t . For the free electromagnetic field, a field
operator F(h) commutes with all field operators F(g) affiliated16 with A≥t ′ , i.e., with
supp(gμν) ⊆ V +

t ′ , for μ, ν = 0, 1, 2, 3, if and only if supp(hμν) ⊆ V−t ′ , ∀μ, ν. This
is a straightforward consequence of the fact that the commutator distributions (which,

16 An unbounded self-adjoint operator A is affiliated with a von Neumann algebra M if and only if all
bounded functions (spectral projections) of A belong to M.
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for the free electromagnetic field, are all proportional to a c-number distribution on M
4

solving the wave equation) satisfy
[
Fμν(x), Fρσ (y)

] = 0, unless (x − y)2 = 0 , (26)

i.e., unless x − y is a lightlike vector. This is called Huygens’ Principle in quantum field
theory. Thus, if F(h) is affiliated with A≥t and commutes with all operators in A≥t ′
then

supp(hμν) ⊆ V +
t ∩ V−t ′ = D[t,t ′] , ∀μ, ν . (27)

Bounded functions of the operators F(h)⊗ 1|hS , with
{
hμν
}
a real-valued test function

satisfying (27), generate the algebra D(0)
[t,t ′], and it follows from Eq. (26) and results in

[35] that they commute with all operators in E (0)
≥t ′ .

This completes our sketch of the proof of the lemma. ��
We note that the algebras D(0)

[t,t ′] are infinite-dimensional.17 Lemma 2 and this last
fact show that a very strong form of the Principle of Diminishing Potentialities,

E (0)
≥t ′ � E (0)

≥t � E (0) = B(HS), whenever t < t ′ <∞ ,

holds for the system considered here, as long as the atom is not coupled to the quantized
radiation field.

So far, only the free electromagnetic field has played a role in our discussion. The
dynamics of the “internal” degrees of freedom of the system S described by operators
acting on hS will be specified next, and we also describe how these degrees of freedom
of S are coupled to the electromagnetic field. Let H0 denote the usual Hamiltonian of the
free electromagnetic field; (H0 ≥ 0 is a self-adjoint operator onHS , see, e.g., [34]). We
imagine that the internal degrees of freedom of the atom are driven in time in cycles of
length T , which (w.l.o.g.) wemay set to 1.We choose a unitary operatorU ≡ U1 ∈ E (0)

[0,1]
and define

Uk := ei(k−1)H0U1e−i(k−1)H0 , k = 1, 2, 3, . . . , U (n) :=
n∏

k=1
Uk , with U (0) := 1 ,


 :=e−i H0U1, 
∗ = 
−1, 
n = e−inH0U (n) , n = 0, 1, 2, 3, . . . . (28)

Notice that


n · 
m = 
n+m , ∀ n, m belonging to Z.

We consider
{

n
}

n∈Z to be the propagator of S, and conjugation with this propagator
describes the time evolution of operators in the Heisenberg picture when the atom is
coupled to the electromagnetic field. At time t = 0, S is prepared in a state ω0 given,
for example, by

ω0(X) := tr(
[ |0〉〈0| ⊗ �̃

]
X) , (29)

where X is an arbitrary operator in E≥0 := E (0)
≥0 , |0〉 is the vacuum vector in Fock space

F , and �̃ is some density matrix on hS . To simplify our analysis, we henceforth regard

17 Actually, these algebras are von Neumann algebras (factors) of type I I I1; see [20,25].
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time as discrete, t = n ∈ Z+ := {0, 1, 2, . . . }, and monitor the evolution of S only for
non-negative times.

In accordance with the definition of the propagator
{

n
}

n∈Z+
in Eq. (28), we define

algebras of potentialities, E≥n , at times ≥ n, with n = 0, 1, 2, . . . , for the interacting
system as follows:

E := E (0)
≥0 , E≥n :=

{

−n X 
n | X ∈ E

}
, with 
−1 = 
∗. (30)

Apparently, the algebras E≥n are related to the algebras E (0)
≥n by unitary conjugation, the

unitary operator being U (n), i.e., every operator Z ∈ E≥n is of the form

Z = U (n)∗XU (n), for some X ∈ E (0)
≥n ,

for arbitrary n ∈ Z+, as follows from (28). For arbitrary n′ > n ≥ 0, we define the
algebraD[n,n′] to be given by conjugating all operators inD(0)

[n,n′] by the unitary operator
U (n′). With these definitions, Lemma 2 implies that, for the interacting system, too, the
Principle of Diminishing Potentialities, see Eq. (14), holds for all times n and n′, with
n′ > n ≥ 0, and we have that

[E≥n′
]′ ∩ E≥n � D[n,n′] .

It is important to note that


 n−n′ E≥n 
 n′−n = E≥n′ � E≥n , for n′ > n . (31)

If time is restricted to the integers (t = n ∈ Z+) the prescriptions inDefinition 6, Eqs. (16)
and (17), and inAxiom CP, Eq. (19), of Sect. 3 determine a stochastic branching process
on the non-commutative spectrum ZS :=⋃ω

(
ω,Zω(N )

)
, where N � E (0)

≥0 , see (20),
andω ranges over all states given by density matrices onHS . It is quite subtle to describe
this process explicitly, because it is “non-Markovian”, i.e., it hasmemory.To understand
this claim we choose two intergers � and m, with � < m, and consider the algebras

A≤� :=
∨

{k|k<�}
A[k,�] , and A≥m ,

see Eq. (23). The arguments used in the proof of Lemma 2 show that

A≤� ⊂
(A≥m

)′
,

whenever � < m. A product state, ϕ, on B(F) is a state with the property

ϕ(A · B) = ϕ(A) · ϕ(B) , ∀ A ∈ A≤�, ∀ B ∈ A≥m , � < m. (32)

It turns out that there are no product states (among all states of physical interest [23]);
in particular, the state ω0 defined in (29) is not a product state. It is this fact that implies
that, in the model considered here, there are memory effects in the stochastic evolution
of states determined by the law encoded in Eqs. (16), (17) and (19) of Sect. 3. It should
be stressed, furthermore, that this evolution is typically non-linear. Only for propagators{

n
}

n∈Z+
that do not create any entanglement between the internal degrees of freedom

of the atom and the electromagnetic field, the evolution of states of S in the Schrödinger
picture is described by the usual unitary Schrödinger evolution.
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Wewill not present amore detailed study of themodels described above in the present
paper.

In the next section we simplify matters by studying models that arise in the limit

c → ∞ , (33)

where c is the speed of light. In this limit, the diamonds Dt,t ′ open up to entire time
slices; i.e.,

Dt,t ′ =
{
(τ, x) | t ≤ τ ≤ t ′, x ∈ E

3} .

If we require—as we will—that Lemma 2 continues to hold in the limit considered in
(33) the algebras D[t,t ′] must be contained in the commutant of all the algebras D[s,s′],
whenever t < t ′ ≤ s < s′. It turns out that the resulting limiting models have plenty
of product states of physical interest satisfying (32). The price to be payed is that the
Hamiltonian, Hc=∞

0 , of the caricature of the radiation field corresponding to the limit
(33) is unbounded above and below. (It has the same spectrum as the usual momentum
operator.) This appears to be a general feature ofmodels of non-relativisticQMsatisfying
the Principle of Diminishing Potentialities.

5. Simple Models Illustrating the ETH-Approach to Quantum Mechanics

“One of the characteristic traits of collapse models is radiation emission from any
charged particle induced by the noise causing the collapse of the wave function.”
(Introduction to [8])

In this section we study a system S that is composed of a very heavy atom (as in
Sect. 4) coupled to a caricature of the quantized electromagnetic field, hereafter called
“R-field” (for “radiation field”), obtained in the limit (33) of the speed of light, c, tending
to infinity. We introduce and analyze a class of simple models of S that supply examples
of explicit dynamical laws governing the time evolution of states of S and hence illustrate
the ET H -Approach to non-relativistic QM described in Sect. 3. In order to be able to
carry out detailed calculations without appealing to high-brow mathematics, we adopt
some rather drastic simplifications:

(1) Time t is discrete: the time axis R is replaced by Z.
(2) The Hilbert space, hS , of the internal degrees of freedom of the atom is finite-

dimensional,

hS � C
M , for some M <∞ . (34)

Physical quantities of the system S referring to the atom are described by self-
adjoint operators on hS , i.e., by hermitian M × M matrices. General states of the
atom are described by density matrices, �̃, acting on hS .

