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Abstract: We give a complete classification of Airy structures for finite-dimensional
simple Lie algebras over C, and to some extent also over R, up to isomorphisms and
gauge transformations. The result is that the only algebras of this type which admit
any Airy structures are sl2, sp4 and sp10. Among these, each admits exactly two non-
equivalent Airy structures. Our methods apply directly also to semisimple Lie algebras.
In this case it turns out that the number of non-equivalent Airy structures is countably
infinite. We have derived a number of interesting properties of these Airy structures and
constructed many examples. Techniques used to derive our results may be described,
broadly speaking, as an application of representation theory in semiclassical analysis.
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1. Introduction

Quantum Airy structure is a set of differential operators of the form1

Li = �∂i − 1

2
Ai jk x

j xk − �Bk
i j x

j∂k − �
2

2
C jk
i ∂ j∂k − �Di , i ∈ {1, . . . , n}, (1.1)

spanning a Lie algebra g with structure constants f ki j :

�
−1[Li , L j ] = f ki j Lk . (1.2)

Airy structureswere introduced in [1] as a reformulation andgeneralization of a systemof
recursive equations, referred to as the Chekhov–Eynard–Orantin topological recursion
[2–4]. Formulated originally in the language of matrix motels, the CEO topological
recursion can be rephrased more abstractly as a procedure which assigns invariants to
spectral curves, i.e. Riemann surfaces equippedwith certain additional geometric structre
[3,4]. This turned out to be useful in the study of Hurwitz numbers [5–9], computation
of Gromov–Witten invariants [10], in knot theory [11,12], integrable systems [13,14]
and topological quantum field theories [15]. Furthermore it is connected with the subject
of quantum curves [16–18].

It is thus conceivable that results concerning Airy structures (and their supersym-
metric generalizations [19], related to supereigenvalue models and the corresponding
topological recursion [20–24])may find applications in some of the subjects listed above.

Every quantum Airy structure admits [1,25] a unique “free energy” F , which is a
series in � and xi satisfying differential equations

Li · e�
−1F = 0 (1.3)

and initial conditions F(0, �) = ∂i F(0, 0) = ∂i∂ j F(0, 0) = 0. Thus the corresponding

partition function Z = e�
−1F may be viewed as WKB wave function2 of a quantum

system whose symmetry is generated by hamiltonians Li .
One important question about any class of mathematical objects is the classification

problem, which asks for a complete list of all (up to suitably defined equivalence) objects
satisfying the pertinent axioms. It is unlikely that such list of all Airy structures could
ever be obtained. However, one may still hope to classify some special classes of Airy
structures. In [26] study of this problem was initiated for Airy structures for which the
Lie algebra g is finite-dimensional and simple. Somewhat surprisingly, only one example
was found. This suggests that assumption of simplicity imposes very strong constraints.
Indeed, in this work we provide a solution to this classification problem. It turns out
that there exist precisely six inequivalent Airy structures, two for each of sl2, sp4 and
sp10. We construct these Airy structures explicitly. More detailed summary is given in
the Sect. 5.4. Methods developed in order to obtain these results are of independent
interest, because they apply also to the case of semisimple g. In this more general case

1 Repeated indices are always summed over.
2 In certain cases this wave function really is the partition function of some system.
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classification program is not finished, but significant progress has been made in this
direction.

The main ideas and methods applied to constrain and construct Airy structures can
be summarized as follows. For the class of Airy structures under consideration, classi-
fication problems for classical and quantum Airy structures are equivalent, as reviewed
below equation (2.3). Thus no information is lost by working with the classical hamil-
tonians instead of directly with quantum operators (1.1). As explained in [1], any such
classical Airy structure may be obtained by expressing the moment map � of a hamil-
tonian action of g on some affine space of dimension 2 dim g in standard coordinates
centered at a regular point of �−1(0). For semisimple Lie algebras all affine represen-
tations are actually linear and completely classified. The part which is not known, to
the best of our knowledge, is for which representations the locus �−1(0), also called
the characteristic variety, has any regular points. To answer this question we use the
fact that the set of regular points of �−1(0) is a cone with a locally transitive action of
a complex Lie group with Lie algebra g. This implies that for any of its points � one
may find a unique element J of the algebra g which is tangent to the ray of �. It is
possible to describe many properties of J , including its spectrum. Having obtained that,
we proceed to the classification. Instead of looking directly for �, we find all possible
forms of J . Once some admissible J is found, element � is obtained by solving the
eigenvalue equation J� = �.

The paper is organized as follows. In Sect. 2 we recall some basic facts about Airy
structures. It contains no new results, but it introduces the language used afterwards.
In Sect. 3 we discuss properties of the characteristic variety and of elements � and
J . These are the main conceptual ingredients of the classification program. Section 4
concerns automorphisms and real forms of Airy structures. In Sect. 5 we perform explicit
calculations, which culminate in the promised list of Airy structures for simple Lie
algebras. Examples of application of our formalism to semisimple Lie algebras are
presented in Sect. 6. We summarize by mentioning possible future directions in Sect. 7.
For convenience of the reader we collect some background material in appendices.
“Appendix A” introduces in an elementary way Lie algebra cohomology groups, which
are used throughout the text. In the “AppendixB”we recall the notions of semisimple and
regular elements of a semisimple Lie algebra. “Appendix C” contains a brief discussion
of invariant polynomials on semisimple Lie algebras.We find relations between invariant
polynomials of various types for the Lie algebra sp10, which is used to find the element J
in this case. Finally, in the “Appendix D” we present an explicit form of Airy structures
for the sl2 and sp4 algebras.WolframMathematicaTM notebookwhich allows to compute
A, B,C tensors for the sp10 algebra is available from the authors upon request.

2. Preliminaries

In general it is necessary to impose additional finiteness conditions on the tensors
A, B,C, D and f appearing in (1.1). These are automatically satisfied if dim g is finite,
which we assume from now on. We work over the field C, but our results are relevant
also for Airy structures over R. Indeed, every real Airy structure admits a natural com-
plexification. Furthermore, we discuss the concept of real forms of Airy structures in
Sect. 4.

The classical limit of a quantum Airy structure is the set of hamiltonians

�i = yi − 1

2
Ai jk x

j xk − Bk
i j x

j yk − 1

2
C jk
i y j yk . (2.1)
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They satisfy relations

{�i , � j } = f ki j�k (2.2)

with respect to the Poisson bracket defined by

{ f, g} = ∂ f

∂yi

∂g

∂xi
− ∂ f

∂xi
∂g

∂yi
. (2.3)

A classical Airy structure may be defined as a set of hamiltonians of the form (2.1)
subject to relations (2.2). Every classical Airy structure may be quantized by putting
Di = 1

2 B
j
i j + δi with any δ satisfying f ki jδk = 0. Thus the set of quantizations of a

given classical Airy structure may be identified with the vector space H0(g, g∗), which
is trivial if [g, g] = g, in particular if g is semisimple. Choice δ = 0 corresponds toWeyl
quantization. This description reduces the classification of Airy structures for a given
Lie algebra to the study of their classical versions.

Classical Airy structures have a transparent geometric interpretation. Consider
the common zero locus of hamiltonians �i ,

� = {(x, y) ∈ C
n × C

n|�1(x, y) = · · · = �n(x, y) = 0} (2.4)

and its Zariski open subset

�s = {q ∈ �| d�1 ∧ · · · ∧ d�n|q �= 0}. (2.5)

Postulated form of �i implies that the origin belongs to �s . Conversely, given a set
of at most quadratic hamiltonians on C

2n satisfying (2.2), define � and �s as above.
Then �s is a Lagrangian submanifold. For any � ∈ �s one can choose a symplectic
affine coordinate chart centered at� in which �i take the form (2.1). Coordinate systems
with desired properties are in one-to-one correspondence with Lagrangian complements
of T��s in C

2n . Hamiltonians corresponding to different complements are related by
a change of coordinates

yi �→ yi , xi �→ xi + si j y j , (2.6)

where s is a symmetric matrix. Maps of this form are called gauge transformations.
There exists an analogous notion for quantum Airy structures [1]. Transformation law
for the associated partition functions is also known [19,26]. One should not fall under
the impression that choice of the Lagrangian complement is completely irrelevant: some
choices lead to much simpler partition functions, and transforming the partition func-
tion to other gauges is not trivial. This description allows one to define classical Airy
structures in a way not referring to coordinates. We introduce also the concept of an
Airy data, which can be thought of as equivalence classes of Airy structures up to gauge
transformations.

Definition 1. Classical Airy structure is a quadruple (g,W,�, V ), where

1. g is a Lie algebra of dimension n.
2. W is an affine space of dimension 2n equipped with a translation invariant symplectic

form ω and a g-action ξ : g → 	(TW ) on W which is hamiltonian with at most
quadratic moment map � : W → g∗.

3. � is an element of �s = {q ∈ �−1(0)| d�|q : TqW → g∗ has rank n}.
4. V is a Lagrangian complement of T��s in W .



Airy Structures for Semisimple Lie Algebras 1539

Triple (g,W,�) satisfying points 1−3 of the above list is called an Airy datum. We say
that Airy datum is nontrivial if n > 0.

We will frequently use the following characterization of the set �s .

Proposition 1. Let (g,W ) be as in the Definition 1. Suppose that g = [g, g]. Then
�s = {� ∈ W |{ξ(T )|�}T∈g is Lagrangian}. (2.7)

Proof. ⊆ : Follows from the preceding discussion (for any g).
⊇ : If {ξ(T )|�}T∈g is Lagrangian, d�|� has rank n. Furthermore, we have

�(�)([T, S]) = ω(ξ(T ), ξ(S))|� = 0. (2.8)

Thus �(�) = �(�)|[g,g] = 0. 
�
Definition 2. Homomorphism of Airy structures (g,W,�, V ) → (g′,W ′,�′, V ′)
is a pair (φ, f ), where φ : g → g′ is a homomorphism of Lie algebras and f is an affine
Poisson map W → W ′, subject to the following conditions:

1. � = φt ◦ �′ ◦ f , where �′ is the moment map of W ′ and φt is the transpose3 of φ.
2. f (�) = �′.
3. d f |� (V ) ⊆ V ′.
If (φ, f ) satisfies only conditions 1 and 2, we say that it is a homomorphism of Airy
data. In other words, the following diagram is required to be commutative:

� W g∗

�′ W ′ g′∗

∈ �

f

∈ �′
φt

Proposition 2. If (φ, f ) : (g,W,�) → (g′,W ′,�′) is a homomorphism of Airy data,
then φ and f are surjective. Moreover we have

∀q ∈ W ∀T ∈ g d f |q (ξ(T )) = ξ ′(φ(T )), (2.9)

where ξ ′ is the g′-action on W ′. In particular φ is uniquely determined by f .

Proof. f is an affine Poisson map, so it is surjective. In particular dim(g) ≥ dim(g′).
Evaluating the differential of � at � we get

d�|� = φt ◦ d�′∣∣
�′ ◦ d f |� . (2.10)

Since the rank of d�|� is equal to dim(g), the rank of φt is at least dim(g). Now choose
T ∈ g, q ∈ W and a holomorphic function g on W ′. Equation � = φt ◦ �′ ◦ f implies
that we have ξ(T )( f ∗g) = f ∗ (

ξ ′(φ(T ))(g)
)
, or in other words

dg| f (q)

(
ξ ′(φ(T )) − d f |q ξ(T )

) = 0. (2.11)

Since g was arbitrary, formula (2.9) follows. The last statement is a consequence of the
formula (2.9) and the fact that the g′-action ξ ′ is faithful. 
�

3 i.e. φt (F) = F ◦ φ for F ∈ g′∗.
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In view of the Proposition 2, one could abuse notation and refer to f itself as a mor-
phism (g,W,�) → (g′,W ′,�′). We choose not to do so, because it is unclear how to
rephrase point 1 in the Definition 2 without referring to φ.

