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Abstract: Weextend quantumStein’s lemma in asymmetric quantumhypothesis testing
to composite null and alternative hypotheses. As our main result, we show that the
asymptotic error exponent for testing convex combinations of quantumstatesρ⊗n against
convex combinations of quantum states σ⊗n can be written as a regularized quantum
relative entropy formula.We prove that in general such a regularization is needed but also
discuss various settings where our formula as well as extensions thereof become single-
letter. This includes an operational interpretation of the relative entropy of coherence in
terms of hypothesis testing. For our proof, we start from the composite Stein’s lemma
for classical probability distributions and lift the result to the non-commutative setting
by using elementary properties of quantum entropy. Finally, our findings also imply an
improved recoverability lower bound on the conditional quantum mutual information in
terms of the regularized quantum relative entropy—featuring an explicit and universal
recovery map.

1. Overview of Results

Hypothesis testing is arguably one of the most fundamental primitives in quantum infor-
mation theory. As such it has found many applications, e.g., in quantum channel coding
[27] and quantum illumination [37,46,56], or for giving an operational interpretation
to abstract quantities [13,16,28]. A particular hypothesis testing setting is that of quan-
tum state discrimination where quantum states are assigned to each of the hypotheses
and we aim to determine which state is actually given. Several distinct scenarios are of
interest, which differ in the priority given to different types of error or in how many
copies of a system are given to aid the discrimination. Here, we investigate the setting
of asymmetric hypothesis testing where the goal is to discriminate between two n-party
quantum states (strategies or hypotheses) ρn and σn living on the n-fold tensor product
of some finite-dimensional inner product space H⊗n . That is, we are optimizing over
all two-outcome positive operator valued measures (POVMs) with {Mn, (1− Mn)} and
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associate Mn with accepting ρn as well as (1 − Mn) with accepting σn . This naturally
gives rise to the two possible errors

αn(Mn) := Tr
[
ρn(1 − Mn)

]
Type 1 error, (1)

βn(Mn) := Tr
[
σnMn

]
Type 2 error. (2)

For asymmetric hypothesis testing we minimize the Type 2 error as1

β(n, ε) := inf
0�Mn�1

{
βn(Mn)

∣∣αn(Mn) ≤ ε
}

(3)

while we require the Type 1 error not to exceed a small constant ε ∈ (0, 1). We are then
interested in finding the optimal error exponent2

ζ(n, ε) := − logβ(n, ε)

n
, (4)

and its asymptotic limits

ζ(∞, ε) := lim
n→∞ − logβ(n, ε)

n
, ζ(∞, 0) := lim

ε→0
ζ(∞, ε) . (5)

A well studied discrimination setting is that between fixed independent and identical
(iid) states ρ⊗n and σ⊗n , where the asymptotic error exponent is determined by the
quantum Stein’s lemma [4,30,43] in terms of the quantum relative entropy. Namely, we
denote this special case of Eq. (5) by ζρ,σ (∞, ε) and the Stein’s lemma then gives for
any ε ∈ (0, 1) the formula

ζρ,σ (∞, ε) = D(ρ‖σ) :=
{
Tr
[
ρ (log ρ − log σ)

]
supp(ρ) ⊆ supp(σ )

∞ otherwise.
(6)

In many applications we aim to solve more general discrimination problems and a
prominent example of such is that of composite hypotheses—in which we attempt to
discriminate between different sets of states. Previously the case of composite iid null
hypotheses ρ⊗n with ρ ∈ S and corresponding asymptotic error exponent ζS,σ (∞, ε)

was studied in [10,25], leading to the formula

ζS,σ (∞, ε) = inf
ρ∈S D(ρ‖σ) ∀ε ∈ (0, 1) . (7)

On the other hand, the problem of composite alternative hypotheses is more involved in
the non-commutative case. When the set of alternative hypotheses Tn for n ∈ N fulfils
certain axioms motivated by the framework of resource theories, it was shown in [13]
that the corresponding asymptotic error exponent ζρ,T (∞, ε) is written in terms of the
regularized relative entropy distance as

ζρ,T (∞, ε) = lim
n→∞

1

n
inf

σn∈Tn
D
(
ρ⊗n‖σn

) ∀ε ∈ (0, 1) . (8)

1 Here and henceforth � denotes the Loewner order.
2 Here and henceforth the logarithm is defined with respect to the basis 2.
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This regularization is in general needed as we know from the case of the relative entropy
of entanglement [54]. Note that thismight not be too surprising since the set of alternative
hypotheses is not required to be iid in general.

For our main result, we consider the setting where null and alternative hypotheses
are both composite and given by convex combinations of n-fold tensor powers of states
from given convex, closed sets S and T . More precisely, for n ∈ N we attempt the
following discrimination problem.3

Null hypothesis: the convex hull of iid states

Sn :=
{ ∫

ρ⊗n dν(ρ)

∣
∣∣ν ∈ S

}
with S ⊆ S(H) convex and closed (9)

Alternative hypothesis: the convex hull of iid states

Tn :=
{ ∫

σ⊗n dμ(σ)

∣∣∣μ ∈ T
}
with T ⊆ S(H) convex and closed (10)

Slightly abusing the notation, ν ∈ S and μ ∈ T stand for probability measures on
the Borel σ -algebra of S and T , respectively. For ε ∈ (0, 1) the goal is to determine the
optimal error exponent for composite asymmetric hypothesis testing

ζS,T (n, ε) := −1

n
log inf

0�Mn�1

{

sup
μ∈T

Tr
[
Mnσn(μ)

]
∣∣∣
∣ sup
ν∈S

Tr
[
(1 − Mn)ρn(ν)

] ≤ ε

}

(11)

with the abbreviations

ρn(ν) :=
∫

ρ⊗ndν(ρ) and σn(μ) :=
∫

σ⊗ndμ(σ) . (12)

It is trivial to see that ζS,T (n, ε) equivalently gives the error exponent of testing between
S⊗n := {ρ⊗n|ρ ∈ S} and T ⊗n := {σ⊗n|σ ∈ T }. This then explicitly takes the form of
an iid problem. The following is our main result, which we prove in Sect. 2 under the
support condition

supp(ρ) ⊆ supp(σ ) ∀ρ ∈ S ∀σ ∈ T . (13)

Theorem 1.1. For the discrimination problem as above, we have

lim
ε→0

lim inf
n→∞ ζS,T (n, ε) = lim

ε→0
lim sup
n→∞

ζS,T (n, ε) (14)

= lim
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n

∥∥∥
∫

σ⊗n dμ(σ)
)

(15)

