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Abstract: We consider the spectral and dynamical properties of one-dimensional quan-
tum walks placed into homogenous electric fields according to a discrete version of the
minimal coupling principle. We show that for all irrational fields the absolutely contin-
uous spectrum of these systems is empty, and prove Anderson localization for almost
all (irrational) fields. This result closes a gap which was left open in the original study
of electric quantum walks: a spectral and dynamical characterization of these systems
for typical fields. Additionally, we derive an analytic and explicit expression for the
Lyapunov exponent of this model. Making use of a connection between quantum walks
and CMV matrices our result implies Anderson localization for CMV matrices with
a particular choice of skew-shift Verblunsky coefficients as well as for quasi-periodic
unitary band matrices.

1. Introduction

Time-discrete quantum walks have recently gained a lot of attention from very different
points of view as a model in computer science, quantum physics and mathematics:
considered as the quantum evolution of a single particle with internal degree of freedom
on a lattice or graph in discrete time-steps and with bounded hopping length, they
can serve as the basis for single particle quantum simulators. In this context, quantum
walks have been shown to capture many single and few particle quantum effects such
as ballistic transport [4,6,34], decoherence [2,4,50], dynamical localization [3,39,40]
and the formation of bound states [1,48,52] both with regards to theoretical as well
as experimental physics in diverse architectures [41,45,47,49,51,59]. More recently,
quantumwalks have been shown to provide a testbed for symmetry protected topological
orderwhere the corresponding invariants can be shown to provide a complete topological
classification without assumptions on translation invariance [19–21,23].

Complementary to this quantum simulation point of view, quantum walks can be
seen as a generalization of classical random walks to the quantum regime. Here, the
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Table 1. Overview on the connection between the properties of the electric field�/(2π), its continued fraction
coefficients ci , and the propagation and the spectrum of the electric walk W�

Rational Almost rational Very irrational Almost all
Cont. fract. expansion terminates ci → ∞ rapidly ci bounded
Propagation Ballistic w. revivals Hierarchical Localized Anderson localization
σ(W�) σac(W�) σsc(W�) σpp(W�) σpp(W�)

Status Proved Proved Num. evidence Proved
The results for rational, almost rational and very irrational fields are proved in [24]. The main objective of this
manuscript is to prove the result in the last column where fields do not admit a characterization in terms of ci

increased ballistic spreading behaviour as compared to classical diffusion has inter-
esting algorithmic applications which include for example search algorithms, element
distinctness, quantum information processing and applications to the graph isomorphism
problem [5,9,25,26,46]. From a practical point of view it is hence important to ascer-
tain how experimental imperfections might change the performance of these algorithms.
Results with regard to spatial and temporal fluctuations in the coin parameters have been
obtained in a number of recent papers, showing decoherence effects that imply a transi-
tion from ballistic to diffusive spreading for temporal fluctuations [4,38], Anderson or
even dynamical localization in the case of time-independent disorder [3,39,40], as well
as diffusive spreading if both types of disorder are present [2].

In the following, we will be concerned with similar questions in the quasi-periodic
regime. In line with the investigation of simulable physical effects in discrete time,
electric and magnetic fields were recently introduced to the quantum walk setup using
a discrete analogue of the minimal coupling principle [22,24]. It has been found that
an external discrete electric field changes the spectral properties and the dynamical
behaviour of a given one-dimensional quantum walk dramatically [24]. Whereas for
rational fields Bloch-like oscillations are observed on short time scales before the bal-
listic behaviour dominates eventually, the case of irrational fields is more involved: it
was shown that irrational fields which are extremely well approximable by rational
ones lead to purely singular continuous spectrum and hierarchical motion whereas for
badly approximable fields like the Golden Ratio numerical studies suggest Anderson
localization, see the summary in Table 1.

Yet, the important question about the generic behaviour has been left open: while
the set of rational, extremely well approximable and badly approximable fields each
constitute a dense subset in the set of all fields they all have measure zero. This gap is
filled in the present work inwhichwe show that Lebesgue-typical fields lead toAnderson
localization, i.e. pure point spectrum with exponentially decaying eigenfunctions.

Proving localization statements for quasi-periodic systems has attracted a lot of atten-
tion over the last decades. At the center of this attention is the almost Mathieu oper-
ator, which is a tight-binding Hamiltonian with cosine potential and variable coupling
constant whose spectral and dynamical properties depend sensitively on the parameter
choices. For example, Anderson localization was proved for this operator (or general-
izations thereof) at large coupling and Diophantine frequencies for almost all offsets
in [31,54], and non-perturbatively in [11]. In contrast, in the critical case where the
operator describes the motion of a single particle in a perpendicular magnetic field the
spectrum is almost surely purely singular continuous [33].

The unitary analogue of the critical almost Mathieu operator introduced in [44] is a
one-dimensional shift-coin quantum walk with quasi-periodic coin. In close analogy to
the self-adjoint case, this quantum walk has purely singular continuous spectrum for all
irrational frequencies and almost all offsets [30]. From a physics point of view thismodel
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describes the discrete evolution of a quantum mechanical particle on a two-dimensional
lattice under the influence of a discrete homogeneous magnetic field [18,22].

Coined quantum walks are closely related to the subclass of doubly-infinite “sparse”
CMV matrices for which every second Verblunsky coefficient vanishes [15,17].
Recently, CMVmatrics with quasi-periodic Verblunksy coefficients were shown to obey
Anderson localization for almost all irrational frequencies under the assumption of pos-
itivity of the Lyapunov exponent [56]. However, due to the nature of the unitary equiva-
lence between quantumwalks and CMVmatrices the quasi-periodicity of the coins does
not automatically translate to quasi-periodicity of the Verblunsky coefficients. A class
of quantum walks for which this association fails is the electric walks studied in this
paper. Accordingly, our results imply Anderson localization for sparse CMV matrices
where the non-vanishing Verblunsky coefficients are generated by a two-dimensional
skew-shift. Using a technique known as “sieving” this proves Anderson localization for
also for the full CMV matrices.

Another type of models closely related to the systems in this paper is the unitary
band matrices studied in [13] which contain CMV matrices as a subset. The authors
consider quasi-periodic models and show that for Liouville frequencies the spectrum
is purely singular continuous, which is in accordance with the findings in [24]. We
complement their results and show that for almost all frequencies quasi-periodic unitary
band matricies obey Anderson localization.

The paper is organized as follows: in Sect. 2we define the systemunder consideration,
state the main result in Theorem 2.2 and discuss its implications in connection with
previous work. This proof of the theorem is subsequently given in Sects. 3 and 4.