Let (g,W,�) be an Airy datum and let G be a simply-connected Lie group with Lie
algebra g. The g-action on W exponentiates to an affine action of G, which preserves
�−1(0) and�s . By the Jacobian criterion,�s is a nonsingular subvariety ofW of dimen-
sion n. In particular it is a complex manifold with finitely many connected components.
TheG-orbits in�s are open in�s , so they coincide with the connected components. For
any q ∈ �s , let Stab(q) = {g ∈ G|g · q = q} and Orb(q) = {g · q ∈ �s |g ∈ G}. Map-
ping G � g �→ g · q ∈ Orb(q) is a universal cover, with fiber π1(Orb(q)) ∼= Stab(q).
This means that to get a rather complete picture of the topology of �s , it is suffi-
cient to find the connected components and compute the corresponding stabilizers.
This task is relevant for the classification program for several reasons. If (g,W,�′)
is an Airy datum with �′ ∈ Orb(�), there exists g ∈ G such that g · � = �′. Then
(Adg, g) : (g,W,�) → (g,W,�′) is an isomorphism. Secondly, the isomorphism class
of the group Stab(�) is an invariant of Airy data. It allows to distinguish non-isomorphic
Airy data with isomorphic g and W , at least in principle. Finally, an Airy structure and
its partition function may be regarded as a quantization of Orb(�). Thus it is desirable
to know what these spaces look like.

We finish this section with an elementary discussion of products of Airy data.
We remark that Airy datum constructed in the Definition 3 is indeed a product (with
obvious projection maps) in the category of Airy data. There is also an analogous notion
for classical and quantum Airy structures, but we shall not use it.

Definition 3. Given two Airy data (gi ,Wi ,�i ), i = 1, 2 we define the product

(g1,W1,�1) × (g2,W2,�2) = (g1 × g2,W1 × W2, (�1,�2)), (2.12)

with themomentmap onW1×W2 given by �(q1, q2)(T1, T2) = �1(q1)(T1)+�2(q2)(T2).

Definition 4. An Airy datum is said to be indecomposable if it is nontrivial and not
isomorphic to a product of two nontrivial Airy data.

Proposition 3. Every Airy datum is isomorphic to a product of finitely many indecom-
posable Airy data.

Proof. By induction on dimension. 
�

3. Semisimple Lie Algebras: General Facts

Definition 5. Airy datum (g,W,�) is said to be homogeneous if W is a linear repre-
sentation of g with purely quadratic moment map.

We note that according to the Definition 1, W is an affine space. In the case of
homogeneous Airy data, it is instead taken to be a vector space. Equivalently, it comes
equipped with a distinguished element.

Proposition 4. Let (g,W,�) be a homogeneous Airy datum. Suppose that φ is a con-
tinuous function W → C invariant under the G-action. Then φ(�) = φ(0).

Proof. For any λ ∈ C
× we have λ� ∈ �s . In particular λ� belongs to the path

component of �s containing �. Since this set coincides with the orbit of �, we have
φ(�) = φ(λ�), so φ(�) = lim

λ→0
φ(λ�) = φ(0). 
�
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Recall that the null coneN (W ) of a representation W of a group G is defined as the
common zero locus of all G-invariant polynomials on W homogeneous of positive
degree. It is a basic object of interest in classical invariant theory. Proposition 4 implies
that for any homogeneous Airy datum (g,W,�) we have an inclusion �s ⊆ N (W ).
There exist classes of representations for which the structure of the null cone is well
understood. This makes Proposition 4 useful in constraining homogeneous Airy data.
We will now show that assumption of homogeneity leads to no loss of generality in the
case of semisimple Lie algebras.

Proposition 5. Every Airy datum (g,W,�) with semisimple g is isomorphic to a homo-
geneous Airy datum.

Proof. This fact was established in [26]. For completeness we give two other proofs.
Choose a basis in g and a symplectic affine coordinate system in W centered at �

such that the moment map is represented by polynomials of the form (2.1). Decompose
�i = yi + Qi . Then Qi are homogeneous of degree two and satisfy {Qi , Q j } = f ki j Qk ,

so they furnish a linear representation of g on the linear span of xi and yi . Furthermore
relations (2.2) imply the cocycle condition

{Qi , y j } − {Q j , yi } = f ki j yk . (3.1)

By the Whitehead’s lemma (discussed in the “Appendix A”), there exist coefficients a j ,
b j such that

yi = {Qi , a j x
j + b j y j }. (3.2)

Now consider the affine automorphism of W given by

xi �→ xi + bi , yi �→ yi − ai . (3.3)

Generators �i are mapped to Qi + εi , where εi are some constants. Relations (2.2) then
imply that f ki jεk = 0, so ε = 0. We have found a new affine coordinate chart in which
�i are purely quadratic, so the generated G-action is linear.

Onemay also avoid the use of Lie algebra cohomology.4 Insteadwe choose amaximal
compact subgroup K ⊆ G. Using averaging techniques we may find a fixed point of the
action of K on W . This fixed point is then also a fixed point for the action of whole G,
by holomorphicity of the G-action. Expressing the moment map in coordinates centered
at the fixed point we get vanishing linear term. Then commutation relations imply that
the constant term also vanishes. 
�

From now on, we restrict attention to homogeneous Airy data (g,W,�) whenever g
is semisimple. Our next step is to briefly review facts about symplectic representations
of semisimple Lie algebras essential for further discussion.

Fix a semisimple Lie algebra g. Choose a Cartan subalgebra h ⊆ g and a set of
positive roots �+. We let � ⊆ h∗ be the lattice of integral weights, C ⊆ � ⊗Z R ⊆ h∗
the (closed) fundamental Weyl chamber and �+ = � ∩ C the set of dominant integral
weights. We shall also consider the dual lattice �∗ = {H ∈ h|∀μ ∈ � μ(H) ∈ Z} ⊆ h.
In other words, �∗ consists of these elements of h which have integral eigenvalues in
all finite-dimensional representation of g. For any λ ∈ �+, denote the highest weight
module with highest weight λ by Vλ. Each λ ∈ �+ has one of the following mutually
exclusive properties:

4 In fact this argument may be used to give a simple proof of Whitehead’s lemma. Admittedly, it relies
strongly on structure theory of semisimple Lie groups.
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• Vλ is of real type, i.e. H0(g,Sym2Vλ) �= 0,
• Vλ is of quaternionic type, i.e. H0(g,�2Vλ) �= 0,
• Vλ is of complex type, i.e. V ∗

λ
∼= Vλ∗ for some (unique) λ∗ ∈ �\{λ}.

Any finite-dimensional representation W of g decomposes as W = ⊕
λ∈� V⊕mλ

λ , with
mλ ∈ N vanishing for all but finitely many λ. It follows from the Schur’s lemma that
W admits an invariant symplectic form if and only if mλ is even for Vλ of real type and
mλ = mλ∗ for Vλ of complex type. In this situation the symplectic structure on W is
unique up to a g-module isomorphism. The g-action is automatically hamiltonian, with
the moment map uniquely determined as �(q)(T ) = 1

2ω(Tq, q) for q ∈ W and T ∈ g.
Vector space W decomposes as a direct sum of its weight spaces, W = ⊕μ∈�Wμ with

Wμ = {w ∈ W |∀H ∈ h Hw = μ(H)w}
The subspace Wμ is orthogonal to Wν unless μ + ν = 0. The element μ ∈ � is said to
be a weight of W if Wμ �= 0. Dimension of Wμ is called the multiplicity of μ in W .

Proposition 6. If g is a semisimple Lie algebra, then there are finitely many isomorphism
classes of Airy data of the form (g,W,�).

Proof. The number of isomorphism classes of W is finite, symplectic form ω is unique
up to isomorphism and the moment map � is uniquely determined by W and ω. Once g,
W , ω and � are fixed, the space �s has finitely many connected components. 
�

We shall say that a symplectic g-moduleW is admissible if there exists an Airy datum
of the form (g,W,�). This is true if and only if the corresponding set�s is nonempty. It
turns out that many symplectic g-modules of dimension 2 dim g are not admissible. To
rule them out, we will need to better understand properties of the element �. The first
steps in this direction are the following statements:

Proposition 7. Let (g,W,�) be an Airy datum with g semisimple. Then

1. H0(g,W ) = 0,
2. W is not isomorphic to g ⊕ g.

Proof. 1. Let V1, V2 be two irreducible subrepresentations of W such that V2 is not
isomorphic to V ∗

1 . Then V1 and V2 are orthogonal to each other, by Schur’s lemma.
Therefore the sum of all nontrivial irreducible subrepresentations ofW is a subspace
complementary and orthogonal to H0(g,W ). It follows that any element in the kernel
of ω|H0(g,W ) lies in the kernel of ω, which is trivial. Hence H

0(g,W ) is a symplectic
subspace. If H0(g,W ) �= 0, then T��s ⊆ H0(g,W )⊥ � W , so T��s can’t be
Lagrangian.

2. Suppose that the contrary is true. We write� = (�1,�2) ∈ g⊕g. Let p : g×g → g
be a Lie polynomial5 and k > 0 a natural number and consider the function

φ : g × g � (T, S) �→ trgad
k
p(T,S) ∈ C. (3.4)

φ is continuous, g-invariant and φ(0) = 0. Therefore φ(�) = 0 by Proposition 4.
Since p and k were arbitrary,we conclude that for any element T of the Lie subalgebra
n ⊆ g generated by�1,�2, traces of all powers of adT vanish. Thus adT is a nilpotent
endomorphism of g, and hence also of the invariant subspace n ⊆ g. Since T ∈ n
was arbitrary, n is a nilpotent Lie algebra. In particular its center Z(n) is nontrivial,
by Engel’s theorem. Let T ∈ Z(n)\{0}. Then T� = 0, a contradiction. 
�

5 This means that p(T, S) is a linear combination of T , S, [T, S], [S, [T, S]] etc.
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Proposition 8. Let (g,W,�) be a homogeneous Airy datum. There exists a unique J ∈ g
such that J� = �. If g is semisimple, J is a semisimple element of g.

Proof. Since �s is a cone, � ∈ T��s = {T�|T ∈ g}, where we identified T�W with
W itself. This proves the existence of J . If J ′ ∈ g satisfies J ′�, then J ′ = J (since the
annihilator of � in g is trivial). Now assume that g is semisimple and let J = Jss + Jn be
the Jordan–Chevalley decomposition of J . Then Jss� = � and Jn� = 0, so Jss = J .


�
Recall [29] that every semisimple element of a semisimple Lie algebra g belongs

to some (not necessarily unique) Cartan subalgebra of g. Moreover action of the group
of inner automorphisms of g on the set of Cartan subalgebras is transitive. Therefore we
may fix a Cartan subalgebra h ⊆ g. Every Airy datum (g,W,�) is isomorphic to one
such that J ∈ h. From now on, we restrict attention to Airy data of this form. The next
step is to further constrain the element J .

Proposition 9. Let (g,W,�) be an Airy datum with g semisimple. Consider the hyper-
plane H = {μ ∈ h∗|μ(J ) = 1} ⊆ h∗ and its subset � = {μ ∈ H|Wμ �= 0}. Then
1. 0 is not an element of H.
2. � contains a basis of h∗.
3. Each member of the triple (J,H, �) uniquely determines the other two.
4. J is rational, in the sense that J ∈ �∗ ⊗Z Q.
5. There exists an isomorphic Airy datum such that α(J ) ≥ 0 for every α ∈ �+.
6. For any root α there exists μ ∈ � such that μ + α is a weight of W , Wμ+α �= 0.

Proof. 1. Obvious.
2. Suppose otherwise. Then there exists a nonzero H ∈ h such that μ(H) = 0

for each μ ∈ �, so H� = 0. Contradiction.
3. By construction, J determines H and �. J is the unique element T ∈ h such that

μ(T ) = 1 for every μ ∈ H. Since every basis of h is contained in a unique affine
hyperplane, one may reconstruct H from � as the unique hyperplane containing �.

4. Let � = {μ1, . . . , μm}. J is uniquely determined by the affine system of equations
μi (J ) = 1. Since μi belong to � ⊆ � ⊗Z Q = (�∗ ⊗Z Q)∗, this system has a
solution in �∗ ⊗Z Q ⊆ h. Since solution of this system considered in h is unique,
J ∈ �∗ ⊗Z Q.