(3) The algebra A[n,n+1] generated by functions of the R-field localized in the time
slice [n, n + 1] is chosen to be finite-dimensional, namely

An ≡ A[n,n+1] �MN (C), for some N <∞ , (35)
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i.e., by all N × N complex matrices acting on the N -dimensional Hilbert space
Hn � C

N .18 We choose an orthonormal basis
{
φ j
}N−1

j=0 in C
N . The “vacuum

vector” of the R-field is then defined by

|0〉 ≡ �0 :=
⊗

n∈Z
φkn=0. (36)

The interpretation of the vacuum vector �0 is that it is the state where no modes
of the R-field are excited. Taking this vector as a so-called reference vector, the
Hilbert space, FS , of pure state vectors of the R-field is defined as follows: Let
S f in be the set of infinite sequences k := {kn

∣∣kn ∈ {0, . . . , N − 1}}n∈Z with the
property that kn = 0, except for finitely many values of n. To a sequence k ∈ S f in
we associate a (tensor-) product vector �k by setting

�k :=
⊗

n∈Z
φkn , k ∈ S f in . (37)

Every such vector belongs to the non-separable Hilbert space F∞ := ⊗n∈ZHn .
LetD denote the linear subspace of F∞ consisting of all finite linear combinations
of vectors �k , with k ∈ S f in ;D is equipped with a scalar product 〈·, ·〉 determined
by

〈�k,�k′ 〉 =
∏

n∈Z
δkn ,k′n , (38)

which is extended to D ×D anti-linearly in the first argument and linearly in the
second argument. The Hilbert space FS is then defined to be the completion of the
space D in the norm given by

‖�‖ := √〈�,�〉, � ∈ D .

Thevectors
{
�k | k ∈ S f in

}
formanorthonormal basis inFS , henceFS is separable.

Remark. It is interesting to consider other choices of reference vectors, �, in the defi-
nition of the Hilbert space FS . Examples will be given at the end of this section.

The total Hilbert space of the system S is defined by

HS := FS ⊗ hS . (39)

5.1. Choice of algebras of operators representing potential events.
“With respect to the property of Direction, the ‘possible’ is called the Future and the

‘actualized’ the Past.” (Oswald Spengler)
Next, we introduce algebras of operators appropriate to describe the system S, assum-

ing first that the atom is not coupled to the R-field. Our definitions are similar to those
introduced in Sect. 4.

18 It is easy to extend our arguments to models with Hn infinite-dimensional; but this does not render the
analysis more interesting.
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Definition 7 (Algebras generated by the R-field). For every integer j , we embed the
algebra A j � MN (C) into the algebra B(FS) by taking the tensor product of any
operator F |H j ∈ A j with the identity operators 1|H�

on all spacesH�, with � �= j . The
resulting algebra is again denoted by A j . We then set

A[n,n′] :=
n′−1⊗

j=n

A j , for n′ > n , A≥n :=
∨

n′>n

A[n,n′] ,

the closure being taken in the weak topology of B(FS). As in Eq. (24), we introduce the
following algebras.

D(0)
[n,n′] := A[n,n′] ⊗ 1|hS , E (0)

[n,n′] := A[n,n′] ⊗ B(hS), n < n′ ,

E (0)
≥n := A≥n ⊗ B(hS) . (40)

��
One immediately checks that

[E (0)
≥n′
]′ ∩ E (0)

≥n = D(0)
[n,n′], ∀n′ > n . (41)

This imples that the Principle of Diminishing Potentialities (PDP)—see Eq. (14) of
Sect. 3—holds in this model, as long as the atom is not coupled to the R-field, yet.

We observe that the algebras A[n,n′] are isomorphic to B(
⊗n′−1

j=n H j ), for arbitrary
n < n′, and that the states

ϕk(F) := 〈�k, F �k〉 , F ∈ B(FS) , (42)

are product states, in the sense of Eq. (32), Sect. 4. For these reasons, there are nomemory
effects in the time evolution of states of the R-field, taken to be density matrices on FS ,
asymptotically as time t tends to∞. This will be used in Subsect. 5.3.

In the following, we will only monitor the time evolution of states of S for times
t ≥ tin , where tin is an initial time that, in the following, we set to 0, and we then choose
the algebra of physical quantities characteristic of S to be given by E = E (0)

≥0 .

5.2. Time evolution in the Heisenberg picture.
“The constant element in physics, since Newton, is not a configuration or a geomet-

rical form, but a law of dynamics.” (Werner Heisenberg)
Next, we describe the Heisenberg-picture time evolution of operators representing

physical quantities characteristic of the system S; (see Eq. (4), Sect. 2). The “free” time
evolution of the R-field, before it is coupled to the atom, is given in terms of a “shift
operator,” S, on FS :

(
S�

)
k := �σ(k) =

⊗

n∈Z
φσ(k)n , with σ(k)n := kn+1 , ∀ n ∈ Z. (43)

The definition of the operatorS is extended to the domainD (dense in FS) by linearity.
It is obviously unitary onD and hence extends to all of FS . We observe thatS leaves the
vacuum (reference) vector |0〉 ≡ �0 ∈ FS (see Eq. (36)) invariant. The shift operator
S is the analogue of the operator e−i H0 considered in Sect. 4. If time were chosen to
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be continuous then the generator of time evolution of the R-field would be an operator
unitarily equivalent to a standard momentum operator and hence would be unbounded
from above and from below.

For an arbitrary operator F ∈ A[n,n′], we set

F(t) := [S∗]t F St , t ∈ Z ,

and find that F(t) ∈ A[n+t,n′+t], for arbitrary n < n′. Let V be a unitary matrix on
the atomic Hilbert space hS = C

M describing the propagator of the atom by one time
step. Before the atom is coupled to the R-field the Heisenberg-picture time evolution
of bounded operators, C , on HS is given by conjugation with the unitary propagator{

 t
0

}
t∈Z on HS ,

C(t) := [
∗0
]t

C 
 t
0 = 
−t

0 C 
t
0 , t ∈ Z ,

where


0 := S⊗ V (44)

is a unitary operator on HS . We observe that

E (0)
≥(n+t) =

{

−t
0 X 
 t

0 | X ∈ E (0)
≥n

}
, ∀ n, t in Z .

For t ≥ 0, E (0)
≥(n+t) is contained in E (0)

≥n , i.e., Heisenberg-picture time evolution by a time

step t ≥ 0 of operators onHS defines a ∗endomorphism of E (0)
≥n , for arbitrary n ∈ Z. For

a strictly positive t , E (0)
≥(n+t) is properly contained in E (0)

≥n , and (P D P) holds.
Next, we introduce interactions between the atom and the R-field. As announced,

we only monitor the evolution of states of S for non-negative times, t ∈ Z+. We choose a
unitary operatorU in the algebra B(CN )⊗ B(hS) and defineU1 to be the corresponding
operator in the algebra A0 ⊗ B(hS); see Eq. (35). We define

Uk := 
1−k
0 U1 
k−1

0 , k = 1,2, 3, . . . , U (n) := Un · · ·U1 , n = 1, 2, 3, . . . ,


 := 
0U1, 
−1 = 
∗ , (45)

see Eq. (28) for comparison. Notice that

Uk ∈ Ak−1 ⊗ B(hS) , k = 1, 2, 3, . . .

It is straightforward to verify that the operators U (n), n = 1, 2, . . . , and 
 are unitary,
and that


 n = 
 n
0 U (n) , 
−n = (
∗)n, ∀ n ∈ Z+ . (46)

We interpret
{

 n
}

n∈Z (with 
0 := 1) as the unitary propagator of the system S in the
presence of interactions between the idealized atom and the R-field.

Definition 8. Event algebras E≥n (with n ≥ 0 henceforth) of the interacting system are
defined by setting
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E := E (0)
≥0 , E≥n :=

{

−n X 
 n | X ∈ E

}
, n = 0, 1, 2, . . . , with 
−1 = 
∗ .

(47)

��
See also Sect. 4, Eq. (30).

From now on, we identify physical quantities, X̂ , characteristic of the system S with
operators X ≡ X (0) ∈ E given by a sum of operators of the form F⊗C , where F ∈ A≥0
and C is an M × M matrix on hS ; and we set X (t) = 
−t X 
 t , t ∈ Z. We then have
that

E≥n′ = 
−t E≥n 
 t ⊆ E≥n , for t = n′ − n ≥ 0 ,

i.e., time evolution by a time step t ≥ 0 is given by a ∗endomorphism from E≥n to
E≥(n+t) ⊆ E≥n .

