
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04118-7
Commun. Math. Phys. 385, 1325–1393 (2021) Communications in

Mathematical
Physics

Schur–Weyl Duality for the Clifford Group with
Applications: Property Testing, a Robust Hudson
Theorem, and de Finetti Representations

David Gross1,2, Sepehr Nezami3,4, Michael Walter5,6

1 Institute for Theoretical Physics, University of Cologne, Cologne, Germany
2 Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, Australia.
E-mail: david.gross@thp.uni-koeln.de

3 Stanford Institute for Theoretical Physics, Stanford University, Stanford, USA
4 Kavli Institute for Theoretical Physics, Santa Barbara, USA. E-mail: nezami@stanford.edu
5 Korteweg-de Vries Institute forMathematics, Institute of Theoretical Physics, Amsterdam, TheNetherlands
6 Institute for Logic, Language and Computation, QuSoft, University of Amsterdam, Amsterdam,
The Netherlands. E-mail: m.walter@uva.nl

Received: 3 July 2019 / Accepted: 12 May 2021
Published online: 29 June 2021 – © The Author(s) 2021

Abstract: Schur–Weyl duality is a ubiquitous tool in quantum information. At its heart
is the statement that the space of operators that commute with the t-fold tensor powers
U⊗t of all unitaries U ∈ U(d) is spanned by the permutations of the t tensor factors. In
this work, we describe a similar duality theory for tensor powers of Clifford unitaries.
The Clifford group is a central object in many subfields of quantum information, most
prominently in the theory of fault-tolerance. The duality theory has a simple and clean
description in terms of finite geometries. We demonstrate its effectiveness in several
applications:

• We resolve an open problem in quantum property testing by showing that “stabi-
lizerness” is efficiently testable: There is a protocol that, given access to six copies
of an unknown state, can determine whether it is a stabilizer state, or whether it is
far away from the set of stabilizer states. We give a related membership test for the
Clifford group.

• We find that tensor powers of stabilizer states have an increased symmetry group.
Conversely, we provide corresponding de Finetti theorems, showing that the reduc-
tions of arbitrary states with this symmetry are well-approximated by mixtures of
stabilizer tensor powers (in some cases, exponentially well).

• Weshow that the distance of a pure state to the set of stabilizers canbe lower-bounded
in terms of the sum-negativity of its Wigner function. This gives a new quantitative
meaning to the sum-negativity (and the related mana) – a measure relevant to fault-
tolerant quantum computation. The result constitutes a robust generalization of the
discrete Hudson theorem.

• We show that complex projective designs of arbitrary order can be obtained from
a finite number (independent of the number of qudits) of Clifford orbits. To prove
this result, we give explicit formulas for arbitrary moments of random stabilizer
states.
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1. Introduction

1.1. Background. Schur–Weyl duality. To motivate the symmetry this work is based
on, we start by considering two types of problems that have frequently appeared in
quantum information theory. First, assume that we have access to t copies ρ⊗t of an
unknown quantum state ρ on C

d, and that we are interested in some property of ρ’s
eigenvalues (for example its entropy). Clearly, then, the problem has a U⊗t-symmetry
in the sense that the inputs ρ⊗t and

U⊗t(ρ⊗t)U†⊗t

represent equivalent properties. It thus makes sense to design a procedure that shares the
U⊗t-symmetry, and indeed the resulting procedure has been shown to be optimal for
estimating the eigenvalues [KW01,HM02,CM06,CHM07,OW15]. Moreover, consider
quantum state tomography, the task of estimating the entire quantum state ρ. Essentially
optimal estimators can be constructed by first estimating the eigenvalues and then the
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eigenbasis [OW16,OW17,HHJ+17], crucially using the structure of U⊗t in each step.
There are many further problems in quantum information where this symmetry can be
exploited—for example in quantum Shannon theory, where optimal rates mostly depend
only on the eigenvalues of the quantum state [HM02,Har05].

Second, studying the properties of a Haar-random state vector |ψ〉 has proven to be
extremely fruitful [HLW06,Has08]. Instead of working with the full distribution, it is
often sufficient to exploit information about the statisticalmoments of the randommatrix
|ψ〉 〈ψ|. The t-th moment is described by the expected value of the t-th tensor power of
the random matrix:

Mt = Eψ Haar[(|ψ〉 〈ψ|)⊗t]. (1.1)

Again, Mt is invariant under conjugation by U⊗t, U ∈ U(Cd).
The importance of Schur–Weyl duality in quantum information stems from the fact

that it allows one to characterize the set of U⊗t-invariant operators on (Cd)⊗t. Indeed,
it implies that any such operator can be expressed as the linear combination of matrices
rπ, π ∈ St that act by permuting the tensor factors:

rπ (|ψ1〉 ⊗ · · · ⊗ |ψt〉) = |ψπ1
〉 ⊗ · · · ⊗ |ψπt〉 . (1.2)

Clifford group and stabilizer states. Arguably, the subgroup of the full unitary group
that is most important to quantum information is the Clifford group. The Clifford group
and the closely related concept of stabilizer states and stabilizer codes feature centrally in
fault-tolerant quantum computing, quantum coding in general, randomized benchmark-
ing, measurement-based quantum computing, and many other subfields of quantum
information.

To introduce the Clifford group, we first recall the definition of the set of Pauli
operators. For a qudit (d-dimensional system), they are defined by their action on a
some basis {|q〉}d−1

q=0 via

X |q〉 = |q + 1〉 , Z |q〉 = e2πiq/d |q〉 .

Forn qudits, the Pauli group is defined as the finite group generated by the Pauli operators
on each qudit. The Clifford group now is the natural symmetry group of the Pauli group.
That is, a unitary U is Clifford if, for any Pauli operator P, UPU† is again in the Pauli
group. Ignoring overall phases, the Clifford group is a finite group, which is intimately
connected to the metaplectic representation of the discrete symplectic group (see, e.g.,
[Gro06]). Closely related to the Clifford group is the set of stabilizer states. These are
the states that can be obtained by acting on a basis vector |0 . . . 0〉 by arbitrary Clifford
unitaries.

As before, there are many natural problems that are invariant under U⊗t, for U a
Clifford unitary. Two examples we will discuss are: (1) Given access to ψ⊗t, decide
whether ψ is a stabilizer state; (2) What are the t-th moments of a random stabilizer
state ψ?

Randomized constructions.Another motivation arises from randomized constructions.
Unitaries and states drawn from the Haar measure appear in many situations, including
in quantum cryptography, coding, and data hiding [HLW06]. While randomized con-
structions are often near-optimal and frequently out-perform all known deterministic
constructions, they have the drawback that generic quantum states cannot be efficiently
prepared.



1328 D. Gross, S. Nezami, M. Walter

This contrasts with random Clifford unitaries and random stabilizer states, both of
which can be efficiently realized (they require at most O(n2) gates to implement in a
quantum circuit) [AG04]. They have therefore repeatedly been suggested as “drop-in
replacements” for their Haar-measure analogues. Examples include randomized bench-
marking [MGE11,HWFW17], low-rank recovery [KZG16], and tensor networks in the
context of holography [HNQ+16,NW16]. All these applications require information
about the moments (in the sense of Eq. (1.1)) of random stabilizer states, which they
all obtain from representation-theoretic data. To date, this representation theory and
the associated stabilizer moments are understood only up to order t = 4 [ZKGG16,
HWW16,NW16]. This contrasts with the Haar-random case, where Schur–Weyl duality
gives this information for arbitrary orders t. Making analogous techniques available for
the Clifford case was one important motivation for this work. Higher moments will gen-
erally lead to tighter performance bounds in randomized constructions, and are strictly
required for some applications, like the stabilizer testing problem resolved here.

1.2. Schur–Weyl duality for the Clifford group. We start with an explicit description of
the commutant of tensor powers ofClifford unitaries.While such a description has not yet
appeared in the quantum information literature,we emphasize that someof the key results
can already be deduced fromwork byNebe,Rains, Sloane and colleagues on invariants of
self-dual codes (see the excellent monograph [NRS06]). Also, in representation theory,
there is a separate stream of closely related work regarding the structure of the oscillator
representation and attempts to develop a Howe duality theory over finite fields, which is
still an open problem (see, e.g., [How73,GH16] and references therein). We discovered
the approach presented below independently, starting fromour results in [NW16,App.C]
for third tensor powers. Our proofs differ fundamentally from the preceding works in
that they rely on the phase space formalism of finite-dimensional quantum mechanics,
which offers additional insight.

To construct the commutant, start with the permutations rπ on (Cd)⊗t of Eq. (1.2).
We assume for now that C

d is the Hilbert space of a single qudit with “computational
basis” {|x〉}x∈Zd

labeled by elements inZd = Z/dZ (this is anyway required for defining
the Pauli and the Clifford group). Basis elements |x〉 = |x1〉 ⊗ · · · ⊗ |xt〉 of (Cd)⊗t are
then labeled by vectors x ∈ Z

t
d. In this language:

rπ =
∑

y∈Z
t
d

|π(y)〉 〈y| =
∑

(x,y)∈Tπ

|x〉 〈y| , (1.3)

where Tπ = {(π(y), y) : y ∈ Z
t
d} and π permutes the components of y. Because the

Clifford group is a subgroup of the unitaries, the commutant is in general strictly larger.
We thus have to add further operators to the rπ’s in order to find a complete set.

The central message of this section is that, surprisingly, a minor modification of (1.3)
suffices! Indeed, for any subspace T of Z

t
d ⊕ Z

t
d define

r(T) =
∑

(x,y)∈T

|x〉 〈y| .

We also consider the n-fold tensor power R(T) := r(T)⊗n, which is an operator on
((Cd)⊗t)⊗n ∼= (Cd)⊗tn ∼= ((Cd)⊗n)⊗t.



Schur–Weyl Duality for the Clifford Group with Applications 1329

We now single out subspaces that satisfy certain geometric properties. Reflecting a
well-known difference between even and odd dimensions in the stabilizer formalism,
we define D = d if d is odd, and D = 2d if d is even.

Definition 4.1. (Σt,t) Consider the quadratic form q : Z
2t
d → ZD defined by q(x, y) :=

x ·x−y ·y. 1 We denote byΣt,t(d) the set of subspaces T ⊆ Z
2t
d satisfying the following

properties:

1. T is totally q-isotropic: i.e., x · x = y · y (mod D) for all (x, y) ∈ T .
2. T has dimension t (the maximal possible dimension).
3. T is stochastic: 12t = (1, . . . , 1) ∈ T .

We will summarize the first two conditions by saying that T is Lagrangian. Thus, we
will call Σt,t(d) the set of stochastic Lagrangian subspaces.

Our first main result is the following theorem, which states that the operators R(T)
obtained from these subspaces are a basis of the commutant:

Theorem 4.3 (Commutant of Clifford tensor powers). Let d be a prime and n � t− 1.
Then the operators R(T) = r(T)⊗n for T ∈ Σt,t(d) are

∏t−2
k=0(d

k + 1) many linearly
independent operators that span the commutant of the t-th tensor power action of the
Clifford group for n qudits.

Proof sketch. Weuse the phase space formalism of finite-dimensional quantummechan-
ics developed in [Woo87,App05,Gro06,GE08,DB13]. In particular, Clifford unitaries
have a simple description on phase space: they act by affine symplectic transformations.

