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Abstract: In this note the AKSZ construction is applied to the BFV description of the
reduced phase space of the Einstein–Hilbert and of the Palatini–Cartan theories in every
space-time dimension greater than two. In the former case one obtains aBV theory for the
first-order formulation of Einstein–Hilbert theory, in the latter a BV theory for Palatini–
Cartan theory with a partial implementation of the torsion-free condition already on the
space of fields. All theories described here are BV versions of the same classical system
on cylinders. The AKSZ implementations we present have the advantage of yielding a
compatible BV–BFV description, which is the required starting point for a quantization
in presence of a boundary.
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Introduction

A Lagrangian field theory F on a cylinder � × I , where I is a “time” interval, can be
given a corresponding Hamiltonian description in terms of a symplectic manifold (the
phase space) of the possible initial conditions on � and a Hamiltonian that describes
the time evolution. If the Lagrangian is degenerate, its Euler–Lagrange equations yield,
in addition to time evolution, some constraints that have to be taken into account when
specifying the initial conditions. The true phase space, called the “reduced phase space”,
is typically described as the symplectic reduction of the coisotropic submanifold defined
by the constraints (hence the name).

This reduction is often singular, and one possible description is by means of a
cohomological resolution: one introduces a complex whose cohomology is the alge-
bra of functions of the reduced phase space. In addition, one wants this resolution to
feature also the symplectic/Poisson nature of the phase space, and a solution to this
problem is provided by the Batalin–Fradkin–Vilkovisky (BFV) formalism [BF83] (see
also [Sch08,Sch09,Sta97]). We denote by F∂ the collection of data associated to the
reduced phase space of a Lagrangian theory F, as a BFV theory (Definition 3).

On the other hand, a flexible way to deal with a degenerate Lagrangian is the Batalin–
Vilkovisky (BV) formalism [BV81], which allows a cohomological resolution of the
space of solutions to the Euler–Lagrange equations modulo symmetries but is also the
starting point for perturbative quantization. We denote with F the BV data associated to
a classical Lagrangian field theory F, as a BV theory (Definition 1).

To quantize a Lagrangian field theoryF on a cylinder�× I , one needs a good relation
between its associated BV and BFV data F and F∂ . In [CMR11] an explicit procedure
was introduced to construct what in [CMR14] is called a BV–BFV theory (Definition 5),
associating to the BV data F certain BFV data denoted by BFV(F) in a way suitable for
quantization [CMR18]—under some regularity assumptions. In regular cases it relates
F and F∂ , so that BFV(F) = F∂ .

While it is true that both F and F∂ depend on F, the relation BFV(F) = F∂ is not guar-
anteed, and it is a necessary requirement for BV quantisation with boundary [CMR18].
This relation turns out to hold for a large variety of field theories, including general
relativity (GR) in the Einstein–Hilbert (EH) formulation in any space-time dimension
greater than 2 [CS16]. However, the procedure notably fails in the case of GR in the
Palatini–Cartan (PC) formulation1 in 3 + 1 dimensions [CS19b], as the construction of
B FV (F) is obstructed. However, F∂ exists and has been presented in [CCS20].

Conversely, given a BFV theory F∂ associated to a manifold �, there is a standard
way2 to produce a BV theory on � × I by means of a construction due to Alexandrov,
Kontsevich, Schwarz and Zaboronski (AKSZ [Ale+97]). The resulting BV theory, which
we temporarily denote here by3 AKSZ(F∂ ), satisfies automatically the regularity assump-
tions required by the BV–BFV formalism, and we also have BFV(AKSZ(F∂ )) = F∂ .

1 There appears to be no uniform consensus on the nomenclature to best attribute and label the theory that
will be described in Sects. 2.2 and 4. We discuss our choice “Palatini–Cartan” in [CS19c] (see also references
therein). Other choices include the names of Einstein, Weyl, Sciama and Kibble, in various combinations.

2 To the best of our knowledge, the first explicit application of the AKSZ construction to a BFV target to
produce a BV structure in one dimension goes back to [GD00].

3 This construction is clarified in Theorem 14, and AKSZ(F∂ ) will be denoted FAKSZ(I ;F∂ ).
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On the other hand, in general AKSZ(BFV(F)) will not be the same as F. In fact,
the AKSZ construction produces a theory that is invariant under reparametrization of I ,
which is certainly different from F if the latter does not enjoy this invariance. In this case
AKSZ(BFV(F)) is a version ofFwith “frozen time” andmay be used to describe a change
in the polarization chosen for the quantization of the reduced phase space (see [CMR18,
Remark 2.38]). If F is reparametrization invariant—e.g. a topological field theory or
GR—we may wonder whether AKSZ(BFV(F)) and F are somehow related. In the case
of AKSZ topological field theories, it turns out that AKSZ(BFV(F)) and F are actually
the same. For more general reparametrization invariant theories wemight expect the two
to be equivalent, in one of the possible ways presented below.

ABV theoryF is essentially composed of a (−1)-symplecticmanifold (F ,�) and an
action functional S over it. We say that F1 and F2 are strongly BV-equivalent if there is a
symplectomorphism φ : (F1,�1) → (F2,�2) that relates their action functionals, i.e.
S1 = φ∗S2. This in particular implies that their BV cohomology groups are isomorphic.
A nontrivial example of strong BV-equivalence is the one between PC and B F theory
in 3 space-time dimensions [CS19a,CSS18].

If F2 is obtained from F1 by a partial integration of the fields4 (with some partial
gauge fixing), we say thatF2 is an effective theory forF1.We say that twoBV theories are
effectively BV-equivalent if one is (strongly BV-equivalent to) an effective theory for the
other. Typical cases for this are Wilson renormalization or the passage to a second-order
theory from its associated first-order formulation. Another important example is given
by elimination of so-called auxiliary fields. In that case, one can argue that effective
equivalence also preserves the BV cohomology [BBH95,Hen90] (see Remark 12).

A third case is when the theories F1 and F2 have the same space of classical solutions
modulo symmetries. We speak in this case of classical equivalence. A typical case of
classical equivalence is that between EH and PC. Observe that this is equivalent to just
asking that the degree-zero BV cohomologies of the two theories coincide, making this
kind of equivalence weaker.

In this paper we study this question for EH and PC models of gravity in any space-
time dimension greater than 2, assuming that the metric encoded in the BFV data F∂

is nondegenerate (i.e. assuming that the manifold � is either spacelike or timelike but
not lightlike). In the case of EH, we show that F and AKSZ(BFV(F)) are effectively
equivalent, with the former being actually the first-order formulation of the latter.

In the case of PC in three dimensions, where BFV(F) = F∂ holds, we show that
AKSZ(BFV(F)) and F are strongly BV equivalent, which is not unexpected, since PC
is strongly BV equivalent to B F theory [CS19a,CSS18], and the latter is a topological
AKSZ theory. Instead, for higher dimensional PC theory we show that AKSZ(F∂ ) and
F are classically equivalent,5 with F∂ the BFV data constructed from the reduced phase
space of PC theory [CCS20,CS19c]. This case is particularly interesting because the
BV–BFV construction for PC is obstructed in dimension 4 (and presumably higher).
The data AKSZ(F∂ ) resulting from the AKSZ construction is a new BV theory defined
on cylinders that is still classically equivalent to EH, but also compatible with the BV–
BFV formalism (by construction via the AKSZ procedure). Classically, it is simply PC
on a smaller space of fields, where part of the torsion-free condition is imposed a priori
instead of through the Euler–Lagrange equations.

Our result addresses the problem presented in [CS19b], where it was pointed out that
PC theory in dimension greater than three must be complemented with requirements on

4 This is more appropriately called BV-pushforward or BV fiber integral, see [CMR18, Section 2.2.2].
5 On an open subset of the moduli space of solutions.
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field configurations at the boundary in order to induce a well-defined BV–BFV structure.
One possible way to construct a BV–BFV structure for PC theory is to assume vector
fields generating diffeomorphisms transversal to the boundary to vanish at the boundary.
Denote by F the resulting BV theory. In [CS19b, Section 5, Remark 34] this was shown
to be insufficient to describe the full reduced phase space of GR, as the Hamiltonian
constraint is lost in the process: this means that B FV (F) �= F∂ . Alternatively one may
require certain components of theLorentz connection to vanish on the boundary, although
this condition is not natural for general manifolds. One way of reading our paper is to
make these conditions natural on cylindrical manifolds, in the sense that we present a
version of PC theory, with the compatibility requirements already implemented. In fact,
the resulting AKSZ theory has the same equations of motion and the same symmetries,
but the AKSZ procedure restricts the moduli space of solutions to an open subset. This
is akin to restricting to globally hyperbolic solutions. One can think of the extra required
conditions as imposing part of the equations of motion that fix ω to be the Levi-Civita
connection for the metric induced by a tetrad e. This is discussed in Sect. 4.2.

Let us stress that having a well-defined BV–BFV structure is a necessary requirement
for the quantisation of BV theories with boundary [CMR18]. The fact that the boundary-
compatible AKSZ version of PC theory is (possibly) only classically equivalent to the
original PC formulation reinforces the idea that care must be placed when attempting
BV quantisation of the latter.

A related approach is the ‘parent formulation’ by Barnich and Grigoriev [BG11,
Gri11] which derives an AKSZ construction of the BV theory from the jet space for-
malism (trivariational complex). What is crucially different in our construction is that
we consider, as a target, a symplectic description of the classical boundary states. This
involves a careful symplectic reduction of the naively associated boundary spaces.6 The
result of our construction is not only a BV reformulation of the original bulk theory, but
a reformulation that is compatible with the boundary as a 1-extended BV–BFV theory
(see Definition 5), which is the starting point for quantum (or at least semiclassical)
considerations for a theory with boundary [CMR18].

For the same reason, unlike the presymplectic AKSZ formulation presented by Al-
kalaev and Grigoriev [AG14] and Grigoriev [Gri16], our BV–BFV description of PC
gravity is based on a symplectic structure, which is essential for quantization. This does
not arise directly from a reduction of the natural presymplectic BFV structure derived
from BV in the bulk, which is impossible for N ≥ 4 as shown in [CS19b], but it is the
symplectic BFV structure [CCS20] that resolves the reduced phase space of the theory.

Finally, note that in this paper we consider two separate applications of the AKSZ
“reconstruction” of a parametrization-invariant bulk BV theory from its boundary BFV
structure, respectively for two formulations of GR (EH and PC). We do not discuss the
equivalence between EH and PC, but we investigate the appropriate BV equivalence
between each formulation and its own AKSZ “reconstruction.”

These considerations do not exclude, however, some deeper connection between our
construction and the ones mentioned above, which are definitely worth exploring.

The paper is organised as follow. In Sects. 1.1 and 1.2wewill outline theBV–BFVand
AKSZ constructions, while Sect. 2 is a brief review of the construction of the BFV data
for Einstein–Hilbert and Palatini–Cartan theories of gravity, as presented respectively
in [CS16,CCS20].

6 This association is the natural restriction of fields and normal jets to the boundary, see [CMR14].
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Finally, in Sects. 3 and 4 we will apply the AKSZ construction to the BFV data of EH
and PC gravity, respectively, and compare it with the BV data for the two formulations
as presented in [CS16,CS19b].

Relevance and outlook. This work is intended as a first reaping, as a result of a few
years of sowing, in a program directed at an analysis of classical General Relativity
seen through the lens of the BV formalism with boundary, an attempt at formalising
its quantisation within the BV–BFV formalism [CMR18]. The program was initiated
in [CS16,CS19b,Sch15], where a few inconsistencies in the behaviour of GR in the
presence of boundaries in dimension 4 were detected, and was later extended in [CCS20,
CS19a,CSS18], where the comparison with the three dimensional analogue was made.

This series of works is motivated by the obstruction encountered in defining the BV–
BFV data for Palatini–Cartan gravity, a requirement for the BV quantisation program
with boundary, which has otherwise provided very reliable and flexible (see [CMR18,
CMR20] for the quantisation of BF theory, [IM19] for Yang–Mills theory in dimension
2, [CMW17,CMW19a] for split Chern–Simons theory and [CMW19b] for a general
approach to a class ofAKSZmodels, including the Poisson sigmamodel).No obstruction
to BV quantisation with boundary is otherwise present for Einstein–Hilbert theory, and
this discrepancy points at the fact that classical equivalence of field theories might be
too coarse a classification to have bearing on the respective quantum theories.

The results contained in this paper close the circle, so to speak, in the comparison
of classical BV general relativity with boundary, between EH and PC formulations. As
a matter of fact, while the AKSZ construction for EH theory is effectively equivalent
to the BV theory analysed in [CS16], this is not the case in PC theory analysed in
[CS19b] (it is only included within). This fact, together with the equivalence of the
reduced phase spaces for EH and PC theories [CCS20,CS19c], can be interpreted as
a confirmation that BV Palatini–Cartan theory must be supplemented with additional
requirements on fields, or otherwise restricted, in order to be viable for BV quantisation.
The requirements we find, summarised by Definition 52 are conditions on the Lorentz
connection and its conjugate variable, which effectively restrict the space of fields. We
find that these conditions are somewhat natural on cylinders.

The very ultimate goal of the construction presented in this paper is the grail of quan-
tisation of gravity. We do not attempt doing it here. What we present is the preliminary
setting for a perturbative quantisation on cylinders resulting in the quantum evolution
operator from the initial to the final quantum space of states. Due to the degeneracy of
the actions (related to gauge invariance), one needs a formalism that allows imposing
gauge fixings and checking that the results are independent thereof, up to equivalences
that are under control. In the absence of free boundaries (i.e., in the computation of
partition functions and expectation values), there are several good methods to do this,
including BRST and BV. In the presence of boundary, the best developed method is a
compatible combination of BV in the bulk and BFV on the boundary. The compatibility
is the main issue here, and this paper discusses it in the context of GR theories.

Performing the actual quantisation,which is far beyond the scopeof this paper, implies
choosing a polarization on the boundary and a gauge fixing in the bulk, computing
the resulting propagators, regularizing the theory, and performing renormalisation in a
compatible way with the BV–BFV data (the quantum master equation, and its version
with boundary [CMR18]). In the case of gravity, one of course expects an infinite number
of independent counterterms to be taken care of. Clever or miraculous ways to keep them
under control are the same issue as in other treatments (without boundary): we do not
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claim to have a better recipe for this issue, but just to have a method to incorporate
free boundaries. A minimal way to proceed, as, e.g., in [BFR16], is to allow for infinite
counterterms (which is algebraically possible and allows for the construction of families
of effective theories, even though the predictivity at all energies is missing).

Naturally, since the outlookof this extendedprogram is that of addressingquantisation
of General Relativity (with boundary), we wish to stress that without the observations
produced in this preliminary phase, an early attempt at directly quantising PC theory
might have been thwarted by the very obstructions highlighted by our investigations.

In this sense, we believe the correct preparation of a field theory for its perturbative
quantisation to be of crucial importance to drive the scientific effort towards sensible
questions, and divert it when evidence is presented of a potential roadblock ahead. This
should be of particular interest for the scientific community heavily involved with the
study of Palatini–Cartan theory as a fundamental building block for a quantum theory
of gravity.

1. Background

One of the goals of this paper is the construction of a BV theory on a cylindrical man-
ifold � × I by means of the AKSZ construction, with target a BFV theory associated
to �. In this section we introduce the basic definition of the BV(-BFV) and AKSZ
formalisms, together with the relevant notions of equivalence that will allow us to com-
pare theories. We refer to [BF83,BV77,BV81,CMR11,CMR14] for a more detailed
introduction and more insight in the meaning and the motivations for the following
definitions and theorems. For an introduction of the BV (-BFV) formalism and gravity
see [CS19a,CS17,CS19c]. Other versions and interpretations of the BV formalism for
gravity can be found in [BFR16].