We observe that every operator Z ∈ E≥n is of the form

Z = U (n)∗ Y U (n), for some Y ∈ E (0)
≥n , (48)

see Eq. (46), and every Y ∈ E (0)
≥n can be written as

Y = 
−n
0 X 
n

0 , for some X ∈ E , (49)

for arbitrary n ∈ Z+. We define

D[n,n′] :=
{
U (n′)∗XU (n′) | X ∈ D(0)

[n,n′]
} ⊂ E≥n , 0 ≤ n < n′ . (50)

Equations (41), (47), (48) and (50) then imply that
[E≥n′

]′ ∩ E≥n = D[n,n′] ,

and hence thePrinciple of Diminishing Potentialities holds in themodel of the interacting
system.

5.3. The law of evolution of states according to the ETH approach.
“The idea that elimination of coherence, in one way or another, implies the replace-

ment of ‘and’ by ‘or’, is a very common one among solvers of the ‘measurement problem’.
It has always puzzled me.” (John Stewart Bell)

In this and the following subsection, it is convenient to be able to also work in the
Schrödinger picture, rather than only in the Heisenberg picture used so far.

Remark on the Schrödinger picture. General states of S are described by density
matrices, �̃, on HS . By �̃n we denote the density matrix obtained by restricting the
state corresponding to �̃ to the algebra E≥n . By �n we denote the same state of S, but
viewed as a state in the Schrödinger picture, which is related to the Heisenberg picture
by the following identity:

trHS

(
�̃n · X (t)

)= trHS

(
�n ·

[

∗
]t−n

X 
t−n)= trHS

(

t−n �n

[

∗
]t−n · X

)
, t≥n ,

(51)

for an arbitrary operator X ∈ E .
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In Eq. (51), X (t) = 
−t X 
t , �n := 
n �0 
−n , where �0 ≡ � = �̃ , and we
recall that E≥n =

{

−n X 
n

∣∣ X ∈ E}.
Next, we describe the time evolution of states, as predicted by the ET H -Approach

to QM summarized in Sect. 3. More specifically, using Definition 6 of actual events in
Subsect. 3.2 and the Collapse Postulate, Axiom CP, in Subsect. 3.3, we will construct
a trajectory,

{
ωn
∣∣ n ∈ Z+

}
, of states, where ωn is a state on the algebra E≥n , with initial

condition ωn=0 = ω, and ω is the state on the algebra E given by

ω(X) := trHS

(
(Pk ⊗ �̃) · X

)
, X ∈ E . (52)

In this equation, Pk denotes the orthogonal projection onto the vector �k ∈ FS, k ∈
S f in , and �̃ ≡ � is some density matrix on the Hilbert space hS of the atom.We remark

that when evaluated on E = E (0)
≥0 (see Eq. (40)) the state ω is independent of {kn}n<0.

We start our analysis by studying the restriction of the state ω defined in Eq. (52)
to the algebra E≥n , for some n > 0. For this purpose, we introduce operators (M × M
matrices), L�

α , on hS � C
M by specifying their matrix elements

〈u,L�
αv〉 := 〈φα ⊗ u, U φ� ⊗ v〉, α, � = 0, 1, . . . , N − 1, for arbitrary u, v in hS ,

(53)

where U is the unitary operator describing the interaction between the atom and the
R-field chosen right above Eq. (45). From expression (53) for L�

α , the unitarity of the
operator U and the completeness relation

∑N−1
α=0 |φα〉 〈φα| = 1 we infer that

N−1∑

α=0
[L�

α]∗ · L�
α = 1|CM . (54)

The operators
{
L�

α

}N
α=1 are called Kraus operators [36,37]. Let Z ∈ E≥n , then ∃ X ∈ E

such that

Z = 
−n X 
 n,

with 
 as defined in Eq. (45). Any operator X ∈ E = E (0)
≥0 = A≥0 ⊗ B(hS) is a linear

combination of operators of the form F⊗C , where F ∈ A≥0 and C is an M×M matrix
acting on hS .

We first determine the restriction of the stateω to the algebra E≥1, (i.e., we set n = 1).
We choose an operator Z := 
−1(F⊗C)
, with F and C as above. The density matrix
�̃ can be diagonalized,

�̃ =
M∑

j=1
p j |v j 〉〈v j |, p j ≥ 0,∀ j,

M∑

j=1
p j = 1 ,

where
{
v j
}M

j=1 is an orthonormal basis of eigenstates of �̃. By inserting the partition

of unity
∑N

α=1 |φα〉〈φα| = 1|CN and using definition (53) of the operators L�
α we show

that

trHS

(
(Pk ⊗ �̃) · 
−1(F ⊗ C)


)

= 〈�k ,S−1F S�k〉 ·
{ M∑

j=1
p j 〈(1⊗ V )U (φk0 ⊗ v j ), (1⊗ C)(1⊗ V )U (φk0 ⊗ v j )〉



The Time-Evolution of States in Quantum Mechanics 1697

= 〈�σ(k), F �σ(k)〉 ·
{ M∑

j=1
p j

N∑

α=1
〈VL

k0
α v j , C VL

k0
α v j 〉

}

= 〈�σ(k), F �σ(k)〉 ·
{ N∑

α=1
trhS

(
VL

k0
α � [VL

k0
α ]∗ · C

)}
, (55)

where � = �̃ (at time t = 0), and where V is the t ime-1 propagator of the atom
decoupled from the R-field.

This calculation easily generalizes to arbitrary times n > 1. Choosing Z := 
−n(F⊗
C)
n , with F ∈ A≥0 and C ∈ B(hS), we find that

ω(Z) =〈�k , [S]−n F Sn�k〉 ·
{ ∑

α1,...,αn

trhS

(
�̃
{ n∏

�=1
[V Lk�

α�
]∗
}

C
{ 1∏

j=n

(V L
k j
α j )
})}

=〈�σ n (k), F �σ n (k)〉 ·
{ ∑

α1,...,αn

trhS

({
V Lkn

αn
· · · V Lk1

α1
� [Lk1

α1
]∗V ∗ · · · [Lkn

αn
]∗V ∗

}
· C
)}

,

(56)

where the sum over α j ranges over α j = 0, . . . , N − 1, ∀ j = 1, . . . , n. Formula (56)
shows that the evolution of states is entangling the state of the R-field with the state
of the atom, as one would expect when interactions between the R-field and the atom
are turned on. Because of our special choice of the state of the R-field, �k , which is
a (tensor) product state—and only because of this feature—it is given by a quantum
Markov chain. To determine the evolution of states predicted by the ET H -Approach
wewill have to “unravel” the evolution described by formula (56); see Theorem 4 below.

Lemma 3. The maps

� �→ V � V ∗ and � �→
∑

α

L�
α � [L�

α]∗ (57)

are completely positive and trace-preserving, so that the right sides in (57) are again
density matrices on hS. ��

This lemma has been established by Kraus in [36,37]. It implies that the map

� �→
∑

α1,..., αn

V Lkn
αn
· · · V Lk1

α1
� [Lk1

α1
]∗V ∗ · · · [Lkn

αn
]∗V ∗

is completely positive and gives rise to a quantum Markov chain.
We remark, in passing, that the dynamics considered in Sect. 4 is not Markovian,

which means that it is considerably more complicated to analyze it. The same remark
applies if the state of the R-field is not a product state but entangles modes of the R-field
localized in different time slices.

Next, we determine those states ωn, n = 0, 1, 2, . . . , on the algebras E≥n that can be
reached recursively from the initial conditionω0 = ω, withω as in Eq. (52), by applying
the law of evolution of states of the ET H -Approach, as formulated in Definition 6
(actual events) and Axiom CP (Collapse Postulate) of Sect. 3. We use induction in time
to accomplish this task, explaining the induction step from time m − 1 to time m by
outlining the construction of ωm , given ωm−1.
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Theorem 4. Let Z := 
−n(F ⊗ C) 
n ∈ E≥n, with F ∈ A≥0 and C ∈ B(hS) (a
general element of E≥n being a sum of such operators), and let ω0 = ω be the state on
the algebra E specified in Eq. (52). Let ωn be a state obtained from ω0 by applying the
law of evolution of states of the ET H-Approach formulated in Sect. 3. Then

ωn(Z) = 〈�σ n(k), F �σ n(k)〉 · trhS

(
�n · C

)
, (58)

where �n =
[
trhS (�

(n))
]−1

�(n), and �(n) is an orthogonal projection on the Hilbert
space hS of the atom.

Proof. Theorem 4 is proven by induction in time n ∈ Z+. Equation (58) is our induction
hypothesis, denoted (In). Clearly (In) holds for n = 0. We assume that (In) holds for
n = m − 1, for some m = 1, 2, . . . , and show that this implies that it holds for n = m.
This is done in two steps: We first restrict the state ωm−1 to the algebra E≥m � E≥m−1,
the resulting state on E≥m being denoted by ω̂m . We then apply Axiom CP (the Collapse
Postulate) of Subsect. 3.3 to select a state ωm subordinate to ω̂m (written as ωm ≺ ω̂m).