2. System

2.1. The physicalmodel. Quantumwalks describe the time-discrete evolution of a single
particle with an internal degree of freedom on a lattice under the additional assumption
of a finite propagation speed. In this paper we consider particles on the one-dimensional
lattice Z with two-dimensional internal degree of freedom which fixes the Hilbert space
asH = �2(Z) ⊗C

2. The unitary timestep operators are shift-coin quantum walks given
as a product

W = CS, (1)

where C = ⊕
Z
Cx is called the coin operator with Cx ∈ U (2) acting only on the

internal degree of freedom and S is a conditional shift operator acting on basis states of
H as S(δx ⊗ e±) = δx±1 ⊗ e±. In the translation invariant case the coin C acts the same
everywhere, i.e. C = 1 ⊗ C0 with

C0 = eiη
(

a b
−b∗ a∗

)

, |a|2 + |b|2 = 1, (2)

and the walk W generically has purely absolutely continuous spectrum and exhibits
ballistic transport [4,34]. In contrast, if the coin is given by an i.i.d. random function
� � ω �→ Cω the spectrum of W is pure point and the walk exhibits dynamical
localization [3,14].

Recently, it has been studied how discrete electromagnetic fields can be introduced in
quantum walk systems by an approach similar to minimal coupling in continuous time
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[22]. In the one-dimensional setting considered here, homogeneous electric fields are
introduced via the modification

W� = ei(�Q+θ)W, (3)

where W is the shift-coin quantum walk from (1) and Q denotes the position opera-
tor Q(δx ⊗ e±) = x δx ⊗ e±. As a standing assuption, we take W to be translation
invariant throughout this paper. Occasionally we shall writeW�(θ) to make explicit the
θ -dependence of the electric walk model. With regards to the spectrum however, it is
apparent from (3) that for all θ ∈ [0, 2π ]

z ∈ σ(W�(θ)) ⇒ e−iθ z ∈ σ(W�(0)). (4)

In accordancewith [24] and [22] the parameter� ∈ [0, 2π ] is called the discrete elec-
tric field and θ ∈ [0, 2π ] describes an arbitrary offset and plays the role of the random
parameter in the quasi-periodic operator W�. Thus, a homogenous electric field in this
setting can be seen as a position dependent linear phase factor applied in each time step.
Note that in (3) a particular gauge is chosen which assures that W� is time-independent
and therefore makes a discussion of its spectral properties meaningful. In [24] it has been
shown that the spectral as well as the dynamical properties of W� depend sensitively
on the rationality of �/(2π): for rational fields the system remains translation invariant
after grouping lattice sites together, which implies absolutely continuous spectrum and
eventually ballistic transport. Notably, on short timescales of the order of the denomi-
nator of �/(2π) revivals of the initial state occur which are exponentially sharp in this
denominator. For irrational fields the picture is more involved: if �/(2π) is extremely
well approximable in terms of its continued fraction approximation - an example being
the Liouville numbers - the dynamics of W� is hierarchical in the sense that there is
an infinite sequence of exponentially sharper and sharper revivals which alternate with
farther and farther excursions. This type of dynamics implies that the spectrum for such
fields is purely singular continuous. On the other hand, if�/(2π) is badly approximable
in the sense that the sequence of its continued fraction coefficients is bounded numerical
evidence leads to conjecture Anderson localization. Yet, each of these sets of fields is
of measure zero. The main goal of this paper is to study the case of Lebesgue-typical
fields �.

2.2. Transfer matrices. In order to get a handle on the spectral properties and eigen-
functions of the quasi-periodic electric walk (3) we use a transfer matrix approach that
has already proved useful in the disordered setting [3]. For notational convenience in
the rest of this paper we identify �2(Z) ⊗ C

2 → �2(Z) via

δx ⊗ e+ �→ δ2x , δx ⊗ e− �→ δ2x+1,

where x ∈ Z labels the lattice sites. Then, given a shift-coin quantum walk of the form
(1) any solution φ to the generalized eigenvalue equation

Wφ = zφ (5)

will satisfy the relation [3]
(

φ2x+1
φ2x+2

)

= Tx (z)

(
φ2x−1
φ2x

)

,
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where we introduced the transfer matrix

Tx (z) = 1

ax

( det(Cx )
z cx

−bx z

)

, (6)

with the coin matrix Cx at lattice site x parametrized by ax , bx , cx and dx . In other
words, two consecutive components of φ satisfying (5) determine the whole generalized
eigenvector by repeatedly applying the transfer matrix. Note that, since the shift-coin
walk (1) is a finite-difference operator its spectrum is characterized as follows [8,13,28]:

Lemma 2.1. Let ψ be a solution of (5) for some z ∈ C. Then ψ cannot be polynomi-
ally bounded if z 
∈ σ(W ). Vice versa, σ(W ) is the closure of the set of generalized
eigenvalues.

In the electric walk (3) the operator ei(�Q+θ) implementing the electric field acts
locally, wherefore we can interpret it as an additional coin operator and write W� as a
walk with a coin that is a quasi-periodic function of the position, i.e.

W� =
(

⊕

x∈Z
C0e

i(x�+θ)

)

· S. (7)

As remarked above, the random offset eiθ is a global phase factor that merely shifts the
spectrum of W�. This allows us to absorb the additional phase factor eiη coming from
the determinant ofC0 into the offset θ and restrict our attention without loss of generality
to C0 ∈ SU (2), i.e. set η = 0 in (2).

Plugging the coin in (7) into (6), the electric transfer matrix at lattice point x is given
by

Tx (θ, z) = T (τ x
�(θ), z) = 1

a

(
z−1ei(x�+θ) −b∗

−b ze−i(x�+θ)

)

. (8)

Here, the quasi-periodic shift defined by

τ� : T → T, θ �→ τ�(θ) = � + θ,

is ergodic whenever �/(2π) is irrational. Clearly, the transfer matrices only depend on
the combined parameter z−1eiθ . Accordingly, if z lies on the unit circle, averaging over
the spectral parameter z is the same as averaging over the offset θ . This again reflects
the fact that according to (4) the spectrum of W�(θ) and W�(θ = 0) are connected by
a shift of the unit circle.