1.1. The Batalin–Vilkovisky formalism.

Definition 1. A BV theory is a quadruple F = (F , S,�, Q) where F is a graded mani-
fold (the space of BV fields) endowed with a degree−1 symplectic form� , S : F → R

is a degree 0 functional (the BV action) and Q is the (odd) Hamiltonian vector field of
S with respect to � satisfying [Q, Q] = 0.

Remark 2. Since Q is the Hamiltonian vector field of S, i.e. ιQ� = δS where δ is the de
Rham differential on F and ιQ is the contraction w.r.t. Q, we can rewrite the equation
[Q, Q] = 0 as (S, S) = 0 where (·, ·) denotes the Poisson bracket defined by � . The
latter equation is called the Classical Master Equation (CME).

Definition 3. An exact BFV theory is a quadruple F∂ = (F∂ , S∂ ,�∂, Q∂
)
where F∂

is a graded manifold (the space of boundary fields) endowed with a degree-0 exact
symplectic form �∂ = δα∂ , S∂ :F∂ → R is a degree 1 functional and Q∂ is the
Hamiltonian vector field of S∂ with respect to �∂ such that [Q∂ , Q∂ ] = 0.

Remark 4. Typical examples of BV and BFV theories are modeled on sections of bun-
dles over differentiable manifolds, possibly with boundary, with �(∂), S(∂) and Q(∂)

respectively a local two-form, functional and vector field. Throughout the paper, when
specifying BV theories, we will assume that the equations ιQ� = δS and (S, S) = 0 are
satisfied only up to boundary terms. The failure of said equations will be controlled by
the data of a BV–BFV theory, as follows. It is often convenient, in this scenario, to define
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the slightly more general concept of a relaxed BV theory, i.e. data F = (F , S,�, Q) as
in Definition 3, but without the requirement that Q be the Hamiltonian vector field of
S. If we are given a BV theory on a closed manifold without boundary, we can consider
the same local data as a relaxed BV theory on a manifold with boundary.

Definition 5 [CMR14]. A (relaxed) BV theory F = (F , S,�, Q) is said to be 1-
extended to the BFV theory F∂ = (F∂ , S∂ ,�∂, Q∂

)
if there exists a surjective submer-

sion π :F → F∂ , such that the following compatibility relation is satisfied:

ιQ� = δS + π∗α∂ (1a)

The data F↑1 = (
F,F∂ , π

)
will be called 1-extended BV–BFV theory.

Remark 6. Notice that, from the data above, the following relation follows:

ιQ ιQ� = 2π∗S∂ . (1b)

The following definitions compare two different BV (or BFV) theories.

Definition 7. Two B(F)V theories F(∂)
1 and F(∂)

2 are said to be strongly B(F)V-equivalent
if there exists a symplectomorphism

�: (F (∂)
1 ,�

(∂)
1 ) → (F (∂)

2 ,�
(∂)
2 )

preserving theBVaction:�∗S(∂)
2 = S(∂)

1 . Themap� is called a strongB(F)V-equivalence.

Definition 8. Let F1 and F2 be two (relaxed) BV theories. A (relaxed) BV-inclusion
I:F1 → F2 is an inclusion of (super)manifolds ι:F1 → F2 such that �1 = ι∗�2 and
ι∗Q1 = Q2ι

∗. If the two theories are relaxed we will additionally require ι∗S2 = S1. In
this case we say that F1 is a BV-subspace7 of F2.

Remark 9. Naturally, if Q1 and Q2 are the Hamiltonian vector fields of S1 and S2 re-
spectively, the condition ι∗S2 = S1 is equivalent to the condition ι∗Q2 = Q1ι

∗, up to a
constant.

Proposition 10. The composition of a strong BV equivalence and a BV inclusion is in
turn a BV inclusion.

Proof. The map � ◦ ι satisfies trivially the properties of a BV inclusion. �	
A notion that we will need to compare theories is that of BV-pushforward. This no-

tion is usually phrased at the quantum level [CMR18,Mne17], where the additional data
of a BV Laplacian needs to be provided. However here we are interested mainly in its
classical counterpart. The basic setting is the same, although we consider the following
simplifying assumptions. Suppose that we have a splitting of a graded symplectic man-
ifold (F ,�) so that F = F ′ × F ′′, with � = � ′ + � ′′, and let L be a Lagrangian
submanifold of (F ′′,� ′′) endowed with a half-density μ on F ′′, which thus defines by
restriction a density μL on L. Denote coordinates (z′, z′′) respectively in F ′,F ′′, and
let z′′ ∈ {x, x†} be Darboux adapted coordinates such that x parametrises L and x† are
transversal.

7 In the math literature, a map with this compatibility between the symplectic structures and the cohomo-
logical vector fields is known as a morphism of dg symplectic manifolds.



1578 G. Canepa, A. S. Cattaneo, M. Schiavina

Definition 11. We define the Batalin–Vilkovisky–Legendre transform of a functional
S ∈ C∞(F), with respect to the Lagrangian L ⊂ F ′′, as SBVL ∈ C∞(F ′):

SBVL = S(z, x0, x† = 0) (2)

where x0 is a critical point for S (assumed unique):

δS

δx

∣∣∣∣
x†=0

(x0) = 0.

Starting from a BV theory on (F ,�) we build a theory on (F ′,� ′) by means of a
gauge-fixed fiber integral along F ′′, with gauge-fixing Lagrangian L. In other words,
if S denotes a BV action on F we consider the effective result of the BV pushforward
(fiber integral) to be

exp

(
i

�
Seff

)
:=
∫

L⊂F ′′
exp

(
i

�
S

) ∣∣∣
∣L

μL (3)

where the integral is defined perturbatively as a power series in �. Note that SBVL is the
dominant term of Seff. When S depends only quadratically on the variables on L, the
only correction is i�/2 times the logarithm of the determinant of the quadratic form.

Remark 12. Let us comment briefly on the notion of equivalence of theories in the BV
formalism. When the moduli spaces of solutions of the equations of motion for two
theories coincide, the theories are said to be classically equivalent. A finer notion of
equivalence requires that the BV cohomologies be isomorphic,8 and it allows for an
extension to the case with boundary. One looks at the bicomplex given by the BV
operator and the de Rham differential (�•,•(Fi , M), Qi − d), and equivalence in this
sense requires two theories to have quasi-isomorphic local de Rham/BV complexes.
The typical argument for equivalence involves the elimination of so-called generalised
auxiliary fields and trivial pairs [BBH95,Hen90]. This notion, however, is suboptimal
because it relies on homological perturbation theory, which potentially could output an
infinite tower of ghosts and antighosts in the process of constructing an equivalent theory.
In other words, that approach—albeit somewhat well-established—does not provide a
direct answer to the question of whether two given BV theories (in the form of two
Hamiltonian dg-manifolds) are equivalent, provided their degree-0 sectors are classically
equivalent. For this, instead, a spectral sequence argument would be more appropriate.9

On the other hand, one could phrase equivalence in theBV–BFV formalism, requiring
existence of the BV–BFV structure and equivalence of the respective BV and BFV
cohomologies (an explicit example of this, is the strong equivalence ofGeneral Relativity
and BF theory in three dimensions [CS19a]). This existence requirement might become
an obstruction to BV–BFV equivalence10. For our purposes, then, even assuming that
by removal of generalised auxiliary fields one may prove some BV equivalence between
Palatini–Cartan and Einstein–Hilbert theories, the results of [CS19b] and of the present
paper show a discrepancy of the theories in the BV–BFV sense.

8 Classical equivalence is the less restrictive requirement that only their 0-cohomologies be isomorphic.
9 In an optimal scenario, to auxiliary fields one can associate a subcomplex with trivial cohomology. More

generally, one has a filtration of the original BV complex, so that the associated spectral sequence converges.
However, this is in general quite hard to prove.
10 Observe that this is essentially the strictification requirement of the presymplectic BFV data, see Re-

mark 29.
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1.2. The AKSZ construction. Let X be a graded manifold and N an ordinary manifold
and let μN be the canonical Berezinian11 on T [1]N .

Definition 13 (Transgression map). Consider the map

T
(•)
N : �•(X) −→ �• (Map(T [1]N , X)) (4)

defined by T
(•)
N := p∗ev∗, where

Map(T [1]N , X)× T [1]N
p

��

ev
�� X

Map(T [1]N , X)

(5)

and we set p∗ =
∫

N
μN . We will call T(•)

N the transgression map, and its evaluation a

transgression.

We endow the graded manifold X with a function S of degree n and parity n mod 2,
together with a one-form α of degree n− 1 and parity n− 1 mod 2, such that � = dα

is nondegenerate and {S, S} = 0 with respect to the Poisson structure defined by � .
Then we say that X has a Hamiltonian dg-manifold structure, with differential {S, ·}.

Observing that the de Rham differential dN on N can be seen as a degree 1 vector
field on Map(T [1]N , X) we have

Theorem 14 [Ale+97]. Let (X, S, α) a dg-manifold as described above. Consider the
data

FAKSZ(N ; X, S, α) := (FAKSZ, SAKSZ,�AKSZ, QAKSZ
)

(6)

with FAKSZ = Map(T [1]N , X), �AKSZ := T
(2)
N (�), the functional SAKSZ : FAKSZ → R,

SAKSZ := T
(0)
N (S) + ιdN T

(1)
N (α). (7)

and the cohomological vector field QAKSZ such that ιQAKSZ�AKSZ = δSAKSZ. Then, FAKSZ(N ;
X, S, α) defines a BV theory.

Wewill callFAKSZ := Map(T [1]N , X) theAKSZ space of fields. IntroducingDarboux
coordinates {pi , qi } in X so that α = pi dqi , the space of AKSZ fields is composed of
inhomogeneous differential forms P,Q on N . Then, if we consider X to be the space
of sections of a bundle E → �, that is to say X = T ∗[n − 1]C∞(�, E), we can write

�AKSZ =
∫

�×N

[〈δP, δQ〉]top ≡
∫

�×N

[
δPiδQ

i
]top

(8)

where we have denoted by δ the deRham differential on spaces of maps and C∞-
sections, and top denotes the top-form parts of the inhomogeneous differential forms
within brackets. We will drop the superscript top in what follows.

Consider this elementary fact:

11 Recall that a function on T[1]N is the same as a differential form on N. Integrating a function on T [1]N
against the canonical Berezinian μN is by definition the same as integrating the corresponding differential
form on N , which we assume to be oriented.



1580 G. Canepa, A. S. Cattaneo, M. Schiavina

Lemma 15. Let A, B, C be graded manifolds, φ : B → C an isomorphism of graded
manifolds, and μA a measure on A. Consider the diagram

A × B
id×φ

��

πB

��

A × C

πC

��

B
φ

�� C

(9)

Then, setting πB∗ =
∫

μA· and πC∗ =
∫

μA·, we have φ∗ ◦ πC∗ = πB∗ ◦ (id × φ)∗.

Theorem 16. Let (X, SX , αX ) and (Y, SY , αY ) be equivalent Hamiltonian dg-manifolds,
i.e. there exists a diffeomorphism φ : X → Y such that �X = φ∗�Y , and SX = φ∗SY .
Then FAKSZ(N ; X, SX , αX ) and FAKSZ(N ; Y, SY , αY ) are strongly equivalent BV(-BFV)
theories for every manifold N.

Proof. φ : X → Y induces an isomorphism

φ̃ : Maps(T [1]N , X) → Maps(T [1]N , Y )

by precomposing maps with φ∗ or φ−1∗. Then, we can apply Lemma 15 with B =
Maps(T [1]N , X), C = Maps(T [1]N , Y ) and A = T [1]N . �	

1.3. One-dimensional AKSZ construction. Let I ⊂ R be an interval, and F∂ an exact
BFV theory. We can construct a BV theory by applying Theorem 14 on the Hamiltonian
dg-manifold underlying an exact BFV theory:

FAKSZ(I ;F∂ ) := FAKSZ(I ;F∂ , S∂ , α∂).

The resulting space of fields reads

FAKSZ = Map(T [1]I,F∂ ).

Since the target space F∂ is (locally) a graded vector space, we identify the space of
AKSZ fields with

FAKSZ = �•(I )⊗ F∂ .

In particular, whenF∂ ismodeled on sections of some bundle over a (N−1)-dimensional
manifold �, we can view FAKSZ as the space of sections of some (graded) bundle over
� × I . The space �•(I ) splits into:

�•(I ) = C∞(I )⊕�1(I )[−1]
hence, to each field inF∂ we associate two new fields. For simplicity we denote the field
in C∞(I )⊗F∂ with the same letter as the old one, and use another letter for the one in
�1[−1](I )⊗ F∂ .

Proposition 17 [CMR18,CMR14]. Let F∂ (�) = (F∂ (�), S∂ (�),�∂(�), Q∂ (�)) be
an exact BFV theory, with F∂ (�) := 
(E → �), and �∂(�) = δα∂(�). Then, if
I := [0, 1] we have that FAKSZ(I ;F∂ (�)) is a 1-extended BV–BFV theory over F∂ (�)

(see Definition 5).
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Proof. Theorem 14 tells us that FAKSZ(I ;F∂ (�)) is a BV theory (up to boundary terms).
If we parametrise fields in FAKSZ as

P = p(t) + q†(t)dt Q = q(t) + p†(t)dt

we get

�AKSZ =
∫

�×I

〈δP, δQ〉 =
∫

�×I

{
〈δp, δp†〉 + (−1)|q|+1〈δq, δq†〉

}
dt

and

SAKSZ =
∫

�×I

〈p, dI q〉 + [T(0)
I (S∂ (�))]top.

The transgressed integrand needs to be first-order in dt , which leaves us with

[T(0)
I (S∂ (�))]top ≡ S∂ (�)[p + q†dt, q + p†dt] = δS∂ (�)

δp
(q†dt) +

δS∂ (�)

δq
(p†dt)

Then QAKSZ splits in a transversal part plus a tangential one: QAKSZ = QT + Q̂, where
QT q† = − ṗ and QT p† = q̇ is essentially just deRham differential on I , and Q̂ is easily
obtained:

Q̂ p = δS∂ (�)

δq
≡ Q∂ p Q̂q = δS∂ (�)

δp
≡ Q∂q

Q̂ p† = δ2S∂ (�)

δqδp
(p†) +

δ2S∂ (�)

δp2
(q†) Q̂q† = δ2S∂ (�)

δpδq
(q†) +

δ2S∂ (�)

δq2 (p†).

The boundary terms are easily seen in the given local chart, in fact:

ιQAKSZ�AKSZ = δSAKSZ + α̌

but α̌ only sees contributions from 〈p, dq〉 and, up to sign, we get α̌ = α∂(�), with
δα∂(�) = �∂

� . Then, the projection of QAKSZ along the natural projection map from
F AK SZ to the space of boundaryfields,which coincideswithF∂ (�), is precisely Q∂ (�),
concluding the argument. �	
Remark 18. A similar statement to Proposition 17 is presented in Henneaux–Bunster
[HT92, Theorem 18.4.5], where one identifies the output of the above AKSZ con-
struction with the (first-order) BV theory obtained by embedding in the BV formalism
the generalised Hamiltonian formulation of a given field theory (see also [DGH90]).
An analogous construction, already in the context of AKSZ theories, was presented in
[BG05,GD00]. The added observation of Proposition 17 is the compatibility between
BV for the bulk and BFV on the boundary, viz., what we call a 1-extended BV–BFV
theory in Definition 5.

We would like to show that this construction behaves well under equivalences of the
relevant BFV data.

Corollary 19 (Theorem 16). Let F∂
1 and F∂

2 be two strongly BFV-equivalent (exact)
theories, then FAKSZ(I ;F∂

1) and FAKSZ(I ;F∂
2) are strongly BV-equivalent.

