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Abstract: This paper is devoted to algebro-geometric study of infinite dimensional Lie
bialgebras, which arise from solutions of the classical Yang–Baxter equation. We regard
trigonometric solutions of this equation as twists of the standard Lie bialgebra cobracket
on an appropriate affine Lie algebra and work out the corresponding theory of Manin
triples, putting it into an algebro-geometric context. As a consequence of this approach,
we prove that any trigonometric solution of the classical Yang–Baxter equation arises
from an appropriate algebro-geometric datum. The developed theory is illustrated by
some concrete examples.

1. Introduction

The notion of a Lie bialgebra originates from the concept of a Poisson–Lie group. Let
G be any finite dimensional real Lie group and g� be its Lie algebra. It was shown
by Drinfeld in [21] that Poisson algebra structures on the algebra C∞(G) of smooth
functions on G making the group product G × G → G to a Poisson map correspond,

on the Lie algebra level, to linear maps g�
δ−→ ∧2(g◦) satisfying the cocycle and the

co-Jacobi identities. Such a pair (g�, δ) is a Lie bialgebra. Conversely, if G is simply

connected then any Lie bialgebra cobracket g�
δ−→ ∧2(g�) defines a Poisson bracket

on C∞(G) such that G × G → G is a Poisson map; see [21].
Assuming that g� is a simple Lie algebra, it follows from Whitehead’s Lemma that

any Lie bialgebra cobracket g�
δ−→ ∧2(g�) has the form δ = ∂t for some tensor

t ∈ g� ⊗ g�, where

g�
∂t−→ g� ⊗ g�, a 	→ [a ⊗ 1 + 1⊗ a,t]

and t satisfies the classical Yang–Baxter equation for constants (cCYBE):

[t12,t13] + [t12,t23] + [t13,t23] = 0 and t12 + t21 = λγ (1)
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Here, γ ∈ g� ⊗ g� is theCasimir elementwith respect to theKilling form g� × g�
κ�−→ R

and λ ∈ R. For any a, b, c, d ∈ g�we put:
[
(a⊗b)12, (c⊗d)13

] = [a, c]⊗b⊗d ∈ g⊗3� ,

which determines the expression [t12,t13]; the two other summands [t12,t23] and
[t13,t23] of (1) are defined in a similar way.

Suppose now that g is a finite dimensional complex simple Lie algebra and g× g
κ−→

C is its Killing form. Solutions of cCYBE for λ 
= 0 were classified by Belavin and
Drinfeld; see [8, Chapter 6]. In a work of Stolin [49] it was shown that such solutions
stand in bijection with direct sum decompositions

g× g = c�w, (2)

where c := {
(a, a) | a ∈ g

}
is the diagonal and w = wt is a Lie subalgebra of g× g

which is Lagrangian with respect to the bilinear form

(g× g)× (g× g)
F−→ C,

(
(a1, b1), (a2, b2)

) 	→ κ(a1, a2)− κ(b1, b2). (3)

Such datum
((
g× g, F

)
, c,w

)
is an example of a Manin triple.

Let ˜̃G = ˜̃GA be the Kac–Moody Lie algebra, associated with a symmetrizable gen-
eralized Cartan matrix A. It turns out that ˜̃G possesses a non-degenerate invariant sym-

metric bilinear form ˜̃G×˜̃G
B−→ C and decomposes into a direct sum of root spaces [31].

From these facts one can deduce that ˜̃G carries a distinguished Lie bialgebra cobracket
˜̃G

δ◦−→ ∧2
(˜̃G

)
called standard; see [22].

Especially interesting and important phenomena in this context arise in the case of
affine Lie algebras. Assume that A is a generalized Cartan matrix of affine type. Then
the corresponding affine Lie algebra G̃ = [˜̃G, ˜̃G

]
has a one-dimensional center 〈c〉

and both B and δ◦ induce the corresponding structures on the Lie algebra G = G̃/〈c〉.
Namely, we have a non-degenerate invariant symmetric bilinear formG×G

B−→ C and

a Lie bialgebra cobracket G
δ◦−→ ∧2(G). According to a theorem of Gabber and Kac

(see [31, Theorem 8.5]), there exists a finite dimensional simple Lie algebra g and an
automorphism σ ∈ AutC(g) of finite order m such that G is isomorphic to the twisted
loop algebraL = L(g, σ ) := ⊕

k∈Z
gk z

k ⊂ g
[
z, z−1

]
(wheregk are eigenspaces ofσ ). The

Lie algebra L is a free module of rank q = dimC(g) over the ring R = C
[
t, t−1

]
, where

t = zm . It turns out that (up to an appropriate rescaling) the bilinear form L×L
B−→ C

factorizes as L×L
K−→ R

resω0−→ C, where K is the Killing form of L (viewed as a
Lie algebra over R) and resω0 is the residue map at the zero point with respect to the

differential one-form ω = dt

t
. Moreover, one can show that the standard Lie bialgebra

cobracket δ◦ on L ∼= G is given by the following formula:

L
δ◦−→ ∧2(L), f (z) 	→ [

f (x)⊗ 1 + 1⊗ f (y), r◦(x, y)
]
, (4)

where r◦(x, y) is the so-called standard trigonometric solution of the classical Yang–
Baxter equation with spectral parameters (CYBE)
{[

r12(x1, x2), r13(x1, x3)
]
+
[
r13(x1, x3), r23(x2, x3)

]
+
[
r12(x1, x2), r23(x2, x3)

] = 0
r12(x1, x2) = −r21(x2, x1),
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attached to the pair (g, σ ), see for instance Corollary 6.6.
Following the approach of Karolinsky and Stolin [35], we study twisted Lie bialgebra

cobrackets δt = δ◦ + ∂t on L, where

t ∈ L∧L ⊆ (g⊗ g)
[
x, x−1, y, y−1

]
and ∂t

(
f (z)

) = [
f (x)⊗ 1 + 1⊗ f (y),t(x, y)

]
.

One can show that (L, δt) is a Lie bialgebra if and only if rt(x, y) = r◦(x, y) +t(x, y)
is a solution of CYBE (see Theorem 6.9). It is not hard to see that (after an appropriate
change of variables) all trigonometric solutions of CYBE (classified by Belavin and
Drinfeld in [6, Theorem 6.1]) are of the form rt(x, y) for an appropriate t ∈ ∧2(L).
Conversely, one can show that any solution of CYBE of the form rt(x, y) is equivalent
to a trigonometric solution of CYBE; see Proposition 6.11. We prove that such Lie
bialgebra twists t ∈ ∧2(L) are parametrized by Manin triples of the form

L×L‡ := C � W, (5)

where L‡ = L
(
g, σ−1

)
, C = {

( f, f ‡)
∣∣ f ∈ L

}
(here, (azk)‡ = az−k for a ∈ g and k ∈

Z) and the symmetric non-degenerate bilinear invariant form
(
L×L‡)× (

L×L‡)
F−→

C is given similarly to (3), but replacing the Killing form κ by the standard form B;
see Theorem 4.1. This results establishes another analogy between solutions of cCYBE
for λ 
= 0 and trigonometric solutions of CYBE (parallels between both theories were
already highlighted by Belavin and Drinfeld in [8]). We expect (in the light of the works
[39,47]) that the constructed Manin triples (5) will be useful in the study of symplectic
leaves of Poisson–Lie structures on the affine Kac–Moody groups and loop groups,
associated to trigonometric solutions of CYBE.

Using results obtained in this paper, Maximov together with the first-named au-
thor proved in [1] that up to R–linear automorphisms of L, the Lie bialgebra twists of
the standard Lie bialgebra cobracket (4) are classified by Belavin–Drinfeld quadruples(
(	1, 	2, τ ),s

)
, which parametrize trigonometric solutions of CYBE (see Sect. 6.4 for

details).
Based on the work [14], we put the theory of Manin triples of the form (5) into an

algebro-geometric context. We show that for any twist t ∈ ∧2(L) of the standard Lie
bialgebra structure on L there exists an acyclic isotropic coherent sheaf of Lie algebras
A = At on a plane nodal cubic E = V (y2 − x3 − x2) ⊂ P

2 such that	(U,A) ∼= L and

such that the completedManin triple L̂×L̂
‡ := C � Ŵt is isomorphic to theManin triple

Ãs = 	(U,A)�Âs,where s is the singular point of E ,U = E\{s}, Âs is the completion

of the germ of A at s and Ãs is its rational hull. Moreover, L
δt−→ ∧2(L) ⊂ L⊗L can

be identified with the Lie bialgebra cobracket

	(U,A) −→ 	(U,A)⊗ 	(U,A) ∼= 	(U ×U,A � A),
f (z) 	→ [

f (x)⊗ 1 + 1⊗ f (y), ρ(x, y)
]
,

where ρ ∈ 	
(
U ×U \�,A�A) is the geometric r-matrix attached to the pair (E,A)

(here, � ⊂ U × U is the diagonal); see Theorem 6.9. From this we deduce that any
trigonometric solution of CYBE arises from an appropriate pair (E,A), completing the
program of geometrization of solutions of CYBE started in [14,20]. Another proof of
this result was recently obtained by Polishchuk along quite different lines [43].

The theory of twists of the standard Lie bialgebra cobracket on L ∼= G can be
regarded as an alternative approach to the classification of trigonometric solutions of
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CYBE. In particular, it is adaptable for the study of trigonometric solutions of CYBE for
arbitrary real simple Lie algebras, which is of the most interest from the point of view
of applications in the theory of integrable systems (see [3,45]) as well as for simple Lie
algebras over arbitrary fields of characteristic zero.

For a completeness of exposition, we also discuss in this paper an algebro-geometric
viewpoint on the theory of Manin triples of the form g((z)) = g�z� � W, which can be
associated to an arbitrary formal solution of CYBE (see Sect. 5.1) as well as of Manin
triples of the form g((z−1)) = g[z] � W, which (according to a work of Stolin [48])
parametrize the rational solutions of CYBE; see Remark 5.8 and Remark 7.8.

The plan of this paper is the following.
In Sect. 2 we elaborate (following the work of Karolinsky and Stolin [35]) the theory

of twists of a given Lie bialgebra cobracket. The main result of this section is Theorem
2.10, which describes such twists in the terms of appropriate Manin triples.

Necessary notions and results of the structure theory of affine Lie algebras and twisted
loop algebras are reviewed in Sect. 3. In particular, we recall the description of the

standard Lie bialgebra cobracket G
δ◦−→ ∧2(G) for an affine Lie algebra G ∼= L. The

main new result of this section is Theorem3.11 asserting that any boundedLie subalgebra

O ⊂ L, which is coisotropic with respect to the standard bilinear form L×L
B−→ C, is

stable under the multiplication with elements of the polynomial algebra C[t].
In Sect. 4, we apply the theory of twists of Lie bialgebra cobrackets, developed in

Sect. 2, to the particular case of (L, δ◦). The main results of this section are Theorem
4.1 and Proposition 4.5, giving a classification of the twisted Lie bialgebra cobrackets

L
δt−→ ∧2(L) via appropriate Manin triples.
Section 5 is dedicated to the algebro-geometric theory of CYBE. In Sect. 5.1, we

recall a well-known connection between solutions of CYBE and Manin triples of the
form g((z)) = g�z� � W. In Sect. 5.2 we give a survey of the algebro-geometric theory
of CYBE developed in [14]. In Sect. 5.3, we study properties of geometric CYBE
data (E,A), where E is a singular Weierstraß curve. The main result of this section
is Theorem 5.7 (see also Remark 5.8), which gives a recipe to compute the geometric
r -matrix attached to a datum (E,A).

In Sect. 6, we continue the algebro-geometric study of solutions of CYBE, started in
Sect. 5. In Sect. 6.1, we review the theory of torsion free sheaves on degenerations of
elliptic curves, following the work [9]. Sect.6.2 and 6.3 are dedicated to the problem of
geometrization of twists of the standard Lie bialgebra structure on L. In Proposition 6.5,
we derive a formula for the standard trigonometric r -matrix, associated to an arbitrary
finite order automorphism σ ∈ AutC(g). We give a geometric proof of the known fact

that the standard Lie bialgebra cobracket L
δ◦−→ ∧2(L) is given by the standard solution

r◦(x, y) of CYBE; see Corollary 6.6. After these preparations been established, we prove
in Theorem 6.9 that an arbitrary twistL

δt−→ ∧2(L) arises from an appropriate geometric
CYBE datum (E,A), where E is a nodal Weierstraß curve. After reviewing in Sect. 6.4
the theory of trigonometric solutions of CYBE due to Belavin and Drinfeld [6,8], we
prove in Proposition 6.11 that any twist rt(x, y) of the standard solution r◦(x, y) of
CYBE is equivalent to a trigonometric solution.

Some explicit computations are performed in Sect. 7. In particular, we explicitly
describe Manin triples of the form (5) and the corresponding geometric data for the
quasi-constant trigonometric solutions of CYBE (see Theorem 7.7) as well as for a
distinguished class of (quasi-)trigonometric solutions r trg(c,d) for the Lie algebra g =
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sln(C), which are attached to a pair of mutually prime natural numbers (c, d) such that
c + d = n (see Theorem 7.1).

In the final Sect. 8, we review various constructions of Lie bialgebras arising from
solutions of the classical Yang–Baxter equation.
List of notation. For convenience of the reader we introduce now the most important
notation used in this paper.

− We use Gothic letters as a notation for Lie algebras. In particular, g is a finite
dimensional complex simple Lie algebra of dimension q and L = L(g, σ ) is the twisted
loop algebra associated with an automorphism σ ∈ AutC(g) of order m, whereas L =
g
[
z, z−1

]
denotes the full loop algebra. We put t = zm and R = C

[
t, t−1

]
and denote

by g× g
κ−→ C (respectively, L×L

K−→ R) the Killing form of g (respectively, of L)
and by γ ∈ g⊗ g (respectively, χ ∈ L⊗R L) the corresponding Casimir element.

− Unless otherwise stated, by⊗ we mean the tensor product over the field of defini-
tion. We use � to denote the (inner) direct sum of vector spaces. Given a vector space V
over a field k and v1, . . . , vn ∈ V , we denote by 〈v1, . . . , vn〉k the corresponding linear
hull. If V is a Lie algebra then 〈〈v1, . . . , vn〉〉 is the Lie subalgebra of V generated by
v1, . . . , vn .

− We denote by G̃ an affine Lie algebra and by G its quotient modulo the center.

Next, G̃ × G̃
B−→ C (respectively, L×L

B−→ C) is the standard bilinear form and

G̃
δ◦−→ ∧2(G̃) (respectively, L

δ◦−→ ∧2(L)) is the standard Lie bialgebra cobracket.
−AWeierstraß curve E is an irreducible projective curve over C of arithmetic genus

one. If E is singular then s denotes its singular point and U = E \ {s} its regular part.
For a coherent sheaf F on a scheme X and a point p ∈ X , we denote by F

∣∣
p the fiber

of F over p and by Fp the stalk of F at p.
− Next,A denotes a coherent sheaf of Lie algebras on a (singular) Weierstraß curve

E such that H0(E,A) = 0 = H1(E,A) and A
∣∣
x
∼= g for any x ∈ U (together with a

certain extra condition at the singular point s). Such a pair (E,A) is called geometric
CYBE datum and ρ is the corresponding geometric r -matrix.

− Given a geometric CYBE datum (E,A) and a fixed point p ∈ E , we write O for
the structure sheaf of E and put Ep = E\{p} andUp = U \{p} aswell as R = 	(U,O),
Rp = 	(Ep,O) and R◦p = 	(Up,O). For the corresponding sections of A we write
A = 	(U,A), A(p) = 	(Ep,A) and A◦(p) = 	(Up,A). The completion of the stalk

of O at p is denoted by Ôp, while its field of fraction is denoted by Q̂ p. Finally, the
completion of the stalk of A at p is denoted by Âp, whereas Ãp = Q̂ p ⊗Ôp

Âp is the
corresponding rational hull. If p is the singular point of E , we omit the indices p.

2. Lie Bialgebras and Lagrangian Decompositions

In this section k is a field of char(k) 
= 2.

2.1. Generalities on Lie bialgebras. Let R = (
R, [− ,−]) be a Lie algebra over k.

Recall the following standard notions.

• For any n ∈ N we denote:R⊗n = R⊗R⊗ · · · ⊗R︸ ︷︷ ︸
n times

. For any t ∈ R⊗n and a ∈ R,

we put: a ◦ t = ada(t) :=
[
a ⊗ 1⊗ · · · ⊗ 1 + · · · + 1⊗ · · · ⊗ 1⊗ a,t

]
. A tensor

t ∈ R⊗n is called ad-invariant if a ◦ t = 0 for all a ∈ R.
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• A linear map R
δ−→ R⊗R is a skew-symmetric cocycle if Im(δ) ⊆ ∧2(R) and

δ
([a, b]) = a ◦ δ(b)− b ◦ δ(a)

for all a, b ∈ R.

• For any t ∈ R⊗2 we have a linear mapR
∂t−→ R⊗2, a 	→ a ◦t. If t ∈ ∧2 R then

∂t is automatically a skew-symmetric cocycle.

Definition 2.1. A Lie bialgebra is a pair (R, δ), where R is a Lie algebra and δ is a
skew-symmetric cocycle satisfying the co-Jacobi identity alt

(
(δ ⊗ 1) ◦ δ) = 0, where

R⊗3 alt−→ R⊗3 is given by the formula alt(a⊗b⊗c) := a⊗b⊗c+c⊗a⊗b+b⊗c⊗a
for a, b, c ∈ R.

Remark 2.2. Let (R, δ) be a Lie bialgebra.

• TheLie cobracket δ defines an element in theLie algebra cohomologyH1
(
R,∧2(R)

)
.

For any t ∈ ∧2(R) we have: [∂t] = 0 in H1
(
R,∧2(R)

)
.

• The linear map R∗ ⊗R∗ ↪→ (
R⊗R

)∗ δ∗−→ R∗ defines a Lie algebra bracket on
the dual vector space R∗ of R. ♦

Following the work [35], we have the following result.

Proposition 2.3. Let (R, δ) be a Lie bialgebra, t ∈ ∧2(R) and δt := δ + ∂t. Then
(R, δt) is a Lie bialgebra if and only if the tensor

(
alt

(
(δ ⊗ 1)(t)

)− [[t,t]]) ∈ R⊗3

is ad-invariant, where

[[t,t]] := [t12,t13] + [t12,t23] + [t13,t23].
In this case, δt is called a twist of δ.

Proof. Clearly, δt is a skew-symmetric cocycle. Hence, (R, δ) is a Lie bialgebra if and
only if alt

(
(δt⊗1)◦ δt

)
(x) = 0 for all x ∈ R. Since (R, δ) is a Lie bialgebra, we have:

alt
(
(δ ⊗ 1) ◦ δ) = 0. Next, for any x ∈ R the following formula is true:

alt
(
(∂t ⊗ 1) ◦ ∂t

)
(x) = −x ◦ [[t,t]],

see [19, Lemma 2.1.3]. If t =
n∑

i=1
ai ⊗ bi then we have:

x ◦ ((δ ⊗ 1)(t)
) =

n∑

i=1

(
(x ◦ δ(ai ))⊗ bi + δ(ai )⊗ [x, bi ]

)
.

Since (δ ⊗ 1)(∂t(x)) = (δ ⊗ 1)[x ⊗ 1 + 1⊗ x,t] =

=
n∑

i=1

(
δ([x, ai ])⊗ bi + δ(ai )⊗ [x, bi ]

) =
n∑

i=1

((
x ◦ δ(ai )− ai ◦ δ(x)

)⊗ bi

+δ(ai )⊗ [x, bi ]
)
,

we obtain: (δ ⊗ 1)(∂t(x)) = x ◦ ((δ ⊗ 1)(t)
)−

n∑

i=1
(
ai ◦ δ(x)

)⊗ bi .



Algebraic Geometry of Lie Bialgebras Defined by Solutions 1057

Let δ(x) =
m∑

j=1
x j ⊗ y j . Then we have:

(∂t ⊗ 1)(δ(x)) =
m∑

j=1

n∑

i=1

([x j , ai ] ⊗ bi ⊗ y j + ai ⊗ [x j , bi ] ⊗ y j
)

and
n∑

i=1

(
ai ◦ δ(x)

)⊗ bi =
m∑

j=1

n∑

i=1

([ai , x j ] ⊗ y j ⊗ bi + x j ⊗ [ai , y j ] ⊗ bi
)
.

Since t ∈ ∧2(R), we have: t = −
n∑

i=1
bi ⊗ ai . It follows that

m∑

j=1

n∑

i=1
[ai , x j ] ⊗ y j ⊗ bi =

m∑

j=1

n∑

i=1
[x j , bi ] ⊗ y j ⊗ ai .

As a consequence, we obtain: alt
( m∑

j=1

n∑

i=1
ai ⊗ [x j , bi ] ⊗ y j − [x j , bi ] ⊗ y j ⊗ ai

) = 0.

Similarly, since δ(x) ∈ ∧2(R), we have:
m∑

j=1
x j ⊗ y j = −

m∑

j=1
y j ⊗ x j . Hence,

m∑

j=1

n∑

i=1
x j ⊗ [ai , y j ] ⊗ bi =

m∑

j=1

n∑

i=1
y j ⊗ [x j , ai ] ⊗ bi

and as a consequence, alt
( m∑

j=1

n∑

i=1
[x j , ai ] ⊗ bi ⊗ y j − y j ⊗ [x j , ai ] ⊗ bi

) = 0. Putting

everything together, we finally obtain: alt
(
(δt ⊗ 1) ◦ δt

)
(x) = x ◦ (alt((δ ⊗ 1)(t)

)−
[[t,t]]), implying the statement. ��
Corollary 2.4. Let (R, δ) be a Lie bialgebra and t ∈ ∧2(R). A sufficient condition for
δt to be a twist of δ is provided by the twist equation

alt
(
(δ ⊗ 1)(t)

)− [[t,t]] = 0, (6)

introduced in [35].