5. By the previous point, J must belong to the dual cone of some Weyl chamber. Since
the Weyl group acts transitively on the set of Weyl chambers, we may assume that J
lies in the dual cone of the fundamental Weyl chamber.

6. Assume otherwise. Then gα annihilates �. Contradiction. 
�
It is natural to ask if point 4 of the above Proposition can be strengthened, i.e. if J

belongs to the lattice�∗. One of the examples constructed in the Sect. 5.1 shows that this
is not necessarily true even if g is simple. This leads to the concept of the denominator of
J , which is defined as the smallest positive integer denom(J ) such that denom(J ) · J ∈
�∗. Similarly for the point 5, one can ask if condition α(J ) ≥ 0 can be replaced by
a strict inequality. This happens to be true for all simple Lie algebras, but there exist
Airy structures for semisimple Lie algebras for which J is orthogonal to some root of
g, i.e. such that J is not a regular element of g. For the benefit of the reader we recall
the definition and properties of regular elements of a semisimple Lie algebra in the
“Appendix B”.

For fixed g andW the number ofweights ofW is finite, so points 2 and 3 of Proposition
9 determine J up to a finite ambiguity. This ambiguity is reduced by imposing the
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additional condition α(J ) ≥ 0 for every root α. Many of the remaining candidates for
J may be excluded by the following fact.

Proposition 10. Let (g,W,�) be an Airy datum with g semisimple and let λ1, . . . , λn
be the eigenvalues of adJ . Then

1. Each λi is a rational number.
2. Multiplicity of any λ among λ1, . . . , λn is equal to the multiplicity of −λ.

In particular
∑n

i=1 λi = 0.
3. Spectrum of J acting in W takes the form

specW (J ) = {1 + λ1, . . . , 1 + λn,−1 − λ1, . . . ,−1 − λn}. (3.5)

Proof. 1. Special case of 4. in Proposition 9.
2. Follows from skew-symmetry of adJ with respect to the Killing form.
3. Let {Ti }ni=1 be a basis of g with [J, Ti ] = λi Ti . Put ei = Ti�. Vectors ei span

a Lagrangian subspace T��s ⊆ W and satisfy Jei = (1 + λi )ei . To complete
the proof, it is sufficient to show that there exists a Lagrangian complement V of
T��s spanned by vectors { fi }ni=1 with J fi = −(1 + λi ) fi . We proceed inductively.
First notice that ker(J − 1 − λ1) + ker(J + 1 + λ1) is a symplectic subspace of W ,
so we can find f1 with ω(ei , f1) = δi1 and J f1 = −(1 + λ1) f1. Now suppose that
we have found { f1, . . . , fk} for some 1 ≤ k < n. Applying the same argument to the
orthogonal complement of the symplectic subspace spanned by {ei , fi }ki=1 we find
fk+1. 
�
It is of interest to classify indecomposable Airy data for semisimple Lie algebras.

This doesn’t reduce to classification of Airy data for simple Lie algebras. Indeed, explicit
examples of indecomposable Airy data for semisimple Lie algebras which are not simple
are presented in Sect. 6. Here we derive a simple criterion for indecomposability and
prove uniqueness of indecomposable factors.

Definition 6. Let (g,W,�)be anAiry datumwithg semisimple.Wedefine its associated
graph by taking the simple factors of g as vertices, with an edge between two simple
factors g′ and g′′ if and only if W contains an irreducible submodule on which both g′
and g′′ act nontrivially.
Proposition 11. Airy datum (g,W,�) with g semisimple is indecomposable if and only
if its associated graph is connected.

Proof. Clearly (g,W,�) is indecomposable if its associated graphG is connected. Now
suppose thatG is not connected. Thenwemay decompose g = g1×g2 (with both factors
nonzero), W = W1 ⊕ W2. In this situation �s is the product of the corresponding sets
for (g1,W1) and (g2,W2), so also � factorizes. 
�

We remark that the formation of the associated graph is a contravariant functor from
the category of Airy structures for semisimple Lie algebras to the category of graphs.

Proposition 12. Let {(gi ,Wi ,�i )}ni=1 and {(g′
i ,W

′
i ,�

′
i )}mi=1 be indecomposable Airy

data with each gi and g′
i semisimple. Suppose that

(φ, f ) :
n∏

i=1

(gi ,Wi ,�i ) →
m∏

i=1

(g′
i ,W

′
i ,�

′
i ) (3.6)

is an isomorphism. Then m = n and (possibly after a permutation) there exist isomor-
phisms (φi , fi ) : (gi ,Wi ,�i ) → (g′

i ,W
′
i ,�

′
i ) such that φ = ∏n

i=1 φi , f = ∏n
i=1 fi .
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Proof. We identify factors of
∏n

i=1 gi with their images in
∏m

i=1 g
′
i through φ. Using

the fact that simple factors of a semisimple Lie algebra are uniquely determined and
functoriality of the associated graph construction we see that (after a permutation) we
have m = n and g′

i = gi . Then clearly f = ∏n
i=1 fi for some module isomorphisms

fi : Wi → W ′
i . By construction, fi (�i ) = �′

i . 
�
We close this section with a remark that in all examples of Airy data (g,W,�)

constructed in this paper � is a cyclic vector for W . We have not managed to decide if
this is always true for g semisimple. Below we prove a weaker statement.

Proposition 13. Let (g,W,�) be a nontrivial Airy datum with g semisimple. Then
the submodule of W generated by � has dimension strictly greater than dim g.

Proof. LetW ′ ⊆ W be the submodule generated by�. SinceW ′ contains theLagrangian
subspace T��s , we have dimW ′ ≥ dim g. Suppose that this inequality is saturated.
Let {λi }dim g

i=1 be the eigenvalues of adJ . Then the eigenvalues of J acting in W ′ are
{1 + λi }dim g

i=1 , which leads to an absurd chain of equalities

0 = trW ′(J ) = dim(g) + trg(adJ ) = dim(g). (3.7)


�

4. Automorphisms of Airy Data

Proposition 14. Suppose that (g,W,�) is an Airy datum with g semisimple. Then
Stab(�) ⊆ G is a finite group. Moreover Adg(J ) = J for any g ∈ Stab(�).

Proof. G is a linear algebraic group acting algebraically on W . Therefore Stab(�) is
Zariski closed. Furthermore we have dim(Stab(�)) = 0, for otherwise there would exist
an element of g\{0} annihilating�. Thus Stab(�) is finite. Now pick some g ∈ Stab(�).
We have � = gJg−1�, so Adg(J ) = J by uniqueness of J . 
�

We remark that Proposition 14 is false if the assumption of semisimplicity of g
is dropped. In general G does not come equipped with a canonical structure of an alge-
braic variety. Even if such structure exists, it may happen that the G-action on W is not
algebraic. This is the case in some of the examples of Airy data discussed in [25], in
which Stab(�) was found to be infinite cyclic.

Definition 7. Let (φ, f ) be an automorphism of an Airy datum (g,W,�). We shall
say that (φ, f ) is inner (resp. almost inner) if f = g (resp. φ = Adg) for some g ∈
G. Group of inner (resp. almost inner) automorphisms of (g,W,�) will be denoted
by Inn(g,W,�) (resp. AInn(g,W,�)).

Proposition 15. Let (φ, f ) be an automorphism of Airy datum (g,W,�).

1. If f = g for some g ∈ G, then φ = Adg. In particular every inner automorphism is
almost inner.

2. We have Inn(g,W,�) ∼= Stab(�)
Stab(W )

, where Stab(W ) = {g ∈ G|∀q ∈ W g · q = q}. In
particular if g is semisimple, then Inn(g,W,�) is a finite group.

3. Inn(g,W,�) is a normal subgroup of AInn(g,W,�).
4. AInn(g,W,�) is a normal subgroup of Aut(g,W,�).
5. Suppose that (g,W,�) is homogeneous. Then φ(J ) = J .
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6. Suppose that g is semisimple and J is regular. Then Stab(�) is contained in the sub-
group eh ⊆ G generated by h. In particular Stab(�) is abelian.

Proof. 1. Pick T ∈ g. Formula (2.9) gives ξ(φ(Ad−1
g (T ))) = ξ(T ), so by faithfulness

of ξ we have φ(Ad−1
g (T )) = T .

2. Faithfulness of ξ implies that Stab(W ) is a discrete normal (and hence central) sub-
group of G. Thus Stab(�) � g �→ (Adg, g) ∈ Inn(g,W,�) is an epimorphism with
kernel Stab(W ).

3. Suppose that (φ, f ) ∈ AInn(g,W,�). Pick g ∈ G such that φ = Adg . Then
F = g−1 f commutes with the G-action on W , so for any h ∈ Stab(�) we have

(φ, f ) ◦ (Adh, h) ◦ (φ, f )−1 = (Adghg−1, ghg−1). (4.1)

4. Group of inner automorphism of g is a normal subgroup of Aut(g).
5. We have φ(J )� = �, so φ(J ) = J by uniqueness of J .
6. Pick some g ∈ Stab(�). Then Adg(J ) = J , so Adg(h) = h by regularity of J .

If g /∈ eh, there exists a root α such that α(Adg(J )) < 0. Contradiction. 
�
Recall that the real structure on a complex vector space V is an antilinear involution

σ : V → V . The set V σ = {v ∈ V |σ(v) = v} of fixed points of σ is a real subspace
of V with V σ ⊗R C = V . Conversely, given a real subspace V ′ ⊆ V with V ′ ⊗R C = V
there exists a unique real structure σ on V such that V ′ = V σ . Now let g be a complex
Lie algebra. Antilinear involution σ on g is said to be a real structure of g if it is
a homomorphism of real Lie algebras. In this situation gσ is a real Lie algebra. If the
Killing form on gσ is negative-definite, we say that σ is a compact real form. In this
situation g is semisimple and gσ is the Lie algebra of a simply-connected compact
Lie group Gσ . Let W be a representation of g. A real structure K on W is said to be
compatible with σ if K (Tq) = σ(T )K (q) for T ∈ g, q ∈ W , or equivalently if WK

is a representation of gσ and W = WK ⊗R C as a gσ -module. In this situation we
shall abuse the notation by denoting the involution K simply by σ . We remark that real
structures on affine representations of g may also be defined, but by Proposition 5 we
shall not need them here.

Definition 8. Let A = (g,W,�) be a homogeneous Airy datum. A real structure on A
is a real structure σ on g together with a compatible real structure σ on W such that
σ(�) = �.

Proposition 16. Let σ be a real structure on a nontrivial homogeneous Airy datum
(g,W,�). Then σ is not compact.

Proof. We have σ(J )� = �, so σ(J ) = J by uniqueness of J . Since J belongs to gσ ,
we have φ(�) = φ(0) for every continuous, Gσ -invariant function φ : W → C. If Gσ

is compact, averaging techniques allow to construct a Gσ invariant norm ‖ · ‖ on W . It
follows that ‖�‖ = 0, so � = 0. Then d�|� = 0, a contradiction. 
�

As illustrated by examples in Sects. 5 and 6, noncompact real forms do exist, at least
for some Airy data.

5. Simple Lie Algebras: Classification

Proposition 17. We list isomorphism classes of symplectic representations of simple
Lie algebras whose admissibility is not ruled out by the Proposition 7. Whenever g is
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a classical Lie algebra, we denote the tautological representation by F. In the case of
symplectic algebras, we let�k

0F, k ∈ N be the subspace of these elements of�k F whose
any contraction with the symplectic form of F vanishes.

• sl2 : F⊕3, F ⊕ Sym3F, Sym5F.
• sl6 : �2F ⊕ �4F ⊕ (�3F)⊕2.
• sp4 : F

⊕5, F̃⊕4, Sym3F, F ⊗ F̃ . Here F̃ = �2
0F is the tautological representation

of so5, which is isomorphic to sp4.• sp6 : F
⊕7, (�2

0F)⊕2 ⊕ �3
0F, (�

3
0F)⊕3.

• sp8 : F
⊕9, F⊕3 ⊕ �3

0F.
• sp10 : F

⊕11, �3
0F.