2.3. The main results. Our main result in this paper is that Anderson localization occurs
naturally for electric quantumwalks. Indeed, we can show that this is the case for almost
all choices of the electric field, exceptions being rational fields which are known to lead
to absolutely continuous spectrum and irrational fields, which have exceptionally good
approximations by continued fraction expansions [24]. Moreover, we show that for all
irrational fields the absolutely continuous spectrum is empty:

Theorem 2.2. Let W� be the electric quantum walk defined in (7) on �2(Z) ⊗ C
2 with

coin C0 satisfying |a| < 1. Then:

(i) for all irrational fields � ∈ [0, 2π ] and all offsets θ ∈ [0, 2π ] the absolutely contin-
uous spectrum of W� is empty, i.e. σac(W�) = ∅,
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(ii) for almost all electric fields � ∈ [0, 2π ] and all offsets θ ∈ [0, 2π ] W� exhibits
Anderson localization, i.e. σ(W�) = σpp(W�) and all eigenfunctions decay expo-
nentially.

Here, up to a set of zero Lebesgue measure, the set of electric fields for which we
show Anderson localization corresponds to Diophantine fields, i.e. fields � for which
there is some A > 0 such that

‖k�/(2π)‖ > c|k|−A

for all k ∈ Z\{0} and c > 0. In the following we denote the set of Diophantine fields
with DC .

Remark 2.3. 1. By (4) it is enough to prove Theorem 2.2 for the special case θ = 0.
2. In the following, we will concentrate exclusively on coins C0 satisfying |a| > 0, i.e.

coins that are not completely off-diagonal. Our proof techniques based on transfer
matrices are not directly applicable in that off-diagonal case. However, since the
choice a = 0 corresponds to a flip of the internal degree of freedom of the walker
and therefore effectively implements reflective boundary conditions at every lattice
site, W� is block-diagonal and Anderson localization is immediate. Indeed, in this
special case even dynamical localization can be shown very easily by observing that
the particle is trapped at its original position for all times. For amore general argument
which is valid also in the random case, see [3, Lemma 4.8].

Let us quickly describe the steps used in the proof of the second statement of The-
orem 2.2 displayed in Fig. 1. In general, we follow a method established by Bourgain
and Goldstein in [11]. The basic idea is to take a polynomially bounded generalized
eigenfunction whose existence for all spectral points z ∈ σ(W�) is guaranteed by the
transfer matrices and show that it decays exponentially. The main steps in the proof are
the following:

1. fix some generalized eigenvalue z ∈ T, whose corresponding eigenfunction is poly-
nomially bounded by Lemma 2.1,

2. show that for a sufficiently dense sequence xi → ∞ the corresponding resolvent
of the finite restriction of W� to [−xi , xi ] grows exponentially with the size of the
interval,

3. for each xi , show that up to a small set of fields � with measure going to zero
eventually, all finite resolvents on intervals of length xi contained in [xKi , x2Ki ] for
some K > 0 are exponentially decaying,

4. it follows from the resolvent identity that the finite resolvent on [xKi , x2Ki ] is expo-
nentially decaying, which finishes the proof since we can cover all of Z with such
intervals.

The set of fields which has to be excluded to avoid the double resonances between the
initial interval and the intervals in [xKi , x2Ki ] is of measure zero and corresponds to the
Diophantine fields which have to be excluded in the theorem above.
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Fig. 1. Proof strategy: Decay estimates for eigenfunctions. a Given a sufficiently dense sequence of length
scales (xi )i for which we can ensure exponential decay of the eigenfunctions around origin, we have to ensure
that this eigenfunction does not have another resonance at some distant L (red vs. blue curve). This is achieved
by excluding a small set of fields (going to zero with xi going to infinity). b The so-called paving property
then allows to lift the exponential decay of the eigenfunction on interval of length xi included in the interval
[xKi , x2Ki ] for some K > 0 to this larger interval (with slightly worse decay rate)

2.4. Implications for related models.

2.4.1. Electric quantumwalks asCMVmatrices In the literature there are severalmodels
related to the shift-coin quantum walks defined in (1). Interesting from a mathematical
perspective are CMV matrices which are unitary five-diagonal matrices related to the
orthogonal polynomials on the unit circle in the same sense as Jacobi matrices are
related to orthogonal polynomials on the real line [17,53]. Their doubly infinite, so-
called “extended” variant is defined by an infinite sequence of unitary 2 × 2 building
blocks

�x =
(

α∗
x ρx

ρx −αx

)

, ρx =
√
1 − |αx |2, (9)

where the αx ∈ D are called Verblunsky coefficients. These building blocks define a
general CMV by

E =
( ⊕

x even

�x

)( ⊕

x odd

�x

)
. (10)

Recently, Anderson localization was proved for CMV matrices with analytic quasi-
periodic Verblunsky coefficients in [56] employing the methods from [11]. Using the
unitary equivalence between CMV matrices and quantum walks established in [15,16],
it was claimed in [56] that this result carries over directly to quantumwalks with analytic
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quasi-periodic coins. Yet, the proof in [56] is not directly applicable to electric quantum
walks because the quasi-periodicity of the coins does not necessarily imply the quasi-
periodicity of the corresponding CMV matrix:

Lemma 2.4. The Verblunsky coefficients of the electric walk (3) are given by

α2x = −ce−i(x2�+x(arg a+arg d)+2xθ+arg a), α2x+1 = 0,

where a, b, c, d are the entries of the constant coin C0.

Proof. To recover the CMV matrix corresponding to a walk of the form (1) one needs
to find a base change which makes the ax and the dx real [15,16]. For electric walks (3),
this base change is implemented by the diagonal matrix � defined by

�δ2x = e−i( x2 (x−1)�+x(arg a+θ))δ2x ,

�δ2x+1 = ei(
x
2 (x+1)�+x(arg a+θ))δ2x+1.

The Verblunsky coefficients can be read off from E = �∗W��. 
�
By this lemma, the Verblunsky coefficients of electric walks are not quasi-periodic,

i.e. their x-dependence is not determined by the shift τ�(θ) = � + θ but rather by the
skew-shift (x, y) �→ (x+ y, y+2�) applied to the initial vector (x0, y0) = (arg a, arg a+
arg d +� + 2θ). We emphasize that the methods of [11] and in particular the derivation
of the large deviation estimate do not directly apply for skew-shift models. One reason
for this is that the growth rate of the norm of products of the transfer matrix might not
be uniformly bounded in the length of the product which requires the use of different
methods like e.g. the avalanche principle [12,32]. While we believe that the methods
established for skew-shift models in Hamiltionan systems (see, e.g., [10,12,43,55])
possibly carry over to skew-shift CMV matrices, we here use a more direct approach
via the transfer matrices (8) to prove localization for electric quantum walks.