We now repeat steps very similar to those leading to Eq. (55) in more detail. From
Eq. (48) we infer that an operator Z̃ ∈ E≥m ⊂ E≥m−1 is a sum of operators of the form

Z̃ = U (m − 1)∗ 
1−m
0 X̃ 
m−1

0 U (m − 1) , (59)

where

X̃ := U∗1
[
(S∗FS)⊗ V ∗C V

]
U1 belongs to E≥1 ⊂ E,

Thus, we can apply the induction hypothesis to ωm−1(Z̃). The density matrix �m−1 can
be written as

�m−1 =
M∑

j=1
p j |v(m−1)

j 〉〈v(m−1)
j | , (60)

where
{
v

(m−1)
j

}M
j=1 is a complete orthonormal system of eigenstates of �m−1, p j ≥

0, ∀ j = 1, . . . , M, with
∑M

j=1 p j = 1. Note that the induction hypothesis (Im−1) is
linear in �m−1; see Eq. (58). Thus, for Z as in the statement of Theorem 4, (Im−1) can
be written as

ωm−1(Z) =
M∑

j=1
p j ω

j
m−1(Z) , where

ω
j
m−1(Z) := 〈�σm−1(k), F �σm−1(k)〉 · 〈v(m−1)

j , C v
(m−1)
j 〉 . (61)

If we now set Z := Z̃ , with Z̃ as specified in (59), the j th term on the right side is given
by

ω
j
m−1(Z̃) = 〈�σm (k), F �σm (k)〉 · 〈U [φσm−1(k)0

⊗ v
(m−1)
j ],

(
1⊗ V ∗ C · V )U [φσm−1(k)0

⊗ v
(m−1)
j ]〉 (62)
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We recall that σm−1(k)0 = km−1. Next, we recall the definition of the Kraus operators

L�
α (see Eq. (53)) and use the completeness of

{
φα

}N−1
α=0 to show that

ω
j
m−1(Z̃) = 〈�σm (k), F �σm (k)〉 ·

{ N−1∑

α=0
〈V L

km−1
α v

(m−1)
j , C V L

km−1
α v

(m−1)
j 〉

}
.

Defining

�̂m :=
N−1∑

α=0
V · Lkm−1

α �m−1
(
L

km−1
α

)∗ · V ∗ , (63)

and recalling (60) we conclude that

ω̂m(Z̃) ≡ ωm−1(Z̃) = 〈�σm (k), F �σm (k)〉 · trhS

(
�̂m · C

)
. (64)

Lemma 3 tells us that the right side of (63) defines a density matrix on hS . Let

�̂m =
s∑

r=1
q(m)

r �(m)
r , s ≤ M , (65)

be the spectral decomposition of �̂m , with �
(m)
r the spectral projection of �̂m corre-

sponding to the eigenvalue q(m)
r . The eigenvalues of �̂m are ordered such that

q(m)
1 > q(m)

2 > . . . q(m)
s > 0, and we have that

s∑

r=1
q(m)

r trhS

(
�(m)

r

) = 1.

We set �
(m)
0 := 1 −∑s

r=1 �
(m)
r . Let Pk be the rank-1 orthogonal projection onto �k

and P⊥k := 1 − Pk . Using Definition 6 (actual events) of Sect. 3, we find that, in the
Schrödinger picture, the actual event happening at time m is described by the family of
orthogonal projections

{
Pσm (k)�

(m)
r , P⊥σm (k)�

(m)
r

}s
r=0 , (66)

which generate an algebra unitarily conjugated to the center,Zω̂m (E≥m), of the centralizer
of ω̂m , with ω̂m := ωm−1|E≥m . We now apply Axiom CP (the Collapse Postulate)
formulated in Subsect. 4.3: The probability of the state ω̂m collapsing onto the range of
a projection proportional to P⊥σm (k) or to �

(m)
0 vanishes, as follows from (64) and Born’s

Rule (see Eq. (19), Subsect. 3.3). We thus conclude that, when the event described in
Eq. (66) sets in at time m, the state of the system collapses onto one of the states

ω(r)
m (Z̃) =〈�σm (k), F �σm (k)〉 · trhS

(
�(r)

m · C
)
, where

�(r)
m :=

[
trhS

(
�(m)

r

)]−1
�(m)

r , for some r ∈ {1, . . . , s
}
. (67)

According to Axiom CP, the probability to choose the state ∝ �
(m)
r is given by

prob{r} = q(m)
r · trhS

(
�(m)

r

)
(Born′s Rule)

Equation (67) implies that, in the Schrödinger picture, where “observables” are taken to
be time-independent, the state, �m , of the atom at time m is given by one of the states
�

(r)
m .
Equations (63) and (67) complete the induction step, (Im−1)⇒ (Im). ��
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We note that, when restricted to operators that are functions of the R-field, but act
trivially on the Hilbert space hS of the atom, the states ωn, n = 0, 1, . . . , are product
states, (the R-field has been prepared in the product state �k). This special choice of
a state for the R-field implies that the effective time evolution of the state of the atom
described above is “Markovian”. Moreover, if the atom is decoupled from the R-field,
corresponding to U = 1 in Eq. (45), then

�n = V n� V−n, with � = �̃ as in (52),

i.e., the evolution of states of the atom is governed by Schödinger-Liouville evolution -
the atom decoupled from the R-field is a perfectly closed system.

5.4. A more concrete model of an atom interacting with the R-field.
“The concepts ‘system’, ‘apparatus’, ‘environment’, immediately imply an artificial

division of the world, and an intention to neglect, or take only schematic account of, the
interaction across the split.” (John Stewart Bell)

It is instructive to study an example of an explicit operator U describing interac-
tions between the atom and the R-field (see Eq. (45)): We choose a partition of unity,{

Qm
}L

m=1 , with L ≤ M , by orthogonal projections acting on hS � C
M and define U

by setting

U :=
L∑

m=1
T (m) ⊗ Qm, (68)

where T (m) is a unitary operator on C
N , while Qm = Q∗m is an orthogonal projection

on hS � C
M , Qm · Q� = δm� Qm, ∀m, � = 1, . . . , M, and

∑L
m=1 Qm = 1 . For

this choice of U we find that the Kraus operators are given by

Lk�
α =

L∑

m=1
〈φα, T (m)φk�

〉Qm . (69)

Let �n−1 be the density matrix describing the state of the atom at time n − 1. In the
Schrödinger picture, the state �̂n of the atom at time n, obtained by restricting ωn−1 to
the algebra E≥n , is then given by Eq. (63) (with m → n), namely

�̂n =
∑

�,m=1,...,L
g�m(n − 1) V Q� �n−1 Qm V ∗ , (70)

where

g�m( j) := 〈φk j , (T
(m))∗ T (�)φk j 〉 = 〈 T (m)φk j , T (�)φk j 〉 . (71)

This is a direct consequence of Eqs. (63), (69) and the completeness of
{
φα

}N−1
α=0 .

We note that, for an arbitrary time j ,

g�m( j) = 〈 T (�)φk j , T (m)φk j 〉 = gm�( j) , gmm( j) = 1, ∀m = 1, . . . , L , and

L∑

�,m=1
v� g�m( j) vm ≥ 0 , (72)
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for an arbitrary L-tuple, v := (v1, . . . , vL), of complex numbers; i.e., the matrix

G( j) :=
(

g�m( j)
)L

�,m=1

is a (hermitian) non-negative matrix on C
L and hence can be diagonalized by a unitary

L × L matrix, D( j) = (d s
r ( j)

)L
r,s=1:

γr ( j) δrs =
∑

�m

d r
� ( j) g�m( j) d s

m( j) ,

i.e., diag
(
γ ( j)

)
= D( j)∗ G( j) D( j) . (73)

The non-negative numbers γr ( j) are the eigenvalues of the matrix G( j), and we have
that

L∑

r=1
γr ( j) = tr

(
G( j)

) =
L∑

m=1
gmm( j) = L .