• sp2k , k ≥ 6 : F⊕(2k+1).
• so2k+1, k ≥ 3 : F⊕2k .
• g2 : F⊕4, where F is the unique irreducible representation of dimension 7.
• f4 : F⊕4, where F is the unique irreducible representation of dimension 26.

Proof. First note [30, p. 217–218] that the only simple Lie algebras g which admit an
irreducible symplectic representation of dimension at most 2 dim(g) are sl6, so11, so12,
so13, e7 and the symplectic Lie algebras. Furthermore for n ≥ 6 the only irreducible
symplectic representation of sp2n of desired dimension is the tautological representation.
As for irreducible representations which are not symplectic, it is sufficient to consider
those of dimension at most dim(g). The complete list of such representations is given
in [31, p. 414, 531–532]. Having established which representations may appear in the
decomposition ofW , one has to find all ways to add them together to get a representation
of dimension 2 dim(g). The end result of this calculation is the table above. 
�

Our next goal is to determine which representations among those listed in the Propo-
sition 17 are admissible. The following fact rules out all but finitely many candidates.

Proposition 18. Let g = sp2k , k ≥ 1 and W = F⊕(2k+1) or g = so2k+1, k ≥ 1 and
W = F⊕2k . Then W is not admissible.

Proof. We present the proof for g = sp2k . The second case is handled analogously.
Suppose that (g,W,�) is an Airy datum. Write � = (�1, . . . , �2k+1), with �i ∈

F . Proposition 4 implies that elements �i are pairwise orthogonal with respect to the
symplectic formof F . Therefore they are contained in someLagrangian subspace L ⊆ F .
It is easy to check that there exists a nonzero element T ∈ g annihilating L . Thus T� = 0,
which is absurd. 
�

Most of the remaining representations are ruled out by the following construc-
tion. If g is simple, its invariant bilinear form is unique up to scale. Thus for any
representation W there is a real6 number ind(W ) (called the index of W ) such that
trW (T S) = ind(W )trg(adT adS) for any T, S ∈ g.

Proposition 19. Let (g,W,�) be an Airy datum with g simple. Then

(ind(W ) − 2)trg(ad
2
J ) = 2 dim(g). (5.1)

In particular we have an estimate

ind(W ) > 2. (5.2)

6 One can show that this number is always positive and rational. More precisely, if h∨(g) is the dual Coxeter
number of g (which is natural), then h∨(g)ind(W ) ∈ N. We shall not use this result.
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Proof. Let λ1, . . . , λn be the eigenvalues of adJ . By Proposition 10 we have

ind(W )trg(ad
2
J ) = trW (J 2) = 2

n∑

i=1

(1 + λi )
2 = 2trg(ad

2
J ) + 2n, (5.3)

where we used
∑n

i=1 λi = 0. Rearrangement of this equation yields (5.1).
Since the eigenvalues of adJ are rational and not all equal to zero, trg(ad2J ) > 0.

Similarly, dim(g) > 0. Therefore equation (5.1) enforces that ind(W ) − 2 > 0. 
�
Computation of indices of representations listed in Proposition 17 excludes all sim-

ple Lie algebras except of sl2, sp4 and sp10. Each of these algebras admits two non-
isomorphic Airy data, as we will demonstrate by explicit calculations.

5.1. Lie algebra sl2. Due to the isomorphism sl2 ∼= sp2, admissibility of the representa-
tion F⊕3 is excluded by the Proposition 18. We will show that F ⊕Sym3F and Sym5F
are admissible, and that there exist two isomorphism classes of Airy data for sl2.

Let H, X,Y be the standard basis [31] of sl2. These elements satisfy

[H, X ] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (5.4)

We work with the canonical basis of F , e1 =
(
1
0

)

, e2 =
(
0
1

)

. Symplectic form on F

is defined by ω(e1, e2) = 1, with remaining matrix elements fixed by bilinearity and
skew-symmetry. Define

ei1...ik = Symk (
ei1 ⊗ · · · ⊗ eik

) ∈ Symk F. (5.5)

Set {ei1...ik }1≤i1≤...≤ik≤2 is a basis of Symk F . This module is symplectic if k is odd, with
the symplectic form determined by the equation

ω
(
ei1...ik , e j1... jk

) =
∑

σ∈Sk

k∏

l=1

ω
(
eil , e jσ(l)

)
. (5.6)

Consider first the representation W = F ⊕ Sym3F . Spectrum of H in W
is {±3,±1,±1}, so the only candidate for J is H . Projection of � onto each of the
summand of W must be nonzero (for otherwise the linear span of H�, X� and Y�

could not be Lagrangian), so we have � = (se1, te112) with some s, t ∈ C
×. Acting

with a diagonal element of SL2 we may put s = 1. A simple calculation shows that then
assumptions of the Proposition 1 are satisfied if and only if 4t2 = 1. We define

�± =
(

e1,±1

2
e112

)

. (5.7)

By construction, �± ∈ �s . It is easy to check that Stab(�±) = 0 and that there exists
no element g ∈ SL2 such that g · �+ = �−. Therefore we conclude that

�s ∼= SL2 � SL2. (5.8)

Even though �s is disconnected, the Airy data corresponding to distinct connected
components are still isomorphic. Indeed, the two connected components of�s are inter-
changed by the g-module automorphism W � (u, v) �→ (u,−v) ∈ W .
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The caseW = Sym5F is handled similarly, with the result that one can take J = H
3 ,

� = e11112. Space �s is connected, but in this case the stabilizer of � is nontrivial:

Stab(�) =
{

1, exp

(

±2π i

3
H

)}

⊆ SL2. (5.9)

In contrast to the previous example, Stab(�) is not a normal subgroup of SL2. Thus
Orb(�) is not a Lie group. Nevertheless, W is admissible and we have �s ∼= SL2

Z3
.

We remark that this Airy datum was constructed for the first time in [26].
We remark that Aut(g,W,�) = Inn(g,W,�) for Airy data constructed in this

section. This happens to be true for all Airy data for simple Lie algebras. For semisimple
Lie algebras both Aut(g,W,�)

AInn(g,W,�)
and AInn(g,W,�)

Inn(g,W,�)
may be nontrivial, as demonstrated by

examples in Sect. 6.
These Airy data admit a real structure σ with gσ = sl2(R). It is defined by σ(Z) = Z

for Z ∈ {H, X,Y }, σ(ei ) = ei for i ∈ {1, 2} and extended to other representations
by demanding that σ is a homomorphism of the tensor algebra.

5.2. Lie algebra sp4. We will now consider the Lie algebra g = sp4. Representations
F⊕5 and F̃⊕4 are ruled out by Proposition 18. We will show that Sym3F is also not
admissible, while F ⊗ F̃ admits two non-isomorphic Airy data.

We choose the standard [31] Cartan subalgebra, set of positive roots and basis

{H1, H2,U1,U2, V1, V2, X12, X21,Y12, Z12} (5.10)

in g. The tautological representation is spanned by e1, e2, e3, e4, with symplectic form
whose only (up to skew-symmetry) nonzero matrix elements are

ω(e1, e3) = ω(e2, e4) = 1. (5.11)

Representation F̃ is a codimension one direct summand in �2F . Thus we put ei j =
ei ∧ e j for 1 ≤ i < j ≤ 4. The scalar product on �2F is defined by

ω(ei j , ekl) = 2ω(ei , ek)ω(e j , el) − 2ω(ei , el)ω(e j , ek). (5.12)

We define also η = e13 − e24. Set {e12, e23, e34, e14, η} is a basis of F̃ . Finally, the sym-
plectic form on F ⊗ F̃ is defined first on decomposable tensors,

ω(x1 ⊗ y1, x2 ⊗ y2) = ω(x1, x2)ω(y1, y2) for x1, x2 ∈ F, y1, y2 ∈ F̃, (5.13)

and extended to the whole space by bilinearity. Weight diagrams for the most basic
representations of g are presented in Fig. 1. We shall also consider slightly more compli-
cated representations Sym3F and F ⊗ F̃ . It will be important that the latter is reducible.
More precisely, the contraction with the symplectic form yields a nonzero g-module
epimorphism tr : F ⊗ F̃ → F . The kernel of this map is an irreducible representation,
which we denote by F⊥.

Examination of the weight diagrams of the adjoint representation and of Sym3F (see
Fig. 2) shows that the only possible forms of J not excluded by the Proposition 9 are
H1, 3H1 + H2 and 3H1+H2

3 . Proposition 19 yields trg(ad2J ) = 40
3 , which is not true for

any of the candidates. Thus Sym3F is not admissible. In the case of F ⊗ F̃ , the only
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Fig. 1. Weight diagrams for representations F, F̃ and the adjoint of sp4. Weights are represented by dots, with
surrounding circles indicating multiplicities. We draw parallelograms invariant under the Weyl group action
to help the reader to see the symmetry of the diagrams
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Fig. 2. Weight diagrams for representations Sym3F and F ⊗ F̃ of sp4. Dashed line represents the set H for
Airy structures found in this section

candidates for J are 3H1 + H2 and H1 + H2. Proposition 19 gives trg(ad2J ) = 120. This
is satisfied for 3H1 + H2. The spectral test is also passed:

specg(adJ ) = {0, 0,±2,±2,±4,±6}, (5.14a)

specW (J ) = {±1,±1,±1 ± 1,±3,±3,±3,±5,±5,±7}. (5.14b)

We put W = F ⊗ F̃ , J = 3H1 + H2 and look for � ∈ �s ⊆ W satisfying J� = �.
General solution of this eigenvalue equation takes the form

� = se1 ⊗ e23 + te3 ⊗ e12 + ue2 ⊗ η + ve4 ⊗ e14 (5.15)

with some s, t, u, v ∈ C. We must have v �= 0, for otherwise H2� = 0. Furthermore
we have tr(�) = (u − s − t)e2. Thus if we had u − s − t = 0, the submodule of W
generated by � would be a proper symplectic subspace, and hence could not contain a
Lagrangian subspace. We conclude that u − s − t �= 0. By passing to another vector
related by the action of diagonal matrices in Sp4, we may put u = 1 + s + t and v = 1.
The next step is to compute elements of W obtained by acting on � with elements of
g. We list them in the order of decreasing eigenvalue of J (consecutive eigenvalues are
7, 5, 3, 3, 1, 1,−1,−1,−3,−5):

U1� = (t − s)e1 ⊗ e12,

Y12� = (2 + 2s + 3t)e2 ⊗ e12 + e1 ⊗ e14,
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U2� = e2 ⊗ e14 + e4 ⊗ e12,

X12� = (1 + 2s + t)e1 ⊗ η − 2(1 + s + t)e2 ⊗ e14 − te4 ⊗ e12,

H1� = e4 ⊗ e14,

H2� = se1 ⊗ e23 + te3 ⊗ e12 + (1 + s + t)e2 ⊗ η − 2e4 ⊗ e14,

V2� = −se1 ⊗ e34 + te3 ⊗ e14 + (1 + s + t)e4 ⊗ η,

X21� = (2 + 3s + 2t)e2 ⊗ e23 − e3 ⊗ e14 − e4 ⊗ η,

Z12� = se4 ⊗ e23 + (1 + s + 2t)e3 ⊗ η − 2(1 + s + t)e2 ⊗ e34,

V1� = (s − t)e3 ⊗ e23 + e4 ⊗ e34. (5.16)

The only nontrivial scalar products between vectors listed above are:7

ω(Y�, V1�) = ω(U2�, Z12�) = ω(H2�, X21�) = ω(X21�, H1�) = 4 + 6s + 4t,

ω(X12�, Z12�) = ω(H2�, V2�) = 4 + 8s + 8t + 4s2 + 12st + 4t2. (5.17)

All these scalar products vanish if and only if (s, t) is chosen as
(− 4

5 ,
1
5

)
or (0,−1).

