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Abstract: Given integers n ≥ m, let Sep(n,m) be the set of separable states on the
Hilbert space Cn ⊗ C

m . It is well-known that for (n,m) = (3, 2) the set of separable
states has a simple description using semidefinite programming: it is given by the set of
states that have a positive partial transpose. In this paper we show that for larger values
of n andm the set Sep(n,m) has no semidefinite programming description of finite size.
As Sep(n,m) is a semialgebraic set this provides a new counterexample to the Helton–
Nie conjecture, which was recently disproved by Scheiderer in a breakthrough result.
Compared to Scheiderer’s approach, our proof is elementary and relies only on basic
results about semialgebraic sets and functions.

1. Introduction

Entanglement is a fundamental aspect of quantummechanics. The set of separable states
(i.e., nonentangled states) on the Hilbert space Cn ⊗ C

m is defined as:

Sep(n,m) = conv
{
xx† ⊗ yy† : x ∈ C

n, |x | = 1, y ∈ C
m, |y| = 1

}
.

Here x† = x̄T indicates conjugate transpose, |x |2 = x†x = ∑n
i=1 |xi |2 and conv denotes

the convex hull. The set Sep(n,m) lives in the space Hnm of Hermitian matrices of size
nm × nm, and it is full-dimensional in the subspace of matrices of trace equal to one.

A fundamental computational task in quantum information is to decide membership
in the convex set Sep(n,m). One of the first tests designed to check whether a state
ρ ∈ Hnm is separable is the Peres-Horodecki criterion [Per96,HHH96] (also known as
the Positive Partial Transpose (PPT) criterion). It is based on the observation that for
any ρ ∈ Sep(n,m), (I ⊗ T)(ρ) is positive semidefinite where I is the identity map,
and T the transpose map. Indeed one can easily verify that if ρ = xx† ⊗ yy† then
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(I ⊗ T)(ρ) = xx† ⊗ (yy†)T = xx† ⊗ ȳ ȳ† � 0. In other words we have the inclusion
Sep(n,m) ⊆ PPT(n,m) where

PPT(n,m) =
{
ρ ∈ Hnm : ρ � 0, (I ⊗ T)(ρ) � 0, and Tr[ρ] = 1

}
. (1)

It is known, fromearlierworkofWoronowicz [Wor76], thatwehave equalitySep(n,m) =
PPT(n,m) if, and only if n + m ≤ 5. Thus, the smallest cases where Sep(n,m) �=
PPT(n,m) are (n,m) = (4, 2) and (n,m) = (3, 3).

Semidefinite programming The description of the set PPT(n,m) in Eq. (1) allows us
to decide membership, and optimize linear functions on PPT(n,m), via semidefinite
programming. Semidefinite programming is a fundamental tool in optimization that has
played a crucial role in recent developments in quantum information theory. We say that
a convex set C has a semidefinite representation (also called a semidefinite lift) of size
r if it can be expressed as

C = π(S) (2)

where π : RD → R
d is a linear map and S ⊂ R

D is a convex set defined using a linear
matrix inequality

S = {w ∈ R
D : M0 + w1M1 + · · · + wDMD � 0} (3)

where M0, . . . , MD are Hermitian matrices of size r × r . A set S of the form (3) is
known as a spectrahedron. In this paper we are most interested in when a semidefinite
representation of finite size exists, and call this simply a semidefinite representation
throughout. If a convex set C admits a semidefinite representation, then optimizing
a linear function on C can be cast as a semidefinite program. Equation (1) gives a
semidefinite representation of PPT(n,m).

Horodecki’s criterion The set of separable states has the following well-known de-
scription due to the Horodeckis [HHH96]:

Sep(n,m) = {
ρ ∈ Hnm : Tr[ρ] = 1 and (I ⊗ �)(ρ) � 0 ∀� : Mm → Mn positive

}
.

(4)
Here Mk = C

k×k and a C-linear map � : Mm → Mn is positive if it is Hermitian
preserving and if �(X) � 0 for all X � 0. When n = m, the relaxation PPT(n,m)

corresponds to having only the identity and transpose maps in Eq. (4), which are both
positive. A recent result of Skowronek [Sko16] shows that when n = m = 3, there
is no finite family of positive maps �1, . . . , �k : M3 → M3 such that Sep(3, 3) ={
ρ ∈ H9 : (I ⊗ �i )(ρ) � 0 ∀i = 1, . . . , k

}
. Note that the right-hand side of the previ-

ous equation is a specific semidefinite representable set. Thus Skowronek’s result rules
out certain specific semidefinite representations for Sep(3, 3).1

DPS hierarchy In [DPS04], Doherty, Parrilo and Spedalieri proposed a complete hierar-
chy of approximations to the set of separable states based on semidefinite programming.
The first level of the hierarchy coincides with the PPT test, and subsequent levels form
tighter and tighter convex relaxations of the set of separable states. If we denote the
convex relaxation at level k by DPSk(n,m) we have (dropping the (n,m)):

Sep ⊆ · · · ⊆ DPSk ⊆ DPSk−1 ⊆ · · · ⊆ DPS1 = PPT.

1 The result of Skrownek is in fact more general than this, and rules any formulation of the form{
ρ : (I ⊗ �i )((I ⊗ B)ρ(I ⊗ B†)) � 0 ∀i = 1, . . . , k, ∀B ∈ M3

}
where �1, . . . , �k is a finite set of posi-

tive maps.
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The key property of the DPS hierarchy is that each set DPSk has a semidefinite repre-
sentation of size min(n,m)O(k). The hierarchy is known to be complete, meaning that if
ρ /∈ Sep, then there exists a finite k such that ρ /∈ DPSk . The integer k however depends
on the state ρ and it is known that, unless n + m ≤ 5, there is no finite k such that
DPSk(n,m) = Sep(n,m) [DPS04, Section VIII.B].

Contributions The main result of this paper is

Theorem 1. If Sep(n,m) �= PPT(n,m) then Sep(n,m) has no (finite) semidefinite repre-
sentation. In other words, Sep(n,m) has no semidefinite representation when n+m > 5.