Notice that if (M ≥)L > N then L − N eigenvalues of G( j) necessarily vanish. (This
is because the vectors

{
T (�)φk j

∣∣ � = 1, . . . L
}
are necessarily linearly dependent if

L > N .) Physically, it is, however, more realistic to suppose that N  M . We will see
that if one of the eigenvalues

{
γr (n−1)

}L
r=1 is very close to L then themap�n−1 �→ �̂n

is close to being given by conjugation with a unitary matrix.
Equation (70) can be cast into the following form: Let�n−1 denote the densitymatrix

describing the state of the atom at time n − 1. Then the density matrix describing the
state of the atom at time n, before Axiom CP is applied, is given by

�̂n =
L∑

r=1
γr (n − 1) VKr (n − 1)�n−1 Kr (n − 1) ∗ V ∗ ,

where Kr (n − 1) :=
L∑

m=1
d m

r (n − 1)Qm . (74)

This equation shows that �̂n is non-negative, and using that gmm(n − 1) = 1, ∀m =
1, . . . , L , we see that it has trace equal to 1. Thus, �̂n is again a density matrix, which
can be written as a convex combination of disjoint orthogonal projections, �

(n)
r , as in

Eq. (65) (with m → n). Applying Axiom CP, we recover an expression equivalent to
the one in Eq. (67).

The weak-coupling regime of the model
It is interesting to study some limiting regimes in the model introduced above. We

first consider the weak-coupling regime, which is characterized by

T (m) = 1 + ε · τ (m), with ‖τ (m)‖ ≤ 1, ∀m = 1, . . . , L , and 0 ≤ ε ! 1.

(75)

It is easy to see that this implies that, for arbitrary j ,

g�m( j) = 1 +O(ε), ∀ �, m , (76)
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and

γ1( j) = L +O(ε) , γr ( j) = O(ε) , ∀ r > 1 , d s
1 (n) = 1√

L

(
1 +O(ε)

)
,∀ s .

Equation (70), combined with
∑L

m=1 Qm = 1, then implies that

‖�̂n − V �n−1 V ∗‖ = O(ε) , i.e., �̂n ≈ V �n−1 V ∗ . (77)

According to the Collapse Postulate,

�n−1 = N−1�, where N = trhS (�) and � = �∗ = �2 ,

i.e., � is an orthogonal projection. Eqs. (70) and (76) then imply that

�̂n =q(n)�(n) +
∑

r≥2
q(n)

r �(n)
r , where

q(n) ≡ q(n)
1 = N−1 +O(ε), q(n)

r = O(ε), r ≥ 2, and ‖�(n) − V �V ∗‖ = O(ε) .

(78)

The Collapse Postulate (Axiom CP of Sect. 3) implies that, with very high probability

�n =
[
trhS

(
�(n)

)]−1 ·�(n) � V �n−1V ∗ .

Thus, the system obtained by tracing out the R-field is well approximated by the closed
system consisting of just the atom (decoupled from the R-field), whose states evolve
unitarily by conjugation with powers of the operator V . However, every once in a while,
it will happen—for purely entropic reasons—that the state of the system collapses onto
a very unlikely state �n ∝ �

(n)
r , for some r ≥ 2, with �

(n)
r approximately orthogonal

to V � V ∗, which represents a strong deviation from unitary evolution. An observer will
perceive a collapse onto such an unlikely state as a “quantum jump,” or, put differently,
as an event in the literal sense of the word. The frequency of collapse onto an unlikely
state is proportional to ε.

The strong-coupling regime of the model
The strong coupling limit is characterized by the property that

g�m
k := 〈T (m)φk, T (�)φk〉 = δ �m +O(ε) , with ε ! 1 , (79)

for some or all of the vectors φk , in particular for φ0. Given a state vector, �k ∈ FS , of
the R-field, we set g�m( j) = g�m

k j
, as in Eq. (71). Since, for our choice of a reference

vector, �0, in the construction of the Hilbert space FS , we have that k j = 0, except for
finitely many values of j , the following considerations apply to the analysis of evolution
of states at large times under the only assumption that (79) holds for k = 0. It follows
from Eq. (70) that if (79) holds for k = kn−1 then

�̂n =
L∑

m=1
V Qm�n−1Qm V ∗ + en(ε) , with ‖en(ε)‖ = O(ε), (80)

where en(ε) is some traceless hermitian M × M matrix. It then follows from Axiom
CP of Sect. 3 that �n is proportional to a spectral projection of �̂n . We note that if n
is large enough (depending on the sequence k) then k j = 0, ∀ j ≥ n − 1, and hence
g�m( j) = g�m

k j
= g�m

0 satisfies (79), for all j ≥ n − 1.
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Remark. The map

� �→ �̂ :=
L∑

m=1
V Qm � Qm V ∗, (81)

is completely positive and trace-preserving; (the operators
{
Lm := V Qm |m =

1, . . . , L
}
are Kraus operators).

Next, we consider the following special choice of a partition of unity
{

Qm
}L

m=1:

Qm = |ψm〉〈ψm | , m = 1, . . . , L , with L = M = dimhS , (82)

where
{
ψm
}M

m=1 is an orthonormal basis of hS . We define a transition matrix (or -

function), P = (P(�, m)
)M
�,m=1, by setting

P(�, m) := |〈ψ�, V ψm〉|2 ≥ 0, �, m = 1, . . . , M . (83)

The completeness of the vectors
{
ψm |m = 1, . . . , M

}
and the unitarity of V imply that

M∑

m=1
P(�, m) =

M∑

�=1
P(�, m) = 1 . (84)

Using (80) and (81), we find that, in the strong-coupling regime and for sufficiently
large times, the time evolution of the state of the atom in the Schrödinger picture is
well approximated by a trajectory of states

{
ψξn | 1 ! n ∈ Z+

}
indexed by a sample

path,
{
ξn ∈ X | n ∈ Z+

}
, of the Markov chain with state space X := {1, . . . , M

}
and

transition matrix P defined in (83). The probabilities

μ(m) := prob
{
the atom occupies state ψm

}
, for m = 1, . . . , M,

on the state space X of the Markov chain evolve approximately according to

μn(�) =
M∑

m=1
P(�, m) μn−1(m) , μn−1(m) ≥ 0, ∀m,

M∑

m=1
μn−1(m) = 1 ,

(85)

as can be inferred from Eq. (81). The positive number P(�, m) can be interpreted as the
approximate value of the probability of the event that the atom occupies stateψ� at some
time n, assuming that at time n − 1 it has occupied state ψm .

Recalling that, in the weak-coupling regime, the Schrödinger-picture time evolution
of states of the atom is well approximated by unitary evolution—the one we are used to
from text books on elementary Quantum Mechanics—we find that, in the models con-
sidered here, the law of evolution of states of the atom in the ET H -Approach smoothly
interpolates between unitary deterministic Schrödinger evolution, appropriate for closed
systems, and classical Markovian evolution of the (state-occupation) probabilities μ(·),
appropriate for isolated open systems of matter very strongly coupled to the radiation
field.
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Alternation between unitary evolution and state collapse in measurements
To conclude this subsection, we sketch how, in suitable situations, the alternation

between linear unitary Schrödinger evolution of states of a system and non-linear state
collapse in measurements, as stipulated in the Copennhagen Interpretation of QM, can
be understood as an approximation to the fundamental law of evolution of states in the
ET H -Approach.

We consider models of the kind introduced in Eqs. (68)–(71). Let U :=∑L
m=1 T (m) Qm , see Eqs. (45) and (68). We decompose the Hilbert space hS of the

atom into a direct sum

hS = hw ⊕ hs, (86)

with dim(hw) = K < M , and we assume that the ranges of the projections
Q1, . . . , Q J , J ≤ K , are contained in hw, while the ranges of Q J+1, . . . QL are con-
tained in hs . We interpret the numbers

g�m( j) := 〈 T (m)φk j , T (�)φk j 〉
as the matrix elements of an L × L matrix, G( j) (see below (72)), acting on the vector
space

V := C
L = Vw ⊕ Vs , where Vw � C

J , and Vs � C
L−J ,

V � v = (v1, . . . , vL) = (vw, vs), with vw = (v1, . . . , vJ ) ∈ Vw and vs =
(vJ+1, . . . , vL) ∈ Vs . The matrix G( j) is assumed to have the property that

G( j) = G0 + �G( j), G0 = Gw
0 |Vw ⊕ Gs

0|Vs , (87)

where

Gw
0 =

⎛

⎜
⎝

1 . . . 1
...

...

1 . . . 1

⎞

⎟
⎠ , Gs

0 = 1|Vs and ‖�G( j)‖ ≤ ε ! 1 . (88)

We also assume that the time-1 propagator V of the atom has the property that

V = V0 + �V, where V0 = V0|hw ⊕ 1|hs , and ‖�V ‖ ≤ δ , (89)

for some δ ! 1. This implies that it takes a long time of O(δ−1) for a state prepared in
the subspace hw to develop a substantial overlap with a state in the subspace hs , and the
propagator of the atom restricted to the subspace hs is very close to the identity operator.