Proof. AstrongBVequivalence induces an isomorphismof theunderlyingdg-manifolds.
�	
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2. BFV Theories of Gravity

2.1. BFV Einstein–Hilbert theory. The BFV theory for GR in the Einstein–Hilbert
formalism (as described in [CS16]) associates to any (N − 1)-dimensional (pseudo)-
Riemannian12 manifold � the graded 0-symplectic manifold

F∂
E H (�) = T ∗

(
S2

nd(T �)× X[1](�)× C∞[1](�)
)

︸ ︷︷ ︸
{γ,ξ∂ ,ξn}

, (10)

where S2
nd(�) denotes the space of nondegenerate symmetric tensor fields of rank two,

with canonical exact symplectic structure:

�∂
E H (�) = δα∂

E H (�) = δ

∫

�

〈�, δγ 〉 + 〈ϕ∂, δξ
∂ 〉 + 〈ϕn, δξn〉, (11)

and {�,ϕ∂, ϕn} denote variables in the cotangent fiber, dual to {γ, ξ∂ , ξn} respectively,
i.e.

� ∈ S2(T ∗�)⊗ Dens(�),

ϕ∂ ∈ �1(�)⊗ Dens(�),

ϕn ∈ C∞(�)⊗ Dens(�).

Remark 20. The components (γ )ab of a γ ∈ S2
nd(T �) can be thought of as the inverse

of a (pseudo-)Riemannian metric on �, which we denote by γ−1. With a slight abuse
of notation13 we will denote by

√
γ = √

det(γab) the square root of the determinant
of the metric on � that we denote by γ−1 everywhere else. In other words,

√
γ is the

usual density associated to a metric, i.e.
√

γ dN−1x is a volume form on �. Observe
that all fields in the fibres of the cotangent bundle (10) are sections of the respective
dual bundles, tensored with densities. The conjugate field to γ is a section of the second
symmetric tensor power of the cotangent bundle of � tensored with densities on �, i.e.
� ∈ S2(T ∗�) ⊗ Dens(�) is of the form � = √

γπ , for π ∈ S2(T ∗�). A similar
decomposition holds for ϕ∂, ϕn .

In addition to F∂
E H (�) and �∂

E H (�), the BV–BFV procedure outputs a functional
of degree 1 on F∂

E H (�), called BFV action. It is given by the local expression

S∂
E H (�) =

∫

�

{
Hnξn + 〈�, Lξ∂ γ 〉 + ϕn Lξ∂ ξ

n − γ (ϕ∂, dξn)ξn +

〈
ϕ∂,

1

2
[ξ∂ , ξ∂ ]

〉}

(12)

where we have denoted the Hamiltonian constraint density by

Hn(γ,�) =
(

1√
γ

(
Trγ [�2] − 1

d − 1
Trγ [�]2

)
+
√

γ
(

R∂ − 2�
))

(13)

12 In this paper we will mostly focus on the case where � is a Riemannian manifold, seen as a spacelike
boundary of a cylinder � × R. Generalisations of this to the timelike case are straightforward. The relevant
BFV data can be found in [CS16].
13 This is not really problematic, since its variation reads δ

√
γ = 1

2
√

γ γ abδγab = − 1
2
√

γ γabδγ ab and
we can use either formula according to our needs. If we wanted to use the correct notation we should simply
replace

√
γ with its reciprocal, in formula (13).
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with R∂ is the trace of the Ricci tensor with respect to the metric γ−1, � ∈ R is the
cosmological constant, Trγ [�2] = γ abγ cd�bc�ad and Trγ � is the density γ ab�ab.
Observe that we can also denote the momentum constraint density as the density-valued
one-form

H∂ : X(�) → Dens(�) H∂ (X) = 〈�, L Xγ 〉 (14)

for X ∈ X(�).

Remark 21. One can integrate the density of Eq. (13) against a function λ ∈ C∞(�),
or integrate the density in (14) to get local functionals on fields. Then λ and X play
the role of Lagrange multipliers, to enforce the so-called Hamiltonian and momentum
constraints.

The Hamiltonian vector field Q∂
E H (�) of S∂

E H (�) with respect to �∂
E H (�) is a

differential on C∞(F∂
E H (�)), the BFV differential, and its cohomology in degree zero

is the reduced phase space defined by the constraints {Hn, H∂ }.
Definition 22. We define BFV Einstein–Hilbert theory associated to be the assignment

� � F∂
E H (�) = (F∂

E H (�), S∂
E H (�),�∂

E H (�), Q∂
E H (�)). (15)

2.2. BFV Palatini–Cartan theory. Let � be an (N − 1)-dimensional compact and ori-
entable14 smooth manifold and let P → � be an SO(N − 1, 1)-principal bundle. Let
also V be the associated vector bundle where each fibre is isomorphic to (V, η), an N -
dimensional vector space with a pseudo-Riemannian inner product η on it. We further
identify so(N − 1, 1) ∼=∧2 V using η.

Furthermore we use the following notation:

�
i, j
∂ := �i

(
�,
∧ jV

)
.

TheBFVdata for PC theory has been described in [CCS20] for N ≥ 4 and in [CS19a]
for N = 3, the following discussion will be nontrivial for N ≥ 4, see Remark 28. The
classical fields of the theory are then e ∈ �1

nd(�,V)—i.e �
1,1
∂ plus the nondegeneracy

condition that the inducedmorphism T � → V should be injective—and the equivalence
class of a connection ω ∈ A(�) under the e-dependent relation ω ∼ ω + v for v such
that W 1,1

eN−3(v) = 0, where

W 1,1
eN−3 : �

1,1
∂ → �

2,2
∂ , W 1,1

eN−3(v) = eN−3 ∧ v.

We denote this equivalence class and the quotient space it belongs to by [ω] ∈ Ared(�).
We further assume that the boundary metric

g∂
i j := η(ei , e j ) (16)

is nondegenerate.
The symplectic manifold F∂

PC of (degree-0) boundary fields for PC theory is then the
total space of the fibre bundle F∂

PC −→ �1
nd(�,V), with fiberAred. Themanifold F∂

PC is
obtained as the symplectic reduction of the naive boundary two-form �̌ = ∫

eN−3δeδω,

14 For simplicity we orient� and V , but the formalism generalizes to nonorientable� as well, see [CCS20].
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which is pre-symplectic since ker(�̌ ) � ker(W 1,2
eN−3) �= {0}, as described in [CS19c].

Instead of working with equivalence classes of connections, it is convenient to fix a
nonvanishing section εn ∈ 
(V) and enforce a condition called structural constraint,
which was introduced in [CCS20]:

(N − 3)εneN−4dωe ∈ ImW 1,1
eN−3 , (17)

in the space of boundary tetrads and connections. In order to do this one restricts to tetrads
e that are linearly independent from εn . In general this implies working in patches over
the space of the e-fields. However, if g∂ is space-like, we may choose once and for all
εn to be time-like, which provides a global choice on the space of the e-fields.

Remark 23. Considering the boundary by itself, the constraint (17) is one of the possible
ways to fix the transformations in the kernel of the presymplectic form. If we take the
bulk as well into account, it assumes a more fundamental role: it is the necessary and
sufficient condition for the transversal equations of motions to be solvable. Indeed, the
(bulk) equations of motion split into a tangential equation

eN−3dωe = 0

and a transversal one

(N − 3)eneN−4dωe = eN−3(dωe)n,

which tells us that eneN−4dωe must be in the image of W 1,1
eN−3 . Then, upon using the

tangential equation, we can replace en with some fixed εn . See Sect. 4.2.

Denoting by S ⊂ �1
nd(�,V)×A(�) the submanifold defined by Eq. (17), we have:

Proposition 24 [CCS20,CS19c]. There exists a symplectomorphism

F∂
PC (�) −→ S.

Effectively, then, one can work on S. The main advantage of this explicit description
of the symplectic space of boundary fields is that it allows to explicitly compute the
symplectic BFV data for PC theory (see Remark 29).

In order to write down the BFV data it is sufficient to fix the equivalence class
[ω] ∈ Ared(�) using (17) as done in [CCS20], however, when extending F∂

PC to a
graded manifold we can choose to modify the structural constraint by adding terms in
the ghosts and antifields. This will turn out to be convenient in what follows.

Definition 25. Consider the graded manifold

F̌PC (�) := �
1,1
nd (�,V)×A(�)× T ∗

(
�

0,2
∂ [1] ⊕ X[1](�)⊕ C∞[1](�)

)
, (18)

where we denote fields by

• e ∈ �
1,1
nd (�,V) and ω ∈ A(�) in degree zero,

• c ∈ �
0,2
∂ [1], ξ ∈ X[1](�) and λ ∈ �0,0[1] in degree one,

• c† ∈ �
3,2
∂ [−1], λ† ∈ �

3,4
∂ [−1] and ξ† ∈ �

1,0
∂ [−1] ⊗�

3,4
∂ in degree minus one,
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together with a fixed section εn ∈ 
(M,V), completing the image of e to a basis of V .
We define the BFV structural constraint to be condition15:

(N − 3)εneN−4dωe +
(

Lω
ξ εn − [c, εn]

)(a)

c†a ∈ ImW 1,1
eN−3 (19)

where {(a), (n)} denote components with respect to a basis {ea, εn}. We define the space
of BFV fields F∂

PC (�) to be the space of solutions of the BFV structural constraints

within F̌PC (�).

In order to have a better expression of the BFV structure, following [CCS20, Section
5.2], we introduce the field y† ∈ �

3,3
∂ [−1] such that the original fields λ† and ξ†

′
are

recovered through εn y† = −λ† and ea y† = −ξ
†′
a . This also allows us to write a single

expression for all N ≥ 3.
To complete the definition of the BFV data for Palatini–Cartan theory we consider a

degree 1 functional and a symplectic form16 given, respectively, by:

S∂
PC (�) =

∫

�

ceN−3dωe + ιξ eeN−3Fω + εnλeN−3Fω +
1

2
[c, c]c† − Lω

ξ cc†

+
1

2
ιξ ιξ Fωc† − [c, εnλ]y† + Lω

ξ (εnλ)y† +
1

2
ι[ξ,ξ ]ey†, (20)

�∂
PC (�) =

∫

�

eN−3δeδω + δcδc† + δωδ(ιξ c†)− δλεnδy† + ιδξ δ(ey†). (21)

Note that each term of the integrals belongs to �N−1,N , which can be canonically
identified, using

√| det η|, with the space of densities on �. A detailed explanation can
be found in [CCS20]. However, we will not write down the factor

√| det η| explicitly.
Definition 26. We define BFV Palatini–Cartan theory to be the assignment

� � F∂
PC (�) = (F∂

PC (�), S∂
PC (�),�∂

PC (�), Q∂
PC (�)). (22)

with Q∂
PC (�) the Hamiltonian vector field of S∂

PC (�) with respect to �∂
PC (�).

Remark 27. Notice that the data presented inDefinition 26 are equivalent to theBFVdata
presented in [CCS20]. The cohomological vector field of a function on (the presymplectic
manifold) F̌PC (�) is uniquely fixed by the tangency to the BFV structural constraint
(19). In [CCS20] the equivalent choice of the constraint (17) is made, and the resulting
Q’s differ along ω by a term in the kernel of W 1,2

eN−3 .
17 We make this choice in this paper

because it makes it easier to compare the AKSZ construction for the constrained space
F∂

PC (�) with a constrained version of PC, see Remark 28.

15 This BFV structural constraint differs from the classical one of Eq. (17) by a term depending on ghosts
and their antifields, so it reduces to the classical structural constraint if we restrict it to the classical space of
boundary fields (the body of F̌PC (�)).
16 This version of the BFV data features a particularly simple action functional, at the price of not expressing

the symplectic form in its Darboux form. An alternative can be found in [CCS20].
17 Also note that this term vanishes on the body of F̌PC when imposing the classical constraints, i.e., the

expressions paired to the ghosts in the first three terms of (20). The two BFV constructions, by (17) or by (19),
describe the characteristic distribution of the coisotropic submanifold determined by the constraints. They
extend this distribution in a different way outside of it, but this is irrelevant.
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Remark 28. In [CS19b] two of the authors showed that the natural BV data for PC theory
(in dimension N ≥ 4) cannot be extended to a BV–BFV theory (Definition 5). Since the
degree-0 part of our AKSZ target will be the constrained space F∂

PC (�), the extension
to the cylinder18 of Eq. (19) provides an explicit realisation of (one of) the conditions
that must be imposed on the bulk BV fields, in order to have a 1-extended BV–BFV
theory. For N = 3, the additional condition imposed by (17) is void, explaining why 3d
PC theory can be (fully) extended without additional requirements on the fields [CS19a].
We will comment further on this in Sect. 4.2.

Remark 29. The main difficulty in constructing BFV data for PC theory comes from the
requirement that (F∂

PC ,�∂
PC ) be a symplectic manifold, as opposed to pre-symplectic

(cf. with [AG14,Gri16]). We stress that this requirement is essential for quantisation. To
the best of our knowledge, a complete description of the symplecticBFV structure for PC
gravity was not available before [CCS20]. The complexity of the symplectic reduction
arising in the classical description of the degree-0 boundary structure [CCS20,CS19c],
as well as the obstruction in the BV–BFV induction procedure [CS19b], are relevant
features peculiar to this formulation of gravity.

Remark 30. The conventions we choose for the fields in (20) and in (21) differ from
those in [CS19a, Proposition 21]. In order to make contact between the formulas one
has to perform the following change of variables:

e† �→ y† ω† �→ c†

c �→ −c ξ �→ −ξ ξn �→ −λ.

In the case N ≥ 4 some signs differ from the ones in [CCS20] due to a sign convention
for λ.

3. AKSZ EH

We explore here the idea of reconstructing the (d + 1)-dimensional BV extension of
Einstein–Hilbert theory by means of the AKSZ construction, with target the BFV data
for Einstein–Hilbert theory (as presented in Sect. 2.1, based on [CS16]). In order to do
this one looks at the space FAKSZ

E H := Maps(T [1]I,F∂
E H (�)), with I an interval. In a

chart, to consider the transgression map of Eq. (13) means to look at fields composed of
a 0-form and a 1-form on the interval I , with values in F∂

E H (�) and fixed total degree.
For the case at hand we will then have

G = γ (t) + �†(t)dt Zn = ξn(t) + η(t)dt Za = ξa(t) + βa(t)dt (23a)

P = �(t) + γ †(t)dt Hn = ϕn(t) + ξ
†
n (t)dt Ha = ϕa(t) + ξ†a (t)dt (23b)

where, for all t ∈ I , we parametrise FAKSZ
E H with fields19

γ (t) ∈ Map(I, S2
nd(T �)), γ †(t) ∈ Map(I, S2[−1](T ∗�)),

�(t) ∈ Map(I, S2(T ∗�)), �†(t) ∈ Map(I, S[−1]2(T �)),

η(t), βa(t) ∈ Map(I, C∞(�)), ϕn(t), ϕa(t) ∈ Map(I,Dens[−1](�)),

18 Equation (19) can be extended to the space of fields over a cylinder. We consider this point of view in
Definition 58.
19 The motivation for this particular choice of notation will be manifest very soon.
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ξn(t), ξa(t) ∈ Map(I, C∞[1](�)), ξ†n (t), ξ†a (t) ∈ Map(I,Dens[−2](�)),

where we required γ (t) to be nondegenerate for all t ∈ I . Now, observe that η, ξn are
functions on � whereas βa, ξa can be considered as the components of vector (fields)
tangent to�, whichwewill denote byβ and ξ∂ . Similarly, we can promoteϕa and ξ

†
a into

�-density valued one forms, which we will denote by ϕ∂, ξ
†
∂ . For simplicity of notation

we will often use a unified index ρ ∈ {n, a}, so that ϕρ ∈ {ϕn, ϕa} and ξ†ρ ∈ {ξ†n , ξ
†
a }.

Remark 31. Notice once again that we are using (nondegenerate) sections of S2(T M)

instead of actual metrics. Occasionally we will need to raise/lower indices using γ and
its “inverse” which we will denote by γ−1. See Remark 20.