Remark 1. Some remarks concerning Theorem 1:

• Note that Theorem 1 contains as a special case the fact that whenever Sep(n,m) �=
PPT(n,m), then there is no representation of Sep(n,m) as {ρ ∈ Hnm : Tr[ρ] =
1 and (I ⊗ �i )(ρ) � 0, ∀i = 1, . . . , k} where �1, . . . , �k : Mm → Mn is a finite
family of positive maps. This is because the latter set is semidefinite representable
(in fact it is a spectrahedron). Let us mention that if one is only interested in approx-
imating the set Sep(n,m), Aubrun and Szarek [AS17b] gave a lower bound on the
number k of positive maps needed.
• Our result also includes as a special case the fact that there is no finite k such
that DPSk(n,m) = Sep(n,m), when n + m > 5. We note that our result is a strict
generalization of this fact. Indeed, the failure of the DPS hierarchy to converge in a
finite number of levels does not preclude by itself the existence of another semidefinite
program that represents Sep(n,m) exactly. There arewell-known examples of convex
sets where the sum-of-squares hierarchy (of which DPS can be seen as a particular
instance) is never exact and yet a finite semidefinite representation does exist, see
e.g., [NPS10, Example 3.7].
• Observe that if Sep(n,m) has no semidefinite representation, then the same is true
for Sep(N ,m) for N ≥ n. This is because Sep(n,m) can be realized as a linear
section of Sep(N ,m) as follows:

Sep(n,m) � {ρ ∈ Sep(N ,m) : (Tr2 ρ)i i = 0 ∀i = n + 1, . . . , N }
where Tr2 ρ is the result of tracing out the second subsystem from ρ. Indeed, setting
(Tr2 ρ)i i = 0 implies that in any representation of ρ as ρ = ∑

k pkxk x
†
k ⊗ yk y

†
k ,

the vectors xk must satisfy (xk)i = 0 for all i = n + 1, . . . , N , i.e., that xk ∈
C
n ×{0}N−n � C

n . To prove our theorem it thus suffices to prove that Sep(3, 3) and
Sep(4, 2) have no semidefinite representations.

Helton–Nie conjecture The question of finding semidefinite representations for convex
sets has attracted a lot of attention in the optimization community [Nem06,GPT13].
Helton and Nie [HN09] gave sufficient conditions for a set to have a semidefinite rep-
resentation, and conjectured that any convex semialgebraic set has a semidefinite rep-
resentation. (A set is semialgebraic set if it can be described using a finite boolean
combinations of polynomial equations and inequalities. One can verify that Sep(n,m)

is a semialgebraic set, see Sect. 2.3.) In his breakthrough paper, Scheiderer [Sch18] dis-
proved this conjecture and exhibited convex semialgebraic sets that have no semidefinite
representations.

Our proof of Theorem 1 is inspired from the arguments of Scheiderer. Compared to
the paper of Scheiderer the present paper has two main contributions. First, the proof we
give simplifies the arguments of Scheiderer and does not rely on any specialized results
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from algebraic geometry. We only use basic results from analysis (Taylor expansions),
and some standard facts about semialgebraic sets and functions which are elementary
to state. The proof should thus be accessible to readers in quantum information and
optimization. The second contribution is the application of the method of proof for
Sep(n,m)which is defined in terms of complex numbers. This turns out to cause certain
difficulties as certain standard facts about real polynomials are not true about Hermitian
polynomials, particularly on the relation between homogeneous polynomials and their
dehomogenizations (see Sect. 5 and Appendix A for more details).

Main technical result Our main technical result, Theorem 2 below and of which The-
orem 1 is a corollary, gives a general way to construct a convex set with no semidefinite
representation from a nonnegative Hermitian polynomial that is not a sum of squares.
We recall that aHermitian polynomial p(z) is a polynomial with complex coefficients in
the indeterminates (z, z̄) = (z1, . . . , zn, z̄1, . . . , z̄n) such that p(z) ∈ R for all z ∈ C

n . A
Hermitian polynomial is a sum of squares if it can be written as a sum of squares of Her-
mitian polynomials. (More details about Hermitian polynomials are given in Sect. 2.)
For the statement of the theorem, we use the monomial notation zu = ∏n

i=1 z
ui
i for

u ∈ N
n .

Theorem 2 (General theorem). Let p(z) = ∑
(u,v)∈A puvzu z̄v be a Hermitian polyno-

mial supported on A ⊂ N
n × N

n, and assume that p is nonnegative on C
n but not a

sum of squares. Assume furthermore that A is downward closed, i.e., if (u, v) ∈ A then
all (u′, v′) ∈ N

n × N
n with 0 ≤ u′ ≤ u and 0 ≤ v′ ≤ v are in A. Define the monomial

map mA : Cn → C
|A|, z �→ [

zu z̄v
]
(u,v)∈A for z ∈ C

n. Then the convex set

CA = cl conv
{
mA(z) : z ∈ C

n} (5)

is not semidefinite representable, where cl denotes topological closure.

The set of separable states is of the form (5) for well-chosen set A. Indeed, dropping
the normalization condition and letting SEP(n,m) be the convex cone of separable
states, we have:

SEP(n,m) = conv
{[

xi x̄ j yk ȳl
]
1≤i, j≤n
1≤k,l≤m

: (x, y) ∈ C
n × C

m
}

= conv
{[
xα x̄β yγ ȳδ

]
|α|=|β|=|γ |=|δ|=1 : (x, y) ∈ C

n × C
m
}

where for ζ ∈ N
k we let |ζ | = ∑k

i=1 ζi . This shows that SEP(n,m) = CA where

A = {
(α, β, γ, δ) ∈ (Nn × N

n) × (Nm × N
m) : |α| = |β| = |γ | = |δ| = 1

}
. (6)

The attentive reader will notice that this set A is not downward closed, and so does
not satisfy the condition of Theorem 2. As a matter of fact, to prove Theorem 1 we
apply Theorem 2 with a dehomogenization of A which satisfies the downward closed
condition, and then homogenize back to get the desired convex cone. The details are
explained in Sect. 5.