We use this structure to give a concise proof that the operators R(T) commute with
U⊗t for any Clifford unitary. The linear independence is not hard, so it remains to argue
that the number of subspaces equals the dimension of the commutant. We show this
by a careful counting argument. We first compute the number of stochastic Lagrangian
subspaces. Employing the fundamentalWitt’s theorem,wefind recursive relations for the
dimension of commutant of the Clifford group. We solve this recursion using Gaussian
binomial identities (the result is a generalization of [Zhu15, (8)–(10)]) and find that the
cardinalities match, concluding the proof.

There is a rich structure associatedwith the objects appearing in this theorem: It is easy
to see that the spaces Tπ = {(π(y), y)} that give rise to the commutant of U(d) appear
as special cases above. For general d and t, not all R(T)’s are invertible. In particular,
for some T ’s, R(T) is proportional to the projection onto a stabilizer code. This way,
one can e.g., recover the code that has been used to describe the irreps contained in
the 4th tensor power of the Clifford group in [ZKGG16]. The set of invertible R(T)’s
are associated with spaces T of the form (Ay, y), for A that are elements of a certain
“stochastic orthogonal” group Ot(d). This group is of interest to the formulation of
modular Howe duality [GH16], and underlies several of our applications below.

Remarkably, the size of the commutant stabilizes as soon as n � t − 1. That is, just
like the symmetric group in Schur–Weyl duality, the set that parametrizes the commutant
of the Clifford tensor powers is independent of the number n of qudits. The fact that
the operators R(T) = r(T)⊗n are themselves tensor powers facilitates possible physical
implementations. This, once more, generalizes a property of the symmetric group in
Schur–Weyl duality.

1 Note that for x ∈ Zd, x
2 is well-defined modulo D.
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To find novel applications of this theory, it is helpful to identify a set of non-trivial
T ’s that afford an intuitive interpretation. Several of our multi-qubit results presented
below are based on spaces with elements (π̄y, y), where π̄ is what we refer to as an anti-
permutation. An anti-permutation is simply the binary complement of a permutation
matrix. Formally, π̄ = 1t1T

t −π, where 1t = (1, . . . , 1) contains t ones, and π ∈ St. Its
operator representation is particularly straightforward. The n-qubit anti-identity, e.g.,
acts by

R(1̄) = 2−n
(
I⊗t + X⊗t + Y⊗t + Z⊗t

)⊗n
, (1.4)

which greatly facilitates the analysis (cf. Eq. (3.13) and Definition 4.29).

1.3. Quantum property testing: stabilizer testing. The theory of quantum property test-
ing asks which properties of a “black box” many-body quantum system can be learned
efficiently—in particular without having to resort to costly full tomography [BFNR03,
BFNR08,MdW16]. A prototypical example of a testable property is purity. Indeed,
given access to two copies ρ ⊗ ρ of an unknown quantum state ρ, the so-called swap
test provides for a simple protocol that accepts with certainty if ρ = |ψ〉 〈ψ| is pure,
and rejects with probability Θ(1/ε2) if ρ is ε-far away from the set of pure states in
trace distance. The test is perfectly complete in the sense that it has a type-I error rate
of zero (pure states are accepted with certainty); it requires a number of copies (two)
that is independent of the dimension. It is also transversal in the sense that if ρ acts
on n qubits, all operations are required to be coherent only across the two copies, and
factorize w.r.t. the n qubits.

An open problem in this theory was whether stabilizerness and Cliffordness are
testable properties of, respectively, states and unitaries [MdW16]. Both properties are
clearly Clifford-invariant—so by the arguments presented in the introduction, it makes
sense to search for tests in the commutant of the Clifford group. It is known that 2nd and
3rd moments of random stabilizer states are identical to the moments of Haar-random
states [Zhu15,KG15,Web16]. This implies that three copies of a state are not sufficient
to test for stabilizerness, and the results of [ZKGG16] can be used to show that four
copies are also insufficient for a dimension-independent theory.

Prior work. Prior to our results, the best known algorithms for stabilizer testing required
a number of copies that scaled linearly with n, the number of qubits. Indeed, these
algorithms proceeded by attempting to identify the stabilizer state, which necessarily
requires Ω(n) copies by the Holevo bound [AG08,Mon17,ZPDF16,KR08]. However,
the existence of tests that require only a constant number of copies has been an important
open question [MdW16].We note that the stabilizer testing problem askswhether a given
state is any stabilizer state—which is distinct from the problem of verifying whether it
equals some fixed stabilizer state [HM15].

Our results. We show that for n quditsO(1) copies suffice to give an efficient, perfectly
complete, dimension-independent, and transversal test. For example, for qubits (d = 2)
our test requires only 6 copies of the state to achieve a power independent ofn (Algorithm
1). It requires coherent operations on only two qubits at a time, whichmeans in particular
that it can be implemented given a source that creates two copies of a fixed state at a
time (Fig. 2).

First, we consider the problem for qubits. Here our protocol affords an intuitive
description using a new primitive which we call Bell difference sampling. Then we
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Input: Six copies of an unknown multi-qubit quantum state (ψ⊗6).

1. Perform Bell difference sampling: That is, Bell sample twice (on two independent copies of ψ⊗2), with
outcomes x, y, and set a = x − y.

2. Measure the Weyl operator Wa twice (on two independent copies of ψ). Accept iff the outcomes agree.

Algorithm 1: Algorithm for testing whether an unknownmulti-qubit state is a stabilizer
state.

proceed to the general case and discuss the connection to the commutant of the Clifford
group described in Sect. 1.2.

Qubits: Bell difference sampling We start with an intuitive motivation of the test. Let
|ψ〉 〈ψ| = 2−n/2

∑
a caWa be its expansionw.r.t. theWeyl operatorsWa (which are just

the Pauli operators labeled in the usual way by bitstrings a ∈ Z
2n
2 , cf. Sect. 2). Nowmea-

sure two copies ofψ in the Bell basis |Wx〉 defined by applying theWeyl operators to the
maximally entangled state, i.e., |Wx〉 = (Wx⊗I) |Φ+〉where |Φ+〉 = 2−n/2

∑
q |q, q〉.

If ψ is real in the computational basis then it is not hard to see that the measurement
outcome is distributed according to the probability distribution pψ(a) = |ca|

2. This is
known as Bell sampling [Mon17,ZPDF16]. Now stabilizer states are distinguished by
the fact that they are eigenvectors of allWeyl operatorsWa for which |ca|

2 	= 0 (these are
its stabilizer group). This suggests using Bell sampling to obtain some a, thenmeasuring
Wa twice on two fresh copies, and accepting ψ as a stabilizer if the same eigenvalue is
obtained twice.

While we show that this works for real state vectors, Bell sampling unfortunately
does not extend to complex state vectors. To overcome this challenge, we introduce a
new primitive:

Definition 3.1 (Bell difference sampling). We define Bell difference sampling as per-
forming Bell sampling twice and subtracting (adding) the results from each other (mod-
ulo two). In other words, it is the projective measurement on four copies of a state,
ψ⊗4 ∈ ((C2)⊗n)⊗4, given by

Πa =
∑

x

|Wx〉 〈Wx| ⊗ |Wx+a〉 〈Wx+a| .

For stabilizer states (whether real or complex) it is easy to see that Bell difference
sampling will always sample an element a corresponding to a Weyl operator Wa in its
stabilizer group. What is rather less obvious is that, even for arbitrary quantum states,
Bell difference sampling still has a useful interpretation. The following theorem shows
that this is indeed the case: it amounts to sampling from the probability distribution pψ

twice and taking the difference.

Theorem 3.2 (Bell difference sampling). Let ψ be an arbitrary pure state of n qubits.
Then:

tr
[
Πaψ

⊗4
]
=

∑

x

pψ(x)pψ(x + a).

If ψ is a stabilizer state, say |S〉 〈S|, then this is equal to pS(a) from Eq. (3.3).

Using Bell difference sampling as a primitive, we obtain the natural Algorithm 1.
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Fig. 1. The X-Z-plane of the Bloch sphere. The area shaded in red indicates the projection of those states ρ

for which |trZρ| > sin π
4

= 1√
2
. Likewise, the blue area correspond to the states with |trXρ| > 1√

2
. As

the two areas do not intersect, these two conditions cannot be simultaneously satisfied. This is a manifestation
of the uncertainty principle

Theorem 3.3 (Stabilizer testing for qubits). Let ψ be a pure state of n qubits. If ψ is a
stabilizer state then Algorithm 1 accepts with certainty, paccept = 1. On the other hand,
if maxS|〈S|ψ〉|2 � 1 − ε2 then paccept � 1 − ε2/4.

Proof sketch. We want to show that if the success probability, paccept, is close to one
thenψ has high overlap with a stabilizer state. The proof proceeds in two steps. First, we
analyze the success probability and show that if paccept ≈ 1 then pψ(a) is typically close
to its maximum possible value 2−n. Next, we use Markov’s inequality to find a large
set of a where pψ(a) > 1

2
2−n. Using a version of uncertainty principle (see Fig. 1),

we show that the correspondingWeyl operators Wa necessarily commute, and therefore
form a stabilizer subgroup. This finally means that our initial state must have a large
overlap with a corresponding stabilizer state.

Theorem3.3 solves the stabilizer testing conjecture for qubits. It also implies a number
of interesting corollaries. E.g., it directly follows that one can also test Cliffordness of a
unitary efficiently, without given black-box access to the inverse as in [Low09,Wan11];
this resolves another open problem from [MdW16]. From a structural point of view,
it shows that the Clifford group is the solution, within U(2n), of a set of polynomial
equations of order 6. Our result is optimal in the sense that there exist no perfectly
complete tests for fewer than six copies that achieve statistical power independent of the
number of qubits (see Sect. 5 and [Dam18]).

Qudits A careful analysis of the measurement of Algorithm 1 shows that it is equivalent
to a projective measurement of the form Πaccept =

1
2
(I + V), where V is the following

Hermitian unitary operator:

V = 2−n
∑

x

W⊗6
x . (1.5)

It can be readily seen that the operator Eq. (1.5) commutes with tensor powers of Clifford
unitaries.

In fact, as discussed earlier, it is natural to approach the stabilizer testing problem by
measuring operators in the commutant of the Clifford group. Since the stabilizer states
are a single orbit under the Clifford group, any such measurement by design will have
the same level of significance on all stabilizer states.
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Equation (1.5) and corresponding measurement have a clear generalization to arbi-
trary qudits. Let d � 2 and consider the operators

Πs,accept =
1

2
(I + Vs) where Vs = d−n

∑

x

(Wx ⊗ W†
x)

⊗s. (1.6)

One can see that if (d, s) = 1, Vs is a Hermitian unitary and so Πs,accept is a projector.
We now state our general stabilizer testing result:

Theorem 3.11 (Stabilizer testing for qudits). Let d � 2 and choose s � 2 such that
(d, s) = 1. Let ψ be a pure state of n qudits and denote by paccept = tr[ψ⊗2sΠs,accept]
the probability that the POVM element Πs,accept accepts given 2s copies of ψ. If ψ
is a stabilizer state then it accepts with certainty, paccept = 1. On the other hand,
if maxS|〈S|ψ〉|2 � 1 − ε2 then paccept � 1 − Cd,sε2, where Cd,s = (1 − (1 −

1/4d2)s−1)/2.

