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Abstract: We study wave-current interactions in two-dimensional water flows of con-
stant vorticity over a flat bed. For large-amplitude periodic traveling gravity waves that
propagate at the water surface in the same direction as the underlying current (down-
stream waves), we prove explicit uniform bounds for their amplitude. In particular, our
estimates show that the maximum amplitude of the waves becomes vanishingly small
as the vorticity increases without limit. We also prove that the downstream waves on a
global bifurcating branch are never overhanging, and that their mass flux and Bernoulli
constant are uniformly bounded.

1. Introduction

Wave-current interactions are ubiquitous since typically a non-trivial mean flow, a cur-
rent, underlies surface water waves. Sheared underlying currents are indicated by the
presence of non-trivial vorticity. The primary sources of currents are winds of long
duration [22]. In particular, in shallow regions with nearly flat beds, such as on the con-
tinental shelves, systematic studies of the velocity profiles of wind-generated currents
have shown that they are accurately described as flows with constant vorticity [20].

In this paper we consider two-dimensional inviscid steady gravity waves with con-
stant vorticity. Inviscid theory is the usual framework for studying water waves that are
not close to breaking because the most significant effects of viscosity in the open sea
produce wave-amplitude reduction, as well as diffusion of the deeper motions, over time
scales and length scales (wave periods and wavelengths) that are far larger than those
of the dynamical processes at the surface [18]. The choice of constant vorticity is not
merely a mathematical simplification. Indeed, when waves propagate at the surface of
water over a nearly flat bed, for waves that are long compared to the mean water depth,
it is the existence of a non-zero mean vorticity that is more important than its specific
distribution (see the discussion in [18]). Moreover, in contrast to the substantial research
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literature on steady three-dimensional irrotational waves, it turns out that flows of con-
stant vorticity are inherently two-dimensional (see the discussion in [6,47]), with the
vorticity correlated with the direction of wave-propagation.

The presence of a non-uniform underlying current is experimentally known to drasti-
cally alter the behavior of surface waves, when compared with irrotational waves which
travel from their region of generation through water that is either quiescent or in uni-
form flow. The nature of a two-dimensional wave-current interaction notably depends
on the directionality of the vertical shear of the current profile in relation to the direc-
tion of wave propagation. Here we distinguish between favorable currents, which are
sheared in the same direction as that of the wave propagation (downstream waves), and
adverse currents, which are sheared in the direction opposite to that of wave propaga-
tion (upstream waves). Field data, laboratory experiments and numerical simulations
(see [11,12,23,24,27,31,36–38,40]) lead to the conjecture that an adverse current will
shorten the wavelength, increasing the wave height and the wave steepness, to the extent
that bulbous waves appear with overhanging wave profiles (see [18,34]). On the other
hand, for waves propagating downstream, the favorable current appears to lengthen the
wavelength and flatten the wave out, so that its slopes are less steep.

At the present time the state-of-the-art to derive a priori bounds on surface water
waves of large amplitude lags behind the experimental and numerical developments,
and is to a large extent confined to irrotational deep-water flows. In the latter setting
[4,39] it was proven that an increase in wave height results in wave profiles that are not
symmetric about their mean level, unlike the small-amplitude sinusoidal waves familiar
from linear theory. Instead, the crests become higher and the troughs flatter to the extent
that, for a given wavelength, there exists a limiting wave, the so-called ‘wave of greatest
height’ or ‘wave of extreme form’, which is on the verge of breaking. This extreme wave
is distinguished by the fact that in the reference frame moving with the wave the water
comes to rest at its peaked crest with included angle 2π/3, as conjectured by Stokes in
1880 and finally proved about a century later in [3] (see also [41,44]). In general, at the
wave crest of a traveling surface wave in irrotational flowwith no underlying current, the
fluid particles are moving forward at a speed less than the wave speed (see [5,7,15]). As
the wave profile approaches the wave of greatest height the horizontal particle velocity
at the crest approaches the wave speed until these two velocities become equal in the
limiting wave. A further increase in wave height will cause the fluid particles to overtake
the wave itself, and breaking will ensue (see [26,29]).

On the other hand, while it has long been known (see [25]) that formal expansions
indicate that a uniform vorticity distribution may accommodate such limiting wave
forms and does not alter considerably the shape of their crest (namely, a symmetric
peak with an included angle of 2π/3, as in the case without vorticity), progress towards
rigorous results has been much more difficult (see [33,43,45]). Apart from their interest
in their own right, a priori bounds on smooth waves of large amplitude are a necessary
prerequisite for the existence of rotational waves of extreme form.

Let us briefly discuss the present state of rigorous mathematical investigations of
rotational waves of large amplitude that are not perturbative, taking advantage instead
of structural properties of the equations. For flows with general vorticity but without
stagnation points the existence of surface waves of large amplitude, with profiles that
can be represented as graphs of smooth functions, was established in [13]. For flows
of constant vorticity an alternative geometric approach [16] accommodates stagnation
points as well as the possibility of overhanging profiles. A number of qualitative studies
of rotational waves of large amplitude are also available. They include symmetry results
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for wave profiles that are monotone between successive crests and troughs [8,9,28],
results about the location of the point of maximal horizontal fluid velocity [14,42], and
bounds on themaximum slope of the waves [35]. Although such non-perturbative results
are not restricted to waves of small amplitude, their validity has typically required some
extraneous information, such as the absence of stagnation points, the assumption that
the wave profile is a graph or the assumption that some specific bounds (on the velocity
or on the amplitude) hold. Thus the lack of a priori bounds for flows with vorticity
has impeded substantial progress towards a comprehensive theory for waves of large
amplitude.

The main aim of this paper is to derive a uniform bound on the amplitude of down-
stream waves, the existence of which has recently been proved in [16]. The approach in
[16] relies on a formulation, first introduced there, of the governing equations for steady
water waves with constant vorticity as a one-dimensional nonlinear pseudo-differential
equation (2.3a) with a scalar constraint (2.3b). This formulation permits the presence of
stagnation points in the flow as well as overhanging wave profiles. While from a math-
ematical point of view it appears at first sight to be dismayingly complicated, it has a
variational structure that warrants a profound analysis, enabling us to establish, bymeans
of the analytic theory of global bifurcation in a suitable function space, the existence
of two solution curves that contain waves of large amplitude [16], one of this curves
consisting of upstream waves, and the other of downstream waves. While the results in
[16] left open several possibilities concerning the properties of the waves corresponding
to points on this global curve as the parameter along the curve tends to ∞, such as, for
example, those that waves could become overhanging, or that either the parameters in
the problem or suitable norms of the solution could increase without bound, these issues
are settled in the present paper in the case of downstream waves. A fine analysis of
the system (2.3) that uncovers some unexpected structures leads to the following main
result, entirely consistent with the numerical computations in [19,23].

Theorem 1. Consider the waves with constant favorable vorticity ϒ > 0 or zero vor-
ticity ϒ = 0 lying on the bifurcation curve which is parametrized by s ∈ (0,∞). Then

(i) The waves are not overhanging.
(ii) The wave amplitude (elevation difference between crest and trough) is uniformly

bounded along the bifurcation curve, with an explicit bound depending only on the
vorticity and the wave period.

(iii) As a function of the vorticity, the amplitudes of all the waves tend to zero uniformly
as the vorticity becomes infinite: if Y is the vertical coordinate, then

lim
ϒ→∞ sup

s∈[0,∞)

{
max
S(s)

Y − min
S(s)

Y

}
→ 0.

(iv) For any ϒ ≥ 0, as one moves along the bifurcation curve, the waves approach their
maximum possible amplitude Q(s)/2g:

lim
s→+∞

{
max
S(s)

Y − Q(s)

2g

}
= 0,

while m(s) and Q(s) remain uniformly bounded as s → ∞, where m(s) is the
relative mass flux, Q(s) is the total head and S(s) is the wave profile.
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In Sect. 2 of the present paper we discuss the governing equations and this new
formulation for both upstream and downstreamwaves. In particular, the scalar constraint
is conductive to an elegant characterization of the downstreamwaves. In Sect. 3 we prove
that thewave profile of each downstreamwave on the solution curve is a graph; that is, the
waves do not overhang. In Sect. 4 we derive the key a priori bounds for the downstream
waves. These bounds use explicit detailed analysis of the Dirichlet-Neumann operator
actingon thenonlinear terms.They are novel, surprising and extremelydelicate. InSect. 5
we discuss the physical interpretation of these mathematical results. Some background
material is collected in the “Appendix” (Sect. 6).

As already mentioned, Theorem 1 is sufficient to ensure, by a very slight adaptation
of the arguments in [43] that let s → ∞ along a subsequence, the existence of a
limiting wave with stagnation points at its crests. An in-depth study of the properties
of this limiting wave remains an important open problem. Another open problem is the
determination of a priori bounds and geometric properties of upstream waves of large
amplitude.