2.4.2. Anderson localization for skew-shift CMV matrices Yet, Theorem 2.2 implies
localization for “full” CMV matrices with skew-shift Verblunsky coefficients

α̃x = λe−i(x2�+x(θ+ξ)+ζ ), |λ| < 1, x ∈ Z, (11)

without the restriction that every second Verblunsky coefficient vanishes. This supple-
ments the result in [42] where pure point spectrum for half-line CMVmatrices is shown
for almost all ζ and θ = 0 = ξ . In (11) ξ is a fixed phase factor while, as above, θ denotes
the random parameter. This follows directly from a technique known as “sieving”:

Lemma 2.5. Let E be a CMVmatrix whose even/odd Verblunsky coefficients vanish, e.g.
a CMV matrix derived from a shift-coin quantum walk. Then

E2 = Ẽ ⊕ Ẽ T ,

where Ẽ is a CMV matrix with Verblunsky coefficients α̃x = α2x+1.

This statement can be verified by hand. For a detailed derivation we refer the reader
to [14]. Combining Lemma 2.5 with Theorem 2.2 we infer:

Corollary 2.6. Let E be a CMV matrix with Verblunsky coefficients given in (11). Then
for almost all � and all θ the spectrum of E is pure point with exponentially decaying
eigenfunctions.
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2.4.3. Anderson localization for quasi-periodic unitary band matrices Another model
intimately related to quantum walks is the unitary band matrices introduced in [13] and
afterwards studied e.g. in [29,35,37]. They are a generalization of CMV matrices in the
sense that they have the form (10) but its building blocks are arbitrary unitary 2 × 2
matrices instead of having the symmetric form in (9). Therefore, unitary band matrices
have additional phases representing the determinants of the building blocks. Similarly
to the lemma above, for these unitary band matrices one can show the following:

Lemma 2.7. Let W be a shift-coin quantum walk as in (1) with coin C = ⊕
x Cx . Then

W 2 = U ⊕ Ũ ,

where U = (
⊕

x even Cx )(
⊕

x odd Cx ) is a unitary band matrix and Ũ = (
⊕

x odd Cx )

U (
⊕

x odd Cx )
∗.

This lemma provides a direct correspondence between the squares of shift-coin quan-
tum walks and unitary band matrices. In one of the models studied in [13] the deter-
minants of the building blocks are given by quasi-periodic functions. For Liouville fre-
quencies, the authors prove purely singular continuous spectrum for almost all offsets.
Using the above correspondence between unitary band matrices and shift-coin quantum
walks, Theorem 2.2 completes this picture:

Corollary 2.8. Let U = (
⊕

x even Cx )(
⊕

x odd Cx ) with building blocks Cx =
C0ei(�x+θ). Then for almost all frequencies � and all offsets θ , U exhibits Anderson
localization.

3. The Absence of Absolutely Continuous Spectrum

In this section we prove the first part of Theorem 2.2, i.e. we show that electric walks
with irrational fields cannot have any absolutely continuous spectrum. To this end, let
(�,A, μ, τ) be an ergodic dynamical system and let A : � → GL(d,C) be a random
variable inducing an ergodic integrable cocycle An(ω) := A(τ nω)A(τ n−1ω) · · · A(ω)

with Lyapunov exponent

γ (A) = lim
n→∞ γn(A) := lim

n→∞
1

n

∫

�

log ‖An(ω)‖ μ(dω). (12)

This limit exists by Kingman’s subadditive theorem and is equivalent to
limn→∞ log ‖An(ω)‖/n for almost every ω [27]. We are almost exclusively interested
in quasi-periodic cocycles for which � = T and the ergodic map is given by the shift
τ�(θ) = � + θ .

The random variables A we consider correspond to transfer matrices of unitary band
matrices and, in particular, of quantum walks and depend additional on the generalized
eigenvalue z ∈ C. For the corresponding cocycles a variant of the Ishii-Pastur Theorem
for unitary band operators allows to characterize the absolutely continuous part of their
spectrum by the Lyapunov exponent γ (A(z)) ≡ γ (z) [13,27,53]. Adapted to quantum
walks of the form (1) with random coins we have:

Theorem 3.1. Let Wω be a shift-coin walk with ergodic coin ω �→ Cω. Then, for μ-
almost every ω,

σac(Wω) ⊆ {z ∈ T : γ (z) = 0}.
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Thus, the first statement in Theorem 2.2 is a direct consequence of the following
result:

Proposition 3.2. Let Wω be a shift-coin quantum walk (1) with the coin defined as a
random function on an ergodic dynamical system (�,A, μ, τ). Then, denoting by dz
the Lebesgue measure on T, the Lyapunov exponent γ (z) of the corresponding cocycle
satisfies ∫

T

γ (z) dz =
∫

�

log
1

|aω| dμ(ω).

In particular, for electric walks W� with �/(2π) irrational we have

γ = log
1

|a| .

Weprove Proposition 3.2 by tracing back our case to that of SL(2,R)-valued cocycles
via the following lemma [53]:

Lemma 3.3. Let SU(1, 1) be the group of unimodular unitary 2× 2 matrices satisfying

A∗σ3A = σ3,

where σ3 denotes the third Pauli matrix. Then

Q∗
SU(1, 1)Q = SL(2,R),

where Q = −(1 + i)−1
(
1 −i
1 i

)

.

The proof of this lemma is straightforward. The second ingredient to the proof of
Theorem 3.2 is the following result known as Herman–Avila–Bochi formula [7,36]:

Lemma 3.4. Let (�,A, μ, τ) be an ergodic dynamical system and A : � → SL(2,R)

a measurable function such that the induced cocycle is μ-integrable. Then, writing
R2(θ) = exp[iθσ2], the Lyapunov exponent γ (AR2(θ)) of the cocycle induced by
(AR2(θ))(ω) := A(ω)R2(θ) satisfies

∫

T

γ (AR2(θ)) dθ =
∫

�

log

(‖A(ω)‖ + ‖A(ω)‖−1

2

)

dμ(ω). (13)

Proof of Theorem 3.2. Let Tx (ω, z) = T (τ xω, z) be the transfer matrices of Wω where
T (·, z) : � → GL(2,C) is the random variable

T (ω, z) = 1

aω0

( detCω0
z cω0

−bω0 z

)

.