Definition 2.5. LetR be aLie algebra overk andR×R
F−→ k be a symmetric invariant

non-degenerate bilinear form, i.e. F
([a, b], c) = F

(
a, [b, c]) for all a, b, c ∈ R. Next,

let R± ⊂ R be a pair of Lie subalgebras such that

R = R+ �R− and R± ⊆ R⊥±,

where� is the direct sum of vector subspaces. Then
(
(R, F),R+,R−

) = (
R,R+,R−

)

is called a Manin triple. We say that a given splitting R = R+ �R− is a Manin triple,
if

(
R,R+,R−

)
is. Two Manin triples

(
(R, F),R+,R−) and

(
(R̃, F̃), R̃+, R̃−) are

isomorphic if there exists an isomorphism of Lie algebras R
f−→ R̃, which is a ho-

mothety with respect to the bilinear forms F and F̃ (i.e. there exists λ ∈ k∗ such that
F(a, b) = λF̃(a, b) for all a, b ∈ R) and such that f (R±) = R̃±.
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Remark 2.6. If
(
R,R+,R−) is a Manin triple, then we automatically have:R± = R⊥±;

see Lemma 2.8 below. ♦

Definition 2.7. Let (R+, δ) be a Lie bialgebra. We say that the Lie bialgebra cobracket

R+
δ−→ ∧2(R+) is determined by a Manin triple

(
(R, F),R+,R−) if

F
(
δ(a), b1 ⊗ b2

) = F
(
a, [b1, b2]

)
(7)

for all a ∈ R+ and b1, b2 ∈ R−.

It is clear that if R+
δ̃−→ ∧2(R+) is another Lie bialgebra cobracket which is deter-

mined by the same Manin triple
(
R,R+,R−), then δ = δ̃.

2.2. Some basic results on Lagrangian decompositions. Let V be a (possibly infinite
dimensional) vector space over k. Recall that two vector subspaces W ′,W ′′ ⊂ V are
called commensurable (which will be denoted W ′ � W ′′) if dimk

(
(W ′ + W ′′)/(W ′ ∩

W ′′)
)
<∞.

Lemma 2.8. Let V = U � W, where U,W ⊂ V are isotropic subspaces with respect

to a non-degenerate symmetric bilinear form V × V
F−→ k. Then we have:

(a) The linear map U
F̃−→ W ∗, u 	→ F(u, −) is injective and both subspaces U and

W are automatically Lagrangian, i.e. V = U � W is a Lagrangian decomposition.
(b) The linear map

U ⊗U
j−→ Homk(W,U ), t =

n∑

i=1
ai ⊗ bi 	→

(
W

ft−→ U, w 	→
n∑

i=1
F(w, ai )bi

)

is injective.
(c) For any t ∈ U⊗2 let Wt :=

{
w + ft(w) |w ∈ W

}
. Then we have:

(1) V = U � Wt and W � Wt.
(2) The map W −→ Wt, w 	→ w + ft(w) is an isomorphism of vector spaces and

Wt = Wt′ if and only if t = t′.

Proof. (a) Since U ⊆ U⊥ and F is non-degenerate, the linear map F̃ is injective. Let
v ∈ U⊥. Then there exist uniquely determined u ∈ U and w ∈ W such that v = u +w.
For any u′ ∈ U and w′ ∈ W we have:

F(w, u′) = F(v, u′) = 0 and F(w,w′) = 0.

It follows that w = 0 and v = u ∈ U , hence U = U⊥ is Lagrangian.

(b) Since U is isotropic and F is non-degenerate, the linear map U
F̃−→ W ∗, u 	→

F(−, u) is injective. The linear map j coincides with the composition

U ⊗U
F̃⊗1
↪→ W ∗ ⊗U ↪→ Homk(W,U ),

and is therefore injective.
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(c1) Let t = ∑n
i=1 ai ⊗ bi . Then Im( ft) ⊆

〈
b1, . . . , bn

〉
k and dimk

(
Im( ft)

) ≤ n.
SinceW/Ker( ft) ∼= Im( ft), there exists a finite dimensional vector subspaceW ′ ⊂ W
such that W = W ′ � Ker( ft). It follows that

Ker( ft) ⊆ W ∩Wt ⊆ W +Wt ⊆ Ker( ft) +
(
W ′ + Im( ft)

)
.

Hence, W � Wt. It is easy to see that U ∩ Wt = 0 and W ⊂ U + Wt. It follows that
V = U +W ⊆ U +Wt, hence V = U � Wt as asserted.

(c2) The linear mapW → Wt is by construction surjective. It is also easy to see that
it is injective.

Assume that t,t′ ∈ U⊗2 are such that Wt = Wt′ . Then for any w ∈ W there exists
a uniquely determined w′ ∈ W such that w + ft(w) = w′ + ft′(w′). It follows from
U ∩ W = 0 that w = w′. Hence, ft(w) = ft′(w) for all w ∈ W . Since j is injective,
we have: t = t′. ��
Proposition 2.9. Let V = U � W be a Lagrangian decomposition and

LG
(
V,U ;W ) :=

{
W̃ ⊆ V

∣∣∣∣
V = U � W̃
W̃⊥ = W and W̃ � W

}
.

Then the map ∧2U −→ LG
(
V,U ;W ), t 	→ Wt is a bijection.

Proof. Let t ∈ U⊗2. Then Wt ⊂ V is Lagrangian if and only if

F
(
ft(w),w

′) + F
(
w, ft(w

′)
) = 0 for all w,w′ ∈ W.

It follows that F̂
(
t + t21, w⊗w′) = 0 for all w,w′ ∈ W , where V⊗2 × V⊗2 F̂−→ k is

the bilinear form induced by F . Since V = U � W is a Lagrangian decomposition, it
follows that F̂

(
t+t21, v⊗v′

) = 0 for all v, v′ ∈ V . Thus, t+t21 = 0, i.e. t ∈ ∧2(U ).
Lemma 2.8 implies that ∧2U −→ LG

(
V,U ;W ), t 	→ Wt is a well-defined injective

map and it remains to prove its surjectivity.
Let W̃ ∈ LG

(
V,U ;W ). Then for anyw ∈ W there exist uniquely determined u ∈ U

and w̃ ∈ W̃ such that w = w̃ − u. We define a linear map W
f−→ U by setting

u := f (w). SinceW � W̃ , Ker( f ) = W ∩ W̃ ⊆ W is a subspace of finite codimension
and dimk

(
Im( f )

)
<∞.

We also get an isomorphismW → W̃ , w 	→ w̃ = w+ f (w). Since W̃ is a Lagrangian
subspace of V , we have: F

(
f (w),w′)+ F

(
w, f (w′)

) = 0 for allw,w′ ∈ W . It follows

that Ker( f ) = (
Im( f )

)⊥ ∩W . Moreover, we obtain a bilinear pairing

W/Ker( f )× Im( f )
F̄−→ k, (w̄, u) 	→ F(w, u).

It is not hard to show that F̄ is non-degenerate. Letw1, v1, . . . , wn, vn ∈ W be such that

• (
f (w1), . . . , f (wn)

)
is a basis of Im( f ).

• (
v̄1, . . . , v̄n

)
is a basis of W/Ker( f ).

• For all 1 ≤ i, j ≤ n we have: F
(
vi , f (w j )

) = δi j .
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Then we have:
∑n

i=1 F
(
w j ,− f (vi )

)
f (wi ) =

n∑

i=1
F
(
f (w j ), vi

)
f (wi ) = f (w j ).

Let t := −∑n
i=1 f (vi ) ⊗ f (wi ) ∈ U⊗2. Then for any 1 ≤ j ≤ n we have:

ft(w j ) = f (w j ), hence Im( f ) = Im( ft). SinceKer( f ) =
(
Im( f )

)⊥∩W ⊆ Ker( ft),
it follows that Ker( f ) = Ker( ft) implying that f = ft. Thus, we have found t ∈ U⊗2

such that W̃ = Wt. Finally, the assumption W̃⊥ = W̃ implies that t ∈ ∧2(U ), as
asserted. ��
Theorem 2.10. Let (R,R+,R−) = ((R, F),R+,R−) be a Manin triple determining

a Lie bialgebra cobracket R+
δ−→ ∧2(R+) and

MT
(
R,R+;R−) :=

{
W ⊂ R

∣∣∣∣
(R,R+,W) is a Manin triple
W � R−

}
.

Let t ∈ ∧2(R+). Then the corresponding subspace Rt− := (
R−

)
t ⊂ R is a Lie

subalgebra if and only if t satisfies the twist Eq. (6) and the map

{
t ∈ ∧2(R+)

∣∣∣alt
(
(δ ⊗ 1)(t)

)− [[t,t]] = 0
}
−→ MT

(
R,R+;R−)

assigning to a tensort ∈ ∧2(R+) the subspaceRt− ⊂ R is a bijection.Moreover, the Lie

bialgebra cobracketR+
δt−→ ∧2(R+) is determined by the Manin tripleR = R+ �Rt−.

Proof. Let t ∈ ∧2(R+). Then the corresponding vector subspace Rt− ⊂ R is La-
grangian, R = R+ �Rt− and Rt− � R−. Conversely, any such Lagrangian subspace
W has the form W = Rt− for some uniquely determined t ∈ ∧2

(
R+

)
; see Proposition

2.9.
SinceR = R+ �Rt− is a Lagrangian decomposition, the subspaceRt− ⊂ R is closed

under the Lie bracket if and only if F
([w̃1, w̃2], w̃3

) = 0 for any w̃1, w̃2, w̃3 ∈ Rt−.
For any w ∈ R− let w̃ = w + ft(w) be the corresponding element ofRt−. The same

computation as in [35, Theorem 7] shows that for all w1, w2, w3 ∈ R− we have:

F
(
w1 ⊗ w2 ⊗ w3, [[t,t]] − alt

(
(δ ⊗ 1)(t)

)) = F
([w̃1, w̃2], w̃3

)
.

This implies thatRt− is aLie subalgebra ofR if andonly ifalt
(
(δ◦⊗1)(t)

)−[[t,t]] = 0.

Since t ∈ ∧2
(
R+

)
, it follows that F

(
∂t(a), w1 ⊗ w2

) = F
(
a,

[
w1, ft(w2)

]
+[

ft(w1), w2
])

for any a ∈ R+ and w1, w2 ∈ R−. A straightforward computation
shows that

F
(
δt (a), w̃1 ⊗ w̃2

) = F
(
a,

[
w̃1, w̃2

])
for any a ∈ R+ and w̃1, w̃2 ∈ Rt−,

implying that R+
δt−→ ∧2

(
R+

)
is determined by the Manin triple R = R+ �Rt−. ��
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3. Review of Affine Lie Algebras and Twisted Loop Algebras

3.1. Basic facts on affine Lie algebras. Let 	̂ be an affine Dynkin diagram, |	̂| = r + 1
and A ∈ Mat(r+1)×(r+1)(Z) be the corresponding generalized Cartan matrix. We choose
a labelling of vertices of 	̂ as in [18, Section 17.1]. The corresponding affine Lie algebra
G̃ = G̃	̂ = G̃A is by definition the Lie algebra over C generated by the elements
e±0 , . . . , e±r , h̃0, . . . , h̃r subject to the following relations:

⎧
⎪⎨

⎪⎩

[h̃i , h̃ j ] = 0
[e+i , e−j ] = δi j h̃i
[h̃i , e±j ] = ±ai j e±j

for all 0 ≤ i, j ≤ r

and
{
ad

1−ai j
e±i

(e±j ) = 0 for all 0 ≤ i 
= j ≤ r

see [18,31]. Recall the following standard facts.
1. There exist unique vectors k = (k0, . . . , kr ) and l = (l0, . . . , lr ) in N

r+1 such that

gcd(k0, . . . , kr ) = 1 = gcd(l0, . . . , lr )

and lA = 0 = Akt ; see [18, Section 17.1].

• For any 0 ≤ i ≤ r let di := ki
li
. Then for any 0 ≤ i, j ≤ r we have: ai j d j = a ji di .

In other words, the matrix D−1A is symmetric, where D := diag
(
d0, . . . , dr

)
.

• The center of the Lie algebra G̃ is one-dimensional and generated by the element
c := l0h̃0 + · · · + lr h̃r ; see [18, Proposition 17.8].

2. There exists a symmetric invariant bilinear form G̃ × G̃
B̃−→ C (called standard

form) given on the generators by the following formulae:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B̃(h̃i , x
±
j ) = 0

B̃(h̃i , h̃ j ) = d jai j
B̃(e±i , e

∓
j ) = diδi j

B̃(e±i , e
±
j ) = 0

for all 0 ≤ i, j ≤ r (8)

see [18, Theorem 16.2]. This form is degenerate and its radical is the vector space Cc.

3. TheLie algebra G̃ carries a so-called standard Lie bialgebra cobracket G̃
δ̃◦−→ ∧2G̃

(discovered by Drinfeld [22]) given by the formulae

δ̃◦(e±i ) =
1

di
h̃i ∧ e±i and δ̃◦(h̃i ) = 0 for all 0 ≤ i ≤ r.

4. Consider the Lie algebra G = G̃/〈c〉. Then we have the induced non-degenerate

symmetric invariant bilinear form G×G
B−→ C, which will be also called standard, as

well as a Lie bialgebra cobracket G
δ◦−→ ∧2G, given by the formulae
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δ◦(e±i ) =
1

di
hi ∧ e±i and δ◦(hi ) = 0 for all 0 ≤ i ≤ r, (9)

where hi denotes the image of h̃i in G.
5. Denote byG± = 〈〈e±0 , . . . , e±r 〉〉 the Lie subalgebra ofG generated by the elements

e±0 , . . . , e±r and put H := 〈
h1, . . . , hr

〉
C
. Then we have the triangular decomposition

G = G+⊕H⊕G− aswell as the following symmetric non-degenerate invariant bilinear
form:

(
G×G

)× (
G×G

) F−→ C,
(
(a′, b′), (a′′, b′′)

) 	→ B(a′, b′)− B(a′′, b′′). (10)

We identify G with the diagonal
{
(a, a)

∣
∣ a ∈ G

} ⊂ G×G and put

H′ = {
(a,−a) ∣∣ a ∈ H

}
and W

◦ := (
G+×G−

)
+ H′ . (11)

The following result is essentially due to Drinfeld [22, Example 3.2]; see also [19,
Example 1.3.8] for a detailed proof.

Theorem 3.1. We have a Manin triple

G×G = G�W
◦
, (12)

which moreover determines the standard Lie bialgebra cobracket G
δ◦−→ ∧2G.

3.2. Basic facts on twisted loop algebras. Let g be a finite dimensional complex simple
Lie algebra of dimensionq,g× g

κ−→ C itsKilling form,σ ∈ AutC(g) an automorphism

of order m and ε = exp
(2π i

m

)
. For any k ∈ Z, let gk :=

{
x ∈ g

∣∣ σ(x) = εk x
}
. Then

we have a direct sum decomposition g = ⊕m−1
k=0 gk . First note the following easy and

well-known fact.

Lemma 3.2. For any k, l ∈ Z, the pairing gk × gl
κ−→ C is non-zero if and only if

m|(k + l). Moreover, the pairing gk × g−k
κ−→ C is non-degenerate for any k ∈ Z.

Proof. Let a ∈ gk and b ∈ gl . Then we have: κ(a, b) = κ
(
σ(a), σ (b)

) = εk+lκ(a, b),
implying the first statement. The second statement follows from the first one and non-
degeneracy of the form κ . ��
Corollary 3.3. The Casimir element γ ∈ g⊗ g (with respect to the Killing form κ)

admits the decomposition γ =
m−1∑

k=0
γk with components γk ∈ gk ⊗ g−k .

Let L = g[z, z−1] be the loop algebra of g, where
[
azk, bzl

] := [a, b]zk+l for any
a, b ∈ g and k, l ∈ Z. The twisted loop algebra is the following Lie subalgebra of L:

L = L(g, σ ) :=
⊕

k∈Z
gk z

k . (13)

Let Inn(g) be the group of inner automorphisms of g. It is a normal subgroup of the group
Aut(g) of Lie algebra automorphisms of g. The quotient Out(g) := Aut(g)/ Inn(g) can
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be identified with the group Aut(	) of automorphisms of the Dynkin diagram 	 of g;
see e.g. [41, Chapter 4]. Moreover, given two automorphisms σ, σ ′ ∈ Aut(g) of finite
order, the corresponding twisted loop algebras L(g, σ ) and L(g, σ ′) are isomorphic if
and only if the classes of σ and σ ′ in Out(g) are conjugate; see [31, Chapter 8] or [30,
Section X.5].

Let R = C[z, z−1] and R = C[t, t−1], where t = zm .

Proposition 3.4. The following results are true.

(a) L is a freemodule of rank q over R.Moreover, for anyλ ∈ C, we have an isomorphism
of Lie algebras

(
R/(t − λ)

)⊗R L ∼= g.
(b) Consider the symmetric C-bilinear form

L×L
B−→ C, B(azk, bzl) = κ(a, b)δk+l,0. (14)

Then B is non-degenerate and invariant. Moreover, the rescaled bilinear form mB

coincides with the composition L×L
K−→ R

resω0−−→ C, where K is the Killing form

of L, ω = dt

t
and resω0 ( f ) = res0( f ω) for any f ∈ R.

(c) For any n ∈ N, the (n +1)-fold tensor product L⊗(n+1) does not contain any non-zero
ad-invariant elements.

Proof. (a) Let ( f1, . . . , fq) be any basis of the vector space
m−1⊕

j=0
g j z

j . Then for any

f ∈ L there exist unique p1, . . . , pq ∈ R such that f = p1 f1 + · · · + pq fq . Hence, L
is a free R-module of rank q.

The canonical map R ⊗R L
π−→ L, zn ⊗ azk 	→ azn+k is an R–linear surjective

morphism of Lie algebras. Since R ⊗R L and L are both free R–modules of the same
rank, π is an isomorphism. Finally, the extension R ⊂ R is unramified, hence for any
μ ∈ C

∗ the following canonical linear maps

R/(t − μm)⊗R L→ R/(z − μ)⊗R L→ R/(z − μ)⊗R R ⊗R L→
R/(z − μ)⊗R L→ g

are isomorphisms of Lie algebras.

(b) Let L × L
K−→ R be the Killing form of L. Then we have: K (azk, bzl) =

κ(a, b)zk+l . The isomorphism of Lie algebras R ⊗R L ∼= L as well as invariance of the
Killing form under automorphisms imply that the following diagram is commutative:

L×L
��

��

K �� R� �

��
L× L

K �� R.

Since ω = dt

t
= m

dz

z
, we get the second statement.

(c) Assume that t ∈ L⊗(n+1) is such that
[
x ⊗ 1⊗ · · · ⊗ 1 + · · · + 1⊗ · · · ⊗ 1⊗ x,t

] = 0 (15)
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for all x ∈ L. Let (bk)k∈N be an orthonormal basis of Lwith respect to the form B. Then

we can express t as a sum t =
s∑

j1,..., jn=1
a j1... jn ⊗ b j1 ⊗ · · · ⊗ b jn . Consider the vector

space J := 〈
a j1... jn | 1 ≤ j1, . . . , jn ≤ s

〉
C
⊂ L For any 1 ≤ i1, . . . , in ≤ s, we apply

the map

1L ⊗ B(bi1 ,−)⊗ · · · ⊗ B(bin ,−) : L⊗(n+1) −→ L

to the identity (15). It follows that
[
x, ai1...in ] ∈ J for any x ∈ L, implying that J is an

ideal in L. However, L does not contain any non-zero finite-dimensional ideals; see [31,
Lemma 8.6]. Hence, t = 0, as asserted. ��

A proof of the following key result can be found in [31, Lemma 8.1].

Proposition 3.5. The algebra g0 =
{
a ∈ g

∣∣ σ(a) = a
}
is non-zero and reductive.

Remark 3.6. In what follows, we choose a Cartan subalgebra h ⊂ g0. Let�0 be the root
system of (g0, h). We fix a polarization�0 = �+

0 ��−
0 , which gives a triangular decom-

position g0 = g+0 ⊕ h⊕ g−0 .One can show that h̃ := {
a ∈ g

∣∣[a, h] = 0 for all h ∈ h
}
is

a Cartan subalgebra of g; see [31, Lemma 8.1]. However, in general h̃ 
= h. The algebra
g0 is simple if σ is a so-called diagram automorphism of g; see [31, Chapter 8]. ♦

Nowwe review the structure theory of twisted loop algebras as well as their relations
with affine Lie algebras. For that we need the following notions, notation and facts.

1. For any j ∈ Z we put: L j = g j z
j ⊂ L. Since

[
g0, g j

] ⊆ g j , it follows that[
g0,L j

] ⊆ L j , too. A pair (α, j) ∈ h∗ ×Z is a root of (L, h) if

L(α, j) :=
{
x ∈ L j

∣∣ [h, x] = α(h)x forall h ∈ h
} 
= 0.

In our convention, (0, 0) is a root of (L, h). Note that L(0,0) := h.
Let � be the set of all roots of (L, h). It is clear that (−α,− j), (α, j + km) ∈ � for

all k ∈ Z and (α, j) ∈ �.
2. For any (α, j), (α′, j ′) ∈ h∗ ×Z we put: (α, j) + (α′, j ′) = (α + α′, j + j ′). We

have:
[
L(α, j),L(α′, j ′)

] ⊆ L(α+α′, j+ j ′) .

A root (α, j) is called real if α 
= 0 and imaginary otherwise. There existsm′|m such that
any imaginary root has the form (0, km′) for some k ∈ Z. For any real root (α, j) ∈ �

we have: dimC

(
L(α, j)

) = 1 (see e.g. [30, LemmaX.5.4’]). A formula for dimC

(
L(0,km′)

)

can be found in [31, Corollary 8.3].
Since g0 is a reductive Lie algebra, we have a direct sum decomposition L =⊕
(α, j)∈� L(α, j). The sets of positive and negative roots of (L, h) are defined as fol-

lows:
�± := {

(α, j) ∈ �
∣∣ ± j > 0

} � {
(α, 0) ∈ �

∣∣ ± α ∈ �+
0

}
, (16)

where �+
0 is the set positive roots of (g0, h). We have: � = �+ � �− �

{
(0, 0)

}
and

�− = −�+.

3. Since the bilinear formL×L
B−→ C is invariant and non-degenerate, analogously

to Lemma 3.2 we obtain the following results:

• The pairing L(α, j)×L(α′, j ′)
B−→ C is zero unless (α, j) + (α′, j ′) = (0, 0).
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• For any (α, j) ∈ �, the pairing L(α, j)×L(−α,− j)
B−→ C is non-degenerate.

• In particular, since B
∣∣
h×h

= κ|h×h, the pairing h× h
κ−→ C is non-degenerate.

4. The set� of simple roots of (L, h) is defined as follows:

� := {
(α, j) ∈ �+

∣
∣ (α − β, j − i) /∈ �+ for all (β, i) ∈ �+

}
. (17)

All elements of � are real roots and we have: |�| = r + 1; see [30, Lemma X.5.7 and
Lemma X.5.9]. We use the following notation:

� = {
(α0, s0), . . . , (αr , sr )

}
. (18)

5. Since the pairing h× h
κ−→ C is non-degenerate, we get the induced isomorphism

of vector spaces h
κ̃−→ h∗. Abusing the notation, let h∗ × h∗ κ−→ C be the transfer of

the Killing form κ under the isomorphism κ̃ .