Vectors (5.16) are linearly independent in both cases. This means that we have found
two Airy data, with � of one of the following forms:

�1 = −4

5
e1 ⊗ e23 +

1

5
e3 ⊗ e12 +

2

5
e2 ⊗ η + e4 ⊗ e14, (5.18a)

�2 = −e3 ⊗ e12 + e4 ⊗ e14. (5.18b)

Now let p be the projection onto F⊥ ⊆ W . We have

p(�1) = − 7

15
e1 ⊗ e23 + e2 ⊗

(
2

5
e13 − 1

15
e24

)

+
8

15
e3 ⊗ e12 + e4 ⊗ e14, (5.19a)

p(�2) = 1

3
e1 ⊗ e23 +

1

3
e2 ⊗ e24 − 2

3
e3 ⊗ e12 + e4 ⊗ e14. (5.19b)

We claim that the Airy data (g,W,�1) and (g,W,�2) are not isomorphic. Indeed,
suppose that (φ, f ) : (g,W,�1) → (g,W,�2) is an isomorphism. Every automor-
phism of g is inner, so φ = AdD for some D ∈ Sp4. Clearly AdD(J ) = J . Since J is
a diagonal matrix with distinct eigenvalues, this implies that D is diagonal. The origin
of W is the unique point where � vanishes to second order, so � = φt ◦ � ◦ f implies
that f (0) = 0, i.e. f is a linear map. On the other hand we have � = AdtD ◦ � ◦ D, so
T = D−1 ◦ f is a g-module automorphism. Using Schur’s lemma and (5.19) we see that
no map of the form f = D ◦ T with T ∈ Endg(W ) carries �1 to �2, which completes
the proof.

It follows from the previous paragraph that the orbits of �1 and �2 are distinct. To
complete the computation of�s , notice that any element of Stab(�i ), i = 1, 2 commutes
with J , so it has to be diagonal. Given this information, it is easy to check that stabilizers
of �1 and �2 are trivial. Therefore we have

�s ∼= Sp4 � Sp4. (5.20)

7 This calculation is greatly facilitated by the fact that eigenvectors of J are orthogonal unless their eigen-
values add up to zero.
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We note that the element J belongs to an sl2 triple embedded in g, which is unique
up to automorphism of the form AdD with diagonal D ∈ Sp4. For example we can
put J+ = U2 + X12 and J− = 4V2 + 3X21. Then [J, J±] = ±2J±, [J+, J−] = J .
Regarding g and W as sl2-modules, they decompose as

g ∼= sl2 ⊕ Sym6
C
2, W ∼=

3⊕

j=0

Sym2 j+1
C
2. (5.21)

We remark that Airy data {(g,W,�i )}2i=1 admit no nontrivial automorphisms. How-
ever they do admit a real structure σ with gσ = sp4(R). Its construction is analogous to
that in the Sect. 5.1.

5.3. Lie algebra sp10. The last simple Lie algebra to consider is sp10. The only candidate
forW is�3

0F .Wewill use trace techniques to completely determine J . Once this is done,
we will find �. Due to the large number of variables, calculations are difficult to carry
out manually. We have performed them using symbolic algebra software.

Bases in g and F are chosen as for sp4. Module �3F has basis {ei jk}1≤i< j<k≤5,
where ei jk = ei ∧ e j ∧ ek . Symplectic form on �3F is given by

ω(ei1i2i3 , e j1 j2 j3) =
∑

σ∈S3
ω(ei1 , e jσ(1) )ω(ei2 , e jσ(2) )ω(ei3 , e jσ(3) ). (5.22)

Plugging the spectrum (3.5) into (C.9) we obtain a system of five equations for five
indeterminates {tr(ad2kJ )}5k=1. Its solution takes the form

tr
(
ad2J

)
= 440, tr

(
ad4J

)
= 24992

3
, tr

(
ad6J

)
= 16846720

81
,

tr
(
ad8J

)
=4329729536

729
, tr

(
ad10J

)
= 133476300800

729
. (5.23)

Plugging this result into (C.8) gives

E2(J ) = 55

3
, E4(J ) = 2926

27
, E6(J ) = 172810

729
,

E8(J ) = 117469

729
, E10(J ) = 1225

729
. (5.24)

Now expand J = ∑5
i=1 J

i Hi and consider the polynomial

χ(t) =
5∏

i=1

(
t − (J i )2

)
= t5 +

5∑

k=1

E2k(J )(−t)5−k . (5.25)

Its simple to check that roots of χ take the form {
(
9−2 j
3

)2}4j=0. It follows that J is deter-

mined uniquely up to the action of the Weyl group to be

J = 1

3
(9H1 + 7H2 + 5H3 + 3H4 + H5) . (5.26)
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One can check that this element satisfies the spectral test (Proposition 10). We read off
that � = {μi }7i=1, where

μ1 =(−1, 1, 1, 0, 0), μ2 = (0, 0, 0, 1, 0), μ3 = (1,−1, 0, 0, 1),

μ4 =(0, 1,−1, 0, 1), μ5 = (0, 0, 1,−1, 1),

μ6 =(1, 0,−1, 0,−1), μ7 = (0, 1, 0,−1,−1), (5.27)

in which (c1, c2, c3, c4, c5) = ∑5
i=1 ci Li ∈ h∗, with Li (Hj ) = δi j .

It can be shown that vanishing of the component of � along Wμi with i ∈ {1, 2, 3}
implies that � is annihilated by some root vector of g. Furthermore the set �\{μ4} does
not span h∗, so vanishing of the component of � along Wμ4 would imply that � is
annihilated by some diagonal element of g. Finally we observe that μ5 belongs to the
linear span of {μi }4i=1, so � has to have nonzero component along μ6 or μ7. It follows
that up to action of diagonal elements of Sp10 we must have

� = e2,3,6 + e1,5,7 + e2,5,8 + ae3,5,9 + be1,8,10 + ce2,9,10
αe4,1,6 + βe4,2,7 + γ e4,3,8 − (α + β + γ )e4,5,10. (5.28)

where (α, β, γ ) �= (0, 0, 0) and (b, c) �= (0, 0).
In principle there exists a huge amount of polynomials equations � has to satisfy in

order for the subspace {T�}T∈g ⊂ W to be isotropic, but it turns out that only four of
them are linearly independent. They take the form

c = ab, (5.29a)

b = c(α + 2β + γ ), (5.29b)

a(α + β + 2γ ) = −1, (5.29c)

α2 + β2 + γ 2 = −αβ − βγ − γα. (5.29d)

The first equation implies that b �= 0, for otherwise we would have (b, c) = (0, 0).
Eliminating c using the first equation we get that the second equation is inconsistent
for a = 0. Therefore also c �= 0, by the first equation. Using the action of the diagonal
elements of Sp10 again we may put a = b = 1. Then c = 1 also, by the first equation.
The second and the third equation may be used to express α and β as affine functions
of γ :

α = −3(γ + 1), β = γ + 2. (5.30)

Plugging this into the fourth equation we get a quadratic

6γ 2 + 12γ + 7 = 0. (5.31)

Its solutions are complex conjugate and take the form

γ± = 1

6

(
−6 ± i

√
6
)

. (5.32)

We denote vectors � corresponding to the two solutions by �±. By calculating ranks of
certain matrices one may check that the subspaces {T�±}T∈g have dimensions 55, and
hence are Lagrangian. This means that (g,W,�±) is an Airy datum.

We ask if (g,W,�±) are isomorphic. Since the element J is regular and W is irre-
ducible, it is sufficient to check if there exists a diagonal element D ∈ Sp10 such that
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Table 1. List of isomorphism classes of Airy structures for simple Lie algebras

g W J Stab(�) �s

sl2 Sym5F 1
3 H Z3 SL2/Z3

sl2 Sym3F ⊕ F H 0 SL2 � SL2
sp4 F ⊗ F̃ 3H1 + H2 0 Sp4 � Sp4
sp4 F ⊗ F̃ 3H1 + H2 0 Sp4 � Sp4
sp10 �3

0F
1
3 (9H1 + 7H2 + 5H3 + 3H4 + H5) Z3

Sp10
Z3

� Sp10
Z3

sp10 �3
0F

1
3 (9H1 + 7H2 + 5H3 + 3H4 + H5) Z3

Sp10
Z3

� Sp10
Z3

D�+ = �− or D�+ = −�−. This is a system of equations for the five indepen-
dent matrix elements of D. One may show that no solution exists, so that the two Airy
structures are non-isomorphic. In particular �s has two connected components. This is
striking, because there surely exists such isomorphism if we give up linearity over C. In
our standard bases it is given by the complex conjugation.

Finally, let us compute stabilizers of�±. Once again, since J is regular, it is sufficient
to consider diagonal elements of Sp10. It turns out that the equation D�± = �± has
three solutions, so Stab(�±) ∼= Z3. Therefore we have

�s ∼= Sp10
Z3

� Sp10
Z3

. (5.33)

We have found that there exist six isomorphism classes of Airy data (g,W,�) with
simple g. This is summarized in Table 1. It is worth noticing that sp4 admits two non-
isomorphic Airy data for which all invariant characteristics, such as the conjugacy class
of J or of the subgroup Stab(�) ⊆ G, coincide. This raises the question if there are other
invariants which can be used to distinguish the twoAiry data. Unfortunately, we have not
found any. A similar statement applies to sp10, but in this case lack of desired invariants
is explained by the fact that the two Airy data are related by complex conjugation.

6. Semisimple Lie Algebras: Examples

Proposition 20. The number of isomorphism classes of indecomposable Airy data
(g,W,�) with g semisimple is countably infinite.

Proof. The upper bound follows from the fact that (up to isomorphism) there are count-
ably many semisimple Lie algebras, each of which admits finitely many Airy data. We
show that this bound is saturated by explicitly constructing an infinite family of mutually
non-isomorphic indecomposable Airy data in the Sect. 6.4. 
�

The only semisimple Lie algebra of rank 2 which is not simple is sl2 × sl2. Airy
data for this algebra are classified in the Sect. 6.1. Already in this case the number
of non-isomorphic Airy data is quite large. Therefore we do not carry out analogous
computations for Lie algebras of rank 3. Instead we will decide which algebras admit at
least one Airy datum. This is facilitated by the following criterion.

Let (g,W,�) be an Airy datum with g = g′ × g′′ semisimple. Let G ′ be a simply-
connected Lie group with Lie algebra g′. Put n′ = dim(g′). H0(g′,W ) is a symplectic
submodule of W , so W = W ′ ⊕ H0(g′,W ), where W ′ is the orthogonal complement
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of H0(g′,W ). By construction H0(g′,W ′) = 0. Let �′ be the moment map for the g′-
action on W ′ and define �′

s = {q ∈ �′−1(0)| d�′∣∣
q has rank n′}. We have an important

inclusion

�s ⊆ �′
s × H0(g′,W ′). (6.1)

�′
s is a coisotropic submanifold ofW ′ of dimension 2 dim(W ′)−n′ ≥ n′. This statement

is particularly useful when this inequality is saturated. In this situation �′
s is Lagrangian

with a locally transitive G ′-action. In particular there exists J ′ ∈ g′ such that J ′� is
the projection of � onto W ′. More importantly, existence of an Airy datum of the form
(g′,W ′,�′) is necessary for �s �= ∅.
Proposition 21. Lie algebra g2 × sl2 admits no Airy data.

Proof. Put g′ = g2. Inspection of the list of irreducible representations of g2 shows
that the only possible forms of W ′ are F⊕4 and g⊕2

2 , where F is the unique irreducible
representation of dimension 7. Bound dim(W ′) ≥ 2 dim(g′) is saturated in both cases,
so �′

s = ∅ follows from the fact that g2 admits no Airy data. 
�
It happens to be true that also sl3 × sl2 does not admit any Airy data, but in this case

more complicated argument, presented in the Sect. 6.2, is required. Lie algebra sp4×sl2
admits three decomposable Airy data and at least one indecomposable—see Sect. 6.3.
This exhausts the list of semisimple Lie algebras with two simple factors and rank 3. The
only remainingLie algebra of rank 3 is

∏3
i=1 sl2. This one does admit an indecomposable

Airy datum8 which is a special case of the construction presented in the Sect. 6.4.

6.1. Lie algebra sl2 ×sl2. Wewill now present the list of indecomposable Airy data for
g = sl2 × sl2, up to isomorphism. We omit details of calculations, which are analogous
to previous sections. Canonical generators of the first (resp. second) copy of sl2 will be
denoted by H, X,Y (resp. H̃ , X̃ , Ỹ ). Similarly, their fundamental modules are denoted
by F and F̃ . They are generated by e1, e2 and ẽ1, ẽ2, respectively.