3 Here and henceforth all inner product spaces H are finite-dimensional and S(H) denotes the set of unit
trace positive semi-definite linear operators on H.
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Our proof can be found in Sect. 2 and has a clear structure in the sense that we start
from the composite Stein’s lemma for classical probability distributions and then lift
the result to the non-commutative setting by using elementary properties of entropic
measures. We emphasise that even in the case of a fixed null hypothesis S = {ρ}
our setting is not a special case of the previous results [13], as our sets of alternative
hypotheses are not closed under tensor product

σm ∈ Tm, σn ∈ Tn � σm ⊗ σn ∈ Tmn , (16)

which is one of the properties required for the results in [13].
We show that in contrast to the finite classical case [11,34], the regularization in

Eq. (15) is needed in general. That is, we provide an explicit example for which the
non-regularized relative entropy formula is not an achievable asymptotic error exponent

inf
ρ∈S
σ∈T

D(ρ‖σ) > lim
ε→0

lim sup
n→∞

ζS,T (n, ε) . (17)

In particular, we find that, even for n → ∞, in general

1

n
inf
μ∈T

D
(
ρ⊗n

∥∥∥
∫

σ⊗n dμ(σ)
)

�= inf
σ∈T

D(ρ‖σ) , (18)

thereby providing a counterexample to this conjectured quantum entropy inequality (see
[12, Equation (20)] for a variant) which holds in the finite classical setting (see, e.g.,
[51, Lemma 3.11]).4 Note that the ≤ direction in Eq. (18) holds trivially.

Nevertheless, there exist non-commutative cases in which the regularization in
Eq. (15) is not needed and we discuss several such examples. In particular, we give
an operational interpretation of the relative entropy of coherence in terms of hypothesis
testing.

Finally, we apply the techniques developed in this work to strengthen previously
known quantum relative entropy lower bounds on the conditional quantum mutual in-
formation [9,12,22,32,50,51,55]

I (A : B|C)ρ := H(AC)ρ + H(BC)ρ − H(ABC)ρ − H(C)ρ (19)

with H(C)ρ := −Tr
[
ρC log ρC

]
the von Neumann entropy. We find that

I (A : B|C)ρ ≥ lim sup
n→∞

1

n
D
(
ρ⊗n
ABC

∥∥∥
∫

β0(t) dt
(
IA ⊗ R[t]

C→BC (ρAC )
)⊗n
)

(20)

for some universal probability distribution β0(t) and the rotated Petz recovery maps
R[t]
C→BC as defined in Sect. 4. In contrast to the previously known bounds in terms of

the quantum relative entropy [12,51], the recovery map in Eq. (20) takes a specific form
only depending on the reduced state on BC . Note that the regularization in Eq. (20)
cannot go away in relative entropy distance, as recently shown in [21]. We end with an
overview how all known recoverability lower bounds on the conditional quantummutual
information compare and argue that Eq. (20) represents the last possible strengthening.

The remainder of the paper is structured as follows. In Sect. 2we prove ourmain result
about composite asymmetric hypothesis testing. This is followed by Sect. 3 where we

4 After completion of the first version of our work, even simpler examples of composite hypothesis testing
problems with no single-letter solution were provided in [38].



On Composite Quantum Hypothesis Testing 59

discuss several concrete examples including an operational interpretation of the relative
entropy of coherence, as well as its Rényi analogues in terms of the Petz divergences
[44] and the sandwiched relative entropies [39,57]. In Sect. 4 we prove the refined lower
bound on the conditional mutual information from Eq. (20) and use it to show that the
regularization in Eq. (15) is needed in general. Finally, we end in Sect. 5with a discussion
of some open questions.

2. Proof of Main Result

In the following we give a proof of our main result Theorem 1.1. We first prove the
converse, meaning the ≤ direction of Theorem 1.1, which follows from the following
proposition.

Proposition 2.1. For ρ ∈ S, μ ∈ T , and ε ∈ (0, 1) we have

ζS,T (n, ε) ≤ inf
ρ∈S
μ∈T

1

n

D
(
ρ⊗n‖σn(μ)

)
+ 1

1 − ε
. (21)

Proof. We follow the original converse proof of quantum Stein’s lemma [30] for the
states ρ⊗n and σn(μ). By the monotonicity of the quantum relative entropy [36], we
have for the measurement {Mn, (1 − Mn)} that

D
(
ρ⊗n

∥
∥σn(μ)

)

≥ Tr
[
Mnρ

⊗n] log
Tr
[
Mnρ

⊗n
]

Tr [Mnσn(μ)]
+
(
1 − Tr

[
Mnρ

⊗n]) log
1 − Tr

[
Mnρ

⊗n
]

1 − Tr [Mnσn(μ)]
(22)

≥ − log 2 − Tr
[
Mnρ

⊗n] log Tr [Mnσn(μ)] (23)

≥ −1 − inf
ρ∈S

Tr
[
Mnρ

⊗n] log sup
μ∈T

Tr [Mnσn(μ)] (24)

≥ −1 − (1 − ε) log sup
μ∈T

Tr [Mnσn(μ)] (25)

leading to

−1

n
log sup

μ∈T
Tr [Mnσn(μ)] ≤ 1

n

D
(
ρ⊗n

∥∥σn(μ)
)
+ 1

1 − ε
(26)

for any ρ ∈ S, μ ∈ T , and 0 � Mn � 1 such that supρ∈S Tr
[
(1 − Mn)ρ

⊗n
] ≤ ε.

Taking the supremum over all such Mn and then the infimum over ρ ∈ S and μ ∈ T
leads to the desired result. �

By taking the appropriate limits in Proposition 2.1, we immediately find the converse
statements

lim
ε→0

lim sup
n→∞

ζS,T (n, ε) ≤ lim sup
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n

∥∥σn(μ)
)

(27)

lim
ε→0

lim inf
n→∞ ζS,T (n, ε) ≤ lim inf

n→∞
1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n

∥
∥σn(μ)

)
. (28)
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Remark 2.2. In information-theoretic language Eq. (21) represents a weak converse,
i.e. the limit ε → 0 in Eqs. (27) and (28) is required, and one might be tempted to
derive a strong converse that holds for all ε ∈ (0, 1) by employing quantum versions
of the Rényi relative entropies [39,44,57] or the smooth max-relative entropy [18,31].
However, because of the missing σm ∈ Tm, σn ∈ Tn � σm ⊗ σn ∈ Tmn property,
the convergence of aforementioned measures to the quantum relative entropy remains
unclear (see, e.g., [3,13,17,19] for corresponding techniques in the context of quantum
hypothesis testing). As such, we leave open the question about a strong converse.