Denote by T̃ (ω, z) = det(T (ω, z))−1/2T (ω, z) the corresponding unimodular random
variable where according to (6) det(T (ω, z)) = (detCω0 + bω0cω0)a

−2
ω0

∈ T. Clearly,
for z ∈ T, T̃ (ω, z) ∈ SU(1, 1). In particular, writing R3(arg z) = diag(z, z−1) we have

R3(arg z/2)T̃ (ω, z)R3(arg z/2) = 1

(aωdω)1/2

(
1 cω

−bω 1

)

= T̃ (ω, z = 1),

such that by
Q∗R3(arg z)Q = R2(arg z),
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we find

Q∗T̃ (ω, z)Q = R2(arg z/2)A(ω)R2(arg z/2)

with A : � → SL(2,R). By unitary invariance of the norm, the Lyapunov exponents
of the cocycles AR2(arg z) and R2(arg z/2)AR2(arg z/2) agree which implies

γ (T ) = γ (T̃ ) = γ (R2(arg z/2)AR2(arg z/2)) = γ (AR2(arg z)).

Plugging this into the Herman-Avila-Bochi formula (13) we obtain

∫

T

γ (T (ω, z)) d(arg z) =
∫

�

log

(‖A(ω)‖ + ‖A(ω)‖−1

2

)

dμ(ω).

Moreover, since A ∈ SL(2,R), the right-hand side can be further evaluated to

‖A(ω)‖ + ‖A(ω)‖−1 = √
tr (A(ω)∗A(ω)) + 2 = √

tr (T (ω)∗T (ω)) + 2,

where T (ω) = T (ω, z = 1) and we used the cyclic invariance of the trace. The trace is
easily calculated and gives

tr (T (ω)∗T (ω)) + 2 = 4

|aω|2 ,

which proves the first part of the theorem.
For the special case of electric walks with transfer matrices defined in (8), integrating

over z is equivalent to taking the expectation value with respect to the offset θ . It follows
from |aω| = |a| that

γ (T ) =
∫

T

γ (T (θ, z)) d(arg z) = log
1

|a| .


�
For 0 < |a| < 1 by Theorem 3.1 the absolutely continuous part of the spectrum

is empty for almost all offsets θ . Since the offset merely shifts the spectrum by the
definition of the model in (3), this result holds for all θ . This proves the first part of
Theorem 2.2.

4. Proof of Anderson Localization

In the following we present the steps of the proof of Theorem 2.2 (ii) in detail. In the first
section we discuss products of transfer matrices of electric walks and provide a large
deviation estimate. This allows us to derive estimates on the decay of the resolvents of
finite restrictions of electric walks in the next section, which in turn implies the decay
of generalized eigenfunctions. Carrying over a result by Bourgain and Goldstein which
excludes double resonances to the walk setting we assemble the proof in Section 4.4.
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4.1. Products of transfer matrices. In this section we provide some results about the
behaviour of products of transfer matrices for electric quantum walks W = W� defined
in (8). We begin with a large deviation estimate for the growth rate of their norm. To this
end, we extend the offset θ or, equivalently, the spectral parameter z from the unit circle
to the complex plane. We interpret the coin entry ax = aei(�x+θ) of W� as a function

a : T → D, θ �→ a(θ) = aeiθ ,

such that ax = a(�x + θ). This function is analytic in θ and can thus be extended to a
bounded analytic function on the strip {θ + iλ : |λ| < ρ} for ρ > 0. For fixed ρ > 0 this
extension is bounded by sup|λ|<ρ |a(θ + iλ)| = aeρ and we define the constant

Ka := log
2

sup|λ|<ρ |a(θ + iλ)| = log 2 − log a − log ρ. (14)

For reasons which become clear below we choose the strip such that Ka > 0. Denoting
by mi the denominators of the continued fraction approximants of �/(2π) and defining

β(�) := lim sup
i→∞

logmi+1

mi

we have

Proposition 4.1 (Large deviation estimate). Let κ > 0. Then there exists n0(Ka, κ) and
constants c0, c1 independent of Ka, κ such that for all fields � with β(�) < c0κ/Ka,
z ∈ T and n > n0(Ka, κ)

mes{θ ∈ T : |1
n
log ‖Tn(θ, z) · · · T1(θ, z)‖ − γn| > κ} < e−(c1/K 3

a )κ3n,

where γn is the finite Lyapunov exponent from (12).

Proof. Like in the proof of Theorem 3.2 the unimodular transfer matrices T̃x (θ, z) :=
det(Tx (θ, z))−1/2Tx (θ, z) are unitarily equivalent to the SL(2,R)-valued cocycle

Ax (θ, z) := Q∗T̃x (θ, z)Q (15)

by Lemma 3.3. Note that ‖T̃x (θ, z)‖ = ‖Ax (θ, z)‖ and the Lyapunov exponents of the
induced cocycles agree by unitary invariance of the norm. Also, from

‖Ax (θ, z)‖ + ‖Ax (θ, z)‖−1 = √
tr (Ax (θ, z)∗Ax (θ, z)) + 2

= √
tr (Tx (θ, z)∗Tx (θ, z)) + 2 = 2

|ax | ,

we infer that for the analytic extension of Ax (θ, z) we have sup|λ|<ρ ‖Ax (θ +

iλ, z)‖, sup|λ|<ρ ‖Ax (θ + iλ, z)−1‖ ≤ 2
sup|λ|<ρ |a(θ+iλ)| and therefore

sup
|λ|<ρ

1

n
log ‖An(θ + iλ, z) · · · A1(θ + iλ, z)‖ ≤ Ka .

The proposition therefore follows from [58, Theorem 1].
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Remark 4.2. 1. For Diophantine fields β(�) = 0 such that the condition β(�) <

c0κ/Ka is trivially fulfilled for Ka > 0. In contrast, for �/(2π) Liouville one has
β(�) > 0.

2. Since the transfer matrices (8) only depend on the combined parameter z−1eiθ , this
lemma can be interpreted as a result on the spectral parameter for fixed θ .

3. Choosing the strip for the analytic extension of a(θ + iλ) too large results in Ka
negative. In this case the large deviation estimate becomes trivial. In contrast, in
[56,58] Ka > 0 whenever it is well-defined, see the next remark.

4. In [56] one has to assume sup|λ|<ρ |α(θ + iλ)| < 1 where α is the quasi-periodic
Verblunsky coefficient. Otherwise the constant corresponding to Ka is ill-defined.

5. In contrast to the models e.g. in [11,56,58], in our system the finite Lyapunov expo-
nent γn is independent of the spectral parameter z due to the expectation value in
θ .

6. This large deviation estimate was first derived in [58] for quasi-periodic Schrödinger
cocycles and is stronger than the sharp large deviation estimate in [32] which gives
a bound < exp[−cκn] but applies “only” to so-called strong Diophantine fields. For
usual Diophantine fields the estimate obtained in [11] is weaker (exp[−cnσ ] for some
σ ∈ (0, 1)).