Overview of proof We briefly sketch the main ideas for the proof of Theorem 2.
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• We first show that if the set CA has a semidefinite representation, then there exists
a finite number of functions f1, . . . , fr : R2n � C

n → R such that any nonnegative
Hermitian polynomial supported on A ∪ {(0, 0)} can be written as a sum of squares
from spanR( f1, . . . , fr ). This characterization of semidefinite representations via
sums of squares is not new: it follows from the factorization theorem of Gouveia,
Parrilo and Thomas [GPT13] and its sum-of-squares interpretation see e.g., [Faw16].
We note that a similar characterization is also used in Scheiderer’s paper, see [Sch18,
Theorem 3.4].

• One of themain observations needed to prove Theorem 2 is to note that the functions
f1, . . . , fr can be chosen to be semialgebraic. (We recall the precise definition of
semialgebraic functions in Sect. 2.) One key property of such functions that turns
out to be particularly important is that they are smooth almost everywhere. Com-
bining this property with a simple observation regarding smooth sum of squares
decompositions of homogeneous polynomials allows us to prove Theorem 2 already
in the special case where p is a homogeneous polynomial. This allows us to prove
that Sep(n,m) is not semidefinite representable when (n,m) = (5, 3) or (4, 4). The
complete proof of Theorem 2 which allows us to cover the cases (n,m) = (4, 2) and
(3, 3) for separable states, requires an additional technical argument using Puiseux
expansions for univariate continuous semialgebraic functions.

Real version of Theorem 2We note that one can state an analogue of Theorem 2 dealing
with real polynomials instead of Hermitian polynomials. The proof is similar, and we
state it below just for convenience and for future reference.

Theorem 3 (Main theorem for real polynomials). Let p(x) = ∑
u puxu ∈ R[x] where

A ⊂ N
n finite, be a real polynomial that is nonnegative on Rn but not a sum of squares.

Assume furthermore that A is downward closed, i.e., if u ∈ A then all u′ ∈ N
n with

0 ≤ u′ ≤ u are in A. Define the monomial mapmA(x) = [
xu
]
u∈A for x ∈ R

n. Then the
convex set

cl conv
{
mA(x) : x ∈ R

n}

is not semidefinite representable.

The theorem above can be used to recover the result of Scheiderer [Sch18, Corollary
4.25], that the cone Pn,2d of nonnegative (real) forms in n variables of degree 2d is not
semidefinite representable when it is distinct from 
n,2d , the cone of sums of squares.
Indeed, it suffices to take p in Theorem 3 to be a dehomogenization of a nonnegative
form that is not a sum of squares, and to use the well-known fact that a convex set has a
semidefinite representation if and only if its dual has one.

Organization The paper is organized as follows. In Sect. 2 we set some of the notations
and present some background material on Hermitian polynomials, sums of squares, and
semialgebraic sets and functions that are useful for the proof of the main theorem. In
Sect. 3 we review the connection between the existence of semidefinite programming
representations, and sums of squares. The proof of Theorem 2 is in Sect. 4 and the proof
of Theorem 1 in Sect. 5.

2. Preliminaries

We recall in this section some results onHermitian polynomials, the duality Sep/nonneg-
ative polynomials and PPT/sums of squares and semialgebraic sets and functions.
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2.1. Hermitian polynomials. For z ∈ C
n , we denote the elementwise complex conjugate

of z by z̄ = (z̄1, . . . , z̄n). Ifu ∈ N
n wedefine themonomial zu = zu11 . . . zunn .AHermitian

polynomial p(z) is a polynomial in z and z̄ of the form

p(z) =
∑

(u,v)∈A

puvz
u z̄v (A ⊂ N

n × N
n) (7)

such that p(z) ∈ R for all z ∈ C
n . This is equivalent to saying that puv = pvu for all

u, v. The support of p is supp(p) = {(u, v) : puv �= 0} ⊂ N
n × N

n . The Hermitian
polynomial p is nonnegative if p(z) ≥ 0 for all z ∈ C

n . Further, we say that p is a sum
of squares if we can write

p =
∑
k

q2k (8)

for Hermitian polynomials qk . If p(z) is a Hermitian polynomial we will often consider
the real polynomial P(a, b) = p(a + ib) in R[a1, . . . , an, b1, . . . , bn]. One can check
that p is a sum-of-squares if and only if P is a sum-of-squares of real polynomials.

Remark 2 (Sums of squares for Hermitian polynomials). Another common definition
of a Hermitian polynomial p(z) being a sum-of-squares is that p can be written as
p(z) = ∑

k |gk(z)|2 where gk are (holomorphic) polynomials in z only (and not in z̄).
Clearly if p has such a representation then it is a sum-of-squares in the sense (8) since
then p = ∑

k Re[gk]2 +Im[gk]2 and Re[gk] and Im[gk] are both Hermitian polynomials.
The converse however is not true. It is possible that a polynomial p has a representation
(8) and cannot be written as a sum of modulus squares of holomorphic polynomial
mappings. See e.g., [DP09] for more on this distinction. In this paper we only work with
the definition (8) of sums of squares.

2.2. Sep, PPT, nonnegative polynomials, and sums of squares. For convenience, wewill
work in this paper with the cone of separable states, where we drop the normalization
condition:

SEP(n,m) = conv
{
xx† ⊗ yy† : x ∈ C

n, y ∈ C
m
}

.