For the proof of the achievability, meaning the ≥ direction in Theorem 1.1, the basic
idea is to start from the corresponding composite Stein’s lemma for classical probability
distributions and lift the result to the non-commutative setting by solely using properties
of quantum entropy. For that we need the measured relative entropy defined as [20,30]

DM(ρ‖σ) := sup
(X ,M)

D
(∑

x∈X
Tr [Mxρ] |x〉〈x |

︸ ︷︷ ︸
=M(ρ)

∥∥∥
∑

x∈X
Tr [Mxσ ] |x〉〈x |

︸ ︷︷ ︸
=M(σ )

)
, (29)

where the optimization is over finite setsX and measurementsM onX with Tr [Mxρ] a
measure onX . Henceforth,wewrite for the classical relative entropy between probability
distributions D(P‖Q)—defined via the diagonal embedding of P and Q as on the right-
hand side of Eq. (29). It is known that we can restrict the a priori unbounded supremum
to rank-one projective measurements [7, Theorem 2]. We now prove the achievability
direction in Theorem 1.1 in several steps and start with an achievability bound in terms
of the measured relative entropy.

Lemma 2.3. For definitions as above and ε ∈ (0, 1), we have

lim inf
n→∞ ζS,T (n, ε) ≥ sup

k∈N
1

k
inf
ν∈S
μ∈T

DM (ρk(ν)‖σk(μ)) . (30)

Proof. For sets of classical probability distributions S and T , we get from the corre-
sponding commutative achievability result that for δ > 0 and ε ∈ (0, 1), there exists
Mε,δ ∈ N such that for m ≥ Mε,δ we have

ζS,T (m, ε) ≥ inf
P∈S
Q∈T

D(P‖Q) − δ . (31)

This is a special case of [11, Theorem 2] and we refer to [34] as well as references
therein for a general discussion of composite hypothesis testing. Now, the strategy is
to first measure the quantum states and then to invoke the classical achievability result
from Eq. (31) for the resulting probability distributions.

This argument is made precise as follows. The classical case implies the existence
of a sequence of tests (Tk,m)m∈N for the discrimination problem between the measured
stateMk(S⊗k)⊗m and the measured stateMk(T ⊗k)⊗m with m ∈ N, such that

sup
ρ∈S

Tr
[
(1 − Tk,m)Mk(ρ

⊗k)⊗m
]

≤ ε (32)
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for all m ∈ N, and

lim
m→∞ − 1

m
log sup

σ∈T
Tr
[
Tk,mMk(σ

⊗k)⊗m
]

≥ inf
ρ∈S
σ∈T

D
(
Mk(ρ

⊗k)
∥∥Mk(σ

⊗k
)

. (33)

Hence, for any δ > 0, there exists an mδ such that for all m ≥ mδ we have

− 1

m
log sup

σ∈T
Tr
[
Tk,mMk(σ

⊗k)⊗m
]

≥ inf
ρ∈S
σ∈T

D
(
Mk(ρ

⊗k)
∥∥Mk(σ

⊗k
)

− δ . (34)

Defining Tn := (M†
k

)⊗m
(Tk,m) ⊗ 1r for n = km + r , r ∈ {0, . . . , k − 1}, we get that

sup
ρ∈S

Tr
[
(1 − Tn)ρ

⊗n] = sup
ρ∈S

Tr
[
(1 − Tk,m)Mk(ρ

⊗k)⊗m
]

≤ ε (35)

for all n ∈ N, and thus

ζS,T (n, ε) ≥ −1

n
log sup

σ∈T
Tr
[
Tnσ

⊗n] (36)

= − 1

km + r
log sup

σ∈T
Tr
[
Tk,mMk(σ

⊗k)⊗m
]

(37)

≥ m

km + r
inf
ρ∈S
σ∈T

D
(
Mk(ρ

⊗k)
∥∥Mk(σ

⊗k)
)

− m

km + r
δ (38)

whenever n ≥ kmδ . Therefore, we get

lim inf
n→∞ ζS,T (n, ε) ≥ 1

k
inf
ρ∈S
σ∈T

D
(
Mk(ρ

⊗k)
∥
∥Mk(σ

⊗k)
)

− 1

k
δ (39)

for any binary POVM Mk and δ > 0. Taking δ → 0 and then the supremum over Mk
gives

lim inf
n→∞ ζS,T (n, ε) ≥ 1

k
sup
Mk

inf
ρ∈S
σ∈T

D(Mk(ρ
⊗k)‖Mk(σ

⊗k)) (40)

≥ 1

k
sup
Mk

inf
ν∈S
μ∈T

D(Mk(ρk(ν))‖Mk(σk(μ))) (41)

= 1

k
inf
ν∈S
μ∈T

sup
Mk

D(Mk(ρk(ν))‖Mk(σk(μ))) , (42)

where the equality follows from Lemma A.2. Since this holds for every k ∈ N, we find
the claimed

lim inf
n→∞ ζS,T (n, ε) ≥ sup

k∈N
1

k
inf
ν∈S
μ∈T

DM(ρk(ν)‖σk(μ)) . (43)

�
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Next, we argue that the measured relative entropy can in fact be replaced by the
quantum relative entropy by only paying an asymptotically vanishing penalty term. For
this we need the following lemma, which can be seen as a generalization of the technical
argument in the original proof of quantum Stein’s lemma [30].

Lemma 2.4. Let ρn, σn ∈ S
(
H⊗n

)
with σn permutation invariant. Then, we have

D
(
ρn
∥∥σn
)− log poly(n) ≤ DM

(
ρn
∥∥σn
) ≤ D

(
ρn
∥∥σn
)
, (44)

where poly(n) stands for terms of order at most polynomial in n.

Proof. We can restrict ourselves to the case where supp
(
ρn
) ⊆ supp

(
σn
)
since other-

wise all relative entropy terms evaluate to infinity by definition. The second inequality
follows directly from the definition of the measured relative entropy in Eq. (29) together
with the fact that the quantum relative entropy is monotone [36]. We now prove the first
inequality with the help of asymptotic spectral pinching [25]. The pinching map with
respect to ω ∈ S(H) is defined as

Pω(·) :=
∑

λ∈spec(ω)

Pλ(·)Pλ with the spectral decomposition ω =
∑

λ∈spec(ω)

λPλ. (45)

Crucially, we have the pinching operator inequality [25]

Pω[X ] � X

|spec(ω)| , (46)

where |spec(·)| denotes the size of the spectrum. From this we can deduce that (see, e.g.,
[52, Lemma 4.4])

D
(
ρn
∥
∥σn
)− log

∣
∣spec

(
σn
)∣∣ ≤ D

(
Pσn

(
ρn
)∥∥σn

) ≤ DM
(
ρn
∥
∥σn
)
, (47)

where the second inequality follows since Pσn

(
ρn
)
and σn are diagonal in the same

basis and the measured relative entropy gives an upper-bound. It remains to show that∣∣spec
(
σn
)∣∣ ≤ poly(n). However, since σn is permutation invariant we have by Schur-