As discussed above, we are interested in the decay properties of the resolvent of W�

with the decay determined by the Lyapunov exponent. However, generalized eigenfunc-
tions are determined by repeatedly applying the transfer matrix. The following lemmas
connect the two approaches. The first important result is the following [11, Lemma 2.1]:

Lemma 4.3. Assume � ∈ DC. Then for all z ∈ T and for all θ ∈ T we have

1

n
log ‖Tn(θ, z) · · · T1(θ, z)‖ < γn + κK (16)

for any κ > 0 and n large enough.

Proof. The related SL(2,R)-cocycle A(θ, z) in (15) extends to an analytic function on
some annulus around the unit circle satisfying ‖An · · · A1(θ + iλ)‖ + ‖(An · · · A1(θ +
iλ))−1‖ < Kn . The lemma follows from the proof given in [11]. 
�

The following lemma expresses the Lyapunov exponent as the average over long shift
orbits. It allows us to use techniques from semi-algebraic set theory and plays a central
role in the proof of Anderson localization.

Lemma 4.4. Let �/(2π) satisfy the finite Diophantine condition

‖k�/(2π)‖ > c|k|−A, 0 < |k| < n2A (17)

for n ∈ Z. Then, for
J > n2A

we have for all z ∈ T and θ ∈ T

1

J

J∑

j=1

1

n
log ‖Tn(θ + j�, z) · · · T1(θ + j�, z)‖ = γn +O(n−1).

For the sake of brevity we omit the proof which follows directly from applying that of
[11, Lemma 3.1] to (15).
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4.2. Finite unitary restrictions and resolvent estimates. In the proof of localization we
need estimates on the decay of the resolvent of finite restrictions of the electric walk (3).
While restrictions of Schrödinger operators to finite intervals are easily constructed by
projecting onto the respective interval, for unitary operators one has to be more careful
since projecting usually destroys unitarity. In this paragraph we discuss the construction
of unitary restrictions of electric walks and establish the exponential decay of the matrix
elements of their resolvents.

Let us consider a shift-coin walk of the form (1). Replacing the coin at lattice site
a ∈ Z by

Ca �→ ασ1, α ∈ T,

decouples the walk at 2a, i.e. the resulting walk Wα satisfies

P>2aWαP>2a = Wα,

and similarly for P≤2a , where P>2a and P≤2a denote the projections onto �2({2a+1, 2a+
2, . . . }) and �2({. . . , 2a − 1, 2a}), respectively. This leads to the following definition:

Definition 4.5. LetWα be the walk (1) with the coin at lattice site a ∈ Z replaced by the
reflective boundary condition ασ1, α ∈ T. Then, denoting by χI the restriction operator
to the interval I ⊂ Z the half-space walk W [a,∞)

α is the operator on �2({2a + 1, . . . })
defined by

W [a,∞)
α := χ[2a+1,∞)Wαχ[2a+1,∞).

Similarly, on �2({. . . , 2a−1, 2a})wedefineW (−∞,a]
α := χ(−∞,2a]Wαχ(−∞,2a]. Replac-

ing the coinsCa �→ ασ1,Cb �→ βσ1 at lattice sites a < b the resultingwalkWα,β defines

the finite unitary restriction W [a,b]
α,β on �2([2a + 1, . . . , 2b]) by

W [a,b]
α,β := χ[2a+1,2b]Wα,βχ[2a+1,2b].

Remark 4.6. Expressed as CMV matrices, the odd Verblunsky coefficients of walks of
the form (1) manifestly vanish [15]. As a consequence, we cannot define restrictions by
setting any Verblunsky coefficients to the unit circle as in [42] and therefore have to be
more careful about indices. In particular, by the above method we cannot cut “between”
cells but only within them, see Fig. 2.

Let us fix boundary phases α, β ∈ T and denote by R[a,b]
z = (W [a,b]

α,β − z)−1 the

resolvent of W [a,b]
α,β . Its matrix elements can be written as [57, (5.38)]

|R[a,b]
z (2x − i, 2y − j)| =

∣
∣
∣
∣
∣

φ+
2y−1+ jφ

−
2x−i

φ+
2kφ

−
2k−1 − φ+

2k−1φ
−
2k

∣
∣
∣
∣
∣

(19)

for a < x < y < b, i, j = 0, 1 and a < k ≤ b arbitrary. Here, φ− and φ+ are left- and
right-compatible with W [a,b]

α,β , i.e. φ− solves

(W [a,∞)
α − z)φ = 0,

whereas φ+ is a solution to

(W (−∞,b]
β − z)φ = 0.
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Fig. 2. The walkW = CS as in (1) with coins at x = a, b replaced by reflecting coins ασ1, βσ1, respectively.

The red frame delimits the finite unitary restriction W [a,b]
α,β in Definition 4.5

The denominator of (19) may be rewritten as

∣
∣φ+

2kφ
−
2k−1 − φ+

2k−1φ
−
2k

∣
∣ =

∣
∣
∣
∣

〈(−φ+
2k−1

∗
φ+
2k

∗
)

,

(
φ−
2k−1
φ−
2k

)〉∣
∣
∣
∣ .

Choosing k = b, this can be written as the overlap of the right-compatible solution at
b and the left-compatible solution transported from a to b by repeatedly applying the
transfer matrices, i.e.

∣
∣
∣
∣

〈(−φ+
2b−1

∗
φ+
2b

∗
)

, Tb−1(z) · · · Ta(z)
(

φ−
2a−1
φ−
2a

)〉∣
∣
∣
∣ . (20)

In the following, we are interested in finite unitary restrictions of electric walks
defined in (7) which we denote by W [a,b]

�,α,β . Since the position dependence of their coins
in encoded only in the electric field operator we have for all offsets θ ∈ T

W [a,b]
�,α,β(θ) = W [0,b−a]

�,α,β (θ + a�).