One can verify that Sep(n,m) is the compact slice Sep(n,m) = SEP(n,m) ∩ {ρ :
Tr ρ = 1}.2 Let also PPT be the cone of states that have positive partial transpose, i.e.,

PPT (n,m) = {
ρ ∈ Hnm : ρ � 0 and (I ⊗ T)(ρ) � 0

}

so that PPT(n,m) = PPT (n,m) ∩ {ρ : Tr ρ = 1}.
Dual of Sep For any integer k, let Mk = C

k×k . A C-linear map � : Mn → Mm that
is Hermitian preserving is positive if �(ρ) � 0 whenever ρ � 0. Equivalently, � is
positive if the degree-four Hermitian polynomial p(x, y) = y†�

(
xx†

)
y is nonnegative

onCn+m � C
n ×C

m . It is well-known that the dual of SEP(n,m) can be identified, via

2 Indeed if ρ = ∑
i pk xk x

†
k ⊗ yk y

†
k with Tr ρ = 1 and pk ≥ 0, then by redefining pk ← pk |xk |2|yk |2

we can assume without loss of generality that |xk | = |yk | = 1. Taking the trace on both sides of ρ =∑
i pk xk x

†
k ⊗ yk y

†
k tells us that 1 = ∑

k pk since Tr ρ = 1, i.e., ρ ∈ Sep(n,m).
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the Choi isomorphism3, with the cone of positive maps Mn → Mm (see e.g., [AS17a,
Table 2.2]). Equivalently, the dual of SEP(n,m) can be identified with nonnegative
degree-four Hermitian polynomials of the form

p(x, y) =
∑

1≤i, j≤n
1≤k,l≤m

pi jkl xi x̄ j yk ȳl (x ∈ C
n, y ∈ C

m) (9)

where pi jkl = �(Ei j )lk . Polynomials of the form (9) have a biquadratic structure: they
are quadratic independently in each block of variables x and y. The duality betweenSEP
and nonnegative polynomials of the form (9) is in fact immediate from the definition of
SEP .

Dual of PPT Using the identification above, it turns out that the dual of PPT (n,m)

corresponds to polynomials p(x, y) that are sums of squares. Indeed, it is well-known
(see again [AS17a, Table 2.2]) that the dual cone of PPT (n,m) can be identified, via
the Choi isomorphism, with the cone of maps � : Mn → Mm that are decomposable,
i.e., that can be written � = S1 + S2 ◦ T where S1 and S2 are two completely positive
maps, and T is the transpose map. Recall that a map S : Mn → Mm is completely
positive if there exist matrices Vt such that S(X) = ∑

t V
∗
t XVt . One can verify that a

map � is decomposable if and only if, the associated Hermitian polynomial (9) is a sum
of squares.We did not find any reference for this equivalence, so we include a proof here.
(The proofs we found in the literature are only for the direction ⇒ in Proposition 1. The
proof of Proposition 1 is a special case of a more general result in [FF20], joint with Kun
Fang, where it is shown that the dual of DPSk can be identified with a sum-of-squares
condition of degree k.)

Proposition 1. A map � : Mn → Mm is decomposable if, and only if, the Hermitian
polynomial p(x, y) = y†�

(
xx†

)
y is a sum of squares.

Proof. If S(ρ)=∑
t VtρV

†
t is a completely positivemap then y†S(xx†)y = ∑

t y
†Vt xx†

V †
t y = ∑

t |ȳTVt x |2 is a sum-of-squares. Also for the transpose map T, we have
y†(S ◦ T)(xx†)y = y†S(x̄ x̄†)y = ∑

t |yTV̄t x |2 is also a sum-of-squares. It follows
that if � is decomposable then p(x, y) = y†�

(
xx†

)
y is a sum-of-squares.

We now prove the converse. Assume p(x, y) = y†�(xx†)y is a sum-of-squares, i.e.,
p(x, y) = ∑

t qt (x, y)
2 for some Hermitian polynomials qt . We need to show that �

is decomposable. Because of the biquadratic structure of p we see that qt cannot have
monomials x2i , x̄i

2, xi x j , x̄i x̄ j , xi x̄ j or x̄i x j and similarly for the y’s. Thus this means
that qt must have the form

qt (x, y) = xTMt y︸ ︷︷ ︸
gt

+ x̄T M̄t ȳ︸ ︷︷ ︸
ḡt

+ xTNt ȳ︸ ︷︷ ︸
ht

+ x̄TNt y︸ ︷︷ ︸
h̄t

where M ∈ C
n×n and N ∈ C

m×m . Squaring qt we get

q2t = g2t + 2|gt |2 + 2gtht + 2gt h̄t + ḡt
2 + 2ḡt ht + 2ḡt h̄t + h2t + 2|ht |2 + h̄t

2
.

3 The Choi isomorphism associates with a channel � : Mn → Mm the state C(�) = ∑
1≤i, j≤n Ei j ⊗

�(Ei j ) ∈ C
nm×nm where Ei j is the matrix with a 1 in entry (i, j) and zero elsewhere. The state C(�)

satisfies for any x ∈ C
n and y ∈ C

m the identity Tr[C(�)xx† ⊗ yy†] = y†�(x̄ x̄†)y.
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When summing
∑

k q
2
t we see that the only terms that can produce monomials of the

form xi x̄ j yk ȳl (the monomials that appear in p) are the terms 2|gt |2 and 2|ht |2. The sum
of all the other terms must thus be equal to 0. At the end we get (including the constant
2 in Mt and Nt ):

p =
∑
t

|xTMt y|2 + |xTNt ȳ|2.

From here it easily follows that � = S1 + S2 ◦ T where S1(ρ) = ∑
t NtρN

†
t and

S2(ρ) = ∑
t M̄tρ M̄t

†
. ��

The following diagram summarizes the discussion above.

SEP ⊂ PPT

(duality)

�⏐⏐�
�⏐⏐�(duality)

Nonnegative
Hermitian polynomials (9) ⊃ Sum-of-squares

Hermitian polynomials (9)

2.3. Semialgebraic sets and functions. Semialgebraic sets A semialgebraic subset of
R
n is a subset that can be defined by afinite boolean combination of polynomial equations

(P = 0) and inequalities (P > 0) where P ∈ R[x1, . . . , xn]. For example a set of the
form {w ∈ R

D : M0 + w1M1 + · · · + wDMD � 0} is semialgebraic since the condition
that a matrix is positive semidefinite can be expressed by a finite number of polynomial
inequalities. The set of separable states can be shown to be semialgebraic. One can prove
this using the celebrated and powerful result of Tarski stating that the projection of a
semialgebraic set is semialgebraic. A consequence of Tarski’s theorem is that the convex
hull of a semialgebraic set S ⊂ R

n is semialgebraic. Indeed this is because we can write
conv(S) as the projection on the x component of the following semialgebraic set

{
(x, λ, s1, . . . , sn+1) ∈ R

n × R
n+1 × (Rn)n+1 :

λ1, . . . , λn+1 ≥ 0, s1, . . . , sn+1 ∈ S, x =
n+1∑
i=1

λi si and
n+1∑
i=1

λi = 1
}
.