2. Preliminaries

We consider the problem of two-dimensional spatially periodic travelling free surface
gravity water waves in a flow of constant vorticity over a flat bed. In a frame of reference
moving with the speed of the wave, the fluid is in steady flow and occupies a laterally
unbounded region � of the (X,Y )-plane, whose boundary is made up of two parts: a
lower part consisting of the real axisB = {Y = 0} and representing the flat impermeable
water bed, and an upper part that consists of a curve S representing the free surface
between the fluid and the atmosphere (see Fig. 1). The steady flow in�may be described
by means of a stream functionψ , so that the velocity field is (ψY ,−ψX ), andψ satisfies
the following equations and boundary conditions:

�ψ = ϒ in �, (2.1a)

ψ = 0 on S, (2.1b)

ψ = −m on B, (2.1c)

|∇ψ |2 + 2gY = Q on S. (2.1d)

Here g is the gravitational constant of acceleration, the constant m is the relative mass
flux, the constant Q is the total head, and the vorticity of the flow �ψ is assumed to
take the constant value ϒ . In addition, both the domain � and the stream function ψ

will be assumed to be L-periodic in the horizontal direction, for some L > 0. This is a
free-boundary problem, in which both the fluid domain � and the function ψ satisfying
(2.1) need to be found as part of the solution.

A stagnation point of the flow is a point where∇ψ = (0, 0). Stagnation points below
the surface occur in the case of flow-reversal, even for waves that are small perturbations
of a flat surface (see [17,46]). On the other hand, a stagnation point on the surface S is
the hallmark of the limiting ‘wave of greatest height’, which is on the verge of breaking
and whose profile may have a corner singularity at the wave crest, see [43–45]. Such
waves present special features that stand apart from those of regular waves and, in order
to avoid technicalities that are of little relevance for the purposes of this paper, will not
be investigated directly. Instead, we look for smooth (regular) solutions of (2.1) that
satisfy

Q > 2gY on S, (2.2)
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S

Fig. 1. The conformal parametrisation of the fluid domain: sketch of the horizontal stripRkh on the right and
on the left, depiction of the configuration in a frame moving at the wave speed, with the free stationary wave
profile parametrised by (u(x), v(x)) with u(x) = x

k +
(Ckh(v − h)

)
(x)

bearing in mind the possibility that singular waves may potentially arise as limits of such
regular waves.

In order to obtain existence results for (2.1), it is usually necessary to consider an
equivalent reformulation of the problem over some fixed domain. In the present setting,
for waves of large amplitude the most comprehensive results available are due to [16]
and are based on the following alternative formulation of the governing equations (2.1):

Ckh
(
(Q − 2gv − ϒ2v2) v′) + (Q − 2gv − ϒ2v2)

(1
k
+ Ckh(v′)

)

− 2ϒ v
( m

kh
− ϒ

2kh
[v2] − ϒ Ckh(vv′)

)

− Q − 2ϒm − 2gh

k
+ 2g [v Ckh(v′)] = 0, (2.3a)[(

m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

))2
]

−
[
(Q − 2gv)

(
(v′)2 +

(1
k
+ Ckh(v′)

)2)]
= 0. (2.3b)

The square bracket [·]will be used throughout the paper to denote, for a periodic function,
its average over a period. Thus (2.3b) is merely a scalar equation. In (2.3), v is a suitably
smooth 2π -periodic function of a real variable x that represents the wave elevation in
a parametrization of the free surface related to a conformal mapping from a horizontal
strip onto the fluid domain (see Fig. 1). We denote h = [v], the average of v over a
period, which is a positive constant that may be called the conformal mean depth of
the fluid domain �. The constant k > 0 is the wave number corresponding to the wave
period L = 2π/k. The operator Ckh denotes the periodic Hilbert transform for a strip of
height kh (see the “Appendix”). As in (2.1),ϒ ,m and Q are real numbers that represent,
respectively, the constant vorticity, the relative mass flux, and the total head.

Although any (smooth) solution of (2.1) gives rise to a solution of (2.3), a (smooth)
solution of (2.3) gives rise to a solution of (2.1) if and only if the parametrization
x �→ (u(x), v(x)) is regular, that is,

v(x) > 0 for all x ∈ R, (2.4)
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the mapping x �→
( x
k
+

(
Ckh(v − h)

)
(x), v(x)

)
is injective on R, (2.5)

(
v′(x)

)2 +
(
1

k
+ Ckh(v′)(x)

)2

	= 0 for all x ∈ R . (2.6)

If (2.4)–(2.6) hold for a solution of (2.3), then a solution (�,ψ) of (2.1) can be con-
structed as described in detail in the “Appendix”, with the fluid domain � being the
image of the strip

Rkh = {(x, y) : x ∈ R,−kh < y < 0}
through a conformal mappingU + iV obtained easily from v. Note also that any solution
of (2.3) also satisfies (see the “Appendix”)

(
m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

))2

−(Q − 2gv)

(
(v′)2 +

(1
k
+ Ckh(v′)

)2) = 0 . (2.7)

In view of this, if (2.2) holds, then we see that (2.6) yields

m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

)
	= 0 on R . (2.8)

The existence of solutions (m, Q, v) of (2.3) such that [v] = h was studied in [16]
in the space R × R × C2,α

2π,e(R) , where

C2,α
2π,e(R) = { f ∈ C2,α

2π (R) : f (x) = f (−x) for all x ∈ R},
for any fixed Hölder exponent α ∈ (0, 1). The requirement that v be an even func-
tion reflects the symmetry of the corresponding wave profile about the crest line that
corresponds to x = 0.

Furthermore, seeking wave profiles S = {(u(x), v(x)) : x ∈ R} whose vertical
coordinate strictly decreases between each of its consecutive globalmaxima andminima,
which are unique per principal period, we consider the following properties of the pair
(m, v) ∈ R × C2,α

2π,e:

v(x) > 0 for all x ∈ R, (2.9)

v′(x) < 0 for all x ∈ (0, π) , (2.10)

v′′(0) < 0, v′′ (π) > 0, (2.11)

0 <
x

k
+

(
Ckh(v − [v]))(x) <

π

k
for all x ∈ (0, π) , (2.12)

1

k
+

(
Ckh(v′)

)
(0) > 0,

1

k
+

(
Ckh(v′)

)
(π) > 0, (2.13)

±
(
m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

))
> 0 on R .

(2.14)

The condition (2.14) comes from merely (2.8). We define the open sets

V± = {(m, Q, v) ∈ R × R × C2,α
2π,e(R) : (2.9) − (2.14) hold} , (2.15)
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where the choice of sign in V± is the same as that in (2.14). We emphasize that the sets
V± can accommodate waves with overhanging profiles since no claim is being made
that the horizontal coordinate of the wave profile is also a strictly monotone function of
the parameter x .

The constraints (2.9)–(2.14) ensure, in particular, that the associated free surface S
is not flat. Consequently, they exclude the family of trivial (laminar) solutions of (2.3)
for which v ≡ h, and for which Q and m are related by

Q = 2gh +
(m
h

+
ϒh

2

)2
, (2.16)

where m ∈ R is arbitrary. This family represents a curve

Ktriv =
{(

m, 2gh +
(m
h

+
ϒh

2

)2
, h

)
: m ∈ R

}

in the spaceR×R×C2,α
2π,e(R). These trivial solutions correspond to parallel shear flows

in the fluid domain bounded below by the rigid bed B and above by the free surface
Y = h, with stream function

ψ(X,Y ) = ϒ

2
Y 2 +

(
m

h
− ϒh

2

)
Y − m, X ∈ R, 0 ≤ Y ≤ h,

and velocity field

(ψY ,−ψX ) =
(
ϒY +

m

h
− ϒh

2
, 0

)
, X ∈ R, 0 ≤ Y ≤ h. (2.17)

Returning to the general case, it is explained in the “Appendix” how a solution (�,ψ)

of (2.1) can be constructed from a solution of (2.3) by means of a conformal mapU + iV
from Rkh onto �, an important role being played by a function ζ on Rkh that satisfies
the system (6.5) and is related to ψ by

ζ(x, y) = ψ(U (x, y), V (x, y)) + m − 1

2
ϒV 2(x, y) , (x, y) ∈ Rkh . (2.18)

It then follows that the fluid velocity at the location (X,Y ) = (U (x, y), V (x, y)) ∈ �

with (x, y) ∈ Rkh , is given by

(ψY ,−ψX ) =
(Vxζx + Vyζy

V 2
x + V 2

y
+ ϒV,

Vxζy − Vyζx

V 2
x + V 2

y

)
. (2.19)

The main existence result for waves of large amplitude, which is based on an appli-
cation of global real-analytic bifurcation theory, is as follows (see Theorem 5 in [16]).