Weyl duality (see, e.g., [24, Section 5]) that in the Schur basis

σn =
⊕

λ∈�n

σQλ ⊗ 1Pλ with |�n| ≤ poly(n) and dim
[
σ 0
Qλ

]
≤ poly(n). (48)

where σ 0
Qλ

is the projector onto the support of σQλ . This implies the claim. �
By combining Lemma 2.3 together with Lemma 2.4 we find for ε ∈ (0, 1) that

lim inf
n→∞ ζS,T (n, ε) ≥ lim sup

n→∞
1

n
inf
ν∈S
μ∈T

D (ρn(ν)‖σn(μ)) . (49)

The next step is to argue that asymptotically the infimum over states ρn(ν) can without
loss of generality be restricted to iid states ρ⊗n with ρ ∈ S.
Lemma 2.5. For definitions as above and ωn ∈ S

(
H⊗n

)
, we have

1

n
inf
ν∈S

D
(
ρn(ν)

∥∥ωn
) ≥ 1

n
inf
ρ∈S

D
(
ρ⊗n

∥∥ωn
)− 2d2 log(n + 1)

n
, (50)

where d := dim (H).
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Proof. For ν ∈ S and H(ρ) := −Tr
[
ρ log ρ

]
the von Neumann entropy, we observe

the following chain of arguments

1

n
D
(
ρn(ν)

∥
∥ωn

)

= 1

n
D
( N∑

i=1

piρ
⊗n
i

∥∥
∥ωn

)
(51)

= −1

n
H
( N∑

i=1

piρ
⊗n
i

)
− 1

n

N∑

i=1

pi Tr
[
ρ⊗n
i logωn

]
(52)

≥ −1

n

N∑

i=1

pi H
(
ρ⊗n
i

)− log (n + 1)2d
2

n
− 1

n

N∑

i=1

pi Tr
[
ρ⊗n
i logωn

]
(53)

≥ min
ρi

1

n
D
(
ρ⊗n
i

∥
∥ωn

)− 2d2 log(n + 1)

n
(54)

≥ inf
ρ∈S

1

n
D
(
ρ⊗n

∥∥ωn
)− 2d2 log(n + 1)

n
, (55)

where the first equality holds by an application of Carathédory’s theorem with N ≤
(n + 1)2d

2
(Lemma A.3), and the first inequality by an almost-convexity property of the

von Neumann entropy (Lemma A.4). All other steps are elementary. Since the above
argument holds for all ν ∈ S, the claim follows. �

Lemma 2.5 together with Eq. (49) gives for ε → 0 that

lim sup
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n‖σn(μ)

) ≤ sup
k∈N

1

k
inf
ν∈S
μ∈T

DM(ρk(ν)‖σk(μ)) (56)

≤ lim
ε→0

lim inf
n→∞ ζS,T (n, ε) (57)

≤ lim inf
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n‖σn(μ)

)
, (58)

where the last step follows from Eq. (28). This shows that the limit

lim
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n‖σn(μ)

)
(59)

exists and all the inequalities above hold as equalities. Furthermore, we have

lim sup
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n‖σn(μ)

) ≤ lim
ε→0

lim sup
n→∞

ζS,T (n, ε) (60)

≤ lim sup
n→∞

1

n
inf
ρ∈S
μ∈T

D
(
ρ⊗n‖σn(μ)

)
, (61)

which concludes the proof of Theorem 1.1. �
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3. Examples and Extensions

Here, we discuss several concrete examples of composite discrimination problems—
some of which have a single-letter solution.

3.1. Relative entropy of coherence. Following the literature around [5], the set of states
diagonal in a fixed basis {|c〉} is called incoherent and denoted by C ⊆ S(H). The relative
entropy of coherence of ρ ∈ S(H) is defined as

DC(ρ) := inf
σ∈C

D(ρ‖σ) . (62)

Based on our main result (Theorem 1.1), we can characterize the following discrimina-
tion problem.

Null hypothesis: the fixed state ρ⊗n

Alternative hypothesis: the convex hull of iid coherent states

C̄n :=
{ ∫

σ⊗n dμ(σ)

∣∣∣μ ∈ C
}

(63)

Namely, Theorem 1.1 gives

ζC̄(∞, 0) := lim
ε→0

lim
n→∞ ζC̄(n, ε) (64)

= lim
n→∞

1

n
inf
μ∈C

D
(
ρ⊗n

∥∥∥
∫

σ⊗n dμ(σ)
)

(65)

=DC(ρ) , (66)

where the limit in Eq. (64) exists because the relative entropy of coherence is additive
on product states [14], and the last step follows from a general property of the relative
entropy of coherence (Lemma A.5) applied to the decohering channel. In fact, there is
even a single-letter solution for the following less restricted discrimination problem.

Null hypothesis: the fixed state ρ⊗n

Alternative hypothesis: the convex set of coherent states Cn
It is straightforward to check that this hypothesis testing problem fits the general

framework of [13], leading to

ζC(∞, ε) := lim
n→∞ ζC(n, ε) = lim

n→∞
1

n
inf

σn∈Cn
D
(
ρ⊗n‖σn

) = DC(ρ) ∀ε ∈ (0, 1) ,

(67)

where the last step again follows from a general property of the relative entropy of
coherence (LemmaA.5). Thus,wehave twoapriori different hypothesis testing scenarios
that both give an operational interpretation to the relative entropy of coherence. In the
following we give a simple self-contained proof of Eq. (67) that is different from the
rather involved steps in [13] and instead follows ideas from [4,28]. The goal is the
quantification of the optimal asymptotic error exponent

ζC(n, ε) := −1

n
log inf

0�Mn�1
Tr[Mnρ

⊗n]≥1−ε

sup
σn∈Cn

Tr [Mnσn] (68)

with ζC(∞, ε) := lim
n→∞ ζC(n, ε) . (69)
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Proposition 3.1 For the discrimination problem as above with ε ∈ (0, 1), we have

ζC(∞, ε) = DC(ρ) . (70)

Note that Proposition 3.1 is independent of supp(ρ) as the set C includes full rank
states. A weak converse for ε → 0 follows exactly as in Lemma 2.1, together with
Lemma A.5 to make the expression single-letter. For the strong converse as claimed in
Proposition 3.1, we make use of a general family of quantum Rényi entropies: the Petz
divergences [44]. For ρ, σ ∈ S(H) and s ∈ (0, 1) ∪ (1,∞) they are defined as

Ds
(
ρ
∥∥σ
) := 1

s − 1
log Tr

[
ρsσ 1−s

]
, (71)

whenever either s < 1 and ρ is not orthogonal to σ in Hilbert-Schmidt inner product
or s > 1 and the support of ρ is contained in the support of σ . (Otherwise we set
Ds(ρ‖σ) := ∞.) The corresponding Rényi relative entropies of coherence are given by
[14]