In what follows it will be useful to denote the Kinetic part of the Hamiltonian func-
tional [Eq. (13)] as

K := 1√
γ

(
Trγ [�2] − 1

d − 1
Trγ [�]2

)
, (24)

and the cosmological Einstein tensor with respect to a metric γ−1 with cosmological
constant � will be

G[γ,�] = R[γ ] +
(

�− 1

2
Trγ R[γ ]

)
γ−1, (25)

where R[γ ] is the Ricci–Riemann tensor of γ . We also introduce a tensor-valued second
order operator Dγ that on functions φ ∈ C∞(�) acts as

Dγ φ = γ−1�∂φ −∇∂ �∇∂φ (26)

where ∇∂ denotes the Levi-Civita connection of γ , and we denoted by �∂ = ∇∂ · ∇∂

the Laplace–Beltrami operator. In a coordinate chart this reads:

[Dγ φ]ab = γabγ
cd∇∂

c∇∂
d φ −∇∂

a∇∂
b φ.

In what follows we will also use the metric gradient, i.e. the vector field gradγ φ =
γ (dφ, ·). Since the covariant derivative ∇∂ will not explicitly appear in what follows,
we shall employ the symbol∇ to introduce a shorthand notation for the metric gradient:

∇γ φ ≡ 1

2
gradγ φ.

Then, it is a matter of a straightforward calculation to show that

Dγ φ = 1

2

(
γ−1Tr[L∇γ φγ ] − L∇γ φγ−1

)
.

With this in mind we can state the following:
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Theorem 32. The AKSZ dataFAKSZ
E H (I ;F∂

E H (�))are given by the (−1)-shifted symplectic
manifold

FAKSZ
E H � T ∗[−1]

(
Map(I, S2

nd(T �)× S2(T ∗�)× C∞(�)× X(�)

×X[1](�)× C∞[1](�))
)

�AKSZ
E H =

∫

�×I

{
−〈δγ, δγ †〉 + 〈δ�, δ�†〉 + δξρδξ†ρ + δηδϕn + δβaδϕa

}
dt (27)

and the AKSZ action functional:

SAKSZ
E H =

∫

�×I

{
〈�, γ̇ 〉 − 〈ϕρ, ξ̇ ρ〉 + Hnη + H∂ (β)− 〈γ †, Lξ∂ γ 〉 + 〈�†, Lξ∂ �〉 (28a)

−
(

δK
δγ

(�†) +
δK
δ�

(γ †)

)
ξn −√γ 〈�†,G[γ, λ]ξn + Dγ (ξn)〉 (28b)

+ 〈ϕ∂,∇γ ηξn − η∇γ ξn + Lξ∂ β〉 − ϕn Lβξn + ϕn Lξ∂ η (28c)

+

〈
ξ
†
∂ ,

1

2
[ξ∂ , ξ∂ ] + ξn∇γ ξn

〉
+ �†(ϕ∂ , dξn)ξn + ξ†n Lξ∂ ξ

n
}

dt, (28d)

together with its Hamiltonian vector field QAKSZ
E H .

Proof. TheprescriptionofTheorem14, suggests that to construct the data inFAKSZ(I ;F∂
E H )

we need to compute

�AKSZ
E H = T

(2)
I �∂

E H (�) =
∫

�×I

〈δP, δG〉 + 〈δHρ, δZρ〉. (29)

By selecting the top-form part of the integrand and observing that |dt | = 1 we get

�AKSZ
E H =

∫

�×I

{
−〈δγ †, δγ 〉 + 〈δ�, δ�†〉 + δξ†ρδξρ + δϕnδη + δϕaδβa

}
dt (30)

where the sign comes from 〈δ(γ †dt), δγ 〉 = −〈δγ †, δγ 〉dt , since |δγ | = 1, while
δξ†ρdtδξρ = δξ†ρδξρdt , since |δξρ | = 2. �AKSZ is a (−1)-symplectic structure on

Maps(T [1]I,F∂
E H (�)), a BV 2-form.

Now, from α∂
E H (�)we can construct a degree-0 functional onFAKSZ

E H by first applying
the transgression map, which yields the 1-form

T
(1)
I α∂ ∈ �1(Maps(T [1]I,F∂

E H (�))),

and then contracting it with the de Rham differential on I seen as an odd cohomological
vector field dI . In a local chart this is tantamount to replacing δ � dI := dt d

dt , so that

ιdI T
(1)
I α∂

E H (�) =
∫

�×I

{〈�, γ̇ 〉 − 〈ϕρ, ξ̇ ρ〉} dt. (31)
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where the sign comes from the fact that 〈ϕρdt, ξ̇ ρ〉 = −〈ϕρ, ξ̇ ρ〉dt . Finally, we want to
compute the AKSZ action functional

SAKSZ
E H := T

(0)
I (S∂

E H (�)) + ιdI T
(1)
I (α∂

E H (�)).

This calculation is completely analogous to the previous ones, and it is mostly straight-
forward. One needs to pay attention to the signs, so it is worthwhile to stress that

�†dt (ϕ∂ , dξn)ξn = [�†]abdtϕa∂bξ
nξn = [�†]abϕa∂bξ

nξndt = �†(ϕ∂ , dξn)ξndt

while

− γ (ξ
†
∂ dt, dξn)ξn − γ (ϕ∂, dη dt ξn + dξnηdt)

=
(
〈ξ†∂ , ξn∇γ ξn〉 + 〈ϕ∂,∇γ ηξn − η∇γ ξn〉

)
dt

Finally, at first order in dt ,

Hn(γ + �†dt,� + γ †)ξn = δ(Hnξn)

δγ
(�†dt) +

δ(Hnξn)

δ�
(γ †dt),

and dt ξn = −ξndt . We write the formulas above as derivatives of the functional Hnξn

to stress that total derivatives will appear, due to the term R∂ in Hn . Recalling the
expression for Hn of Eq. (13) and the definition of K, G[γ,�] and Dγ of Eqs. (24)–
(26), the variation of Hnξn with respect to γ yields

δ(Hnξ
n)

δγ
= δK

δγ
ξn +

δ(
√

γ R∂ξn)

δγ
= δK

δγ
ξn +

√
γ
(
G[γ,�]ξn + Dγ (ξn)

)
+ d(. . . ).

The total derivative term is exact with respect to the tangent differential d� . It can be
discarded, provided � has no boundary (which we are assuming throughout), so:

Hn(γ + �†dt,� + γ †)ξn = −
(

δK
δ�

(γ †) +
δK
δγ

(�†)

)
ξndt −√γ

〈
�†,G[γ,�]ξn

+Dγ (ξn)
〉
dt. (32)

�	
Remark 33. In order to compute the cohomological vector field QAKSZ

E H we enforce the
Hamiltonian condition ιQAKSZ

E H
�AKSZ

E H = δSAKSZ
E H dropping all possible boundary terms. It

reads (we omit the expression for QAKSZ
E H ξ† and QAKSZ

E H ϕ):

QAKSZ
E H γ = δHn

δ�
ξn + Lξ∂ γ (33a)

QAKSZ
E H � = −δK

δγ
ξn −√γ

(
G[γ,�]ξn + Dγ (ξn)

)
+ Lξ∂ �+ϕ � dξnξn (33b)

QAKSZ
E H η = −ξ̇n + Lξ∂ η − Lβξn (33c)

QAKSZ
E H β = −ξ̇ ∂ + Lξ∂ β + ∇γ η ξn − η∇γ ξn − ∇�†ξnξn (33d)

QAKSZ
E H ξ∂ = 1

2
[ξ∂ , ξ∂ ] + ξn∇γ ξn (33e)

QAKSZ
E H ξn = Lξ∂ ξ

n (33f)
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QAKSZ
E H γ † = �̇ +

δK
δγ

η +
√

γ
(
G[γ,�]η + Dγ (η)

)
+ Lβ� + Lξ∂ γ

† (33g)

+ ξ
†
∂ � dξnξn − ϕ∂ � dηξn+ηϕ∂ � dξn (33h)

+

[
δ2K
δγ 2 (�†) +

δ2Hn

δγ δ�
(γ †)

]
ξn − 1

2
γ−1〈�†,G[γ, λ]ξn + Dγ (ξn)〉 (33i)

− √
γ

〈
�†,

δG[γ, λ]
δγ

ξn +
δDγ (ξn)

δγ

〉
(33j)

QAKSZ
E H �† = γ̇ +

δK
δ�

η + Lβγ + Lξ∂ �
†−
[

δ2K
δ�2 (γ †) +

δ2K
δγ δ�

(�†)

]
ξn . (33k)

Remark 34. We notice that the term
√

γDγ (·) is the contribution to the field equations
for a metric due to the presence of a Brans–Dicke “dilaton” field, whose role is played
by the ghost ξn in the BFV action S∂

E H (�) and by η in SAKSZ
E H .

3.1. Pushforward. We would like to compute the BV pushforward of FAKSZ along the
symplectic submanifold (�,�†) ∈ F ′′ = T ∗[−1]Map(I, S2(T ∗�)) ⊂ FAKSZ

E H .

Remark 35. This is the same as evaluating Seff from Eq. (3). Since SAKSZ
E H is only quadratic

in �, the calculation reduces to computing the Batalin–Vilkovisky–Legendre transform
SBVL of SAKSZ

E H with respect to L, as in Definition 11, plus a correction in the integration
measure for the remaining (second-order) effective theory. Note that Eq. 2 is equivalent
to setting to zero the r.h.s. of Eq. (33k), together with �† = 0.

Recall that we are assuming γ (t) to be a nondegenerate section of S2(T �) for every
t , i.e. it represents the inverse of a metric, and dually �(t) ∈ S2(T ∗�). We can use γ

and its inverse (denoted γ �) to raise/lower indices: explicitly, if γ = γ ab∂a � ∂b, we
have γ � = γabdxa � dxb, with γ abγbc = δa

c . Then, for X ∈ S2(T ∗�), Y ∈ S2(T �)

we define (X �)ab := γ acγ bd Xbc and (Y �)ab = γacγbdY cd .

Definition 36. Consider the space of fields FR(� × I ) ⊆ FAKSZ as

FR(� × I ) := T ∗[−1]
(
Map

(
I, S2

nd(T �)× T [1] (C∞(�)× X(�)
)))

(34)

parametrised by (γ, η, β, ξn, ξ ∂ , ϕn, ϕ∂ , ξ
†
n , ξ

†
∂ ), with ιE H : FR(�× I ) → F AK SZ the

inclusion map.

Theorem 37. The BV-pushforward of FAKSZ(I ;F∂
E H (�)) with respect to the Lagrangian

submanifold L = {(�,�†) ∈ F ′′ | �† = 0} is the BV theory given by

FR(� × I ) := (FR(� × I ), SR(� × I ),�R(� × I ))

where

SR(� × I ) =
∫

R

dt
∫

�

−η
√

γ
[(
〈K �, K 〉 − Tr(K )2

)
+ R∂ − 2�

]

− 〈γ †, Lξ∂ γ 〉 − 2〈K �, γ †〉ξn − 〈ϕρ, ξ̇ ρ〉
+ 〈ϕ∂,∇γ ηξn − η∇γ ξn + Lξ∂ β〉 + ϕn

(−Lβξn + Lξ∂ η
)
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+

〈
ξ
†
∂ , ξn∇γ ξn +

1

2
[ξ∂ , ξ∂ ]

〉
+ ξ†n Lξ∂ ξ

n (35)

with K := η−1
2

(
γ̇ + Lβγ

)�
, and

�R(� × I ) = ι∗E H �AKSZ
E H . (36)

Proof. As discussed in Remark 35, we are interested in finding the effective action one
obtains by means of the perturbative expansion of the integral

exp

(
i

�
Seff

)
:=

∫

L⊂F ′′
exp

(
i

�
SAKSZ

E H

)
(37)

because SAKSZ
E H |L is quadratic in �, through the term K(�)η. Observing that

δK
δ�

= 2√
γ

(
�� − γ

d − 1
Tr(�)

)
(38)

δ2K
δ�2 (γ †) = 2√

γ

(
(γ †)� − γ

d − 1
Tr(γ †)

)
, (39)

we have that Eq. (33k) reads

2√
γ

(
�� − γ

d − 1
Tr(�)

)

= −η−1
(

γ̇ + Lβγ− 2√
γ

(
(γ †)� − γ

d − 1
Tr(γ †)

)
ξn
)
+ F(�†) (40)

where Tr(X) = γ ab Xab. We will use the symbol≈ to denote the enforcing of Eq. (33k)
and of �† = 0. Then, requiring �† = 0 and defining

K := η−1

2

(
γ̇ + Lβγ

)�
, (41)

we obtain that
� ≈ −√γ

(
K − Tr(K )γ �

)
+ η−1γ †ξn . (42)

It is easy to compute now

Hn ≈ √γ
[(
〈K �, K 〉 − Tr(K )2

)
+ R∂ − 2�

]
− 2η−1〈K �, γ †〉ξn (43)

which, together with

〈�, γ̇ + Lβγ 〉 ≈ −2√γ
[(
〈K �, K 〉 − Tr(K )2

)
+ R∂ − 2�

]
+ 2η−1〈K �, γ †〉ξn (44)

and

−δHn

δ�
(γ †)ξn ≈ +2〈K �, γ †〉ξn, (45)

yields
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SAKSZ
E H ≈

∫

R

dt
∫

�

−η
√

γ
[(
〈K �, K 〉 − Tr(K )2

)
+ R∂ − 2�

]

− 〈γ †, Lξ∂ γ 〉 + 2〈K �, γ †〉ξn − 〈ϕρ, ξ̇ ρ〉
+ 〈ϕ∂,∇γ ηξn − η∇γ ξn + Lξ∂ β〉 + ϕn

(−Lβξn + Lξ∂ η
)

+

〈
ξ
†
∂ , ξn∇γ ξn +

1

2
[ξ∂ , ξ∂ ]

〉
+ ξ†n Lξ∂ ξn =: SR(� × I ). (46)

So, formula (46) shows that Seff = SR(�× I )+O(�). The � correction is the (logarithm
of the) determinant of the operator defining the quadratic form K, i.e. the determinant
of the deWitt super metric20 [DeW67]

Wi jkl
γ = 1√

γ

(
γ ikγ jl − 1

d − 1
γ i jγ kl

)
,

or, more invariantly

Wγ (�,�) = 1√
γ

(
〈��,�〉 − 1

d − 1
Trγ [�]2

)
, (47)

and it will have the effect of correcting the overall measure on the residual BV space of
fields FR(� × I ). �	
Remark 38. Up to boundary, we can compute Q R(� × I ) (denoted hereinafter by Q R)
to be:

Q Rγ = Lξ∂ γ − η−1(γ̇ + Lβγ )ξn (48a)

Q Rη = −Lβξn + Lξ∂ η (48b)

Q Rβ = ∇γ ηξn − η∇γ ξn + Lξ∂ β (48c)

Q Rξn = Lξ∂ ξ
n (48d)

Q Rξ∂ = ξn∇γ ξn +
1

2
[ξ∂ , ξ∂ ] (48e)

and similarly for antifields.

3.2. Reconstruction of Einstein–Hilbert theory. In this section we wish to show that the
BV pushforward of the AKSZ theory constructed in Sect. 3.1 is strongly equivalent to
Einstein–Hilbert theory in the BV formalism.

To do this, we begin by considering the following definitions:

ξ̃ = −η−1ξn(∂t + β) + ξ∂ (49a)

g̃ = −η−2∂t � ∂t − 2η−2β � ∂t + γ − η−2β � β (49b)

20 To be precise, Wγ is the inverse of the metric introduced by deWitt, due to our choice of working with
inverse metrics γ .
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Lemma 39. We have the following relations

1

2
[̃ξ , ξ̃ ] = Q R ξ̃ , (50a)

L ξ̃ g̃ = Q Rg̃. (50b)

Proof. It is a straightforward calculation to show

Q R ξ̃ = η−2(Q Rη)ξn(∂t + β) + η−1Q Rξn(∂t + β) + Q Rξ∂ + η−1ξn Q Rβ

=
(
−η−2ξ̇nξn − η−2Lβξnξn + Lξ∂ (−η−1ξn)

)
(∂t + β)

− η−1ξn ξ̇ ∂ + η−1ξn Lξ∂ β +
1

2
[ξ∂ , ξ∂ ].

