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Abstract: We prove that finite-index conformal nets are fully dualizable objects in the
3-category of conformal nets. Therefore, assuming the cobordism hypothesis applies,
there exists a local framed topological field theory whose value on the point is any
finite-index conformal net. Along the way, we prove a Peter–Weyl theorem for defects
between conformal nets, namely that the annular sector of a finite defect is the sum of
every sector tensored with its dual.
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Introduction

A finite-dimensional Hilbert space H is dualizable in the sense that there is a Hilbert
space H∗ together with evaluation and coevaluation morphisms ev : H ⊗ H∗ → C

and coev : C → H∗ ⊗ H such that the identity idH can be recovered as the composite
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(coev⊗ idH )◦(idH ⊗ ev), and the identity idH∗ can be recovered as a similar composite;
indeed, every dualizable Hilbert space is finite-dimensional.

The 2-category vN of von Neumann algebras deloops the category Hilb of Hilbert
spaces in the sense thatHomvN(1, 1) ∼= Hilb. If a vonNeumann algebra A is a finite direct
sum of type I factors, then it is fully dualizable in the sense that there is a von Neumann
algebra Aop together with evaluation bimodule A⊗Aop HC and coevaluation bimodule
CHAop⊗A such that the identity bimodule AL2(A)A can be recovered as a composite
of the evaluation and coevaluation (and the identity bimodule for Aop can be similarly
recovered), and such that the evaluation and coevaluation bimodules themselves admit
adjoints. A fully dualizable von Neumann algebra is in fact necessarily a finite direct
sum of type I factors. More generally, full dualizability functions as a strong finiteness
condition on the objects of a higher category.

The 3-category CN of conformal nets deloops the 2-category vN of von Neumann
algebras, in the sense that HomCN(1, 1) ∼= vN [BDH19, Proposition1.22]. In this paper,
the fifth in a series [BDH15,BDH17,BDH19,BDH18] concerning the 3-category of
conformal nets, we investigate the dualizability properties of conformal nets and their
defects and sectors. Ourmain result is that a conformal net is fully dualizable if (Theorem
B below) and only if (Theorem C below) it has finite index.

Dualizability. Recall that two i-morphisms F : B → A and G : A → B in an
n-category (i < n) are called adjoint (or dual), denoted F � G, if there exist (i + 1)-
morphisms, the unit s : idB → G ◦ F and the counit r : F ◦ G → idA such that the
composite (idG �r)◦(s�idG) is equivalent to idG and the composite (r�idF )◦(idF �s)
is equivalent to idF ; we say that F admits G as its right adjoint, or equivalently that G
admits F as its left adjoint. (Here� denotes functorial composition of (i +1)-morphisms
in the direction of i-morphisms.) Similarly, two objects f and g in a symmetricmonoidal
n-category are called dual if there exist 1-morphisms, the coevaluation s : 1 → f ⊗ g
and the evaluation r : g ⊗ f → 1, such that the composite (r ⊗ idg) ◦ (idg ⊗s) is
equivalent to idg and the composite (id f ⊗r) ◦ (s ⊗ id f ) is equivalent to id f . (Note that
by convention, the monoidal structure ⊗ has a geometric rather than functorial order of
composition.)

An i-morphism F : A → B in an n-category (i < n) is called fully dualizable if there
is an infinite chain of adjunctions · · · FLL � FL � F � FR � FRR � · · · such that
every unit and counit morphism in each of the adjunctions in that chain itself admits a
similar infinite chain of adjunctions, such that every unit and counit morphism in each of
the adjunctions in all of those chains in turn admits an infinite chain of adjunctions, and
so on until one reaches a chain of (n−1)-morphisms, at which point the conditions stop.
(We refer to an (n−1)-morphism that has an infinite chain of left and right adjoints, and
is therefore fully dualizable, simply as ‘dualizable’.) Similarly, an object in a symmetric
monoidal n-category is fully dualizable (also called ‘n-dualizable’) if it admits a dual and
the coevaluation and evaluation morphisms are fully dualizable. A symmetric monoial
n-category is said to have all duals if every object is fully dualizable and every i-
morphism (i < n) is fully dualizable. (Note that the notions of fully dualizable and of
having all duals do not depend on the exact model one chooses for symmetric monoidal
n-categories, because the dualizability conditions can be phrased entirely in terms of
homotopy 2-categories canonically associated to the n-category. For a more detailed
discussion of the notion of dualizability, see [DSPS17, Appendix A].)

The cobordism hypothesis [BD95,Lur09,AF17] ensures that for any fully dualizable
object c in a symmetric monoidal n-category C, there is a local framed topological field
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theory Fc : Bordfrn → C whose value on the positively framed point is c.1 In particular,
for any such object, there is an associated framed n-manifold invariant.

Finiteness. We will investigate the dualizability of objects and morphisms in the sym-
metric monoidal 3-category of conformal nets. To that end, we introduce notions of
‘finiteness’ for nets, defects, and sectors, arranged in such a way that finiteness ensures
both the existence of a dual (or adjoint) and in turn the finiteness of the coevaluation
and evaluation (or unit and counit) morphisms. We will therefore be able to successively
establish that finiteness implies dualizability for sectors, defects, and conformal nets.

Consider the following subintervals of the standard circle:

S1� := {z ∈ S1 | 
m(z) ≥ 0}, S1� := {z ∈ S1 | �e(z) ≥ 0},
S1⊥ := {z ∈ S1 | 
m(z) ≤ 0}, S1� := {z ∈ S1 | �e(z) ≤ 0}.

Moreover, let I1, . . . , I4 ⊂ S1 be the subintervals indicated here:

I2 I4

I1

I3

(0.1)

When appropriate, we equip the standard circle S1 with its standard bicoloring S1◦ = S1�,
S1• = S1�, and give I1, . . . , I4 the induced bicoloring, so that I1 and I3 are genuinely
bicolored, I2 is white, and I4 is black.

We work with coordinate-free nets [BDH15, Definition 1.1]; thus a conformal netA
is a functor from the category of intervals to the category of von Neumann algebras. The
vacuum sector H0(A) is a Hilbert space equipped with actions of the algebras A(I ),
where I varies over the subintervals of the standard circle [BDH15, Definition 1.12].
(Note that the vacuum sector H0(A) is not extra structure on a conformal net, but is
defined explicitly in terms of the von Neumann algebras associated to intervals.) The
split property ofA gives additional actions associated to disjoint unions of subintervals
of the circle. In particular, the algebra A(I1 ∪ I3) ∼= A(I1) ⊗ A(I3) acts on H0(A),
and similarly for I2 ∪ I4. Given nets A and B, an A-B-defect ADB is a functor from
the category of bicolored intervals to von Neumann algebras [BDH19, Definition 1.7].
The two colors of the bicolored intervals correspond to the source and target netsA and
B of the defect. The vacuum sector H0(D) is a Hilbert space equipped with actions of
the algebras D(I ), where I varies over the subintervals of the standard bicolored circle.
(As for nets, the vacuum sector H0(D) is not additional structure on a defect, but is
constructed from the given von Neumann algebras.)

We henceforth assume that all conformal nets and defects are semisimple, that is
finite direct sums of irreducible ones; (a conformal net or defect is irreducible if it does
not admit a non-trivial direct sum decomposition).

1 See the section on ‘Manifold invariants’ below, and in particular Footnote 3, for a discussion of the
applicability of the cobordism hypothesis to the symmetric monoidal 3-category of conformal nets.
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Definition 0.2.

◦ A conformal net A is finite if the bimodule A(I1∪I3)H0(A)A(I2∪I4)op is dualizable as
a morphism in the 2-category of von Neumann algebras.2

◦ A defect ADB between finite conformal nets is finite if the action of the algebraic
tensor product D(I1) ⊗alg D(I3) on H0(D) extends to the spatial tensor product
D(I1) ⊗̄ D(I3), that is, if the Hilbert space H0(D) is split as a D(I1)-D(I3)op-
bimodule.

◦ A D-E-sector H between defects D and E , is finite if the bimodule D(S1�)HE(S1⊥)op

is dualizable as a morphism in the 2-category of von Neumann algebras.

Note that, because there is a contravariant involution on the 2-morphisms of the 2-
category of von Neumann algebras (namely the adjoint map of Hilbert spaces), a left
adjoint bimodule is also a right adjoint bimodule and vice versa; thus for a bimodule to
be dualizable it suffices that it admit a single adjoint.

Statement of results. In order to construct adjunctions for defects, wewill need to under-
stand the Hilbert space assigned by a defect to a bicolored annulus. To that end, we prove
the following Peter–Weyl annular decomposition theorem for defects, generalizing the
Kawahigashi–Longo–Müger theorem for conformal nets [KLM01, Theorem 9]. Given

a bicolored annulus A = and a defect D, we will construct an associated

Hilbert space Hann(D), considered as a ‘∂A-sector’, that is, a representation ρ of the
collection of algebras {D(I )} for I a subinterval of the boundary ∂A (a disconnected
1-manifold), subject to the following isotony and locality axioms:

(isotony): I ⊂ J ⇒ ρD(J )|D(I ) = ρD(I ),

(locality): I̊ ∩ J̊ = ∅ ⇒ [ρD(I ), ρD(J )] = 0.
(0.3)

Let�D be the set of isomorphism classes of irreducible D-D-sectors, with the sector
associated to λ ∈ �D denoted Hλ. Let λ̄ denote the dual isomorphism class, and let
Hλ ⊗ Hλ̄ denote the ∂A-sector where one circle acts on Hλ and the other circle acts on
Hλ̄.

Theorem A (Peter–Weyl for defects). For a finite irreducible defect D, the annular
sector Hann(D) is non-canonically isomorphic to the sum

⊕
λ∈�D

Hλ ⊗ Hλ̄ of every
sector tensor its dual.