• For any 0 ≤ i ≤ r we put: yi := 2

κ(αi , αi )

(
κ̃
)−1

(αi ) ∈ h.

• For any 0 ≤ i, j ≤ r we set:

ai j := 2
κ(αi , α j )

κ(αi , αi )
. (19)

It turns out that ai j ∈ Z and A = (ai j ) ∈ Mat(r+1)×(r+1)(Z) is a generalized Cartan
matrix of affine type; see [30, Lemma X.5.6 and Lemma X.5.11]. In particular, we
have: rk(A) = r .
• For every 0 ≤ i ≤ r one can choose x±i ∈ L±(αi ,si ) such that the following relations
are satisfied for all 0 ≤ i, j ≤ r :

⎧
⎨

⎩

[yi , y j ] = 0
[x+i , x−j ] = δi j yi
[yi , x±j ] = ±ai j x±j .

Moreover, for any 0 ≤ i 
= j ≤ r we have:

ad
1−ai j
x±i

(x±j ) = 0

and the elements x±0 , . . . , x±r , y0, . . . , yr generate L; see [30, Section X.5].
• Let G = GA. A theorem of Gabber and Kac asserts that the linear map

G
ϕ−→ L, e±i 	→, x±i , hi 	→ yi (20)

is an isomorphism of Lie algebras, which identifies both standard forms onG and on
L (up to an appropriate rescaling); see [31, Theorem 8.5].

Corollary 3.7. We have a Lie bialgebra cobracket L
δ◦−→ ∧2 L (also called standard),

given by the formulae

δ◦(x±i ) =
κ(αi , αi )

2
yi ∧ x±i and δ◦(yi ) = 0 for all 0 ≤ i ≤ r. (21)

This cobracket is determined by the Manin triple, which is isomorphic to (12).
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3.3. Bounded Lie subalgebras of twisted loop algebras. For any 0 ≤ i ≤ r , the corre-
sponding (positive) maximal parabolic Lie subalgebra Pi ⊂ L is defined as follows:

Pi := 〈〈h0, . . . , hr , x+0 , . . . , x+r , x−0 , . . . , x̂i−, . . . , x−r 〉〉.

A similar argument to [32, Lemma 1.5] implies that

Pi = B+⊕
(⊕(α, j)∈�−

i
L(α, j)

)
, (22)

where �−
i := �− ∩ 〈

α0, . . . , α̂i , . . . , αr
〉
N
−
0
and B+ := (g+0 ⊕ h) ⊕ ( ∞⊕

k=1
gk z

k
)
is a

positive Borel subalgebra of L.

Lemma 3.8. For any 0 ≤ i ≤ r we have: t Pi ⊆
(
Pi

)⊥
, where the orthogonal space is

taken with respect to the bilinear form B, given by the formula (14).

Proof. Since the roots α0, . . . , α̂i , . . . , αr are linearly independent elements of h∗, it
follows that (0,−km′) /∈ �−

i for all k ∈ N. Let �i := �+ � {(0, 0)} � �−
i . Then we

have:

Pi =
⊕

(α, j)∈�i

L(α, j) and t Pi =
⊕

(β,k)∈�i

L(β,k+m) .

Let (α, j), (β, k) ∈ �i , x ∈ L(α, j) and y ∈ L(β,k+m) are such that B(x, y) 
= 0. Then
we have: α = −β and j = −k − m.

Case 1. Assume that α = 0. Then (α, j) ∈ �+�{(0, 0)} and (β, k) = (0,− j−m) ∈
�−

i is a negative imaginary root. Contradiction.
Case 2. Assume that (α, j) is a real root. Then there exist x ∈ L(α, j) and y ∈ L(β,k+m)

such that [x, y] 
= 0; see [30, Lemma X.5.5’]. Hence,L(0,−m) ∩Pi 
= 0. It follows from
the decomposition (22) that (0,−m) ∈ �−

i . Contradiction.

We have shown that the pairing t Pi ×Pi
B−→ C is zero, what implies the claim. ��

For any n ∈ Z we put: L≥n := tn L≥0, where L≥0 := ⊕

j≥0
L j . Note that for any

n ∈ N we have:
(
L≥n

)⊥ ⊆ L≥−n .

Definition 3.9. A Lie subalgebra O ⊆ L is bounded if L≥n ⊆ O ⊆ L≥−n for some
n ∈ N.

Let L̃ = L�Cc be a central extension ofLwith the Lie bracket given by the formulae

[azk, bzl ] := [a, b]zk+l + kδk+l,0 κ(a, b) c and [azk, c] = 0 (23)

for all k, l ∈ Z, a ∈ gk and b ∈ gl . Let A ∈ Mat(r+1)×(r+1)(Z) be the generalized Cartan
matrix of affine type, given by (19) and ˜̃G = ˜̃GA be the corresponding affineKac–Moody
Lie algebra. Then ˜̃G has one-dimensional center Z, G̃ = [˜̃G, ˜̃G

]
and G = G̃/Z. The

Gabber–Kac isomorphism G
ϕ−→ L given by (20) extends to an isomorphism of Lie
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algebras G̃
ϕ̃−→ L̃. The entire picture can be summarized in the following commutative

diagram of Lie algebras and Lie algebra homomorphisms:

˜̃G G̃�
��� �� ��

ϕ̃
��

G

ϕ

��
L̃ �� �� L .

(24)

For 0 ≤ i ≤ r , let G̃+ ⊂ P̃i := Pi �Cc ⊂ ˜̃G be the corresponding maximal parabolic
Lie subalgebra.

Proposition 3.10. Let O ⊆ L be a bounded Lie subalgebra. Then there exists an R-
linear automorphism φ of L and 0 ≤ i ≤ r such that O ⊆ φ

(
Pi

)
.

Proof. Let n ∈ N be such that L≥n ⊆ O ⊆ L≥−n and I := t2n+1O. Obviously, I is a
Lie ideal in O and L≥(3n+1) ⊆ I ⊆ L≥(n+1) .We can view I and L as vector subspaces
in L̃.

Let Õ := O�Cc. Since I ⊆ L≥(n+1) and O ⊆ L≥−n , the relations (23) imply
that

[
x, y

]
L
= [

x, y
]
L̃
for all x ∈ I and y ∈ O. Hence, I ⊂ Õ is a Lie ideal with

respect to the Lie bracket
[−,−]

L̃
. Embedding L̃ into ˜̃G via ϕ̃, we see that I ⊆ G̃+ and

dimC

(
G̃+/I

)
<∞.

By [32, Proposition 2.8], there exists an inner automorphism ψ̃ of G̃ and 0 ≤ i ≤ r
such that

[
P̃i , ψ̃(O)

] ⊆ P̃i .

According to [32, Lemma 1.5], for any Lie subalgebra P̃ ⊂ ˜̃G containing B̃+, there
exists 0 ≤ i ≤ r such that P̃ ⊆ P̃i . Since the only proper ideals of ˜̃G are G̃ and Z (see
e.g. [32, Section 1.2]), we deduce from maximality of P̃i that

N˜̃G

(
P̃i

) := {
x ∈ ˜̃G

∣
∣ [x, y] ∈ P̃i for all y ∈ P̃i

} = P̃i . (25)

It follows that

ψ̃(Õ) ⊆ N˜̃G

(
P̃i

) = P̃i . (26)

Consider the automorphism G
ψ−→ G induced by ψ̃ . Since ψ̃ is inner, ψ is R-linear.

Applying to (26) the projection G̃ � G and identifying G with L, we finally end up
with an inclusion O ⊆ φ

(
Pi

)
, where φ = ψ−1. ��

Theorem 3.11. Let O ⊆ L be a bounded coisotropic Lie subalgebra of L. Then we
have: t O ⊆ O⊥, i.e. O is stable under the multiplication with the elements of C[t].
Proof. According to Proposition 3.10, there exists 0 ≤ i ≤ r and φ ∈ AutR(L) such
that O ⊆ φ(Pi ). Since B

(
φ( f ), φ(g)

) = B( f, g) for all f, g ∈ L, we get (applying
Lemma 3.8):

t O ⊆ tφ(Pi ) = φ(t Pi ) ⊆ φ
(
P⊥

i

) = (
φ(Pi )

)⊥ ⊆ O⊥ ⊆ O,

as asserted. ��



1068 R. Abedin, I. Burban

4. Twists of the Standard Lie Bialgebra Structure on a Twisted Loop Algebra

Recall our notation: g is a simple complex Lie algebra of dimension q, σ ∈ AutC(g) is

an automorphism of order m and ε = exp
(2π i

m

)
. For any k ∈ Z we denote:

gk :=
{
a ∈ g

∣∣ σ(a) = εka
}

and g
‡
k :=

{
a ∈ g

∣∣ σ(a) = ε−ka
}
.

Let L = L(g, σ ) = ⊕

k∈Z
gk z

k and L‡ = L(g, σ−1) = ⊕

k∈Z
g
‡
k z

k be the corresponding

twisted loop algebras and L×L
B−→ C, respectively L‡×L‡ B‡−→ C, be the corre-

sponding standard bilinear forms. Note that the linear map

L −→ L‡, azk 	→ (
azk

)‡ := az−k for any k ∈ Z and a ∈ gk (27)

is an isomorphism of Lie algebras as well as an isometry with respect to the bilinear
forms B and B‡. Let us denote L+ = ⊕

k∈Z
gk z

k
+ and L− = ⊕

k∈Z
g
‡
k z

k−. Then we put:

D := L+×L− ∼= L×L‡ .

Note that we have a non-degenerate invariant symmetric bilinear form

D×D
F−→ C,

(
( f+, f−), (g+, g−)

) 	→ B( f+, g+)− B‡( f−, g−). (28)

We fix a triangular decomposition g0 = g+0 ⊕ h⊕ g−0 = g
‡
0 and denote:

B+ := (g+0 ⊕ h)⊕ ( ∞⊕

k=1
gk z

k
+

)
and B− := (g−0 ⊕ h)⊕ ( ∞⊕

k=1
g
‡
k z

k−
)
.

Let B±
π±−→ h be the canonical projections. Then we put:

W◦ := {
( f+, f−) ∈ B+×B−

∣∣π+( f+) + π−( f−) = 0
}
and C := {

( f, f ‡)
∣∣ f ∈ L

}
.

(29)
Similarly to Theorem 3.1, we have a Manin triple

D = C�W◦ . (30)

Let L
δ◦−→ L∧L be the standard Lie bialgebra cobracket on L. According to Theorem

3.1, δ◦ is determined by (30), where we use the identification L
∼=−→ C, f 	→ ( f, f ‡)

Fort =
n∑

i=1
ai⊗bi ∈ C⊗2, letW◦ ft−→ C, w 	→

n∑

i=1
F(w, ai )bi be the corresponding

linear map, δt = δ◦ + ∂t and Wt :=
{
w + ft(w) |w ∈W◦}.

Theorem 4.1. For t ∈ ∧2 L ∼= ∧2 C, the corresponding subspace Wt ⊂ D is a Lie
subalgebra if and only (L, δt) is a Lie bialgebra. Moreover, the corresponding map

{
t ∈ ∧2 L

∣
∣∣ (L, δt) is a Lie bialgebra

}
−→ MT

(
D,C;W◦)

is a bijection and L
δt−→ L∧L is determined by the Manin triple D = C�Wt.
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Proof. By Proposition 3.4, L⊗3 does not contain any non-zero ad-invariant elements.
According to Proposition 2.3, (L, δt) is a Lie bialgebra if and only if t satisfies the twist
equation (6). Hence, the result follows from Theorem 2.10. ��

LetW ⊂ D be a Lie subalgebra as in Theorem 4.1 andW± ⊆ L± be its image under
the projections D � L±. Starting with the embedding W ⊆W+×W−, we get:

W⊥
+ ×W⊥− = (

W+×W−)⊥ ⊆W⊥ =W ⊆W+×W− .

It follows that W⊥± ⊆W±,W⊥
+ ×{0} ⊆W and {0} ×W⊥− ⊆W.

The assumption W � W◦ implies that there exists n ∈ N such that
(
L+

)
≥n ×(

L−
)
≥n ⊆W. Hence, we obtain:

(
L+

)
≥n ×

(
L−

)
≥n ⊆W =W⊥ ⊆

((
L+

)
≥n ×

(
L−

)
≥n

)⊥ ⊆ (
L+

)
≥−n ×

(
L−

)
≥−n

It follows that
(
L±

)
≥n ⊆ W± ⊆ (

L±
)
≥−n , i.e. W± are bounded coisotropic Lie

subalgebras of the twisted loop algebra L±.
Remark 4.2. Since the linear map (27) is an isomorphism of Lie algebras, compatible
with the standard bilinear forms, one can equally parametrize twists of the standard Lie

bialgebra cobracket L
δ◦−→ ∧2(L) via Manin triples

L×L = C � W, W �W
◦

where C = {
( f, f )

∣∣ f ∈ L
}
and W

◦
is given by (11). The usage of such Manin

triples would be quite in the spirit of the conventional notation [19,22] of Theorem 3.1.
However, as we shall see later on, Manin triples from Theorem 4.1 are more natural
from the algebro-geometric viewpoint. ♦

We put: R = C[t, t−1], R± = C[t±, t−1± ] ⊃ L± = C[t±], where t = zm and

t± = zm±. We shall use the identifications R
∼=−→ R±, t 	→ t±1± . Theorem 3.11 implies

that
t±W± ⊆W⊥± ⊆W± . (31)

Lemma 4.3. The following results are true.

(a) The Lie algebra W± is a free module of rank q over L±. Moreover, the canonical
map R± ⊗L± W± −→ L± is an isomorphism of Lie algebras.

(b) We have: (t+, t−)W = t+W+×t−W− ⊆W, where (t+, t−) is the ideal in R+× R−
generated by t+ and t−. In particular, W is a finitely generated torsion free module
over the algebra O := C[t+, t−]/(t+t−).

(c) The linear map W /(t+, t−)W −→ (
W+ /t+W+

) × (
W− /t−W−

)
is an injective

morphism of Lie algebras, whereas both mapsW /(t+, t−)W −→W± /t±W± are
surjective morphisms of Lie algebras.

Proof. (a) We get from (31) thatW± is a L±-submodule of L±. It follows fromW± �
W◦± = B± that the canonical map R± ⊗L± W± −→ L± is an isomorphism of Lie
algebras as well as thatW± is a free module of rank q over L±.

(b) It follows from the embeddingW ⊆W+×W− that (t+, t−)W ⊆ t+W+×t−W−.
On the other hand, it follows from the inclusions (31) that

t+W+×t−W− ⊆W⊥
+ ×W⊥− ⊆W⊥ =W .
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Abusing the notation, we can view O as the subalgebra of R+ × R− generated by the
elements t+ = (t+, 0) and t− = (0, t−). It follows from the assumption W � W◦ and
the fact that W◦ is finitely generated over O that W is a finitely generated torsion free
O-module, as asserted.

(c) Both results follow from the definition of W± and the previous statement. ��
Lemma 4.4. Let V± be the preimage of W± under the isomorphism L → L± and
(abusing the notation) L± = C[t±1]. Then the following results are true:

(a) L = V+ +V−;
(b) the linear map V+ ∩V−

ı−→ (
W+×W−

)
/W, f 	→ ( f, f ‡) is an isomorphism;

(c) V± is a free module of rank q over L± and both canonical maps R ⊗L± V± → L
are isomorphisms of Lie algebras.

Proof. (a) Take any f ∈ L. It follows from the direct sum decomposition D = C�W
that there exist g ∈ L and (w+, w−) ∈ W such that ( f, 0) = (g, g‡) + (w+, w−). Let
v± ∈ V be the elements corresponding tow± ∈W± under the isomorphisms L→ L±.
It follows that f = v+ − v− ∈ V+ +V−, as asserted.

(b) Let v ∈ V+ ∩V− be such that (v, v‡) = 0 in
(
W+×W−

)
/W. It follows that

(v, v‡) ∈ C∩W = 0, hence v = 0, what implies injectivity of ı .
Consider an arbitrary element (w+, w−) ∈ W+×W−. Then there exist w ∈ L and

(w′
+, w

′−) ∈ W such that (w+, w−) = (w,w‡) + (w′
+, w

′−). It follows that w = w+ −
w′
+ ∈ W+ and w‡ = w− − w′− ∈ W−, thus (w+, w−) = (w,w‡) ∈ (

W+×W−
)
/W .

We conclude that ı is surjective, hence an isomorphism.
(c) This statement is a translation of the corresponding result from Lemma 4.3. ��
Let L̂ = C((t)) and L̂ := L̂ ⊗R L. We identify elements of L̂ with formal power

series
∑

k�−∞
akzk (where ak ∈ gk for all k ∈ Z). Obviously, we have an embedding of

Lie algebras L ↪→ L̂. We extend the standard form L × L
B−→ C to a bilinear form

L̂ × L̂
B̂−→ C, defining it by the same formula (14). Next, we put: D̂ := L̂ × L̂

‡
and

denote by D̂× D̂
F̂−→ C the bilinear form given by the same recipe as in (28). Note that

L → D̂, f 	→ ( f, f ‡) is an embedding of Lie algebras, whose image is an isotropic
subspace with respect to F̂ .

Let B̂+ := (g+0 ⊕ h)⊕ ( ∞∏
k=1

gk z
k
+

)
and B̂− := (g−0 ⊕ h)⊕ ( ∞∏

k=1
g
‡
k z

k−
)
.We put:

Ŵ
◦ := {

( f+, f−) ∈ B̂+ × B̂−
∣∣π+( f+) + π−( f−) = 0

}
and C := {

( f, f ‡)
∣∣ f ∈ L

}
.

Analogously to (30), we have a Manin triple

D̂ = C � Ŵ
◦
. (32)

Our next goal is to reformulate the theory of twists of the standard Lie bialgebra
structure on L in the terms of completed Manin triples.

For any n ∈ N, we define the linear map L̂
jn−→ L as the composition

L̂ −→→
n⊕

k�−∞
gk z

k ↪→ L,

∞∑

k�−∞
akz

k 	→
n∑

k�−∞
akz

k .
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Next, for any f, g ∈ L̂ there exists n0 ∈ N such that for all n ≥ n0 we have:

B̂( f, g) = B
(
jn( f ), jn(g)

)
. (33)

LetD = C�W be aManin triple from Theorem 4.1. According to Lemma 4.3,W is
a finitely generated O-module. We can definite the completed Lie algebra Ŵ as follows:

Ŵ := lim←−
(
W /mk W

) ∼= Ô ⊗O W ⊂ (L̂+ × L̂−)⊗O W ∼= D̂, (34)

wherem = (t+, t−), L̂± = C((t±)) and Ô = lim←− O/mk ∼= C[[t+, t−]]/(t+t−) ⊂ L̂+× L̂−.
It follows from W � W◦ that Ŵ = W +mkŴ

◦
for all sufficiently large k ∈ N, which

can serve as an alternative definition of Ŵ.

Proposition 4.5. We have the following commutative diagram of bijections:
{
t ∈ ∧2 L

∣∣∣ (L, δt) is a Lie bialgebra
}

�����
����

����
����

�

������
����

����
����

MT
(
D,C;W◦) �� MT

(
D̂,C; Ŵ◦

)

.

(35)
Here, the left diagonal arrow is given in Theorem 4.1 and the horizontal arrow is given
by W 	→ Ŵ. Moreover, if δt is a Lie bialgebra cobracket for some t ∈ ∧2 L, it is
determined by the Manin triple D̂ = C � Ŵt.

Proof. We first show that the Manin triple D̂ = C�Ŵ
◦
determines δ◦. By abuse of

notation, we write jn(( f, g‡)) = (jn( f ), jn(g)‡) ∈ D for any ( f, g‡) ∈ D̂, where

g‡(z) = g(z−1) ∈ L̂
‡
and f, g ∈ L̂. Let f ∈ C and g′, g′′ ∈ Ŵ

◦
. Then for all n ∈ N we

have: jn(g′), jn(g′′) ∈W◦ and
F̂
(
δ◦( f ), g′ ⊗ g′′

) = F
(
δt( f ), jn(g

′)⊗ jn(g
′′)
) = F

(
f,
[
jn(g

′), jn(g′′)
])
,

where the last equality follows from Theorem 4.1. Taking n sufficiently large, we con-
tinue:

F
(
f,
[
jn(g

′), jn(g′′)
]) = F

(
f, jn

[
g′, g′′

]) = F̂
(
f, [g′, g′′]),

what implies that F̂
(
δ◦( f ), g′ ⊗ g′′

) = F̂
(
f, [g′, g′′]), as asserted.

By Proposition 3.4, L⊗3 does not contain any non-zero ad-invariant elements, hence
according to Proposition 2.3, (L, δt) is a Lie bialgebra if and only if t satisfies the twist
Eq. (6) and we obtain the right diagonal bijection using Theorem 2.10. It remains to
show that the diagram is commutative.

Next, for any tensor t = ∑n
i=1 ai ⊗ bi there exists k ∈ N such that for all w ∈ Ŵ

◦
we have

f̂t(w) :=
n∑

i=1
F̂(w, ai )bi =

n∑

i=1
F(jk(w), ai )bi .

Since F̂ extends F , we obtain: Wt =
{
w + f̂t(w) | w ∈W◦}. As a consequence,

{
w + f̂t(w)

∣∣
∣w ∈ Ŵ

◦} =Wt +m
k+1Ŵ

◦ = Ŵt,

showing that the diagram (35) is indeed commutative. ��
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5. On Algebraic Geometry of the Classical Yang–Baxter Equation

Let g be a finite dimensional simple Lie algebra over C of dimension q, g× g
κ−→ C

be its Killing form and γ ∈ g⊗ g the Casimir element.

5.1. Classical Yang–Baxter equation and associated Lie subalgebras of g((z)). Recall
that the germ of a tensor-valued meromorphic function

(
C
2, 0

) r−→ g⊗ g is a skew-
symmetric solution of the classical Yang–Baxter equation (CYBE) if

{[
r12(x, y), r13(x, z)

]
+
[
r13(x, z), r23(y, z)

]
+
[
r12(x, y), r23(y, z)

] = 0
r12(x, y) = −r21(y, x). (36)

The Killing form g× g
κ−→ C induces an isomorphism of vector spaces

g⊗ g
κ̃−→ EndC(g), a ⊗ b 	→ (

c 	→ κ(a, c) · b). (37)

A solution r of (36) is called non-degenerate, if for a generic point (x◦1 , x◦2) in the domain
of definition of r , the linear map κ̃

(
r(x◦1 , x◦2)

) ∈ EndC(g) is an isomorphism.
One can perform the following transformations with solutions of (36).