Observe that the “algebroid term” (see Remark 40, below) ξn∇γ ξn in Q Rξ∂ cancels out
with part of η−1ξn Q Rβ. On the other hand this coincides with

1

2
[̃ξ , ξ̃ ] = 1

2
[−η−1ξn(∂t + β) + ξ∂ ,−η−1ξn(∂t + β) + ξ∂ ]

=
(
η−2ξn(∂t + β)ξn + Lξ∂ (−η−1ξn)

)
(∂t + β)

− η−1ξn ξ̇ ∂ + η−1ξn Lξ∂ β +
1

2
[ξ∂ , ξ∂ ],

proving the first claim. We compute

L ξ̃ g̃ = −2η−3ξ̇n∂t∂t + 2η−3Lξ∂ η∂t∂t + 2η−2ξ̇ ∂t − 2η−4ξn Lβη∂t∂t

− 2η−2∂t

(
η−1ξnβ

)
∂t − 4η−4ξn∂tηβ∂t + 4η−3Lξ∂ ηβ∂t − 4η−4Lβηξnβ∂t

− 2η−2Lξ∂ β∂t − 2η−2Lβ

(
η−1ξn

)
∂t∂t + 2η−2∂t

(
ξ∂ − η−1ξnβ

)
β

− 2η−2Lβ

(
η−1ξn

)
β∂t − 2η−2∂t

(
η−1ξn

)
β∂t + 2η−2ξnβ̇∂t − η−1ξn γ̇ ab∂a∂b

+ Lξ∂

(
γ ab∂a∂b

)
− η−1ξn Lβ(γ ab)∂a∂b + 2∇γ

(
η−1ξn

)
∂t + 2∇γ

(
η−1ξnβ

)
∂c

− 2η−4ξn η̇ββ + 2η−3Lξ ηββ − 2η−4ξn Lβηββ + 2η−3ξnβ̇β − η−2Lξ∂ (ββ)

− 2η−2Lβ

(
η−1ξn

)
(β∂t + ββ)

where we recall that expressions like Lξ∂ (β) denote the Lie derivative of the vector field
β = βa∂a along ξ∂ . On the other hand we have

Q R(−η−2)∂t∂t =
(
−2η−3ξ̇n + 2η−3Lξ∂ η − 2η−3Lβξn

)
∂t∂t

Q R(−2η−2β)∂t =
(
−4η−3ξ̇nβ + 4η−3Lξ∂ η − 4η−3Lβξnβ

)
∂t

+
(
2η−2ξ̇ ∂ − 2η−2Lξ∂ β − 2η−2∇γ ηξn + 2η−1∇γ ξn

)
∂t

Q R(γ ab)∂a∂b = −η−1ξn γ̇ − η−1ξn Lβγ + Lξ∂ γ

Q R(−η−2ββ) = −2η−3ξ̇nββ + 2η−3Lξ∂ ηββ − 2η−3Lβξnββ
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+ 2η−2βξ̇ ∂ − 2η−2Lξ∂ ββ − 2η−2
(∇γ ηξn − η∇γ ξn)β

And it is a matter of a straightforward, but lengthy computation to show that the two
expressions coincide. Indeed, subtracting one from the other we obtain

L ξ̃ g̃ − Q Rg̃

= 2η−3(−η−1ξn(η̇ + Lβ(η))ββ + 2η−3ξnβ̇β − 2η−2Lβ(η−1)ξn(β∂t + ββ)

− 2η−4ξn Lβ(η)∂2t + 2η−4η̇ξnβ∂t − 2η−3ξnβ̇ξn∂t − 4η−4ξn(η̇ + Lβη)β∂t

+ 2η−3ξnβ̇∂t + 2η−4Lβη(∂2t + β∂t ) + 2η−4η̇ξn(β∂t + ββ)− 2η−3ξnβ̇β ≡ 0
(51)

�	
Remark 40. Using Lemma 39 we wish to interpret (49) as a map of Lie algebroids.
Consider the (trivial) vector bundle over

Map(I, S2
nd(T �)× C∞(�)× X(�)) � PR�(� × I ),

where PR�(� × I ) denotes pseudo-Riemennian metrics on � × I such that their
restriction to � is nondegenerate, with fibre

Map(I, C∞(�)× X(�)) � X(� × I ).

Weconsider two different Lie algebroid structures on this vector bundle. One is the action
algebroid with bracket given by the bracket of (d + 1)-vector fields, and anchor given
by Lie derivatives on metrics. The other algebroid structure is given by formulas (48),
with (48a)–(48c) defining the anchor map, and (48d) and (48e) specifying the bracket
of sections. Observe that the morphism of algebroids (49) does not preserve constant
sections, as the splitting of a generic vector field ξ̃ depends on the so-called lapse η and
shift β, which are coordinates on the base of the fibre bundle. The latter algebroid encodes
the algebraic relations of the constraints of Einstein–Hilbert theory,21 and was carefully
studied by other means in [BFW13]. It was also mentioned as a motivating example
for the notion of Hamiltonian Lie Algebroid, introduced in [BW18]. It is an interesting
question to check whether this construction satisfies the Hamiltonian requirements for
an algebroid.

To proceed, we need to recall the BV data associated with Einstein–Hilbert theory,
in the ADM formalism. Given a pseudo-Riemannian (inverse) metric g̃ on a manifold
M , we can perform a d + 1 decomposition and rewrite it as22

g̃μν =
( −η−2 −η−2βb

−η−2βa γ ab − η−2βaβb

)

21 We stress that, as it is, the structure one can extract from the BFV differential Q∂ is that of a curved L∞
algebroid, due to the dependency on fields of negative degree. We thank A. Weinstein, C. Blohmann and N.
L. Delgado for enlightening discussions on this matter.
22 In this paper we will assume that the manifold M has a global product structure M = � × R, and

the induced metric on � will be Riemannian, i.e. the leaves �t are spacelike submanifolds of M . It is
straightforward to generalise this to the timelike case. The relevant formulas for EH theory in the BV–BFV
formalism have been given in [CS16].
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In the case where M has a boundary, we can define the second fundamental form of
the boundary submanifold Kab and its trace K by means of the boundary covariant
derivative ∇∂ (the Levi-Civita connection of γ ) as follows

Kab = 1

2
η−1(2∇∂

(aβb) + ∂tγab) K = γ ab Kab (52)

where t denotes a coordinate transverse to the boundary ∂ M . Finally, notice that

(Lβγ )cdγacγbd = −2∇∂
(aβb) (γ̇ )cdγacγbd = −∂tγab.

Definition 41. Let (FE H (M),�E H (M)) be the symplectic manifold

FE H (M) := T ∗[−1]
(
PR∂ M (M)× X[1](M)

)

with its canonical symplectic structure, and PR∂ M (M) denotes pseudo-Riemennian
metrics on M such that their restriction to ∂ M is nondegenerate. Consider the functional

SE H (M) =
∫

M

{
− η

√
γ (ε(Kab K ab − K 2) + R∂ − 2�)

}
+ g̃†L ξ̃ g̃ +

1

2
ι[̃ξ ,̃ξ ]̃ξ† (53)

and denote by QE H (M) the Hamiltonian vector field of SE H (M), up to boundary terms.
Then, the assignment of the tuple

FE H = (FE H (M), SE H (M),�E H (M), QE H (M)))

to every (d+1)-dimensional manifold M that admits a Lorentzian structure will be called
Einstein–Hilbert theory in the BV formalism.

Remark 42. The sign convention used above is obtained from the standard ADM de-
composition by redefining (η, β) → (−η,−β). This matches our conventions below.
This change is due to the choice of using inverse metrics for the first order formulation,
instead of metrics (in fact �ab∂tγ

ab = −�ab∂tγab).

Theorem 43. Einstein–Hilbert theory in the BV formalism FE H (� × I ) is strongly
equivalent to FR(� × I ). Explicitly, the isomorphism of the underlying symplectic dg-
manifolds reads:

g̃ = −η−2∂t∂t − 2η−2β∂t + γ − η−2ββ (54a)

ξ̃ = −η−1ξn∂t + ξ∂ − η−1ξnβ (54b)

ξ̃† = ξ
†
∂ −

(
ηξ†n + ιβξ

†
∂

)
dt

g̃† =
(
1

2
η3ϕn − η2ϕaβa − γ

†
abβ

aβb + ηβaξ†a ξn +
1

2
η−1ξ†n ξn

)
dt2 (54c)

+

(
1

2
η2ϕa + γ

†
abβ

b − 1

2
ηξ†a ξn

)
dxadt − γ

†
abdxadxb (54d)

with inverse:

η = [−g̃t t ]− 1
2 (55a)

βa = −[−g̃t t ]−1g̃ta (55b)
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γ ab = [−g̃t t ]−1g̃ta g̃tb (55c)

ξn = −[−g̃t t ]− 1
2 ξ̃ t (55d)

ξa = ξ̃a + [−g̃t t ]̃gta ξ̃ t (55e)

γ
†
ab = g̃†

ab (55f)

ϕa = 2[−g̃t t ]̃g†
at + 2g̃†

abg̃tb + ξ̃†a ξ̃ t (55g)

ϕn = 2[−g̃t t ] 32 g̃†
t t − 4[−g̃t t ] 12 g̃†

ta g̃ta + 2[−g̃t t ]− 1
2 g̃†

abg̃ta g̃tb (55h)

+ [−g̃t t ] 12 ξ̃†n ξ̃ t − [−g̃t t ]− 1
2 gta ξ̃†a ξ̃a (55i)

ξ†n = −[−g̃t t ] 12 ξ̃†n + [−g̃t t ]− 1
2 ξ̃†a g̃ta (55j)

ξ†a = ξ̃†a . (55k)

Proof. We begin observing that the definitions of K in (41) and K in (52) coincide
up to sign, after identifying g̃ with the expression of Eq. (49b). Since the expression
SADM := −η

√
γ (ε(Kab K ab− K 2)+ R∂ − 2�) is quadratic in K , we conclude that the

degree-zero part of (53) and (46) coincide. Thismeans that the two theories are classically
equivalent,23 and (49b) is themap between second-order and first-order Einstein–Hilbert
theory.

We endeavour now to find the explicit expression for g̃† and ξ̃† so that

φ∗(〈g̃†, δg̃〉 + 〈̃ξ†, δξ̃ 〉) = −〈δγ †, δγ 〉 + 〈�, δ�†〉 + ξ†ρδξρ + ϕnδη + ϕaδβa .

It is straightforward to compute

φ∗(〈g̃†, δg̃〉 + 〈̃ξ†, δξ̃ 〉)
= −

[
(φ∗ξ̃†)nη−1 + (φ∗ξ̃†)aη−1βa

]
δξn + (φ∗ξ̃†)aδξa

+
[
2(φ∗g̃†)t tη

−3 + 4(φ∗g̃†)atη
−3βa + 2(φ∗g̃†)abη

−3βaβb
]
δη

−
[
(φ∗ξ̃†)tη

−2ξn − (φ∗ξ̃†)aη−2βaξn
]
δη + (φ∗g̃†)abδγ

ab

+
[
2(φ∗g̃†)atη

−2 − 2(φ∗g̃†)abη
−2βb + (φ∗ξ̃†)aη−1ξn

]
δβa (56)

which leaves us with the intermediate expression:

ξ†a = (φ∗ξ̃†)a (57a)

ξ†n = −
[
(φ∗ξ̃†)tη

−1 + (φ∗ξ̃†)aη−1βa
]

(57b)

γ
†
ab = −(φ∗g̃†)ab (57c)

ϕa = −2(φ∗g̃†)atη
−2 − 2(φ∗g̃†)abη

−2βb + (φ∗ξ̃†)aη−1ξn

ϕn = 2(φ∗g̃†)t tη
−3 + 4(φ∗g̃†)atη

−3βa + 2(φ∗g̃†)abη
−3βaβb (57d)

− (φ∗ξ̃†)tη
−2ξn − (φ∗ξ̃†)aη−2βaξn (57e)

23 Strictly speaking this is only true on an open subset of the moduli space of solutions, due to the nonde-
generacy condition on γ (t) enforced on the whole cylinder by the AKSZ construction, while Definition 53
only requires the nondegeneracy of g̃|∂ M .
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Starting from the top and solving downwards, we easily get

(φ∗ξ̃†)a = ξ†a (58)

(φ∗ξ̃†)n = −ηξ†n − ξ†a βa (59)

(φ∗g̃†)ab = −γ
†
ab (60)

(φ∗g̃†)at = −1

2
η2ϕa + γ

†
abβ

b +
1

2
ηξ†a ξn (61)

(φ∗g̃†)t t = 1

2
η3ϕn + η2ϕaβa − γ

†
abβ

aβb − ηξ†a βaξn − 1

2
ηξ†n ξn (62)

Alternatively, from (57), observing that the assignment (49) can be inverted to yield

φ−1∗η = [−g̃t t ]− 1
2 , φ−1∗βa = −[−g̃t t ]−1g̃ta, φ−1∗γ ab = [−g̃t t ]−1g̃ta g̃tb

together with

φ−1∗ξn = −[−g̃t t ]− 1
2 ξ̃ t ; φ−1∗ξa = ξ̃a + [−g̃t t ]−1g̃ta ξ̃ t

we can similarly obtain the inverse:

φ−1∗η = [−g̃t t ]− 1
2

φ−1∗βa = −[−g̃t t ]−1g̃ta

φ−1∗γ ab = [−g̃t t ]−1g̃ta g̃tb

φ−1∗ξn = −[−g̃t t ]− 1
2 ξ̃ t

φ−1∗ξa = ξ̃a + [−g̃t t ]̃gta ξ̃ t

φ−1∗γ †
ab = −g̃†

ab

φ−1∗ξ†a = ξ̃†a

φ−1∗ξ†n = −ξ̃†n [−g̃t t ] 12 + ξ̃†a [−g̃t t ]− 1
2 g̃ta

φ−1∗ϕa = −2g̃†
at [−g̃t t ] + 2g̃†

abg̃tb − ξ̃†a ξ̃ t

φ−1∗ϕn = 2g̃†
t t [−g̃t t ] 32 − 4g̃†

ta[−g̃t t ] 12 g̃ta + 2g̃†
ab[−g̃t t ]− 1

2 g̃ta g̃tb

+ [−g̃t t ] 12 ξ̃†t ξ̃ t − [−g̃t t ]− 1
2 gta ξ̃†a ξ̃ t .

Now, using again the intermediate expressions (57) let us consider the following
terms, coming from Eq. (46):

ξ†n Lξ∂ ξ
n = −(φ∗ξ̃†)tη

−1Lξ∂ ξ
n − (φ∗ξ̃†)aη−1βa Lξ∂ ξ

n

〈ξ†∂ , (ξn∇γ ξn +
1

2
[ξ∂ , ξ∂ ]〉 = 〈(φ∗ξ̃†)∂ , (ξn∇γ ξn +

1

2
[ξ∂ , ξ∂ ]〉ϕn

(
Lξ∂ η − Lβξn − ξ̇n)

= η−3
[
2(φ∗g̃†)t t + 4(φ∗g̃†)atβ

a + (φ∗g̃†)abβ
aβb

] (
Lξ∂ η − Lβξn − ξ̇n)

− η−2
[
(φ∗ξ̃†)nξ

n + (φ∗ξ̃†)aβaξn
] (

Lξ∂ η − Lβξn − ξ̇n)

〈ϕ∂,
(∇γ ξn − η∇γ ξn + Lξ∂ β

)〉
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= −2η−2
(
(φ∗g̃†)at + (φ∗g̃†)abβ

b
) (

(∇γ η)aξn − η(∇γ ξn)a + (Lξ∂ β)a − ξ̇a)

+ (φ∗ξ̃†)aη−1ξn ((Lξ∂ β)a − η(∇γ ξn)a − ξ̇a)

〈γ †, η−1
(
γ̇ + Lβγ

)
ξn − Lξ∂ γ 〉 = −(φ∗g̃†)ab

(
η−1

(
γ̇ + Lβγ

)
ξn − Lξ∂ γ

)ab
.