This is proven as Theorem 1.13 in the text. We may depict this result as

∼=
⊕

λ∈ΔD

λ ⊗ λ̄

2 If A is irreducible, then this condition is equivalent to the conformal net having finite index, as follows.
Recall from [BDH15, Definition 3.1] that the index of a conformal netA is defined as the minimal index of the
inclusionA(I1 ∪ I3) ⊂ A(I2 ∪ I4)

′. By [BDH14, Proposition 7.5], if this minimal index is finite, then the bi-
moduleA(I1∪I3)H0(A)A(I2∪I4)op is dualizable. Conversely, if that bimodule is dualizable, then, by [BDH14,
Definition 5.1], its statistical dimension is finite and thus, by [BDH14, Definition 5.10 & Proposition 7.3], the
corresponding minimal index is finite.
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Equipped with this and other results about defect annular sectors, we proceed to our
main topic of dualizability properties of conformal nets. We show that finite sectors are
dualizable; that finite defects are dualizable with finite unit and counit sectors (and hence
are fully dualizable); and that finite conformal nets are dualizable with finite evaluation
and coevaluation defects (and hence are fully dualizable).

Theorem B (Dualizability of finite nets, defects, and sectors). The 3-category of finite
semisimple conformal nets, finite semisimple defects, finite sectors, and intertwiners has
all duals.

This result is summarized as Theorem 2.20 in the text, collecting the results of Propo-
sition 2.11, Corollary 2.12, Proposition 2.14, Corollary 2.16, Theorem 2.17, and Corol-
lary 2.19. Theorem A is used (via Proposition 1.21 and Corollary 1.16) in the proof of
the crucial Proposition 2.14, in order to construct the unit and counit sectors needed for
the adjunction of defects.

Having established that finiteness implies full dualizability, we conversely establish
that full dualizability ensures finiteness.

Theorem C (Finiteness of dualizable nets, defects, and sectors). A fully dualizable con-
formal net, defect, or sector is necessarily finite.

See Corollary 2.12, Proposition 2.22, Theorem 2.25, and Remark 2.31 in the text for
the precise statements and proofs. Note that we do not have a 3-category of all not-
necessarily-finite conformal nets (because we do not know that the composition of two
defects between non-finite nets is again a defect); however the notion of dualizability is
still well defined for an arbitrary not-necessarily-finite net (namely as the condition that
the canonical evaluation and coevaluation defects both have ambidextrous adjoints with
dualizable unit and counit sectors), and therefore it makes sense to claim and prove as
we do that a dualizable net is finite.

Manifold invariants. ByTheoremBandunder the (overwhelmingly plausible but not yet
proven) assumption that the cobordism hypothesis applies to the symmetric monoidal 3-
category of conformal nets constructed in [BDH18],3 associated to any finite conformal
net there is a 3-dimensional local framed topological field theory whose value on a point
is the conformal net. Naturally, one wonders what manifold invariants are given by this
topological field theory.

For 1-dimensional manifolds, the conformal net field theory invariants are given,
projectively (that is, up to tensoring by an invertible von Neumann algebra), by the ex-
tension, constructed in [BDH17, Theorem 1.3], of the conformal net to a functor from
1-manifolds to the category of von Neumann algebras. In particular, the invariant of a
circle is the direct sum over irreducible representations of the algebra of bounded op-
erators on the underlying representation space (see [BDH17, Theorem 1.20]). One may
also express the invariant of a circle as the colimit in the category of von Neumann alge-
bras of the value of the conformal net on all the subintervals of the circle (see [BDH17,
Proposition 1.25]).

3 As the cobordism hypothesis applies most immediately to symmetric monoidal n-categories modeled as
�-objects in complete n-fold Segal spaces [Lur09,CS15], this assumption can be made precise in the form
of the following conjecture: there exists a �-object in complete 3-fold Segal spaces CN′ together with an
equivalence of tricategories E : [CN] → [CN′]; here CN denotes the symmetric monoidal 3-category of
finite conformal nets constructed as an internal dicategory in symmetric monoidal categories [BDH18], and
the brackets [−] denote the tricategory associated to either the internal dicategory in symmetric monoidal
categories or the �-object in complete 3-fold Segal spaces.
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For 2-dimensional manifolds, the conformal net field theory invariants are given,
projectively (that is, up to tensoring by an invertible Hilbert space), by the functor
constructed in [BDH17,Theorem2.18], from2-manifolds toHilbert spaces. In particular,
the invariant of a closed 2-manifold is given, projectively, by the space of conformal
blocks associated to that surface. When the conformal net isNG,k , the one associated to
the level k central extension of the loop group LG, we expect the invariant is the space
of conformal blocks for the corresponding chiral WZW model.

For any finite-index conformal netA, under the aforementioned assumption that the
cobordism hypothesis applies, our results provide a complex-valued invariant ZA(M)

of any closed framed 3-manifold M . For the loop group conformal net NG,k , the cat-
egory Rep(NG,k) of representations of the net is thought to be isomorphic to the cat-
egory Rep(LG, k) of representations of the loop group LG at level k; see [Hen17]
for a discussion of this comparison problem and [Gui18, Section 5.1] for progress to-
wards a solution. Provided the representation categories of the conformal net and of
the loop group are indeed isomorphic as modular tensor categories, then we expect the
3-manifold invariant ZNG,k (M) determined by the conformal-net-valued local field the-
ory is the Reshetikhin–Turaev invariant of M associated to the modular tensor category
Rep(LG, k) of representations of the associated loop group.

1. Defect Algebras Acting on Annuli and Discs

We will, later in Sect. 2, interpret the fusion of a defect and its adjoint as associating
an algebra to an interval with not just a single transition point from white to black, but
instead two: one from white to black, and then one back to white. To construct the unit
and counit of the adjunction, we will need an action of this larger algebra on the vacuum
sector of the original defect. We will construct such an action by first constructing an
action on a Hilbert space associated to an annulus and then “plugging the hole” of the
annulus with a vacuum sector.

Working up to those constructions, in this section we study the Hilbert space asso-
ciated to a bicolored annulus; we prove a Peter–Weyl theorem decomposing the defect
annular Hilbert space as a sum of tensor products of sectors and their duals, and we
define the algebras associated to arbitrary bicolored 1-manifolds.

1.A. The Hilbert space for a bicolored annulus. Given a finite defect D between finite
conformal nets, the bimodule

D(I1)⊗̄D(I3)H0(S, D)(A(I2)⊗̄B(I4))op (1.1)

is always dualizable (see [BDH19, Proposition 3.18] and Footnote 2). Here S is a bi-
colored circle decomposed into intervals I1, . . . , I4, as in (0.1), and the vacuum sector
H0(S, D) is described in [BDH19, Notation 1.14]. Let −S, −I1, . . . ,−I4 be the same
manifolds with the reverse orientations. The following result explicitly identifies the
dual, generalizing the corresponding result for conformal nets [BDH15, Lemma 3.4]:

Lemma 1.2. Under the canonical identifications (D(−I1) ⊗̄ D(−I3))op ∼= D(I1) ⊗̄
D(I3) and (A(−I2) ⊗̄B(−I4))op ∼= A(I2) ⊗̄B(I4), the dual of the bimodule (1.1) is
given by

A(−I2)⊗̄B(−I4)H0(−S, D)(D(−I1)⊗̄D(−I3))op .
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Proof. We assume without loss of generality that S is the standard bicolored circle. Let
us write S1 = K1∪· · ·∪K6, with K1 = I4∩S1�, K2 = I1, K3 = I2∩S1�, K4 = I2∩S1⊥,
K5 = I3, K6 = I4 ∩ S1⊥

K2

K3

K4

K5

K6

K1

j

and let j be the reflection that exchanges S1� and S1⊥. For any interval I , we abbreviate
D( j) : D(I ) → D( j (I ))op by j∗ and let A := D(S1�). By definition, H0(S, D) =
L2(A) with actions

(a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ a6) · ξ := (a1a2a3) ξ j∗(a4a5a6)op, ai ∈ D(Ki ). (1.3)

Here aop ∈ Aop is the element a ∈ A viewed as an element of Aop. By [BDH14,
Corollary 6.12], the dual of H0 is its complex conjugate H0(S, D) = L2(A), with
actions b · ξ̄ · a = a∗ ·ξ ·b∗ for a ∈ D(I1) ⊗̄ D(I3) and b ∈ (A(I2) ⊗̄B(I4))op. We
rewrite it as

(a1 ⊗ a3 ⊗ a4 ⊗ a6) · ξ̄ · (aop2 ⊗ aop5 ) = (aop∗2 ⊗ aop∗5 ) · ξ · (a∗
1 ⊗ a∗

3 ⊗ a∗
4 ⊗ a∗

6)

= (aop∗1 ⊗ aop∗2 ⊗ aop∗3 ⊗ aop∗4 ⊗ aop∗5 ⊗ aop∗6 ) · ξ

= (aop∗1 aop∗2 aop∗3 ) ξ j∗(a∗
4a

∗
5a

∗
6)

(1.4)
for ai ∈ D(Ki ).