• Gauge transformations. For any holomorphic germ (C, 0)
φ−→ AutC(g), the func-

tion
r(x, y) := (

φ(x)⊗ φ(y)
)
r(x, y). (38)

is again a solution of (36).

• Change of variables. Let (C, 0)
η−→ (C, 0) be a non-constant map of germs. Then

r(x, y) := r
(
η(x), η(y)

)
. (39)

is again a solution of (36).

It is clear that both transformations (38) and (39) map non-degenerate solutions of (36)
into non-degenerate ones.

Belavin and Drinfeld proved in [7] that any non-degenerate solution of (36) can be
transformed by above transformations to a solution of the form

r(x, y) = 1

x − y
γ + h(x, y), h(x, y) = −h21(y, x) (40)

where
(
C
2, 0

) h−→ g⊗ g is the germ of a holomorphic function. Moreover, they showed
that one can always find a gauge transformation φ and a change of variables η such that
(
φ(x)⊗ φ(y)

)
r
(
η(x), η(y)

) = �(x − y) for some meromorphic (C, 0)
�−→ g⊗ g. In

other words, (36) reduces to the equation
[
�12(x), �13(x + y)

]
+
[
�12(x), �23(y)

]
+
[
�13(x + y), �23(y)

] = 0 (41)

(the so-called CYBE with one spectral parameter). Belavin and Drinfeld proved in [6]
that any non–degenerate solution of (41) is automatically skew-symmetric, has a simple
pole at 0 with residue equal to a multiple of the Casimir element γ ∈ g⊗ g. Moreover,
� can be meromorphically extended on the entire plane C and its poles form an additive
subgroup � ⊆ C such that rk(�) ≤ 2; see [6, Theorem 1.1].
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• If rk(�) = 2 than the corresponding solution � is elliptic. Elliptic solutions exist
only for g ∼= sln(C). A full list of them is given in [6, Section 5].
• If rk(�) = 1 than the corresponding solution � is trigonometric. A full classification
of these solutions is given in [6, Section 6], see also [8, Chapter 7].

• If � = 0 then � is a rational solution, i.e. �(x) = γ

x
+ ξ(x), where ξ ∈ (g⊗ g)[x].

The problem of classification of all rational solutions for g = sln(C) contains a
representation-wild problem of classification of pairs of matrices a, b ∈ g such that
[a, b] = 0, see Remark 7.5 below. Nonetheless, the structure theory of rational
solutions was developed by Stolin in [48].

Among various constructions which attach to a solution of (36) a Lie bialgebra there
is the following universal one, which dates back to the works [26,44].

Consider the Lie algebra of formal Laurent series R := g((z)). It is equipped with a
symmetric non-degenerate invariant form

R×R
F−→ C, (azk, bzl) 	→ δk+l+1,0 κ(a, b). (42)

Let r be a solution of (36) having the form (40). We write its formal power series
expansion

r̃(x; y) =
∞∑

k=0
rk(x)y

k ∈ (
R⊗ g

)
�y�, where rk(x) = 1

k!
∂kr

∂yk

∣∣∣∣
y=0

. (43)

For any k ∈ N0 let Wk :=
〈
(1⊗ λ)rk(x)

∣∣ λ ∈ g∗
〉
C
⊆ R. Then we put:

W :=
∑

k∈N0

Wk ⊆ R . (44)

More concretely, let (g1, . . . , gq) be an orthonormal basis of g with respect of κ . Then
γ = g1 ⊗ g1 + · · · + gq ⊗ gq and the power series expansion (43) can be written as

r̃(x; y) =
∞∑

k=0

q∑

i=1

(
w(k,i) ⊗ gi

)
yk ∈ (

R⊗ g
)
�y�, (45)

where w(k,i) = gi x−k−1 + vk,i for some vk,i ∈ g�x�. We have:

W := 〈
w(k,i)

∣∣ 1 ≤ i ≤ q, k ∈ N0
〉
C
⊂ R .

Let ϒ = {
(k, i)

∣∣ k ∈ N0, 1 ≤ i ≤ q
}
and g(k,i) := gi xk for any (k, i) ∈ ϒ . Then we

have:
F
(
w(k′,i ′), g(k′′,i ′′)

) = δk′,k′′δi ′,i ′′ for all (k′, i ′), (k′′, i ′′) ∈ ϒ. (46)

Let
(
C
2, 0

) r−→ g⊗ g be of the form (40). Then (36) can be rewritten as the system of
the following constraints on the coefficients rk(x) ∈ R of the series r̃(x; y):

[
r13k (x1) + r23k (x2), r

12(x1, x2)
]
=

∑

k′,k′′≥0
k′+k′′=k

[
r13k′ (x1), r

23
k′′ (x2)

]
for all k ∈ N0. (47)
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In more concrete terms, (47) can be rewritten as the following equality:

q∑

i=1

[
w(k,i)(x1)⊗ 1 + 1⊗ w(k,i)(x2), r(x1, x2)

]⊗ gi

=
∑

(k′,i ′)∈ϒ
(k′′,i ′′)∈ϒ
k′+k′′=k

w(k′,i ′)(x1)⊗ w(k′′,i ′′)(x2)⊗
[
gi ′, gi ′′

]
(48)

in the vector space
(
(g⊗ g)((x1, x2))

) ⊗ g, where the right-hand side of (48) is em-
bedded into

(
(g⊗ g)((x1, x2))

) ⊗ g via the canonical linear map g((x1)) ⊗ g((x2)) ↪→
(g⊗ g)((x1, x2)) (it follows from (40) that the left-hand side belongs tog((x1))⊗g((x2))⊗g
as well). Therefore, we have a linear map

W
δ−→W⊗W, w(x) 	→ [

w(x1)⊗ 1 + 1⊗ w(x2), r(x1, x2)
]
. (49)

The system of constraints (47) can be stated for any expression r(x, y) of the form (40)
with h(x, y) ∈ (g⊗ g)�x, y� (without requiring the convergence of h(x, y) and even
passing from C to an arbitrary field k), so one may speak on formal solutions of CYBE.

We have the following result, see e.g. [24, Subsection 6.3.3]) for a proof.

Theorem 5.1. Let r = 1

x − y
γ + h(x, y) be any formal solution of CYBE. Then the

corresponding vector subspaceW ⊆ R, given by (44), is a Lagrangian Lie subalgebra
with respect to the bilinear form (42). Moreover, we have a direct sum decomposition

R = g�z��W and themapW
δ−→W⊗W, given by (49), is a Lie bialgebra cobracket.

Conversely, letR = g�z��W be a Manin triple. Then the linear map g�x�
F̃−→W∗

is an isomorphism and there exists a uniquely determined family (w(k,i))(k,i)(x)∈ϒ of
elements of W such that w(k,i) = gi x−k−1 + v(k,i) for some v(k,i) ∈ g�x�. This family
forms a basis ofW, which is dual to the topological basis (g(k,i))(k,i)∈ϒ of g�x� and the
formal power series (45) is a formal solution of CYBE.

In the notation of Theorem 5.1, we have the following result.

Proposition 5.2. The Lie bialgebra cobracket W
δ−→ W⊗W is determined by the

corresponding Manin triple R = g�x� � W.

Proof. We have to show the following identity for any w ∈W and f1, f2 ∈ g�x�:

F
([
w(x1)⊗ 1 + 1⊗ w(x2), r(x1, x2)

]
, f1(x1)⊗ f2(x2)

) = F
(
w(x),

[
f1(x), f2(x)

])
.

(50)

Note that for any w ∈W there exists n ∈ N such that

F
(
δ(w), f1 ⊗ f2

) = 0 = F
(
w,

[
f1, f2

])
,

provided f1 ∈ xn g�x� or f2 ∈ xn g�x�. Therefore, it is sufficient to prove that

F
(
δ(w(l, j)), g(k′,i ′) ⊗ g(k′′,i ′′)

) = F
(
w(l, j),

[
g(k′,i ′), g(k′′,i ′′)

])

for all (l, j), (k′, i ′), (k′′, i ′′) ∈ ϒ .
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First note that we have a finite sum:
[
g(k′,i ′), g(k′′,i ′′)

] = ∑

(k,i)∈ϒ
λ
(k,i)
(k′,i ′),(k′′,i ′′)g(k,i),

where λ(k,i)
(k′,i ′),(k′′,i ′′) ∈ C. It is clear that λ(k,i)

(k′,i ′),(k′′,i ′′) 
= 0 only if k = k′ + k′′. In
particular, for any (k, i) ∈ ϒ there exist only finitely many (k′, i ′), (k′′, i ′′) ∈ ϒ such
that λ(k,i)

(k′,i ′),(k′′,i ′′) 
= 0.
Next, we can rewrite the classical Yang–Baxter equation (48) as

∑

(k,i)∈ϒ
δ
(
w(k,i)

)⊗ g(k,i) =
∑

(k′,i ′)∈ϒ
(k′′,i ′′)∈ϒ

w(k′,i ′) ⊗ w(k′′,i ′′) ⊗
[
g(k′,i ′), g(k′′,i ′′)

]
,

implying that δ
(
w(k,i)

) = ∑

(k′,i ′)∈ϒ
(k′′,i ′′)∈ϒ

λ
(k,i)
(k′,i ′),(k′′,i ′′)w(k′,i ′) ⊗ w(k′′,i ′′). Applying (46) we

get F
(
δ
(
w(l, j)

)
, g(k′,i ′) ⊗ g(k′′,i ′′)

)
= λ

(l, j)
(k′,i ′),(k′′,i ′′) = F

(
w(l, j),

[
g(k′,i ′), g(k′′,i ′′)

])
, as

asserted. ��

5.2. Geometric CYBE datum. Now we make a quick review of the algebro-geometric
theory of the classical Yang–Baxter Eq. (36), following the work [14].

AWeierstraß curve is an irreducible projective curve over C of arithmetic genus one.

For g2, g3 ∈ C, let E(g2,g3) = V
(
u2 − 4v3 + g2v + g3

) ⊂ P
2. It is well-known that any

Weierstraß curve E is isomorphic to E(g2,g3) for some g2, g3 ∈ C. Moreover, E(g2,g3)
is smooth if and only if g32 
= 27g23. If g

3
2 = 27g23 then E(g2,g3) has a unique singular

point s, which is a nodal singularity if (g2, g3) 
= (0, 0) and a cuspidal singularity if
(g2, g3) = (0, 0). We have: 	(E,�) ∼= C, where � is the sheaf of regular differential
one-forms on E , taken in the Rosenlicht sense if E is singular; see e.g. [4, Section II.6].

Assume that A is a coherent sheaf of Lie algebras on E such that:

1. A is acyclic, i.e. H0(E,A) = 0 = H1(E,A);
2. A is weakly g–locally free on the regular part U of E , i.e. A

∣∣
x
∼= g for all x ∈ U .

From the first assumption it follows that the sheaf A is torsion free. The second as-
sumption onA implies that the canonical isomorphism ofOU -modulesA

∣∣
U ⊗A

∣∣
U →

EndU
(
A
)
, induced by the Killing forms of the Lie algebras of local sections of A, is

an isomorphism. As a consequence, the space AK of global sections of the rational
envelope of A is a simple Lie algebra over the fieldK of meromorphic functions on E .

Choosing a global regular one-form 0 
= ω ∈ 	(E,�), we get the so-called residue
short exact sequence:

0 −→ OE×U −→ OE×U (�)
resω�−−→ O� −→ 0, (51)

where � ⊂ E × U denotes the diagonal, see [14, Section 3.1]. Tensoring (51) with
A � A

∣∣
U and then applying the functor 	(E ×U, − ), we obtain a C–linear map

EndU (A)
Tω−→ 	

(
U ×U \�,A � A

)
,
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making the following diagram

	
(
U,A⊗A

)

∼=
��

	
(
E ×U,A � A|U (�)

)∼=��
� �

��
EndU (A)

Tω �� 	
(
U ×U \�,A � A

)
(52)

commutative. In this way, we get a distinguished section

ρ := Tω(1) ∈ 	
(
U ×U \�,A � A

)
, (53)

called a geometric r–matrix attached to a pair (E,A) as above.
If the curve E is singular, we additionally require that

(3) A is isotropic at s, i.e. the germAs of the sheafA at the singular point s is an isotropic
Lie subalgebra of AK with respect to the pairing

Fω
s : AK×AK

K−→ K
resωs−→ C,

where K is the Killing form of AK and resωs ( f ) = ress( f ω) for f ∈ K (taken in
the Rosenlicht sense).

A pair (E,A) satisfying the properties (1)–(3) above will be called geometric CYBE
datum.

We have the following result; see [14, Theorem 4.3].

Theorem 5.3. Let (E,A) be a geometric CYBE datum. Then we have:
1. The geometric r-matrix ρ satisfies the following sheaf-theoretic version of the

classical Yang–Baxter equation:
[
ρ12, ρ13

]
+
[
ρ12, ρ23

]
+
[
ρ13, ρ23

] = 0, (54)

where both sides of the above equality are viewed as meromorphic sections ofA�A�A
over the triple product U ×U ×U.

2. Moreover, ρ is skew-symmetric and non-degenerate i.e.

ρ(x1, x2)
12 = −ρ(x2, x1)21 ∈

(
A � A

)∣∣
(x1,x2)

∼= A
∣∣
x1
⊗A

∣∣
x2

for any x1 
= x2 ∈ U
(55)

and there exists an open subset U ′ ⊆ U such that for any x1 
= x2 ∈ U ′, the tensor
ρ(x1, x2) ∈ A

∣∣
x1
⊗A

∣∣
x2

is non-degenerate.

In what follows, we write O = OE . Let V ⊆ U be an open affine subset, RV =
	(V,O) and AV := 	(V,A). Assume that V is sufficiently small so that AV is free
as RV -module. Since A is weakly g-locally free, the Killing form AV ×AV → RV is
non-degenerate. Let (c1, . . . , cq) be a basis of AV over RV and (c∗1, . . . , c∗q) be the dual
basis. Then χ := c∗1⊗c1 + · · ·+c∗q⊗cq ∈ AV ⊗RV AV is the canonical Casimir element.
Let χ̃ := c∗1 ⊗ c1 + · · · + c∗q ⊗ cq ∈ AV ⊗C AV . Then χ̃ is a (non-canonical) lift of χ
under the canonical mapAV ⊗C AV −→→ AV ⊗RV AV . Choosing coordinates (u, v) on
V × V , we may write:

ρ

∣∣
∣
(V×V )\� = f (v)

u − v
χ̃ + h(u, v) (56)
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for someh(u, v) ∈ AV ⊗C AV ,whereω
∣
∣∣
V
= dv

f (v)
for some invertible element f ∈ RV .

There are two consistent ways to proceed from the abstract geometric r -matrix ρ
attached to (E,A) to a concrete solution of (36), respectively (47).

1. Let us view E as a complex-analytic variety andA as a sheaf of Lie algebras in the
euclidean topology. As in [37, Lemma 2.1] one can show that for any p ∈ U there exists
an open neighbourhood p ∈ V ⊂ U together with a 	(V,Oan)–linear isomorphism

of Lie algebras 	(V,A) ξ−→ g⊗C	
(
V,Oan

)
. Then the trivialized section ρξ can be

viewed as a meromorphic tensor-valued function V × V
ρξ−→ g⊗ g. It follows from

(54) and (55) that after a choice of a local coordinate on V , we get a non-degenerate
solution of (36). Another choice of a trivialization ξ and a local coordinate on V leads
to an equivalent solution (in the sense of (38) and (39)). ♦

2. Let p ∈ E be an arbitrary point, Ôp (respectively Âp) be the completion of the stalk
of the structure sheafO (respectively, ofA) at p, Q̂ p be the total ring of fractions of Ôp,
Ep := E \ {p}, Up := U \ {p}, Rp = 	(Ep,O), R◦p = 	(Up,O), A(p) := 	(Ep,A),
A◦(p) := 	(Up,A) and Ãp := Q̂ p ⊗Ôp

Âp ∼= Q̂ p ⊗Rp A(p) .

From now on suppose that p ∈ U . Then we have the bilinear form Ãp × Ãp
F̃ωp−→ C

given as the composition

Ãp × Ãp
K̃ p−→ Q̃ p

resωp−→ C, (57)

where K̃ p denotes the Killing form of Ãp. Since the differential formω is non-vanishing

at p, there exists a unique isomorphism Ôp
ϑ−→ C�y� identifying ω̂p with the differential

form dy. Moreover, the assumption that A is g-weakly locally free implies that there

exists a Ôp–C�y�–equivariant isomorphism of Lie algebras Âp
ζ−→ g�y�; see [28]. This

isomorphism induces a Q̂ p–C((y))–equivariant isomorphism of Lie algebras Ãp
ζ̃−→

g((y)). In this way, we identify the bilinear form F̃ω
p with the bilinear form F given by

(42).
The following sequence of vector spaces and linear maps

0 −→ H0(E,A) −→ A(p) ⊕ Âp −→ Ãp −→ H1(E,A) −→ 0 (58)

is exact, see e.g. [42, Proposition 3] (it is a version of theMayer–Vietoris exact sequence).
Since H0(E,A) = 0 = H1(E,A), it follows that A(p) ∩ Âp = 0 and A(p) + Âp = Ãp,
where we identify the Lie algebras A(p) and Âp with their images in Ãp under the
corresponding canonical embeddings. It follows from the isotropy assumption (3) on
the sheaf A that A(p) and Âp are isotropic Lie subalgebras of Ãp with respect to the
bilinear form F̃ω

p , i.e. Ãp = Âp�A(p) is aManin triple. Identifying Ãp withR, Âp with
g�y� and A(p) with its imageW inR, we end up with a Manin tripleR = g�y� �W as
in Theorem 5.1.

We have a family of compatible linearmaps	
(
(E×U )\�,A�A

) υn−→W⊗g[y]/(yn)
given as the composition

	
(
(E ×U ) \�,A � A

) νn−→ A(p)⊗
(
Âp/m

n
pÂp

) ζn−→W⊗ g[y]/(yn).
Here, ζn is induced by the trivializations ζ and ζ̃ and νn := (i × ιn)

∗, where the

morphism Spec(Ôp/m
n)

ιn−→ E maps the unique closed point of Spec(Ôp/m
n) to p
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and Ep
i−→ E is the canonical inclusion. Taking the projective limit of (υn)n∈N, we get

a linear map

	
(
(E ×U ) \�,A � A

) υ−→ (W⊗ g)�y�.

In [14, Theorem 6.4] it was shown that

r̃ ζ (x; y) := υ(ρ) =
∞∑

k=0

( q∑

i=1
w(k,i)(x)⊗ gi

)

yk = γ

x − y
+

∞∑

k=0

( q∑

i=1
v(k,i)(x)⊗ gi

)

yk,

where w(k,i) = gi x−k−1 + v(k,i) ∈ W are such that v(k,i) ∈ g�x� for all (k, i) ∈ ϒ . It
follows from Theorem 5.1 that r̃ ζ (x; y) is a formal skew-symmetric solution of CYBE
(47). ♦

Remark 5.4. According to Theorem 5.1, A(p) is a Lie bialgebra. Now we give a sheaf-

theoretic descriptionof the correspondingLie bialgebra cobracketA(p)
δp−→ A(p)⊗A(p).

Let � ∈ 	
(
E×U,A�A(�)

)
the preimage of ρ under the canonical restriction map

(it follows from (52) that such preimage exists and is unique). Then we have a linear
map

A(p)
δ
(l)
p−→ 	

(
Ep ×Up, (A � A)(�)

)
, f 	→

[
f ⊗ 1 + 1⊗ f, �

∣∣
Ep×Up

]
. (59)

Analogously, we have a distinguished section �% ∈ 	
(
U × E,A � A(�)

)
such that

�%
∣∣∣
(x,y)

=
(
�

∣∣∣
(y,x)

)21

∈ A
∣∣∣
x
⊗A

∣∣∣
y
for all x 
= y ∈ U.

Consider the linear map

A(p)
δ
(r)
p−→ 	

(
Up × Ep, (A � A)(�)

)
, f 	→

[
f ⊗ 1 + 1⊗ f,−�%∣∣Up×Ep

]
. (60)

It follows from the skew-symmetry of ρ that both maps δ(l)p and δ(r)p can be glued to a

linear map A(p)
δ
(t)
p−→ 	

(
Ep × Ep, (A � A)(�)

)
. Let δ̃(t)p be the composition

A(p)
δ
(t)
p−→ 	

(
Ep × Ep, (A � A)(�)

)
↪→ 	

(
(Ep × Ep) \�,A � A

)
.

Consider the linear map

A◦(p)
δ
(ρ)
p−→ 	

(
(Up ×Up) \�,A � A

)
, f 	→ [

f ⊗ 1 + 1⊗ f, ρ
∣∣
Up×Up

]
.
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For any f ∈ A◦(p) the section δ
(ρ)
p ( f ) has no pole along the diagonal; see [14, Proposition

4.12]. It follows from the commutative diagram

A(p)
δ̃
(t)
p ��

��

��

	
(
(Ep × Ep) \�,A � A

)
� �

��
A◦(p)

δ
(ρ)
p ��

δ
(ρ)
p ����

���
���

���
���

	
(
(Up ×Up) \�,A � A

)

	
(
Up ×Up,A � A

)� �

��
(61)

that δ̃(t)p can be extended to a linear map A(p)
δp−→ 	

(
(Ep × Ep) \ {(s, s)},A � A

)
.

It remains to note that Rp ⊗C Rp is a reduced Cohen–Macaulay C–algebra of Krull
dimension two and A(p)⊗C A(p) is a maximal Cohen–Macaulay (Rp ⊗C Rp)–module.
As a consequence, the canonical restriction map

A(p)⊗A(p) ∼= 	
(
Ep × Ep,A � A

) −→ 	
(
(Ep × Ep) \ {(s, s)},A � A

)

is an isomorphism; see e.g. [13, Section 3]. It follows that δp can be extended to a linear

mapA(p)
δp−→ A(p)⊗A(p). According to [14, Proposition 4.12],A◦(p)

δ
(ρ)
p−→ A◦(p)⊗A◦(p)

is a Lie bialgebra cobracket. It follows that (A(p), δp) is a Lie bialgebra, too. Moreover,
identifying the Manin triples Ãp = Âp � A(p) and R = g�y� � W, the cobracket δp
gets identified with the cobracket (49) on the Lie algebra W. ♦

Proposition 5.5. Let (E,A) be a geometric CYBE datum and p ∈ U. Then the Lie

bialgebra cobracket A(p)
δp−→ A(p)⊗A(p) is determined by the Manin triple Ãp =

Âp � A(p).