Let us suppose that the initial state of the atom is given by �0 :=
[
tr(�)

]−1
�,

where � is an orthogonal projection whose range is contained in hw, i.e., �|hs = 0,
meaning that the initial state of the atom belongs to the subspace hw of states only very
weakly coupled to the R-field. Equation (89) then implies that the state of the atom will
remain in the subspace hw for a period of time of duration O(δ−1), with only tiny tails
leaking into the subspace hs . The form of the matrix Gw

0 given in (88) and the fact that
‖�G( j)‖ ≤ ε ! 1 then entail that the evolution of the state of the atom with initial
condition �0 is well approximated by unitary Schrödinger evolution, as determined by
the time-1 propagator V = V0 + O(δ) of the atom, for a length of time of O(δ−1),
until the state of the atom develops a substantial overlap with the subspace hs . Axiom
CP of Sect. 3 tells us that, once the state of the atom has a substantial overlap with hs ,
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it becomes likely that it collapses onto a state, �s , with only a tiny overlap with the
subspace hw. Assumption (88) then implies that the strong-coupling law in Eq. (80)
governs the further evolution of the state of the atom for a period of time ofO(δ−1). By
assumption (89) the state of the atom then collapses to a projection in the range of one of
the projections Qm , with J +1 ≤ m ≤ L , and stays there for a period of time of duration
O(δ−1). This can be interpreted as a measurement taking place, with a “measurement
basis” consisting of the ranges of the projections Q J+1, . . . , QL .

Our discussion shows that the timewhen the state of the atom collapses from a density
matrix whose range belongs to the subspace hw of states weakly coupled to the R-field
to one whose range belongs to the subspace hs of states strongly coupled to the R-field,
signaling the onset of a measurement, is a random variable, i.e., it is not determined
sharply by the theory. Its distribution/law is, however, predicted by the theory. In other
words, the question “when does the detector click?” is answered by saying that the time
when it clicks is a random variable whose distribution can be determined by applying
the rules of the ET H -Approach.

The ideas described here can be incorporated into full-fledged models of measure-
ments performed on micro-systems, such as atoms or molecules, which are only very
weakly coupled to the R-field, but will, through interactions, eventually get entangled
with measuring instruments, the latter being quantum-mechanical systems strongly cou-
pled to the R-field (except when they are in their “ground-state”). Explicit examples of
models of measurements and measurement instruments will be communicated in a sep-
arate paper.

Other choices of reference states for the R-field
To conclude this section we comment on other possible choices of reference vectors

used in the construction of the Hilbert space of states of the R-field. Of considerable
interest are reference vectors exhibiting correlations and entanglement between modes
of the R-field localized in different time slices. They will be discussed in separate work.
Here we consider reference states that can be interpreted as thermal states.

An arbitrary operator in the algebraA[n,n′], 0 ≤ n < n′, is given by a sum of products
of operators A j acting as the identity on all spacesH�, � �= j, and as an N × N matrix,
also denoted by A j , on the space H j � C

N , for j = n, . . . , n′ − 1. An algebra A is
defined by

A :=
∨

n<n′<∞
A[n,n′] .

We choose a density matrix, �, on C
N by setting

� =
K∑

k=1
pk
[
tr(Pk)

]−1
Pk , 1 ≥ p1 > · · · > pK > 0 ,

K∑

k=1
pk = 1 , K ≤ N ,

(90)

where
{

Pk
}K

k=1 is a family of orthogonal projections onC
N , with Pk ·P� = δk� Pk , ∀ k, �,

and
∑

k Pk ≤ 1|CN . For later purposes, we set P0 := 1|CN . Physically, the densitymatrix
� may describe a thermal state of the R-field in a time slice.

We define a product state ϕ on A by setting

ϕ(A) =
n′∏

j=n

tr
(
� · A j

)
, for A =

n′⊗

j=n

A j ∈ A[n,n′] ⊂ A , (91)
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with � as in (90).
A Hilbert space, Fϕ , of state vectors of the R-field is obtained by applying the so-

called GNS construction to the pair
(A, ϕ

)
(see, e.g., [25]). The space Fϕ carries a

∗representation, πϕ , of A; in the following, we will not distinguish between A and

πϕ(A), for A ∈ A. For an operator A =⊗n′
j=n A j , with A j ∈ B(H j ), we define

σ(A) :=
n′⊗

j=n

A j |H j+1 . (92)

This defines a ∗automorphism of the algebraA. It is obvious that the state ϕ is invariant
under σ , i.e.,

ϕ
(
σ(A)

) = ϕ(A), ∀A ∈ A ,

which implies that there is a unitary operator S acting on Fϕ such that

σ(A) = S−1 AS , ∀ A ∈ A . (93)

The operatorS generates a unitary propagator on Fϕ for the R-field in the Schrödinger
picture.

We introduce event algebras

A≥n :=
∨

n′>n

πϕ

(A[n,n′]
)
,

where the closure is taken in the topology of weak convergence of operators on Fϕ .
As before, we monitor the evolution of the system only for times n ≥ 0. In order

to find the explicit law of the time evolution of states predicted by the ET H -Approach
(see Definition 6 and Axiom CP, Sect. 3), we have to determine the center,Zϕ(A≥n), of
the centralizer of the state ϕ restricted to the algebra A≥n , for an arbitrary n ≥ 0. Since
ϕ is a time-translation invariant product state, the value of n is unimportant. Among
orthogonal projections belonging to Zϕ(A≥n) are all the operators

πk :=
⊗

j≥n

Pk j |H j , with k ∈ S f in , (94)

where S f in is the set of sequences k = {k j
}∞

j=0 with the property that k j = 0, except
for finitely many j ∈ Z+. It is then not difficult to see that the spectrum, X, of Zϕ(A≥n)

is continuous; (it is homeomorphic to the interval [0, 1]). This is a new feature exhibited
by the model considered here, which motivates one to generalize the collapse postulate,
Axiom CP of Sect. 3, to systems featuring actual events,

{
πξ | ξ ∈ X

}
generating Zω t

(E≥t
)
,

(see Definition 6 of Sect. 3) with a spectrum X that can be a continuous topological
(compact Hausdorff) space. An extension of our theory to this situation will be pursued
elsewhere.

We observe that, in the models considered in this section, an arbitrary projection π(n)

in Zϕ(A≥n) has the form

π(n) = P|Hn ⊗ π≥(n+1),
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where P is a spectral projection of the density matrix �|Hn and π≥(n+1) ∈ A≥(n+1).
If P = Pk1 + · · · + PkJ , for some 1 < J ≤ K , where the operators Pk j are spectral
projections of �, then π(n) can be decomposed into a non-trivial sum of projections,

π(n) =
J∑

j=1
Pk j ⊗ π≥(n+1) .

Next, we recall the Collapse Postulate, Axiom CP, in Sect. 3. In the context of the
models discussed in this section it is natural to generalize this postulate as follows: If ϕ

is the initial state of the R-field then the state, ϕn , on the algebraA≥n visited, at time n,
along some history of the system with initial condition ϕ for the R-field has the form

ϕn = Pkn ⊗ ϕ(n+1) , for some kn = 1, . . . K , (95)

where ϕ(n+1) is a normal state on A≥(n+1). The frequency of choosing kn = k∗, for
some k∗ ∈ {1, . . . , K }, is given by

prob(kn = k∗) = pk∗ , with pk∗ as in Eq. (90) . (96)

In the Schrödinger picture, the time evolution of the state of the atom coupled to the R-
field predicted by the ET H -Approach (see Definition 6 and Axiom CP of Subsect. 3.3)
is then described by Eq. (70), where the coefficients g�m are given by

g�m( j) := [tr(Pk j )
]−1tr

(
T (�) Pk j (T (m))∗

)
. (97)

These coefficients are random variables whose law is given by (96).
It is clear that properties (95), (96) and (97) hold for sufficiently large times, n, for a

subspace of initial states of the R-field dense in Fϕ . It would be interesting to analyze
properties of the dynamics of the atom, with the randomness in the time evolution of its
states caused by the repeated collapse of the state of the R-field, as described in Eqs. (95)
and (96).

6. Conclusions and Outlook

“The interpretation of quantum mechanics has been dealt with by many authors,
and I do not want to discuss it here. I want to deal with more fundamental things.”
(Paul Adrien Maurice Dirac)

Our main goal in this paper has been to illustrate the ET H -Approach to Quantum
Mechanics, which many readers may find rather abstract, with a discussion of simple,
concrete models, which are, however, sophisticated enough to exhibit some of the main
subtleties and virtues of the ET H -Approach. The models used in Sect. 5 to illustrate
the general ideas underlying this approach to Quantum Mechanics have been inspired
by Huygens’ Principle in quantum field theory and, in particular, by the form it takes
in the limit where the speed of light tends to ∞; see Sect. 4. The main results of our
analysis are contained in Sects. 3 and 5 .