Then, summing all terms on the left hand side and factoring (φ∗ξ̃†)t , (φ∗ξ̃†)a and
(φ∗g̃†), we obtain

(φ∗ξ̃†)t

[
−L

ξ∂ (η−1ξn) + η−2ξn (Lβξn + ξ̇n)
]

+ (φ∗ g̃†)t t

[
2η−3

(
L

ξ∂ η − Lβξn − ξ̇n
)]

+

〈
(φ∗ξ̃†)∂ ,

1

2
[ξ∂ , ξ∂ ]

〉

+
〈
(φ∗ξ̃†)∂ ,−L

ξ∂ (η−1ξn)β + η−1L
ξ∂ βξn + η−2βξn Lβξn + η−2βξn ξ̇n − η−1ξn ξ̇ ∂

〉

+ (φ∗ g̃†)ab

[
−η−1γ̇ abξn − η−1(Lβγ )abξn + (Lξ∂ γ )ab + 4η−3βa

(
Lξ∂ η − Lβξn − ξ̇n

)]

+ (φ∗ g̃†)ab

[
−2η−2

(
(∇γ η)aξn − η(∇γ ξn)a + (Lξ∂ β)a − ξ̇a

)]

+ (φ∗ g̃†)ab

[
2η−3βaβb

(
L

ξ∂ η − Lβξn − ξ̇n
)]

+ (φ∗ g̃†)ab

[
−2η−2βb

(
(∇γ η)aξn − η(∇γ ξn)a + (L

ξ∂ β)a − ξ̇a
)]

Which, using Lemma 39, can be shown to be

φ∗
(

g̃†L ξ̃ g̃ + ι[̃ξ ,̃ξ ]̃ξ†
)

(63)

leading to
φ∗SE H (� × I ) = SR(� × I ). (64)

�	
Remark 44. We would like to stress here that the results in this section are a “strictifi-
cation” of the general construction of a solution of the classical master equation for the
extended Hamiltonian, as presented by Henneaux and Bunster [HT92, Theorem 18.8].
Indeed, the Hamiltonian analysis for a field theory relies on a (possibly) non-reduced
version of the strict BFV data we consider, where strict indicates that we require all
spaces of fields to be smooth symplectic manifolds. The AKSZ construction yields a
BV theory (Theorem 32) which is effectively equivalent to the natural BV extension of
Einstein–Hilbert theory (Theorems 37, 43). It could be argued that this effective equiv-
alence preserves the BV cohomology [BBH95,DGH90,Hen90]. However, note that the
quantisation procedure outlined in [CMR18] does indeed require the strict version of a
BV–BFV structure,24 and its existence is not to be taken for granted, as was shown in
[CS19b,CS17].

4. AKSZ PC

Following the construction outlined inSect. 1.3, starting from theBFV theory of Palatini–
Cartan gravity (see Sect. 2.2), we can construct the AKSZ space of fields FAKSZ

PC . We will
use the following notation:

e = e + f † w = ω + u† (65a)

24 See [MSW19] for the comparison between strict and lax BV–BFV structures.
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c = c + w x = ξ + z (65b)

l = λ + μ c† = k† + c† (65c)

y† = e† + y† (65d)

where

e ∈ C∞(I )⊗�1
nd(�,V) f † ∈ �1[−1](I )⊗�1(�,V)

ω ∈ C∞(I )⊗A(�) u† ∈ �1[−1](I )⊗A(�)

c ∈ �0[1](I ×�,
∧2V) w ∈ �1[−1](I )⊗�0[1](�,

∧2V)

ξ ∈ C∞(I )⊗ X[1](�) z ∈ �1[−1](I )⊗ X[1](�)

λ ∈ C∞[1](I ×�) μ ∈ �1[−1](I )⊗ C∞[1](�)

k† ∈ C∞(I )⊗�N−1[−1](�,
∧N−2V) c† ∈ �1[−1](I )⊗�N−1[−1](�,

∧N−2V)

e† ∈ C∞(I )⊗�N−1[−1](�,
∧N−1V) y† ∈ �1[−1](I )⊗�N−1[−1](�,

∧N−1V)
(66)

such that, for some σ ∈ C∞(I ) ⊗ �1(�,V) and B ∈ �1[−1](I ) ⊗ �1(�,V), they
satisfy the structural AKSZ constraints:

εn

{
(N − 4) f †eN−5dωe + eN−4dω f † + eN−4[u†, e]

}

+
(
ιzdωεn−[w − ιξ u†, εn]

)(a)

k†a + X (a)c†a +
(

X (b) f †b

)(a)

k†a = f †eN−4σ + eN−3B;
(67a)

εneN−4dωe + X (a)k†a = eN−3σ ; (67b)

where X =
(

Lω
ξ εn − [c, εn]

)
∈ 
(M,V), while εn ∈ 
(M,V) is a fixed section, and

the indices {(a), (n)} denote components with respect to a basis {ea, εn}.
Remark 45. Observe that our target for theAKSZconstruction for Palatini–Cartan theory
is the BFV theory defined in Definition 26, whose space of fields F∂

PC is defined by the
structural constraint (19). As a consequence, the BFV constraint must be imposed on
the AKSZ fields at every point of I . As the AKSZ fields consists of a 0- and 1-form
component, along the interval, the structural constraints now has a 0-form and a 1-
form component corresponding to (67b) and (67a), respectively. Despite the apparent
complexity of these two equations, it is worth noting that they fix certain components
of the AKSZ fields ω and u†. See Sect. 4.2 for an interpretation.

Remark 46. Recall that to define the BFV structure for PC theory we needed a fixed
section εn ∈ 
(�,V) (cf. Definition 25). Note that εn is not a field of the theory but is
part of the structure that defines it (more like a coupling constant). For this reason, in
the AKSZ construction εn does not depend on the coordinate xn of the interval I . In the
following, we will regard εn as a given section of 
(M, V ) satisfying dI (εn) = 0.

Theorem 47. The AKSZ data FAKSZ
PC (I ;F∂

PC ) are given by the quadruple

FAKSZ
PC (I ;F∂

PC ) = (FAKSZ
PC , SAKSZ

PC ,� AKSZ
PC , QAKSZ

PC )

where:

FAKSZ
PC � T ∗[−1](Map(I,F∂

PC ))
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� AKSZ
PC =

∫

I×�

δ(eN−3 f †)δω + eN−3δeδu† + δwδk† + δcδc† + δu†δ(ιξ k†)

+ δωδ(ιzk†) + δωδ(ιξ c†)− δμεnδe† − δλεnδy†

+ ιδzδ(ee†) + ιδξ δ( f †e†) + ιδξ δ(ey†);
SAKSZ

PC =
∫

I×�

weN−3dωe + (N − 3)ceN−4 f †dωe + ceN−3[u†, e] + ceN−3dω f †

+ ιzeeN−3Fω + ιξ (e
N−3 f †)Fω + ιξ eeN−3dωu† + εnμeN−3Fω

+ (N − 3)εnλeN−4 f †Fω + εnλeN−3dωu† + [w, c]k† + 1

2
[c, c]c†

− ιzdωck† − [ιξ u†, c]k† − ιξ dωwk† − ιξ dωcc† + ιzιξ Fωk†

+
1

2
ιξ ιξ dωu†k† +

1

2
ιξ ιξ Fωc† − [w, εnλ]e† − [c, εnμ]e† − [c, εnλ]y†

+ ιzdω(εnλ)e† + [ιξ u†, εnλ]e† + ιξ dω(εnμ)e† + ιξ dω(εnλ)y†

+ ι[z,ξ ]ee† +
1

2
ι[ξ,ξ ] f †e† +

1

2
ι[ξ,ξ ]ey†

+
1

N − 2
eN−2dI ω + cdI k† + dI ωιξ k† − ιdI ξ ee† + dI λεne†.

and QAKSZ
PC is defined as QAKSZ

PC = QdR
PC + Qlift

PC where Qlift
PC is the tangent lift of Q∂

PC to
Map(T [1]I,F∂

PC (�)) and Qd R
PC is the lift of the de Rham differential dI .

Proof. This is a straightforward applicationof theAKSZprescriptionoutlined inSect. 1.3.
Using the transgression map we can build a symplectic form FAKSZ

PC

� AKSZ
PC =

∫

I×�

eN−3δeδw + δcδc† + δwδ(ιxc
†)− δlenδy† + ιδxδ(ey

†) (68)

from which we obtain the claimed expression using (65). Analogously the AKSZ action
can be constructed using the transgression map from the boundary one-form α∂ and
from the boundary action S∂ . Namely we have

SAKSZ
PC =

∫

I×�

1

N − 2
eN−2dIw + cdI c

† + dIwιxc
† − ιdI xey

† + dI lεny
†

cedwe + ιxeeFw + εnleFw +
1

2
[c, c]c† − Lw

x cc† +
1

2
ιxιxFwc†

− [c, εn l]y† + Lw
x (εnl)y

† +
1

2
ι[x,x]ey†. (69)

Again the claimed expression can be obtained straightforwardly from (65). �	
Remark 48. The invariance of the constraints (67b) and (67a) with respect to QAKSZ

PC is
guaranteed by the invariance of the structural constraint on the boundary (19)with respect
to QBFV

PC , and by the properties of the AKSZ construction.

From Theorem 14 we know that FAKSZ
PC (I ;F∂

PC ) yields a BV theory on the manifold
I × �. Furthermore, by Proposition 17 these data satisfy also the BV–BFV axioms of
Eq. (5).
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Definition 49. We call nondegenerate AKSZ PC theory the data FAKSZ
PC�

obtained by re-

stricting the space of fields of FAKSZ
PC (I ;F∂

PC (�)) to those maps whose μ component [as
defined by Eq. (65)] is nonvanishing.

In [CS19b] two of the authors proved that, using the natural symmetries of PC theory,
the resulting BV theory FPC does not satisfy the BV–BFV axioms (it is not a 1-extended
BV theory) unless additional requirements on the fields are enforced. Next section will
be devoted to the comparison between FPC (� × I ) and FAKSZ

PC�
(I ;F∂

PC (�)).

4.1. Comparison of BV data for PC theory. We want to compare the AKSZ-BV theory
of Theorem 47 with the one proposed for PC-gravity by two of the authors [CS19b],
which we briefly recall here. Let M be an N -dimensional manifold with N > 2.

Definition 50. We call standard BV theory for PC gravity the BV data

FPC (M) = (FPC (M), SPC (M),�PC (M), Q PC (M))

where

FPC (M) := T ∗[−1]
(
�1

nd(M,V)⊕A(M)⊕ X[1](M)⊕�0[1](M, adP)
)

and the fields in the base are denoted by (e,ω, ξ , c), while the corresponding variables
in the cotangent fibre are denoted by (e†,ω†, ξ†, c†);

�PC (M) =
∫

M
δeδe† + δωδω† + δcδc† + ιδξ δξ†;

SPC (M) =
∫

M

1

N − 2
eN−2Fω +

(
ιξ Fω − dωc

)
ω† −

(
Lω

ξ e − [c, e]
)
e†

+
∫

M

1

2

(
ιξ ιξ Fω − [c, c]

)
c† +

1

2
ι[ξ ,ξ ]ξ†.

The explicit expression of the cohomological vector field Q PC , defined by the equa-
tion ιQ PC �PC = δSPC , will be useful in the following:

Q PCe = Lω
ξ e − [c, e]

Q PCω = ιξ Fω − dωc

Q PCc = 1

2
ιξ ιξ Fω − 1

2
[c, c]

Q PCξ = 1

2
[ξ , ξ ]

Q PCe† = eN−3Fω + Lω
ξ e

† − [c, e†]
Q PCω† = eN−3dωe − dωιξ ω† − [c,ω†] + ιξ [e, e†] − 1

2
dωιξ ιξ c

†

Q PCc† = −dωω† − [e, e†] − [c, c†]
Q PCξ†• = Fω•ω† − (dω•e)e† + ιξ Fω•c† + Lω

ξ ξ†• + (dωιξ ξ†)•.

Here we used the symbol • to remind the reader that ξ† is a one-form with values in
densities, and on the right hand side we highlight the one-form part of the expression.
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Remark 51. Throughout the analysis we should always keep in mind that, while Defini-
tion 50 is valid for any manifold M (possibly with boundary), the AKSZ theory obtained
in Theorem 47 is by construction defined on a manifold diffeomorphic to a cylinder:
M = � × I . Furthermore, as we will see in this section, the fields in FAKSZ

PC� correspond
to those in the standard BV theory for PC but with an additional constraint.

The product structure of M induces a splitting of fields:

e = ẽ + ẽndxn e† = ẽ† + ẽ†ndxn

ω = ω̃ + ω̃ndxn ω† = ω̃† + ω̃†
ndxn

ξ = ξ̃ + ξ̃n∂n ξ† = ξ̃† + ξ̃†n dxn

(70)

More compactly we can write field components in the xn direction as ẽn = ẽndxn ,
ξ̃n = ξ̃n∂n and so on. Observe that ξ† is a one-form with values in densities on M ,
so we can identify two dxn contributions: we denote by ξ̃

n
† the dxn-component (of the

one-form part) of ξ† and by ξ̃ the rest, stressing that the image of ξ̃ is nontrivial along
dxn . This decomposition allows us to define the maps

W i, j
ẽN−3 : �i

(
M,

∧ jV
)
→ �i+N−3 (M,

∧ j+N−3V
)
; W i, j

ẽN−3(v) = ẽN−3 ∧ v. (71)

Let us now fix a nonzero section εn ∈ 
(M,V) such that dI εn = 0. We will then
restrict the field ẽ not to have components parallel to εn . This is a restriction on the space
of fields (it actually defines an open subspace). The nondegeneracy of e implies that (i)
ẽ and εn form a basis of V at every point, and (i i) ẽn becomes a linear combination of ẽ
and εn , with nonzero εn-component. Denote by X {μ} the components of a field X with
respect to the basis given by ẽ and εn (i.e. X = X {b}̃eb + X {n}εn).

Additionally, we consider the quantity

W† := ω̃†
n − ω̃a

†ẽ{a}n dxn − ι̃ξ c̃n
† + c̃an

†ξ̃nẽ{a}n dxn . (72)

Its meaning will become manifest with the following:

Definition 52. We denote by ιR : F res
PC → FPC the subspace of BV Palatini–Cartan

fields defined by the following equations, which we call PC structural constraints:

εnẽ(N−4)dω̃ẽ − εnẽ(N−4)W−1
ẽN−3(W

†)d ξ̃n

+ ([̃c, εn] + L ω̃
ξ̃
(εn)− dω̃n εn ]̃ξn){a}(ω̃a

† − c̃an
†ξ̃n) ∈ Im(W 1,1

ẽN−3) (73a)

W† ∈ Im(W 1,1
ẽN−3) (73b)

and by the condition that the metric ghor := ẽ∗η is nowhere degenerate.25

Remark 53. The PC structural constraints (73b) and (73a) are invariant under the action
of Q PC . Thus they define a BV theory

Fres
PC :=

(F res
PC ,� res

PC = ι∗R�PC , Sres
PC = ι∗R SPC , Qres

PC

)
(74)

where Qres
PC is the restriction of Q PC to F res

PC . We will call this theory the restricted BV
Palatini–Cartan theory. The direct proof of the invariance of the constraints is lengthy
and involved, yet we get this result for free as a corollary of the following theorem,
which also specifies the relations between the three BV theories Fres

PC , FPC and FAKSZ
PC� .