Proof. It is a consequence of Proposition 5.2. ��

5.3. Manin triples and geometric CYBE data on singularWeierstraß curves. Let (E,A)
be a geometric CYBE datum, where E is a singular Weierstraß curve. As in the previous
subsection, let s be the singular point of E and U = E \ {s}. To simplify the notation,
we denote: Ô = Ôs , Q̂ = Q̂s and R = R(s) as well as Â = Âs , A = A(s) and Ã = Ãs .

Moreover, let P
1 ν−→ E be the normalization map.

Apart of Remark 5.8, we assume in this subsection that E is nodal. Let s± ∈ P
1 be

such that ν(s±) = s. Next, let Ô± be the completion of the stalk of OP1 at s± and Q̂±
be the fraction field of Ô±. Then we have an injective homomorphism of C–algebras

Ô
ν∗−→ Ô+ × Ô−, which induces an isomorphism of the corresponding total rings of

fractions Q̂
ν∗−→ Q̂+ × Q̂−.

We choose homogeneous coordinates (w+ : w−) on P
1 so that s+ = (0 : 1) and

s− = (1 : 0). Then the rational functions u = u+ := w+

w−
and u− := w−

w+
are local
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parameters at the points s+ and s−, respectively. In these terms we have an algebra
isomorphism

R = 	(U,O) ν∗−→ 	
(
ν−1(U ),OP1

) ∼= C
[
u, u−1

]

as well as Ô± ∼= C�u±�, Q̂± ∼= C((u±)), Q̂ ∼= C((u+))×C((u−)) and Ô ∼= C�u+, u−�/
(u+u−).We shall view the following rational differential one-form on P

1

ω := du

u
= du+

u+
= −du−

u−
as a generator of 	(E,�). It follows from the assumption that A is weakly g-locally

free that the Killing form A×A
K−→ Q̂ is non-degenerate. Hence, the Killing form

Ã× Ã
K̃−→ Q̂ is non-degenerate, too. Recall that the Rosenlicht residue map Q̂

resωs−−→ C

with respect to the form ω is given by the formula

resωs ( f ) = ress+
(
f+ω) + ress−

(
f−ω) = res0

(
f+
du+
u+

)
− res0

(
f−

du−
u−

)
, (62)

where we use the identifications f = ( f+, f−) ∈ Q̂ ∼= Q̂+ × Q̂− ∼= C((u+))×C((u−)).

Similarly to (57), we get an invariant symmetric bilinear form Ã× Ã
F̃ωs−→ C given by

Ã× Ã
K̃−→ Q̂

resωs−→ C. (63)

It is easy to see that F̃ω
s is non-degenerate.

It can be shown that theMayer–Vietoris sequence (58) is exact at the singular point s as
well; see e.g. [25, Theorem 3.1]. It follows from the cohomology vanishing H0(E,A) =
0 = H1(E,A) that we have a Manin triple Ã = Â � A. According to [14, Proposition
4.12]

A
δ−→ A⊗A, f 	→ [ f ⊗ 1 + 1⊗ f, ρ] (64)

is a Lie bialgebra cobracket, where ρ ∈ 	
(
(U × U ) \ �,A � A

)
is the geometric

r -matrix.

Theorem 5.6. Let (E,A) be a geometric CYBE datum, where E is a nodal Weierstraß
curve. Then the Lie bialgebra cobracket (64) is determined by the Manin triple Ã =
Â � A.

Proof. For any k ∈ N we put:

• P(k) := Ô/mk ⊗C R, P̃(k)
± := Ô±/mk± ⊗C R and P̃(k) := P̃(k)

+ × P̃(k)
− .

• X (k) := Spec(P(k)), X̃ (k)
± := Spec(P̃(k)

± ) and X̃ (k) := X̃ (k)
+ � X̃ (k)

− .

Then we set: P := lim←−(P(k)), P̃± := lim←−(P̃
(k)
± ), P̃ = P̃+× P̃−, X := Spec(P), X̃± :=

Spec(P̃±) and X̃ := Spec(P̃) = X̃+ � X̃−. Note that P ∼= C[v, v−1]�u+, u−�/(u+u−)
and P̃± ∼= C[v, v−1]�u±�. Finally, let D := C

[
u, u−1, v, v−1

]
, S± := C[v, v−1]((u±)),

Y± := Spec(S±), S := S+×S− andY := Y+�Y−. Consider the algebra homomorphism

D
ψ−→ S, u 	→ (u+, u

−1− ), v 	→ (v, v).
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The formulae (u+ − v)
∞∑
k=0

v−k−1uk+ = −1 and (u−1− − v)
∞∑
k=0

vkuk+1− = 1 imply that

ψ(u − v) is a unit in S. As a consequence, ψ can be extended to the algebra homomor-

phism C

[
u, u−1, v, v−1, 1

u − v

]
ψ̃−→ S. Note that

ψ̃

(
v

u − v

)
=

(
−

∞∑
k=0

v−kuk+,
∞∑
k=1

vkuk−
)
. (65)

Next, we have a family of morphisms of schemes
(
X (k) εk−→ (E ×U ) \�

)

k∈N. Taking

the corresponding direct limit, we get a morphism X
ε−→ (E × U ) \ �. In a similar

way, we have a family of morphisms

(
X̃ (k) ε̃k−→ (P1 ×U ) \�

)

k∈N
as well as the

corresponding direct limit X̃
ε̃−→ (P1 × U ) \ �. Summing up, we get the following

commutative diagram in the category of schemes:

(E ×U ) \� (P1 ×U ) \�ν̃�� (U ×U ) \�� �ı�� � � �� U ×U

X (k)

εk

��

πk

��

X̃ (k)ν̄k��

ε̃k

��

π̃k

��
X

ε

		

X̃
ν̄��

ε̃





Y
η��

j̃

��

j

��������������������

(66)

where ν̃ is the restriction of ν× id on (P1×U ) \� and ν̄k , ν̄, η, j and j̃ are morphisms
of affine schemes corresponding to the algebra embeddings P(k) ↪→ P̃(k), P ↪→ P̃ ,
P̃ ↪→ S, ψ and ψ̃ , respectively.

Since A is torsion free, we get an injective map

	
(
(E ×U ) \�,A � A

) ε∗−→ Â⊗C A := lim←−
(
Â/mkÂ⊗C A

)

∼= 	
(
X, ε∗

(
A � A

∣
∣
(E×U )\�

))
.

Let ϒ be a countable set and (al)l∈ϒ be a basis of A over C. Then there exists a
uniquely determined family (bl)l∈ϒ of elements of Â such that for any k ∈ N there
exists a finite subset ϒk ⊂ ϒ satisfying the following properties:

• the class b(k)l of bl in Â/mkÂ is zero for all l /∈ ϒk (i.e. bl ∈ mkÂ for l /∈ ϒk) and

• ε∗k (�) =
∑

l∈ϒk

b(k)l ⊗ al .

In these terms we may informally write: ε∗(�) = ∑

l∈ϒ
bl ⊗ al ∈ Â⊗C A.

Let ϒ = {
(k, i)

∣∣ k ∈ Z, 1 ≤ i ≤ q
}
, (c1, . . . , cq) be a basis of A viewed as module

over R = C
[
v, v−1

]
and a(k,i) := civk for (k, i) ∈ ϒ . Then (a(k,i))(k,i)∈ϒ is a basis of
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A viewed as a vector space over C. From what was said above it follows that there exists
a uniquely determined family of elements (b(k,i))(k,i)∈ϒ of Â such that

ε∗(�) =
∑

(k,i)∈ϒ
b(k,i) ⊗ a(k,i). (67)

Let (c∗1, . . . , c∗q) be the dual basis of A with respect to the Killing form A×A
K−→ R.

Then the tensor c∗1 ⊗ c1 + · · · + c∗q ⊗ cq ∈ A⊗C A is mapped to the Casimir element of

A under the canonical projection A⊗C A � A⊗R A. Since ω
∣∣
U = dv

v
, the geometric

r -matrix ρ has the following presentation:

ρ = v

u − v

q∑

i=1
c∗i ⊗ ci + h(u, v) ∈ 	 ((U ×U ) \�,A � A) , (68)

where h ∈ A⊗C A; see (56). It follows from (65) that we have the following expansion

j̃∗(ρ) =
∑

(k,i)∈ϒ
(w(k,i) + h(k,i))⊗ a(k,i),

where h(k,i) ∈ A ⊂ Ã = Ã+× Ã− are determined by the expression h = ∑

(k,i)∈ϒ
h(k,i)⊗

a(k,i) (which is a finite sum in A⊗C A) and

Ã+ × Ã−  w(k,i) =
{(

0, uk−c∗i ) if k ≥ 1(−u−k+ c∗i , 0
)
if k ≤ 0.

(69)

It follows from (66) that (ν̄η)∗
(
ε∗(�)

) = j̃∗(ρ). Hence, for any (k, i) ∈ ϒ we have:

Â  b(k,i) = w(k,i) + h(k,i) ∈ Ã = Ã+ × Ã−. (70)

Since all h(k,i) but finitely many are zero, b(k,i) = w(k,i) for all but finitely many
(k, i) ∈ ϒ . As A is an isotropic subalgebra of Ã, we deduce from (69) the following
relation:

F
(
b(k′,i ′), a(k′′,i ′′)

) = F
(
w(k′,i ′), a(k′′,i ′′)

) = F
(
w(k′,i ′),

(
uk

′′
+ ci ′′ , u

−k′′− ci ′′
))

= −δk′k′′δi ′i ′′ , (71)

where F = F̃ω
s is the form given by (63). This formula in particular implies that

the elements (b(k,i))(k,i)∈ϒ are linearly independent. It follows from the direct sum
decomposition Ã = Â � A that (b(k,i))(k,i)∈ϒ is in fact a topological basis of Â.

After establishing these preparatory results, we can proceed to the proof of the actual
statement: F

(
δ(a), b′ ⊗ b′′

) = F
(
a, [b′, b′′]) for all a ∈ A and b′, b′′ ∈ Â. Arguing as

in the proof of Proposition 5.2, we conclude that it is sufficient to prove the formula

F
(
δ(a), b(k′,i ′) ⊗ b(k′′,i ′′)

) = F
(
a,

[
b(k′,i ′), b(k′′,i ′′)

])
(72)

for any (k′, i ′), (k′′, i ′′) ∈ ϒ . In order to use the expansion (67), we embed Ã⊗ Ã into

a larger vector space Ã⊗ Ã defined as follows.
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Let T +± := C((v+))((u±)), T−± := C((v−))((u±)), T± := T +± × T−± and T := T+ ×
T−. Clearly, we have injective algebra homomorphisms S± ↪→ T±, u± 	→ u±, v 	→(
v+, v

−1−
)
which define the embedding S ↪→ T . Summing up, we have two chains of

algebra embeddings

P ↪→ P̃ ↪→ S ↪→ T and D ↪→ S ↪→ T .

Now we put: Ã⊗ Ã := T ⊗D
(
A⊗C A

)
and Ã⊗ A := S ⊗P

(
Â⊗ A

)
. It is clear that

Ã⊗ Ã ∼= T ⊗S
(
Ã⊗ A

)
. Moreover, we have canonical injective linear maps Ã⊗ Ã ↪→

Ã⊗ Ã and Â⊗ A ↪→ Ã⊗ Ã, which are moreover morphisms of A-modules with
respect to the adjoint action of A.

Consider the following residue map:

C((v))((u))
res−→ C,

∑

k≥−∞
fk(v)u

k 	→ res0

(
f0(v)

dv

v

)
. (73)

The Killing form A×A
K−→ R together with the linear map T

res−→ C defined by (73)

define thebilinear form Ã⊗ Ã×Ã⊗ Ã
F−→ C,which extends

(
Ã⊗Ã

)×(
Ã⊗Ã

) F−→ C.
Using the power series expansion (67),we canwrite δ(a) = [a⊗1+1⊗a, ρ] ∈ A⊗A

as

δ(a) =
∑

(k,i)∈ϒ

[
a, b(k,i)

]⊗ a(k,i) +
∑

(k,i)∈ϒ
b(k,i) ⊗

[
a, a(k,i)

] ∈ Ã⊗ Ã,

Since Â is an isotropic subspace of Ã, it follows that F(t, b′⊗b′′) = 0 for any t ∈ Â⊗ A
and b′, b′′ ∈ Â. As a consequence, we have:

F
(
δ(a), b(k′,i ′) ⊗ b(k′′,i ′′)

) = F

⎛

⎝
∑

(k,i)∈ϒ

[
a, b(k,i)

]⊗ a(k,i), b(k′,i ′) ⊗ b(k′′,i ′′)

⎞

⎠ .

Taking into account the orthogonality relation (71) as well as invariance of the form F ,
we finally get:

F
(
δ(a), b(k′,i ′) ⊗ b(k′′,i ′′)

) = −F
([a, b(k′′,i ′′)], b(k′,i ′)

) = F
(
a,

[
b(k′,i ′), b(k′′,i ′′)

])
,

as asserted. ��
Note that in the course of the proof of Theorem 5.6 we have shown the following

result.

Theorem 5.7. Let (E,A) be as in Theorem 5.6, (c1, . . . , cq) be a basis of A viewed as

module over R, (c∗1, . . . , c∗q) be its dual basis with respect to the Killing formA×A
K−→

R, ϒ := {
(k, i)

∣∣ k ∈ Z, 1 ≤ i ≤ q
}
, a(k,i) := civk for (k, i) ∈ ϒ and

(
b(k,i)

)
(k,i)∈ϒ be

the topological basis of Â dual to (−a(k,i))(k,i)∈ϒ . Then for any (k, i) ∈ ϒ we have:
b(k,i) = w(k,i) + h(k,i), wherew(k,i) are given by the formula (69), h(k,i) ∈ A and all but
finitely many elements h(k,i) are zero. Moreover, the geometric r-matrix corresponding
to (E,A) is given by the following expression:

ρ = v

u − v

q∑

i=1
c∗i ⊗ ci +

∑

(k,i)∈ϒ
h(k,i)(u)⊗ vkci . (74)
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Remark 5.8. Let (E,A) be a geometric CYBE datum, where E is a cuspidal plane cubic

curve. Then the cobracket A
δ−→ A⊗A is determined by the Manin triple Ã = Â�A.

Fix an isomorphism R = 	(U,OE ) ∼= C[v]. Then ω = dv is a generator of
	(E,�E ). Let (c1, . . . , cq)be a basis ofA and (c∗1, . . . , c∗q)be the dual basis ofAwith re-

spect to the Killing formA×A
K−→ R. Now we put:ϒ = {

(k, i)
∣∣ k ∈ N0, 1 ≤ i ≤ q

}
.

Then a(k,i) := civk for (k, i) ∈ ϒ form a basis of A over C. Let
(
b(k,i)

)
(k,i)∈ϒ be the

topological basis of Â dual to
(
a(k,i)

)
(k,i)∈ϒ . Then for any (k, i) ∈ ϒ we have a de-

composition b(k,i) = c∗i v−k−1 + h(k,i) for some uniquely determined h(k,i) ∈ A. Again,
all but finitely many elements h(k,i) are zero. The geometric r -matrix corresponding to
(E,A) is given by the following expression:

ρ = 1

u − v

q∑

i=1
c∗i ⊗ ci +

∑

(k,i)∈ϒ
h(k,i)(u)⊗ vkci . (75)

The corresponding proofs are completely analogous to the ones of Proposition 5.2 and
Theorem 5.6 and therefore are left to an interested reader. ♦
Remark 5.9. Let (E,A) be a geometric CYBEdatum,where E is an arbitraryWeierstraß
curve. There are also other natural ways to attach to (E,A) Lie bialgebras and Manin
triples. For example, let p+ 
= p− ∈ E be any pair of points such that s ∈ {

p+, p−
}
pro-

vided E is singular, Rp+,p− := 	
(
E\{p+, p−},O

)
andA(p+,p−) := 	

(
E\{p+, p−},A

)
.

Then we have a Manin tripleA(p+,p−) = A(p+) � A(p−),where the underlying bilinear
form A(p+,p−)×A(p+,p−) → C is given by the composition

A(p+,p−)×A(p+,p−)
K−→ Rp+,p−

resωp+−→ C.

Here, as usual, K is the Killing form of A(p+,p−), viewed as a Lie algebra over Rp+,p− .
♦

6. Geometrization of Twists of the Standard Lie Bialgebra Structure on Loop
Algebras and Trigonometric Solutions of CYBE

6.1. Some basic facts on torsion free sheaves on a nodal Weierstraß curve. Let E be a
nodal Weierstraß curve, s be its singular point, P1 ν−→ E be a normalization morphism
and ν−1(s) = {s+, s−}. Then the following diagram in the category of schemes

{s+, s−} � � η̃ ��

ν̃
����

P
1

ν

����
{s} � � η �� E

(76)

is bicartesian, i.e. it it both pullback and pushout diagram. For any torsion free coherent
sheaf F on E , we get the locally free sheaf F̃ := ν∗F/t (ν∗F) on P

1, where t (ν∗F)
denotes the torsion part of ν∗F . It is not hard to show that

• the canonical linear map F
∣∣∣
s
−→ F̃

∣∣∣
s+
⊕ F̃

∣∣∣
s−

is injective.
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• the canonical morphism of (C× C)–modules θF given as the composition

ν̃∗(F
∣∣∣
s
) −→ η̃∗(ν∗F) −→ η̃∗(F̃) = F̃

∣∣∣
s+
⊕ F̃

∣∣∣
s−

is surjective;
• the following diagram in the category Coh(E) of coherent sheaves on E

F ��

��

F
∣∣∣
s

��

ν∗(F̃) �� F̃
∣∣∣
s+
⊕ F̃

∣∣∣
s−

is a pullback diagram, where all morphisms are the canonical ones and skyscraper
sheaves supported at s are identified with their stalks.

Consider the comma category Tri(E) associated with a pair of functors

VB(P1)
F ��

(
C× C

)−mod C−modG�� ,

where F(G) := G
∣∣
∣
s+
⊕G

∣∣
∣
s−

for any G ∈ VB(P1) andG = (C×C)⊗C − . By definition,

any object of Tri(E) is a triple
(
G, V, θ

)
, where G is a locally free coherent sheaf on P

1,

V is a finite dimensional vector space over C and G(V )
θ−→ F(G) is given by a pair of

linear maps V
θ±−→ G

∣∣∣
s±
. The definition of morphisms in Tri(E) is straightforward.

The following result is a special case of [9, Theorem 16]; see also [11, Theorem 3.2].

Theorem 6.1. The functor TF(E)
E−→ Tri(E), F 	→ (

F̃,F
∣∣
s, θF

)
is fully faithful.

The essential image Tri(E) of TF(E) consists of those triples
(
G, V, θ

)
, for which both

linear maps θ± are surjective and the linear map θ̃ =
(
θ+
θ−

)
: V −→ G

∣∣∣
s+
⊕ G

∣∣∣
s−

is

injective, whereas the essential image of the category VB(E) consists of those triples
(
G, V, θ

)
, for which θ is an isomorphism. In other words, the functor TF(E)

E−→ Tri(E)
is an equivalence of categories. Conversely, given an object T = (

G, V, θ
)
of Tri(E),

consider the torsion free sheaf F on E defined as a pullback

F ��

��

V

θ̃

��

ν∗(G) �� G
∣∣∣
s+
⊕ G

∣∣∣
s−

(77)

in the category Coh(E). Then we have: E(F) ∼= T .
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Remark 6.2. Let (B, a, θ) be an object of Tri(E), for which B is a sheaf of Lie algebras
on P

1, a is a Lie algebra and θ is a morphism of Lie algebras. Then the torsion free
coherent sheaf A defined by the pullback diagram (77) corresponding to (B, a, θ) is a
sheaf of Lie algebras on E . It follows from (77) that the following sequences of vector
spaces is exact:

0 → 	(E,A)→ 	(P1,B)⊕ a

( ev+ θ+
ev− θ−

)

−−−−−−→ B
∣
∣
∣
s+
⊕ B

∣
∣
∣
s−
→ H1(E,A)→ H1(P1,B)→ 0,

(78)

where 	(P1,B) ev±−→ B
∣∣∣
s±

denotes the canonical evaluation map at the point s±. ♦

6.2. Geometrization of twists of the standard Lie bialgebra structure on twisted loop
algebras. Now we return to the setting of Section 3. LetD = C�W be a Manin triple
as in Theorem 4.1. LetV± ⊂ L be Lie subalgebras from Lemma 4.4. Recall thatV± is
a free module of rank q over L± = C

[
t±
] ⊂ R = C

[
t, t−1

]
, where t± = t±1. In what

follows, we shall view the projective line P
1 as the pullback of the pair of morphisms

Spec(L+) −→ Spec(R)←− Spec(L−),

identifying Spec(L±) with open subsets U± ⊂ P
1 and Spec(R) with U := U+ ∩U−.

Let s± ∈ U± be the point corresponding to the maximal ideal (t±) ⊂ L±, then t± is a
local parameter at s±.

Proposition 6.3. There exists a unique coherent sheaf of Lie algebras B on P
1 such that

	(V,B) ⊂ C(t)⊗R L for any open subset V ⊆ P
1 and such that the following diagram

of Lie algebras

	(U+,B) �
� ��

=
��

	(U,B)

=
��

	(U−,B)� ���

=
��

V+
� � �� L V−� ���

(79)

is commutative. We have:

	(P1,B) = V+ ∩V− and H1(P1,B) = 0. (80)

The completion of the stalk of B at s± is naturally isomorphic to Ŵ± as a Lie algebra
over L̂± = C�t±�, whereW± is the Lie algebra from Lemma 4.4. In particular, we can

identify the fiber B
∣∣
∣
s±

with the Lie algebra w± := Ŵ±/t±Ŵ±.

Proof. Existence and uniqueness ofB characterized by (79) is clear.We have theMayer–
Vietoris exact sequence

0 −→ 	(P1,B) −→ 	(U+,B)⊕ 	(U−,B) −→ 	(U,B) −→ H1(P1,B) −→ 0.

According to Lemma 4.4, we have:L = V+ +V−. If follows from (79) that the formulae
(80) are true. The remaining statements are obvious. ��
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Next, we can define E via the pushout diagram (76). It follows that E is a nodal
Weierstraß curve. Let Ô± be the completion of the stalk ofOP1 at s±, Ô be the completion
of the stalk of OE at s and Q̂ be the total ring of quotients of Ô . Then we have:
Ô± ∼= C�t±�, Ô ∼= C�t+, t−�/(t+t−) and Q̂ = C((t+))× C((t−)). According to Lemma
4.3, the completed Lie algebra Ŵ is an Ô–module. We put:

w := Ŵ/(t+, t−)Ŵ ⊂ Ŵ+/t+Ŵ+ × Ŵ+/t+Ŵ− = w+×w− .