Bounding the scalar products in (20) from below together with upper bounds for
φ+
2y−1+ j and φ−

2x−i provides estimates for the matrix elements of finite resolvents R[a,b]
�,z

of electric walks:

Proposition 4.7. Assume that for ε > 0 there exists n sufficiently large such that

1

n
log ‖Tn(θ, z) · · · T1(θ, z)‖ ≥ γn − ε. (21)

Let α, β ∈ T and z ∈ T\σ(W [0,n+1]
�,α,β ). Then, there exist α0 ∈ {−α, α} and β0 ∈ {−β, β}

such that
|R[0,n+1]

�,z (2x − i, 2y − j)| ≤ e−|x−y|γn+K εn

for all 1 ≤ x, y ≤ n + 1.
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Proof. Assume x < y. By (19) we have to bound the scalar product (20) from below
and |φ+

2y−1+ j | and |φ−
2x−i | from above. Since φ− is left-compatible, we read off from

(18) that it satisfies

zφ−
2a−1 = αφ−

2a ⇒ |φ−
2a−1| = |φ−

2a |
for a = 1. We therefore fix (φ−

2a−1, φ
−
2a) = (1, zα∗) as boundary values and similarly

(φ+
2b−1, φ

+
2b) = (1, z∗β) for a = 1 and b = n+1, respectively. Then, the left-compatible

solution φ− is determined by

(
φ−
2x−1
φ−
2x

)

= Tx−1(θ, z) · · · T1(θ, z)

(
1
zα∗

)

which implies

|φ−
2x−i | ≤ √

2 ‖Tx−1(θ, z) · · · T1(θ, z)‖ ≤ e(x−1)γx−1+o(x−1),

for i = 0, 1 where in the second inequality we used (16). A similar estimate holds for
φ+
2y−1+ j for which

(
φ+
2y−1
φ+
2y

)

= Ty(θ, z)−1 · · · Tn(θ, z)−1
(

1
z∗β

)

such that

|φ−
2y−1+ j | ≤ √

2‖T−1
y (θ, z) · · · T−1

n (θ, z)‖ ≤ e(n−y)γn−y+o(n−y).

The lower bound is achieved as follows: denote by φα,β(z) the scalar products (20)
for a = 1, b = n + 1. Then

(
φα,β(z) φα,−β(z)
φ−α,β(z) φ−α,−β(z)

)

=
(
1 zβ∗
1 −zβ∗

)

Tn(θ, z) · · · T1(θ, z)

(
1 1
zα∗ −zα∗

)

which together with the assumption (21) gives the desired lower bound

max±α,±β
|φα,β(z)| ≥ K ‖Tn(θ, z) · · · T1(θ, z)‖ ≥ enγn−nε .

Putting everything together we obtain

|R[0,n+1]
�,z (2x − i, 2y − j)| ≤ e(x−1)γx−1+o(x−1)+(n−y)γn−y+o(n−y)−nγn+nε

≤ e(x−1)γx−1+(n−y)γn−y−nγn+Knε

≤ exγx−1−yγn−y+Knε

≤ e(x−y)γn+Knε


�
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In the proof of localization we want to infer from this exponential decay of the
matrix elements of the finite resolvent that of the generalized eigenvectors of the infinite
problem. To this end, one has to find a way to express the the generalized eigenvector
by these matrix elements. For Schrödinger operators, restricting (H − z)ψ = 0 to the
interval [a, b] yields ψn = −(H [a,b] − z)−1(n, a)ψa−1 − (H [a,b] − z)−1(n, b)ψb+1
for a < n < b. For shift-coin quantum walks W = CS there is a similar expression
which, however, involves more boundary terms. To see this, define the unitary matrices
L = C

(⊕
x σ1

)
and M = (⊕

x σ1
)
S which are both block diagonal but with blocks

that are shifted by one index relative to each other. Then W = LM, and solutions to
(W − z)ψ = 0 also solve

(zL∗ − M)ψ = 0.

The operator on the left hand side has a particularly simple structure:

Lemma 4.8. The operator A = zL∗ − M is tridiagonal with diagonal entries

A2x,2x = zbx , A2x+1,2x+1 = zcx

and off-diagonal terms

A2x,2x+1 = zax , A2x+1,2x = zdx , A2x−1,2x = A2x,2x−1 = −1.

From this we obtain the following expression for the generalized eigenfunctions:

Lemma 4.9. Let ψ solve Wψ = zψ . Then, for 2a + 1 < x < 2b

ψx = G[a,b]
z (x, 2a + 1) (zcaψ2a+1 − ψ2a+2) + G[a,b]

z (x, 2b) (zbbψ2b − ψ2b−1) ,

where G[a,b]
z (x, y) := 〈δx , (z(L[a,b]

α,β )∗ − M[a,b]
α,β )−1δy〉.

Proof. As in Definition 4.5, denote by χI the restriction operator to the interval I ⊂
Z such that ψ [a,b] = χ[2a+1,2b]ψ . Then, since ψ is a generalized eigenfunction the
statement is evident from

(
z(L[a,b]

α,β )∗ − M[a,b]
α,β

)
ψ [a,b] = −χ[a,b](zL∗ − M)(ψ − ψ [a,b])

by inverting the operator on the left side and using the tridiagonality of zL∗ − M. 
�
Clearly, from Rz = (W − z)−1 = −(zL∗ − M)−1L−1 = −GzL−1 it follows that

∣
∣
∣G[a,b]

z (x, y)
∣
∣
∣ ≤

∑

k

∣
∣
∣R[a,b]

z (x, k)Lky

∣
∣
∣ ≤

∑

k

∣
∣
∣R[a,b]

z (x, k)
∣
∣
∣

where the sumover k is finite. This lemma togetherwith Proposition 4.7 therefore implies
the exponential decay of generalized eigenfunctions of electric walks provided that (21)
holds which we establish next by excluding double resonances.
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4.3. Excluding double resonances. The missing piece in the proof of Theorem 2.2 (ii)
is the verification of (21). To this end, we use the following lemma which roughly
speaking states that if on some interval around the origin we are close to a generalized
eigenvalue of W�, the probability in the field � that (21) fails on some interval far out
is exponentially small. Let

K (a) = sup
n∈Z

(nenKa )1/n = 2 × 31/3|a|−1e−ρ,

with Ka as in (14), which satisfies K (a) > 0 by 0 < |a| < 1. Moreover, the choice of
ρ as above which ensured Ka > 0 guarantees that K (a) > 1.

Lemma 4.10. Let κ > 0 and n ∈ Z be sufficiently large. Denote by Sn,κ ⊂ T the set of

fields � ∈ DC such that there are n0 < nK , � ∈ [2(log n)2 , 2(log n)3], z ∈ T with

‖R[0,n0]
�,z ‖ > K (a)n, (22)

and
1

n
log ‖Tn(��, z) · · · T1(��, z)‖ < γn − κ. (23)

Then
mes(Sn,κ ) < 2− 1

4 (log n)2

The proof of this important result combines semi-algebraic set theory with measure
estimates on sections of T2 which are unions of finitely many intervals. It is an straight-
forward adaption of the proof given in [11] to the walk setting and, for the sake of brevity,
we only recall its main steps:

1. a measure estimate on the set S of (�, θ) ∈ T × T such that � satisfying (17), and
(22) and (23) hold with �� replaced by θ ,

2. reformulating (22) and (23) in terms of semi-algebraic sets implies a complexity
bound on the the θ -sections of S in the sense that they are given as unions of finitely
many intervals. Here one needs to extend the real energy parameter E of the Hamil-
tonian in [11] to complex z = (�e z,�m z) for the unitary walk which, however,
does not influence the complexity bounds.