25 Notice that the condition on ghor will restrict the moduli space of solutions of the theory to an open subset.
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Theorem 54. Upon choosing the same section εn ∈ 
(M,V) and the same signature
for ghor in the three theories, the following diagram commutes

FPC

FAKSZ
PC�

ϕ

��������������� ϕ
�� F res

PC

ιR

��
(75)

Moreover, ϕ is a symplectomorphism and we have

� AKSZ = (ϕ ◦ ιR)∗�PC ; SAKSZ
PC = (ϕ ◦ ιR)∗SPC , (76)

so that ϕ and ι induce a strong BV equivalence and a BV inclusion, respectively:

FAKSZ
PC�

ϕ−→ Fres
PC FAKSZ

PC�

ϕ−→ FPC .

Remark 55. (Proof Strategy) In order to prove this, we will first show that there is an
injective map ϕ:FAKSZ

PC� → FPC such that ϕ∗�PC = � AKSZ
PC and ϕ∗SPC = SAKSZ

PC . Note
that, as a symplectomorphism, ϕ is then an immersion. Then we will show that F res

PC is
the image of this map, so that the PC structural constraints (73b) and (73a) are satisfied
if and only if the AKSZ structural constraints (67b) and (67a) are. The fact that ϕ is
a symplectomorphism preserving the action also proves indirectly that Fres

PC is a BV
theory.

Proof. Denoting by {e,ω, c, ξ } the fields inFPC (their antifields with a dagger), and fol-
lowing the notation of Eq. (65) for the variables inFAKSZ

PC�
, we define the map ϕ:FAKSZ

PC�
→

FPC in terms of the splitting (70) (with ϕ∗ implicit on the right hand sides):

ϕ∗e = ẽ + ẽnϕ∗ω = ω̃ + ω̃nϕ∗e† = ẽ† + ẽn
† (77a)

ϕ∗ω† = ω̃† + ω̃n
†ϕ∗c = c̃ϕ∗c† = c̃n

† (77b)

ϕ∗ξ = ξ̃ + ξ̃nϕ∗ξ† = ξ̃† + ξ̃
n
† (77c)

where, using again the underlined notation to signify that the quantity is contains dxn

or ∂n , and a ∈ {1, 2, . . . , N − 1}:
ẽ = e + λμ−1 f † ẽn = εnμ + ιze + λμ−1za f †

a
(78a)

ω̃ = ω − λμ−1u† ω̃n = w − ιξ u† − λμ−1zau†a (78b)

ẽ† = e† − λμ−1y†n ẽn
† = eN−3u† + ιze† − λμ−1za y†

a
+ (N − 3)eN−4λμ−1 f †u† (78c)

ω̃† = k† ω̃n
† = eN−3 f † + ιzk† + ιξ c† (78d)

c̃ = c − λμ−1ιξ u† c̃n
† = c† (78e)

ξ̃a = ξa + λμ−1za ξ̃† = ey† + f †e† − u†k† + c†λμ−1u† (78f)

ξ̃n = ξ̃n∂n = λμ−1∂n ξ̃n
† = en y† + eN−3 f †u† + f †ιze† + u†ιzk† + c†λμ−1zau†a (78g)

The explicit, long but straightforward calculation needed to prove that ϕ is an inclusion
of symplecticmanifolds preserving the action functionals, i.e. such that� AKSZ

PC = ϕ∗�PC
and SAKSZ

PC = ϕ∗SPC , is given in “Appendix A”.
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We then need to prove that Im(ϕ) = F res
PC . In other words we want to prove that the

map defined in (78) will map a solution of the constraints (67b) and (67a) into a solution
of (73b) and (73a). Applying (78) to the definition of W† as given in Eq. (72) we get:

W† = ω̃†
n − ω̃a

†ẽ{a}n dxn − ι̃ξ c̃n
† + c̃an

†ξ̃nẽ{a}n dxn

= eN−3 f † + ιzk† + ιξ c† − k†a za − ιξ c† − c†aλμ−1za + c†aλμ−1za

= eN−3 f †,

which is (73b). On the other hand, constraint (73a) is satisfied if (67b) and (67a) are, as
it can be seen by direct inspection: using (78) we get26

εnẽ(N−4)dω̃ẽ − εnẽ(N−4)W−1
ẽN−3(W

†)d ξ̃n

+ ([̃c, εn] + L ω̃
ξ̃
(εn)− dω̃n εn ]̃ξn){a}(ω̃a

† − c̃an
†ξ̃n)

= εneN−4dωe + (N − 4)εneN−5λμ−1 f †dωe + εneN−4[λμ−1u†, e]
+ εneN−4dω(λμ−1 f †) + (N − 4)εneN−5λμ−1 f †dω(λμ−1 f †)

+ εn f †eN−4dω(λμ−1) + (N − 4)εn f †eN−5λμ−1 f †dω(λμ−1)

−
(
[c, εn] − [c, εn](b)λμ−1 f †b + [λμ−1ιξ u†, εn]

)(a)

(k†a + c†aλμ−1)

+
(

Lω
ξ (εn)− Lω

ξ (εn)(b)λμ−1 f †b + [λμ−1ιξ u†, εn]
)(a)

(k†a + c†aλμ−1)

− [w − ιξ u†, εn](a)k†aλμ−1

= εneN−4dωe +
(

Lω
ξ (εn)− [c, εn]

)(a)

k†a

+ λμ−1
(
εn

{
(N − 4) f †eN−5dωe + eN−4dω f † + eN−4[u†, e]

}

+
(
ιzdωεn − [w − ιξ u†, εn]

)(a)

k†a

+
(

Lω
ξ (εn)− [c, εn]

)(a)

c†a +

((
Lω

ξ (εn)− [c, εn]
)(b)

f †b

)(a)

k†a
)
= (♠).

Using now the AKSZ constraints (67b) and (67a) we obtain

(♠) = eN−3σ + λμ−1( f †eN−4σ + eN−3B)

= ẽN−3(σ + λμ−1B).

Comparing the first and the last line of this computation we get the desired constraint
(73a). Hence ϕ defines a diffeomorphism ϕ : FAKSZ

PC�
→ F res

PC . Indeed, the inverse of this
map is readily found, as follows.

It is easy to find k† = ω̃†, c† = c̃n
†, and ξ̃n = λμ−1. Then we can write e = ẽ− ξ̃n f †,

so that ẽn = εnμ + ιz ẽ, and taking {̃ea, εn} as a basis, we have za = ẽn
a and μ = ẽn

n ,
which also implies λ = ẽn

n ξ̃n and ξa = ξ̃a − ẽn
a ξ̃n .

We now turn to Eq. (78d) which can be rewritten as

eN−3 f † = ω̃n
† − ιzk† − ιξ c†

26 Note that X {a} = X (a) − (X (b)λμ−1 f †b )(a).
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Let us denote the known piece by Ã := −ιzk† − ιξ c†, so that we have
{

e = ẽ − ξ̃n f †

eN−3 f † = ω̃n
† + Ã

!⇒ ẽN−3 f † = ω̃n
† + Ã

where we used that f † f † = 0. We see here that this equation can be solved only when

ω̃n
† − ιzω̃

† − ιξ c̃† ∈ Im(W 1,1
ẽN−3).

From the equations

ẽ† = e† − ξ̃n y†, ẽn
† = eN−3u† + ιze† − λμ−1za y†

a
+ (N − 3)eN−4λμ−1 f †u†,

using again e = ẽ − ξ̃n f †, we get

ẽN−3u† = ẽn
† − ιz ẽ†.

Since ẽn
†− ιz ẽ† ∈ �(N−2,N−1), on which the map WẽN−3 is surjective, we conclude that,

up to components p(u†) in the kernel of WẽN−3 , we can find

u† = W−1
ẽN−3 (̃en

† − ιz ẽ†) + pu†

However, we know that u† must satisfy the constraint (67a), which (impliclty but
uniquely) fixes pu† as a function of ẽ, ω̃, f †. We can use this directly to solve

ω = ω̃ + ξ̃nu† = ω̃ + ξ̃n
(

W−1
ẽN−3 (̃en

† − ιz ẽ†) + pu†
)

Analogously we can find w and c as follows

w = ω̃n + ι̃ξ

(
W−1

ẽN−3 (̃en
† − ιz ẽ†) + pu†

)
,

c = c̃ + ξ̃n ι̃ξ

(
W−1

ẽN−3 (̃en
† − ιz ẽ†) + pu†

)
.

Finally, we can conclude the calculation with y† and e† by inverting (78c), (78f) and
(78g): it is useful to notice that it is possible to invert an equation of the form e†(1+λX) =
Y for some X, Y as e† = Y (1− λX). However, we will not write down in full these last
equations as we will not need them in what follows.

The BV theory FAKSZ
PC�

is obviously strongly equivalent to its image under the sym-
plectomorphism ϕ, which is Fres

PC . Furthermore, since up to boundary terms Q PC is the
Hamiltonian vector field of SPC , and the same holds for QAKSZ

PC and SAKSZ
PC , we have that

in the interior M◦ = M\∂ M the compatibility ϕ∗Q PC = QAKSZ
PC ϕ∗ is a consequence

of ϕ∗�PC = � AKSZ
PC and ϕ∗SPC = SAKSZ

PC . However, this is a local condition that then
extends to the whole of (M, ∂ M) and ϕ is a BV inclusion. �	
Remark 56. The defining condition μ �= 0 and ghor = ẽ∗η nondegenerate given in
Definition 49, used in Theorem 54, are necessary in order to make e non degenerate in
the bulk, to build the symplectomorphism (78) (since ε

[n]
n = μ−1).

Remark 57. The number of free components of ι∗Rω̃ is 3N (N−1)
2 , since ω and w have

respectively N (N − 1) and N (N−1)
2 free components. The N (N−1)(N−3)

2 missing com-
ponents are those fixed by the condition in Eq. (73a). Correspondingly, also ι∗Rω̃† has
3N (N−1)

2 independent components: N (N−1)
2 coming from k† and N (N − 1) from f †.
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4.2. An interpretation of the restricted theory. We now want to shed some light on the
interpretation of the restricted theory Fres

PC defined in Theorem 54.
Recall that among the Euler–Lagrange equations of the classical PC theory we have27

eN−3dωe = 0, which, thanks to the nondegeneracy of e, is equivalent to dωe = 0, i.e., the
torsion-free condition for ω. Imposing this condition forces ω to correspond to the Levi-
Civita connection for the metric gμν = η(eμ, eν), which is used to recover the Einstein–
Hilbert formulation of the theory. Note that this yields only a classical equivalence of the
two theories, as the fluctuationsmight violate the condition dωe = 0 at the quantum level.
Only by forcing this condition on the space of fields (i.e., by freezing the fluctuations
that might violate it) may one recover the quantum Einstein–Hilbert theory.

However, one can consider a whole family of theories between PC and EH where
only some part of the condition dωe = 0 is imposed on the fields, looking for a compro-
mise.28 that retains the good feature of PC of dealing with differential forms but yields
a compatible boundary BFV theory as in EH [CS16].

In particular, working on a cylinder I ×�, we may use the decomposition e = ẽn + ẽ,
ω = ω̃n + ω̃. By choosing once and for all a nonzero section εn ∈ 
(M,V) and requiring
the components of ẽ to span a transversal hyperplane in V at each point, we may expand
ẽn in the basis (εn, ẽ); moreover, we require ẽ to define a nondegenerate metric η(̃e, ẽ)
at each point.29 Observe that the splitting of fields e,ω induced by the cylinder structure
also allows the definition of the maps W i, j

ẽN−3 given in Eq. (71).
With these notations we may impose the constraint

εnẽN−3dω̃ẽ ∈ Im(W 1,1
ẽN−3), (79)

which implements only some of the conditions in dωe = 0.
Another interpretation of the constraints goes through considering a reduction of the

fields instead of a restriction. Indeedwe can also think of Eq. (79) as a classical constraint
that freezes certain components of the connection. We need the following

Definition 58. We define the space of reduced connections on a cylinder to be the quo-
tient

Ared(� × I ) := A(� × I )/ker(W 1,2
ẽN−3), (80)

and denote by F res
PC the fiber bundle

F res
PC −→ �1

nd(� × I,V) (81)

with typical fiber Ared(� × I ) obtained by reducing the fibers of the trivial bundle

A(� × I )×�1
nd(� × I,V) −→ �1

nd(� × I,V)

by ker(W 1,2
ẽN−3).

27 We use boldface letters to denote fields in PC theory.
28 Imposing too few conditions out of dωe = 0would not solve the compatibility problemwith the boundary.

Imposing too many generates other problems (see, e.g., [CS19c, Section 4.3], where the whole of dωe = 0 is
imposed manually).
29 A more physical requirement, as one would like the two boundary components of I ×� to be space-like

Cauchy surfaces, consists in choosing εn to be a time-like section and ẽ to define a positive definite metric.
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Proposition 59. Consider the splitting e = ẽ + ẽn , with ghor := ẽ∗η nondegenerate.
Then for every ([ω], ẽ, ẽn) there exists a unique ω ∈ A(� × I ) such that

(N − 3)εn ∧ ẽN−4 ∧ dωẽ ∈ Im(W 1,1
ẽN−3), (82)

which induces a section of the fibration:

A(� × I )×�1
nd(� × I,V) −→ Fres

PC , (83)

Proof. This is a straightforward adaptation of [CCS20, Theorem 17], which holds at
every point in I . �	

Hence, imposing only some part of the equation dωe = 0 produces an intermediate
theory, that in view of Proposition 59 can be alternatively thought of as Palatini–Cartan
theory for a tetrad and a reduced connection. However, in both interpretations, fixing a
condition only on the classical fields does not produce a symplectic submanifold of the
space of BV fields.

If we want to consistently restrict the BV theory of Definition 50 we first have to
impose some condition on the antifields as well, in order to ensure that we have a
nondegenerate BV form. One can show that (79) actually fixes the components of ω̃

in the kernel of W 1,2
ẽN−3 . As a consequence, we can get a symplectic submanifold if, in

addition to (79), we impose30

ω̃†
n ∈ Im(W 1,1

ẽN−3). (84)

The problem, though, is that (79) and (84) do not define a Q-submanifold, which is
needed to have aBV theory. However, one can easily check that condition (79) is compat-
ible with gauge transformations and diffeomorphisms upon using the Euler–Lagrange
equations. This implies that it should be possible to correct (79)—and concurrently (84)
because we want to preserve the condition that we get a symplectic submanifold—so
as to obtain a Q-submanifold. The explicit solution to this problem is actually given by
(73b) and (73a).

Remark 60. Observe that this solution might not be unique, as the choice of a structural
constraint wemade inDefinition 25wasmade to render the invariance of (19)moreman-
ifest. However, Theorem 54 tells us that a different choice of BFV structural constraint
will provide a different extension of the constraint (82) in Palatini–Cartan theory.

4.3. Three dimensional case. When N = 3 some simplifications occur. Indeed, in this
case the inclusion is actually an identity since there are no additional constraints on the
field. Furthermore we know that the theory is strongly BV-equivalent, both in the bulk
and on the boundary, to the topological B F theory, denoted here by FAKSZ

B F ′ . Hence we
can summarize the results in the following theorem.

Corollary 61. The theories FAKSZ
PC�

and FAKSZ
B F ′ are strongly BV equivalent.

Proof. The claim follows directly from Theorem 16 given the results of Theorem 54 and
of [CS19a], which proves the strong equivalence (at all codimensions) of non-degenerate
BF theory and PC gravity in three dimensions. �	
30 This condition requires that the antifield of ω̃ be in the dual of the complement of the kernel of W 1,2

ẽN−3 ,

which is the image of W 1,1
ẽN−3 because ω̃ is tangent to the slice �× {t}, and its antifield is of the form ω̃

†
ndxn ,

with ω̃
†
n ∈ �N−2(M,∧N−2V).
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Pictorially we can describe the content of Corollary 61 as follows

FPC FB F ′

FAKSZ
PC� FAKSZ

B F ′

F∂
PC F∂

B F ′

B

φ

ψ

B BA

ψ∂

A

(85)

where the arrows A represent the AKSZ constructions, the arrows B represent the BV–
BFV reductions, while ψ , ψ∂ and φ are the symplectomorphisms mentioned above.
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Appendix A. Lengthy Calculations

We prove here that the transformation (78) is a symplectomorphism between FAKSZ and
FR that preserves the action. In the computation wewill usemultiple times the following
useful relation:

ε[a]n = −zaε[n]n , ε[n]n = μ−1.