Theorem 2. Let h, k > 0 and ϒ ∈ R be given. Set

m∗± = −ϒh2

2
+

ϒh tanh(kh)

2k
± h

√
ϒ2 tanh2(kh)

4k2
+ g

tanh(kh)

k
, (2.20)

Q∗± = 2gh +
(m∗±

h
+

ϒh

2

)2
. (2.21)
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Then for any real m 	= m∗±, there exists a neighborhood in R × R × C2,α
2π,e(R) of the

point (m, Q, h) on Ktriv, where Q is related to m by (2.16), within which there are no
solutions of (2.3) in V±. On the other hand, for either choice of sign in ±, there exists
in the space R × R × C2,α

2π,e(R) a continuous curve

K± = {(m(s), Q(s), vs) : s ∈ (0,∞)} (2.22)

of solutions of (2.3), such that the following properties (i)–(vi) hold:

Local behavior:

(i) lims↓0(m(s), Q(s), vs) = (m∗±, Q∗±, h);

(ii) vs(x) = h + s cos(x) + o(s) in C2,α
2π,e(R) as s ↓ 0;

(iii) there exist a neighbourhood W± of (m∗±, Q∗±, h) in R × R × C2,α
2π,e(R) and ε > 0

sufficiently small such that

{(m, Q, v) ∈ W± : v 	≡ h, (2.3) holds} = {(m(s), Q(s), vs) : 0 < |s| < ε},
where, for any s ∈ (−∞, 0), we have defined

m(s) := m(−s), Q(s) := Q(−s), vs(·) := v−s(· + π). (2.23)

Global behavior:

(iv) Q(s) − 2gvs(x) > 0 for all x ∈ R and s ∈ (0,∞);
(v) K± has a real-analytic reparametrization locally around each of its points;
(vi) one of the following alternatives occurs:
(A1) either K± ⊂ V± and

min
{ 1

1 + ||(m(s), Q(s), vs)||
R×R×C2,α

2π,e(R)

, min
x∈R

{
Q(s) − 2gvs(x)

}} → 0 as s ↑ ∞;

(2.24)

(A2) or there exists some s∗ ∈ (0,∞) such that:

(m(s), Q(s), vs) ∈ V± for all s ∈ (0, s∗),

whereas (m(s∗), Q(s∗), vs∗) satisfies (2.9)–(2.11), (2.13) and (2.14), while
instead of (2.12) it satisfies

0 <
x

k
+

(
Ckh(v − h)

)
(x) ≤ π

k
for all x ∈ (0, π), (2.25a)

x0
k

+
(
Ckh(v − h)

)
(x0) = π

k
for some x0 ∈ (0, π). (2.25b)

In this result, (2.20) and (2.21) identify the local bifurcation points along the triv-
ial solution curve Ktriv, (i)–(iii) describe the local behavior of the curve, and (iv)–
(vi) describe the global behavior. The alternative (A1) means that either the curve is
unbounded in the function space or it approaches stagnation at the crest (and thus, may
have waves of greatest height as limit points). The alternative (A2) means that solutions
on K± that correspond to physical water waves with qualitative properties as described
by (2.9)–(2.14) do exist until a limiting configuration whose profile self-intersects on
the line strictly above the trough is reached at s = s∗.
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Note that for the laminar flows given by (2.17), the horizontal velocity at the free

surface is
(m
h

+
ϒh

2

)
. Introducing the parameter

λ = m

h
+

ϒh

2
, (2.26)

it is observed in [16] that, for a flow with a flat free surface at which nonlinear small-
amplitude waves bifurcate, the horizontal velocity at the surface is given by

λ∗± = ϒ tanh(kh)

2k
±

√
ϒ2 tanh2(kh)

4k2
+ g

tanh(kh)

k
. (2.27)

Note that λ∗
+ > 0 and λ∗− < 0, so that there are no stagnation points on the free surface

S for the waves of small amplitude whose existence is guaranteed by local bifurcation.
This property holds for all the genuine waves provided by Theorem 2, even for the
waves of large amplitude that are not merely small perturbations of a laminar flow. It is
also noted in [16] that, for any solution (m, Q, v) of (2.3), the function v is necessarily
smooth (of class C∞) on R.

Let us alsomention that [16] contains in fact amore comprehensive global bifurcation
theory for (2.3) than that in Theorem 2, where we have restricted attention only to
nontrivial waves with the nodal properties expressed by (2.9)–(2.14).

3. On the favorable branch the waves do not overhang.

Numerical simulations (for instance [24]) clearly indicate that the behavior of the solu-
tions on the branchesK± can be quite different, depending on the choice± of the branch
and on the sign ofϒ . The main result of this section partly confirms the numerical obser-
vations, ruling out alternative (A2) on the favorable bifurcating branch. Note that the
equations (2.3) are invariant under the change of parity ϒ → −ϒ , m → −m. This
simply reverses the vorticity and the direction of the flow in the moving frame. The
favorable case is represented either by the curveK− withϒ > 0 or by the curveK+ with
ϒ < 0. Thus we may consider just the former case. The following theorem establishes
that, all along the branch, the free surface of the wave is the graph of a function and no
flow reversal occurs within the corresponding fluid domain.

Theorem 3. Let ϒ ≥ 0. Then, in the notation of Theorem 2, the bifurcating curve K−
of solutions of (2.3) satisfies alternative (A1). Moreover, any solution (m, Q, v) on K−
satisfies

1

k
+

(
Ckh(v′)

)
(x) > 0 for all x ∈ R, (3.1)

and, if (�,ψ) denotes the corresponding solution of (2.1), then

ψY < 0 in �. (3.2)

Proof. The proof that follows is similar in spirit to that of Theorem 2, being based on
a continuation argument that shows that property (3.1) is preserved all along the curve
K−. Since (3.1) represents a strengthening of (2.12) and (2.13), and since alternative
(A2) involves the failure of (2.12), the global validity of (3.1) prevents the occurrence
of (A2).
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Though perhaps not impossible, it appears difficult to study the validity of (3.1) in
isolation, and thus our approach will be to study it in conjunction with all the other
properties that occur in Theorem 2. We consider therefore in what follows the set

U− = {(m, Q, v) ∈ V− : (3.1) holds}, (3.3)

and define

J = {s ∈ (0,∞) : (m(s), Q(s), vs) ∈ U−}. (3.4)

Since U− is an open set in R × R × C2,α
2π,e(R), J is an open subset of (0,∞). We claim

that J = (0,∞). To that aim, it is necessary to revisit some of the arguments in the
proof of Theorem 2 in [16] .

We argue by contradiction, assuming that the open set J is not the whole of (0,∞).
Of course it is immediate that there exists ε > 0 such that (0, ε) ⊂ J . Let s� be the
upper endpoint of the largest open interval that contains (0, ε) and is contained in J .
Then (0, s�) ⊂ J and s� /∈ J . In what follows we shall investigate the properties of the
solution (m(s�), Q(s�), vs� ).

The fact that necessarily vs� 	≡ h follows by the same argument as in [16], which
involves the knowledge of all local bifurcation points onKtriv, the different nodal patterns
of the solutions on the local bifurcating curves (expressed by conditions such as (2.23),
(2.14) and (2.10)), and the specific manner of construction of the global curves in the
real-analytic theory of Dancer, Buffoni and Toland.

For notational simplicity, we shall denote (m(s�), Q(s�), vs� ) by (m, Q, v). This is a
limit of solutions satisfying (2.9)–(2.14) and (3.1). The definition of s� implies that the
following non-strict inequalities hold:

v(x) ≥ 0 for all x ∈ R, (3.5)

v′(x) ≤ 0 for all x ∈ [0, π ], (3.6)

0 ≤ x

k
+

(
Ckh(v − h)

)
(x) ≤ π

k
for all x ∈ [0, π ], (3.7)

m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

)
≤ 0 on R, (3.8)

as well as

1

k
+

(
Ckh(v′)

)
(x) ≥ 0 for all x ∈ R. (3.9)

Now an examination of the arguments in Sect. 4 of [16] shows that the inequalities
(3.5)–(3.8), together with the fact that (m, Q, v) is the limit of a sequence of solutions
that correspond to solutions of (2.1) in the physical plane (which is the case here because
of the definition of s�), are enough to ensure that the strict inequalities (2.9)–(2.11) and
(2.13) are satisfied, while (2.14) holds in the form

m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

)
< 0 on R. (3.10)

On the other hand, if (3.1) were also satisfied, then it would imply the validity of (2.12),
and thus would contradict the definition of s�. Therefore (3.1) necessarily fails. This
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property, combined with the validity of (2.13) and the periodicity and evenness of v,
ensure that there exists x0 ∈ (0, π) such that

1

k
+

(
Ckh(v′)

)
(x0) = 0. (3.11)

Note also that the validity of (2.13) and (3.9) implies that (2.12) also holds. As explained
in [16], in combination with the evenness and monotonicity of v, this ensures the valid-
ity of (2.5). Moreover, since (2.4) also holds, and (2.6) holds as a consequence of
(3.10) and (2.7), it follows that the solution (m, Q, v) under discussion, which is in
fact (m(s�), Q(s�), vs� ), corresponds to a solution (�,ψ) of (2.1). We now work in
the physical plane and show that such a solution, with all the properties that have been
established so far, cannot exist.