On the other hand, H0(−S, D) := L2(D(−S1�)) ∼= L2(Aop) has actions (b1 ⊗ b2 ⊗
b3 ⊗ b4 ⊗ b5 ⊗ b6) · η := (b1b2b3) η j∗(b4b5b6)op for bi ∈ D(Ki )

op and η ∈ L2(Aop).
Using the canonical identification η �→ ηop between L2(Aop) and L2(A) that exchanges
the left Aop-module structurewith the right A-module structure and the right Aop-module
structure with the left A-module structure, this becomes

[(a1 ⊗ a2 ⊗ a3 ⊗ a4 ⊗ a5 ⊗ a6) · ξ ]op = j∗(a4a5a6) ξop (aop1 aop2 aop3 ) (1.5)

for ai ∈ D(Ki ) and ξ ∈ L2(A). Finally, the isomorphism intertwining (1.4) and (1.5) is
given by the modular conjugation J : L2(A) → L2(A). ��

We now investigate what happens when we glue two vacuum sectors along a pair
of intervals. Instead of viewing the vacuum sector H0(S, D) as being associated to a
bicolored circle S as in [BDH19, Notation 1.14], we shall think of it as being associated
to a bicolored disk:

bicolored circle

≡
bicolored disk

This is merely a change of notation, not of content. (Note that, as in [BDH19], the Hilbert
space H0(S, D) is only well defined up to non-canonical isomorphism.)
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Given two genuinely bicolored disks Dl , Dr , we investigate two ways of gluing
them together into annulus. Decompose each of their boundaries into four intervals
Sl := ∂Dl = I1 ∪ · · · ∪ I4 and Sr := ∂Dr = I5 ∪ · · · ∪ I8, where I1, I3, I5, I7 are
genuinely bicolored, I4, I6 are white, and I2, I8 are black. If we glue Dl to Dr along
diffeomorphisms I1 ↔ I5 and I3 ↔ I7, we get the following bicolored annulus:

I3

I2

I1

I4

I5

I8

I7

I6

Dl Dr

�

Dl∪Dr

(1.6)
If D is a finite defect, then the action of D(I1) ⊗alg D(I3) on H0(Sl , D) extends to
the spatial tensor product D(I1) ⊗̄ D(I3). Similarly, the action of D(I5) ⊗alg D(I7) on
H0(Sr , D) extends to D(I5) ⊗̄ D(I7). Identifying D(I5)⊗̄D(I7) with D(I1)⊗̄D(I3)op

via the diffeomorphism, we can then associate a Hilbert space to the annulus (1.6) as
follows:

H0(Sl , D) �
D(I5)⊗̄D(I7)

H0(Sr , D) = H0(Sl , D) �
D(I5)

H0(Sr , D) �
D(I3)

Here we used cyclic fusion, see [BDH19, Appendix B.III].
Consider now the slightly different situation where I2, I4, I6, I8 are genuinely bi-

colored, I1, I5 are white, and I3, I7 are black. Once again, we glue Dl to Dr along two
diffeomorphisms I1 ↔ I5 and I3 ↔ I7

I3

I2

I1

I4

I5

I8

I7

I6

Dl Dr

�

Dl∪Dr

(1.7)
and we associate a Hilbert space to this annulus:4

H0(Sl , D) �
A(I5)⊗̄B(I7)

H0(Sr , D) = H0(Sl , D) �
A(I5)

H0(Sr , D) �
B(I3)

The next lemma describes the structure of the Hilbert spaces associated to the an-
nuli (1.6) and (1.7):

Lemma 1.8. Let ADB be a finite irreducible defect, and let Sl , Sr , I1, . . . , I8 be either
as in (1.6) or as in (1.7). Let also Sb := I2 ∪ I8 and Sm := I4 ∪ I6. Then H0(Sm, D) ⊗
H0(Sb, D) is a direct summand of

Hann := H0(Sl , D) �
D(I5)

H0(Sr , D) �
D(I3)

in a way compatible with the actions of D(J ) for all J ⊂ Sb and J ⊂ Sm. Moreover,
H0(Sm, D) ⊗ H0(Sb, D) appears with multiplicity 1 inside Hann. (In the case of situa-
tion (1.6), by definition H0(Sm, D) = H0(Sm,A) and H0(Sb, D) = H0(Sb,B); in this
case, we also require that A and B be irreducible.)

4 We expect this Hilbert space to be independent of the way we decompose the annulus (for instance, of
the number of pieces in the decomposition), but we do not address this independence here.
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Proof. Let A := D(I2) ⊗̄ D(I4), B := (D(I1) ⊗̄ D(I3))op ∼= D(I5) ⊗̄ D(I7), and
C := (D(I6) ⊗̄ D(I8))op, and let us abbreviate

Hl := H0(Sl , D), Hr := H0(Sr , D), Hb := H0(Sb, D), Hm := H0(Sm, D).

Since I2, I4, I6, I8 cover Sm ∪ Sb and D is (and if needed A and B are) irreducible, the
Hilbert space Hm ⊗ Hb is an irreducible A-C-bimodule. We need to show that

homA,C (Hm ⊗ Hb, Hann) = homA,C (Hm ⊗ Hb, Hl �B Hr ) (1.9)

is one-dimensional.
The bimodule AHl B is dualizable [BDH19, Propostion 3.18]. Since D is a finite

defect, Lemma 1.2 identifies its dual as Ȟl := H0(−Sl , D). By the fundamental property
of duals (Frobenius reciprocity), we can therefore rewrite (1.9) as

homB,C
(
Ȟl �A (Hm ⊗ Hb), Hr

)
.

By [BDH17, Lemma A.4] and [BDH19, Lemma 1.15] Ȟl �A (Hm ⊗ Hb) is isomorphic
to H0(Sr , D). The above expression therefore reduces to homB,C (Hr , Hr ), which is
one-dimensional by the irreducibility of the defect D. ��

1.B. A Peter–Weyl theorem for defects. We now prove that there are finitely many iso-
morphism classes of irreducible D-D-sectors (also referred to simply as ‘D-sectors’)
for a finite defect D, and that every such irreducible sector is finite. This is the analog
for sectors between defects of the corresponding fact for representations of conformal
nets, and the proof follows the structure of the proof for nets [BDH15, Theorem 3.14].

Let S be a bicolored circle. Recall that an S-sector of D is a Hilbert space equipped
with actions of the algebras D(I ) for all bicolored subintervals I of S, subject to the
conditions (0.3). As in [BDH15, §1.B], given a D-sector K (on the standard bicolored
circle) and a bicolored circle S, we write K (S) for the S-sector ϕ∗K , where ϕ : S → S1

is any bicolored diffeomorphism from S to the standard circle. This sector is well defined
up to non-canonical isomorphism, by the same argument as in the proof of [BDH15,
Proposition1.14].

Theorem 1.10. Let ADB be a finite irreducible defect between finite conformal nets.
Then all D-sectors are direct sums of irreducible ones, and all irreducible D-sectors
are finite. Moreover, there are only finitely many isomorphism classes of irreducible
D-sectors.

Proof. Let Sl , Sr , Sb, Sm and I1, I2, . . . , I8 be as follows:

I3 I7

I2

I1 I5

I4 I8I6
Sl SrSm

Sb

(1.11)

and let Hl = H0(Sl , D), Hr = H0(Sr , D), Hb = H0(Sb, D), Hm = H0(Sm, D), and

Hann := Hl �A(I5) Hr �B(I3) . Let also
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A := D(I2 ∪ I4), B := (A(I1) ⊗̄B(I3))
op ∼= A(I5) ⊗̄B(I7), C := D(I6 ∪ I8)

op,

Al := D(I2), Am := D(I4)
op, Cm := D(I6)

op, Cr := D(I8).

Since AHl B and BHrC are dualizable bimodules, Hann = Hl �B Hr is dualizable as an
A-C-bimodule. It therefore splits into finitely many irreducible summands, by Lemma
4.10 and decomposition (5.9) in [BDH14].

Let us now consider Hann with its actions of D(I ) for I ∈ INTSb◦•. The von Neu-
mann algebra generated by those algebras on Hann has a finite-dimensional center, since
otherwise would contradict the fact that AHannC splits into finitely many irreducible
summands. We can thus write Hann as a direct sum of finitely many factorial Sb-sectors
of D:

Hann = K1(Sb) ⊕ · · · ⊕ Kn(Sb). (1.12)

Here K1, . . . , Kn are D-sectors, which we transfer to Sb bymeans of an arbitrary diffeo-
morphism S1 ∼= Sb. (As in the situation without defects [BDH15, Section 3.2], a sector
is called factorial if its endomorphism algebra is a factor.)

Given an arbitrary factorial sector K , we now show that there exists a Ki in the above
list to which K is stably isomorphic, i.e., such that K ⊗ 
2 ∼= Ki ⊗ 
2. Let us introduce
the bicolored circles S2 := I2 ∪∂ I2 −I2 and S4 := I4 ∪∂ I4 −I4. We have isomorphisms
K (S2) �Al Hl ∼= K (Sl) ∼= Hl �Am K (S4) of Sl -sectors (constructed as in [BDH19,
Lemma 1.15]). Fusing with Hr over B, we get an isomorphism

K (S2) �Al Hann ∼= Hann �Am K (S4).

Here we used that, by the definition of cyclic fusion, we can also construct Hann as
Hl �B Hr [BDH19, Appendix B.III]. By Lemma 1.8, it follows that

K (Sb) ⊗ Hm ∼= (K (S2) �Al Hb) ⊗ Hm
∼= K (S2) �Al (Hb ⊗ Hm)

⊂ K (S2) �Al Hann
∼= (K (S2) �Al Hl) �D(I5)⊗D(I3)op Hr
∼= (Hl �Al K (S4)) �D(I5)⊗D(I3)op Hr ∼= Hann �Am K (S4).

Since D is irreducible, Am is a factor, so K (S4) and L2Am are stably isomorphic as
Am-modules, and we get the following (non-canonical) inclusion of Sb-sectors of D:

K (Sb) ⊗ 
2 ∼= K (Sb) ⊗ Hm ⊗ 
2 ⊂ Hann �Am K (S4) ⊗ 
2

∼= Hann �Am L2Am ⊗ 
2 ∼= Hann ⊗ 
2,

where the first equality is induced by an arbitrary Hibert space isomorphism 
2 ∼=
Hm ⊗ 
2. The sector K (Sb) is factorial. It therefore maps to a single summand Ki ⊗ 
2

of Hann ⊗ 
2. It follows that K and Ki are stably isomorphic. In particular, this shows
that there are at most finitely many stable isomorphism classes of factorial D-sectors on
Sb.

By Lemma A.1, any D-sector can be disintegrated into irreducible ones. As a conse-
quence, if there existed a factorial sector of type II or III, then (as in [KLM01, Corollary
58]) there would be uncountably many non-isomorphic irreducible sectors. This is im-
possible, and so all factorial sectors must be of type I .
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We now show all irreducible D-sectors are finite. Let us go back to Hann and analyze
it as a {D(I )}

I∈INTSb◦•
- {D(I )}I∈INTSm◦• -representation. Since each summand Ki (Sb) in

the decomposition (1.12) is a type I factorial D-sector, we can write it as Li ⊗ Mi ,
where Li is an irreducible representation of {D(I )}

I∈INTSb◦•
, and the multiplicity space

Mi carries a residual action of {D(I )}I∈INTSm◦• . The decomposition (1.12) then becomes

Al ⊗̄ Am
(Hann) Cr ⊗̄Cm

∼=
⊕

i

Al Li Cr ⊗ Am Mi Cm .