Again, according to Lemma 4.3, the morphism of Lie algebras w
θ±−→ w± defined as

the composition w ↪→ w+×w− � w± is surjective. It follows that (B,w, θ) is an
object of the category Tri(E) from Theorem 6.1.

Proposition 6.4. Let A be the sheaf of Lie algebras on E, corresponding to the triple
(B,w, θ). Then (E,A) is a geometric CYBE datum.

Proof. We keep the notation of Sect. 5.3. First observe that the canonical map A =
	(U,A) → 	

(
U, ν∗(B)

) = L is an isomorphism of Lie algebras. This implies that A
is g–weakly locally free; see Proposition 3.4. Next, by Lemma 4.4, the linear map

(
V+ ∩V−

)⊕w = 	(P1,B)⊕w

( ev+ θ+
ev− θ−

)

−−−−−−→ B
∣∣∣
s+
⊕ B

∣∣∣
s−
∼= w+⊕w−

is an isomorphism. Since H1(P1,B) = 0, the exact sequence (78) implies that H0(E,A)
= 0 = H1(E,A). Moreover, it follows from the construction of A that the canonical

morphism of Lie algebras Â = Âs
ν∗−→ B̂s+ × B̂s− ∼= Ŵ+ × Ŵ− is injective and its

image is the Lie algebra Ŵ. Hence, Ã = Q̂⊗Ô Â can be identified with the Lie algebra
D̂.

It follows from the construction of E that the differential form ω = dt

t
is a generator

of 	(E,�E ). The following observation is crucial: under the isomorphism Ã→ D̂ the

bilinear form Ã× Ã
F̃ωs−→ C given by (63) gets identified (up to an appropriate rescaling)

with the bilinear form D̂ × D̂
F̂−→ C, given by (28)! Summing up, Ã = Â � A is a

Manin triple, isomorphic to the Manin triple D̂ = Ŵ�C. In particular, Â is an isotropic
Lie subalgebra of Ã.

All together, we have proven that A is an acyclic, g–weakly locally free isotropic
coherent sheaf of Lie algebras on E , as asserted. ��

Let (E,A) be a geometric datum as in Proposition 6.4 above and ρ ∈ 	
(
U × U \

�,A � A
)
the corresponding geometric r–matrix. Recall that the construction of A

also provides an isomorphism of Lie algebras A
∼=−→ L. Let Ũ = Spec(R)

π−→ U =
Spec(R) be the étale covering corresponding to the algebra extension R ⊆ R. By
Proposition 3.4, we have an isomorphism of Lie algebras 	

(
Ũ , π∗(A)

) ∼= R⊗R L ∼= L.
The pullback

ρ̃ := (π × π)∗(ρ) ∈ 	
(
Ũ × Ũ \ �̃, π∗(A)� π∗(A)

)
(81)

satisfies the equalities (54) and (55), where �̃ = (π × π)−1(�). Trivializing π∗(A) as
above, we get from ρ̃ a genuine skew-symmetric non-degenerate solution of the classical
Yang–Baxter Eq. (36). Our next goal is to compute this solution explicitly.
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6.3. Geometric r–matrix corresponding to twists of the standard Lie bialgebra structure
of a twisted loop algebra. Recall our notation: g is a finite dimensional complex simple
Lie algebra of dimension q, σ ∈ AutC(g) is an automorphism of order m, g = ⊕m−1

k=0 gk

the corresponding decomposition of g into a direct sum of eigenspaces of σ , γ =
m−1∑

k=0
γk

the decomposition of the Casimir element γ ∈ g⊗ g with components γk ∈ gk ⊗ g−k .
Let g0 = g+0 ⊕ h⊕ g−0 be a triangular decomposition as in Remark 3.6. We denote by
γ 0
0 and γ±0 the projections of γ0 on h⊗ h and g±0 ⊗ g∓0 , respectively.

Proposition 6.5. LetD = C�W◦ be the Manin triple (30), corresponding to the stan-

dard Lie bialgebra cobracketL
δ◦−→ ∧2(L) and (E,A◦) be the corresponding geometric

CYBE datum defined in Proposition 6.4. Then the trivialization of the corresponding ge-
ometric r-matrix (81) gives the following solution of (36):

r◦(x, y) =
(
γ 0
0

2
+ γ−0

)

+
ym

xm − ym

m−1∑

k=0

(
x

y

)k

γk . (82)

Proof. Let qk = dimC

(
gk
)
for k ∈ Z. By Lemma 3.2, we can choose a basis

(
g(1)k ,

. . . , g(qk )k

)
of gk such that κ

(
g(i)k , g( j)−k

)
= δi j for all 1 ≤ i, j ≤ qk . For k = 0 we make

an additional choice: let (h1, . . . , hr ) be a basis of h and (e
±
1 , . . . , e

±
p ) a basis of g

±
0 such

that

κ(hı , hj ) = δıj for all 1 ≤ ı, j ≤ r and κ(e+ı , e
−
j ) = δıj for all 1 ≤ ı, j ≤ p.

Then we have the following basis of L = ⊕

k∈Z
gk z

k viewed as a module over R =
C
[
t, t−1

]
:

(
e+1 , . . . , e

+
p, h1, . . . , hr , e

−
1 , . . . , e

−
p , g

(1)
1 z, . . . , g(q1)1 z, . . . , g(1)m−1z

m−1, . . . , g(qm−1)m−1 zm−1
)

(83)

where t = zm . As usual, let L×L
K−→ R be the Killing form. For any λ ∈ C

∗, let(
R/(t − λ)

) ⊗R L
ελ−→ g be the Lie algebra isomorphism from Proposition 3.4 and

R
evλ−→ C be the evaluation map. Then the diagram

L×L
K ��

ελ×ελ
��

R

evλ
��

g× g
κ �� C

is commutative and

(
e−1 , . . . , e

−
p , h1, . . . , hr , e

+
1 , . . . , e

+
p, g

(1)
−1z

−1, . . . , g(q1)−1 z−1, . . . , g(1)1−mz
1−m , . . . , g(qm−1)1−m z1−m

)
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is the basis of L over R which is dual to (83) with respect to the Killing form K .
Hence,

χ =
( p∑

ı=1

(
e+ı ⊗ e−ı + e−ı ⊗ e+ı

)
+

r∑

l=1
hl ⊗ hl

)

+

⎛

⎝
m−1∑

k=1

qk∑

j=1
g( j)k zk ⊗ g( j)−k z

−k
⎞

⎠ ∈ L⊗R L

is the canonical Casimir element of L (viewed as a Lie algebra over R).
We identify ρ with ρ̃ ∈ 	

(
Ũ × Ũ \ �̃, π∗(A)� π∗(A)

)
. To proceed with computa-

tions, we make the following choices: let (u, v) be coordinates on C
∗ × C

∗ ∼= U × U
and (x, y) be coordinates on the étale covering C

∗ × C
∗ ∼= Ũ × Ũ . We have: u = xm

and v = ym . Consider the following expression:

χ̃ :=
m−1∑

k=0
γk

(
x

y

)k

∈ L⊗C L ⊆ (g⊗ g)
[
x, x−1, y, y−1

]
.

It is easy to see that χ̃ is mapped toχ under the canonical linear mapL⊗C L � L⊗R L.
Recall that the geometric r -matrix ρ corresponding to (E,A) is given by the formula

(74). For any (k, i) ∈ ϒ we have w(k,i) ∈ D̂, given by the formula (69) with respect
to the R-basis of L fixed above. Then there exist uniquely determined b(k,i) ∈ Ŵ

◦
and

h(k,i) ∈ L ∼= C such that b(k, i) = w(k, i) + h(k, i). It is not hard to see that h(k,i) = 0 for
all k 
= 0. For k = 0, we have the following decompositions:

Ŵ
◦  

⎧
⎨

⎩

(0, e−ı ) = (−e−ı , 0) + (e−ı , e−ı )
(−e+ı , 0) = (−e+ı , 0) + (0, 0)(− 1
2hl ,

1
2hl

) = (−hl , 0) +
( 1
2hl ,

1
2hl

)
.

All together, taking into account the formulae (69), (70) and (71), we obtain from (74)
the following explicit expression:

r◦(x, y) = ym

xm − ym

m−1∑

k=0

(
x

y

)k

γk +

( p∑

ı=1
e−ı ⊗ e+ı +

r∑

l=1

1

2
hl ⊗ hl

)

,

which coincides with the formula (82), as asserted. ��
Weget the following corollary, which seems to bewell-known to the experts (another,

more direct proof, can be found in [1]).

Corollary 6.6. We have the following formula for the standard Lie bialgebra cobracket:

L
δ◦−→ L∧L, f (z) 	→ [

f (x)⊗ 1 + 1⊗ f (y), r◦(x, y)
]
,

where r◦(x, y) is the standard r-matrix given by (82).

Remark 6.7. Let g = n+ �h̃ � n− be a fixed triangular decomposition of the finite
dimensional simple complex Lie algebra g corresponding to a Dynkin diagram 	. Then
any φ ∈ Aut(	) defines an automorphism φ̃ ∈ AutC(g). Let σ ∈ AutC(g) be a Coxeter
automorphism corresponding to φ and m be the order of σ ; see [6, Section 6] for an
explicit description of σ . Then we have: L := L(g, σ ) ∼= L(g, φ̃); see [31, Proposition
8.1]. An advantage to use the Coxeter automorphism σ to define twisted loop algebra is
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due to the fact that the fixed point Lie algebra
{
a ∈ g

∣∣ σ(a) = a
}
is abelian. In particular,

the standard r -matrix (82) takes the following shape:

r◦(x, y) = γ0

2
+

ym

xm − ym

m−1∑

k=0

(
x

y

)k

γk = γ0

2
+

1

exp(w)− 1

m−1∑

k=0
exp

(
kw

m

)
γ j , (84)

where exp
(w
m

)
= x

y
. Forφ = id, this solutionwas discovered for thefirst timebyKulish

(see [38, formula (38)]) and generalized by Belavin and Drinfeld (see [6, Proposition
6.1]) for an arbitrary φ.

Remark 6.8. Let g = n+ �h̃� n− be again a fixed triangular decomposition of g,�+ be
the set of positive roots of (g, h) and σ = id. Then L = L(g, σ ) = g

[
z, z−1

]
and the

standard r -matrix (82) takes the following form:

r◦(x, y) = 1

2

( x + y

x − y
γ +

∑

α∈�+

e−α ∧ eα
)
, (85)

which can be for instance found in [36]. It can be shown that the solution (85) is equivalent
(in the sense of (38) and (39)) to the solution (84) (for the identity automorphism of the
Dynkin diagram of g); see for instance [1] for details. ♦
Theorem 6.9. For any skew-symmetric tensor t ∈ ∧2 L ⊂ (g⊗ g)

[
x, x−1, y, y−1

]
we

put:
δt = δ◦ + ∂t and rt(x, y) = r◦(x, y) + t(x, y). (86)

Then L
δt−→ L∧L is a Lie bialgebra cobracket if and only if rt(x, y) is a solution of

the classical Yang–Baxter Eq. (36). In this case, letD =Wt �C be the corresponding
Manin triple (see Theorem 4.1) and (E,At) be the corresponding geometric CYBE
datum (see Proposition 6.4). Then the geometric r-matrix ρt of (E,At) with respect to
the trivialization, described at the end of Sect. 6.2, coincides with rt(x, y).

Proof. By Proposition 3.4, L⊗3 does not have any non-zero ad-invariant elements.
Hence, Proposition 2.3 implies that δt is a Lie bialgebra cobracket if and only if t
satisfies the twist Eq. (6). On the other hand, since r◦ solves the CYBE, we can rewrite
the CYBE for rt as

[[t,t]] + [
r12◦ ,t13 + t23

]
+
[
r13◦ ,t23 + t21] +

[
r23◦ ,t21 + t31

] = 0.

We have:
[
r12◦ ,t13 + t23

] = −(δ◦ ⊗ 1)(t). It follows that rt solves the CYBE if and
only if alt

(
(δ◦ ⊗ 1)(t)

) = [[t,t]], implying the first statement.
As it was explained in the proof of Proposition 6.4, the Manin triple D̂ = Ŵt �C is

isomorphic to the geometric Manin triple Ã = Ât �A. Let r̃t(x, y) be the trivialization
of the geometric r -matrix ρt with respect to the trivialization A ∼= L introduced at the
end of Sect. 6.2. Then we get the geometric Lie bialgebra cobracket

L
δ−→ L∧L, f (z) 	→ [

f (x)⊗ 1 + 1⊗ f (y), r̃t(x, y)
]
.

On the other hand, Corollary 6.6 implies that

δt( f ) := δ◦( f ) +
[
f (x)⊗ 1 + 1⊗ f (y),t(x, y)

]

= [
f (x)⊗ 1 + 1⊗ f (y), r◦(x, y) + t(x, y)

]
.
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According to Proposition 4.5 and Theorem 5.6, both Lie bialgebra cobrackets δ and
δt are determined by the same Manin triple D̂ = Ŵt � C. It follows that δ = δt.
Since L⊗2 has no non-zero ad-invariant elements (see Proposition 3.4), we conclude
that r̃t(x, y) = r◦(x, y) + t(x, y) = rt(x, y), as asserted. ��

6.4. On the Theory of trigonometric solutions of CYBE. Consider the setting of Remark
6.7. Let g = n+ �h̃ � n− be a triangular decomposition of g, 	 be the Dynkin diagram
of g and φ ∈ Aut(	). Let σ ∈ AutC(g) be a Coxeter automorphism corresponding to φ,
m be the order of σ and L := L(g, σ ). Recall that g0 = h is an abelian Lie algebra. For
1 ≤ k ≤ m − 1 and α ∈ h∗, let gαk :=

{
x ∈ gk

∣∣ [h, x] = α(h)x forall h ∈ h
}
.We put

�k :=
{
α ∈ h∗

∣∣ gαk 
= 0
}

and ' := {
(α, k)

∣∣ 1 ≤ k ≤ m − 1 and α ∈ �k
}
.

Then we have a direct sum decomposition

g = h⊕
⊕

(α,k)∈'
gαk , (87)

and the vector space gαk is one-dimensional for any (α, k) ∈ '.
Themain advantage to define the twisted loop algebraL corresponding to ν ∈ Aut(	)

using a Coxeter automorphism (even for φ = id) is due to the following special structure
of the set � of positive simple roots of (L, h): � = {

(α, 1)
∣∣α ∈ �1

}
. In particular,

we have:
∣∣�1

∣∣ = r + 1 = dimC(h) + 1 and the elements of �1 are in a bijection with
the vertices of the affine Dynkin diagram 	̂ such that L ∼= G	̂ via the Gabber–Kac
isomorphism (20).

Recall that a Belavin–Drinfeld triple is a tuple
(
	1, 	2, τ

)
, where 	i � �1 for

i = 1, 2 are subsets and 	1
τ−→ 	2 is a bijection satisfying the following conditions:

• κ
(
τ(α), τ (β)

) = κ(α, β) for all α, β ∈ 	1;
• for any α ∈ 	1 there exists l = l(α) ∈ N such that α, . . . , τ l−1(α) ∈ 	1 but
τ l(α) /∈ 	1.

For i = 1, 2, let ni be the Lie subalgebra of g generated by the vector subspace
⊕α∈	i gα1 . Then ni is isomorphic to the positive part of the semisimple Lie algebra
defined by the Dynkin diagram 	i and we have a direct sum decomposition

ni =
⊕

(α,k)∈'i

gαk . (88)

for an appropriate subset'i ⊂ '. Fixing non-zero elements in
(
gα1

)
α∈�1

, one can extend

the bijection 	1
τ−→ 	2 to an isomorphism of Lie algebras n1

τ̃−→ n2.

Let g
ϑ−→ g be a linear map defined as the composition g

π−→→ n1
τ̃−→ n2

ı
↪→ g,

where π and ı are the canonical projection and embedding with respect to the direct sum
decompositions (87) and (88). Then ϑ is nilpotent andϑ(gk) ⊂ gk for all 1 ≤ k ≤ m−1.

Let ψ = ϑ

1− ϑ
=

∞∑
l=1

ϑ l . It follows that ψ(gk) ⊂ gk for all 1 ≤ k ≤ m − 1 as well.

For any Belavin–Drinfeld triple
(
	1, 	2, τ

)
, the system of linear equations

(
τ(α)⊗ 1 + 1⊗ α

)(
s +

γ0

2

)
= 0 for all α ∈ 	1 (89)
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for s ∈ h∧ h is consistent; see [6, Lemma 6.8]. According to [6, Theorem 6.1],
trigonometric solutions of (41) are parametrized by Belavin–Drinfeld quadruples Q =((
	1, 	2, τ

)
,s

)
, where

(
	1, 	2, τ

)
is a Belavin–Drinfeld triple and s ∈ h∧ h satisfies

(89). The solution of (41) corresponding to Q is given by the following formula:

�Q(w) = �◦(w) + s +
m−1∑

j=1

(
− exp

(
jw

m

)
(ψ ⊗ 1)γ j + exp

(
− jw

m

)
(1⊗ ψ)γ− j

)
,

(90)
where �◦(w) is given by (84).

Let us rewrite the formula (90) in different terms.Choose elements
(
g(α,k) ∈ gαk

)
(α,k)∈'

such that κ
(
g(α,k), g(β,l)

) = δα+β,0δk+l,0. Then for any 1 ≤ k ≤ m − 1 we have:
γ±k = ∑

α∈'±k
g(±α,±k) ⊗ g(∓α,∓k). It follows that

⎧
⎪⎪⎨

⎪⎪⎩

(ψ ⊗ 1)(γk) =
∞∑
l=1

∑

α∈'k

ϑ l
(
g(α,k))⊗ g(−α,−k)

(1⊗ ψ)(γ−k) =
∞∑
l=1

∑

α∈'k

g(−α,−k) ⊗ ϑ l
(
g(α,k)).

Consider the following expression

tQ(x, y) := s+
∞∑

l=1

∑

(α,k)∈'

(−ϑ l(g(α,k)
)⊗g(−α,−k)

(
x

y

)k

+g(−α,−k)⊗ϑ l(g(α,k)
) ( y

x

)k)
.

(91)
Then we have:

rQ(x, y) := r◦(x, y) + tQ(x, y) = �Q(w) (92)

where x, y and w are related by the formula
x

y
= exp

(w
m

)
. In other words, rQ is the

solution of the classical Yang–Baxter Eq. (36) corresponding to the Belavin–Drinfeld
quadruple Q = (

(	1, 	2, τ ),s
)
.

Corollary 6.10. For azk, bzl ∈ L we put: azk ∧bzl := axk⊗byl −bxl ⊗ayk ∈ L∧L.
Then tQ given by (91) can be viewed as an element of ∧2(L). As a consequence, the
trigonometric solution rQ(x, y) is of the form (86) and can be realized as the geometric
r-matrix defined by an appropriate geometric CYBE datum (E,A), where E is a nodal
Weierstraß curve.

A proof of the following result is analogous to [7] and [36, Theorem 19].

Proposition 6.11. Let r(x, y) = ym

xm − ym

m−1∑

j=0

(
x

y

) j

γ j +g(x, y) be a solution of (36),

where C
2 g−→ g⊗ g is a holomorphic function. Then r is equivalent (in the sense of

Sect. 5.1) to a trigonometric solution of (41).

Proof. For a, b, c, d ∈ g put: [〈a ⊗ b, c ⊗ d〉] := [a, c] ⊗ [b, d]. Proceeding similarly
to [7], one can deduce from (36) the following identities:

⎧
⎪⎨

⎪⎩

[〈r(x, y), r(x, y)〉] + [r(x, y), 1⊗ f (y)] +
y

m

∂r

∂y
(x, y) = 0

[〈r(x, y), r(x, y)〉] − [r(x, y), f (x)⊗ 1]− x

m

∂r

∂x
(x, y) = 0,
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where f (z) := "g(z, z) + 1
m

m−1∑

k=1
kγk# (here, "a ⊗ b# = [a, b] for a, b ∈ g). It follows

that

[
f (x)⊗ 1 + 1⊗ f (y), r(x, y)

] = x

m

∂r

∂x
(x, y) +

y

m

∂r

∂y
(x, y).

Let r̃(u, v) := r
(
exp

( u

m

)
, exp

( v
m

))
andh(u) := f

(
exp

( u

m

))
. ThenC

2 r̃−→ g⊗ g

is a meromorphic solution of (36) equivalent to r (whose set of poles is given by the

union of lines
{
(u, v) ∈ C

2
∣∣ u − v = 2π ik

}
for k ∈ Z), C

h−→ g is a holomorphic
function and

[
h(u)⊗ 1 + 1⊗ h(v), r̃(u, v)

] =
(
∂

∂u
+
∂

∂v

)
r̃(u, v).

Let (C, 0)
ϕ−→ EndC(g) be the germ of a holomorphic function satisfying the differ-

ential equation ϕ̇ = adh ◦ϕ and the initial condition ϕ(0) = 1, where C
adh−→ EndC(g)

is given by the rule
(
adh(u)

)
(ξ) = [

h(u), ξ
]
for u ∈ C and ξ ∈ g. Then ϕ can be

extended to a holomorphic function on the entire complex plane (see [36, Theorem 19]).
The initial condition ϕ(0) = 1 and the continuity of ϕ imply that det

(
ϕ(u)

) = 1 for
all u ∈ C (see the proof of [6, Proposition 2.2]). Hence, we have an entire function

C
ϕ−→ AutC(g). Let

ρ̃(u, v) := (
ϕ(u)−1 ⊗ ϕ(v)−1

)
r̃(u, v)

It follows that

(
∂

∂u
+
∂

∂v

)
ρ̃(u, v) = 0, i.e. ρ̃(u, v) = �(u − v) for some meromor-

phic solution C
�−→ g⊗ g of (41), whose set of poles is 2π iZ. It follows that � is a

trigonometric solution of (41). ��

6.5. Concluding remarks on the geometrization of trigonometric solutions. Let (E,A)
be a geometric CYBE datum as in Proposition 6.4. Within that construction, we addi-
tionally made the following choices.

• P
1 ν−→ E is a fixed normalization map. We have fixed homogeneous coordinates

(w+ : w−) on P
1 such that ν−1(s) = {s+, s−}, where s+ = (0 : 1) and s− = (1 : 0).