For simplicity, we denote

u(x) = x

k
+

(
Ckh(v − h)

)
(x) for all x ∈ R, (3.12)

so that u(x) = U (x, 0) for all x ∈ R, where U is a harmonic conjugate of −V , the
holomorphic function U + iV being a conformal mapping from Rkh onto �. Then S,
the top boundary of �, admits the parametrization

S = {(u(x), v(x)) : x ∈ R}, (3.13)

whose properties may be summarized for easy reference as follows:

v is 2π -periodic and even, (3.14)

v′(x) < 0 for all x ∈ (0, π), (3.15)

u is odd, x �→
(
u(x) − 2π

k
x

)
is 2π -periodic, (3.16)

(u′(x))2 + (v′(x))2 > 0 for all x ∈ R, (3.17)

u′(0) > 0, u′(π) > 0, (3.18)

u′(x) ≥ 0 for all x ∈ R, (3.19)

there exists x0 ∈ (0, π) such that u′(x0) = 0. (3.20)

It is (3.20) that will lead to the contradiction. Let us examine the sign of ψY in �.
Note first that, as a consequence of (6.5b), we have on y = 0 that

ζx = −ϒVVx ,

which, when substituted in the formula (2.19) for the velocity field, and using also the
Cauchy–Riemann equations, leads to the following relations, for all x ∈ R:

ψY (u(x), v(x)) = u′(x){ζy(x, 0) + ϒV (x, 0)Vy(x, 0)}
(u′(x))2 + (v′(x))2

, (3.21)

−ψX (u(x), v(x)) = v′(x){ζy(x, 0) + ϒV (x, 0)Vy(x, 0)}
(u′(x))2 + (v′(x))2

. (3.22)

Observe that, by (6.6), we have on y = 0 that

ζy + ϒVVy = m

kh
− ϒ

2kh
[v2] − ϒCkh(vv′) + ϒv

(1
k
+ Ckh(v′)

)
,
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and this quantity is strictly negative, as (2.14) shows. It follows from (3.21) and (3.19)
that

ψY ≤ 0 on S, ψY (u(x0), v(x0)) = 0 and ψY 	≡ 0 on S. (3.23)

But as a consequence of (2.1a), the function ψY is harmonic in � and satisfies

(ψY )Y = ϒ ≥ 0 on the bottom B of the fluid domain.

Thus, by the strong maximum principle and the Hopf boundary point lemma, the maxi-
mum of ψY over the periodic domain � can be attained neither in � nor on B. It is now
a consequence of (3.23) that

ψY < 0 in � ∪ B. (3.24)

Also, it is a consequence of (3.21), (3.22) and (3.10) that |∇ψ | 	= 0 on S. In combination
with (3.24), this implies that

|∇ψ | 	= 0 in �.

In order to rule out the existence of a solution of (2.1) for which the free boundary
S has the properties (3.14)–(3.20), we follow an idea that goes back to Spielvogel [32],
and consider in � the function R given by

R := 1

2
|∇ψ |2 + gY − 1

2
Q − ϒψ. (3.25)

The function R is in fact, up to an additive constant, the negative of the fluid pressure.
A direct calculation (see [35,43]) shows that R satisfies in �

�R − 2(RX + ϒψX )

|∇ψ |2 RX − 2(RY − 2g + ϒψY )

|∇ψ |2 RY = 2g

|∇ψ |2 (g − ϒψY ). (3.26)

(Note that the definition of vorticity γ considered in [35,43] differs by sign from the
definition ϒ we are considering here.) One can also easily check that

RY = g > 0 on B. (3.27)

As a consequence of (3.24) and the assumption ϒ ≥ 0, the right-hand side in (3.26) is
positive. It follows from (3.26) and (3.27) that the maximum over� of R can be attained
neither in � nor on B, and therefore is attained all along S, since R = 0 there by (2.1b)
and (2.1d). From the Hopf boundary point lemma we infer that the normal derivative of
R has a strict sign all along S, and in particular at the point (u(x0), v(x0)), at which the
tangent is vertical by (3.20) and (3.23). We therefore deduce that at (u(x0), v(x0)) we
have

0 	= RX = ψXψXX + ψYψXY − ϒψX = −ψXψYY , (3.28)

where we have taken into account (2.1a) and the fact from (3.23) that ψY = 0 at that
point.

On the other hand, twice differentiating

ψ(u(x), v(x)) = 0 for all x ∈ R
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with respect to x , evaluating the result at x0, and using ψY (u(x0), v(x0)) = 0 and
u′(x0) = 0, we find that

ψX (u(x0), v(x0))u
′′(x0) + ψYY (u(x0), v(x0))(v

′(x0))2 = 0. (3.29)

Note, however, that (3.19) and (3.20) imply that u′′(x0) = 0. Thus taking also into
account that v′(x0) 	= 0, it follows from (3.29) that ψYY (u(x0), v(x0)) = 0. This
contradicts (3.28).

The source of the contradiction can only be the assumption that J 	= (0,∞), which
must therefore be false. We have thus proved that J = (0,∞), which means that

K− ⊂ U−,

and therefore all solutions on K− satisfy (3.1), as required.
It remains to prove the validity of (3.2) for all solutions on K−. Let (m, Q, v) be

an arbitrary such solution, and let (�,ψ) be the associated solution of (2.1). Then the
top boundary S of � admits the parametrization (3.13), where the function u is given
by (3.12), and now the properties (3.14)–(3.16) hold, while instead of (3.17)–(3.20) we
now have the condition

u′(x) > 0 for all x ∈ R. (3.30)

Application of the maximum principle forψY in� in a way similar to the preceding part
of the proof now leads to (3.2) instead of (3.24). This completes the proof of Theorem 3.
��

The validity of (3.2) and the fact that the free surface profile is a graph place the
solutions on K− within the framework of the considerations made in [10], which yield
the following regularity result.

Corollary 1. Let ϒ ≥ 0. Then, for any solution (m, Q, v) on the curveK−, the function
v is real-analytic.

4. Bound on the amplitudes of the waves

In this section we derive an explicit bound on the wave amplitudes of the favorable
waves. We then give the proof of Theorem 1. For brevity we write v(x) = vs(x), for
any s > 0 and all x ∈ R.

Theorem 4. Let ϒ ≥ 0. Then, along the whole global bifurcation curve K−, we have
the estimate

v(0) − v(π) ≤
√
36g2

ϒ4 +
24πg

ϒ2kβhk(
π
2 )

− 6g

ϒ2 <
2π

kβkh(
π
2 )

≤ 2π2

(π − 2)k
if ϒ > 0,

(4.1a)

and

v(0) − v(π) <
2π

kβkh(
π
2 )

≤ 2π2

(π − 2)k
if ϒ = 0 , (4.1b)

where

βkh

(π

2

)
= − π

2kh
+

π

kh

∞∑
n=−∞

{
coth

(
π2(1 − 4n)

4kh

)
+ sgn(n)

}
≥ π − 2

π
.
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In order to prove this theorem, it is convenient to associate, to any solution on the
global bifurcation curve K−, the function

f (x) = k

2g

(
Q − 2g v(x)

)
for all x ∈ R, (4.2)

which is smooth, even and 2π -periodic on R. Note that [v] = h yields

[ f ] = k(Q − 2gh)

2g
, (4.3)

[v2] = Qh

g
− Q2

4g2
+

[ f 2]
k2

. (4.4)

Due to Theorem 2(iv), (2.10), (3.1) and (2.14), respectively, we have

f (x) > 0 for all x ∈ R, (4.5)

f ′(x) > 0 for all x ∈ (0, π) , (4.6)

(Ckh( f ′))(x) < 1 for all x ∈ R, (4.7)

m

h
+

ϒQ2

8hg2
− ϒ

2k2h
[ f 2] − ϒ

k
f +

ϒ

k

{
f Ckh( f ′) − Ckh( f f ′)

}
< 0 on R.