Since Hann is a dualizable A-C-bimodule, the bimodules Al LiCr must also be dualizable.
This finishes the argument, as any irreducible D-sector on Sb is isomorphic to one of
the Li . ��

Given a finite irreducible defect D, let �D be the finite set of isomorphism classes of
irreducible D-sectors. For everyλ ∈ �D ,wepick a representative Hλ of the isomorphism
class, which we draw as follows:

λ

The set �D has an involution λ �→ λ̄ given by sending a Hilbert space Hλ to its
complex conjugate Hλ̄

∼= Hλ, with actions of D(I ) given by

aξ := A( j)(a∗)ξ ,

where j : S1 → S1 is the reflection in the horizontal axis (which is color preserving).
Note that the isomorphism Hλ̄

∼= Hλ is by no means canonical—see the discussion in
[BK01, Remark2.4.2].

The following Peter–Weyl theorem for defects is analogous to a corresponding
annular-sector decomposition theorem for conformal nets by Kawahigashi–Longo–
Müger [KLM01, Theorem 9], cf also [BDH15, Theorem 3.23]:

Theorem 1.13. Let D be a finite irreducible defect, let Sl , Sr , Sm, Sb be as in (1.11),
and let

Hann := H0(Sl , D) �
A(I5)

H0(Sr , D) �
B(I3)

We then have a non-canonical isomorphism

Hann ∼=
⊕

λ∈�D

Hλ(Sm) ⊗ Hλ̄(Sb) (1.14)

of (Sm � Sb)-sectors. We draw this isomorphism as

∼=−→
⊕

λ∈ΔD

λ ⊗ λ̄
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Proof. Let Hl , Hr , A, Al , Am , B, C , Cm , Cr be as in the proof of Theorem 1.10, and let
Ȟl := H0(−Sl , D) be the dual bimodule to AHl B (see Lemma 1.2).

The Hilbert space Hann = Hl �B Hr is a finite A-C-bimodule and therefore splits
into finitely many irreducible summands. By the argument in the proof of Theorem 1.10,
each irreducible summand is the tensor product of an irreducible D-sector on Sm and an
irreducible D-sector on Sb. So we can write Hann as a direct sum

Hann ∼=
⊕

λ,μ∈�D

Nλμ Hλ(Sm) ⊗ Hμ(Sb)

with finite multiplicities Nλμ ∈ N.
Given λ,μ ∈ �D , we now compute Nλμ. Let K be the vertical fusion of Hλ and

Hμ. By slight abuse of notation, we abbreviate Hλ := Hλ(Sm), Hμ := Hμ(Sb), and
K := K (Sr ). We then have

homA,C
(
Hλ ⊗ Hμ, Hann

) = homA,C
(
Hλ ⊗ Hμ, Hl �B Hr

)

= homB,C
(
Ȟl �A (Hλ ⊗ Hμ), Hr

)

= homB,C
(
Hλ �Aop

m
Ȟl �AlHμ, Hr

)

= homB,C
(
K , Hr

)

=
{
C if μ = λ̄

0 otherwise.

If follows that Nλμ = δλ̄μ. ��
Remark 1.15. The isomorphism (1.14) is non-canonical. Actually, it doesn’t even make
sense to ask whether or not it is canonical since the right-hand side of the equation is
only well defined up to non-canonical isomorphism.

Corollary 1.16. Let Sl , Sr , Sb, Sm and I1, I2, . . . , I8 be as in (1.11). Then the algebra
generated by D(I4) and D(I6) on Hann is canonically isomorphic to

⊕
λ∈�D

B(Hλ(Sm,

D)). Moreover, there is a non-canonical isomorphism

Hann �(D(I4)∨D(I6))op H0(Sm, D) ∼= H0(Sb, D) (1.17)

which we represent as follows:

∼=

Proof. By the isomorphism (1.14), the Hilbert space Hann, when viewed as a repre-
sentation of D(I4) ⊗alg D(I6), is a direct sum of copies of Hλ(Sm), each one oc-
curring with infinite multiplicity (more precisely with multiplicity dim(Hλ̄(Sb))). Be-
cause each Hλ(Sm) is irreducible as a representation of D(I4) ⊗alg D(I6), the von
Neumann algebra generated by D(I4) and D(I6) on Hann is a direct sum of type
I factors. The isomorphism (1.17) follows from the decomposition (1.14) because
Hλ(Sm) �(D(I4)∨D(I6))op H0(Sm, D) ∼= δλ,0C. ��
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1.C. Extending defects to bicolored 1-manifolds. In [BDH17, Theorem 1.3], we ex-
tended the domain of definition of a conformal net from the category of intervals to
the category of all compact 1-manifolds (where the morphisms are embeddings that
are either orientation preserving or orientation reversing). In [BDH19, Eq. 1.34], we
extended a defect to take values on disjoint unions of intervals. We now further extend a
defect to all compact bicolored 1-manifolds, with an arbitrary number of color-change
points. This extension will be useful when we construct the unit and counit sectors for
adjunctions of defects, because the composite of a defect and its adjoint can be naturally
reexpressed as the value of the defect on an interval with two color-change points.

Definition 1.18. A bicolored 1-manifold is a compact 1-manifold M (always oriented),
possibly with boundary, equipped with two compact submanifolds M◦, M• ⊂ M such
that M◦ ∩ M• consists of finitely many points. Moreover, each point of M◦ ∩ M• should
be equipped with a local coordinate (−ε, ε) ↪→ M that sends (−ε, 0] to M◦ and [0, ε)
to M•.

Given a bicolored 1-manifold M , we pick a decomposition M = M0 ∪ M1 such that
P := M0 ∩ M1 has finitely many points, none of which is a color-change point. Every
connected component ofM0 andM1 should be an interval, and should contain atmost one
color-change point. Pick local coordinates around P , and define Ni := (Mi ×{1})∪Q ⊂
M × [0, 1], where Q := P × [0, 1] inherits its bicoloring from P . The manifolds Ni
and Q are oriented so as to make the inclusions Mi → Ni and Q → N1 orientation
preserving; the inclusion Q → N0 is then orientation reversing. The local coordinates
around P induce a smooth structure on Ni . As in [BDH19, Eq. 1.34], we define the defect
on a disjoint union of bicolored intervals by D(I1 ∪ · · · ∪ In) := D(I1)⊗̄ · · · ⊗̄D(In).
We then define the defect on any bicolored 1-manifold as follows.

Definition 1.19. Given a defect D and a bicolored 1-manifold M , we define the value
of D on M to be

D(M) := D(N0) �D(Q) D(N1). (1.20)

(See [BDH19, Section 1.E & Appendix B.IV] for discussion and the definition of the
relative fusion product � of von Neumann algebras.)

In [BDH17, Corollary 1.13], we showed that the value of a conformal net on a 1-
manifoldwas independent of the choice of decomposition used in the definition; the same
argument generalizes to the situation here, showing that the algebra (1.20) is independent
(up to canonical isomorphism) of the choice of decomposition M = M1 ∪ M2.

Here is an example of the above definition:

D

( )

:= D

( )

�
D
( ) D

( )

In Sect. 2.C, this extension of a defect to take values on all bicolored 1-manifolds will
allow a computationally convenient expression for the composite of a defect and its dual.

Proposition 1.21. LetADB be a finite defect. Let S1 be the standard bicolored circle, let
I ⊂ S1 be the bicolored 1-dimensional submanifold indicated in the following picture

I
S1

and let D(I ) be as inDefinition 1.19. Then the natural action of D(I∩S1�)⊗alg D(I∩S1⊥)

on H0(D) extends to a normal (that is, ultraweakly continuous) action of D(I ).
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Proof. We first address the case when D is irreducible. By definition, the algebra D(I )
acts (normally) on

Fusing in , we can use the fact that a vacuum sector of a conformal net fuses with
a vacuum sector of a defect to a vacuum sector of the defect [BDH19, Lemma 1.15] and
the fact that cyclic fusion is cyclically invariant [BDH17, Appendix A] to see that D(I )
also acts on

Hann := ∼= ∼= �
A( )

,

where the second picture denotes the cyclic fusion of , , and , as
defined in [BDH17, Appendix A].

By Corollary 1.16, the algebra generated by D
( )

and D
( )

in B(Hann)

admits a natural right action on . Since the action of D(I ) on Hann commutes with

that of D
( ) ∨ D

( )
, the algebra D(I ) also acts on

�
D

)
∨D

))op

By (1.17), the latter is isomorphic to H0(D).
When D is not irreducible, write it as a sum D1 ⊕ · · · ⊕ Dn of irreducible defects.

We then have H0(D) = ⊕
i H0(Di ), and

D(I ) = D
( )

= D
( )

�
B( )

D
( )

=
⊕

i, j

Di

( )
�

B( )
Dj

( )

The subalgebra Di (I ∩ S1�) ⊗alg D j (I ∩ S1⊥) ⊂ D(I ) acts as zero on H0(Dk) unless
i = j = k, in which case the first part of the proof applies and it extends to a normal
action of Di (I ) on H0(Di ). Thus the action of D(I ∩S1�)⊗alg D(I ∩S1⊥) = ⊕

i, j Di (I ∩
S1�) ⊗alg D j (I ∩ S1⊥) on

⊕
H0(Di ) extends to a normal action of D(I ). ��
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2. A Characterization of Dualizable Conformal Nets

2.A. Involutions on nets, defects, sectors, and intertwiners. The 3-category CN is
equipped with four antilinear involutions ∗ , ¯ , † , op, where the i th involution is con-
travariant at the level of (4− i)-morphisms, and covariant at all other levels. The second
and third involutions will provide adjoints for finite sectors and defects respectively, and
the fourth involution will provide the dual of a conformal net—that the involutions do
indeed give adjoints, respectively duals, is proven in Sect. 2.C.

The first involution ∗ acts trivially on the 0, 1, and 2-morphisms, and sends a 3-
morphism f : H → K to its adjoint f ∗ : K → H (in the sense of maps between
Hilbert spaces).