The proof proceeds similarly to the one of Theorem3.3.Again, an uncertainty relation
for Weyl operators plays an important role. We record it since it may be of independent
interest:

Lemma 3.10 (Uncertainty relation).Letδ = 1/2dandψa pure state such that |tr[ψWx]|
2

> 1 − δ2 and |tr[ψWy]|
2 > 1 − δ2. Then Wx and Wy must commute.

We also study the minimal number of copies required to distinguish stabilizer states
from non-stabilizer states in such a way that the power of the statistical test does not
decrease with the number of qubits. Since the stabilizer states share the same second
moments with uniformly random states (see Sect. 1.6 below for more detail), one can
see that any such test requires at least three copies. Our next result shows that this is
sufficient at least when d ≡ 1, 5 (mod 6). For this, consider the POVM element

Πaccept =
1

2
(I + V) where V := d−n

∑

x

A⊗3
x .

Theorem 8.6 (Stabilizer testing from three copies). Let d ≡ 1, 5 (mod 6) and ψ a
pure state of n qudits. Denote by paccept = tr[ψ⊗3Πaccept] the probability that the
POVM element Πaccept accepts given three copies of ψ. If ψ is a stabilizer state then it
accepts with certainty, paccept = 1. On the other hand, if maxS|〈S|ψ〉|2 � 1 − ε2 then
paccept � 1 − ε2/16d2.

The operators Ax are known as phase-space point operators [Gro06], which are
defined by a (symplectic) Fourier transform of theWeyl operator basisWa (with respect
to the index a). Again, the test corresponds to a particular element of the commutant,
and to establish Theorem 8.6 we also need another uncertainty relation, this time for
phase-space point operators.

Lemma 8.2. Let d be an odd integer and ψ a pure state of n qudits. Suppose that
tr[ψAx], tr[ψAy], tr[ψAz] >

√
1 − 1/2d2. Then [z − x, y − x] = 0, i.e., Wz−x and

Wy−x must commute.

Lastly, we derive an explicit prescription for the minimal test that is perfectly com-
plete, i.e., detects all stabilizer states with certainty. Here we use the full power of the
algebraic theory. We assume that d is a prime.
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Definition 4.11. (Ot) Consider the quadratic form q : Z
t
d → ZD defined by q(x) :=

x · x. 2 We define Ot(d) as the group of t × t-matrices O with entries in Zd that satisfy
the following properties:

1. O is a q-isometry: i.e., Ox · Ox = x · x (mod D) for all x ∈ Z
t
d.

2. O is stochastic: O1t = 1t (mod d).

We will refer to Ot(d) as the stochastic orthogonal group; its elements will be called
stochastic isometries.

Equivalently, Ot(d) is the group of t× t-matrices O that are orthogonal in the ordinary
sense (i.e., OTO = I mod d) and such that the sum of elements in each row is equal to
1 (mod D). See Remark 4.12 for more details.

Note that the subspaceTO := {(Oy, y) : y ∈ Z
t
d} is a stochasticLagrangian subspace

inΣt,t(d) (as defined above inDefinition 4.1), and soweobtain a corresponding operator
in the commutant, which we abbreviate by R(O) = R(TO). It is easy to see that the
operators R(O) define a representation of the group Ot(d), so

Πmin
t :=

1

|Ot(d)|

∑

O∈Ot(d)

R(O)

is the projector onto the invariant subspace for this action. Remarkably, not only do the
R(O) stabilize all stabilizer tensor powers |S〉⊗t (Eq. (4.13)), but Πmin

t is in fact the
minimal perfectly complete test for stabilizer states:

Theorem 5.6 (Minimal stabilizer test with perfect completeness). Let d be a prime and
n, t � 1. Then the projector Πmin

t is the orthogonal projector onto span {|S〉⊗t :
|S〉 〈S| ∈ Stab(n, d)}.

Are there any other tensor power states in the support of Πmin
t ? For every d � 2,

we have proved above there exists some t � 3 such that stabilizer testing is possible
using t copies. Since the accepting POVM element is in each case the projector onto the
invariant subspace of an element in Ot(d) (e.g., the anti-identity for d = 2 and t = 6),
it follows that in this case the only tensor power states contained in the support of Πmin

t
are tensor powers of stabilizer states!

1.4. De Finetti theorems for stabilizer symmetries. QuantumdeFinetti theoremsprovide
versatile tools for the study of correlations in quantum stateswith permutation symmetry.
They have foundmany important applications, fromquantifying themonogamyof entan-
glement to proving security for quantum key distribution protocols, where de Finetti the-
orems allow to reduce general attacks to collective attacks [Ren05]. By now, several vari-
ants and generalizations are known [Stø69,HM76,RW89,Pet90,CFS02,KR05,DOS07,
CKMR07,Ren07,NOP09,KM09,BCY11,BH13,BH17,BCHW16].Generally speaking,
de Finetti theorems state that when ρ is a quantum state on (C�)⊗t that commutes with
all permutations (i.e., [rπ, ρ] = 0 for all π ∈ St, where rπ are the permutation operators
defined in Eq. (1.2)) then its reduced density operators ρ1...s = trs+1...t[ρ] are well-
approximated by convex mixtures of i.i.d. states in some suitable sense if s � t. E.g.,

2 Recall that for x ∈ Zd, x
2 is well-defined modulo D.
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for any such ρ there exists a probability measure dμ on the space of mixed states on C
�

such that [CKMR07],

1

2

∥
∥
∥
∥ρ1...s −

∫
dμ(σ)σ⊗s

∥
∥
∥
∥

1

� 2
2s

t
. (7.1)

Using the techniques developed for stabilizer testing, we prove two new versions of
the quantum de Finetti theorem adapted to the symmetries inherent in stabilizer states.
A key insight from the preceding section was that any stabilizer tensor power |S〉⊗t

is stabilized not only by the permutations, but by the larger group Ot(d). This group
contains includes in general many more elements, for example, the anti-identity (1.4)
for the case of qubits. Our de Finetti theorems for stabilizer states show that if we
consider arbitrary states ρ on ((Cd)⊗n)⊗t that show symmetries of this kind, then the
conclusions of the de Finetti theorem can be strengthened. In this case, the reduced states
can be well-approximated by convex mixtures of tensor powers of stabilizer states in
Stab(n, d) (rather than of general pure states in (Cd)⊗n).

Our first de Finetti theorem shows that the enlarged symmetry provided by the
stochastic orthogonal group ensures that the approximation is exponentially good in
the number of traced-out subsystems. This is remarkable, since the ordinary permuta-
tion symmetry-based de Finetti theorem achieves exponential convergence only if the
form of allowed states is relaxed to include “almost product states” [Ren07] or “high
weight vectors” (as opposed to highest weight vectors) [KM09]. Such a relaxation is, in
fact, already necessary for classical distributions [DF80]. In detail:

Theorem 7.6 (Exponential stabilizer de Finetti theorem). Let d be a prime and ρ a
quantum state on ((Cd)⊗n)⊗t that commutes with the action of Ot(d) ⊇ St. Let
1 � s � t. Then there exists a probability distribution p on the (finite) set of mixed
stabilizer states 3 of n qudits, such that

1

2

∥
∥
∥
∥
∥
ρ1...s −

∑

σS

p(σS)σ
⊗s
S

∥
∥
∥
∥
∥

1

� 2d
1
2 (2n+2)2

d− 1
2 (t−s).

Our theorem can be understood as a stabilizer version of the Gaussian Finetti the-
orems established in [LC09,Lev16]; cf. [DEL92]. The latter have been successfully
used to establish security of continuous-variable quantum key distribution (QKD) pro-
tocols which admit the required symmetries [LGPRC13,Lev17]. Since the input states of
entanglement-based QKD schemes [Eke91], are usually taken to be powers of stabilizer
states, they show the enlarged symmetry identified here—a fact that seems to have been
overlooked so far. It is this natural to study applications of our de Finetti theorems to
QKD security proofs—we will report results on this elsewhere.

We can also ask to which extent the conclusions of Theorem 7.6 hold if we only
slightly enlarge the symmetry group. The following theorem shows that if we consider
quantum states that commute with permutations as well as the anti-identity (but not
necessarily other elements of Ot(d)) then we still get an approximation by mixtures of
stabilizer tensor powers—but now with a polynomially rather than exponentially small
error:

3 A mixed stabilizer state is a maximally mixed state on a stabilizer code (see Sect. 2.4).
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Theorem 7.7 (Stabilizer de Finetti theorem for the anti-identity). Let ρ be a quantum
state on ((C2)⊗n)⊗t that commutes with all permutations as well as with the action
of the anti-identity (1.4) on some (and hence every) subsystem consisting of six n-qubit
blocks. Let s < t be a multiple of six. Then there exists a probability distribution p on
the (finite) set of mixed stabilizer states of n qubits, such that

1

2

∥
∥
∥
∥
∥
ρ1...s −

∑

σS

p(σS)σ
⊗s
S

∥
∥
∥
∥
∥

1

� 6
√

2 · 2n

√
s

t
.

While Theorem 7.7 is stated here only for qubits, we believe that a similar result can
be established in any prime dimension.

1.5. Robust Hudson theorem. Similar techniques can also be applied to pure stateswith a
small amount of negativity in their phase space representation.More precisely, recall that
for oddd theWigner function of a quantum stateψ is defined bywψ(x) = d−n tr[Axψ],
where the operatorsAx are the phase-space point operatorsmentioned above.TheWigner
function is a quasi-probability distribution, i.e.,

∑
x wψ(x) = 1, but it can be negative.

This negativity plays an important role—e.g., it is an obstruction to efficient classical
simulability [VFGE12,ME12] and witnesses the onset of contextuality [HWVE14].

In fact, pure stabilizer states are characterized by having a nonnegative Wigner
function—this is the discrete Hudson theorem [Gro06]. Our next result shows that this
characterization is robust, and that the robustness is independent of the system size
(number of qudits). The relevant quantity is the Wigner or sum-negativity sn(ψ) =∑

wψ(x)<0|wψ(x)|, i.e., the absolute sum of negative entries of the Wigner function.

Theorem 8.4 (Robust finite-dimensional Hudson theorem). Let d be odd and ψ a pure
quantum state of n qudits. Then there exist a stabilizer state |S〉 such that |〈S|ψ〉|2 �
1 − 9d2 sn(ψ).

Our theorem gives a new quantitative meaning to the sum-negativity, and thereby to
the relatedmana, amonotone from the resource theory of stabilizer states [VMGE14] that
has attracted increasing attention in the theory of fault-tolerant quantum computation.

1.6. Random stabilizers, higher moments and designs. Asmentioned to above, random-
ized constructions based on the Haar measure are often near-optimal, yet have the draw-
back that generic quantumstates cannot be efficiently prepared. In contrast, randomstabi-
lizer states can be efficiently implemented, and early on, it had been discovered that they
reproduce the same secondmoments as the Haar measure!More recently, there had been
significant progress on the third and fourthmoments [ZKGG16,HWW16,NW16], open-
ing up several many applications where random Clifford unitaries and stabilizer states
have successfully replaced the Haar measure [MGE11,HWFW17,KZG16,HNQ+16,
NW16]. To go beyond, however, a general understanding of the statistical properties of
random stabilizer states is required.