(4.8)

Writing (2.3a) in terms of f , after multiplication by k2
2g we obtain the equation

f + (aA + B) f − A
2 f 2 = { f Ckh f ′ + Ckh( f f ′)} + b

− A
2 { f 2Ckh f ′ + Ckh( f 2 f ′) − 2 f Ckh( f f ′)} (4.9)

on R, where A, B, a and b denote the constants

A = ϒ2

kg
≥ 0 , a = k

2g
(Q − 2gh) , (4.10)

B = ϒ

g

{m
h

+ ϒh − ϒ[v2]
2h

}
= ϒ

g

{m
h

+ ϒh − ϒQ

2g
+

ϒQ2

8hg2
− ϒ[ f 2]

2k2h

}
, (4.11)

b = kQ

2g
− ϒkm

g
− kh − [ f Ckh( f ′)] + ϒk2Q

2g2
B +

ϒ2kQ2

8g3
. (4.12)

Note that, multiplying (4.8) by ϒ/g, and using the fundamental assumption that ϒ ≥ 0,
we obtain

aA + B − A f + A{ f Ckh( f ′) − Ckh( f f ′)} ≤ 0 on R. (4.13)

Our approach relies on some structure-exploiting integral representations of the cubic
and quadratic terms in (4.9), as an effective tool to obtain estimates. Let us recall from
“Appendix” A in [16] that, for any smooth 2π -periodic function F : R → R with mean
zero over each period, we have

(Ckh(F))(x) = 1

2π
PV

∫ π

−π

βkh(x − s)F(s) ds , x ∈ R , (4.14)
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where (with d = kh) the kernel βd : R \ 2πZ → R, is given by

βd(s) = − s

d
+

π

d
coth

(πs

2d

)
+

π

d

∞∑
n=1

2 sinh(πs
d )

cosh(πs
d ) − cosh( 2π

2n
d )

= − s

d
+

π

d

∞∑
n=−∞

{
coth

( π

2d
(s − 2πn)

)
+ sgn(n)

}
. (4.15)

It is 2π -periodic, odd, and smooth on R \ 2πZ. The function βkh(s) − π
kh coth

(
πs
2kh

)
is continuous at s = 0. Although an explicit representation of the kernel βkh in terms
of three Jacobi elliptic functions is provided in [1], our series representation has the
advantage that its term-by-term differentiation reveals that βkh is strictly decreasing
from +∞ to −∞ on (0, 2π). This is an important property that is not obvious from the
explicit closed-form representation. In our proof we will need the following property of
βd .

Lemma 1. For all d > 0, βd(s) is a positive function of s ∈ (0, π ] strictly decreasing
from +∞ to 0. Furthermore,

βd (π/2) ≥ π − 2

π
for all d ∈ (0,∞). (4.16)

Proof. From (4.15) it is clear that the series converges uniformly in [δ, 2π − δ] for
all δ ∈ (0, π ], so that s �→ βd(s) is continuous there. Furthermore, term-by-term
differentiation shows that s �→ βd(s) is strictly decreasing on (0, 2π). The oddness
and 2π -periodicity imply that βd(π) = 0, while the fact that lims↓0 βd(s) = ∞ is
immediate.

For convenience in proving (4.16), let us write x = π2/2d and consider βd(π/2) as
a function of x ∈ (0,∞). Then

πβd(π/2) = 2x coth(x/2) − x − 4x sinh(x)
∞∑
n=1

1

cosh(4nx) − cosh(x)
.

We claim that, for any x ∈ (0,∞) and any θ ∈ (1,∞), we have

0 <
x sinh(x)

cosh(θx) − cosh(x)
≤ 2

θ2 − 1
.

To that aim, we examine the power series expansions of the numerator and denominator
in the left side. Note that

x sinh(x) =
∞∑
k=1

1

(2k − 1)! x
2k for all x ∈ R,

cosh(θx) − cosh(x) =
∞∑
k=1

1

(2k)! (θ
2k − 1)x2k for all x ∈ R.

The required result is obtained by simply comparing the coefficients of each even power
of x ∈ R, using the Bernoulli inequality:

θ2k − 1 = (1 + (θ2 − 1))k − 1 ≥ k(θ2 − 1)
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for each θ ∈ (1,∞) and k ∈ N.
It therefore follows that

πβd(π/2) ≥ 2x coth(x/2) − x − 8
∞∑
n=1

1

16n2 − 1
.

We now use the fact that

4 − 8
∞∑
n=1

1

16n2 − 1
= π,

which is obtained by taking s = π/2 in the well-known identity (see Sect. 5.2.1 in [2])

2

s
+

∞∑
n=1

4s

s2 − (2πn)2
= cot

( s
2

)
for all s ∈ (0, 2π),

to deduce that

πβd(π/2) ≥ 2x coth(x/2) − x − (4 − π).

Taking also into account the obvious inequalities

coth y ≥ 1 and y coth y ≥ 1 for all y ∈ (0,∞),

with y = x/2, we obtain

πβd(π/2) ≥ x coth(x/2) + 2
x

2
coth(x/2) − x − (4 − π)

≥ x + 2 − x + π − 4 = π − 2,

as required. ��
Remark. Since letting d → ∞ is equivalent to letting x → 0 in the formula

πβd(π/2) = 2x coth(x/2) − x − 4x sinh(x)
∞∑
n=1

1

cosh(4nx) − cosh(x)
,

we get

π lim
d→∞ βd(π/2) = 4 − 8

∞∑
k=1

1

16n2 − 1
= π .

It is an interesting conjecture whether actually

βd(π/2) ≥ 1 for all d ∈ (0,∞) .

Numerical computation in Octave/Matlab suggests that the issue is quite subtle. ��
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A very useful consequence of (4.14) is that

(Ckh(F ′))(x) = − 1

2π
PV

∫ π

−π

β ′
kh(s)

(
F(x) − F(x − s)

)
ds , x ∈ R , (4.17)

for any smooth 2π -periodic function F : R → R. From (4.17) we infer that

(Ckh( f f ′))(x) = PV
∫ π

−π

−β ′
kh(s)

4π
{ f 2(x) − f 2(x − s)} ds , (4.18)

J f (x) :=
(
f Ckh f ′ − Ckh( f f ′)

)
(x) =

∫ π

−π

−β ′
kh(s)

4π
{ f (x) − f (x − s)}2 ds ,

(4.19)

K f (x) :=
(
f 2 Ckh f ′ + Ckh( f 2 f ′) − 2 f Ckh( f f ′)

)
(x)

=
∫ π

−π

−β ′
kh(s)

6π
{ f (x) − f (x − s)}3 ds (4.20)

for all x ∈ R.

Proof of Theorem 4. Our basic equation (4.9) implies, by subtraction, that

(
f + (aA + B) f − A

2
f 2

)∣∣∣∣
π

0

= ( f Ckh f ′)
∣∣∣∣
π

0
+ Ckh( f f ′)

∣∣∣∣
π

0
− A

2
K f

∣∣∣∣
π

0
. (4.21)

Since the left side of the above relation can be written as

( f (π) − f (0))

(
1 + aA + B − A

2
( f (π) + f (0))

)
,

in order to take advantage of (4.13) we add to both sides of (4.21) the term A
2 ( f (π) −

f (0))(J f (π) + J f (0)), obtaining:

( f (π) − f (0))
(
1 + aA + B − A

2
( f (π) + f (0)) +

A

2
(J f (π) + J f (0))

)

= ( f Ckh f ′)
∣∣∣∣
π

0
+ Ckh( f f ′)

∣∣∣∣
π

0
− A

2
K f

∣∣∣∣
π

0
+

A

2
( f (π) − f (0))(J f (π) + J f (0)).

(4.22)

Let us denote by L f and R f , respectively, the left side and the right side of the above
relation:

L f := ( f (π) − f (0))
(
1 + aA + B − A

f (π) + f (0)

2
+

A

2
(J f (π) + J f (0))

)
,

R f := ( f Ckh f ′)
∣∣∣∣
π

0
+ Ckh( f f ′)

∣∣∣∣
π

0
− A

2
K f

∣∣∣∣
π

0
+

A

2
( f (π) − f (0))(J f (π) + J f (0)).

In what follows, we shall estimate L f from above and R f from below.
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Observe first that, by evaluating inequality (4.13) at x = π and at x = 0 and taking
the average, we obtain

aA + B − A

2
( f (π) + f (0)) +

A

2
(J f (π) + J f (0)) ≤ 0. (4.23)

This is the key place where the assumption ϒ ≥ 0 is used. It implies that

L f ≤ f (π) − f (0). (4.24)

The burden of the proof of Theorem 4 is carried by the following lemma, which provides
a lower bound forR f under very general assumptions on the function f . In particular,
it is no longer assumed that f satisfies any equation.