1. W = (Sym4F ⊗ F̃)⊕ F̃ . In this case �s has two connected components, which turn
out to correspond to isomorphic Airy data. One may take J = 1

2H + H̃ . Vectors �

corresponding to the two connected components take the form

�± =
(

± i

2
e1122 ⊗ ẽ1 + e1111 ⊗ ẽ2, ẽ1

)

. (6.2)

Stabilizers of �± are isomorphic to Z4 and we have

�s ∼=
(
PSL2

Z2
× SL2

)

�
(
PSL2

Z2
× SL2

)

. (6.3)

We remark that this is the first example considered in this paper in which Stab(�)

is not contained in the one-parameter subgroup of G generated by J . Another novel
feature is that the element J does not belong to any sl2 triple embedded ing. Regarding
the automorphism group, we have

Aut(g,W,�) = Inn(g,W,�) ∼= Z2. (6.4)

8 We do not claim that there exist no other indecomposable Airy data for this Lie algebra.
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2. W = (Sym4F ⊗ F̃)⊕ F . In this case �s ∼= SL2 ×SL2. One may take J = H +3H̃ ,

� =
(

1

48
e1222 ⊗ ẽ1 + e1111 ⊗ ẽ2, e1

)

. (6.5)

This Airy datum admits no nontrivial automorphisms.
3. W = Sym3F ⊗Sym2 F̃ . One may take J = 1

3H + 2
3 H̃ , � = e111 ⊗ ẽ12 + e122 ⊗ ẽ11.

The stabilizer of � turns is generated by the commuting elements e2π i J and eiπ H̃ ,
of order 3 and 2, respectively. Thus �s ∼= SL2×PSL2

Z3
. Furthermore we have

Aut(g,W,�) = Inn(g,W,�) ∼= Z3 (6.6)

4. W = (F ⊗ F̃)⊕2 ⊕ Sym3F with J = H and � = (e1 ⊗ ẽ1, 2e1 ⊗ ẽ2, e112). This is
the only example in this paper in which J is not a regular element. Stabilizer of � is
trivial, so �s ∼= SL2 × SL2. Nevertheless, the group of automorphisms of this Airy
datum is nontrivial, Aut(g,W,�) = AInn(g,W,�) ∼= Z2. More explicitly, let τ be
the automorphisms of W defined by

τ(x, y, z) = (−y, x, z) for x, y ∈ F ⊗ F̃, z ∈ Sym3F. (6.7)

We have Aut(g,W,�) = {id, (Adg, τg)}, where g = eπ Ỹ− π
4 X̃ .

5. W = (Sym2F ⊗ F̃) ⊕ (F ⊗ Sym2 F̃). One may take J = H + H̃ . Set �s has two
connected components. Corresponding vectors � are of the form

�1 = (e11 ⊗ ẽ2, e2 ⊗ ẽ11) , (6.8a)

�2 = (e11 ⊗ ẽ2 − 4e12 ⊗ ẽ1, e2 ⊗ ẽ11 − 4e1 ⊗ ẽ12) . (6.8b)

We have Stab(�1) ∼= Z3 and Stab(�2) = 0, so �s ∼=
(
SL2×SL2

Z3

)
� (SL2 × SL2) and

the Airy data A1 = (g,W,�1) and A2 = (g,W,�2) are not isomorphic. Another
difference between A1 and A2 is in the automorphism groups:

Aut(A1) ∼= Z2 � Z3, Aut(A2) ∼= Z2. (6.9)

More explicitly, let z = (Adg, g) with g = exp
( 2π i

3 (H − H̃)
)
and t = (τg, τW ),

where τg is the outer automorphism of g which swaps the two simple factors and
τW is the analogous automorphism ofW . Elements z, t generate Aut(A1) and satisfy
relations z3 = t2 = id, t z = z−1t . Group Aut(A2) is generated by t . Generalization
of this example is discussed in the Sect. 6.4.

Elements � in points 2− 5 have real coefficient, so they admit real structures σ with
gσ = sl2(R) × sl2(R).

6.2. Lie algebra sl3×sl2. In this subsectionwe consider the Lie algebra sl3×sl2. Let F ,
F̃ be the defining representations of sl3 and sl2, respectively.Wedenote the standard basis
of sl2 by H̃ , X̃ , Ỹ . Since sl3 admits no Airy data, we must have dim(H0(sl3,W )) < 6.
It follows that the only possible forms of W are

W1 = (
(F ⊕ F∗) ⊗ F̃

) ⊕ sl3 ⊕ F̃,

W2 = (
(F ⊕ F∗) ⊗ F̃

) ⊕ (F ⊕ F∗) ⊕ R̃,
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W3 = (
(F ⊕ F∗) ⊗ sl2

) ⊕ R̃,

W4 = (sl3 ⊗ F̃) ⊕ (F ⊕ F∗), (6.10)

where R̃ = F̃⊕2 or R̃ = Sym3 F̃ .
Consider the possibility that W = W1. Since the projection of � onto F̃ must be

nonzero, J is necessarily of the form J = J ′ + H̃ with some J ′ ∈ sl3. The index of W
considered as a representation of sl3 is equal to 5

3 , so trW (J 2) = 14 + 5
3 tr(ad2J ′). On the

other hand trW (J 2) = 38 + 2 tr(ad2J ′), by Proposition 10. Comparing the two results we
get tr(ad2J ′) = −72, which is impossible. Hence W = W1 is ruled out. Representation
W2 may also be excluded by similar reasoning. In this case we have J = J ′ + λH̃ with
λ ∈ {1, 1

3 }. Repetition of the calculation presented above gives tr(ad2J ′) < 0 in both
cases. For W3 value λ = 1

3 is excluded for similar reasons, but possibility of λ = 1
remains. In this situation we have tr(adJ ′)2 = 10 + tr R̃(H̃2).

Using techniques described in the “Appendix C” we derive relations

tr(ad4T ) = 1

4
tr(ad2T )2, (6.11a)

trW3(T
6) = −1

9
tr

(
ad6T

)
+

5

324
tr(ad2T )3. (6.11b)

for T ∈ sl3. Combining this with the Proposition 10 we get

tr
(
ad6J ′

)
=

{
− 296872

247 for R̃ = F̃⊕2,

− 739800
247 for R̃ = Sym3 F̃ .

(6.12)

This contradicts rationality of J ′, so representation W3 is excluded.
In the case of representation W4 similar calculations give

trW4(T
6) = 53

27
tr(ad6T ) +

5

972
tr(ad2T )3 (6.13)

for T ∈ sl3. Plugging in J = J ′ + λH̃ we obtain

tr(ad2J ′) = 66, (6.14a)

896214 + 38880λ2 + tr(ad6J ′) = 0. (6.14b)

Second relation is clearly inconsistent, so alsoW4 is ruled out. Therefore sl3×sl2 admits
no Airy structures.

6.3. Lie algebra sp4 × sl2. In this subsection we shall confine ourselves to presenting
a single example of an indecomposable Airy datum for the Lie algebra9 g = sp4 × sl2.
We use the same notation for generators and bases relevant for the sp4 algebra as in
Sect. 5.2 while, for the sl2 algebra, the notation used parallels the one in Sect. 6.2.

The pertinent Airy datum exists for J = H1 + H2 + H̃ and the module

W = (�2
0F ⊗ F̃) ⊕ (F ⊗ Sym2 F̃) ⊕ Sym3 F̃,

9 The number of symplectic, g-modules of dimension 26 is not large, so it is of course possible, even if a
bit tedious, to completely classify Airy data also in this case.
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where F is the defining representations of sp4, F̃ denotes the defining representations
of sl2 (and not, as in Sect. 5.2, the defining representation of so5) and �2

0F denotes
the codimension 1 subspace of these elements of �2F whose any contraction with the
symplectic form of F vanishes. Since

specg(adJ ) = {0, 0, 0, 0, 0,±2,±2,±2,±2}, (6.15a)

specW(J ) = {±1,±1,±1,±1,±1,±1,±1,±1,±1,±3,±3,±3,±3}, (6.15b)

the spectral test is met. Denoting by (c1, c2, c̃) = c1L1 + c2L2 + c̃ L̃ ∈ h∗, where
Li (Hj ) = δi, j and L̃(H̃) = 1, we read of that � = {μi }9i=1 with

μ1 = (1, 1,−1), μ2 = (1,−1, 1), μ3 = (−1, 1, 1),

μ4 = (0, 0, 1), μ5 = (1, 0, 0), μ6 = (0, 1, 0),

μ7 = (−1, 0, 2), μ8 = (0,−1, 2), μ9 = (0, 0, 1).

This gives

� = (αe12 ⊗ ẽ2 + (β+e14 + β−e23 + β0η) ⊗ ẽ1, 0, 0)

+ (0, (a1e1 + a2e2) ⊗ ẽ12 + (a3e3 + a4e4) ⊗ ẽ11, 0)

+ (0, 0, uẽ112) (6.16)

with complex parameters α, β0, β±, ai , i = 1, . . . 4 and u. Requiring that {T�}T∈g
is an isotropic subspace of W we get the following set of equations:

4αβ0 = a1a2, 4αβ+ = −a21 , 4αβ− = a22, (6.17a)

a2(a1 − a2) = 0 β2
0 + β+β− − a1a3 − a2a4 = u2. (6.17b)

Using the group action generated by the five elements of g commuting with J, namely
H1, H2, X12, X21, and H̃ and demanding that dim{T�}T∈g = 13 (so that {T�}T∈g is
a Lagrangian subspace of W ), we obtain a single isomorphism class of Airy data. It can
be represented by the vector

� =
(
1

2
e12 ⊗ ẽ2 − 1

2
e14 ⊗ ẽ1, e1 ⊗ ẽ12 − e3 ⊗ ẽ11 + e4 ⊗ ẽ11, ẽ112

)

. (6.18)

6.4. Lie algebra
∏N

i=1 sl2. In this subsection we shall consider the Lie algebra g =
∏N

i=1 sl
(i)
2 , where each sl(i)2 is an independent copy of the sl2 algebra with defining

representation denoted by F (i). Standard generators of sl(i)2 will be denoted by H (i), X (i)

and Y (i). Analogous notation will be used for representations of sl(i)2 .

There exists a family of Airy structures for g where

W =
N⊕

i=1

(
Sym2F (i) ⊗ F (i+1)

)
,

(the sum here is cyclic i.e. N + 1 ≡ 1), J =
N∑

i=1
H (i), and

� = 1√
N

N∑

i=1

(
e(i)
11 ⊗ e(i+1)

2 + 4αi e
(i)
12 ⊗ e(i+1)

1

)
.
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The vectors H (i)�, X (i)� and Y (i)� turn out to be linearly independent and orthogonal
with respect to the g invariant symplectic form on W if αi = −α2

i−1, i = 2, . . . , N and

α2N−1
1 + 1 = 0.
We shall discuss in detail the simplest case where all αi = 0, i.e.

� = 1√
N

N∑

i=1

e(i)
11 ⊗ e(i+1)

2 .

Let q = e
2π

√−1
N and let us assume that N is odd,10 N = 2n + 1. Let us also define:

Z j =
n∑

i=−n

q j i Z (i), j = −n,−n + 1, . . . , n, (6.19)

with Z (i) = H (i), X (i) or Y (i). These operators obey the algebra

[Hi , X j ] = 2Xi� j , [Hi ,Y j ] = −2Yi� j and [Xi ,Y j ] = Hi� j

(6.20)

where i � j = i + j mod N .