The second one ¯ acts trivially on 0 and on 1-morphisms. It sends a D-E-sector
(H, {ρI }), where the homomorphisms ρI are given by

ρI : A(I ) → B(H) for I ∈ INTS1,◦ ρI : D(I ) → B(H) for I ∈ INTS1,�
ρI : B(I ) → B(H) for I ∈ INTS1,• ρI : E(I ) → B(H) for I ∈ INTS1,⊥

to the complex conjugate Hilbert space H̄ and E-D-sector structure given by

ρ̄I : A(I ) → B(H̄) for I ∈ INTS1,◦ ρ̄I : E(I ) → B(H̄) for I ∈ INTS1,�
ρ̄I : B(I ) → B(H̄) for I ∈ INTS1,• ρ̄I : D(I ) → B(H̄) for I ∈ INTS1,⊥

(2.1)

where ρ̄I (a) := ρ j (I )( j∗(a∗)), and j : z �→ z̄ is the reflection in the horizontal axis.Here,
j∗ stands for either A( j), E( j), B( j), or D( j). The involution ¯ sends a 3-morphism
f : H → K to its complex conjugate f̄ : H̄ → K̄ .

The third involution † acts trivially on objects. Given a bicolored interval I , let I rev

denote the same interval with reversed bicoloring, that is, (I rev)◦ = I• and (I rev)• = I◦.
The orientation of I rev is the same as that of I , but the local coordinate is negated.
The reversed defect of ADB is the defect BD†A defined by D†(I ) = D(I rev). For a
D-E-sector H , the corresponding D†-E†-sector H† is the complex conjugate of H ,
with structure maps

ρ
†
I : B(I ) → B(H†) for I ∈ INTS1,◦ ρ

†
I : D†(I ) → B(H†) for I ∈ INTS1,�

ρ
†
I : A(I ) → B(H†) for I ∈ INTS1,• ρ

†
I : E†(I ) → B(H†) for I ∈ INTS1,⊥

given by ρ
†
I (a) = ρr(I )(r∗(a∗)), where r : z �→ −z̄ is now the vertical reflection.

3-morphisms are sent to their complex conjugates.
The fourth involution op sends A ∈ CN to the a conformal net Aop(I ) := A(I )op.

Similarly, it sends a morphism ADB to theAop-Bop-defect Dop(I ) := D(I )op. A D-E-
sector (H, {ρI }) is sent to the complex conjugate Hilbert space, with actions ρ

op
I (aop) :=

ρI (a∗). Finally, 3-morphisms go to their complex conjugates.

Remark 2.2. The existence of these four involutions ensures that any duality or adjunc-
tion in CN is automatically ambidextrous, that is, it is both a left and a right duality or
adjunction. (When we say ‘X has ambidextrous adjoint (or dual) Y ’, we mean that Y
admits both the structure of a left and the structure of a right adjoint (or dual) to X .)
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2.B. The snake interchange isomorphism for defects. To establish, in the next section,
that the reversed defect BD†A is an (ambidextrous) adjoint of the defect ADB, we will
need the following variant of the sector interchange isomorphism [BDH19, Eq. 6.25].

To simplify the maneuvers involved in this interchange isomorphism, here and for
the remainder of the paper, we use a model for the vertical composition of sectors that
fuses sectors along one-quarter of their boundary:

H

K

This is by contrast with the model we used previously, in [BDH19], which involved
fusing along half of the boundary of each sector. The equivalence between these two
fusions is discussed in Appendix B.

LetA, B, C be conformal nets, let ADB, BEC , BFC , AGC be defects, let H be an F-
E-sector, and let K be a D�BE -G -sector. We are interested in two ways of evaluating
the diagram

A B C

G

D E

F

⇓ H

⇓ K

(2.3)

i.e., of fusing the three sectors

A

D

D

H0(D) B C

F

H

E

C

G

KA

.

Let us name and orient the relevant intervals I1, I2, . . ., I10 as indicated here:

I1

I2
I3

I4

I5 I6

I7

I8

I9

I10

.

All of them are copies of the standard interval [0, 1]. Let also Sl := Ī1 ∪ Ī2 ∪ I5 ∪ I4,
Sr := I2 ∪ I3 ∪ I7 ∪ I6, Sb := I8 ∪ I9 ∪ I10 ∪ Ī3 ∪ I1, Slr := Ī1 ∪ I3 ∪ I7 ∪ I6 ∪ I5 ∪ I4,
Slb := I8 ∪ I9 ∪ I10 ∪ Ī3 ∪ Ī2 ∪ I5 ∪ I4, and Slrb := I8 ∪ I9 ∪ I10 ∪ I7 ∪ I6 ∪ I5 ∪ I4,
where we have used bars to indicate reverse orientation.
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Lemma 2.4. There is a non-canonical unitary isomorphism
(
H0(Sl , D) �D(I1) K

)
�

B(I2)∨E(I3)
H ∼= (

H0(Sl , D) �B(I2) H
)

�
D(I1)∨E( Ī3)

K , (2.5)

equivariant with respect to A(I4), D(I5), E(I6), C(I7), A(I8), G(I9), and C(I10).

Proof. For fixedA, B, C, D, E , G, K , the desired isomorphism (2.5) can be thought of
as a natural transformation

E
(
I2 ∪ I3

)
-modules D

(
I4 ∪ I5

) ⊗alg G
(
I8 ∪ I9 ∪ I10

)
-modules (2.6)

between functors of the variable H . The fact that (2.5) commutes with the action of
F(I6 ∪ I7) is then encoded in the naturality of (2.6).

Since H0(E) is a faithful E(I2∪ I3)-module, it is enough, by [BDH19, LemmaB.24],
to construct the isomorphism (2.5) for H = H0(E) and check that it commutes with the
action of F(I6 ∪ I7). Pick involutions ϕ ∈ Diff−(Sl), ψ ∈ Diff−(Sr ), χ ∈ Diff−(Slr )
such that

ϕ(I4 ∪ I5 ∪ I2) = I1, ψ(I6 ∪ I7) = I2 ∪ I3, χ(I4 ∪ I5 ∪ I6 ∪ I7) = I1 ∪ I3,

and corresponding (non-canonical) unitaries u : H0(D)
∼=−→ L2(D(I1)), v : H0(E)

∼=−→
L2(E(I2 ∪ I3)), and w : H0(D �B E)

∼=−→ L2(D(I1) ∨ E(I3)), as in [BDH19, Lemma
1.13]. Let also

α := ϕ|I4∪I5∪I2 ∪ IdI8∪I9∪I10∪I3 : Slb → Sb,

β := ψ |I6∪I7 ∪ IdI5∪I4∪I8∪I9∪I10 : Slrb → Slb,

γ := χ |I4∪I5∪I6∪I7 ∪ IdI8∪I9∪I10 : Slrb → Sb.

We may assume that ϕ, ψ , and χ are chosen so that α ◦ β = γ . The isomorphism (2.5)
for H = H0(E) can then be written explicitly:

(
H0(D) �D(I1) K

)
�E(I2∪I3) H0(E)

u⊗1−−→ (
L2(D(I1)) �D(I1) K

)
�E(I2∪I3) H0(E)

∼=−→ α∗K �E(I2∪I3) H0(E)
1⊗v−−→ α∗K �E(I2∪I3) L

2(E(I2 ∪ I3))
∼=−→ β∗α∗K = γ ∗K

∼=−→ L2(D(I1) ∨ E( Ī3)
)
�D(I1)∨E( Ī3) K

w−1⊗1−−−−→ H0(D �B E) �D(I1)∨E( Ī3) K
�⊗1−−→ (

H0(D) �B(I2) H0(E)
)
�D(I1)∨E( Ī3) K ,

where � denotes the “1 � 1-isomorphism” constructed in [BDH19, Theorem 6.2]. ��
Generalizing (2.3), we now consider this situation:

A B C D

Q

P

D E F

⇓K

⇓H

(2.7)
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which corresponds (using Appendix B) to the following configuration of sectors:

A

D

D

H0(D) B D

P

H

E

Q

KA C D

F

F

H0(F)

.

We name the relevant intervals I1, I2, . . ., I13:

I1

I2
I3

I4

I5

I6

I7 I8

I9

I10

I11 I12

I13

(2.8)

Once again, all these intervals are copies of the standard interval [0, 1].
Lemma 2.9. Let A, B, C, . . ., K be as in (2.7). Then there is a non-canonical unitary
isomorphism

H0(D) �
D(I1)∨B(I2)

(
K �E(I3) H

)
�

C(I4)∨F(I5)
H0(F)

∼= (
H0(D) �B(I2) H

)
�

D(I1)∨E( Ī3)∨F(I5)

(
K �C(I4) H0(F)

) (2.10)

that is equivariant with respect to the actions of the algebrasA(I6), D(I7), P(I8),D(I9),
A(I10), Q(I11), F(I12), and D(I13).

Proof. Fix A, B, C, D, D, E , F . We shall construct a natural transformation

(E �C F)
( )

-modules × (D �B E)
( )

-modules

D
(
I7 ∪ I6

) ⊗alg F
(
I12 ∪ I13

)
-modules,

where (E �C F)
( ) = E(I2∪ I3)∨ F( Ī5) and (D�B E)

( ) = D(I1)∨ E( Ī3∪ Ī4),
as in [BDH19, Definition1.43]. The isomorphism (2.10) is the value of that natural
transformation on the object (H, K ).