Lemma 2. For any smooth 2π -periodic even function f satisfying (4.5) and (4.6), we
have

R f ≥ { f (π) − f (0)}
(

βkh(
π
2 )

π
f (0) +

βkh(
π
2 )

2π
{ f (π) + f (0)}

+ A
βkh(

π
2 )

24π
{ f (π) − f (0)}2

)
. (4.25)

Taking for granted for the moment the validity of Lemma 2 (the proof of which will
be given later), we proceed with the proof of Theorem 4. Thus, by combining (4.24) and
(4.25), we obtain

24π

βkh(
π
2 )

≥ 24 f (0) + 12{ f (π) + f (0)} + A { f (π) − f (0)}2 , (4.26)

and therefore

A { f (π) − f (0)}2 + 12{ f (π) − f (0)} − 24π

βkh(
π
2 )

< 0 , (4.27)

since f (π) > f (0) > 0 by (4.5)–(4.6). Recalling (4.10), from (4.27) we get

f (π) − f (0) ≤
√
36g2k2

ϒ4 +
24πgk

ϒ2βhk(
π
2 )

− 6gk

ϒ2 <
2π

βkh(
π
2 )

if ϒ > 0, (4.28)

and

f (π) − f (0) ≤ 2π

βkh(
π
2 )

if ϒ = 0. (4.29)

The required result now follows taking into account that

v(0) − v(π) = 1

k
( f (π) − f (0)),

as well as the estimate in Lemma 1. This completes the proof of Theorem 4. ��
It now remains to give the proof of Lemma 2.
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Proof of Lemma 2. It is a consequence of (4.17) that

( f Ckh f ′)
∣∣∣∣
π

0
=

∫ π

−π

−β ′
kh(s)

2π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (−s)} ds .

(4.30)

Also, from (4.19) it follows that

J f (π) + J f (0) =
∫ π

−π

−β ′
kh(s)

4π

(
{ f (π) − f (π − s)}2 + { f (0) − f (−s)}2

)
ds .

(4.31)

Using also (4.18), (4.20) and (4.30), we obtain the explicit representation

R f =
∫ π

−π

−β ′
kh(s)

2π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (−s)} ds

+
∫ π

−π

−β ′
kh(s)

4π
{ f 2(π) − f 2(π − s) + f 2(−s) − f 2(0)} ds

+
A

2

∫ π

−π

−β ′
kh(s)

4π
{ f (π) − f (π − s)}2

(
{ f (π) − f (0)} − 2{ f (π) − f (π − s)}

3

)
ds

+
A

2

∫ π

−π

−β ′
kh(s)

4π
{ f (0) − f (−s)}2

(
{ f (π) − f (0)} + 2{ f (0) − f (−s)}

3

)
ds.

Next, we use the facts that−β ′
kh(s) ≥ 0 and that f (x) is maximized at π and minimized

at 0, to obtain that

R f ≥ I + I I + I I I, (4.32)

where

I =
∫ π

−π

−β ′
kh(s)

2π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (−s)} ds,

I I =
∫ π

−π

−β ′
kh(s)

4π
{ f 2(π) − f 2(π − s) + f 2(−s) − f 2(0)} ds,

I I I = A

2
{ f (π) − f (0)}

∫ π

−π

−β ′
kh(s)

12π

(
{ f (π) − f (π − s)}2 + { f (0) − f (−s)}2

)
ds .

Our next steps take advantage of the symmetries

β ′
kh(s) = β ′

kh(−s) , f (s) = f (−s) , f (π − s) = f (s − π) = f (s + π) , (4.33)

granted since both f and β ′
kh are even, 2π -periodic functions. We also note that

βkh(
π

2
) > βkh(π) = 0 , (4.34)

because the function βkh is odd, 2π -periodic and strictly decreasing on (0, 2π).
We estimate each of the three terms I, I I and I I I separately. Note that (4.5)–(4.6)

yield
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f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (s)

= f (π){ f (π) − f (π − s)} + f (0){ f (s) − f (0)} ≥ 0 for 0 ≤ s ≤ π ,

Moreover, for π
2 ≤ s ≤ π we have f (π − s) ≤ f (π

2 ) ≤ f (s) ≤ f (π) so that

f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (s)

≥ f 2(π) − f (π) f
(π

2

)
− f 2(0) + f (0) f

(π

2

)

= { f (π) − f (0)}
{
f (π) + f (0) − f

(π

2

)}
≥ f (0){ f (π) − f (0)} .

Thus we have the lower bound

I =
∫ π

−π

−β ′
kh(s)

2π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (−s)} ds

=
∫ π

0

−β ′
kh(s)

π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (s)} ds

≥
∫ π

π/2

−β ′
kh(s)

π
{ f 2(π) − f (π) f (π − s) − f 2(0) + f (0) f (s)} ds

≥
∫ π

π/2

−β ′
kh(s)

π
f (0){ f (π) − f (0)} ds = βkh(

π
2 )

π
f (0){ f (π) − f (0)} , (4.35)

Similarly we have

I I =
∫ π

−π

−β ′
kh(s)

4π
{ f 2(π) − f 2(π − s) + f 2(−s) − f 2(0)} ds

=
∫ π

0

−β ′
kh(s)

2π
{ f 2(π) − f 2(π − s) + f 2(−s) − f 2(0)} ds

≥
∫ π

π/2

−β ′
kh(s)

2π
{ f 2(π) − f 2(π − s) + f 2(−s) − f 2(0)} ds

≥
∫ π

π/2

−β ′
kh(s)

2π
{ f 2(π) − f 2(0)} ds = βkh(

π
2 )

2π
{ f 2(π) − f 2(0)} , (4.36)

and, in the case when ϒ > 0,

2

A{ f (π) − f (0)} I I I =
∫ π

−π

−β ′
kh(s)

12π

(
{ f (π) − f (π − s)}2 + { f (0) − f (s)}2

)
ds

=
∫ π

0

−β ′
kh(s)

6π

(
{ f (π) − f (π − s)}2 + { f (0) − f (s)}2

)
ds

≥
∫ π

0

−β ′
kh(s)

6π

{ f (π) − f (π − s) + f (s) − f (0)}2
2

ds

≥
∫ π

π/2

−β ′
kh(s)

6π

{ f (π) − f (π − s) + f (s) − f (0)}2
2

ds

≥
∫ π

π/2

−β ′
kh(s)

12π
{ f (π) − f (0)}2 ds = βkh(

π
2 )

12π
{ f (π) − f (0)}2 .

(4.37)
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In the last line we used the fact by (4.5)–(4.6) that

f (s) ≥ f (π − s) > 0 for π ≥ s ≥ π/2 .

The required result follows from (4.32) by combining (4.35), (4.36) and (4.37). ��
We are now in a good position to provide the proof of Theorem 1.

Proof of Theorem 1. Part (i) was proven in Theorem 3. By (4.1),

sup
K−

(max
S

Y − min
S

Y ) = sup
K−

(v(π) − v(0)) < ∞.

This is Part (ii). Due to (4.16), Part (iii) follows at once from (4.1).
It remains to prove Part (iv). We first prove that m and Q are uniformly bounded

along K−. Indeed, as a consequence of (4.25), we have that f is uniformly bounded
along K−. It follows from (4.3) that Q is also bounded, and then, from (4.2) and (4.10),
that v and a are also uniformly bounded alongK−. Since, as an immediate consequence
of (4.19), J f ≥ 0 everywhere, it follows from (4.13) that B ≤ A f − Aa. Hence B is
bounded above along K−.

We also observe that, in the notation of Lemma 2, we actually have the equality

I I I = A

6
( f (π) − f (0))(J f (π) + J f (0)).

When combined with the inequalities I ≥ 0, I I ≥ 0, this leads to

R f ≥ A

6
( f (π) − f (0))(J f (π) + J f (0)).

It is thus a consequence of (4.24) that

A

2
(J f (π) + J f (0)) ≤ 3.

On the other hand, by the definition of L f and (4.25), we see that

1 + aA + B − A

2
( f (π) + f (0)) +

A

2
(J f (π) + J f (0)) ≥ 0.

Combining the last two inequalities, we have

B ≥ −4 − aA +
A

2
( f (π) + f (0)) > −4 − aA.