(Note that, by Carathéodory theorem any element in conv(S) is a convex combination
of at most n + 1 points in S.) To see why the set Sep(n,m) is a semialgebraic subset of
Hnm � R

2(nm)2 first note that the following set
{
(ρ, x, y) ∈ Hnm × C

n × C
m s.t. ρ = xx† ⊗ yy† and |x |2 = |y|2 = 1

}
(10)

is a semalgebraic subset ofHnm ×C
n ×C

m � R
2(nm)2 ×R

2n ×R
2m since the equations

can all be written as real polynomial equations in the real and imaginary components.
By Tarski’s theorem it follows that the projection of (10) on theHnm component, which
is precisely the set of pure product states, is semialgebraic. Thus Sep is semialgebraic
as the convex hull of a semialgebraic set.

Semialgebraic functions A function f : Rn → R
m is called semialgebraic if its graph

{(x, f (x)) : x ∈ R
n} ⊆ R

n × R
m is a semialgebraic set. Even though semialgebraic
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functions form a very broad class of functions, they are tame and possess nice regularity
properties. Examples of semialgebraic functions are polynomials, rational functions, or
power functions (with rational exponent). Functions that are not semialgebraic are e.g.,
exp(x), or the indicator function of the rationals in R. We state two basic results about
semialgebraic functions that will be crucial for us.

Theorem 4 (Almost everywhere smoothness of semialgebraic functions). Let f : Rn →
R be a semialgebraic function. Then f is smooth (C∞) everywhere except possibly on
the zero set of a polynomial P ∈ R[x1, . . . , xn] \ {0}.
Proof. See e.g., [HP16, Theorem 1.7]. ��

Clearly Theorem 4 is not true for general functions, cf. the indicator function of the
rationals in R. The second result that we will need concerns semialgebraic functions in
one variable.

Theorem 5. (Puiseux expansion for one-dimensional semialgebraic functions) Assume
f : (0, η) → R where η > 0, is a semialgebraic continuous function that is bounded.
Then f can be extended by continuity to the interval [0, η). Additionally, there exists an
integer m such that the map t �→ f (tm) is C∞ on [0, ε) for some 0 < ε < η.

Proof. See [BPR06, Section 3.3]. ��
We note that the theorem above is not true for arbitrary functions. For example the

function x �→ sin(1/x) is bounded and continuous on any interval (0, η) but cannot be
extended by continuity at 0. We finally record the following result which will also be
needed for our proof. It simply says that any linear map, restricted to a semialgebraic
set always admits a semialgebraic inverse.

Theorem 6. Let S ⊂ R
N be a semialgebraic set and let π : RN → R

n be a linear map.
Then there exists a semialgebraic function F : π(S) → S that satisfies π(F(x)) = x
for all x ∈ π(S).

Proof. See [HP16, Lemma 1.5]. ��

3. Semidefinite Programming Lifts

We are now ready to start the proof of Theorem 2 (and thus of Theorem 1 too). The first
thing we need is a necessary condition for the existence of a semidefinite representation
for a given convex set C . The condition we state in Theorem 7 below is very similar to
[GPT13, Theorem 1]4. Recall that, for A ⊂ N

n ×N
n we denote bymA(z) the monomial

map:

mA(z) = [
zu z̄v

]
(u,v)∈A .

We also denote by cl S the (topological) closure of a set S.

Theorem 7. Let A ⊂ N
n × N

n. Assume that

CA = cl conv
{
mA(z) : z ∈ C

n}

has a semidefinite representation of size k. Then there exists 2k2 +1 semialgebraic func-
tions f j : Cn → R ( j = 1, . . . , 2k2+1) such that any nonnegativeHermitian polynomial

4 The given condition is also sufficient, but we will only need necessity here.
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p supported on A ∪ {(0, 0)} is a sum-of-squares from V = spanR( f1, . . . , f2k2+1), i.e.,
p = ∑

j h
2
j for some h j ∈ V . Furthermore, the magnitude of the coefficients expressing

the h j in terms of the basis ( f1, . . . , f2k2+1) are all bounded by φ(‖p‖)where ‖p‖ is the
largest magnitude of the coefficients of p, and φ is some polynomial that only depends
on the semidefinite representation of CA.

The main difference between the statement above and the one in [GPT13] (see also
[Faw16, Theorem 5, Chapter 2]) is that here the functions f1, . . . , f2k2+1 are semi-
algebraic. (We say that a function f : C

n → R is semialgebraic if the function
F : R

n × R
n → R defined by F(a, b) = f (a + ib) is semialgebraic.) This obser-

vation will be crucial to us. We note that a statement similar to the theorem above
appears as Theorem 3.4 in [Sch18]. Instead of working with semialgebraic functions,
Scheiderer works with polynomial functions on an algebraic variety X .

Proof. Assume that CA = π(S)where S is a spectrahedron defined using a linear matrix
inequality of size k × k:

S =
{
w ∈ R

N : M(w) := M0 + M1w1 + · · · + MNwN � 0
}

.

We can assume without loss generality that S has nonempty interior in RN . This in turn
implies, using standard results about spectrahedra, that there exists w̃ ∈ S such that
M(w̃) is positive definite (possibly after changing M), see e.g., [RG95, Section 2.4].