The theory presented in this paper implies general formulas for the t-th moments of
stabilizer states. For qudits,

ES stabilizer

[
|S〉 〈S|⊗t

]
=

1

Zn,d,t

∑

T∈Σt,t(d)

R(T), (5.3)
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where T ranges precisely over the maximal isotropic stochastic subspaces from Theo-
rem 4.3!

Recall that a (complex projective) t-design is an ensemble of states {pi, |ψi〉} such
that the average of any polynomial of degree t identically matches the average of the
same polynomial with respect to the Haar measure. In other words, a t-design satisfies

Ei∼p

[
(|ψi〉 〈ψi|)

⊗t
]
= Eψ Haar

[
(|ψ〉 〈ψ|)⊗t

]
=

1

N ′
d,t

∑

π∈St

rπ, (1.7)

where the right-hand side is the familiar formula for the maximally mixed state on the
symmetric subspace in terms of the symmetrizer—an easy consequence of Schur–Weyl
duality. When the stabilizer states form a t-design (t � 3 for qubits, t � 2 otherwise),
Eq. (5.3) reduces toEq. (1.7). Equation (5.3) unifies and generalizes all previously known
results [Zhu15,KG15,Web16,ZKGG16,HWW16,NW16].

Importantly, however, our formula allows us to compute an arbitrary t-th moment
even when the stabilizer states deviate significantly from being a t-design. In fact, we
demonstrate the power of the formula by using it to establish that following remarkable
fact: Even when the stabilizer states (a single Clifford orbit) fail to be a t-design, we
can obtain t-designs by taking a finitely many Clifford orbits with appropriately chosen
weights:

Theorem 6.2. Letdbe a prime andn � t−1. Then there exists an ensemble {pi, Ψi}
Mt,d

i=1

of fiducial states in (Cd)⊗n such that:

Ei∼pEU Clifford

[(
U |Ψi〉 〈Ψi| U

†
)⊗t
]
= EΨ Haar

[
|Ψ〉 〈Ψ|⊗t

]

That is, the corresponding ensemble of Clifford orbits is a complex projective t-
design. Importantly, the number of fiducial states does not depend on the number of
qudits n.

2. Preliminaries

2.1. Pauli and Clifford group. Letd � 2be an arbitrary integer.Wefirst consider a single
quditwith computational basis vectors |q〉,whereq ∈ {0, . . . , d−1}orq ∈ Zd = Z/dZ.
We define unitary shift and boost operators

X |q〉 = |q + 1〉 , Z |q〉 = ωq |q〉 ,

where ω = e2πiq/d.
The algebra of shift and boost operators differs slightly depending on whether d is

even or odd. For uniform treatment, one introduces τ = (−1)deiπ/d = eiπ(d2+1)/d.
Note that τ2 = ω. Let D denote the order of τ. Then D = 2d if d is even, but D = d if
d is odd (indeed, in this case τ = ω2−1

, where 2−1 denotes the multiplicative inverse
of 2 mod d). Then Y := τX†Z† is such that XYZ = τI, generalizing the commutation
relation of the usual Pauli operators for qubits (where τ = i). For a single qudit, the
Pauli group is generated by X, Y, Z or, equivalently, by τI, X, Z.

For n qudits, the Hilbert space is Hn = (Cd)⊗n, with computational basis vectors
|q〉 = |q1, . . . , qn〉, and the Pauli group Pn is the group generated by the tensor product
of I, X, Y, Z acting on each of the n qudits.
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The Clifford group Cliff(n, d) is defined as normalizer of the Pauli group in the uni-
tary group, modulo phases. That is, it consists of all unitary operators U that UPnU† ⊆
Pn, up to phases. For qubits, theClifford group is generated by the phase gateP =

(
1 0
0 i

)
,

the Hadamard gate H = 1√
2

(
1 1
1 −1

)
, and the controlled-NOT gate.

2.2. Weyl operators and characteristic function. At this point it is useful to recall the
phase space picture of finite-dimensional quantum mechanics developed in [Woo87,
App05,Gro06,GE08,DB13], which is analogous to the phase space formalism for
continuous-variable systems used, e.g., in quantum optics [Sch11]. For x = (p, q) ∈
Z

2n, define the Weyl operator

Wx = Wp,q = τ−p·q(Zp1Xq1) ⊗ · · · ⊗ (ZpnXqn). (2.1)

Clearly, each Weyl operator is an element of the Pauli group. Conversely, each element
of the Pauli group is equal to a Weyl operator up to a phase that is a power of τ. It is not
hard to see that the Weyl operators themselves only depend on x modulo D (which we
recall is 2d or d, depending on whether d is even or odd). Indeed,

Wx+dz = (−1)(d+1)[x,z]Wx, (2.2)

where we have introduced the Z-valued symplectic form on Z
2n

[x, y] = [(p, q), (p ′, q ′)] = p · q ′ − q · p ′. (2.3)

We will often use the symplectic form in situations where x, y are elements of Z
2n
d or

Z
2n
D , and interpret [x, y] accordingly. For example,

WxWy = τ[x,y]Wx+y (2.4)

for all x, y ∈ Z
2n
D . This implies that in particular

WxWy = ω[x,y]WyWx. (2.5)

Thus the commutation relations between Weyl operators only depend on x, y mod d. In
this sense, Vn = {0, . . . , d − 1}2n is the natural classical phase space associated with
the Hilbert space Hn = (Cd)⊗n. We will often write Wx for x ∈ Z

2n
d , identifying

Z
2n
d

∼= Vn in the standard way.
Note that tr[Wx] 	= 0 if and only ifWx is a scalar multiple of the identity (necessarily

±I), that is, if and only if x ≡ 0 (mod d). Together with Eq. (2.4), it follows that the re-
scaled Weyl operators {d−n/2Wx} for x ∈ Vn form an orthonormal basis with respect
to the Hilbert-Schmidt inner product 〈A,B〉 = tr[A†B]. In particular, any operator B

on Hn can be expanded in the form B = d−n/2
∑

x∈Vn
cB(x)Wx. The expansion

coefficients cB(x) together define the characteristic function cB : Vn → C of the
operator B,

cB(x) = d−n/2 tr[W†
xB], (2.6)

and we have Parseval’s identity

tr[A†B] =
∑

x∈Vn

cA(x)cB(x). (2.7)
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By definition, if U is a Clifford unitary then, for every x ∈ Vn, UWxU
† is pro-

portional to a Weyl operator Wx ′ , where we can take x ′ ∈ Vn in view of Eq. (2.2).
Since conjugation preserves the commutation relations, this action has substantially
more structure. In particular, the mapping x �→ x ′ is implemented by an element of
the symplectic group Sp(2n, d), i.e., a linear transformation of Z

2n
d that preserves

the symplectic form (2.3). The following facts are well-known in the literature (e.g.
[App05,Gro06,DB13,Zhu15]).

Lemma 2.1. For any prime d and any n ∈ N, the following holds:

1. For each U ∈ Cliff(n, d), there is a Γ ∈ Sp(2n, d) and a function f : Z
2n
d → Zd

such that

UWxU
† = ωf(x)WΓx ∀ x ∈ Z

2n
d . (2.8)

2. Conversely, for each Γ ∈ Sp(2n, d), there is a U ∈ Cliff(n, d) and a phase function
f : Z

2n
d → Zd such that Eq. (2.8) holds. If d is odd, one can choose U such that

f ≡ 0.
3. The quotient of the Clifford group by Weyl operators and phases is isomorphic to

Sp(2n, d).

Below, we will frequently assume that a correspondence Γ �→ UΓ has been fixed.

2.3. Wigner function and phase space point operators. It is also useful to consider the
symplectic Fourier transform, which for any function f : Vn → C is defined as

f̂(x) = d−n
∑

y

ω−[x,y]f(y). (2.9)

The transformation f �→ f̂ is unitary, i.e., we have Parseval’s identity:
∑

x f̂(x)ĝ(x) =∑
y f(y)g(y).
The Fourier transform of the characteristic function is (up to normalization) known

as the Wigner function [Woo87] wB : Vn → C, defined by

wB(x) = d−n/2ĉB(x) = d−3n/2
∑

y

ω−[x,y]cB(y)

= d−2n
∑

y

ω−[x,y] tr[W†
yB] = d−n tr[AxB], (2.10)

where we have introduced the phase-space point operators

Ax = d−n
∑

y

ω−[x,y]W†
y . (2.11)

The operators {Ax} form an orthogonal basis of the space of all operators, tr[A†
xAy] =

dnδx,y, so the Wigner function can be seen as the set of coefficients of an operator as
expanded in this basis,B =

∑
x wB(x)A

†
x. Moreover, theWigner function of a quantum

state is a quasiprobability distribution in the sense that
∑

x wρ(x) = 1.
For odd d theWigner function is particularly well-behaved. For one, the phase-space

point operators are Hermitian (this is also true for qubits) and they square to the identity
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(so the eigenvalues are ±1 and in particular ‖Ax‖ = 1). This means that the Wigner
function of a quantum state is real and−d−n � wψ(x) � d−n. The phase-space point
operators satisfy the following important identity:

AxAyAz = ω2[z−x,y−x]Ax−y+z (2.12)

Moreover, (only) for odd d does the Wigner function transforms covariantly with re-
spect to the Clifford group. Here, the Clifford operators can (up to overall phase)
be parametrized by an affine symplectic transformation, i.e., by a symplectic matrix
Γ ∈ Sp(2n, d) and a vector b ∈ Z

2n
d . Then U = Wv μΓ is in Cliff(n, d), where μΓ

is the so-called metaplectic representation of the symplectic group (see, e.g., [Gro06]),
and the conjugation action of U on phase-space point operators is given by

UAxU
† = AΓx+b. (2.13)

In particular, the Weyl operators induce a translation in phase space.

2.4. Stabilizer groups, codes, and states. We now give uniform account of the stabilizer
formalism [Got97,Got99] for qudits. Stabilizer states are commonly defined in terms of
the Pauli group in the following way: Consider a subgroup of the Pauli group S ⊆ Pn

that does not contain any (nontrivial) multiple of the identity operator. Then the operator

PS =
1

|S|

∑

P∈S

P (2.14)

is an orthogonal projection onto a subspace VS ⊆ Hn of dimension dn/|S|. We say that
VS is the stabilizer code associated with the stabilizer group S. If |S| = dn then this
code is spanned by a single state, called a (pure) stabilizer state and denoted by |S〉 〈S|.
It is given precisely by Eq. (2.14). In other words, a stabilizer state |S〉 is the unique +1
eigenvector (up to scalars) of all the Pauli operators in S,

P |S〉 = |S〉 (∀P ∈ S).

In the following we will mostly be talking about stabilizer groups that determine a pure
state. We denote the (finite) set of pure stabilizer states in (Cd)⊗n by Stab(n, d).