We now prove that ϕ∗�PC = � AKSZ
PC .

ϕ∗�PC = ϕ∗
∫

M
δeδe† + δωδω† + δcδc† + ιδξ δξ

†

=
∫

M
δẽδẽn

† + δẽnδẽ† + δω̃δω̃n
† + δω̃nδω̃† + δc̃δc̃† + δξ̃a ξ̃

a
† + δξ̃n ξ̃

n
†

=
∫

M
δeδ(eN−3u†) + δeδ(ιze†)− δeδ(λε[a]n y†

a
) + δeδ((N − 3)eN−4λε[n]n f †u†)

+ δ(λε[n]n f †)δ(eu†) + δ(λε[n]n f †)δ(ιze†)− δ(λε[n]n f †)δ(λε[a]n y†
a
)

+ δ(λε[n]n f †)δ(λε[n]n f †u†) + δ(ιze)δe† − δ(ιze)δ(λε[n]n y†) + δ(εnμ)δe†

http://creativecommons.org/licenses/by/4.0/
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− δ(εnμ)δ(λε[n]n y†) + δ(λε[a]n f †
a
)δe† − δ(λε[a]n f †

a
)δ(λε[n]n y†)

+ δωδ(eN−3 f †) + δωδ(ιzk†) + δωδ(ιξ c†)− δ(λε[n]n u†)δ(eN−3 f †)

− δ(λε[n]n u†)δ(ιzk†)− δ(λε[n]n u†)δ(ιξ c†) + δwδk† − δ(ιξ u†)δk†

− δ(λε[a]n u†
a)δk† + δcδc† − δ(ιξ λε[n]n u†)δc† + ιδξ δ(ey†)

+ ιδξ δ( f †e†)− ιδξ δ(u
†k†) + ιδξ δ(c

†λε[n]n u†) + δ(λε[a]n )δ(ea y†)

+ δ(λε[a]n )δ( f †
a
e†) + δ(λε[a]n )δ(u†

ak†) + δ(λε[a]n )δ(c†aλε[n]n u†)

+ δ(λε[n]n )δ(en y†) + δ(λε[n]n )δ(eN−3 f †u†) + δ(λε[n]n )δ( f †ιze†)

+ δ(λε[n]n )δ(u†ιzk†) + δ(λε[n]n )δ(c†λε[a]n u†
a) (86)

This expression should be compared with the symplectic form coming from the AKSZ
construction:

� AKSZ
PC =

∫

I×∂ M
δ(eN−3 f †)δω + eN−3δeδu† + δwδk† + δcδc† + δu†δ(ιξ k†)

+ δωδ(ιzk†) + δωδ(ιξ c†)− δμεnδe† − δλεnδy†

+ ιδzδ(ee†) + ιδξ δ( f †e†) + ιδξ δ(ey†). (87)

Almost all the terms in (87) can be directly found in ϕ∗�PC . The remaining terms can
be identified using the following relations:

δu†δ(ιξ k†) = −δ(ιξ u†)δk† − ιδξ δ(u
†k†);

−δ(λεn)δy† = δ(eaλε[a]n )δy† + δ(̃enλε[n]n )δy†

= δ(λε[a]n )δ(ea y†)− δeδ(λε[a]n y†
a
)

+ δ(λε[n]n )δ(̃en y†)− δẽnδ(λε[n]n y†);
ιδzδ(ee†) = δeδ(ιze†) + δ(ιze)δe†

All the other terms in (86) sum to zero because of the following identities:

δ(λε[n]n f †)δ(eN−3u†) + (N − 3)δeδ(eN−4λε[n]n f †u†)

− δ(λε[n]n u†)δ(eN−3 f †) + δ(λε[n]n )δ(eN−3 f †u†) = 0;
δ(λε[n]n f †)δ(ιze†) + δ(λε[a]n f †

a
)δe† + δ(λε[a]n )δ( f †

a
e†) + δ(λε[n]n )δ( f †ιze†) = 0;

− δ(λε[n]n u†)δ(ιzk†)− δ(λε[a]n u†
a)δk† + δ(λε[a]n )δ(u†

ak†) + δ(λε[n]n )δ(u†ιzk†) = 0;
− δ(λε[n]n u†)δ(ιξ c†)− δ(ιξ λε[n]n u†)δc† + ιδξ δ(c

†λε[n]n u†) = 0;
δ(λε[a]n )δ(c†aλε[n]n u†) + δ(λε[n]n )δ(c†λε[a]n u†

a) = 0;
− δ(λε[n]n f †)δ(λε[a]n y†

a
)− δ(λε[a]n f †

a
)δ(λε[n]n y†) = 0;

(N − 3)δ(λε[n]n f †)δ(eN−4λε[n]n f †u†) = 0.
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Wego on to show that the symplectomorphismϕ preserves the action i.e.ϕ∗SPC = SAKSZ
PC .

We do it by direct inspection31:

ϕ∗SPC = ϕ∗
∫

M

1

N − 2
eN−2Fω +

(
dωc − ιξ Fω

)
ω† +

(
Lω

ξ e− [c, e]
)
e† (88)

+
1

2

([c, c] − ιξ ιξ Fω

)
c† +

1

2
ι[ξ ,ξ ]ξ†

=
∫

M
ẽN−3ẽn Fω̃ +

1

N − 2
ẽN−2Fω̃n −

(
ι̃ξ Fω̃ + Fω̃n ξ̃n − dω̃ c̃

)
ω̃n

†

−
(
ι̃ξ Fω̃n − dω̃n c̃

)
ω̃† +

(
L ω̃

ξ̃
ẽ + dω̃n ẽ̃ξn + ẽnd ξ̃n − [̃c, ẽ]

)
ẽn
†

+
(
ι̃ξ dω̃ ẽn + ι∂n ξ̃ ẽ − dω̃n (̃en ξ̃n)− [̃c, ẽn]

)
ẽ†

−
(
1

2
ι̃ξ ι̃ξ Fω̃ + ι̃ξ Fω̃n ξ̃n − 1

2
[̃c, c̃]

)
c̃† +

1

2
ι[̃ξ ,̃ξ ]̃ξ† +

1

2
ι[̃ξ ,̃ξ ]n ξ̃†

=
∫

M
eN−3εnμFω + eN−3ιzeFω + eN−3λε[a]n f †

a
Fω + (N − 3)eN−4λε[n]n f †en Fω

− eN−3endω(λε[n]n u†)− eN−3λε[a]n f †
a
dω(λε[n]n u†)

− (N − 3)eN−4λε[n]n f †endω(λε[n]n u†)

+
1

N − 2
eN−2 (∂nω − ∂nλε[n]n u† + dωw

)

− 1

N − 2
eN−2 (dω(ιξ u†) + dω(λε[a]n u†

a) + [λε[n]n u†, w − ιξ u†]
)

+ eN−3λε[n]n f †Fωn

− ιξ Fω(eN−3 f † + ιzk† + ιξ c†) + ιξ dω(λε[n]n u†)(eN−3 f † + ιzk† + ιξ c†)

− Fωa λε[a]n (eN−3 f † + ιzk† + ιξ c†) + dω(λε[n]n u†)aλε[a]n (eN−3 f † + ιzk† + ιξ c†)

− Fω̃n λε[n]n eN−3 f † − Fω̃n λε[n]n ιzk† − Fω̃n λε[n]n ιξ c†

+ dωc(eN−3 f † + ιzk† + ιξ c†)− [λε[n]n u†, c](eN−3 f † + ιzk† + ιξ c†)

− dω(ιξ λε[n]n u†)(eN−3 f † + ιzk† + ιξ c†)

− ιξ ∂nωk† + ιξ ∂n(λε[n]n u†)k† − ιξ dωwk† + ιξ dω(ιξ u†)k†

+ ιξ dω(λε[a]n u†
a)k† + ιξ [λε[n]n u†, w − ιξ u†]k† − Fω̃an λε[a]n k† + ∂nck†

− ∂n(ιξ λε[n]n u†)k† + [w, c]k† − [ιξ u†, c]k† − [λε[a]n u†
a, c]k†

+ [w − ιξ u†, ιξ λε[n]n u†]k†
+ Lω

ξ eeN−3u† + Lω
ξ eιze† − Lω

ξ eλε[a]n y†
a
+ (N − 3)Lω

ξ eeN−4λε[n]n f †u†

+ ((dωe)aλε[a]n − dω(eaλε[a]n ))eN−3u† + ((dωe)aλε[a]n − dω(eaλε[a]n ))ιze†

+ dω(eaλε[a]n )λε[a]n y†
a
− (N − 3)dω(eaλε[a]n )eN−4λε[n]n f †u†

+ Lω
ξ (λε[n]n f †)eN−3u†

31 We denote with ∂n the de Rham differential on I (previously denoted with dI ) in order to be uniform
with the notation of the fields (77).
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+ Lω
ξ (λε[n]n f †)ιze† − Lω

ξ (λε[n]n f †)λε[a]n y†
a
+ (dω(λε[n]n f †))aλε[a]n eN−3u†

+ (dω(λε[n]n f †))aλε[a]n ιze†)− [ιξ λε[n]n u†, e](eN−3u† + ιze†) + ∂neλε[n]n eN−3u†

+ ∂neλε[n]n ιze† + [w − ιξ u†, e]λε[n]n eN−3u† + [w − ιξ u†, e]λε[n]n ιze†

+ ∂n(λε[n]n f †)λε[n]n (eN−3u† + ιze†) + end(λε[n]n )eN−3u† + end(λε[n]n )ιze†

+ λε[a]n f †a d(λε[n]n )eN−3u† + λε[a]n f †a d(λε[n]n )ιze† − end(λε[n]n )λε[a]n y†
a

+ (N − 3)end(λε[n]n )eN−4λε[n]n f †u† − [c, e]eN−3u† − [c, e]ιze† + [c, e]λε[a]n y†
a

− (N − 3)[c, e]eN−4λε[n]n f †u† − [c, λε[n]n f †]eN−3u† − [c, λε[n]n f †]ιze†

+ [ιξ λε[n]n u†, e](eN−3u† + ιze†)

+ ιξ dω(εnμ)e† + ιξ dω(ιze)e† + ιξ dω(λε[a]n f †
a
)e† + dωa (en)λε[a]n e†

+ dωa (λε[a]n f †
a
)λε[a]n e† − ιξ [λε[n]n u†, en]e† − ιξ dω(en)λε[n]n y†n

− ιξ dω(λε[a]n f †
a
)λε[n]n y†n − ι∂nξ ee† + ea∂n(λε[a]n )e† − ι∂nξ λε[n]n f †e†

+ ι∂nξ eλε[n]n y†n − ∂n (̃enλε[n]n )e† − [w − ιξ u†, ẽnλε[n]n ]e†
+ ∂n (̃enλε[n]n )λε[n]n y†n − [c, εnμ]e† − [c, ιze]e† − [c, λε[a]n f †

a
]e†

+ [ιξ λε[n]n u†, en]e† + [c, en]λε[n]n y†n

− 1

2
ιξ ιξ Fωc† +

1

2
ιξ ιξ dω(λε[n]n u†)c† − ιξ Fωa λε[a]n c†

+ ιξ dω(λε[n]n u†)aλε[a]n c† − ιξ Fω̃n λε[n]n c† +
1

2
[c, c]c† − [ιξ λε[n]n u†, c]c†

− ξb∂bξ
aea y† − ξb∂b(λε[a]n )ea y† − λε[b]n ∂bξ

aea y† − λε[b]n ∂b(λε[a]n )ea y†

− λε[n]n ∂nξaea y† − ξb∂bξ
a f †

a
e† − ξb∂b(λε[a]n ) f †

a
e† − λε[b]n ∂bξ

a f †
a
e†

− λε[b]n ∂b(λε[a]n ) f †
a
e† − λε[n]n ∂nξa f †

a
e† − ξb∂bξ

au†
ak† − ξb∂b(λε[a]n )u†

ak†

− λε[b]n ∂bξ
au†

ak† + λε[b]n ∂b(λε[a]n )u†
ak† − λε[n]n ∂nξau†

ak†

− λε[n]n ∂n(λε[a]n )u†
ak† − ξb∂bξ

ac†aλε[n]n u† − ξb∂b(λε[a]n )c†aλε[n]n u†

− ξa∂a(λε[n]n )̃en y† − λε[a]n ∂a(λε[n]n )̃en y† − λε[n]n ∂n(λε[n]n )̃en y†

− ξa∂a(λε[n]n ) f †eN−3u† − λε[a]n ∂a(λε[n]n ) f †eN−3u† − λε[n]n ∂n(λε[n]n ) f †eN−3u†

− ξa∂a(λε[n]n ) f †ιze† − λε[a]n ∂a(λε[n]n ) f †ιze† − λε[n]n ∂n(λε[n]n ) f †ιze†

+ ξa∂a(λε[n]n )u†ιzk† + λε[a]n ∂a(λε[n]n )u†ιzk† + λε[n]n ∂n(λε[n]n )u†ιzk†

− ξa∂a(λε[n]n )c†λε[a]n u†
a

We want to compare this with the AKSZ action:

SAKSZ
PC =

∫

I×∂ M
weN−3dωe + (N − 3)ceN−4 f †dωe + ceN−3[u†, e] + ceN−3dω f †

+ ιzeeN−3Fω + ιξ (e
N−3 f †)Fω + ιξ eeN−3dωu† + εnμeN−3Fω

+ (N − 3)εnλeN−4 f †Fω + εnλeN−3dωu† + [w, c]k† + 1

2
[c, c]c†
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− ιzdωck† − [ιξ u†, c]k† − ιξ dωwk† − ιξ dωcc† + ιzιξ Fωk†

+
1

2
ιξ ιξ dωu†k† +

1

2
ιξ ιξ Fωc† − [w, εnλ]e† − [c, εnμ]e† − [c, εnλ]y†

+ ιzdω(εnλ)e† + [ιξ u†, εnλ]e† + ιξ dω(εnμ)e† + ιξ dω(εnλ)y† + ι[z,ξ ]ee†

+
1

2
ι[ξ,ξ ] f †e† +

1

2
ι[ξ,ξ ]ey† +

1

N − 2
eN−2∂nω + c∂nk† + ∂nωιξ k†

− ι∂nξ ee† + ∂nλεne†. (89)

We proceed as follows: we first check that all terms in (89) can be found in (88), then
we show that all other terms in (88) sum to zero.
We can easily recognized many terms identically repeated in both expressions. Some
other terms in (89) can be recovered in (88) using Leibniz rule and Cartan calculus.

(N − 3)ceN−4 f †dωe + cN−3dω f † = dωc(eN−3 f †);
− 1

N − 2
eN−2dω(ιξ u†) + Lω

ξ eeN−3u† = +ιξ eeN−3dωu†;

− 1

2
ι[ξ,ξ ]u†k† = −ιξ dωιξ u†k† +

1

2
ιξ ιξ dωu†k†;

ι[z,ξ ]ee† = ιξ dωιzee† + Lω
ξ eιze†

All the other relations involving terms of (88) are based on the expansion

εn = eaε(a)
n + enε(n)

n .

It is a long but rather easy computation to show that the remaining terms in (89) sum to
zero. This is done bymaking repeated use ofCartan calculus andLeibniz rule.Notice also
that some terms containing expressions of the form ε

[a]
n ε

[b]
n Xab vanish by antisymmetry.
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