To conclude this paper, we attempt to clarify what we consider to be the ontology
underlying QuantumMechanics, as suggested by the ET H -Approach. We then present
some comments onmodels arising from those in Sect. 5 by letting the time step approach
0, i.e., when choosing time to be a continuous parameter. Finally, we offer a sketchy
discussion of different mechanisms that might give rise to the Principle of Diminishing
Potentialities and a survey of some important open problems.
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6.1. From ‘what may potentially be’ to ‘what actually is’.

“The Garden of Forking Paths is a picture, incomplete yet not false, of the uni-
verse.” (Jorge Luis Borges)

The summary of the ET H -Approach presented in Sect. 3 and the discussion of
concrete models contained in Sect. 5 provide a fairly clear idea of what might be consid-
ered to be the ontology underlying Quantum Mechanics. In order to keep the following
remarks as accessible as possible, we shall discuss this topic in the context of the models
studied in the last section.

Equation (47) of Sect. 5 shows that, in the (idealized) models of physical systems
studied there, the event algebras E≥n, n ≥ 0, are all unitarily equivalent to one “univer-
sal” algebraN ≡ E := A≥0⊗ B(hS). (Recall that we only monitor the evolution of the
systems for times t ≥ tin = 0.) The fact that E≥n � E,∀ n ≥ 0, enables us to define the
non-commutative spectrum, ZS , of the systems described by our models by setting

ZS :=
⋃

ω

(
ω,Zω(E)

)
,

where the union is a disjoint union ranging over all normal states ω on the algebra E ,
and Zω(E) is the center of the centralizer of the state ω restricted to the algebra E ; see
Eq. (20) of Sect. 3. The algebraZω(E) is abelian. Its projections provide a mathematical
description of the actual event featured by the system when it occupies the state ω.

Let γ denote the ∗-endomorphism of the algebra E corresponding to time translation
of operators in the Heisenberg picture by a time step of length 1; i.e.,

E≥1 ≡ γ (E) ⊂ E .

Remark. If time translations are unitarily implementable on the Hilbert space, HS , of
state vectors of the system S then one has that γ (X) = 
−1X 
, ∀ X ∈ E , where 
 is
the unitary propagator on HS by a time step of length 1; see Sects. 3 and 5 .

Given the algebra E and the time-translation endomorphism γ on E , the space of
normal states on E can be equipped with the structure of a groupoid:

For a given pair, (ω, ω′), of normal states on E , there is an arrow from ω to ω′,
written as ω→ ω′, iff there exists a minimal orthogonal projection π ∈ Zω(E≥1) (i.e.,
π cannot be decomposed into a sum of two or more non-zero projections belonging to
Zω(E≥1)) such that

ω(π) > 0, and ω′
(
X
) = [ω(π)

]−1
ω
(
π γ (X) π

)
, ∀ X ∈ E . (98)

Definition 9. A history of length r is a connected path, ωr :=
(
ω0, . . . , ωr

)
, of states

on E , with the property that

ω j → ω j+1 , ∀ j = 0, . . . , r − 1 . (99)

��
If ωr is a history of length r then there exist minimal orthogonal projections π j ∈
Zω j (E≥1), with ω j (π j ) > 0, for j = 0, . . . , r − 1, such that
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ω j+1(X) = [ω j (π j )
]−1

ω j (π j γ (X) π j ) , ∀ X ∈ E , ∀ j = 0, . . . , r − 1 .

(100)

Thus, a history ωr of length r can also be parametrized by a pair
(
ω, πr

)
, where ω = ω0

is the inital state of the system, and the sequence of projections, πr =
(
π0, . . . , πr−1

)

is such that Eq. (100) holds. The space of histories with initial condition ω ≡ ω0 is
denoted by Hω. We define history operators

H(πr ) :=
r−1∏

j=0
γ j (π j ) , πr =

(
π0, . . . , πr−1

)
, r = 1, 2, 3, . . . (101)

History operators can be used to equip Hω with a probability measure, Pω:

Pω

(
πr

) := ω
(
H(πr )

∗ · H(πr )
)
, ω = ω0 , (102)

with π j ∈ Zω j (E≥1) and ω j as in (100), for j = 0, . . . , r − 1. We have that

∑

πr−1∈Zωr−1 (E≥1)
Pω

(
πr

) = Pω

(
πr−1

)
,

which follows readily from the definition of history operators, the fact that π2 = π =
π∗, for an arbitrary orthogonal projection, and from the property that the projections
πr−1 ∈ Zωr−1(E≥1) form a partition of unity. Kolmogorov’s extension lemma then tells
us that Pω extends to a probability measure on the space Hω of infinite histories with
initial condition ω.

Formula (102) is reminiscent of the Lüders-Schwinger-Wigner formula [38–40] for
the probability of outcomes of repeated measurements; but it has an entirely different,
logically satisfactory status and interpretation.

In the ET H -Approach, the ontology of Quantum Mechanics lies in the histories
traversed by isolated physical systems. Put differently, one might say that what really
“exists” is encoded into sequences

{(
ω j ,Zω j (E)

) ∣∣∣ω j → ω j+1, for j = 0, . . . , r − 1
}
, r = 1, 2, 3, . . . ,

of pairs of states and actual events, with Eq. (100) providing the relation between ω j , π j
and ω j+1.

We note that a state ω on the algebra E gives rise to an actual Event described by
Zω(E); the space of normal states on E , viewed as a groupoid with an arrow defined in
Eq. (100) that connects them to a fixed initial stateω = ω0, has aTree-like structure; and
the states occupied by the system in the course of time form a History, i.e., an element
of the space Hω of histories of the system starting with the state ω. This explains why
the formulation of QuantumMechanics explored in this paper is called ETH-Approach.

Problem Generalize the theory developed in Sect. 3 and exemplified by the models
in Sect. 5 to apply to physical systems with the following properties:

• They have states, ω, of physical interest that give rise to centers, Zω(E), of central-
izers with continuous spectrum. (A preliminary version of such a generalization has
been worked out and will appear elsewhere.)
• Time is continuous, t ∈ R.
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• They are described by some relativistic local quantum theory; (with ‘time’ traded
for ‘space-time,’ t ∈ R �→ P ∈M

4). A beginning of such a theory has been outlined
in [13].

We expect that the first problem stated here can be solved without major difficulties.
Comments on the second and third problem follow in the next subsections.

6.2. Models with continuous time.
“Time does not pass, it continues.” (Marty Rubin)
Recall the family ofmodels discussed in Sect. 5.One should askwhether thesemodels

remain meaningful in the limit where the time step tends to 0, i.e., for a continuous
time parameter. To answer this question, we consider an R-field defined in terms of its
MN (C)-valued creation- and annihilation operators, a∗(t) and a(t), with

a# = a or a∗, a#(t) = (a#i j (t)
)
i, j=1,...,N , and

[
a#i j (t), a#k�(t

′)
] = 0,

[
ai j (t), a∗k�(t

′)
] = δik δ j� · δ(t − t ′) , ∀ i, j, k, �, ∀ t , t ′ in R .

(103)

Let F denote the Fock space corresponding to these creation- and annihilation operators;
the creation- and annihilation operators, a#

i j (·), being operator-valued distributions on
F. Fock space contains a vector |0〉, called vacuum vector, with the property

ai j (t)|0〉 = 0, ∀ i, j = 1, . . . , N , ∀ t ∈ R .