Thus B is also bounded away from −∞ all along K−.
We now prove that the flux m is also bounded along K−. In case ϒ > 0, we know

from (4.11) that

m = ghB

ϒ
− ϒh2 +

ϒ

2
[v2]
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so that m is bounded along K−. In the other case ϒ = 0, we argue as follows. We write
(2.7) in the form

|m|
kh

= (Q − 2gv)1/2
(

(v′)2 +
(1
k
+ Ckh(v′)

)2)1/2

≤ C

(
|v′| +

∣∣∣1
k
+ Ckh(v′)

∣∣∣
)

on R for some constant C , because Q and f are uniformly bounded. However by (2.10)
and (3.1) we know that v′ < 0 on (0, π) and 1

k + Ckh(v′) > 0 on (−π, π). Thus
integrating the inequality on (−π, π) and using the periodicity of Ckh(v′), we obtain the
boundedness of m.

By Theorem 3, alternative (A1) must necessarily occur in Theorem 2, which means
that (2.24) holds. We have shown above that Q and m are bounded alongK−. Note that,
by (2.10) and the evenness of v, we have that

vs(0) = max
x∈R vs(x) for all s ∈ (0,∞)

and therefore we need to prove that

Q − 2gvs(0) → 0 as s ↑ ∞. (4.38)

Arguing by contradiction, we suppose that there exist δ > 0 and a sequence s j ↑ ∞
such that

Q j − 2gvs j (x) ≥ δ for all x ∈ R. (4.39)

For notational simplicity, we denote in what follows the function vs j by v j , for any

j ∈ N. We shall prove in what follows that the sequence {v j } is bounded in C2,α
2π , a fact

which, combined with the previously proved bounds, contradicts the validity of (2.24).
To that aim, we rewrite (2.3a) in the form

2(Q − 2gv)Ckh(v′) = −2g(vCkh(v′) − Ckh(vv′))
+ϒ2(v2Ckh(v′) + Ckh(v2v′) − 2vCkh(vv′))

+
ϒ2

k
v2 + 2ϒ v

( m

kh
− ϒ

2kh
[v2]

)
− 2

ϒm

k

+
2g

k
(v − h) − 2g [v Ckh(v′)]

=: −2gJ v + ϒ2Kv + T (m, v) (4.40)

with the operators J and K as defined in (4.19) and (4.20), while T (m, v) gathers all
the remaining terms. We also rewrite the inequality (2.14), valid along K−, in the form

ϒ(vCkh(v′) − Ckh(vv′)) < − m

kh
+

ϒ

2kh
[v2] − ϒ

k
v. (4.41)

We shall make use of the following properties satisfied by the operator J :

(a) J maps bounded sets of the periodic Sobolev spaceW 1,2
2π into bounded sets of L∞

2π ;

(b) J maps bounded sets of W 1,p
2π , where p ∈ (2,∞), into bounded sets of C

1− 2
p

2π ;

(c) J maps bounded sets of Cn,β
2π into bounded sets of Cn,α

2π , for any n ∈ N ∪ {0},
β ∈ (0, 1) and α ∈ (0, β).
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The proof of these properties follows from the fact that Ckh = C + S , where C is the
ordinary periodic Hilbert transform and S is a smoothing operator. Therefore they are
an easy adaptation of the arguments in [4, Section 10.5], where the case of the usual
Hilbert transform (formally corresponding to h = ∞) is considered, in a similar way to
[16,17].

Observe also, from the explicit representation formulas (4.19) and (4.20), that we
have the inequality

|Kv(x)| ≤ 2

3
(v(0) − v(π))|J v(x)| for all x ∈ R, (4.42)

for any 2π -periodic function that is maximized at 0 and minimized at π .
We prove first that the sequence {J v j } j of nonnegative functions is bounded in L∞

2π .
In the case when ϒ > 0, this is an immediate consequence of (4.41). On the other hand,
in the case when ϒ = 0, it follows from (2.3b), using (4.39) and the boundedness of
{m j } j , that {v j } is bounded in W 1,2

2π , from which the claimed result follows by property
(a) above. It is now a consequence of (4.42) that the sequence {Kv j } j is also bounded
in L∞

2π .
In the following we consider the general case ϒ ≥ 0. It is a consequence of (4.40),

using (4.39), that {Ckhv′
j } j is bounded in L∞

2π , and hence in L p
2π , for any p ∈ (2,∞).

Since the linear operator Ckh is bounded and invertible from L p
2π,◦ onto itself (where the

subscript ◦ is used to denote zero mean), it follows that the sequence {v′
j } j is bounded

in L p
2π for any p ∈ (2,∞). Thus {v j } is bounded in W 1,p

2π for any p ∈ (2,∞).
It is not difficult to prove thatK satisfies the same property expressed by (b) forJ . So

{J v j } j and {Kv j } j are bounded inC0,β
2π for any β ∈ (0, 1).When used in (4.40) together

with (4.39) and property (b), this leads to the conclusion that {Ckhv′
j } j is bounded in

C0,β
2π , for any β ∈ (0, 1). Since the linear operator Ckh is bounded and invertible from

C0,β
2π,◦ onto itself, it follows that {v′

j } j too is bounded in C0,β
2π for any β ∈ (0, 1).

Similarly, K satisfies the same property expressed by (c) for J . As before, an exam-
ination of (4.40), using also (4.39), leads to the conclusion that {Ckhv′

j } j is bounded
in C1,α

2π , for any α ∈ (0, 1). Since the linear operator Ckh is bounded and invertible

from C1,α
2π,◦ onto itself, it follows that {v j } is bounded in C2,α

2π for any α ∈ (0, 1). This
contradicts (2.24), proving therefore that (4.38) holds, as required.

��

5. Physical interpretation

In order to explain the physical relevance of our results, let us note that the prime sources
of currents are winds of long duration (see the discussion in [22]). In deep water these
are near-surface shear flows with about 75 m taken as the reference depth of the layer
to which the wind effects are confined, but in shallower regions a velocity profile can
develop throughout the flow. Approximately 7.5% of the Earth’s ocean floor consists of
continental shelves that are practically flat, with average depth about 60 m and average
width of around 65 km. In some places they are almost nonexistent, while in others,
as along the northern coast of Australia and Siberia, their width exceeds 1000 km; see
[21]. A systematic collection of wind drift data has provided guidance for the velocities
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of wind-generated currents as functions of the depth [20]. This leads to the current’s
velocity profile

ψY (Y ) =
⎧⎨
⎩
s
(
1 +

Y − h

Y0

)
for h − Y0 ≤ Y ≤ h ,

0 for 0 ≤ Y ≤ h − Y0 ,
(5.1)

where Y0 > 0 is the reference depth of the current and where the magnitude s of the
surface wind-drift corresponds to about 2% of the wind velocity measured at 10 m above
sea level.

In our setting, with h, k > 0 andϒ ∈ R fixed, the formulation (2.1) of the governing
equations for waves propagating in the X -direction is in a frame of reference moving
at the wave speed c > 0, in which the wave is stationary. In this frame of reference
the underlying current U(Y ) is defined at every level Y beneath the wave trough as the
average over a wavelength L of the horizontal fluid velocity component,

U(Y ) = 1

L

∫ X+L

X
ψY (X,Y ) dX , 0 ≤ Y ≤ v(π) .

Using (2.1a) and the L-periodicity of ψ in the X -variable, we get UY = ϒ , so that

U(Y ) = U0 + ϒY , 0 ≤ Y ≤ v(π) , (5.2)

where U0 is the current velocity along the flat bed Y = 0. Note the resemblance to the
formula (2.17) for parallel shear flows.Wehighlight two types ofwindwaves propagating
in a layer of water less than 75 m deep, over a flat bed:

• Downstream waves occur when the wind blows in the X -direction, generating a
current (5.1)–(5.2) with vorticity ϒ = s/Y0 > 0 and U0 ≥ 0. The resulting flow is
called favorable.

• Upstream waves occur when the wind blows in the negative X -direction, in which
case the current (5.1)–(5.2) has vorticity ϒ = s/Y0 < 0 and U0 ≤ 0. The resulting
flow is called adverse.

In this context we now discuss the waves of small amplitude that correspond to
solutions on the local bifurcation curve, representing small perturbations of a suitable
pure current (a horizontal flow with a flat free surface). The parallel shear flows with
velocity field (2.17) are labelled bym. For precisely two values ofm, specified in (2.20),
they admit small perturbations in the form of waves with one crest and one trough per
wavelength. At the bifurcation point we have v ≡ h, so that (2.14) simplifies to

±
( m

kh
+

ϒh2

2kh

)
> 0 (5.3)

and therefore the ± sign in (2.14) corresponds to the choice of sign in (2.20). Due to
(2.26)–(2.27), at the bifurcation point the choice of ± in (2.20) amounts to imposing an
inequality λ = U(h) ≷ 0 on the parallel sheer flow. Now the propagation speed c of
wind waves is typically an order of magnitude greater than the velocity of the surface
wind-drift. Indeed, for wave speeds in the range 10-20 m/s, surface current speeds of 3
m/s are exceptionally high [21,38]. Taking this into account, it means that λ = U(h) < 0.