• We have an algebra isomorphism 	(U,O) ∼= C
[
u, u−1

]
as well as an 	(U,O)-

C
[
u, u−1

]
-equivariant isomorphism of Lie algebras A ∼= L = ⊕

k∈Z
gk x

k, where

u = w+

w−
= xm . We also put: ω = du

u
.

Let p := ν
(
(1 : 1)) ∈ E . Equipping U ⊂ E with the usual group law (on the set of

smooth point of a singular Weierstraß curve) with p being neutral element, the map
C
∗ → U, t 	→ ν

(
1 : t) becomes a group isomorphism.

Consider the algebra homomorphismC
[
u, u−1

] → C�z�, u 	→ exp(z).As (exp(z)−
1) ∈ C�z� is a local parameter, we get an induced algebra isomorphism Ôp → C�z�.
In these terms, the differential form ω̂p gets identified with dz. Moreover, the linear
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map Âp → g�z�, axk 	→ a exp
( z

m
k
)
is a (Ôp–C�z�)–equivariant isomorphism of

Lie algebras. Consider the étale covering C
∗ = Ũ → U = C

∗ of degree m, given by

the formula x 	→ xm = u. It extends to a finite morphism P
1 π̃−→ P

1, (w+ : w−) 	→
(wm

+ : wm−). Since π̃(s±) = s± and (76) is a pulldown diagram, we obtain an induced

finite morphism E
π−→ E . Let Ã = π∗(A). Then we have the following commutative

diagram.

	
(
(E × Ũ ) \ �̃, Ã � Ã

) � � �� 	
(
(Ũ × Ũ ) \ �̃, Ã � Ã

)

	
(
(E ×U ) \�,A � A

) � � ��
��

��

��

��

	
(
(U ×U ) \�,A � A

)� �

��

� �

��

A(p)⊗Âp
� � ��
��

����
���

���
���

��
A◦(p)⊗Âp
�	

�����
���

���
���

Ã(p) ⊗ Âp

(93)

Then � ∈ 	
(
(E × U ) \ �,A � A

)
, ρ ∈ 	

(
(U × U ) \ �,A � A

)
, ρ̃ ∈ 	

(
(Ũ × Ũ ) \

�̃, Ã � Ã
)
and ρ̄ ∈ Ã(p) ⊗ Âp are identified with each other under the corresponding

maps. Taking the trivialization 	(Ũ ,A) ∼= L = g
[
x, x−1

]
, we get a solution of (36)

r(x, y) = r◦(x, y) + t(x, y) =
(

ym

xm − ym

m−1∑

k=0

(
x

y

)k

γk

)

+
γ0

2
+ t(x, y),

where t ∈ ∧2 L ⊂ (g⊗ g)
[
x, x−1, y, y−1

]
. Making the substitutions x = exp

( z

m

)

and y = exp
(w
m

)
, we obtain the solution

r(z, w) =
(

1

exp(z − w)− 1

m−1∑

k=0
exp

(
z − w

m
k

)
γk

)

+
γ0

2
+t

(
exp

( z

m

)
, exp

(w
m

))
.

(94)
The corresponding element of

(
g((z)) ⊗ g

)
�w� viewed as a solution of (47), coincides

with the image of ρ̄ under the isomorphism Ã(p) ⊗ Âp ∼=
(
g((z))⊗ g

)
�w�.

Remark 6.12. The set of Manin triples L×L‡ = C � W from Theorem 4.1 admits a
natural involution W 	→W‡ induced by the Lie algebra automorphism

L×L‡ −→ L×L‡, ( f, g) 	→ (g‡, f ‡) (95)

Note that (95) is an involution which fixes the Lie subalgebra C. Let (E,A) end (E,A‡)

be the geometric CYBE data from Proposition 6.4, corresponding to W and W‡, re-
spectively. It is not hard to see that A‡ ∼= ı∗(A), where E

ı−→ E is the involution,
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induced by the involution P
1 → P

1, (w+ : w−) 	→ (w− : w+). It is clear that ı(p) = p.
Moreover, the solutions r(z, w) and r‡(z, w) corresponding toW andW‡ and given by
(94) are related by the formula: r‡(z, w) = r(−z,−w). ♦

Summary. Let t ∈ ∧2 L be a twist of the standard Lie bialgebra cobracket L
δ◦−→

L∧L. Then rt(x, y) = r◦(x, y) + t(x, y) is a solution of (36), which is equivalent to a
trigonometric solution �t of (41) with respect to the equivalence relations (38) and (39).
On the other hand, any trigonometric solution of (41) is equivalent to a solution rt(x, y)
for some t ∈ ∧2 L. Moreover, it was shown in [1] that for two twists t′,t′′ ∈ ∧2 L
of δ◦ the corresponding Lie bialgebras (L, δt′) and (L, δt′′) are related by an R–linear
automorphism of L if and only if the solutions �t′ and �t′′ are equivalent.

Remark 6.13. The presented way of geometrization of twists of the standard Lie bialge-
bra structure can be viewed as an alternative approach to classification of trigonometric
solutions of (41). On the other hand, methods developed in this work are adaptable for
a study of analogues of trigonometric solutions of (41) for simple Lie algebras defined
over algebraically non-closed fields like R (what is interesting because of applications
to classical integrable systems [3,44]) or C((h)) (motivated by the problem of quantiza-
tion of Lie bialgebras; see [23,33,34]). We are going to return to these questions in the
future.♦

7. Explicit Computations

7.1. On explicit geometrization of certain solutions for sln(C). LetP be a simple vector
bundle on a Weierstraß curve E (i.e. EndE (P) = C) of rank n and degree d. Then
gcd(n, d) = 1 and for any other simple vector bundleQ with the same rank and degree
there exists a line bundle L ∈ Pic0(E) such that Q ∼= P ⊗ L. Conversely, for any
(n, d) ∈ N × Z satisfying the condition gcd(n, d) = 1, there exists a simple vector
bundle of rank n and degree d on E ; see [2,10,12] for the case when E is elliptic, nodal
and cuspidal, respectively. In what follows, we put c := n − d.

LetA = AdE (P) be the sheaf of Lie algebras on E given by the short exact sequence

0 −→ A −→ EndE (P)
tr−→ O −→ 0. (96)

From what was said above we see that A = A(c,d) does not depend (up to an automor-
phism) on the particular choice of simple vector bundle P and is uniquely determined
by the pair (c, d). For any p ∈ E we have: A

∣∣
p
∼= g = sln(C). Simplicity of P implies

that H0(E,A) = 0 = H1(E,A). It follows that the pair (E,A) is a geometric CYBE
datum.

Let K = K(c,d) :=
(
0 Id
Ic 0

)
and T = T(c,d)(u−) =

(
Ic 0
0 u−1− Id

)
, where c = n−d.

We put: c(c,d) :=
{(
a,AdK (a)

) ∣∣ a ∈ g
}
(where AdK (a) := KaK−1) and

Ŵ
trg
(c,d) =

(
1× AdT

)((
u+ g�u+�× {0}) + ({0} × u− g�u−�

)
+ c(c,d)

)
⊆ D̂ = L̂+ × L̂−,

where L̂± = g((u±)).
Theorem 7.1. Let E be a nodal Weierstraß curve, s be its singular point andA = A(c,d)
be a sheaf of Lie algebras attached to the pair (c, d), where c, d ∈ N are coprime. Then
the Manin triple Ãs = Âs � A(s) is isomorphic to the Manin triple D̂ = Ŵ

trg
(c,d) � C.
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Proof. Let us first recall our notation and give an explicit description of the sheafA. We
choose homogeneous coordinates (w+ : w−) on P

1 and view them as global sections:
w± ∈ 	

(
P
1,OP1(1)

)
. Let s± ∈ P

1 be the point of vanishing of w±, i.e. s+ = (0 : 1)
and s− = (1 : 0). We put: U± := P

1 \ {s±}, U = U+ ∩ U− and u± := w±
w∓

. It is

clear that s± ∈ U± and that the rational function u± is a local parameter at s±. We put:
L± := 	

(
U±,OP1

) ∼= C[u±]. Let Ô± be the completion of the stalk of OP1 at s± and
Q̂± be the corresponding quotient field. Thenwe have: Ô± ∼= C�u±� and Q̂± ∼= C((u±))
Finally, let R := 	

(
U,OP1

) ∼= C
[
u±, u−1±

] = C
[
u, u−1

]
, where u = u+ = u−1− . We

fix the following trivializations:

	
(
U±,OP1(1)

) ξ±−→ L±, f 	→ f

w∓
∣∣
U±

. (97)

As a consequence, for any c, d ∈ N0 and G = G(c,d) := O⊕c
P1
⊕ (

OP1(1)
)⊕d we have the

induced trivializations 	
(
U±,G

) ξG±−→ L⊕n± , where n = c+d. Let B = B(c,d) := Ad(G).

Then ξG± induces trivializations 	
(
U±,B

) ξB±−→ g[u±]. Let B̂± be the completion of the
stalk of B at s±, B̃± its rational envelope and B

∣∣
s± the fiber of B over s±. Then we get

induced isomorphisms

B̂±
ξ̂B±−→ g�u±�, B̃±

ξ̃B±−→ g((u±)) and B
∣∣
s±

ξ̄B±−→ g .

We define a nodal Weierstraß curve E via the pushout diagram (76). We recall now the
description of the sheaf A given in [15, Proposition 3.3] (see also [17, Section 5.1.2]).

Consider the embedding of Lie algebras g
θ̃(c,d)−→ g× g, a 	→ (

a,AdK (a)
)
. Then A is

defined via the following pullback diagram in the category Coh(E):

A ��

��

g� �

θ̃(c,d)

��
ν∗(B)

ξ̄ �� g× g

(98)

where we view g and g× g as skyscraper sheaves supported at s and ξ̄ is the composition

ν∗(B)
ev−→ B

∣
∣∣
s+
× B

∣
∣∣
s−

ξ̄B+ ×ξ̄B−−−−−→ g× g .

In the notation of Theorem 6.1,
(
B, g, (1,AdK )

)
is a triple corresponding toA. Let Ô be

the completion of the stalk ofOE at s and Q̂ be the corresponding total ring of fractions.
Then we have: 	

(
U,OE

) ∼= 	
(
ν−1(U ),OP1

) ∼= C
[
u, u−1

]
, Ô ∼= C�u+, u−�/(u+u−)

and Q̂ ∼= Q̂+ × Q̂− = C((u+))× C((u−)).
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From (98) we get the following commutative diagram of Lie algebras:

Âs ��
��

��

g� �

θ̃(c,d)

��

B̂+ × B̂− �� ��

ξ̂B+ ×ξ̂B−
��

B
∣∣∣
s+
× B

∣∣∣
s−

ξ̄B+ ×ξ̄B−
��

g�u+�× g�u−� �� �� g× g .

(99)

It follows that the image of Âs in g�u+� × g�u−� under the composition of two left
vertical maps in (99) is the Lie algebra

(
u+ g[u+] × {0}) + ({0} × u− g[u−]

)
+ c(c,d).

Passing to the rational hulls, we end up with the embedding of Lie algebras

Âs ↪→ Ãs
∼=−→ B̃+ × B̃−

ξ̃B+ ×ξ̃B−−−−−→ g((u+))× g((u−)).

On the other hand, the trivialization 	
(
U+,B

) ξB+−→ g[u] restricts to an isomorphism

	(U,B) ξB◦−→ g
[
u, u−1

]
and induces the isomorphisms of Lie algebras 	(U,A) ξ−→

g
[
u, u−1

]
given as the composition 	(U,A) ν∗−→ 	(U,B) ξB◦−→ g

[
u, u−1

]
. We get

the induced isomorphism B̃+ × B̃−
ξ̃B+ ×ξ̆B+−−−−→ g((u+)) × g((u−)) as well as the following

commutative diagram:

	(U,A)
��

��

ν∗ �� 	(U,B)
ξB◦ ��

� �

��

g
[
u, u−1

]
� �

��
Ãs �� B̃+ × B̃−

ξ̃B+ ×ξ̆B+ �� g((u+))× g((u−)).

It follows that the image of 	(U,A) under the embedding

	(U,A) ↪→ Ãs ↪→ B̃+ × B̃−
ξ̃B+ ×ξ̆B+−−−−→ g((u+))× g((u−))

is the Lie algebra C = {
(aun+, au

n−)
∣
∣ a ∈ g, n ∈ Z

}
.

The formal trivializations ξ̃B− and ξ̆B+ are related by the following commutative dia-
gram

B̃−
ξ̆B+

�
��

��
��

��
ξ̃B−

����
��
��
��
�

g((u−))
AdT �� g((u−)).

It follows that the image of Âs under the embedding

Âs ↪→ Ãs ↪→ B̃+ × B̃−
ξ̃B+ ×ξ̆B+−−−−→ g((u+))× g((u−)),
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is the Lie algebra Ŵ
trg
(c,d) =

(
1×AdT

)((
u+ g�u+�× {0}) + ({0} × u− g�u−�

)
+ c(c,d)

)
,

as asserted. ��
Example 7.2. Let g = sl2(C) and h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
. Then

Ŵ
trg
(1,1) =

(
u+ g�u+�× {0}) + ({0} × u2− g�u−�

)
+ u, where

u = 〈
(0, u−h), (0, u− f ), (0, f ), ( f, u−e), (e, u−1− f ), (h,−h)

〉
C
.

The formula (74) gives the following solution of (36):

r trg(1,1)(u, v) =
1

4

u + v

u − v
h ⊗ h +

u

u − v
f ⊗ e +

v

u − v
e ⊗ f + (v − u) f ⊗ f. (100)

Remark 7.3. Let E be a Weierstraß curve and A = A(n,d) be the sheaf of Lie algebras
attached to a pair (n, d), where 0 < d < n and gcd(n, d) = 1. Explicit expressions for
the corresponding geometric r -matrix ρE

(n,d) are known.

1. Let E be an elliptic curve. The corresponding solution r ell(c,d)(x, y) of (36) is an
elliptic solution discovered byBelavin [5]; see e.g. [16, Theorem5.5]. For any p ∈ E , we
have theManin triple Ãp = Âp�A(p), which can be identified with aManin triple of the
form g((z)) = g�z� �Well

(c,d) for an appropriate Lagrangian subalgebraW
ell
(c,d) ⊂ g((z)).

This Manin triple appeared for the first time in the work of Reyman and Semenov-Tyan-
Shansky [44]. A description of the Lie algebra Well

(c,d) via generators and relations was
given for (c, d) = (1, 1) by Golod [29], and for arbitrary (c, d) by Skrypnyk [46].

2. Let E be nodal. The (quasi-)trigonometric solution r trg(c,d)(x, y) of (36) was com-
puted in [15, Theorem A]. We recall the corresponding formula. Let

�̄ := {
(i, j) ∈ N

2
∣∣ 1 ≤ i, j ≤ n

} ∼= Zn × Zn and �+ :=
{
(i, j) ∈ �̄

∣∣ i < j
}
.

Then we have a permutation �̄
τ−→ �̄, (i, j) 	→ (i + c, j + c) of order n. For any

α ∈ �+, let p(α) = min
{
k ∈ N

∣
∣ τ k(α) /∈ �+

}
. For any 1 ≤ i ≤ n − 1, we put:

qi := τ i (ε)−τ i−1(ε) and fi := 1
2

(
τ i (ε)+τ i−1(ε)

)− 1
n I,where I is the identity matrix

and ε = e11 is the first matrix unit. Then (q1, . . . , qn−1) is a basis of the standard Cartan
part h of the Lie algebra g. Let (q∗1 , . . . , q∗n−1) be the dual basis of h with respect to the
trace form. The solution of (36) corresponding to (E,A) is given by the formula

r trg(c,d)(x, y) = r◦(x, y) + t(c,d)(x, y), (101)

where r◦(x, y) is the standard trigonometric r -matrix (85) and

t(c,d)(x, y) =
∑

α∈�+

((p(α)−1∑

k=1
eτ k (α) ∧ e−α

)
+ xeτ p(α)(α) ⊗ e−α − ye−α ⊗ xeτ p(α)(α)

)

+
n−1∑

i=1
q∗i ⊗ fi .

For (c, d) = (1, 1) we recover the formula (100) above.
3. Let E be cuspidal. The corresponding rational solution r rat(c,d)(x, y) of (36) was

computed in [16, Theorem 9.6 and Example 9.7]. The Manin triple Ãs = Âs � A(s)
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(where s is the singular point of E) has the form g((z−1)) = Ŵ
rat
(c,d) � g[z] and the

corresponding Lagrangian subalgebra Ŵ
rat
(c,d) ⊂ g((z−1)) was explicitly described in

[16, Lemma 9.2]. ♦

7.2. Explicit geometrization of quasi-constant solutions of CYBE. Let g be a simple Lie
algebra. According to the Whitehead’s lemma, we have: H1

(
g,∧2(g)

) = 0. Moreover,

it can be shown that any Lie bialgebra structure g
δ−→ g⊗ g is of the form δ = ∂t,

where t ∈ g⊗ g is such that

[t12,t13] + [t12,t23] + [t13,t23] = 0 and t12 + t21 = λγ (102)

for some λ ∈ C, i.e. t is a solution of the classical Yang–Baxter equation for constants
(cCYBE); see e.g. [24, Section 5.1]. Of course, without loss of generalitywemay assume
that λ ∈ {0, 1}.

The following result is due to Stolin [49].

Theorem 7.4. Solutions of cCYBE can be described in the following terms.

(a) Tensors t ∈ g⊗ g satisfying

[t12,t13] + [t12,t23] + [t13,t23] = 0 and t12 + t21 = γ (103)

stand in bijection with Manin triples d = c�w, where

c = {
(a, a) | a ∈ g

} ⊂ d := g× g

and the bilinear form d× d
F−→ C is given by the rule:

F
(
(a′, b′), (a′′, b′′)

) = κ(a′, a′′)− κ(b′, b′′).

(b) Tensors t ∈ g⊗ g satisfying

[t12,t13] + [t12,t23] + [t13,t23] = 0 and t12 + t21 = 0 (104)

stand in bijection with Manin triples d = c�w, where

c = {
a | a ∈ g

} ⊂ d := g[ε]/(ε2)

and the bilinear form bilinear form d× d
F−→ C is given by the rule:

F
(
(a′ + εb′), (a′′ + εb′′)

) = κ(a′, b′′) + κ(a′′, b′).

Comment to the proof. The correspondence between solutions of cCYBE and Manin
triples is as follows. Let (g1, . . . , gq) be a basis of g.

(a) Let ((w+
1 , w

−
1 ), . . . , (w

+
q , w

−
q )

)
be the basis ofw ⊂ d = g× g, which is dual to the

basis
(
(g1, g1), . . . , (gq , gq)

)
of c. Then the solution of (103) corresponding to w

is given by the formula

t :=
q∑

i=1
gi ⊗ w+

i ; (105)

see [49, Section 6].
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(b) Similarly, let
(
h1 + εg∗1 , . . . , hq + εg∗q

)
be the basis of w ⊂ d = g[ε]/(ε2), which

is dual to the basis
(
g1, . . . , gq) of c. Then the solution of (104) corresponding to

w is given by the formula

t :=
q∑

i=1
gi ⊗ hi = −

q∑

i=1
hi ⊗ gi ; (106)

see [49, Theorem 3.12].

Remark 7.5. All solutions of (103) were classified by Belavin and Drinfeld in [8, Section
6]. On the other hand, let g = sln(C) and a, b ∈ g be such that [a, b] = 0. Then
t = a ∧ b satisfies (104). This implies that classification of all solutions of (104) is a
representation-wild problem; see [27]. ♦
Remark 7.6. Any solution t ∈ g⊗ g of cCYBE defines a solution of CYBE.

(a) If t ∈ g⊗ g satisfies (103) then r(x, y) = y

x − y
γ + t satisfies (36).

(b) If t ∈ g⊗ g satisfies (104) then r(x, y) = 1

x − y
γ + t satisfies (36).

Such solutions of CYBE are called quasi-constant. ♦
Theorem 7.7. Let g× g = c�w be a Manin triple as in Theorem 7.4 and t ∈ g⊗ g be
the corresponding solution of (103), given by the formula (105). Choose homogeneous
coordinates on P

1 and define a nodal Weierstraß curve E via the pushout diagram (76),
where s+ = (0 : 1) and s− = (1 : 0). Define the sheaf of Lie algebrasA as the pullback

A ��

��

w� �

��
B ev �� g× g

(107)

in the category Coh(E), where B := g⊗C

(
ν∗(OP1)

)
, whereas w and g× g are consid-

ered as skyscraper shaves supported at the singular point s ∈ E and ev is induced by the

canonical isomorphismsOP1

∣∣
∣
s±
∼= C. Then (E,A) is a geometric CYBE datum and the

corresponding geometric r-matrix is the quasi-constant solution r(x, y) = y

x − y
γ +t

of (36).

Proof. It follows from the definition of A that A = 	(U,A) = 	(U,B) ∼= L =
g
[
z, z−1

]
. Next, 	(E,B) ∼= g and H1(E,B) = 0. From (107) we obtain an exact

sequence

0 −→ H0(E,A) −→ c�w
∼=−→ (g× g) −→ H1(E,A) −→ 0,

which implies that H0(E,A) = 0 = H1(E,A). From (58) we get a direct sum de-
composition Ã = Â � A, where Â is the completion of the stalk of A at s and Ã is its
rational hull. We have: Ã ∼= g((x+))× g((x−)) and A ∼= {(

axk+, ax
−k−

) ∣∣ a ∈ g, k ∈ N0
}
.

Moreover, it follows from (107) that Â ∼= x+ g�x+� + x− g�x−� +w . In particular, Â is
a Lagrangian Lie subalgebra of Ã and (E,A) is a geometric CYBE datum, as asserted.
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The recipe to compute the geometric r -matrix of (E,A) is given by (74). Let
(g1, . . . , gq) be a basis of g, (g∗1 , . . . , g∗q) be the corresponding dual basis with respect
to the Killing form and

(
a(k,i) = gi zk | 1 ≤ i ≤ q, k ∈ Z

)
be the corresponding basis of

L. Note that the elements w(k, i) defined by (69) belong to x+ g�x+� + x− g�x−� +w for
k 
= 0. As a consequence, the elements h(k,i) given by (70) are zero for k 
= 0.