By [BDH19, LemmaB.24], it is enough to construct the above natural transformation
for the pair (H = H0(E �C F), K = H0(D �B E)). In that case, it is given by

H0(D) �
D(I1)∨B(I2)

(
H0(D �B E) �

E(I3)
H0(E �C F)

)
�

C(I4)∨F(I5)
H0(F)

1⊗1⊗�⊗1−−−−−−→
H0(D) �

D(I1)∨B(I2)

(
H0(D �B E) �

E(I3)
H0(E) �

C
H0(F)

)
�

C(I4)∨F(I5)
H0(F)
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∼=
(

H0(D) �
D(I1)∨B(I2)

(
H0(D �B E) �

E(I3)
H0(E)

))

�
C

H0(F) �
C(I4)∨F(I5)

H0(F)

Lemma 2.4 ⊗1⊗1−−−−−−−−−−→
((

H0(D) �
B(I2)

H0(E)
)

�
D(I1)∨E( Ī3)

H0(D �B E)

)

�
C

H0(F) �
C(I4)∨F(I5)

H0(F)

∼=
((

H0(D) �
B(I2)

H0(E) �
C

H0(F)
)

�
D(I1)∨E( Ī3)

H0(D �B E)

)

�
C(I4)∨F(I5)

H0(F)

1⊗�−1⊗1⊗1−−−−−−−→
∼=

((
H0(D) �

B(I2)
H0(E �C F)

)
�

D(I1)∨E( Ī3)
H0(D �B E)

)

�
C(I4)∨F(I5)

H0(F)

Lemma 2.4−−−−−−→
(
H0(D) �

B(I2)
H0(E �C F)

)
�

D(I1)∨E( Ī3)∨F(I5)

(
H0(D �B E) �

C(I4)
H0(F)

)
.

��

2.C. Finite nets are dualizable. We investigate the relationship of finiteness and dual-
izability for, in turn, sectors, defects, and nets.

Dualizability for sectors. Recall that all defects are assumed to be semisimple.

Proposition 2.11. A sector DHE has an adjoint (necessarily ambidextrous) if and only
if it is finite. In this case, the adjoint is canonically isomorphic to E H̄D.

Proof. If the sector DHE has an adjoint E KD , that adjoint sector provides the (am-
bidextrous) adjoint E(S1�)KD(S1⊥)op to the bimodule D(S1�)HE(S1⊥)op , ensuring that H is
finite.

Conversely, if H is a dualizable D(S1�)-E(S1⊥)op-bimodule then, by [BDH14, Corol-
lary6.12] and the fact that D and E are semisimple, its dual is canonically isomor-
phic to H̄ , with the E(S1⊥)op-D(S1�)-bimodule structure given by aξ̄b = b∗ξa∗. Iden-
tify the left action of E(S1⊥)op with a left action of E(S1�), and the right action of
D(S1�) with a left action of D(S1⊥) via the isomorphisms j∗ : E(S1⊥)op → E(S1�) and
j∗ : D(S1�)op → D(S1⊥); then extend these actions to the structure of an E-D-sector
on H̄ according to (2.1). The unit and counit bimodule intertwiners for the bimodule
duality serve, in fact, as sector intertwiners, providing E H̄D with the structure of an
adjoint sector to DHE . ��
By Remark 2.2, we have the following:

Corollary 2.12. A sector is dualizable if and only if it is finite.

Dualizability for defects. Given a bicolored interval I , we define the following two
bicolored manifolds I and I . The underlying manifold of I and of I are both given by
I◦ ∪ [0, 1] ∪ I•, and their bicolorings are

I ◦ = [0, 1], I • = I◦ ∪ I•, I ◦ = I◦ ∪ I•, I • = [0, 1].
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Here is an example illustrating the above concepts:

I

�
I

,

I

.

Let D be anA-B-defect. Definition 1.19 is made so as to provide an easy description of
D � D† and D† � D. They are given by

(
D �B D†)(I ) = D( I ) and

(
D† �A D

)
(I ) = D( I ), (2.13)

essentially by definition.

Proposition 2.14. Let A and B be finite conformal nets. Every finite defect ADB has
ambidextrous adjoint BD†A, and the unit and counit sectors of both the left and right
adjunctions are finite.

Proof. By Remark 2.2, it suffices to consider just one of the two adjunctions.
Let S1 be the bicolored manifold obtained by taking the standard circle S1, cutting it

open at i ∈ S1, and then glueing in a copy of [0, 1]. The black part of S1 is the interval
[0, 1] that is added on the top, and all the rest is white. Similarly, let S1 be the bicolored
manifold that is obtained by inserting a white interval at the location of −i ∈ S1, and
coloring all the rest black.

S1 : S1 :

By (2.13), a D �B D† - 1A -sector is the same thing as a {D(I )}I∈INT S1
-representation,

where INTS1 denotes the poset of subintervals I ⊂ S1, ∂ I ∩ S1• = ∅, that are allowed to
contain S1• in their interior, but that are not allowed to contain S1◦. Pick a color preserving
diffeomorphism ϕ from S1 to the standard bicolored circle. By Proposition 1.21, we can
use ϕ to induce the structure of a {D(I )}I∈INT S1

-representation on H0(D). That is the
counit sector r of our adjunction. Similarly, restricting H0(D) along a color preserving
diffeomorphism from S1to the standard bicolored circle provides a 1B -D†�AD -sector
s, which is the unit of our adjunction. The sectors r and s are finite by the finiteness
of any defect vacuum sector with respect to these boundary decompositions [BDH19,
Lemma 3.17].5

We now have to show that r and s satisfy the duality equations

⎛

⎜
⎜
⎜
⎝

A B A BD

1A

D

1B

D†

⇓ r

⇓ s

⎞

⎟
⎟
⎟
⎠

∼=

⎛

⎜
⎜
⎜
⎝

A B

D

D

⇓ 1D

⎞

⎟
⎟
⎟
⎠

5 This vacuum sector finiteness result [BDH19, Lemma 3.17] was stated for irreducible defects, but it also
holds for semisimple defects and in fact for arbitrary defects, using the direct integral decomposition [BDH19,
Lemma1.32].
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and

⎛

⎜
⎜
⎜
⎝

B A B AD†

1B

D†

1A

D
⇓ s

⇓ r

⎞

⎟
⎟
⎟
⎠

∼=

⎛

⎜
⎜
⎜
⎝

B A

D†

D†

⇓ 1D†

⎞

⎟
⎟
⎟
⎠

.

We only check the first equation, the second one being completely analogous. Let
I1, . . . , I13 be as in (2.8). By Lemma 2.9 and Appendix B, the left-hand side

A B A B⇓
⇓

is isomorphic to

H0(D) �
D(I1∪I2)

(
r �

D†(I3)
s
)

�
D(I4∪I5)

H0(D). (2.15)

Because the fusion of two vacuum sectors for a defect is again a vacuum sector for that
same defect [BDH19, Lemma 1.15], the middle term r �D†(I3) s is the vacuum sector
of D associated to I1∪I10 ∪ I11 ∪ Ī4 ∪ Ī5 ∪ I9 ∪ I8 ∪ I2. By two more applications of
that same lemma, we identify (2.15) with the identity sector on D. ��
Recall that all conformal nets and defects are assumed to be semisimple. Combining the
above proposition with Corollary 2.12, we have the following.

Corollary 2.16. Every finite defect between finite conformal nets is fully dualizable.

Dualizability for conformal nets. In [BDH18],we constructed a 3-categorywhose objects
are finite conformal nets, whose morphisms are defects, whose 2-morphisms are sectors,
and whose 3-morphisms are intertwiners.6 If A and B are conformal nets that are not-
necessarily finite, then, even though we do not know that they live in a 3-category, we
can still make sense of A and B being dual: specifically, B is the left dual of A if there
exist unit and counit defects A⊗BrC and C

sB⊗A such that (1A ⊗ s)�A⊗B⊗A (r ⊗ 1A)

and (s ⊗ 1B) �B⊗A⊗B (1B ⊗ r) are defects, and are equivalent (in the 2-category of
A-A-defects or B-B-defects) to the identity defects on A and B, respectively. (Note
that by convention both the tensor product ⊗ and the relative fusion product � have a
geometric, not functorial, composition order.)

Theorem 2.17. An arbitrary conformal netA has ambidextrous dualAop. IfA is finite,
then the unit and counit defects of both the left and right dualities are themselves finite.

Proof. By Remark 2.2, it is enough to discuss just one of the two dualities. We show
that A � Aop.

Given a bicolored interval, let I◦• := I◦ ∩ I•. It consists of one point if I is genuinely
bicolored, and it is empty otherwise. The counit defect A⊗AoprC and the unit defect
C
sAop⊗A are defined by

r : I �→ A(
I◦ ∪I◦• Ī◦

)
and s : I �→ A(

Ī• ∪I◦• I•
)
, (2.18)

6 Insisting that the conformal nets be finite allowed us to prove that the composition of two defects is again a
defect; we do not know if the composition of defects between arbitrary conformal nets is a defect, in particular
whether the composite satisfies the vacuum sector axiom [BDH19, Definition1.7, axiom (iv)].



22 A. Bartels, C. L. Douglas, A. Henriques

where the bar stands for orientation reversal. In pictures, this is:

r
( )

:= A
( )

and s
( )

:= A
( )

We now verify the two duality equations for r and s. We need to show that the fusions
(1A⊗s)�A⊗Aop⊗A (r⊗1A) and (s⊗1Aop)�Aop⊗A⊗Aop (1Aop ⊗r) are indeed defects,
and are equivalent to identity defects on A and Aop, respectively. Let I be a genuinely
bicolored interval. By [BDH17, Lemma1.12], the definition of the above fusions reduces
to

(
(1 ⊗ s) � (r ⊗ 1)

)
(I ) = A(

I◦ ∪{0} [0, 1] ∪{1} [0, 1] ∪{0} [0, 1] ∪{1} I•
)

(
(s ⊗ 1) � (1 ⊗ r)

)
(I ) = A(

Ī◦ ∪{0} [0, 1] ∪{1} [0, 1] ∪{0} [0, 1] ∪{1} Ī•
)
,

or perhaps more clearly

�→ A
( )

and �→ A
( )

.

These are isomorphic to the weak units on A and Aop, and therefore are defects; they
are equivalent to identity defects by [BDH19, Remark 1.40 & Example 3.5].

Assuming A is finite, we now proceed to show that the unit and counit defects are
finite. Let I1, . . . , I4 be as in (0.1); the intervals I1 and I3 are genuinely bicolored, I2
is white, and I4 is black. The actions of r(I1), r(I2), r(I3), r(I4) on the vacuum sector
H0(r) are conjugate to the actions of A(I1), A(I2) ⊗ A(I4), A(I3), and C on H0(A).
The condition of Definition 0.2 then holds by the split property of A.