A Lagrangian complement of T�� = lin{Hj�, X j�,Y j�} can be constructed as

V = lin{Hj�, X j�,Y j�}
where

� = 1√
N

n∑

i=−n

e(i)
22 ⊗ e(i+1)

1 . (6.21)

It is the immediate to check that vectors

e0j = 1

2 − q j
H j� = 1√

N

n∑

i=−n

q j i e(i)
11 ⊗ e(i+1)

2 ,

e+j = q− j X j� = 1√
N

n∑

i=−n

q j i e(i)
11 ⊗ e(i+1)

1 ,

e−
j = 1

2
Y j� = 1√

N

n∑

i=−n

q j i e(i)
12 ⊗ e(i+1)

2 ,

and

f 0j = 1

2

1

2 − q− j
H− j� = − 1

2
√
N

n∑

i=−n

q− j i e(i)
22 ⊗ e(i+1)

1 ,

f +j = 1

2
X− j� = 1√

N

n∑

i=−n

q− j i e(i)
12 ⊗ e(i+1)

1 ,

10 The construction for even N is completely analogous.
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f −
j = q j

2
Y− j� = 1

2
√
N

n∑

i=−n

q− j i e(i)
22 ⊗ e(i+1)

2 ,

with j = {−n,−n + 1, . . . , n} satisfy
ω(eaj , f bk ) = δa+bδ j,k . (6.22)

Decomposing

W � w =
n∑

j=−n

∑

a=0,±

(
αa

− j e
a
j + βa

j f
a
j

)

we get

Xk ≡ ω(Xkw,�) +
1

2
ω(Xkw,w)

= qk β−
k +

n∑

l=−n

(

qkα0−lβ
−
l�k + α−

−lβ
0
l�k + β+

l β−
−l�k − 1

2
qkα−

−lα
−
l�k

)

,

Hk ≡ ω(Hkw,�) +
1

2
ω(Hkw,w)

= (2 − qk) β0
k +

n∑

l=−n

((
2 − qk

)
α0−lβ

0
l�k +

(
2 + q[k

)
α+−lβ

−
l�k − qkα−

−lβ
+
l�k

)
,

Yk ≡ ω(Ykw,�) +
1

2
ω(Ykw,w)

= 2 β+
k +

n∑

l=−n

(

2α0−lβ
+
l�k + qkα+−lβ

0
l�k +

1

2
qkβ+

l β+
−l�k − 2α+−lα

−
l�k

)

. (6.23)

To express the hamiltonians above in the Airy form, we denote

qk β−
k = y+k , (2 − qk) β0

k = y0k , 2 β+
k = y−

k

and introduce a set of variables xak “conjugate” to yak

α+
k = −qk x−

k , α0
k = −(2 − qk) x0k , α−

k = −2 x+k

such that the Poison bracket on the space lin{αa
k , β

a
k } = lin{xak , yak } is preserved:

{
yak , xbl

}
=

{
αa
k , β

b
l

}
= δa+b,0δk+l,0. (6.24)

This gives

Xk = y+k −
n∑

l=−n

((
2q−l − 1

)
x0−l y

+
l�k +

2

2 − qk+l
x+−l y

0
l�k + 2qk x+−l x

+
l�k − 1

2
ql−k y−

l y+−l�k

)

,

Hk = y0k −
n∑

l=−n

((
2 − qk

) (
2 − ql

)

2 − qk+l
x0−l y

0
l�k +

(
2q−k + 1

)
x−
−l y

+
l�k − qk x+−l y

−
l�k

)

,
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Yk = y−
k −

n∑

l=−n

((
2 − ql

)
x0−l y

−
l�k +

ql+k

2 − ql+k
x−
−l y

0
l�k + 4ql x−

−l x
+
l�k − 1

8
qk y−

l y−
−l�k

)

.

It is not difficult to check explicitly that hamiltonians (6.25) do satisfy the algebra

{Hk,Xm} = 2Xk�m, {Hk,Ym} = −2Yk�m, {Xk,Ym} = Hk�m .

(6.26)

7. Outlook

Many new Airy structures were found in this work. It is left for future studies to find
their partition functions, or at least discuss their properties. It would be particularly
interesting to find a relation between them and fields in which topological recursion has
found applications, or with some quantum systems studied in physics. Perhaps that could
shed some light on the striking fact that Airy structures for semisimple Lie algebras are
so much constrained. We believe that derivation of integral representations of partition
functions could be particularly illuminating.

Having classified Airy structures for simple Lie algebras, it is natural to ask for
an extension to semisimple Lie algebras. As shown by presented examples, in this case
the number of distinct Airy structures is infinite. However it is finite for any given
semisimple Lie algebra, so it could be that this problem is manageable. Some difficulties
do arise, though. Firstly, there are many Lie algebras and representations to consider. It
is not clear to us how to generate a complete list. Secondly, for a given representation
of a Lie algebra of high rank the number of cases one has to consider in order to find
the possible forms of J is large. We avoided this step in the derivation of the sp10 Airy
structures by deriving the only consistent form of J directly from its spectral properties
and relations between invariant polynomials. This method typically breaks down for Lie
algebras withmore than one simple factor. Indeed, each simple factor contributes its own
set of invariant polynomials, so we get more unknowns than equations to solve. Some
new restrictions on J would have to be derived in order to make this method viable.

Last but not least, it would be interesting to partially extend our results to more gen-
eral classes of Airy structures. Besides allowing more general Lie algebras, one could
also consider Lie superalgebras with semisimple even part. If it is possible to generalize
some of our findings to infinite-dimensional Airy structures, that could have direct con-
sequences for classical topological recursion. Kac-Moody algebras generalize simple
Lie algebras in a natural way and have direct connections with conformal field theory
and integrable systems, so they would be interesting to study in this context.
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A. Lie Algebra Cohomology

Wepresent an ad hoc definition of the first twoLie algebra cohomology groups, sufficient
for our purposes. For a more conceptual treatment of the subject, see [33].

Let g be a Lie algebra and M - a representation of g. The zeroth cohomology group
H0(g, M) of g valued in M is defined as the space of all elements of M annihilated by g.
To define the first cohomology group, we let Z1(g, M) be the vector space of linear maps
(called cocycles) γ : g → M such that γ ([T, S]) = T γ (S)− Sγ (T ), and B1(g, M) the
space of linear maps (called coboundaries) g → M of the form γ (T ) = Tm for some

m ∈ M . Every coboundary is a cocycle, so it makes sense to put H1(g, M) = Z1(g,M)

B1(g,M)
.

The following fact is used in this work:

Proposition 22 [Whitehead]. Let g be a finite-dimensional semisimple Lie algebra and
M—a finite-dimensional g-module. Then H1(g, M) = 0.

B. Semisimple and Regular Elements

Let W be a finite-dimensional vector space and let T ∈ End(W ). We say that T
is semisimple if for every T -invariant subspace V ⊆ W there exists a complemen-
tary T -invariant subspace V ′, so that W = V ⊕ V ′. Since we restrict attention to vector
spaces over C, operator T is semisimple if and only if it is diagonalizable.

Proposition 23 (Jordan–Chevalley decomposition). Let T be a linear operator on
a finite-dimensional vector space W. There exist unique linear operators Tss, Tn on W
such that Tss is semisimple, Tn is nilpotent, TssTn = TnTss and T = Tss + Tn. Fur-
thermore there exist polynomials p, q ∈ C[t] such that Tss = p(T ), Tn = q(T ).
In particular every T -invariant subspace of W is Tss- and Tn-invariant.

Proposition 24. Let g be a finite-dimensional, semisimple Lie algebra. For any T ∈ g
there exist unique Tss, Tn ∈ g such that (adT )ss = adTss , (adT )n = adTn . Moreover
Tss (resp. Tn) acts as a semisimple (resp. nilpotent) operator in every finite-dimensional
g-module.

Let g be a finite-dimensional, semisimple Lie algebra. Element T ∈ g is said to be
semisimple (resp. nilpotent) if T = Tss (resp. T = Tn). Set of semisimple elements of
g is nonempty and Zariski open, hence dense. It coincides with the union of all Cartan
subalgebras of g.

Rank of g is defined as the greatest integer r such that the characteristic polynomial
of adT vanishes at zero with multiplicity at least r for every T ∈ g. Element T ∈ g is said
to be regular if its characteristic polynomial vanishes at zero with multiplicity exactly
r . By construction, the set of regular elements of g is nonempty and Zariski open. One
can show that it is contained in the set of semisimple elements. If T ∈ g is a regular
element, then the commutant {T ′ ∈ g|[T, T ′] = 0} is the unique Cartan subalgebra of g
which contains T . Now suppose that some Cartan subalgebra h ⊆ g is chosen. Element
T ∈ h is regular in g if and only if α(T ) �= 0 for every root α.

http://creativecommons.org/licenses/by/4.0/
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We remark that some authors define T to be regular if the dimension of its commutant
is equal to r . Elements with this property are not necessarily semisimple. However, the
two notions do coincide for semisimple elements.

C. Invariant Polynomials on sp10

LetG be a complex semisimpleLie groupwithLie algebra g. Choose aCartan subalgebra
h ⊂ g and let W be the corresponding Weyl group. Denote the algebra of G-invariant
polynomial functions ongbyC[g]G and the algebra ofW-invariant polynomial functions
on h byC[h]W . If φ ∈ C[g]G , then the restriction φ|h belongs toC[h]W . In other words,
we have a homomorphism

res : C[g]G � φ �→ φ|h C[h]W . (C.1)

We claim that res is injective. Indeed, suppose that φ|h = 0. If T ∈ g is semisimple,
then the G-orbit of T intersects h nontrivially, so φ(T ) = 0. Since the set of semisimple
elements is dense and φ is continuous, we must have φ = 0.

Proposition 25 [Chevalley]. The homomorphism φ is also surjective.

Proof. See [34, p. 126–128]. 
�
Now let us specialize to g = sp10. We use the standard choice of h, basis in g and

basis is h∗ described in [31]. Weyl group takes the form

W = S5 � Z
5
2, (C.2)

with S5 acting on {Li }5i=1 by permutations and Z
5
2 generated by the five reflections

Li �→ −Li . It follows that elements of C[h]W are symmetric polynomials in {L2
i }5i=1.

Therefore by the fundamental theorem of symmetric polynomials [35], the functions

E2k : h �
5∑

i=1

T i Hi �→
∑

1≤i1<···<ik≤5

(T i1)2 · · · (T ik )2 ∈ C (C.3)

with k ∈ {1, . . . , 5} are algebraically independent generators of C[h]W . Hence they
extend uniquely to invariant polynomials on g and we have

C[g]G = C[E2, E4, E6, E8, E10]. (C.4)

In particular the dimension of the space of invariant polynomials on g of degree 2k is
equal to the number of partitions of k.

Products of {E2k}5k=1 furnish a basis in C[g]G . It will be useful to construct several
other bases. Let V be a representation of g. Define

QV
2k : g � T �→ trV

(
T 2k

)
∈ C (C.5)

for k ∈ N. We have QV
2k ∈ C[g]G . Consider first the adjoint representation, V = g. By

the preceding discussion there exist coefficients {αi }18i=1 such that

Qg
2 = α1E2,
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Qg
4 = α2E4 + α3E

2
2 ,

Qg
6 = α4E6 + α5E4E2 + α6E

3
2 ,

Qg
8 = α7E8 + α8E6E2 + α9E

2
4 + α10E4E

2
2 + α11E

4
2 ,

Qg
10 = α12E10 + α13E8E2 + α14E6E4 + α15E6E

2
2 + α16E

2
4E2 + α17E4E

3
2 + α18E

5
2 .