Ds,C(ρ) := inf
σ∈C

Ds(ρ‖σ) with the additivity property Ds,C
(
ρ⊗n) = nDs,C(ρ). (72)

Using similar standard arguments [40] as in Lemma 2.1 but based on the monotonicity
of the Petz divergences, we find for s ∈ (1, 2] that

− 1

n
log inf

0≤Mn≤1

{
Tr [Mnσn]

∣∣
∣Tr

[
(1 − Mn)ρ

⊗n] ≤ ε
}

≤ 1

n
· Ds

(
ρ⊗n

∥∥σn
)
+
1

n

s

s − 1

1

log(1 − ε)
. (73)

By taking the infimum over σn ∈ Cn , a basic application of Sion’s minimax theorem
(Lemma A.1), using the additivity from Eq. (72), taking the limit n → ∞ as well as the
limit [14]

lim
s→1

Ds,C(ρ) = DC(ρ) , (74)

we find the claimed strong converse ζC(∞, ε) ≤ DC(ρ). The achievability direction of
Proposition 3.1 is based on the Petz divergences as well.

Lemma 3.2 For the discrimination problems as above with n ∈ N and ε ∈ (0, 1), we
have for s ∈ (0, 1) that

ζC(n, ε) ≥ Ds,C(ρ) − 1

n

s

1 − s
log

1

ε
. (75)

Taking the limit n → ∞ as well as the limit s → 1 using Eq. (74), we then find the
claimed achievability ζC(∞, ε) ≥ DC(ρ).

Proof of Lemma 3.2. It is straightforward to check with Sion’s minimax theorem
(Lemma A.1) that

inf
0≤Mn≤1

Tr[Mnρ
⊗n]≥1−ε

sup
σn∈Cn

Tr [Mnσn] = sup
σn∈Cn

inf
0≤Mn≤1

Tr[Mnρ
⊗n]≥1−ε

Tr [Mnσn] . (76)
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Now, for λn ∈ Rwith n ∈ Nwe choose Mn(λn) := {ρ⊗n − 2λnσn
}
+ where {·}+ denotes

the projector on the eigenspace of the positive spectrum. We have 0 � Mn(λn) � 1
and by Audenaert’s inequality (Lemma A.6) with s ∈ (0, 1) we get

Tr
[
(1 − Mn(λn))ρ

⊗n] ≤ 2(1−s)λn Tr
[(

ρ⊗n)s σ 1−s
n

]
= 2

(1−s)
(
λn−Ds

(
ρ⊗n
∥∥σn

))

. (77)

Moreover, again Audenaert’s inequality (Lemma A.6) for s ∈ (0, 1) implies

Tr [Mn(λn)σn] ≤ 2−sλn Tr
[(

ρ⊗n)s σ 1−s
n

]
= 2

−sλn−(1−s)Ds

(
ρ⊗n
∥∥σn

)

. (78)

Hence, choosing

λn := Ds
(
ρ⊗n

∥
∥σn
)
+ log ε

1
1−s with Mn := Mn(λn) (79)

leads with Eq. (77) to Tr
[
Mnρ

⊗n
] ≥ 1− ε. Finally, Eq. (76) together with Eq. (78) and

the additivity property from Eq. (72) leads to the claim.

We note that a more refined analysis of the above calculation allows to determine
the Hoeffding bound as well as the strong converse exponent (cf. [4,28]). The former
gives an operational interpretation to the Rényi relative entropy of coherence Ds,C(ρ),
whereas the latter gives an operational interpretation to the sandwiched Rényi relative
entropies of coherence [14]

D̃s,C(ρ) := inf
σ∈C

D̃s(ρ‖σ) (80)

with the sandwiched Rényi entropies

D̃s(ρ‖σ) := 1

s − 1
log Tr

[(
σ

1−s
2s ρσ

1−s
2s

)s]
(81)

whenever either s < 1 and ρ is not orthogonal to σ in Hilbert-Schmidt inner product
or s > 1 and the support of ρ is contained in the support of σ [39,57]. (Otherwise we
set Ds(ρ‖σ) := ∞.) The crucial insight for the proof is again the additivity property
D̃s,C

(
ρ⊗n

) = nD̃s,C(ρ), that was already shown in [14].

3.2. Relative entropy of recovery. The relative entropy of recovery ofρABC ∈ S(HABC )

and its regularized version are defined as [7,12,47]5

D(A; B|C)ρ := inf
R

D
(
ρABC

∥∥(IA ⊗ RC→BC ) (ρAC )
)

(82)

and D∞(A; B|C)ρ := lim
n→∞

1

n
D(A; B|C)ρ⊗n , (83)

where the infimumgoes over all completely positive and trace preservingmapsRC→BC .
It was recently shown that in general [21]

D∞(A; B|C)ρ �= D(A; B|C)ρ . (84)

Using the framework from [13], the following discrimination problem was linked to the
regularized relative entropy of recovery [16].

5 This limit exists and is finite as for an := D(A; B|C)ρ⊗n ≥ 0 we have the monotonicity property
an+m ≤ an + am .
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Null hypothesis: the fixed state ρ⊗n
ABC

Alternative hypothesis: for anyRCn→BnCn completely positive and trace preserving,
the convex set of states

Rn := {(IAn ⊗ RCn→BnCn )
(
ρ⊗n
AC

)}
(85)

Namely, for ε ∈ (0, 1) we have for the corresponding asymptotic error exponent

ζR(∞, ε) := lim
n→∞ ζR(n, ε) = D∞(A; B|C)ρ . (86)

In contrast, our main result (Theorem 1.1) covers the following discrimination problem.

Null hypothesis: the fixed state ρ⊗n
ABC

Alternative hypothesis: for anyRC→BC completely positive and trace preserving, the
convex hull of iid states

R̄n :=
{ ∫

((IA ⊗ RC→BC )(ρAC ))⊗n dμ(R)
}

. (87)

Interestingly, we can show that the asymptotic error exponents of the two discrimi-
nation problems are actually identical.