By the same argument, one also shows that s is a finite defect. ��
From this theorem and Corollary 2.16, we have the following:

Corollary 2.19. A finite conformal net is fully dualizable.

In any n-category, a composition of fully dualizable 1-morphisms is again fully
dualizable; similarly a composition (either vertical or horizontal) of fully dualizable
2-morphisms is again fully dualizable. Thus, by Corollary 2.12, the collection of finite
sectors is closed under composition, and by Corollary 2.16 and Proposition 2.22 below,
the collection of finite defects is closed under composition. By direct inspection, the
collection of finite conformal nets is closed under tensor product.

Together, Corollaries 2.12, 2.16, and 2.19 establish the following:

Theorem 2.20. The 3-category of finite conformal nets, finite defects, finite sectors, and
intertwiners has all duals.

Applying the cobordism hypothesis (as before under the assumption that it applies to
the symmetric monoidal 3-category of conformal nets—see Footnote 3), we obtain the
corresponding topological field theories:

Corollary 2.21. Associated to any finite conformal netA, there is a 3-dimensional local
framed topological field theory with target the 3-category of conformal nets, whose value
on the positively framed point is the conformal net A.
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2.D. Dualizable nets are finite. In the preceding section we saw that the subcategory of
finite conformal nets, finite defects, finite sectors, and intertwiners has all duals. In this
section, we prove that that this subcategory is in fact the maximal subcategory of the
3-category of conformal nets that has all duals.

We already saw in Corollary 2.12 that a dualizable sector is necessarily finite. We
now show that a fully dualizable defect must be finite:

Proposition 2.22. Let A and B be finite conformal nets, and let ADB be a defect. If D
has an adjoint, then D is finite.

Proof. Let D∨ be the dual of D, and let r and s be the counit and unit sectors, so that

⎛

⎜
⎜
⎜
⎝

A B A BD

1A

D

1B

D∨

⇓ r

⇓ s

⎞

⎟
⎟
⎟
⎠

∼=

⎛

⎜
⎜
⎜
⎝

A B

D

D

⇓ 1D

⎞

⎟
⎟
⎟
⎠

.

In other words, with I1, . . . , I13 arranged as before

I1

I2
I3

I4

I5

I6

I7 I8

I9

I10

I11 I12

I13

we have
(
H0(D) �B(I2) s

)
�

D(I1)∨D∨( Ī3)∨D(I5)

(
r �A(I4) H0(D)

) ∼= H0(D). (2.23)

We check that D is finite by showing that the action on (2.23) of the algebra D(I7) ⊗alg
D(I12) extends to D(I7) ⊗̄ D(I12).

TheHilbert space r is invertible as aD(I1)∨D∨(I3)op∨A(I4)op - (D(I1)∨D∨(I3)op∨
A(I4)op)′-bimodule. Similarly, the Hilbert space s is an invertible B(I2) ∨ D∨(I3) ∨
D(I5)op - (B(I2) ∨ D∨(I3) ∨ D(I5)op)′-bimodule. Fusing (2.23) with the inverse bi-
modules r̄ and s̄, and using the (non-canonical) isomorphisms

L2(D(I1) ∨ D∨(I3)
op ∨ A(I4)

op) ∼= H0(D �B D∨)

L2(B(I2) ∨ D∨(I3) ∨ D(I5)
op) ∼= H0(D

∨ �A D),

we get the Hilbert space

(
H0(D) �B H0(D

∨ �A D)
)

�
D(I1)∨D∨( Ī3)∨D(I5)

(
H0(D �B D∨) �A H0(D)

)

∼= (
H0(D) �B H0(D

∨) �A H0(D)
)

�
D(I1)∨D∨( Ī3)∨D(I5)

(
H0(D) �B H0(D

∨) �A H0(D)
)
.

The latter is isomorphic to

H0(D) �B H0(D
∨) �A H0(D) (2.24)
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by the interchange isomorphism [BDH19,Section6.D].Tobeprecise, letting J1, J2 . . . , J10

be as in the following figure J1 J2 J3

J4J5J6

J7

J8 J9 J10

, the Hilbert space (2.24) is given

by H0(D) �B(J1) H0(D∨) �A(J2) H0(D).
The intervals J6 and J10 correspond to I7 and I12, respectively. Note that H0(D∨) is

split as aB(J1)-A(J2)-bimodule. Since the fusion of a split bimodule with any bimodule
is always split, it follows that (2.24) is split as a D(J6) ∨ A(J7) ∨ D(J8)-(D(J10) ∨
B(J3) ∨ D(J4))op-bimodule. In particular, it is split as a D(J6)-D(J10)op-bimodule. In
other words, the completion of D(J6) ⊗alg D(J10) is isomorphic to the spatial tensor
product D(J6) ⊗̄ D(J10). ��

Finally, we show that fully dualizable conformal nets must be finite. Even though
we do not have at hand a 3-category of all (not-necessarily-finite) conformal nets, we
do have enough of the structure of that hypothetical 3-category to make sense of the
notion of an arbitrary conformal net being fully dualizable, and therefore to make sense
of the statement that a fully dualizable not-necessarily-finite conformal net must in fact
be finite.

Recall from Theorem 2.17 that any (not-necessarily-finite) conformal net A has
an ambidextrous dual Aop with evaluation defect A⊗Aop rC and coevaluation defect
C
sAop⊗A. We call such a conformal net dualizable if these evaluation and coevalua-

tion defects r and s both have ambidextrous adjoints with dualizable unit and counit
sectors. This definition (specifically the notion of an adjunction for the evaluation and
coevaluation defects) is well posed because, for any not-necessarily-finite conformal net
B and any defects BDC and CEB, the fusion products D �C E and E �B D are indeed
defects (the first one by [BDH19, Theorem1.44]; the second one because a C-C-defect
is just a von Neumann algebra [BDH19, Proposition1.22]).

Theorem 2.25. Let A be a not-necessarily-finite conformal net, and let r and s be the
evaluation and coevaluation defects of the duality of A and Aop, given by r : I �→
A(

I◦ ∪I◦• Ī◦
)
and s : I �→ A(

Ī• ∪I◦• I•
)
. If the defect r has an adjoint r∨, and its counit

sector r�Cr∨ R 1A⊗Aop is dualizable, then the conformal net A is finite.

Note that the proof of this proposition requires particular care:A is not assumed to have
finite index, and so most of our previous results cannot be used here.

Proof. Recall that

r
( )

= A
( )

.

By assumption, r has an adjoint. Let r∨ be its adjoint C -(A ⊗ Aop)-defect. Let also
r�Cr∨ R 1A⊗Aop and 1C Sr∨�A⊗Aopr be the corresponding counit and unit sectors. We now
describe the algebras that act on the Hilbert spaces R and S.

Take the “standard circle” ∂[0, 1]2 and cut it open at the point ( 12 , 1). Call the two
resulting boundary points p and q. The resulting manifold, call it M , looks roughly like
this:

p q

.
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Now consider its doubling N := M ∪{p,q} M̄ :

N =
p q

, (2.26)

and let κ : N → N be the orientation reversing involution that exchanges M and M̄ and
fixes p and q. Given a κ-invariant neighborhood J of q, let Jκ := [0, 1] ∪ J/κ be the
bicolored interval with bicoloring given by (Jκ)◦ = [0, 1] and (Jκ)• = J/κ

J = � Jκ = . (2.27)

By definition of (r �C r∨)-(1A⊗Aop)-sector, the Hilbert space R has actions of A(J )

for every subinterval J ⊂ N that avoids q, and actions of r∨(Jκ) for every κ-invariant
interval J that contains q.

The algebras acting on S are somewhat easier to describe. Consider the double D :=
[0, 1]∪{0,1} [0, 1] of the standard interval [0, 1], and let κ : D → D be the involution that
exchanges the two copies of [0, 1]. The Hilbert space S has an action ofA(J ) for every
subinterval J ⊂ D that avoids the point 0, and an action of r∨(Jκ) for every κ-invariant
interval that contains 0.

We find it convenient to think of R as being associated to a saddle, and of S as being
associated to a cap:

R

r∨

S

r∨
.

The duality equation

⎛

⎜
⎜
⎜
⎝
A ⊗ Aop C A ⊗ Aop C

r

1A⊗Aop

r

1C

r∨

⇓ R

⇓ S

⎞

⎟
⎟
⎟
⎠

∼=

⎛

⎜
⎜
⎜
⎝
A ⊗ Aop C

r

r

⇓ 1r

⎞

⎟
⎟
⎟
⎠

then translates into the statement

R
r∨

S

∼= ,
(2.28)

where the left-hand side stands for the fusion of the Hilbert spaces S⊗ and

R �A( ) along the algebra

A( ) ⊗̄
(
r∨( )

�(A⊗Aop)( ) A
( ))
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associated to the manifold r∨ , and stands for 1r . The upper left in

(2.28) does not change anything, and so it can be safely ignored [BDH17, Lemma A.4].
Equation (2.28) then becomes

R
r∨

S

∼= ,

or, equivalently, after flattening the above 2-manifolds:

R
r∨ S ∼= . (2.29)

Let us name I1, . . . , I6 the intervals that appear in (2.29)

I6

I4

I1 I2 I3 I5 .

Let κ be the reflection in the horizontal axis, and let K := (I2)κ = [0, 1] ∪ I2/κ be
as in (2.27), bicolored by K◦ = [0, 1] and K• = I2/κ . We also abbreviate H0(I3 ∪
I4 ∪ I5 ∪ I6,A) by H0(A). The left-hand side of (2.29) stands for the fusion of S with
R �A(I6∪I4) H0(A) along the algebra

r∨(K ) ∨ A(I3) = r∨(K ∪ Ī6) �(A⊗Aop)(I6) A(I6 ∪ I3 ∪ I4),

where we identify (A ⊗ Aop)(I6) with A(I6 ∪ I4) using the reflection κ : Ī6 ∼=→ I4.
Recall [Lur11, Lecture 21] that a dagger functor F is called ‘completely additive’

if whenever the collection ια : Mα → M exhibit M as the direct sum
⊕

Mα , then
also F(ια) : F(Mα) → F(M) exhibit F(M) as

⊕
F(Mα). (We called such a functor

‘normal’ in [BDH19, Appendix B.VIII].) The functor

S �
r∨(K )∨A(I3)

(
− �A(I6∪I4)H0(A)

)
: r∨(K ∪ Ī6)-modules → A(I5)-modules

is completely additive. It is therefore given byConnes fusionwith a certain r∨(K∪ Ī6)op-
A(I5)-bimodule [Lur11, Lecture 21]. It then follows from (2.29) that the Hilbert space
R is invertible as r∨(K ∪ Ī6) - A(I1)op-bimodule.