3. a measure estimate on sections of T×T which are unions of finitely many intervals.

Below, we use Lemma 4.10 as follows: assuming � /∈ Sn,κ for any n and κ and
showing that (22) holds, we conclude via (23) that the condition in Proposition 4.7 is
fulfilled.

4.4. Anderson localization for Diophantine fields.

Proof of Theorem 2.2 (ii). For fixed n ∈ Z and κ > 0 let us denote by Sn,κ the set
obtained in Lemma 4.10. Then, with

Sκ =
⋂

n′

⋃

n>n′
Sn,κ , S =

⋃

κ

Sκ

we have
mes(Sκ) ≤ inf

n′

∑

n>n′
e− 1

4 (log n)2 = 0.
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Then, since Sκ ⊃ Sκ ′ for κ ′ > κ we can pick a countable subsequence of Sκ and
conclude mes(S) = 0. The set S constitutes the set of fields we have to remove from the
Diophantine fields.

Let us therefore assume �/(2π) ∈ DC\S and take z ∈ T, ψ ∈ C
Z such that

W�ψ = zψ

andψ is polynomially bounded, i.e. |ψn| < nK withψ0 = 1. Then, according to Lemma
2.1, z ∈ σ(W�) since ψ is a generalized eigenfunction.

Moreover, since �/(2π) is irrational, we know from Theorem 3.2 that

γ (�) ≡ γ = log |a|−1 > 0.

Let κ � γ . Then, since � /∈ Sκ , there is some n′ such that � /∈ Sn,κ for all n > n′. In
particular, we take n′ large enough such that

γn < γ + κ.

Since �/(2π) /∈ S, assuming that there is n0 < nK such that

‖R[−n0,n0]
�,z ‖ > K (a)n (24)

we conclude from Lemma 4.10 that for all 2(log n)2 < |�| < 2(log n)3

1

n
log ‖Tn(��, z) · · · T1(��, z)‖ > γn − κ.

Thus, the assumption in Proposition 4.7 is satisfied. Properly choosing the boundary
phases assures that z is not an eigenvalue of any of the restrictions such that

|R[�,n+�]
�,z (x, y)| < e−|x−y|γn+K εn < e−|x−y|γ+K εn .

Now, to conclude the exponential decay of the resolvent on the whole interval let
2(log n)2+1 < N < 2(log n)3−1 and consider the interval [N/2, 2N ]. Then, it follows
from the so-called paving property [10,11] that for x, y ∈ [N/2, 2N ]

|R[N/2,2N ]
�,z (x, y)| < e−|x−y| γ

2 +K εN .

It then follows fromLemma 4.9 that for k ∈ [N/2, 2N ] the generalized eigenfunction
ψ satisfies

|ψk | ≤ |G[N/2,2N ]
�,z (k, N/2)||zcN/4ψN/2 − ψN/2+1|

+ |G[N/2,2N ]
�,z (k, 2N )||zbNψ2N − ψ2N−1|

≤ |G[N/2,2N ]
�,z (k, N/2)|NK + |G[N/2,2N ]

�,z (k, 2N )|NK

such that for k = N
|ψk | ≤ NKe− γ

4 N+K εN < e− γ
5 N ,

which is the exponential decay of the generalized eigenfunction. By similar arguments
ψ decays exponentially also on the negative half axis.
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To complete the proof, we have to show that the assumption (24) holds for some
n0 < nK . From the proof of Lemma 4.9 together with ψ0 = 1 we conclude

1 ≤ ‖ψ [−n0,n0]‖ ≤ 2‖G[−n0,n0]
�,z ‖ (|ψ−2n0+1| + |ψ−2n0+2| + |ψ2n0−1| + |ψ2n0 |

)
.

Therefore, (24) is equivalent to showing that

|ψ−2n0+1| + |ψ−2n0+2| + |ψ2n0−1| + |ψ2n0 | <
1

2
K (a)−n . (25)

for some n0 < nK . Let n1 = K ′nγ −1 with K ′ = 9
n log 2 + 3 log K (a). If for some

0 < m < nK ∣
∣
∣
∣
1

n1
log ‖Tn1(m�, z) · · · T1(m�, z)‖ − γn1

∣
∣
∣
∣ < κK , (26)

it follows from Proposition 4.7 that

|R[m,n1+m]
�,z (2x − i, 2y − j)| < e−|x−y|γ+K εn1 .

This implies for k = m + [ n12 ] ([x] being the nearest integer to x) that

|ψk | < nK |R[m,n1+m]
�,z (k, 2 j + 1)| + nK |R[m,n1+m]

�,z (k, 2(n1 + j))|
< nK e− n1

2 γ+K εn1

< e− n1
3 γ

<
1

8
K (a)−n

by definition of n1, and the same estimate holds for |ψk−1|. Similar reasoning leads to
|ψ−k |, |ψ−k+1| < K (a)−n/8 and therefore to (25) if

∣
∣
∣
∣
1

n1
log ‖Tn1(−(m + n1)�, z) · · · T1(−(m + n1)�, z)‖ − γn1

∣
∣
∣
∣ < κK . (27)

To show (26), (27) we invoke Lemma 4.4, which for M = nK gives

1

n1M

2M∑

m=M+1

(
log ‖Tn1(m�, z) · · · T1(m�, z)‖

+ log ‖Tn1(−(m + n1)�, z) · · · T1(−(m + n1)�, z)‖)

= 2γn1 +O(n−1
1 ).

Thus, there exists M < m ≤ 2M such that

1

n1

(
log ‖Tn1(m�, z) · · · T1(m�, z)‖ + log ‖Tn1(−(m + n1)�, z) · · · T1(−(m + n1)�, z)‖)

> 2γn1 +O(n−1
1 ).

Using Lemma 4.3 this implies

γn1 + κK >
1

n1
log ‖Tn1(m�, z) · · · T1(m�, z)‖ > 2γn1 +O(n−1

1 ) − (γn1 + κK ),

i.e. (26). Analogously, we prove (27). 
�
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