For any z ∈ C
n there existsw(z) ∈ S such that π(w(z)) = mA(z). Since M(w(z)) �

0 we can find F(z) ∈ C
k×k such that M(w(z)) = F(z)F(z)†. Furthermore, by Theo-

rem 6, the function z ∈ C
n �→ F(z) ∈ C

k×k can be taken to be semialgebraic.
Let p(z) be a Hermitian polynomial supported on A ∪ {(0, 0)}, i.e., p(z) = 〈 p̃,

mA(z)〉 + c for some c ∈ R, where p̃ denotes the coefficients of the polynomial p(z) in
the monomial basis. Since p ≥ 0 we get 〈 p̃,mA(z)〉+ c ≥ 0 for all z ∈ C

n . This implies
that 〈 p̃, σ 〉 + c ≥ 0 for all σ ∈ CA. We can lift this linear inequality to an inequality on
the spectrahedron S, i.e., we have 〈 p̃, π(w)〉 + c ≥ 0 for all w ∈ S, in other words

〈π∗( p̃), w〉 + c ≥ 0 ∀w ∈ R
N s.t. M(w) � 0.

By Farkas’ lemma/duality for SDPs, this means that there exists B � 0 and b ≥ 0 such
that

〈π∗( p̃), w〉 + c = 〈B, M(w)〉 + b ∀w ∈ R
N . (11)

Plugging w = w(z) we get

〈 p̃, π(w(z))〉 + c = 〈B, M(w(z))〉 + b = 〈B, F(z)F(z)†〉 + b.

Since π(w(z)) = mA(z) and 〈 p̃,mA(z)〉 = p(z) we get finally that p(z) + c =
〈B, F(z)F(z)†〉 + b for all z ∈ C

n . Factorizing B = DD† we get

p(z) + c = Tr
[
DD†F(z)F(z)†

]
+ b =

k∑
i j=1

|D†F(z)|2i j + b

=
k∑

i j=1

Re[(D†F(z))i j ]2 + Im[(D†F(z))i j ]2 + b.
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If we define the 2k2 + 1 semialgebraic functions to be the constant function and the
z �→ Re[Fi j (z)] and z �→ Im[Fi j (z)], we get the desired claim.

For the last statement of the theorem, we show that the coefficients of B (and thus of
D) are bounded by a polynomial in the coefficients of p. To get this, we can simply plug
the value w = w̃ that makes M(w) positive definite in (11). If we denote by λ > 0 the
smallest eigenvalue of M(w̃) we get 〈π∗( p̃), w̃〉 + c = 〈B, M(w̃)〉 + b ≥ λTr[B] + b ≥
λ‖B‖ + b, thus max(‖B‖, b) ≤ (〈π∗( p̃), w̃〉 + c)/min(λ, 1) ≤ O(max{‖p‖, |c|}). ��

4. Proof of Theorem 2

We are now ready to prove our main theorem, Theorem 2. We first recall a piece of
notation that we will use throughout the proof: for any function f : C

n → R we
associate the function of real variables F : Rn × R

n → R, denoted by a capital letter,
defined by F(a, b) = f (a + ib). We will also sometimes think of a vector z ∈ C

n as
z ∈ R

2n and write for instance F(z).
Assume that CA has an SDP representation. Then, from Theorem 7 there exist semi-

algebraic functions f1, . . . , fr : Cn → R such that the following is true:

Any nonnegative Hermitian polynomial supported on A ∪ {(0, 0)}
is a sum-of-squares of functions from spanR( f1, . . . , fr ).

(∗)
We will now prove that the functions fi can be taken to be smooth at the origin.

(By this we mean that the associated functions Fi : R
n × R

n → R are smooth at
(0, 0).) This will follow from our assumption that A is downward closed. Since the Fi
are semialgebraic we know from Theorem 4 that each Fi is smooth almost everywhere.
Thus we can find a common point z0 = (a0, b0) ∈ R

n × R
n such that all functions

Fi are smooth at z0. Now let f̃i (z) = fi (z − z0) for all i ∈ {1, . . . , r}. We claim that
these semialgebraic functions still satisfy the property (∗). Indeed if q is a nonnegative
Hermitian polynomial supported on A ∪ {(0, 0)} then q(z + z0) is nonnegative and is
also supported on A, since A is downward closed. It follows that q(z + z0) is a sum-
of-squares from spanR( f1, . . . , fr ). But this implies that q(z) is a sum-of-squares from
spanR( f̃1, . . . , f̃r ).

In the rest of the proof we will thus assume that the F1, . . . , Fr are smooth at the
origin. If p is homogeneous we are almost done by the following simple observation: if
P is a real homogeneous polynomial and P = ∑

j H
2
j for some functions Hj : Rm → R

that are smooth at the origin, then P is a sum-of-squares of polynomials. This can be
proved by a simple Taylor expansion; for example by applying the following proposition

to the identity t2k P(z) = P(t z) = ∑
j H j (t z)2 and observing that dk

dtk
Hj (t z)

∣∣∣
t=0

is a

degree k polynomial in z ∈ R
2n (it is the k’th term in the Taylor expansion of Hj at z).

Proposition 2. Assume that g j : [0, η) → R are smooth functions5 and that there exists

a ∈ R such that at2k = ∑
j g j (t)2 for all t ∈ [0, η). Then a = ∑

j

(
g(k)
j (0)
k!

)2

.

Proof. If we Taylor expand the g j at 0 we get at2k = ∑
j (g j (0) + tg′

j (0) + · · · +
tkg(k)

j (0)/k!+o(tk))2. By equating powers of t we get that g j (0) = · · · = g(k−1)
j (0) = 0

and that a = ∑
j (g

(k)
j (0)/k!)2 as desired. ��

5 Smoothness at 0 is smoothness on the right.
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The case where p is not necessarily homogeneous requires an additional argument.
The following argument is inspired from [Sch18, Proposition 4.18]. Let 2d = deg p, and
for any t ∈ R consider the Hermitian polynomial pt (z) = t2d p(z/t). This Hermitian
polynomial is nonnegative and is also supported on A. Thus we know from property (∗)
that there exist real coefficients a j (t) ∈ R

r s.t.