Proposition 3.3. With the definitions as above, we have

lim
n→∞

1

n
inf
R

D
(
ρ⊗n
ABC

∥∥(IA ⊗ RCn→BnCn )
(
ρ⊗n
AC

) )

= lim
n→∞

1

n
inf

μ∈R
D
(
ρ⊗n
ABC

∥∥∥
∫ (

(IA ⊗ RC→BC )(ρAC )
)⊗n dμ(R)

)
. (88)

Proof. One direction of the inequality is by definition and for the other direction we use
a de Finetti reduction for quantum channels [12, Lemma 8] that was first derived in [22].
Namely, we have for ωCn ∈ S

(
H⊗n

C

)
and permutation invariant RCn→BnCn that

RCn→BnCn (ωCn ) � poly(n)

∫
(RC→BC )⊗n (ωCn ) dν(R) (89)

for some measure dν(R) over the completely positive and trace preserving maps on
C → BC . As explained in the proof of [12, Proposition 9], the joint convexity of the
quantum relative entropy together with the operator monotonicity of the logarithm then
imply that

D
(
ρ⊗n
ABC

∥∥RCn→BnCn
(
ρ⊗n
AC

))

≥ D
(
ρ⊗n
ABC

∥∥
∥
∫ (

(IA ⊗ RC→BC )(ρAC )
)⊗n dν(R)

)
− log poly(n) . (90)

�
As such, we can conclude that

ζR̄(∞, 0) := lim
ε→0

lim inf
n→∞ ζR̄(n, ε)

= lim
ε→0

lim sup
n→∞

ζR̄(n, ε) = D∞(A; B|C)ρ . (91)
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3.3. Quantummutual information. The quantummutual information of ρAB ∈ S(HAB)

is defined as

I (A : B)ρ := H(A)ρ + H(B)ρ − H(AB)ρ . (92)

Ourmain result fromSect. 2 provides a solution to the following discrimination problem.

Null hypothesis: the fixed state ρ⊗n
AB

Alternative hypothesis: the convex hull of iid states

T̄An :Bn :=
{
ρ⊗n
A ⊗

∫
σ⊗n
B dμ(σ)

∣∣∣μ ∈ S(HB)
}

. (93)

Namely, we have

ζ̄A:B(∞, 0) := lim
ε→0

lim
n→∞ ζ̄A:B(n, ε) (94)

= lim
n→∞

1

n
inf
μ∈T̄

D
(
ρ⊗n
AB

∥∥∥ρ⊗n
A ⊗

∫
σ⊗n
B dμ(σ)

)
(95)

=I (A : B)ρ . (96)

Here, the last equality follows from the easily checked identity

I (A : B)ρ = inf
σB∈S(H)

D(ρAB‖ρA ⊗ σB) . (97)

More general composite discrimination problems leading to the quantum mutual infor-
mation were solved in [28] and in the following we further extend these results (cf. the
classical work [53]).

Null hypothesis: the fixed state ρ⊗n
AB

Alternative hypothesis: the set of states

TAn :Bn := {σAn ⊗ σBn ∈ S
(
H⊗n

AB

) ∣∣σAn or σBn permutation invariant
}

. (98)

The goal is again the quantification of the optimal asymptotic error exponent

ζA:B(n, ε) := −1

n
log inf

0�Mn�1
Tr[Mnρ

⊗n]≥1−ε

sup
σAn⊗σBn∈Tn

Tr [MAnBnσAn ⊗ σBn ] (99)

with ζA:B(∞, ε) := lim
n→∞ ζA:B(n, ε) . (100)

Note that the sets TAn Bn are not convex and hence the minimax technique used in
Sect. 3.1 does not work here. However, following the ideas in [28,53] we can exploit
the permutation invariance and use de Finetti reductions of the form [15,26] to find the
following.

Proposition 3.4. For the discrimination problem as above with ε ∈ (0, 1), we have

ζA:B(∞, ε) = I (A : B)ρ . (101)

The achievability direction is based on the following lemma.
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Lemma 3.5. For the discrimination problem as above with n ∈ N and ε ∈ (0, 1), we
have for s ∈ (0, 1) that

ζA:B(n, ε) ≥ inf
σ∈S(H)

Ds
(
ρAB

∥∥σA ⊗ σB
)− 1

n

s

1 − s
log

1

ε
− log poly(n)

n
. (102)

Proof. Without loss of generality assume that σAn is permutation invariant. We choose

MAnBn (λn) := {ρ⊗n
AB − 2λnωAn ⊗ ωBn

}
+

with ωAn :=
(
n + |A|2 − 1

n

)−1

Tr Ãn

[
PSym
An Ãn

]
, (103)

where PSym
An Ãn denotes the projector onto the symmetric subspace of H⊗n

A ⊗ H⊗n
Ã

with

|A| = | Ã| (denoting the dimension of HA by |A|), and similarly for Bn . Audenaert’s
inequality (Lemma A.6) gives that

Tr
[
(1 − MAnBn (λn))ρ

⊗n
AB

] ≤ 2(1−s)λn Tr
[(

ρ⊗n
AB

)s
(ωAn ⊗ ωBn )1−s

]

≤ 2
(1−s)

(
λn−infσAn ⊗σBn ∈Tn Ds

(
ρ⊗n
AB

∥∥σAn⊗σBn

))

. (104)

Furthermore, we have by Schur-Weyl duality that σAn ≤ (n+|A|2−1
n

)
ωAn for all permu-

tation invariant σAn (see, e.g., [28, Lemma 1]) and thus again by Audenaert’s inequality
(Lemma A.6)

Tr [MAnBn (λn) (σAn ⊗ σBn )] (105)

= Tr

⎡

⎣MAnBn (λn)

⎛

⎝σAn ⊗
⎛

⎝
∑

π∈Sn
UBn (π)σBnU †

Bn (π)

⎞

⎠

⎞

⎠

⎤

⎦ (Sn : symm. group)

≤
(
n + |A|2 − 1

n

)(
n + |B|2 − 1

n

)

︸ ︷︷ ︸
=: p(n) ≤ poly(n)

Tr [MAnBn (λn) (ωAn ⊗ ωBn )]

≤ p(n) · 2−sλn Tr
[(

ρ⊗n
AB

)s
(ωAn ⊗ ωBn )1−s

]

≤ p(n) · 2−sλn−(1−s) infσAn ⊗σBn ∈Tn Ds

(
ρ⊗n
AB

∥∥σAn⊗σBn

)

. (106)

We now choose

λn := inf
σAn⊗σBn∈Tn

Ds
(
ρ⊗n
AB

∥∥σAn ⊗ σBn
)
+ log ε

1
1−s with MAnBn := MAnBn (λn),

(107)

from which we get Tr
[
MAnBnρ⊗n

AB

] ≥ 1 − ε and together with Eqs. (99) and (106) that

ζ n
A:B(ε) ≥ inf

σAn⊗σBn∈Tn
Ds
(
ρ⊗n
AB

∥∥σAn ⊗ σBn
)− 1

n

s

1 − s
log

1

ε
− log p(n)

n
. (108)
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To deduce the claim it is now sufficient to argue that the Rényi quantum mutual infor-
mation6

Is(A : B)ρ := inf
σA⊗σB∈S(H)

Ds
(
ρAB

∥∥σA ⊗ σB
)