In order to connect the stabilizer formalism to the phase space picture, we observe
that the stabilizer group can be written in the form

S = {ωf(x)Wx : x ∈ M}, (2.15)

for some subset M ⊆ Vn and some function f : M → Zd. The two pieces of data
determine the stabilizer state uniquely. Indeed, |S〉 can be characterized by demanding
that

Wx |S〉 = ω−f(x) |S〉 (∀P ∈ S).

Moreover, it is not hard to verify thatM is closedunder addition (becauseS is a group) and
that [x, y] = 0 for any two elements x, y ∈ M. Thus, M is a totally isotropic submodule
of the phase space Vn (which itself can be thought of as a Zd-module). For simplicity,
we will usually say subspace instead of submodule, although the latter terminology is
more appropriate for non-prime d. Moreover, |M| = dn, which is the maximal possible
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cardinality of any such subspace—one often says that M is a Lagrangian subspace
and it holds that M = M⊥, where M⊥ = {y ∈ Vn|[x, y] = 0 ∀x ∈ M}. See, e.g.,
[Gro06,GW13] for further detail on this symplectic point of view.

Conversely, suppose that M is a Lagrangian subspace of Vn. Then there always
exist functions f such that {ωf(x)Wx}x∈M is a stabilizer group; we will denote the
corresponding stabilizer states by |M, f〉. Any other such function f can be obtained by
replacing f byg = f+δ, where δ : M → Zd is aZd-linear function.We can alwayswrite
δ(x) = [z, x]; then |M,g〉 = Wz |M, f〉. In this way, M parametrizes an orthonormal
basis of Hn worth of stabilizer states. In particular, any state that is a simultaneous
eigenvector of the {Wx}x∈M is necessarily a stabilizer state. It is not hard to verify that
the quantum channel that implements the projective measurement in this stabilizer basis
{|M, f〉}f is given by

ΛM[ρ] =
∑

f

|M, f〉 〈M, f|ρ|M, f〉 〈M, f| = d−n
∑

x∈M

WxρW†
x . (2.16)

The fact that any stabilizer state can be parametrized as |S〉 = |M, f〉 will be of
fundamental importance to our investigations. As a first consequence, we note that
Eqs. (2.14) and (2.15) imply that |S〉 〈S| = d−n

∑
x∈M ωf(x)Wx. This shows that the

characteristic function is given by

cS(x) =

{
d−n/2ωf(x) if x ∈ M,

0 otherwise,
(2.17)

i.e., it is supported precisely on the set M.
For odd d the phase is a linear function, so it can be written as f(x) = [a, x] for

some suitable vector a (e.g., [Gro06, App. C]). This means that the Wigner functions of
stabilizer states have the following form [GW13]:

wS(x) = d−3n/2
∑

y∈M

ω−[x,y]d−n/2ω[a,y] =

{
d−n if x ∈ a + M,

0 otherwise
(2.18)

(using that M = M⊥ for a pure stabilizer state). In particular, the Wigner function is
non-negative. The finite-dimensional Hudson theorem asserts that, for pure states, the
converse is also true [Gro06]. In Sect. 8 we will prove a robust version of this result.

3. Testing Stabilizer States

Given two copies of an unknown pure state ψ = |ψ〉 〈ψ| on Hn, it is easy to verify
using phase estimation whether |ψ〉 is an eigenvector of a given Weyl operator Wx. In
particular, if Wx is Hermitian then we simply measure twice and compare the result.
The probability of obtaining the same outcome is

tr

[

ψ⊗2 I + Wx ⊗ W
†
x

2

]

=
1

2

(
1 + dn|cψ(x)|2

)
, (3.1)

where we recall that cψ denotes the characteristic function defined in Eq. (2.6).
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To turn this idea into an algorithm for testing whether ψ is a stabilizer state we need
a way of generating good candidate Weyl operators. For this we note that, since ψ is a
pure quantum state,

pψ(x) = |cψ(x)|2 = d−n|〈ψ|Wx|ψ〉|2 = d−n tr[ψWxψW†
x ] (3.2)

is a probability distribution on the phase space Vn. This follows directly from Eq. (2.7).
We call pψ the characteristic distribution of ψ.

Now, if |ψ〉 = |S〉 = |M, f〉 is a stabilizer state then Eq. (2.17) implies that pψ is
simply the uniform distribution on the subset M ⊆ Vn:

pS(x) =

{
d−n if x ∈ M,

0 otherwise.
(3.3)

Note that pS is maximally sparse in the case of pure stabilizer states, since it always
holds true that 0 � pψ(x) � d−n. Therefore, if we sample from the characteristic
distribution of a stabilizer state then Eq. (3.3) shows that we would with certainty obtain
the label of a Weyl operator for which |ψ〉 is an eigenvector.

Importantly, the converse of this statement is also true: Suppose that |ψ〉 is an eigen-
vector of all Weyl operators Wx for x in the support of the characteristic distribution
(i.e., pψ(x) > 0). Since pψ(x) � d−n, the support of pψ contains at least dn points.
Thus if |ψ〉 is an eigenvector of all theseWeyl operators then the support must be exactly
of cardinality dn and so |ψ〉 is a stabilizer state. This suggests the following algorithm:

1. Sample from the characteristic distribution of ψ. Denote the result x.
2. Measure the corresponding Weyl operator Wx twice and accept if the result is the

same.

By the preceding discussion, this test will accept if and only if the state is a stabilizer
state. But how do we go about sampling from the characteristic distribution?

3.1. Qubit stabilizer testing and Bell difference sampling. When the wave function |ψ〉
is real in the computational basis then sampling from the characteristic distribution can
be achieved by Bell sampling, introduced for qubits in [Mon17] (cf. [ZPDF16]). Bell
sampling amounts to performing a basis measurement in the basis obtained by applying
the Weyl operators to a fixed maximally entangled state, |Wx〉 = (Wx ⊗ I) |Φ+〉. Since
the Weyl operators are orthogonal, |Wx〉 is an orthonormal basis of the doubled Hilbert
space Hn ⊗ Hn. Using the transpose trick,

∣
∣
∣〈Wx|ψ

⊗2〉
∣
∣
∣
2
= d−n|〈ψ|Wx|ψ̄〉|2 (3.4)

In case the wave function is real, Eq. (3.4) is exactly equal to pψ(x); Bell sampling
therefore allows us to implement step (1) above given two copies of the unknown state
ψ.

In general, however, the transformation ψ �→ ψ = ψT cannot be implemented by a
physical process, since the transpose map is well-known not to be completely positive.
Thus we need a new idea to treat the general case where the wave function can be
complex.
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We start with the observation that if ψ is a stabilizer state then so is ψ. Indeed,
Wp,q = (−1)(d+1)(p·q)WJ(p,q), where J is the involution [App05]

J : Vn → Vn, (p, q) �→ ((−p) mod d, q)

on phase space (note that the phase is trivial when d is odd and so always well-defined
mod d). On the other hand, ωf(x) = ω−f(x). It follows that if |ψ〉 = |M, f〉 then
|ψ〉 = |J(M), g〉, where ωg(x) = ω−f(x)(−1)(d+1)(p·q) (again, this is well-defined
for any d).

For qubits (d = 2), the involution J is trivial. This means that if ψ is a stabilizer
state then ψ and ψ̄ are characterized by the same subspace M, but possibly different
phases. We saw above that (only) in this case there exists a Weyl operator Wz such that
|ψ̄〉 = Wz |ψ〉. As a consequence, if we perform Bell sampling on |ψ〉 ⊗ |ψ〉 then, from
Eq. (3.4),

∣
∣
∣〈Wx|ψ

⊗2〉
∣
∣
∣
2
= d−n|〈ψ|Wx+z|ψ〉|2 = pψ(x + z).

Of course, z is an unknown vector that depends on the stabilizer state ψ. But since z
depends only on the stabilizer state ψ, it is clear that we may Bell sample twice and take
the difference of the result in order to obtain a uniform sample a from the subspace M.
Formally:

Definition 3.1 (Bell difference sampling). We define Bell difference sampling as per-
forming Bell sampling twice and subtracting (adding) the results from each other (mod-
ulo two). In other words, it is the projective measurement on four copies of a state,
ψ⊗4 ∈ ((C2)⊗n)⊗4, given by

Πa =
∑

x

|Wx〉 〈Wx| ⊗ |Wx+a〉 〈Wx+a| .

It is not obvious that Bell difference sampling should bemeaningful for non-stabilizer
quantum states ψ. The following theorem shows that it has a natural interpretation for
general states:

Theorem 3.2 (Bell difference sampling). Let ψ be an arbitrary pure state of n qubits.
Then:

tr
[
Πaψ

⊗4
]
=

∑

x

pψ(x)pψ(x + a).

If ψ is a stabilizer state, say |S〉 〈S|, then this is equal to pS(a) from Eq. (3.3).

The proof of Theorem 3.2 uses the symplectic Fourier transform defined in Eq. (2.9).
Remarkably, the characteristicdistribution of anypure state is left invariant by theFourier
transform:

p̂ψ(a) = 2−n
∑

x

(−1)[a,x]cψ(x)cψ(x) = 2−n
∑

x

cψ(x)cWaψWa(x)

= 2−n tr[ψWaψWa] = pψ(a),
(3.5)

where the third step is Eq. (2.7) (note that for qubits the characteristic function is real).
We now give the proof of Theorem 3.2:
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Proof of Theorem 3.2. We start with the observation that Πa = (I⊗ I⊗ I⊗Wa)Π0(I⊗
I ⊗ I ⊗ Wa). On the other hand, it is easy to verify that

Π0 =
1

22n

∑

x

W⊗4
x (3.6)

(i.e., it is the projection onto a stabilizer code of dimension 22n, which played an impor-
tant role in [ZKGG16], and Bell difference sampling achieves precisely the syndrome
measurement for this code). It follows that

Πa =
1

22n

∑

x

(−1)[a,x]W⊗4
x (3.7)

and so

tr
[
Πaψ

⊗4
]
=

1

22n

∑

x

(−1)[a,x] tr
[
W⊗4

x ψ⊗4
]
=

∑

x

(−1)[a,x]pψ(x)pψ(x)

=
∑

x

p̂ψ(x)p̂ψ(x + a) =
∑

x

pψ(x)pψ(x + a)I

the third equality is the unitarity of the Fourier transform, which also maps modulations
to translations, and in the last step we used Eq. (3.5), namely that the characteristic
distribution of a pure state is left invariant by the Fourier transform.

Theorem 3.2 motivates Algorithm 1 as a natural algorithm for testing whether a
multi-qubit state is a stabilizer state. The following theorem shows that stabilizer states
are the only states that are accepted with certainty, and it quantifies this observation in
a dimension-independent way:

Theorem 3.3 (Stabilizer testing for qubits). Let ψ be a pure state of n qubits. If ψ is a
stabilizer state then Algorithm 1 accepts with certainty, paccept = 1. On the other hand,
if maxS|〈S|ψ〉|2 � 1 − ε2 then paccept � 1 − ε2/4.

The converse bound of Theorem 3.3 can be stated equivalently as

max
S

|〈S|ψ〉|2 � 4paccept − 3. (3.8)

Proof. According to Theorem 3.2, step 1 of the algorithm samples elements a with
probability q(a) =

∑
x pψ(x)pψ(x + a).