Pt (z) =
∑
j

(
a j (t)

TF(z)
)2 ∀z ∈ R

2n (12)

where we let F(z) = (F1(z), . . . , Fr (z)). The functions a j (t) are defined by a semialge-
braic relation and so can be taken to be semialgebraic. As such the a j must be continuous
on some (0, η) for η > 0. From the last part of the statement of Theorem 7 we also
know that the a j must be bounded on (0, η). Thus, by Theorem 5 we know that the a j
can be extended by continuity to [0, η) and that for large enough m, a j (tm) is smooth
on [0, η′) for some 0 < η′ < η. From (12) we get:

Ptm (tmz) =
∑
j

(a j (t
m)TF(tmz))2.

But note that Ptm (tmz) = t2dm P(z). Thus

t2dm P(z) =
∑
j

(a j (t
m)TF(tmz))2.

If we let g j (t) = a j (tm)TF(tmz) we know that the g j are smooth on [0, η′), since the
F are smooth at the origin. We can apply the observation of Proposition 2 to get that

P(z) =
∑
j

(
g(dm)
j (0)

(dm)!

)2

.

But from the definition of g j , g
(dm)
j (0) is a polynomial of degree d in z (this can be seen

e.g., by considering a Taylor expansion of F at the origin and of t �→ a j (tm) at t = 0).
This contradicts the assumption that p(z) is not a sum of squares of polynomials.

5. Proof of Theorem 1

The case Sep(3, 3): We prove that SEP(3, 3) has no semidefinite representation. Define
the Choi polynomial [Cho75] by

p(x, y) = |x1|2|y1|2 + |x2|2|y2|2 + |x3|2|y3|2
− 2(Re[x1 x̄2y1 ȳ2] + Re[x2 x̄3y2 ȳ3] + Re[x1 x̄3y1 ȳ3])
+ 2(|x1|2|y2|2 + |x2|2|y3|2 + |x3|2|y1|2).

It was shown in [Cho75] (see also [Cho80, Appendix B]) that p(x, y) ≥ 0 for all (x, y) ∈
C
3 × C

3, and yet p(x, y) is not a sum of squares. In fact the real polynomial p(x, y)
when (x, y) ∈ R

3 ×R
3 is not a sum of squares. It follows, by a simple homogenization
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argument, that the Hermitian polynomial p̂(x1, x2, y1, y2) = p(x1, x2, 1, y1, y2, 1) is
not a sum of squares. Note that the support of p̂ satisfies

supp p̂⊂ Â=
{
(α, β, γ, δ)∈(N2×N

2)×(N2×N
2) : |α|≤1, |β|≤1, |γ |≤1, |δ|≤1

}
.

Since Â is downward closed it follows from Theorem 2 that

C Â = cl conv
{
m Â(x, y) : (x, y) ∈ C

2 × C
2
}

= cl conv
{[
xα yβ x̄γ ȳδ

]
|α|≤1,|β|≤1,|γ |≤1,|δ|≤1 : (x, y) ∈ C

2 × C
2
} (13)

does not have a semidefinite representation. To conclude that SEP(3, 3) has no semidef-
inite representation, it remains to note that C Â is a hyperplane section of SEP(3, 3).
Indeed, first recall that SEP(3, 3) can be written as

SEP(3, 3) = cl conv
{
mA(x, y) : (x, y) ∈ C

3 × C
3
}

where

A =
{
(α, β, γ, δ) ∈ (N3 × N

3) × (N3 × N
3) : |α| = 1, |β| = 1, |γ | = 1, |δ| = 1

}
.

It is easy to see that there is a one-to-one correspondence between Â and A. In terms of the
monomial mapm this simply means thatmA is the homogenization ofm Â. For example
under an appropriate ordering of the monomials we have mA(x1, x2, x3, y1, y2, y3) =
|x3|2|y3|2m Â

(
x
x3

,
y
y3

)
where we let x = (x1, x2) and y = (y1, y2). It thus follows that

SEP(3, 3) can be written as

SEP(3, 3) = cl conv
{
|x3|2|y3|2m Â

(
x

x3
,
y

y3

)
: (x, y) ∈ C

3 × C
3
}

.

It can then be readily verified that C Â is a hyperplane section of SEP(3, 3) where the
appropriate coordinate (corresponding to the monomial |x3|2|y3|2) is set to 1.
The case Sep(4, 2): Following the same approach as above, we need to exhibit a Her-
mitian polynomial p̂(x1, x2, x3, y) supported on

Â =
{
(α, β, γ, δ) ∈ (N3 × N) × (N3 × N) : |α| ≤ 1, |β| ≤ 1, |γ | ≤ 1, |δ| ≤ 1

}
(14)

that is nonnegative but not a sum-of-squares. Since Sep(4, 2) �= PPT(4, 2)we know that
there exists a Hermitian homogeneous polynomial p(x, y) on (x, y) ∈ C

4 × C
2 of the

form

p(x, y) =
∑
i jkl

pi jkl xi x̄ j yk ȳl (x ∈ C
4, y ∈ C

2)

that is nonnegative but not a sum of squares. Note that such a p satisfies p(λx, μy) =
|λ|2|μ|2 p(x, y) for any (λ, μ) ∈ C

2. To get the desired polynomial p̂ it would suffice
to dehomogenize the polynomial p by setting one of the x variables to 1, and one of
the y variables to 1. It turns out, however, that one cannot guarantee in general that this
dehomogenized polynomial is not a sum of squares. (We give an explicit example in
Appendix A.) The reason we could dehomogenize the Choi polynomial in the (3, 3)
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case was that the Choi polynomial is not a sum of squares when the variables are real.
One cannot expect this to be true for our polynomial in (4,2) variables as it is known
that any biquadratic real polynomial in (n, 2) variables is a sum of squares [Cal73].
Nevertheless we show in Appendix A that by choosing an appropriate polynomial p,
and an appropriate dehomogenization we can get a polynomial p̂(x, y) supported on
Â of Eq. (14) that is not a sum-of-squares. This implies that C Â is not semidefinite
representable. Using a similar argument as for the (3, 3) case we get that SEP(4, 2) is
not semidefinite representable.
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A. The Case Sep(4, 2)

In this sectionwe exhibit a nonnegativeHermitian polynomial p̂(x1, x2, x3, y) supported
on Â, defined in Eq. (14), that is not a sum of squares.