Recall that R is finite as (r �C r∨)-(1A⊗Aop)-sector. In other words, it is finite as an

A
( )

⊗̄ r∨( )
- A

( )
-bimodule,
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where we again draw our intervals as in (2.26). We know from our previous discussion
that R is invertible as an

r∨( )
- A

( )
-bimodule.

Let Q be the inverse bimodule. Twisting it by a diffeomorphism ∼= , we

may treat Q as an

A
( )

- r∨( )
-bimodule.

By definition, it then satisfies

Q �
r∨( )

R ∼= H0

(

, A
)

.

We then also have (applying [BDH17, Lemma A.4])

(

L2(A( )) ⊗ Q

)

�
A( ) ⊗̄ r∨( )

R ∼= H0

(

, A
)

. (2.30)

Since L2
(A( )) ⊗ Q is an invertible

A
( )

⊗̄A
( )

- A
( )

⊗̄ r∨( )
-bimodule,

it follows from (2.30) and the finiteness of R that H0

(
, A

)
is finite as an

A
( )

⊗̄A
( )

- A
( )

-bimodule.

The latter is the definition of what it means for A to be finite. ��
Remark 2.31. Recall that strong additivity was assumed as part of our definition of
coordinate free conformal nets [BDH15, Definition1.1].

The above theorem implies that in a hypothetical 3-category of strongly additive not-
necessarily-finite-index conformal nets, a fully dualizable conformal net is necessarily
finite-index. We expect that even more is true, namely, that in a hypothetical 3-category
of not-necessarily-finite-index and not-necessarily-strongly-additive conformal nets, a
fully dualizable conformal net is finite-index (and hence strongly additive, by [LX04]).
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Appendix A: Disintegrating Sectors Between Finite Defects

Sectors between conformal nets disintegrate into irreducibles [KLM01]; in this section
we generalize that result to the case of sectors between defects, provided the defects are
finite.

Lemma A.1. Let A and B be conformal nets. Let ADB and AEB be irreducible finite
defects. Then any D-E-sector disintegrates into a direct integral of irreducible D-E-
sectors.

Proof. Pick a countable collection7 of pairs of bicolored subintervals {I−
i ⊂ I +i }i∈I

of the standard bicolored circle, with the closure of I−
i contained in the interior of I +i ,

satisfying the following conditions:

– I−
i is genuinely bicolored if and only if I +i is genuinely bicolored;

– for all p, q ∈ S1, either
a. there exists an i ∈ I such that p, q ∈ I−

i , or
b. there exist i, j ∈ I such that p ∈ I−

i , q ∈ I−
j , and I +i ∩ I +j = ∅.

For each i ∈ I, let A±
i denote the algebra A(I±

i ), B(I±
i ), D(I±

i ), or E(I±
i ) depending

on whether I±
i is white, black, contains the top defect point, or contains the bottom

defect point, respectively. Because D and E are finite, there exists, for each i ∈ I, a
type I factor Ni such that

A−
i ⊂ Ni ⊂ A+

i .

Let Ki ⊂ Ni denote the ideal of compact operators in Ni . For each i, j ∈ I such that
I +i ∩ I +j = ∅, let Ri j ⊂ Ki ∗ K j be the kernel of the projection Ki ∗ K j → Ki ⊗ K j

from the free product C∗-algebra to the tensor product C∗-algebra. For each i, j ∈ I
such that I +i ⊂ I−

j , let Si j ⊂ Ki ∗ K j be the kernel of the map Ki ∗ K j → Ki ∨N j K j ,
where Ki ∨N j K j is the subalgebra of N j generated by Ki and K j . Now define

A := (∗
i
Ki )/I

where I is the norm-closed ideal generated by Ri j for i, j ∈ I such that I +i ∩ I +j = ∅,
and Si j for i, j ∈ I such that I +i ⊂ I−

j .

7 In fact this collection can be chosen to be finite.

http://creativecommons.org/licenses/by/4.0/
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By Lemma A.2, the category of D–E-sectors is equivalent to the category of repre-
sentations of A whose restriction to each Ki is nondegenerate.

Because A is a separable C∗-algebra, the category Rep(A) admits direct integral de-
compositions. We need to show that given a representation H of A whose restriction to
eachKi is nondegenerate, and adirect integral decomposition (H, ρ) ∼= ∫

x∈X (Hx , ρx )dx ,
almost all of the integrands (Hx , ρx ) again have the property that their restriction
to each Ki is nondegenerate. Pick an increasing sequence of projections pin ∈ Ki ,
n ∈ N, that forms an approximate unit. By Lemma A.3, we have that 1 = sup ρi (pin) =
sup

∫ ⊕
ρx
i (pin) = ∫ ⊕ sup ρx

i (pin). This implies that for almost all x ,wehave sup ρx
i (pin) =

1. ��
Lemma A.2. The category of representation of A whose restriction to each Ki is non-
degenerate is equivalent to the category of D–E-sectors.

Proof. By construction, every D–E-sector yields an appropriate representation of A.
Now suppose that we have a representation of A on a Hilbert space H whose restriction
to each Ki is nondegenerate. By the classification of the representations of compact
operators, the action of Ki extends uniquely to a normal action ρi : Ni → B(H). For
every i, j ∈ I such that I +i ∩ I +j = ∅, the action of Ki ∗ K j descends to an action of
Ki ⊗K j ; by the ultraweak density ofKi in Ni , the actions of Ni and N j commute. Now,
for every i, j ∈ I such that I +i ⊂ I−

j , the action of Ki ∗ K j descends to an action of
Ki ∨N j K j . By [KLM01, Corollary 53], that action of Ki ∨N j K j extends uniquely to a
normal action ρ̃ j : N j → B(H), which agrees with ρ j by the ultraweak density of K j
inside N j . We therefore have a diagram

Ki ��

��

���
��

��
��

��
��

��
��

��
��

��
Ni

��

���
��
��
��
��
��
��
��

K j ��

������
�����

�����
�����

�����
����� Ki ∨N j K j ��

����
���

���
���

��
N j

���
��

��
��

B(H)

where all triangles are known to commute except possibly the triangle with edge Ni →
N j . The missing triangle commutes because Ki is ultraweakly dense in Ni . Therefore,
by [BDH19, Lemma 2.5], the actions ρi |A−

i
assemble into a D–E-sector structure on

H . ��
Lemma A.3. Let Hx be a measurable family of Hilbert spaces over a probability space
X. For each n ∈ N, let pn,x ∈ B(Hx ) be a measurable family of projections indexed by
the points of X. Assume furthermore that for every x ∈ X, the sequence {pn,x }n∈N is
increasing. Then ∫ ⊕

sup pn,x = sup
∫ ⊕

pn,x .

Proof. Let M ⊂ B(H) be the abelian von Neumann algebra on H := ∫ ⊕ Hx generated
by

∫ ⊕ f (x)pn,x for all f ∈ L∞(X) and n ∈ N. Note thatM ∼= L∞(Y ) for somemeasure
space Y . Since L∞(X) ⊂ M , we have a measurable map π : Y → X and we can write
M = ∫ ⊕

X Mx , where Mx = L∞(π−1(x)). The projections pn,x ∈ Mx correspond



30 A. Bartels, C. L. Douglas, A. Henriques

to measurable subsets Zn,x ∈ π−1(x), and the equation
∫ ⊕ sup pn,x = sup

∫ ⊕ pn,x
follows from the fact that

⊔
x
⋃

n Zn,x = ⋃
n
⊔

x Zn,x . ��

Appendix B: A Variant Vertical Composition

In [BDH19, §2.C], we defined the vertical composition of two sectors DHE and E KF
to be the fusion along half of each ‘circle’, H �E(S1�) K , with the evident remaining
actions of D and F :

DH �E KF = fusionv
(
A B

D

E

H , A B
E

F

K
)

=

D

H

F

K

. (B.1)

An alternative definition would be to fuse along a ‘quarter-circle’:

H

K

(B.2)

and to equip the resulting Hilbert space with the structure of a D-F-sector by means of
a diffeomorphism

ϕ : ∼=−→ ,

compatible with the local coordinates around the color-change points. Specifically, the
resulting sector is ϕ∗(H �E(I ) K ), where I is the top quarter of the circle (associated to
the sector K ), or equivalently the bottom quarter of the circle (associated to the sector
H ).

Lemma B.3. Let DHE and E KF be sectors, and let ϕ be a diffeomorphism from the
standard circle to the larger circle, as above. Then the vertical fusion H �E(S1�) K
from (B.1) is (non-canonically) isomorphic, as a D-F-sector, to the alternative fusion
ϕ∗(H �E(I ) K ) from (B.2).

Proof. Let ψ1 : S1 → S1 be a diffeomorphism which maps the lower semi-circle S1⊥ to
the lower quarter-circle (drawn here as an edge of a square) and satisfies ϕ|S1� = ψ1|S1� ,
letψ2 : S1 → S1 be a diffeomorphismwhichmaps the upper semi-circle S1⊥ to the upper
quarter-circle and satisfies ϕ|S1⊥ = ψ2|S1⊥ , and let uψ1 and uψ2 be unitaries implementing
these diffeomorphisms (these exist by [BDH19, Proposition1.10]). We assume without
loss of generality thatψ2 = j ◦ψ1 ◦ j , where j is the reflection along the horizontal axis
of symmetry. Then uψ1 � uψ2 maps H �E(S1�) K to H �E(I ) K , and is an isomorphism
of D-F-sectors H �E(S1�) K

∼= ϕ∗(H �E(I ) K ). ��
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