Let us first discuss the case thatψ is a stabilizer state, say |ψ〉 = |M, f〉. Since pψ(x)
is the uniform distribution over M, which is a subspace, it holds that q(a) = pψ(a),
since, for x ∈ M, x + a ∈ M if and only if a ∈ M. But this means that a ∈ M with
certainty. Thus, |ψ〉 is an eigenvector of the corresponding Weyl operator Wa and step 2
of the test always accepts.

We now consider the case that ψ is a general pure state. Our goal will be to show
that if Algorithm 1 succeeds with high probability then there must exist a stabilizer state
with high overlap with ψ. According to Eq. (3.1), the probability of acceptance is given
by

paccept =
1

2

∑

a

q(a)
(
1 + 2npψ(a)

)
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where we recall that q(a) =
∑

x pψ(x)pψ(x + a). Thus, by the Cauchy-Schwarz
inequality,

paccept =
1

2

∑

x

pψ(x)

(

1 + 2n
∑

a

pψ(x + a)pψ(a)

)

� 1

2

∑

x

pψ(x)

(

1 + 2n
∑

a

pψ(a)2
)

=
1

2

(

1 + 2n
∑

a

pψ(a)2
)

=
1

2

∑

a

pψ(a)
(
1 + 2npψ(a)

)
, (3.9)

where we have also used the fact that pψ is a probability distribution. Intuitively, this
bound shows that if our test accepts with high probability then pψ(a) ≈ 2−n with high
probability. Indeed, let us consider

M0 := {a ∈ Vn : 2npψ(a) > 1/2}.

Then Markov’s inequality (which can be applied since it is always true that pψ � 2−n)
asserts that

∑

a∈M0

pψ(a) � 1 − 2
∑

a

pψ(a)
(
1 − 2npψ(a)

)
= 1 − 4

(
1 − paccept

)
. (3.10)

The choice of threshold 1/2 in the definition of M0 ensures that the Weyl operators
corresponding to any two points a, b ∈ M0 commute. To see, we use that any pair of
anticommuting Wa,Wb can by a base change be mapped onto the Pauli operators X,Z;
it can then verified on the Bloch sphere that there exists no qubit state ρ such that both
tr[ρX]2 > 1/2 and tr[ρZ]2 > 1/2 (see Fig. 1 for a graphical proof).

Let us now extend the set M0 to some maximal set M such that the corresponding
Weyl operators commute. Then M is automatically a Lagrangian subspace, of dimen-
sion n.4 As discussed in Sect. 2.4, it determines a whole basis of stabilizer states,
{|M, f〉}f. Thus:

max
S

|〈S|ψ〉|2 � max
f

〈M, f|ψ|M, f〉 �
∑

f

〈M, f|ψ|M, f〉2 = tr
[
ΛM[ψ]2

]

= 2−2n
∑

x,y∈M

tr
[
ψW†

xWyψ(W†
xWy)

†
]
= 2−n

∑

x∈M

tr
[
ψWxψW†

x

]

=
∑

x∈M

pψ(x) �
∑

x∈M0

pψ(x) � 1 − 4
(
1 − paccept

)

where we used Eq. (2.16) for the measurementΛM in the stabilizer basis; the last bound
is Eq. (3.10). In particular, if maxS|〈S|ψ〉|2 � 1 − ε2 then paccept � 1 − ε2/4.

4 It is natural to ask whether the subspace M is uniquely determined by M0. This is the case when,
e.g., paccept > 7/8. Indeed, in this case, Eq. (3.10) implies that 2−n|M0| � ∑

a∈M0
pψ(a) > 1 −

4 (1 − 7/8) = 1/2, so |M0| > 2n−1. It follows that M0 spans an n-dimensional subspace which is
necessarily contained in, and hence equal to, M.
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Fig. 2. Quantum circuit implementing Algorithm 1 for qubit stabilizer testing. Inside the blue blocks: The
quantum gates denote the controlled-NOT and the Hadamard gate, respectively; the measurements are in
the n-qubit computational basis. Outside the blue blocks: Double lines represent classical information. The
“⊕”-operation is addition modulo two. The boxes labeled “Weyl” perform a two-outcome measurement with
respect to the eigenspaces of Wa , where a is determined by classical inputs. For n qubits, the circuit is fully
transversal in the sense that all operations are required to be coherent only across two copies, and factorize
with respect to the n qubits

Our theorem has the following consequence for quantum property testing, resolving
an open question first raised by Montanaro and de Wolf [MdW16, Question 7].

Corollary 3.4. Let ψ be a pure state of n qubits and let ε > 0. Then there exists a
quantum algorithm that, given O(1/ε2) copies of ψ, accepts any stabilizer state (it
is perfectly complete), while it rejects states such that maxS|〈S|ψ〉|2 � 1 − ε2 with
probability at least 2/3.

Before our result, the best known algorithms required a number of copies that scaled
linearly with n, the number of qubits. Indeed, these algorithms proceeded by attempting
to identify the stabilizer state, which requires Ω(n) copies by the Holevo bound [AG08,
Mon17,ZPDF16]. Moreover, our algorithm is manifestly efficient (see the circuit in
Fig. 2).

Remark 3.5. For multi-qubit states ψ that are real in the computational basis, we can
replace step 1 of the algorithm by a single Bell sampling, which in this case directly
samples from the characteristic distribution pψ (see Eq. (3.4)). The resulting algorithm
operators on four copies of ψ and achieves the same guarantees as Theorem 3.2.

Remark 3.6. The scaling in Theorem 3.2 is optimal. Indeed, it is known that distinguish-
ing any fixed pair of states |ψ〉 , |φ〉 with |〈ψ|φ〉|2 = 1 − ε2 requires Ω(1/ε2) copies
[MdW16]. In particular, this lower bound holds if we choose |ψ〉 to be a stabilizer
state and |φ〉 a state that is ε-far away from being a stabilizer state, in which case our
Algorithm 1 is applicable.

Remark 3.7 (Clifford testing). It follows fromTheorem3.3 thatwe can also testwhether a
given unitaryU is in the Clifford group or not (without given access toU†). This resolves
another open question in the survey of Montanaro and de Wolf [MdW16, Question 9].

Indeed, given black-box access to U alone we can create the Choi state |U〉 :=
(U ⊗ I) |Φ+〉, which is a stabilizer state if and only if U is a Clifford unitary. Moreover,
the “average case” distance measure used in the literature for quantum property testing
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of unitaries is precisely equal to trace distance between the corresponding Choi states
[MdW16, Section 5.1.1]. Thus, by first creating the Choi state and then running our
Algorithm 1 we can efficiently test whether a given unitary U is a Clifford unitary.

It is instructive to write down the accepting POVM element for Algorithm 1. From
Eqs. (3.7) and (3.1), we find that it is given by

Πaccept =
∑

a

Πa ⊗ I + Wa ⊗ W
†
a

2
=

1

2
(I + U) , (3.11)

where we have introduced the unitary

U =
1

22n

∑

x,a∈Vn

(−1)[a,x]W⊗4
x ⊗ W⊗2

a =

(
1

4

∑

x,a∈V1

(−1)[a,x]W⊗4
x ⊗ W⊗2

a

︸ ︷︷ ︸
=:u

)⊗n

.

It is easy to verify that U = u⊗n is a Clifford unitary acting on the space H⊗6
n

∼= H6n

of 6n qubits.
For anypure stateψ,ψ⊗n is in the symmetric subspace, and so invariant under left and

right-multiplication by permutations. In particular, we obtain a test of the same goodness
as Theorem 3.3 if we replace U by V = U(I⊗4 ⊗ F), where F = R((12)) denotes the
operator that swaps (or flips) two blocks of n qubits. Since F = 2−n

∑
b W⊗2

b , we
obtain the formula

V = 2−3n
∑

x,a,b

(−1)[a,x]W⊗4
x ⊗ (WaWb)

⊗2 = 2−3n
∑

x,a,b

(−1)[a,x+b]W⊗4
x ⊗ W⊗2

a+b mod 2

= 2−3n
∑

x,a,b

(−1)[a,x+b]W⊗4
x ⊗ W⊗2

b = 2−n
∑

x∈Vn

W⊗6
x =

(
1

2

∑

x∈V1

W⊗6
x

︸ ︷︷ ︸
=:v

)⊗n

.
(3.12)

Thus, we recognize that the unitary V = v⊗n is precisely the action of the anti-
identity (1.4) described in the introduction (for t = 6):

V = R(1̄) = 2−n
(
I⊗6 + X⊗6 + Y⊗6 + Z⊗6

)⊗n
(3.13)

See also Remark 3.9. We discuss anti-permutations in more detail in Definition 4.29.
Equation (3.12) allows us to express the acceptance probability of Algorithm 1 in an

interesting way:

paccept = tr
[
ψ⊗6Πaccept

]
=

1

2

(
1 + tr

[
ψ⊗6U

])
=

1

2

(
1 + tr

[
ψ⊗6V

])

=
1

2

(

1 + 2−n
∑

x

tr
[
ψ⊗6W⊗6

x

]
)

=
1

2

(

1 + 22n
∑

x

cψ(x)6
)

=
1

2

(
1 + 22n‖cψ‖6

�6

)
=

1

2

(
1 + 22n‖pψ‖3

�3

)

=
1

2

(

1 + 22n
∑

x

pψ(x)3
)

=
∑

x

pψ(x)
1

2

(
1 + 22npψ(x)2

)
. (3.14)
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It is intuitive that the p-norms should appear, since stabilizer states can be characterized
by having a maximally peaked characteristic function and distribution (Eqs. (2.17) and
(3.3)).

In fact, the result of this calculation is plainly a strengthening of Eq. (3.9), since
2npψ(x) � 1. If we follow the rest of the proof of Theorem 3.3 then we obtain paccept �
1 − 3ε2/8, a slight improvement. More importantly, though, this argument completely
avoids the analysis of Bell difference sampling in Theorem 3.2. This leads us towards
an approach for testing general qudit stabilizer states.

3.2. Qudit stabilizer testing. While Bell sampling can only be used for qubit systems,
Eq. (3.12) has a clear generalization to arbitrary qudits. Let d � 2 and consider the
operator

Vs = d−n
∑

x

(Wx ⊗ W†
x)

⊗s. (3.15)

(For qubits, theWeyl operators are Hermitian and soV3 is precisely Eq. (3.12).) Suppose
we choose s such that Vs is a Hermitian unitary (we will momentarily see that this can
always be done). Then

Πs,accept =
1

2
(I + Vs)

is a projection. If we think of it as the accepting element of a binary POVM then

paccept = tr[ψ⊗2sΠs,accept] =
1

2

(
1 + tr[ψ⊗sVs]

)
=

1

2

(

1 + d−n
∑

x

|tr[ψWx]|
2s

)

=
1

2

(

1 + d(s−1)n
∑

x

ps
ψ(x)

)

=
∑

x

pψ(x)
1

2

(
1 + d(s−1)nps−1

ψ (x)
)

,

(3.16)

which generalizes Eq. (3.14).
When is Vs Hermitian and unitary? It is always Hermitian, since Wx ⊗ W

†
x only

depends on x modulo d. For unitarity we use Eq. (2.4) and calculate

V2
s = d−2n

∑

x,y

(WxWy ⊗ W†
xW†

y)
⊗s = d−2n

∑

x,y

ωs[x,y](Wx+y ⊗ W−(x+y))
⊗s

= d−2n
∑

x,y

ωs[x,y](Wx+y mod d ⊗ W−(x+y mod d))
⊗s

= d−2n
∑

z

(
∑

x

ωs[x,z]

)

(Wz ⊗ W−z)
⊗s.