(109)

is additive on tensor product states. This, however, follows exactly as in the classical
case [53, App. A-C] from the (quantum) Sibson identity [48, Lemma 3]

Ds
(
ρAB

∥∥σA ⊗ σB
) = Ds

(
ρAB

∥∥σA ⊗ σ̄B
)
+ Ds

(
σ̄B
∥∥σB

)

with σ̄B :=
(
TrA

[
ρs
ABσ 1−s

A

]) 1
s

Tr

[(
TrA

[
ρs
ABσ 1−s

A

]) 1
s
] . (110)

�
Taking the limit n → ∞ in Lemma 3.5 and then taking the limit s → 1 via the

quantum Sibson identity from Eqs. (110) and (97) yields

lim
s→1

Is(A : B)ρ = I (A : B)ρ , (111)

gives the claimed achievability ζA:B(∞, 0) ≥ I (A : B)ρ . A weak converse for ε → 0
follows as in Lemma 2.1 and the strong converse as claimed in Proposition 3.4 is derived
similarly as in Proposition 3.1—by noting that it is sufficient to prove a converse for
testing

ρ⊗n
AB against ρ⊗n

A ⊗ σBn . (112)

A more refined analysis of the above calculation along the work [28] allows to de-
termine the Hoeffding bound for the product testing discrimination problem as above.
However, for the strong converse exponent we are missing the additivity of the sand-
wiched Rényi quantum mutual information

Ĩs(A : B)ρ := inf
σA⊗σB∈S(H)

D̃s
(
ρAB

∥∥σA ⊗ σB
)

(113)

on product states.

4. Conditional Quantum Mutual Information

Here, we discuss how our results are related to the conditional quantum mutual infor-
mation. This allows us to show that the regularization in our formula for composite
asymmetric hypothesis testing as stated in Theorem 1.1 is needed in general.

6 This definition is slightly different from the Rényi quantum mutual information discussed in [28].
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4.1. Recoverability bounds. The following is a proof of the lower bound on the condi-
tional quantum mutual information from Eq. (20).

Theorem 4.1. For ρABC ∈ S(HABC ) we have

I (A : B|C)ρ ≥ lim sup
n→∞

1

n
D
(
ρ⊗n
ABC

∥∥∥
∫

β0(t)

(
IA ⊗ R[t]

C→BC (ρAC )
)⊗n

dt

)
, (114)

where R[t]
C→BC (·) := ρ

1+i t
2

BC

(
ρ

−1−i t
2

C (·)ρ
−1+i t

2
C

)
ρ

1−i t
2

BC with the inverses understood as gen-
eralized inverses and β0(t) := π

2 (cosh(π t) + 1)−1.

Proof. We start from the lower bound [50, Theorem 4.1] applied to ρ⊗n
ABC (with the

support conditions taken care of as in the corresponding proof)

I (A : B|C)ρ = 1

n
I
(
An : Bn

∣
∣Cn)

ρ⊗n ≥ 1

n
DM

(
ρ⊗n
ABC

∥
∥σAn BnCn

)
(115)

with

σAn BnCn :=
∫

β0(t)
(
σ

[t]
ABC

)⊗n
dt and σ

[t]
ABC :=

(
IA ⊗ R[t]

C→BC

)
(ρAC ), (116)

where we have used that the conditional quantum mutual information is additive on
product states. Now, we simply observe that σAn BnCn is permutation invariant and hence
the claim can be deduced from Lemma 2.4 together with taking the limit superior n →
∞. �

Together with previous work we find the following corollary that encompasses all
known recoverability lower bounds on the conditional quantum mutual information.

Corollary 4.2. For ρABC ∈ S(HABC ) the conditional quantum mutual information
I (A : B|C)ρ is lower bounded by

−
∫

β0(t) log
∥∥∥
√

ρABC

√
σ

[t]
ABC

∥∥∥
2

1
dt (117)

DM
(
ρABC

∥
∥∥
∫

β0(t)σ
[t]
ABC dt

)
(118)

lim sup
n→∞

1

n
D
(
ρ⊗n
ABC

∥∥∥
∫

β0(t)
(
σ

[t]
ABC

)⊗ndt
)

(119)

with σ
[t]
ABC from Eq. (116).

The first bound was shown in [32, Section 3], the second one in [50, Theorem 4.1],
and the third one is Theorem 4.1. We note that the lower bounds are typically strict in the
non-commutative case, as can be seen fromnumericalwork (see, e.g., [12]). In contrast to
the second and third bound, the first lower bound is not tight in the commutative case but
has the advantage that the average overβ0(t) stands outside of the distancemeasure used.
Moreover, the distribution β0(t) cannot be taken outside the relative entropy measure
in the second and the third bound, since quantum Stein’s lemma would then lead to
a contradiction to a recent counterexample from [21, Section 5]. Namely, there exists
θ ∈ [0, π/2] such that

I (A : B|C)ρ � inf
R

D
(
ρABC

∥∥(IA ⊗ RC→BC )(ρAC )
)

(120)
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for the pure state ρABC = |ρ〉〈ρ|ABC with

|ρ〉ABC = 1√
2

(
cos(θ)|0〉A ⊗ |1〉C + sin(θ)|1〉A ⊗ |0〉C

)⊗ |1〉B

+
1√
2
|0〉A ⊗ |0〉B ⊗ |0〉C . (121)

It seems that the only remaining conjectured strengthening is the lower bound in terms
of the non-rotated Petz map [8, Section 8]

I (A : B|C)ρ ≥ − log
∥∥∥
√

ρABC

√
σ

[0]
ABC

∥∥∥
2

1
. (122)

We refer to [33] for the latest progress in that direction.
The arguments in this section can also be applied to lift the strengthenedmonotonicity

from [50, Corollary 4.2]. For ρ ∈ S(H), σ a positive semi-definite operator on H, and
N a completely positive trace preserving map on the same space this leads to

D(ρ‖σ) − D(N (ρ)‖N (σ )) ≥ lim sup
n→∞

1

n
D
(
ρ⊗n

∥∥∥
∫

β0(t)
(
R[t]

σ,N (ρ)
)⊗n

dt
)
,

(123)

where R[t]
σ,N (·) := σ

1+i t
2 N †

(
N (σ )

−1−i t
2 (·)N (σ )

−1+i t
2

)
σ

1−i t
2 . Together with [32, Sec-

tion 3] and [50, Corollary 4.2] we then again have the three lower bounds as in Corol-
lary 4.2.