Applying arbitrary polynomials in creation operators, smeared out with MN (C)-valued
test functions on the time axis R, to the vacuum vector |0〉 generates a dense set of
vectors in F. Fourier transformation in the variable t yields creation- and annihilation
operators, â∗(ν) and â(ν), related to a∗(t) and a(t) by

a#
i j (t) =

∫

R

dν e±i(t ·ν/2π) â#
i j (ν),

and satisfying the commutation relations (103), with time t replaced by frequency ν.
Time translations on F are generated by an operator

HR := 1

2π

N∑

i. j=1

∫

R

dν â∗i j (ν) ν âi j (ν) . (104)

The Hamilton operator HR is self-adjoint on a natural dense subspace of F and generates
unitary time translations,


t = e−i t HR , t ∈ R,

on F. We observe that the spectrum of HR covers the entire real axis,19 that the vacuum
vector |0〉 is invariant under time-translations, i.e., eit HR |0〉 = |0〉, ∀ t , and that it is a
product state. This last property follows from the form of the two-point function,

〈0|ai j (t) a∗k�(t
′)|0〉 = δikδ j�δ(t − t ′) ,

19 It is a general theorem that the existence of time-translation invariant product states implies that the
spectrum of the Hamiltonian is unbounded from above and from below.
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and Wick’s theorem (see, e.g., [34]).
Next, we add the “atom” to the play and introduce interactions between the atom and

the R-field. We continue to assume that the atomic Hilbert space is finite-dimensional,
hS � C

M , for some M < ∞. The Hilbert space for the atom coupled to the R-field is
given by HS = F ⊗ hS . Before it is coupled to the R-field the propagator of the atom
is generated by a hermitian matrix, HA, on hS . The interaction between the atom and
the R-field is specified by a self-adjoint (bounded) operator, W = W ∗, onHS . The total
Hamiltonian of the system S is then given by

H := HR ⊗ 1 + 1⊗ HA + W (105)

The limit of continuous time of the model studied in Subsect. 6.4 corresponds to the
choice

W =
L∑

m=1
vm ⊗ Qm ,

where
{

Qm
}L

m=1 is a partition of unity on hS by orthogonal projections, as in Subsect 5.4,
and the operators vm are self-adjoint bounded operators on F, (with e−ivm = T (m)).

Models of this sort have been studied in the literature; see, e.g., [41,42] and refs. given
there.20 Before the Collapse Postulate, Axiom CP of Sect. 3, is imposed the effective
time evolution of the atomic degrees of freedom is given by a Lindbladian evolution
[44,45]. In [46], the authors derive a non-linear stochastic Schrödinger equation for the
state vector—the state of the atom in our model—from Lindbladian evolution of the
density matrix when the Collapse Postulate is imposed. Their results can be applied to
the model introduced above.

One might argue that one should attempt to derive continuous-time limits of the more
natural (semi-relativistic) models studied in Sect. 4, which could be expected to have
Hamiltonians that are bounded from below. However, this project is obstructed by our
inability to construct models of local relativistic quantum theory, in particular Quantum
Electrodynamics, without ultraviolet cutoffs. Thus, in the realm of (semi-)relativistic
models of atoms coupled to the quantized electromagnetic field satisfying the Principle
of Diminishing Potentialities, we may be stuck with models that have a discrete time,
as discussed in Sect. 4. (See, however, [13] for an “axiomatic” analysis of the ET H -
Approach in the context of local relativistic quantum theory.)

6.3. Are there alternatives to Huygens’ principle in deriving the principle of diminishing
potentialities?.

“One finds in this subject a kind of demonstration which does not carry with it so
high a degree of certainty as that employed in geometry,...” (Christiaan Huygens)

In this last subsection, we draw the readers’ attention to the problem to identify
physical mechanisms that give rise to the Principle of Diminshing Potentialities (P D P)

(see Eq. (14), Sect. 3). We have seen in Sect. 4 that (P D P) is implied by Huygens’
Principle in local relativistic quantum theories involving massless modes (see also [20])
and by the form this principle takes in quantum theories obtained in the limit of the
speed of light tending to ∞. This suggests to study the question on what space-times
Huygens’ Principle is known to be valid.

20 They have also come up in connection with the problem of time in QM and quantum systems describing
clocks; see [43]. The literature on this topic is somewhat hard to decipher.



1712 J. Fröhlich, A. Pizzo

• Huygens’ Principle is known to hold in theories on Minkowski space-times, Md , of
even dimension, i.e., for even d; and it is known to fail in theories on odd-dimensional
Minkowski space-times.
• Huygens’ Principle holds on even-dimensional space-times diffeomorphic to (a
half-space contained in) M

d , with a metric that differs from the standard Lorentzian
metric on M

d only by a conformal factor. An example is the spatially flat Friedman-
Lemaître universe.
It would be of interest to compile a list of space-times on which Huygens’ Principle
holds true.
• We expect that (P D P) holds on certain even-dimensional space-times with black
holes. But we have not studied this issue in any detail, yet.
• There are even-dimensional space-time manifolds with non-vanishing curvature
on which Huygens’ Principle fails. However, this may not invalidate (P D P), as
remarked next.
• Huygens’ Principle and (P D P) could hold if it turned out that “visible” space-
time is a submanifold of positive co-dimension of a space-time manifold with extra
dimensions, and only certain massless modes could and would penetrate into the
bulk of the higher-dimensional space-time manifold (even if, on the submanifold
corresponding to the “visible” space-time, Huygens’ Principle might fail).

The Principle of Diminishing Potentialities constrains the inclusions of algebras gen-
erated by potential events/potentialities localized in the future of different causally
ordered points in space-time; see Sect. 4 and [13]. If gravity is neglected it is clear
what is meant by the future of a space-time point P: It is the future light cone, V +

P ,
erected over P , and the potentialities localized in the future of P are certain operators
localized in V +

P that generate an algebra denoted by E≥P . In a local relativistic quan-
tum theory with massless particles on an even-dimensional Minkowski space satisfying
Huygens’ Principle, such as quantum electrodynamics, we then have that E≥P ′ � E≥P ,
whenever the space-time point P ′ lies in the future of P; see [20]. This yields a form
of the Principle of Diminishing Potentialities well suited for such theories, as argued in
[13]. The bundle of future light cones over space-time is determined by the conformal
structure of space-time, and Huygens’ Principle is tied to properties of the propagation
of (massless) waves on space-time.

However, if gravitational effects are taken into account the structure of future light-
cones in space-time and the metric in the vicinity of future light-cones are not deter-
mined a priori, because quantum theory does never determine with certainty what
events/actualities will happen. Since events couple to gravity, the metric structure of
the “future” is not determined a priori. For these reasons, the Principle of Diminishing
Potentialities should really be formulated in a way that does not depend on knowledge
of the conformal structure in the vicinity of future light-cones in space-time. One should
look for a more abstract, “background-independent” formulation of (P D P), one that
incorporates gravitational effects.

We recall that one expects that, in a given local relativistic quantum theory, all
event algebras, E≥P , associated with the future above an arbitrary space-time point
P are isomorphic to a universal algebra N . The Principle of Diminishing Potentiali-
ties can then be seen as a consequence of the existence of one-parameter semi-groups,{
γt
}

t∈[0,t∗) , 0 < t∗ ≤ ∞, of ∗-endomorphisms of N with the property that

γt
(N ) � N , ∀ 0 < t < t∗ . (106)
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The fundamental problem is to come up with a general characterization of algebras that
can play the role of N and of one-parameter semi-groups

{
γt
}

t∈[0,t∗) on such algebras
satisfying (106). This problem appears to be a very difficult one.

Returning to quantum theories on Minkowski space, with gravity neglected, our
analysis leads to the following somewhat tantalizing general conjecture: If we con-
sider a quantum theory for a system S in which (P D P) holds and with a Hamiltonian,
H , generating Heisenberg-picture time translations of operators representing physical
quantities of S that satisfies the spectrum condition, i.e., H ≥ 0, then this theory must
necessarily be a local relativistic quantum theory on an even-dimensional Minkowski
space. In other words, a quantum theory describing events and measurements, which
does not have states of arbitrarily negative energy, must be a local relativistic theory on
an even-dimensional space-time.

To conclude this discussion, one might say that the Principle of Diminishing Poten-
tialities (P D P) is really the appropriate general formulation of Huygens’ Principle in
local quantum theory. There may not be any viable alternatives to (P D P) if we want
quantum theory to describe events (including measurements and observations). Thus, a
clarification of the status of the Principle of Diminishing Potentialities may be viewed
as a fundamental problem of Quantum Physics.

6.4. An agenda for the future. We end this paper by summarizing some important-
looking problems.

1. Investigate the time evolution of states determined by the rules of the ET H -
Approach in more realistic models of simple isolated systems featuring events,
in the spirit of the analysis presented in Sects. 4 and 5 . Models with continuous
time (in the limit where the speed of light approaches∞) and models describing
measurements of physical quantities of small subsystems coupled to quantum-
mechanical measuring devices will be of particular interest.

2. Pursue a general study of local relativistic quantum theories on even-dimensional
Minkowski spaces, extending the approach outlined in [13]. An important question
to be answered is whether the space-time localization of projections describing
actual events can be determined more precisely than has been possible, so far.
Some ideas discussed in [47] may be relevant in this connection.

3. Explore the relation between the Principle of Diminishing Potentialities and the
(quantum) structure of space-timeon large andonvery short distance scales, beyond
the results presented in [20] and in this paper.
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