If s is invertible modulo d then ωs[−,z] is a nontrivial character for all z, and so the
inner sum simplifies to d2nδz,0. It follows that V2

s = I, as desired. We summarize:

Lemma 3.8. Let d � 2 and s an integer that is invertible modulo d (i.e., (s, d) = 1).
Then Vs is a Hermitian unitary.
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Remark 3.9 (Qubits). For qubits, the operator Vs is a Hermitian unitary if and only if
s is odd. E.g., for s = 1 it is the unitary swap operator F and for s = 3 it is precisely
Eq. (3.12) (the anti-identity), while for s = 2 it is not unitary but in fact proportional to
one of the POVM elements from Bell difference sampling. Indeed, V2 = 2nΠ0 where
Π0 is the projection from Eq. (3.6). Thus ‖V2‖ = 2n and so we cannot interpret the
associated Π2 as a POVM element. This already partly explains why we had to resort
to six copies to test stabilizerness.

The second ingredient used to establish Theorem 3.3 was an uncertainty principle
for Weyl operators. The following lemma supplies this for general d:

Lemma 3.10 (Uncertainty relation).Let δ=1/2d and ψ a pure state such that |tr[ψWx]|
2

> 1 − δ2 and |tr[ψWy]|
2 > 1 − δ2. Then Wx and Wy must commute.

Proof. Note that

‖Wx |ψ〉 − |ψ〉 〈ψ|Wx|ψ〉‖ < δ

and likewise for Wy. By the triangle inequality,

‖WxWy |ψ〉 − |ψ〉 〈ψ|Wx |ψ〉 〈ψ|Wy|ψ〉‖
� ‖WxWy |ψ〉 − Wx |ψ〉 〈ψ|Wy|ψ〉‖ + ‖Wx |ψ〉 〈ψ|Wy|ψ〉 − |ψ〉 〈ψ|Wx |ψ〉 〈ψ|Wy|ψ〉‖
� ‖Wx‖‖Wy |ψ〉 − |ψ〉 〈ψ|Wy|ψ〉‖ + ‖Wx |ψ〉 − |ψ〉 〈ψ|Wx |ψ〉‖ 〈ψ|Wy|ψ〉
� ‖Wy |ψ〉 − |ψ〉 〈ψ|Wy|ψ〉‖ + ‖Wx |ψ〉 − |ψ〉 〈ψ|Wx |ψ〉‖ < 2δ,

but also

‖WxWy |ψ〉 − ω[x,y] |ψ〉 〈ψ|Wx|ψ〉 〈ψ|Wy|ψ〉‖
= ‖ω[x,y]WyWx |ψ〉 − ω[x,y] |ψ〉 〈ψ|Wy|ψ〉 〈ψ|Wx|ψ〉‖ < 2δ.

If we combine this with another triangle inequality, we obtain that

|1 − ω[x,y]| = ‖ω[x,y] |ψ〉 − |ψ〉‖ <
4δ

〈ψ|Wx|ψ〉 〈ψ|Wy|ψ〉 <
4δ

1 − δ2
.

Now suppose that Wx and Wy do not commute. Then [x, y] 	= 0 and so

|1 − ω[x,y]| � |1 − ω| = 2 sin(π/d) � 4

d
.

Thus, 4/d < 4δ/(1− δ2), which plainly contradicts our choice of δ. This is the desired
contradiction and we conclude that Wx and Wy commute.

We now show that stabilizer testing can be done in arbitrary local dimension:

Theorem 3.11 (Stabilizer testing for qudits). Let d � 2 and choose s � 2 such that
(d, s) = 1. Let ψ be a pure state of n qudits and denote by paccept = tr[ψ⊗2sΠs,accept]
the probability that the POVM element Πs,accept accepts given 2s copies of ψ. If ψ
is a stabilizer state then it accepts with certainty, paccept = 1. On the other hand,
if maxS|〈S|ψ〉|2 � 1 − ε2 then paccept � 1 − Cd,sε2, where Cd,s = (1 − (1 −

1/4d2)s−1)/2.
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Proof. Ifψ is a stabilizer state, say |ψ〉 = |M, f〉, then pψ(x) is the uniform distribution
on M, which has dn elements. In view of Eq. (3.16),

paccept =
∑

x

pψ(x)
1

2

(
1 + d(s−1)nps−1

ψ (x)
)
= 1,

so the test accepts with certainty.
Now suppose that ψ is a general state. Define

M0 := {x ∈ Vn : dnpψ(x) > 1 − 1/4d2}.

By Lemma 3.10, the Weyl operators Wx for x ∈ M0 all commute. We can thus extend
M0 to a maximal set M with this property. As in the proof of Theorem 3.3, we can
bound

max
S

|〈S|ψ〉|2 �
∑

x∈M0

pψ(x).

But this probability can be bounded as before using the Markov inequality (but now for
a (s − 1)st moment):

∑

x∈M0

pψ(x) = 1 −
∑

dnpψ(x)�1−1/4d2

pψ(x) � 1 −

∑
pψ(x)

(
1 − d(s−1)nps−1

ψ (x)
)

1 − (1 − 1/4d2)s−1

= 1 −
2

1 − (1 − 1/4d2)s−1

(
1 − paccept

)
.

The last equality is Eq. (3.16). This yields the desired bound.

Remark 3.12. It is clear that s = d + 1 is always a valid choice in Theorem 3.11. This
leads to Cd,s ≈ 1/8d for large d, but the resulting test involves gates that act on 2d+ 2
qudits at a time. However, this choice of s is in general rather pessimistic. E.g., if d is
odd then we may always choose s = 2, meaning that our test acts on four copies at a
time.

Corollary 3.13. Let d � 2 and fix s as in Theorem 3.11. Let ψ be a pure state of n
qudits and let ε > 0. Then there exists an quantum algorithm that, given O(1/Cd,sε2)
copies of ψ, accepts any stabilizer state (it is perfectly complete), while it rejects states
such that maxS|〈S|ψ〉|2 � 1 − ε2 with probability at least 2/3.

It is clear that the POVMmeasurement {Πs,accept, I−Πs,accept} can be implemented
efficiently. Using phase estimation, it suffices to argue that the controlled version of Vs

can be implemented efficiently. But Vs = v⊗n
s , so its controlled version is equal to a

composition of n controlled versions of vs, each of which acts only on a constant (with
respect to n) number of qudits. It follows that our stabilizer test for qudits is efficient.
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It is instructive to compute the action of the unitary Vs = v⊗n
s more explicitly: Let

|x〉 = |x1, . . . , x2s〉 denote a computational basis vector ofH⊗2s
n . Then, using Eq. (2.1),

Vs |x〉 = d−n
∑

a∈Vn

(Wa ⊗ W†
a)

⊗s |x〉 = d−n

∑

p,q∈Z
n
d

ωp·(sq+x1−x2+···−x2s) |x1 + q, x2 − q, . . .〉

= d−n
∑

p,q∈Z
n
d

ωsp·(q+x̄odd−x̄even) |x1 + q, x2 − q, . . .〉

= |x1 − x̄odd + x̄even, x2 + x̄odd − x̄even, . . .〉 ,

where x̄even = s−1
∑

k even xk and x̄odd is defined analogously. If we re-order the tensor
factors so that the odd systems come first, followed by the even ones, we find that a basis
vector |xodd, xeven〉 is mapped to |xodd − x̄odd + x̄even, xeven + x̄odd − x̄even〉. Thus, Vs is
a unitary that permutes the computational basis vectors by “swapping the mean” of the
even and the odd sites of the 2s many blocks of n qudits.

Here is one last reformulation that will be useful to connect to our algebraic results.
Let p2s = (−1, 1, . . . ,−1, 1) ∈ Z

2s
d denote the ‘parity vector’ that is ±1 on even/odd

sites, and consider the following 2s × 2s matrix with entries in Zd:

1̃ = 1− s−1p2spT
2s (3.17)

Then we can write the action of Vs as

Vs |x〉 = |1̃(x1, . . . , x2s)〉 = |(1̃ ⊗ In)x〉 . (3.18)

It is easy to verify that 1̃ is a stochastic isometry (cf. Eq. (4.36) in Sect. 4.3). For qubits and
s = 3, 1̃ is just the matrix obtained by taking the 6×6 identity matrix and inverting each
bit (the ‘anti-identity’). This gives a pleasant and insightful interpretation of Eq. (3.12),
as we will see in Sect. 5.2. Interestingly, the anti-identity has previously appeared in the
classification of Clifford gates in [GS16] (their T6).

4. Algebraic Theory of Clifford Tensor Powers

In this section, we present a general framework for studying the algebraic structure
of stabilizer states and Clifford operators. We start by describing the commutant of
the tensor powers of the Clifford group, where we obtain results similar in flavor to the
Schur–Weyl duality between the unitary group and the symmetric group. Next, we apply
this machinery to compute arbitrary moments of qudit stabilizer states, and we describe
how to construct t-designs of arbitrary order from weighted Clifford orbits. Lastly, we
return to the stabilizer testing problem and explain how our solution from Sect. 3 can
be understood more systematically and generalized. In particular, we find an optimal
projection that characterizes the tensor powers of stabilizer states precisely.

Throughout this section we assume that d is prime.
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4.1. Commutant of Clifford tensor powers. Schur–Weyl duality in its most fundamental
form asserts that any operator on (CD)⊗t that commutes with U⊗t for all unitaries
U ∈ U(D) is necessarily a linear combination of permutation operators. Using the
double commutant theorem, this implies at once that (Cd)⊗t =

⊕
λ VU(D),λ ⊗VSt,λ,

where the VU(D),λ and VSt,λ are pairwise inequivalent irreducible representations of
the unitary group U(D) and of the symmetric group St, respectively.

The main result of this section is that the commutant of the tensor powers of the
Clifford group can be completely described in terms of a natural generalization of per-
mutation operators (see Theorem 4.3 below). Mathematically, this generalization in-
volves Lagrangian subspaces of a space equipped with a quadratic form. Since stabilizer
states can be described in terms of Lagrangian subspaces with respect to a symplectic
form (Sect. 2), this is reminiscent of Howe’s classical duality between sympletic and
orthogonal group actions.

To describe the result more precisely, let T denote a subspace of Z
t
d ⊕Z

t
d. We define

a corresponding operator

r(T) =
∑

(x,y)∈T

|x〉 〈y|

on (Cd)⊗t, where |x〉 = |x1, x2, . . . , xt〉 ∈ (Cd)⊗t denotes the computational basis
vector associated with some x ∈ Z

t
d. We also consider the n-fold tensor power

R(T) := r(T)⊗n,

which is an operator on ((Cd)⊗t)⊗n ∼= (Cd)⊗tn ∼= ((Cd)⊗n)⊗t.Both r(T) andR(T)
are represented by real matrices in the computational basis.