4.2. Regularization necessary. Here, we use our bound on the conditional quantum
mutual information (Theorem 4.1) to show that the regularization in Theorem 1.1 is
in general needed (see also [10]). That is, we give a proof for Eq. (17). Namely, by
Theorem 4.1 we have7

I (A : B|C)ρ ≥ lim sup
n→∞

1

n
D
(
ρ⊗n
ABC

∥∥
∥
∫

β0(t)
(
IA ⊗ R[t]

C→BC (ρAC )
)⊗n

dt
)

(124)

≥ lim
n→∞

1

n
inf

μ∈R
D
(
ρ⊗n
ABC

∥∥∥
∫

(IA ⊗ RC→BC (ρAC ))⊗n dμ(R)
)

. (125)

From the second composite discrimination problem described in Sect. 3.2 we see that the
latter quantity is equal to the asymptotic error exponent ζR̄(∞, 0) as given in Eq. (91)
for testing

ρ⊗n
ABC against

∫
((IA ⊗ RC→BC )(ρAC ))⊗n dμ(R). (126)

Now, if the regularization in the asymptotic formula for ζR̄(∞, 0) would actually not
be needed this would imply that

I (A : B|C)ρ ≥ inf
R

D (ρABC‖(IA ⊗ RC→BC )(ρAC )) . (127)

However, this is in contradiction with the counterexample from [21, Section 5] as dis-
cussed inEq. (120).Hence,we conclude that the regularization for composite asymmetric
quantum hypothesis testing is needed in general. �

7 Alternatively, we could employ the implicitly stated bound [12, Equation 38].
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5. Conclusion

We extended quantum Stein’s lemma in asymmetric quantum hypothesis testing by
showing that the optimal asymptotic error exponent for testing convex combinations
of quantum states ρ⊗n against convex combinations of quantum states σ⊗n is given
by a regularized quantum relative entropy formula which does not become single-letter
in general. Moreover, we gave various examples when our formula as well as exten-
sions thereof become single-letter. It remains interesting to find more non-commutative
settings that allow for single-letter solutions.

Another related problem is that of symmetric hypothesis testing, where it is well-
known that in the case of fixed iid states ρ⊗n against σ⊗n the optimal asymptotic error
exponent is given by the quantum Chernoff bound [1,42]

C(ρ, σ ) := sup
0≤s≤1

− log Tr
[
ρsσ 1−s

]
. (128)

For this symmetric setting, it was conjectured in [2] that for finite sets S and T the
corresponding composite asymptotic error exponent is given by

C(S, T ) := inf
ρ∈S
σ∈T

C(ρ, σ ) , (129)

with definitions analogue to those given earlier for the asymmetric setting. However, it
was recently shown that already in the setting of a fixed null hypothesis S = {ρ} above
conjecture is in general false [38].8

Moreover, one can again consider testing convex combinations of iid states ρ⊗n with
ρ ∈ S against convex combinations of iid states σ⊗n with σ ∈ T . Similarly to our work
for the asymmetric setting, we then have that the following rate for the asymptotic error
exponent is achievable (assuming that the limit exists)

sup
0≤s≤1

lim
n→∞

1

n
inf
ν∈S
μ∈T

− log Tr
[( ∫

ρ⊗n dν(ρ)
)s( ∫

σ⊗n dμ(σ)
)1−s]

. (130)

However, it was already shown in [29] that this does in general not simplify to the
single-letter form in Eq. (129). We refer to [38, Section I] for an excellent overview of
the recent progress on composite hypothesis testing.

Finally, we note that finding single-letter achievability results for composite hypoth-
esis testing problems has important applications in network quantum Shannon theory
[45, Section 5.2].
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A. Some Lemmas

Here,we give several lemmas that are used in themain part.We start with Sion’sminimax
theorem [49].

Lemma A.1. Let X be a compact convex subset of a linear topological space and Y a
convex subset of a linear topological space. If a real-valued function on X × Y is such
that

� f (x, ·) is upper semi-continuous and quasi-concave on Y for every x ∈ X
� f (·, y) is lower semi-continuous and quasi-convex on X for every y ∈ Y ,

then we have

min
x∈X sup

y∈Y
f (x, y) = sup

y∈Y
min
x∈X f (x, y) . (131)

The following is a special case of [11, Lemma 13], which is based on a more involved
minimax theorem taking into account the possibility that the relative entropy can be
infinite.

Lemma A.2. Let S, T ⊆ S(H) be closed, convex sets. Then, we have

min
ρ∈S
σ∈T

DM(ρ‖σ) = sup
(X ,M)

min
ρ∈S
σ∈T

D
(∑

x∈X
Tr [Mxρ] |x〉〈x |

∥∥
∥
∑

x∈X
Tr [Mxρ] |x〉〈x |

)
.

(132)

We have the following discretization result.

Lemma A.3. For every probability measure μ on the Borel σ -algebra of S ⊆ S(H)

with the dimension of H given by d, there exists a probability distribution {pi }Ni with

N ≤ (n + 1)2d
2
and ρi ∈ S such that

∫
ρ⊗n dμ(ρ) =

N∑

i=1

piρ
⊗n
i . (133)

Proof. The idea is to use Carathéodory theorem together with the smallness of the
symmetric subspace. For pure states the proof from [6, Corollary D.6] applies and the
general case follows immediately by considering purifications and taking the partial
trace over the purifying system. �
The von Neumann entropy has the following almost-convexity property (besides its
well-known concavity).

http://creativecommons.org/licenses/by/4.0/
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Lemma A.4. Let ρi ∈ S(H) for i = 1, . . . , N and {pi } be a probability distribution.
Then, we have

H
( N∑

i=1

piρi
)

≤
N∑

i=1

pi H(ρi ) + log N . (134)

Proof. This follows from elementary quantum entropy inequalities (see, e.g., [41, Chap-
ter 11])

H
( N∑

i=1

piρi
)

≤
N∑

i=1

pi H (ρi ) + H(pi ) ≤
N∑

i=1

pi H(ρi ) + log N . (135)

�
The following is a property of the quantum relative entropy [23, Theorem 3].

Lemma A.5. Let N be a trace-preserving, completely positive map with N (1) = 1
(unital) and N 2 = N (idempotent). Then, the minimum relative entropy distance be-
tween ρ ∈ S(H) and σ ∈ S(H) in the image of N satisfies

inf
σ∈Im(N )

D(ρ‖σ) = H(N (ρ)) − H(ρ) = D(ρ‖N (ρ)) . (136)

In particular, we have for the relative entropy of coherence DC(ρ) = D(ρ‖ρdiag), where
ρdiag denotes the state obtained from ρ by deleting all off-diagonal elements.

Audenaert’s inequality originally used to derive the quantum Chernoff bound can be
stated as follows [1, Theorem 1].

Lemma A.6. Let X,Y � 0 and s ∈ (0, 1). Then, we have

Tr
[
XsY 1−s

]
≥ Tr

[
X (1 − {X − Y }+)

]
+ Tr

[
Y {X − Y }+

]
. (137)
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