Consider the following map � : M2 → M4 studied in [HK16]:

�

([
x y
z w

])
=
⎡
⎢⎣
3w + 4x − 2y − 2z 2z − 2x 0 0

2y − 2x 2x z 0
0 y 2w −w − 2z
0 0 −w − 2y 2w + 4x

⎤
⎥⎦ .

It is shown in [HK16] that the map � is positive but not decomposable. We associate to
� the Hermitian polynomial

W(x, y) = x†�(yy†)x x ∈ C
4, y ∈ C

2.

Then we know from Proposition 1 that W is positive but not a sum of squares. The
purpose of this section is to prove the following:

Proposition 3 The (nonhomogeneous) Hermitian polynomial W(1, x2, x3, x4, 1, y2) is
not a sum of squares.

The proof of this proposition involves some computations, and we use the specific
properties of W (its zeros) which have been studied in [HK16]. We note that there are
other dehomogenizations of W that are sums of squares. For example, we show later
that W(x1, x2,−6, x4, 1, y2) is a sum of squares.

http://creativecommons.org/licenses/by/4.0/
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Proof of Proposition 3. To lighten the notation we let y2 = α. In [HK16], the zeros of
the polynomial W were identified. Namely it was shown that

W(x1(α), x2(α), x3(α), x4(α), 1, α) = 0 ∀α ∈ C (15)

where

x(α) :=
(
2α(1 − α), α

[
4 − 2(α + ᾱ) + 3|α|2

]
, −4 − 2|α|2, −ᾱ(2 + α)

)
∈ C

4.

Let p(x2, x3, x4, α) = W(1, x2, x3, x4, 1, α). The explicit formula of p is

p(x2, x3, x4, α) = 2|α|2|x3|2 + 2|α|2|x4|2 − x3 x̄4|α|2 − x̄3x4|α|2
+ x̄2x3α + x2 x̄3ᾱ − 2x̄3x4α − 2x3 x̄4ᾱ

+ 3|α|2 + 2|x2|2 + 4|x4|2 + 2x2α + 2x̄2ᾱ

− 2x2 − 2x̄2 − 2α − 2ᾱ + 4.

Assume that p = ∑
i g

2
i where gi are Hermitian polynomials in x2, x3, x4, α. Since p

has no terms |x3|2 we see that the gi cannot contain monomials x3 or x̄3. Similarly p
does not have a term |α|2|x2|2 and so the gi cannot contain monomials αx2, ᾱx2, α x̄2
or ᾱ x̄2. It follows that each gi must be a linear combination of the monomials

1, α, x2, x4, αx3, αx4, ᾱx3, ᾱx4

and their conjugates. In other words, each gi is of the form:

gi (x2, x3, x4, α) = ai + biα + ci x2 + di x4 + eiαx3 + fiαx4 + gi ᾱx3 + hi ᾱx4

+ b̄i ᾱ + c̄i x̄2 + d̄i x̄4 + ēi ᾱ x̄3 + f̄i ᾱ x̄4 + ḡiα x̄3 + h̄iα x̄4
(16)

where ai , bi , . . . , hi ∈ C. We will now use the information about the zeros of W (and
thus of p) to deduce relations about these coefficients and reach a contradiction.
Since W is bihomogeneous in the first set of variables, we have (dividing by |x1(α)|2)
from (15) that

p

(
x2(α)

x1(α)
,

x3(α)

x1(α)
,

x4(α)

x1(α)
, α

)
= 0, ∀α ∈ C \ {0, 1}.

Since p = ∑
i g

2
i we get that for all i ,

gi

(
x2(α)

x1(α)
,

x3(α)

x1(α)
,

x4(α)

x1(α)
, α

)
= 0, ∀α ∈ C \ {0, 1}. (17)

We can clear denominators in (17) by multiplying the expression by |x1(α)|2. As a result
we get that

|x1(α)|2gi
(

x2(α)

x1(α)
,

x3(α)

x1(α)
,

x4(α)

x1(α)
, α

)
= 0, ∀α ∈ C. (18)

The left-hand side of (18) is aHermitian polynomial inα that is identically zero.Hence all
its coefficients must be equal to 0. This allows us to derive conditions on the coefficients
of gi in (16). More precisely:

• The coefficient of α4 is 4h̄i . Setting 4h̄i to zero yields hi = 0.
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• The coefficient of α4ᾱ is 4ḡi + 2h̄i . Setting to zero we get gi = 0.
• The coefficient of α2 is −4d̄i − 8ḡi . Setting to zero we get di = 0.

This gives a contradiction: indeed the coefficient of |x4|2 in p is 4 > 0 and yet
∑

i |di |2 =
0. ��

We conclude this appendix by proving, as promised, that there is another dehomog-
enization of W that is a sum of squares. Let:

q(x1, x2, x4, α) = W(x1, x2,−6, x4, 1, α).

Let

A =

⎛
⎜⎜⎜⎜⎜⎝

36 0 −3 0 0 0
0 2 −1 0 −1 0

−3 −1 1 0 1 0
0 0 0 2 0 0
0 −1 1 0 3

2 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 6 0 3
0 0 0 0 0 −1
0 0 0 0 0 0
6 0 0 0 1 0
0 0 0 1 0 0
3 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

One can verify that A − B � 0 and A + B � 0, i.e., that
[
A B
B A

] � 0.
Let m(x1, x2, x4, α) = (α, x1, x2, x4, ᾱx1, ᾱx4). Then one can check that we have the
following sum of squares decomposition of q:

q(x1, x2, x4, α) =
[
m(x, α)

m̄(x, α)

]† [
A B
B A

] [
m(x, α)

m̄(x, α)

]
.
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