(C.6)

The values of coefficients αi may be found by evaluating this equation on any sufficiently
large set of elements of h and solving a system of linear equations. Their exact values
will be of no use for us, but by computing them allows to check that {Qg

2k}5k=1 generate
the algebraC[g]G . By dimensionality reasons they have to be algebraically independent,
so we have

C[g]G = C[Qg
2 , Q

g
4 , Q

g
6 , Q

g
8 , Q

g
10]. (C.7)

Knowing that (C.7) holds, we are guaranteed that the polynomials E2k and QV
2k may

be expressed as polynomials in {Q2k}5k=1. Coefficients of these expansion are useful and
may be derived as in the previous paragraph. Firstly,

E2 = 1

24
Qg

2 ,

E4 = − 1

72
Qg

4 +
1

864
(Qg

2 )
2,

E6 = 1

252
Qg

6 − 31

36288
Qg

4Q
g
2 +

13

435456
(Qg

2 )
3,

E8 = − 1

1104
Qg

8 +
5

23184
Qg

6Q
g
2 +

139

715392
(Qg

4 )
2

− 2111

60092928
Qg

4 (Q
g
2 )

2 +
1115

1442230272
(Qg

2 )
4,

E10 = 1

5220
Qg

10 − 11

256128
Qg

8Q
g
2 − 19

175392
Qg

6Q
g
4 +

1

123648
Qg

6 (Q
g
2 )

2,

+
18799

1161796608
(Qg

4 )
2Qg

2 − 1931

1549062144
Qg

4 (Q
g
2 )

3 +
33449

1672987115520
(Qg

2 )
5

(C.8)

Now let W be the set of all elements of �3F whose contraction with the symplectic
form vanishes. W is an irreducible representation of g of dimension 110. It will be
important to have an expression for {QW

2k}5k=1 in terms of {Qg
2k}5k=1:

QW
2 = 9

4
Qg

2 ,

QW
4 = −1

2
Qg

4 +
13

96
(Qg

2 )
2,

QW
6 = −11

14
Qg

6 +
55

1008
Qg

4Q
g
2 +

365

48384
(Qg

2 )
3,

QW
8 = 317

46
Qg

8 − 1421

828
Qg

6Q
g
2 − 20755

14904
(Qg

4 )
2 +

92365

357696
Qg

4 (Q
g
2 )

2 − 163975

34338816
(Qg

2 )
4,

QW
10 = 1623

58
Qg

10 − 49512

10672
Qg

8Q
g
2 − 5605

348
Qg

6Q
g
4 +

8785

13248
Qg

6 (Q
g
2 )

2,
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+
2256725

1152576
(Qg

4 )
2Qg

2 − 2885975

27661824
Qg

4 (Q
g
2 )

3 +
3515225

2655535104
(Qg

2 )
5 (C.9)

D. Explicit Construction of Hamiltonians

In this appendix we construct hamiltonians corresponding to Airy structures for simple
Lie algebras classified in the main text.

Vector field ξH associated to a hamiltonian H is defined by

ιξH ω = −dH, (D.1)

where ι is the interior product. Poisson bracket may be defined in terms of the Lie
derivative as

{H1, H2} = LξH1
(H2). (D.2)

Now let Li denote operators on W furnishing a representation of g:

[Li , L j ] = f k
i j Lk . (D.3)

They correspond to hamiltonians whose value at w ∈ W is given by

�i = 1

2
ω(Liw,w). (D.4)

One can check directly that {�i , � j } = f k
i j �k . After shifting w �→ w + � we find

�i = ω(Li�,w) +
1

2
ω(Liw,w). (D.5)

In order for �i to have the correct linear terms, we put

yi = ω(Li�,w). (D.6)

To proceed, we have to fix a Lagrangian complement of T��s , the linear span of {Li�}.
We find the following way to do that particularly convenient. We fix a compact real form
σ on g. Using averaging techniques and polar decomposition one can find aGσ -invariant
and positive-definite hermitian form h on W related to the symplectic form by

h(w,w′) = ω(τ(w),w′), (D.7)

where τ is an antilinear operator such that τ 2 = −1. Then the orthogonal complement
of T��s is a Lagrangian complement with a basis {Li�}, where � = τ(�). We denote

hi j = ω(Li�, L j�) (D.8)

and use upper indices for the inverse matrix:

hi j h
jk = δki . (D.9)

Vectors �i = Li�, �
i = hi j L j� form a basis of W and satisfy

ω(�
j
,� j ) = δij . (D.10)
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Now parametrize w as

w = αi�i + βi�
i
. (D.11)

Then we have {βi , α j } = δ
j
i . Comparing with (D.6) we find that βi = −yi , so Poisson

bracket will take its canonical form (2.3) if we put αi = −xi :

w = −xi�i − yi�
i
. (D.12)

With choices described above we have

�i = yi − 1

2
Ai jk x

j xk − Bk
i j x

j yk − 1

2
C jk
i y j yk, (D.13)

where the A, B,C tensors are given by

Ai jk = −ω(Li� j ,�k), Bk
i j = −ω(Li� j ,�

k
), C jk

i = −ω(Li�
j
,�

k
).

(D.14)

With this definitions we are now ready to present explicitly the Airy structure corre-
sponding to the F ⊕ Sym3F representation of the sl2 algebra11 as well as both Airy
structures for the sp4 algebra. In the first case, for

τ(e1) = e2, τ (e2) = −e1 and τ(ei ⊗ e j ⊗ ek) = τ(ei ) ⊗ τ(e j ) ⊗ τ(ek),

(D.15)

we have (see (5.7)) � = �+ = (e1,
1
2e112), � = (e2,− 1

2e122), and, in the basis
(H, X,Y ) :

�H ≡ �1 = y1 − x1y1 − 3x2y2 + x3y3,

�X ≡ �2 = y2 +
3

2

(
x3

)2 − x1y2 − 2x3y1 − 2

3
y2y3,

�Y ≡ �3 = y3 + 3x2x3 − x1y3 − x2y1 − 1

6
(y3)

2. (D.16)

Thus, for the sl2 algebra and the quantum Airy structure (1.1), Di = 1
2 B

j
i j = 3

2δ j,1.

As in the main text we enumerate a basis in the sp4 algebra as:

(L1, . . . , L10) = (H1, H2,U1,U2, V1, V2, X12, X21,Y12, Z12) (D.17)

We shall also denote

1

2
Ai jk x

j xk + Bk
i j x

j yk +
1

2
C jk
i y j yk = qi , (D.18)

so that �i = yi − qi . Then, for �2 = e4 ⊗ e14 − e3 ⊗ e12 and

τ(e1) = e3, τ (e3) = −e1, τ (e2) = e4, τ (e4) = −e2, (D.19)

we have �2 = −e2 ⊗ e23 + e1 ⊗ e34, and

q1 = 2x5x9 + x1y1 − 2x2y1 + 2x3y3 + x4y4 − 3

2
x5y5 + x7y7 +

3

2
x9y9 − x10y10−1

8
y5y9,

11 Hamiltonians of the Sym5F representations can be found in [26].
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q2 = −6x5x9 − 2x1y1 + 6x2y1 + x2y2 + x3y3 − 1

2
x5y5 − x6y6 − x8y8 +

1

2
x9y9+

3

8
y5y9,

q3 = −2x5x6 − 2x5x8 + 2
(
x10

)2
+ x2y3 + 3x5y1 + x5y2 − 1

2
x6y9 − 1

2
x8y9

+
1

4
y1y3 +

1

4
y2y9 +

1

2
y3y6 − 1

2
y4y7 +

1

2
(y7)

2,

q4 = 4x4x5 + 2x5x7 + 2
(
x8

)2
+ x1y4 − 2x2y4 − x4y9 + 2x6y1 + x6y2 − 1

2
x7y9 + 2x8y1

+ x8y2 − x9y3+
1

4
y3y5,

q5 = 2x1x9 − 6x2x9 − 2x3x6 − 2x3x8 + 2
(
x4

)2
+ 2x4x7 +

1

2
x1y5 − 1

2
x2y5 + 2x3y1

+ x3y2 − x9y6+
1

4
y5y6 − 1

8
(y10)

2,

q6 = −2x3x5 + x2y6 − 1

2
x3y9 + 2x4y1 + x7y1 − x9y4−1

4
y4y5 − 1

8
(y6)

2 +
1

4
y6y8 − 1

8
(y8)

2,

q7 = 2x4x5 + x2y7 +
1

2
x4y9 − x5y10 + x6y1 + 3x8y1 + x9y3 − x10y6 − x10y8

+
1

4
y3y5 +

1

2
y4y6 − 1

2
y4y8 − 1

2
y6y7 +

1

2
y7y8 − 1

4
y9y10,

q8 = −2x3x5 + 4x4x8 + 4x9x10 + x1y8 − 2x2y8 +
1

2
x3y9 + 2x4y1 + x4y2 − x6y10 + 2x7y1

+ x7y2 − 2x8y10 + x9y4 − x9y7 − x10y5−1

4
y4y

5 +
1

4
y7y7,

q9 = 2x1x5 − 6x2x5 + 4x8x10 +
1

2
x1y9 − 1

2
x2y9 − x4y3 − x5y6 + x5y8 − x6y4 + x6y7 − x7y3

− x8y4 − x8y7 + 4x10y1 + 2x10y2−1

2
y3y10 +

1

4
y6y9 − 1

4
y8y9,

q10 = 4x3x10 + 4x8x9 + x2y10 − x3y7 − x4y8 + x7y6 − x7y8 + x8y5 + 3x9y1 + x9y2

+
1

4
y1y5 +

1

4
y2y5 +

1

4
y6y10 − 1

4
y8y10.

This implies that the non-vanishing components of the D vector are D1 = 2 and D2 =
−1.

For � = �1 = e4 ⊗ e14 − 4
5e1 ⊗ e23 + 1

5e3 ⊗ e12 + 2
5e2 ⊗ η, and consequently

�1 = −e2 ⊗ e23 − 4

5
e3 ⊗ e14 − 1

5
e1 ⊗ e34 +

2

5
e4 ⊗ η, (D.20)

we obtain:

q1 = −2x5x9 + x1y1 − 2x2y1 + 2x3y3 + x4y4 − 3

2
x5y5 + x7y7 +

3

2
x9y9 − x10y10+

1

8
y5y9,

q2 = +6x5x9 − 2x1y1 + 6x2y1 + x2y2 + x3y3 − 1

2
x5y5 − x6y6 − x8y8 +

1

2
x9y9−3

8
y5y9,

q3 = −2x5x6+2x5x8 + 2
(
x10

)2
+ x2y3 + 3x5y1 + x5y2+

1

2
x6y9 − 1

2
x8y9

−1

4
y1y3−1

4
y2y9 +

1

2
y3y6+

1

2
y4y7 +

1

2
(y7)

2,

q4 = 4x4x5−2x5x7 + 2
(
x8

)2
+ x1y4 − 2x2y4+x

4y9 + 2x6y1 + x6y2 − 1

2
x7y9−2x8y1

− x8y2 + x9y3+
1

4
y3y5,
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q5 = −2x1x9+6x2x9 − 2x3x6+2x3x8 + 2
(
x4

)2 −2x4x7 +
1

2
x1y5 − 1

2
x2y5 + 2x3y1

+ x3y2+x
9y6−1

4
y5y6 − 1

8
(y10)

2,

q6 = −2x3x5 + x2y6+
1

2
x3y9 + 2x4y1−x7y1+x

9y4−1

4
y4y5 − 1

8
(y6)

2 −1

4
y6y8 − 1

8
(y8)

2,

q7 = −2x4x5 + x2y7 +
1

2
x4y9 − x5y10−x6y1 + 3x8y1 + x9y3 − x10y6+x

10y8

−1

4
y3y5−1

2
y4y6 − 1

2
y4y8 − 1

2
y6y7−1

2
y7y8+

1

4
y9y10,

q8 = +2x3x5 + 4x4x8−4x9x10 + x1y8 − 2x2y8 +
1

2
x3y9−2x4y1−x4y2 − x6y10 + 2x7y1

+ x7y2+2x
8y10 + x9y4+x

9y7 − x10y5+
1

4
y4y

5 +
1

4
y7y7,

q9 = −2x1x5+6x2x5−4x8x10 +
1

2
x1y9 − 1

2
x2y9+x

4y3+x
5y6 + x5y8+x

6y4 + x6y7 − x7y3

− x8y4+x
8y7 + 4x10y1 + 2x10y2−1

2
y3y10 +

1

4
y6y9+

1

4
y8y9,

q10 = 4x3x10−4x8x9 + x2y10 − x3y7 − x4y8 + x7y6+x
7y8 + x8y5 + 3x9y1 + x9y2

−1

4
y1y5−1

4
y2y5 +

1

4
y6y10+

1

4
y8y10.

Again, the only non-vanishing components of the D vector are D1 = 2 and D2 = −1.
Curiously, despite the fact that the two sp4 Airy structures are non-isomorphic, their

coefficients differ only by some signs.
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