Our results in Sects. 3 and 4 are valid for favorable flows, which means the choice
of the minus sign in (2.14) and ϒ ≥ 0. At the bifurcation point, ϒ ≥ 0 then ensures
by means of (2.17) that ψY < 0 throughout the pure current flow. Moreover, for the
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c

(a) Downstream wave propagation in the phys-
ical frame of reference: co-flowing (favorable)
wave and the underlying positively sheared
current.

(b) The same flow in the frame of reference
moving at the wave speed c.

Fig. 2. Sketches of the surface wave and of the linearly sheared velocity profile of the underlying favorable
wind-generated current with positive vorticity: (A) In the fixed frame of reference the surface wave propagates
at constant speed c, without change of shape, in the X -direction. (B) The wave is stationary in a coordinate
system moving with the wave speed c

c

(a) Upstream wave propagation in the physi-
cal frame of reference: contra-flowing (adverse)
wave and the underlying negatively sheared
current.

(b) The same flow in the frame of reference
moving at the wave speed c.

Fig. 3. Sketches of the surface wave and of the linearly sheared velocity profile of the underlying adverse
current with negative vorticity: (A) In the fixed frame of reference the wave propagates at constant speed c,
without change of shape, in the X -direction, counter to the wind-generated current. (B) The wave is stationary
in the coordinate system moving with the wave speed c

waves that arise as small perturbations of this pure current state the inequality ψY < 0
throughout the flow will persist, while for waves of large amplitude along the curve K−
this inequality is granted by Theorem 2; see Fig. 2 for the configurations (in the fixed
frame and in the frame of reference moving at the wave speed) of a current generated
by wind blowing in the favorable direction, in water with a flat bed located above the
reference depth Y0.

On the other hand, we briefly discuss the interpretation of a flow being adverse, which
refers to the alternative choice of sign in (2.14), for solutions on the local bifurcation
curve. For wind-generated adverse currents we argued that U0 ≤ 0 and ϒ < 0, so that
the waves of small amplitude are perturbations of a pure current of the form (2.17) with
negative velocity at the surface in the moving frame, given by (2.27) with the minus
sign. Note that m∗

+(ϒ) = −m∗−(−ϒ). In a frame of reference at rest, the current runs in
the direction opposite to the waves because U(Y ) < U0 ≤ 0 for Y > 0; see Fig. 3.

Experimental data and numerical simulations [11,12,18,23,24,27,30,36,37,40]
indicate that the interaction of steady waves with linearly sheared currents can have
a significant effect on the waves. Numerical computations show that a favorable shear
current typically increases the wavelength and decreases the wave steepness and ampli-
tude, with a surface wave profile that is markedly asymmetrical about the mean water
level, having long, flat regions near the trough. On the other hand, an adverse current
shortens the wavelength and increases the steepness, leading to unusual shapes with
narrow and peaked crests and overhanging bulbous waves [40]. In particular, as the
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wave height increases, vorticity can become a dominant feature in the flow dynamics.
The results presented in this paper can be regarded as providing a confirmation of these
observations for waves interacting with a favorable current in a flow of constant vorticity
over a flat bed.
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6. Appendix

The purpose of this appendix is to provide some background information about the
reformulations (2.3) and (2.7) of the governing equations (2.1).
For any d > 0, the Hilbert transform operator Cd associated to the strip

Rd = {(x, y) ∈ R
2 : −d < y < 0}

is defined for 2π -periodic functions w ∈ C0,α
2π,◦(R) of zero mean, [w] = 0, having the

Fourier series expansion

w(x) =
∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx), x ∈ R,

by

(
Cd(w)

)
(x) =

∞∑
n=1

an coth(nd) sin(nx) −
∞∑
n=1

bn coth(nd) cos(nx), x ∈ R .(6.1)

Moreover, for any w ∈ C0,α
2π,◦(R), the representation formula (4.14) holds (see [16]).

The fact that any smooth solution of (2.1) solves (2.3) was established in [16] by means
of Riemann-Hilbert theory. Moreover, in [16] the variational interpretation of (2.3) was
provided: these are precisely the Euler-Lagrange equations of the energy functional

L(�,ψ) =
∫∫

�

( |∇ψ |2
2

− gY + ϒψ +
Q

2

)
dXdY,

associated to the flow. Note that (2.1a)–(2.1d) and Green’s first identity yield∫∫
�

ϒψ dXdY =
∫∫

�

ψ�ψ dXdY = −
∫∫

�

|∇ψ |2 dXdY − mL U0 ,

http://creativecommons.org/licenses/by/4.0/
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where

U0 = 1

L

∫ L

0
ψ(X, 0) dX

is the velocity of the underlying current along the flat bed Y = 0 (see the discussion in
Sect. 5). Consequently we can alternatively express the action functional L(�,ψ) as

L(�,ψ) =
∫∫

�

(
− gY − |∇ψ |2

2
+
Q

2

)
dXdY − mL U0 ,

in which the first two integral terms are the difference between the average potential
and kinetic energies per unit area, while Q is related to the total head. More precisely,
dividing both sides of (2.1d) by 2g, all the terms in

|∇ψ |2
2g

+ Y = Q

2g
on S

have the dimension of length, the first being called the velocity head and representing
the elevation needed for the fluid to reach the velocity |∇ψ | during frictionless free
fall, and the second term being the elevation head, so that Q/(2g) stands for the total
head (amount of energy per unit weight). These considerations illustrate the physical
relevance of the variational principle that underlies the formulation (2.3) of the governing
equations (2.1) for free-surface flows with constant vorticity.

We now explain how a smooth solution of (2.1) can be constructed from a solution
of (2.3) if (2.4)–(2.6) hold. First, the fact that any solution of (2.3) satisfies also (2.7)
was established in [16] by means of Riemann-Hilbert theory. Now, let us define

S =
{( x

k
+

(
Ckh(v − h)

)
(x), v(x)

)
: x ∈ R

}
,

a non-self-intersecting smooth curve contained in the upper half-plane. Moreover, let us
consider in the horizontal strip

Rkh = {(x, y) ∈ R
2 : −kh < y < 0}

the solution V of

�V = 0 inRkh, (6.2a)

V (x, 0) = v(x), x ∈ R, (6.2b)

V (x,−kh) = 0, x ∈ R, (6.2c)

and let U be a harmonic conjugate of −V in Rkh , so that U + iV is a holomorphic
function there. Then

U (x + 2π, y) = U (x, y) +
2π

k
for all (x, y) ∈ Rkh,

V (x + 2π, y) = V (x, y) for all (x, y) ∈ Rkh , (6.3)

with the holomorphic functionU + iV unique up to an additive real constant. Requiring
that x �→ U (x, 0) + iV (x, 0) has zero mean over one period means that we set

U (x, 0) = x

k
+

(
Ckh(v − h)

)
(x), x ∈ R. (6.4)
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It follows that U + iV is a conformal mapping from Rkh onto a horizontally periodic
domain� of period L = 2π/k and conformal mean depth h, whose upper boundary is S
and lower boundary is B. The mapping admits a smooth extension as a homeomorphism
between the closures of these domains, with {(x, 0) : x ∈ R} being mapped onto S and
{(x,−kh) : x ∈ R} being mapped onto B. We recall (see [17]) that, for a given period
L = 2π/k, the conformal mean depth is the unique positive number h such that there
exists a conformal map U + iV from Rkh onto �, subject to the periodicity conditions
(6.3).
Let us now consider, in the domain� so defined, the unique solutionψ of (2.1a)–(2.1c).
At the same time, let us introduce the function ζ : Rkh → R as the unique periodic
solution of the problem

�ζ = 0 inRkh, (6.5a)

ζ(x, 0) = m − ϒ

2
v2(x) for all x ∈ R, (6.5b)

ζ(x,−kh) = 0 for all x ∈ R. (6.5c)

It is straightforward to check that (2.18) holds. Moreover, the definitions of V and ζ and
the properties of the Dirichlet–Neumann operator in the stripRkh ensure that, on y = 0,
we have

Vy = 1

k
+ Ckh(v′),

ζy = m

kh
− ϒ

2kh
[v2] − ϒ Ckh(vv′). (6.6)

It is easily seen that (2.7) is merely an equivalent way to express the equality

(ζy + ϒVVy)
2 = (Q − 2gV )(V 2

x + V 2
y ) at (x, 0), for all x ∈ R, (6.7)

an equality which, on the other hand, is is obtained by simply writing (2.1d) in the
(x, y)-variables. Thus, if ψ is constructed as above from a solution of (2.3), and hence
of (2.7), then is also satisfies (2.1d), as required.
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