Let
(
(w+

1 , w
−
1 ), . . . , (w

+
q , w

−
q )

)
be abasis ofwdual to thebasis

(
(g1, g1), . . . , (gq , gq)

)

of c. For any 1 ≤ i ≤ q there exists a uniquely determined element vi ∈ g such that
(−g∗i , 0) + (vi , vi ) = (−w+

i ,−w−
i ). It follows from (70) that h(0,i) = vi = −w−

i for
all 1 ≤ i ≤ q and w+

i = g∗i +w
−
i (here we use that K

(
gi , g∗j ) = κ(gi , g∗j ) = δi j ). From

(74) we conclude that

r(x, y) = y

x − y
γ +

q∑

i=1
w−
i ⊗ gi = y

x − y
γ +

q∑

i=1
(w+

i − g∗i )⊗ gi

= x

x − y
γ −

q∑

i=1
w+
i ⊗ gi .

Since r(x, y) is skew-symmetric, we have:

r(x, y) = −r21(y, x) = y

x − y
γ +

q∑

i=1
gi ⊗ w+

i ,

as asserted. ��
Remark 7.8. An analogous statement is true for the rational quasi-constant solutions.
Let g[ε]/(ε2) = c�w be a Manin triple as in Theorem 7.4 and t ∈ g⊗ g be the
corresponding solution of (104). Choose homogeneous coordinates on P

1 and define a
cuspidal Weierstraß curve E via the pulldown diagram

Spec
(
C[ε]/(ε2)) � � η̃ ��

ν̃
����

P
1

ν

����
Spec(C) �

� η �� E

(108)

where the image of η̃ is the scheme supported at (1 : 0). Similarly to the nodal case, we
define the sheaf of Lie algebras A as the pullback

A ��

��

w� �

��
B ev �� g[ε]/(ε2)

(109)

where B := g⊗C

(
ν∗(OP1)

)
. Let U be the regular part of E . Then we have: A =

	(U,A) ∼= g[z]. As in the nodal case, it follows that Ãs = Âs �A(s) is a Manin triple,
which can be identified with the Manin triple g((z−1)) = Â�g[z],where the symmetric

non-degenerate bilinear form Ãs × Ãs
Fωs−→ C can be identified with

g((z−1))× g((z−1)) F−→ C, (azk, bzl) 	→ δk+l+1,0κ(a, b). (110)
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In these terms, we have: Â = z−2 g�z−1� + w, where we identify w ⊆ g[ε]/(ε2) with
a subspace of g+z−1 g. It is precisely the setting of Stolin’s theory of rational solutions
[48]. As in the nodal case, one can derive from the formula (75) that the corresponding
geometric r -matrix is given by the formula

r(x, y) = 1

x − y
γ − t = 1

x − y
γ +

q∑

i=1
hi ⊗ gi ,

where
(
h1 + εg∗1 , . . . , hq + εg∗q

)
is the basis ofw ⊂ d = g[ε]/(ε2) dual to (

g1, . . . , gq).
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8. Appendices

8.1. Roadmap to this work. LetK be theKac–Moody Lie algebra overC associatedwith
an arbitrary symmetrizable generalized Cartan matrix A. It is well-known K admits a
natural triangular decompositionK = K+⊕H⊕K− .Moreover,K has finite dimensional
root spaces as well as an essentially unique non-degenerate symmetric invariant bilinear

formK×K
B−→ C (which coincides with theKilling form ifK is finite dimensional); see

[31]. As discovered by Drinfeld [22], K has a structure of a Lie bialgebra K
δ◦−→ K⊗K,

called in this paper standard. Existence of δ◦ follows from the root space decomposition
of K and as well as invariancy and non-degeneracy of the bilinear form B. The action of
δ◦ on the Cartan–Weyl generators of K can be expressed purely in terms of the entries
of the matrix A.
The Lie algebra E = K×K is also equipped with a symmetric non-degenerate invariant
bilinear form

E×E
F−→ C,

(
(a1, b1), (a2, b2)

) 	→ B(a1, a2)− B(b1, b2).

Identifying K with the diagonal in E, we get a direct sum decomposition E = K�W◦,
where W◦ =

{(
(c+, h), (c−,−h)

) ∈ (K+⊕H)× (K− ⊕H)
∣∣ c± ∈ K±, h ∈ H

}
.More-

over, K and W◦ are Lagrangian Lie subalgebras of E with respect to the form F . The
Manin triple E = K�W◦ “determines” the cobracket δ◦ in the following sense:

F
(
δ◦(c), w1 ⊗ w2

) = B
(
c, [w1, w2]

)
forall c ∈ K and w1, w2 ∈W◦ .

http://creativecommons.org/licenses/by/4.0/
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Following the work of Karolinsky and Stolin [35], we study “twisted” Lie bialgebra
cobrackets of the form δt = δ◦ + ∂t, where t ∈ ∧2(K) and ∂t(a) =

[
a ⊗ 1 + 1⊗ a,t

]

for a ∈ K. By Proposition 2.3 (see also [35, Theorem 7]), δt is a Lie bialgebra cobracket
if and only if the tensor

(
alt

(
(δ◦ ⊗ 1)(t)

)− [t12,t13] − [t12,t23] − [t13,t23] ∈ K⊗3

is ad-invariant, where alt(a⊗b⊗ c) := a⊗b⊗ c+ c⊗a⊗b+b⊗ c⊗a for a, b, c ∈ K.
In Section 2, we elaborate a general framework to study twists of a given Lie bialgebra
structure (generalizing and extending results known in the finite dimensional case [35])
and prove that such t are parametrized by Manin triples of the form E = K�W,where
W is a Lie subalgebra of E commensurable withW◦; see Theorem 2.10.
From the point of view of applications in the theory of classical integrable systems as
well as from the purely algebraic point of view, themost interesting and rich case is when
K = ˜̃G is an affine Kac–Moody algebra. Then the center Z of the Lie algebra ˜̃G is one-
dimensional. Let G = G̃/Z be the “reduced” affine Lie algebra, where G̃ = [˜̃G, ˜̃G

]
. It

follows from the explicit formulae for δ◦ that one gets an induced Lie bialgebra cobracket
G

δ◦−→ G⊗G. An inconspicuous but decisive advantage to pass from K to G is due to
the fact that for any n ∈ N, the n-fold tensor product G⊗n does not have non-zero ad-
invariant elements; see Proposition 3.4. As a consequence, t ∈ ∧2(G) defines a twisted

Lie bialgebra cobracket G
δt−→ G⊗G if and only if it satisfies the twist equation

(
alt

(
(δ◦ ⊗ 1)(t)

)− [t12,t13] − [t12,t23] − [t13,t23] = 0

introduced in [35], which is an incarnation of the classical Yang–Baxter equation
[
r12(x1, x2), r

23(x2, x3)
]
+
[
r12(x1, x2), r

13(x1, x3)
]
+
[
r13(x1, x3), r

23(x2, x3)
] = 0.

To see the latter statement, recall that the “reduced” affine Lie algebra G is isomorphic
to a twisted loop algebraL = L(g, σ ), where g is a finite dimensional simple Lie algebra
and σ is an automorphism of its Dynkin diagram [18,31].
Let us for simplicity assume that the affine Cartan matrix A corresponds to an extended
Dynkin diagram. In this case, the automorphism σ is trivial and L = g

[
z, z−1

]
is the

usual loop algebra. We have a non-degenerate invariant bilinear form

L×L
B−→ C, B(azk, bzl) = κ(a, b)δk+l,0,

where κ denotes the Killing form of g. A theorem due to Gabber and Kac asserts that

there exists an isomorphism of Lie algebras G
∼=−→ L identifying both non-degenerate

invariant bilinear forms on G and L up to a rescaling; see [31, Theorem 8.5]. We show
(see Corollary 6.6) that under this identification, the standard Lie bialgebra cobracket δ◦
on L is given by the formula

L
δ◦−→ ∧2(L), f (z) 	→ [

f (x)⊗ 1 + 1⊗ f (y), r◦(x, y)
]
,

where r◦(x, y) = 1

2

( x + y

x − y
γ +

∑

α

e−α ∧ eα
)
is the “standard” solution of CYBE. As

a consequence, twists of the standard Lie bialgebra cobracket L
δ◦−→ ∧2(L) have the

form
L

δt−→ ∧2(L), f (z) 	→ [
f (x)⊗ 1 + 1⊗ f (y), rt(x, y)

]
,
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where t(x, y) ∈ (g⊗ g)
[
x, x−1, y, y−1

]
is such that rt(x, y) = r◦(x, y) + t(x, y) is

a solution of CYBE; see Theorem 6.9. It turns out that any such solution of CYBE
is equivalent (with respect to the equivalence relation given by (38) and (39)) to a
trigonometric solution of CYBE with one spectral parameter (41); see Proposition 6.11.
Trigonometric solutions of CYBE were completely classified by Belavin and Drinfeld
[6]. However, our work is completely independent of that classification and in particular
provides an alternative approach to the theory of trigonometric solutions of CYBE.
The latter point is explained by the algebro-geometric perspective on Lie bialgebra
structures on twisted loop algebras. To proceed to this, we first show that twists t ∈
∧2(L) of the standard Lie bialgebra cobracket L

δ◦−→ ∧2(L) are in bijection with Manin
triples

D = C � W, W �W◦,

where D = L+×L− = L×L‡ and C = {
( f, f ‡) | f ∈ L

}
; see Theorem 4.1. If

L = L(g, σ ) ⊆ g
[
z+, z

−1
+

]
then L‡ := L

(
g, σ−1

) ⊆ g
[
z−, z−1−

]
and

(
azk+)

‡ = az−k− .
The key statement is thatW is stable undermultiplications by the elements of the algebra

C[t+, t−]/(t+t−) ∼=
{
( f+, f−) ∈ C

[
t+] × C[t−] | f+(0) = f−(0)

}
,

where t± = zm± andm is the order of the automorphism σ ; see Lemma 4.3. Its proof uses
the fact that any bounded coisotropic Lie subalgebra of L is stable under the multiplica-
tion by the elements of C[t]; see Theorem 3.11. In its turn, the proof of Theorem 3.11
is based on properties of affine root systems as well as on the result of Kac and Wang
[32, Proposition 2.8].
The crux of our work is that Manin triples D = C � W, W � W◦ are of algebro-
geometric nature. Projecting theLie algebraW to each factorL± ofD,weget a pair ofLie
algebrasW± ⊂ L±, which can be glued to a Lie algebra bundle B on the projective line
P
1, whose generic fibers are isomorphic to theLie algebra g; see Proposition 6.3. Letw =

W /(t+, t−)W, w± = W± /t±W and w
θ
↪→ w+×w− be the canonical embedding.

Using the theory of torsion free sheaves on singular projective curves developed in
[9,11], we attach to the datum (B,w, θ) a sheaf of Lie algebrasA on a plane nodal cubic
curve E = V (u2 − v3 − v2) ⊂ P

2; see Proposition 6.4. This sheaf has the following
properties.

• A
∣
∣
p
∼= g for all p ∈ Ĕ , where Ĕ is the smooth part of E .

• A has vanishing cohomology: H0(E,A) = 0 = H1(E,A).
• As is a Lagrangian Lie subalgebra of the rational hull of A (which is a simple Lie
algebra over the field of rational functions of E), where s is the unique singular point
of E .

The constructed geometric datum (E,A)fits precisely into the framework of the algebro-
geometric theory of solutions of CYBE developed by Burban and Galinat [14, Theorem
4.3]. In thatwork, the authors constructed a canonical section (called geometric r -matrix)

ρ ∈ 	
(
Ĕ × Ĕ \�,A � A), where � ⊂ Ĕ × Ĕ is the diagonal,

which satisfies a sheaf-theoretic version of the classical Yang–Baxter equation:

[
ρ12, ρ13

]
+
[
ρ13, ρ23

]
+
[
ρ12, ρ23

] = 0 and ρ(p1, p2) = −ρ21(p2, p1) for p1, p2 ∈ Ĕ .
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In [14, Proposition 4.12] it was shown that 	(Ĕ,A) is a Lie bialgebra: the linear map

	(Ĕ,A)
δρ−→ 	(Ĕ,A)⊗ 	(Ĕ,A), f (t) 	→ [

f (u)⊗ 1 + 1⊗ f (v), ρ(u, v)
]

is a skew-symmetric one-cocycle satisfying the co-Jacobi identity. It follows from the
construction of (E,A) that 	(Ĕ,OE ) ∼= C

[
t, t−1

]
and 	(Ĕ,A) ∼= L. In Theorem 6.9

we show that Lie bialgebras
(
	(Ĕ,A), δρ

)
and (L, δt) are isomorphic. This statement

also allows to identify the trivialized geometric r -matrix ρ with the solution rt(x, y) =
r◦(x, y) + t(x, y) of CYBE. The latter fact in particular means that any trigonometric
solution of CYBE arises from an appropriate geometric datum (E,A), concluding the
geometrization programme started in [14].
In Sect. 7, we deal with concrete examples. In Theorem 7.7, we describe Manin triples

g((z+))× g((z−)) = g
[
z, z−1

]
� Ŵ,

corresponding to quasi-constant trigonometric solutions of CYBE. In Theorem 7.1, we
describe the corresponding Lagrangian subalgebras Ŵ for a special class of (quasi)-
trigonometric solutions of CYBE for g = sln(C), which were obtained in [15, Theorem
A].

8.2. Infinite dimensional Lie bialgebras. As usual, let g be a finite dimensional simple
complex Lie algebra and r(x, y) be a solution of the classical Yang–Baxter Eq. (36).
There are several essentially different possibilities to attach to r(x, y) a Lie bialgebra.
1. There is a “universal procedure”, applicable for all three types of solutions of (41):
elliptic, trigonometric and rational. As was explained in Sect. 5.1, any solution of (47)
defines a Manin triple of the form g((z)) = g�z� � W and the linear map

W
δr−→W⊗W, w(z) 	→ [

w(x)⊗ 1 + 1⊗ w(y), r(x, y)
]

is a Lie bialgebra cobracket onW. For elliptic solutions, suchManin triples appeared for
the first time in [44]. A description of the corresponding Lie algebrasW via generators
and relations was given in [29,46].
2. Let �(z) be a trigonometric solution of CYBE with the lattice of poles 2π iZ. Then
there exists σ ∈ AutC(g) such that

�(z + 2π i) = (
σ ⊗ 1g

)
�(z) = (

1g ⊗ σ−1
)
�(z).

Moreover, there exists m ∈ N such that σm = 1g; see [6, Theorem 6.1]. It turns out
that (after an appropriate change of coordinates) � defines a Lie bialgebra cobracket on
the twisted loop algebra L = L(g, σ ), which is a twist of the standard Lie bialgebra
structure on L. In this paper we prove that such twists are classified by Manin triples of
the form

L×L‡ = C�W, W �W◦,

where C = {
( f, f ‡)

∣∣ f ∈ L
} ∼= L and W◦ is the Lie algebra corresponding to the

standard Lie bialgebra cobracket onL. From this perspective, the theory of trigonometric
solutions of CYBE appears in a parallel way to the theory of of solutions of cCYBE.
Methods developed in thiswork should be applicable to study analogues of trigonometric
solutions of CYBE for simple Lie algebras defined over arbitrary fields.
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3. Lie bialgebra structures on the Lie algebra g�z� were studied in [40]. For any

r(x, y) ∈
⎧
⎨

⎩
0,

1

2

( x + y

x − y
γ +

∑

α∈�+

e−α ∧ eα
)
,

1

x − y
γ,

xy

x − y
γ

⎫
⎬

⎭
(111)

we have the corresponding Lie bialgebra cobrackets g�z�
δr−→ g�x�⊗ g�y�. It turns out

that for any other Lie bialgebra cobracket g�z�
δ−→ g�x� ⊗ g�y�, the corresponding

Drinfeld double D
(
g�z�, δ

)
is isomorphic to D

(
g�z�, δr

)
for some r(x, y) from the list

(111); see [40, Theorem 2.10].
4. Let r(x, y) = rst(x, y)+p(x, y)be a solution ofCYBE,where p(x, y) ∈ (g⊗ g)[x, y]
and

rst(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ

x − y
rational case

y

x − y
γ quasi-trigonometric case

xy

x − y
γ quasi-rational case.

For any such r(x, y) we have a Lie bialgebra cobracket g[z] δr−→ g[x] ⊗ g[y]. Such Lie
bialgebra structures of g[z] are controlled byManin triples of different shapes (depending
on rst(x, y)). According to [48], rational solutions of (36) are parametrized by Manin
triples of the form

g((z−1)) = g[z]� W, W � z−1 g�z−1�.

The theory of Manin triples for quasi-trigonometric and quasi-rational solutions od
CYBE is given in [36] and [50], respectively. It turns out that any quasi-trigonometric
solution is equivalent (with respect to the transformation rules (38) and (39)) to a trigono-
metric solution of (41); see [36]. Therefore, quasi-trigonometric solutions of CYBE can
be used to define Lie bialgebra cobrackets both on g[z] and g

[
z, z−1

]
.

5. A relation between trigonometric and quasi-trigonometric solutions was also explored
in [1, Section 4.2 and Section 4.3]. In particular, let g = sln(C) and �(z) be a trigonomet-
ric solution of (41) such that the correspondingmonodromy automorphism σ ∈ AutC(g)
induces the trivial automorphism of the Dynkin diagram of g. Then �(z) is equivalent
to a quasi-trigonometric solution; see [1, Lemma 4.10 and Remark 4.11].

8.3. Twists of the standard Lie bialgebra structure on a twisted loop algebra. Let g
be a finite dimensional simple complex Lie algebra, σ ∈ AutC(g) be an automorphism
of finite order m and L = L(g, σ ) be the corresponding twisted loop algebra. In [1]
it is shown that results of this work (in particular, Proposition 6.11 and Theorem 6.9)
can be used to extend the Belavin–Drinfeld classification of trigonometric solutions of

CYBE to a classification of twists of the standard Lie bialgebra cobracketL
δ◦−→ ∧2(L).

The key observation is thereby that for two classical twists t,t′ ∈ ∧2(L) of δ◦ the Lie
bialgebras (L, δt) and (L, δt′) are isomorphic via some R–linear automorphism of L if

and only if there exists a holomorphic germ (C, 0)
φ−→ AutC(g) such that

rt′
(
exp

( u

m

)
, exp

( v
m

))
= (φ(u)⊗ φ(v))rt

(
exp

( u

m

)
, exp

( v
m

))
; (112)
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see [1, Theorem 3.7 and Theorem 5.8]. A proof of this statement uses the algebro-
geometric theory of the CYBE developed in Section 5 and Theorem 6.9. In particular,
as an intermediate step it is shown that the sheaves of Lie algebras At and At′ from
Theorem 6.9 are isomorphic in this case.
In the setting of Remark 6.7 (i.e. when σ is a Coxeter automorphism of a diagram
automorphism of g) this fact already yields the desired classification of classical twists
of δ◦. Combining Proposition 6.11 with the classification of trigonometric solutions of
(41) presented in Sect. 6.4 it follows that rt is equivalent to rQ given by formula (92)
for an appropriate Belavin–Drinfeld quadruple Q. It follows that (L, δt) is isomorphic
to (L, δQ), where δQ = δ◦ + ∂tQ and tQ is given by (91).
For an arbitrary automorphism σ this classification needs a slight adjustment; see [1,
Lemma 3.2] as well as [6, Lemma 6.22].We keep the notation of Sect. 3.2. In this setting,
a Belavin–Drinfeld quadruple Q = (

(	1, 	2, τ ),s
)
consists of (possibly empty) proper

subsets 	1, 	2 of the set � ⊂ h∗ ×N0 of simple roots of (L, h), a bijection 	1
τ−→ 	2

and a tensor s ∈ ∧2(h) satisfying the following conditions:

• κ
(
τ(α), τ (α′)

) = κ(α, α′) for all (α, k), (α′, k′) ∈ 	1;
• for any (α, k) ∈ 	1 there exists l ∈ N such that (α, k), . . . , τ l−1(α, k) ∈ 	1 but
τ l(α, k) /∈ 	1;

• (
β ⊗ 1 + 1⊗ α

)(
s +

γ0

2

)
= 0 for all (α, k) ∈ 	1, where τ(α, k) = (β, t).

For i ∈ {1, 2} consider Lie algebras s±i := 〈〈x±j
∣∣ j ∈ 	i 〉〉 ⊂ L and si := 〈〈x+j , x−j

∣∣ j ∈
	i 〉〉 ⊂ L, where x±j ∈ L(±α j ,±s j ) = g±α j

z±s j are Chevalley generators of L corre-
sponding to (±α j ,±s j ) ∈ �±. Since	i is a proper subset of�, theLie algebra si is finite

dimensional and semisimple. It is clear that τ induces an isomorphism s1
τ̃−→ s2 given

by the formula x±j 	−→ x±τ( j) for all j ∈ 	1 (where we identify � with
{
0, 1, . . . , r

}
).

We have: τ̃ (s±1 ) = s±2 .
It is clear that there exists a finite subset �i ⊂ � \ {(0, 0)} and a Lie subalgebra hi ⊂ h
such that si = hi ⊕⊕(α,k)∈�i L(α,k) and s

±
i = ⊕(α,k)∈�±

i
L(α,k), where�

±
i = �i ∩�±.

Let ϑ be the nilpotent C-linear endomorphism of L given as the composition

L
π−→→ s+1

τ̃−→ s+2
ı
↪→ L,

where π and ı are the canonical projection and embedding with respect to the direct sum

decompositionL = ⊕(α,k)∈� L(α,k).We put:ψ = ϑ

1− ϑ
=

∞∑
l=1

ϑ l ∈ EndC(L). Finally,

let us choose a family
(
b(α,k) ∈ L(α,k)

)
(α,k)∈�1

such that B
(
b(α,k), b(β,t)

) = δα+β,0 δk+t,0

for all (α, k), (β, t) ∈ �1. The following statement is one of main results of [1].
Theorem. Let Q = (

(	1, 	2, τ ),s
)
be a Belavin–Drinfeld quadruple and

tQ = s +
∑

(α,k)∈�+
1

b(−α,−k) ∧ ψ(b(α,k) ∈ ∧2(L).

Then δQ = δ◦ + ∂tQ is a twist of the standard Lie bialgebra cobracket L
δ◦−→ ∧2(L).

Conversely, let t ∈ ∧2(L) be such L
δt−→ ∧2(L) is a Lie bialgebra cobracket. Then

there exists a Belavin–Drinfeld quadruple Q and an R-linear automorphism of L giving
an isomorphism of Lie bialgebras (L, δt) and (L, δQ).
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Note that

rQ(x, y) =
(
γ 0
0

2
+ γ−0

)

+
ym

xm − ym

m−1∑

k=0

(
x

y

)k

γk + s +
∑

(α,k)∈�+
1

b(−α,−k) ∧ ψ(b(α,k).

is a solution of CYBE. In [1] these solutions are called σ -trigonometric.
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