Definition 4.1. (Σt,t) Consider the quadratic form q : Z
2t
d → ZD defined by q(x, y) :=

x ·x−y ·y. 5 We denote byΣt,t(d) the set of subspaces T ⊆ Z
2t
d satisfying the following

properties:

1. T is totally q-isotropic: i.e., x · x = y · y (mod D) for all (x, y) ∈ T .
2. T has dimension t (the maximal possible dimension).
3. T is stochastic: 12t = (1, . . . , 1) ∈ T .

We will summarize the first two conditions by saying that T is Lagrangian. Thus, we
will call Σt,t(d) the set of stochastic Lagrangian subspaces.

See [NW16, App. C] for a complete list of the subspacesΣt,t(d) for t = 3, and Sect. 4.3
for examples.

In Lemma 4.5, we will show that the operators R(T) are indeed in the commutant of
Cliff(n, d)⊗t. The proof is straightforward and elucidates the role of the three conditions
in Definition 4.1 as well as the difference between even and odd d.

Remark 4.2. Recall that a subspace T is called totally isotropicwith respect to a quadratic
form q if q(v) = 0 for every v ∈ T . This explain our terminology in Definition 4.1.

We can also consider theZd-valued bilinear form b((x, y), (x ′, y ′)) := x·x ′−y·y ′ ∈
Zd. By a straightforward calculation,

q(v + w) = q(v) + q(w) + 2b(v, w) (mod D) (4.1)

5 Note that for x ∈ Zd, x
2 is well-defined modulo D.
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for all v, w ∈ Z
2t
d . Thus, q is a ZD-valued quadratic form associated to the Zd-bilinear

form b in the sense of [Woo93]. Note that if T is totally isotropic with respect to q then
Eq. (4.1) shows that T is self-orthogonal, i.e., T ⊆ T⊥, where

T⊥ := {v ∈ Z
2t
d : b(v, w) = 0 ∀w ∈ T }.

If d is odd then q(v) = b(v, v), so any self-orthogonal subspace is automatically totally
isotropic with respect to q.

Ifd = 2 then Eq. (4.1) implies that, for a self-orthogonal subspace, the set of isotropic
vectors forms a subspace—so we can check total isotropicity on a basis. Moreover, for
d = 2, if T is Lagrangian then it is automatically stochastic; indeed, b(v, 12t) = q(v)
(mod 2), so 12t is contained in any maximal totally isotropic subspace.

Our goal of this section it to prove the following theorem:

Theorem 4.3 (Commutant of Clifford tensor powers). Let d be a prime and n � t− 1.
Then the operators R(T) = r(T)⊗n for T ∈ Σt,t(d) are

∏t−2
k=0(d

k + 1) many linearly
independent operators that span the commutant of the t-th tensor power action of the
Clifford group for n qudits.

It is instructive to discuss a few key features of Theorem 4.3. First, we know that
the permutation group on t elements, St, is in the commutant of the Clifford group
Cliff(n, d), because it is even in the commutant of the larger unitary group U(dn).
Indeed, let π · y = (yπ−1(1), . . . , yπ−1(t)) denote the permutation action of St on Z

t
d.

The one can see that, for any permutationπ ∈ St, the subspace Tπ = {(π·y, y) : y ∈ Z
t
d}

is Lagrangian and stochastic. The corresponding operator R(Tπ) = r(Tπ)
⊗n agrees

precisely with the usual permutation action of St on ((Cd)⊗n)⊗t. Accordingly, we
may identify St with a subset of Σt,t(d). We will see below in Definition 4.11 that the
set of subspaces T for which R(T) is invertible forms a (in general, proper) subgroup
that is (in general, strictly) larger than St.

Remarkably, Theorem 4.3 shows that the size of the commutant stabilizes as soon as
n � t−1. That is, just like for the symmetric group in Schur–Weyl duality of D, the set
Σt,t(d) that parametrizes the commutant of the Clifford tensor powers is independent
of n, the number of qudits, provided that n � t − 1. This stabilization, along with the
fact that the operators R(T) = r(T)⊗n are tensor powers, are highly useful properties
in applications (e.g., [NW16] and Sects. 5 and 5.2 below).

Remark 4.4. We believe that the results of Nebe et al [NRS06] show that the operators
R(T) span the commutant of Cliff(n, d)⊗t for any value of n. But we caution that if
n < t − 1 then the R(T) are in general no longer linearly independent (e.g., [Zhu15,
eqs. (9) and (10)]).

Theorem 4.3 will be established by combining a number of intermediate results of
independent interest. We first show that the operators R(T) are indeed in the commutant
of Cliff(n, d)⊗t.

Lemma 4.5. For every T ∈ Σt,t(d) and for every U ∈ Cliff(n, d), we have that
[R(T), U⊗t] = [r(T)⊗n, U⊗t] = 0.

Proof. Up to global phases, the Clifford group is generated by the following three
operators, which are allowed to act on arbitrary qudits or pairs of qudits [Got99,Far14,
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NBD+02]: The Fourier transform (also known as the Hadamard gate for d = 2),

H =
1√
d

∑

a,b∈Zd

ωab |a〉 〈b| ,

the phase gate, which is defined as

P =
∑

a∈Z2

ia
2

|a〉 〈a| for d = 2, P =
∑

a∈Zd

ω2−1a(a−1) |a〉 〈a| for d 	= 2,

(here we use that for d = 2, a2 is well-defined modulo four, while for odd d, 2 has
a multiplicative inverse, denoted 2−1), and the controlled addition (also known as the
CNOT gate for d = 2)

CADD =
∑

a,b∈Zd

|a, a + b〉 〈a, b| .

To establish the lemma we will prove the claim for each generator (cf. [NRS06]).
TheFourier transformH is a one-qudit gate, so it suffices to show that [H⊗t, r(T)] = 0

for every T ∈ Σt,t(d). Indeed:

H⊗tr(T)H†,⊗t = d−t
∑

a,b∈Z
t
d

∑

(x,y)∈T

ωa·x−b·y |a〉 〈b|

= d−t
∑

a,b∈Z
t
d

∑

(x,y)∈T

ωb((a,b),(x,y)) |a〉 〈b|

=
∑

(a,b)∈T⊥
|a〉 〈b| = r(T).

In the second step and third steps, we used the notation b and T⊥ from Remark 4.2,
respectively, as well as that dim T = t. The last step holds since T = T⊥, as T is a
Lagrangian subspace.

Next, we consider the phase gate, which is likewise a single-qudit gate. For d = 2,
we have that

P⊗tr(T)P†,⊗t =
∑

(x,y)∈T

ix·x−y·y |x〉 〈y| = r(T)

since T is totally isotropic. For odd d, we instead compute

P⊗tr(T)P†,⊗t =
∑

(x,y)∈T

ω2−1
∑

j xj(xj−1)−yj(yj−1) |x〉 〈y|

=
∑

v=(x,y)∈T

ω2−1b(v,v−12t) |x〉 〈y| = r(T),

since T is totally isotropic and stochastic (so w = v − 12t ∈ T and b(v, w) = 0 for
every v ∈ T ).
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Lastly, we consider the controlled addition gate, which is a two-qudit gate:

CADD⊗t r(T)⊗2 CADD†,⊗t =
∑

(x,y)∈T

∑

(x ′,y ′)∈T

CADD⊗t |x, x ′〉 〈y, y ′|CADD†,⊗t

=
∑

(x,y)∈T

∑

(x ′,y ′)∈T

|x, x + x ′〉 〈y, y + y ′| =
∑

(x,y)∈T

∑

(x ′,y ′)∈T

|x, x ′〉 〈y, y ′|

where we only used that T is a subspace.

We now show that the operators R(T) are linearly independent as soon as n � t− 1.
For this, we introduce the following useful notation:

Definition 4.6 (Vectorization). The vectorization operator vec is defined by its action in
the computational basis via

vec(|x〉 〈y|) = |x〉 ⊗ |y〉 = |x, y〉 .

Lemma 4.7. If n � t − 1 then operators R(T) are linearly independent.

Proof. For each T ∈ Σt,t(d), consider the vectorization of r(T), which we denote
by |T〉 := vec (r(T)) =

∑
v∈T |v〉 ∈ (Cd)⊗2t. Note that 〈v|T〉 = δv∈T . Clearly,

vec (R(T)) = vec (r(T))⊗n = |T〉⊗n. Therefore, we want to show that the vectors
|T〉⊗n are linearly independent as soon as n � t − 1. But each T is t-dimensional and
contains the vector 12t. Extend it by v1, . . . , vt−1 to a basis of T . Then, if T ′ is another
subspace:

〈v1| . . . 〈vt−1| 〈0|⊗n−(t−1) |T ′〉⊗n
= 〈v1| . . . 〈vt−1| |T ′〉⊗(t−1)

= δv1,...,vt−1∈T ′ = δT,T ′

This concludes the proof.

So far, we have accomplished the task of finding a large set of linearly independent
operators in the commutant of Cliff(n, d)⊗t, one for each element of Σt,t(d). In the
remainder of this section we will compute the dimension of the commutant as well as
the cardinality of Σt,t(d), and show that the two numbers agree precisely. We will use
the Gaussian binomial coefficients, which are defined by

(
n

k

)

d

=
[n]d[n − 1]d · · · [n − k + 1]d

[k]d[k − 1]d · · · [1]d , where [k]d =

k−1∑

i=0

di,

It is well-known that
(
n
k

)
d
equals the number of k-dimensional subspaces in Z

n
d . The

Gaussian binomial coefficients satisfy the following analogs of Pascal’s rule,
(

n

k

)

d

= dk

(
n − 1

k

)

d

+

(
n − 1

k − 1

)

d

, (4.2)

and of the binomial formula,

n∑

k=0

dk(k−1)/2

(
n

k

)

d

tk =

n−1∏

k=0

(
dkt + 1

)
. (4.3)
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We now compute the dimension of the commutant. This has previously been done
for t � 4 by Zhu [Zhu15] and before that for d = 2, n = 1 by van den Nest et al
[vdNDdM05].

We start with the following result from [Zhu15],which reduces the dimension compu-
tation to a counting problem. Zhu arrived at this result by computing the frame potential
of the Clifford group—essentially, the norm squared of the character of the represen-
tation U �→ U⊗k. In contrast, we will follow the approach by van den Nest et al, who
considered the action of the Clifford average (also known as the twirl operation or
Reynolds operator) on the basis of Weyl operators, correcting a glitch in [vdNDdM05]
along the way. 6

Lemma 4.8 ([Zhu15,vdNDdM05]). The dimension of the commutant of Cliff(n, d)⊗t

is equal to the number of orbits for the diagonal action of the symplectic group Sp(2n, d)

on t − 1 copies of the phase space Z
2n
d , i.e., for the action

Γ · (x1, . . . , xt−1) = (Γx1, . . . , Γxt−1), (4.4)

where Γ ∈ Sp(2n, d) and (x1, . . . , xt−1) ∈ (Z2n
d )t−1.

Proof. We will show that the dimension of the commutant is equal to the number of
orbits for the diagonal action of Sp(2n, d) on

Wt := {(x1, . . . , xt) :

t∑

i=1

xi = 0},

which is plainly an equivalent statement.
We start by noting that the Weyl operators Wx for x = (x1, . . . , xt) ∈ (Z2n

d )t form
a basis of the space of operators on ((Cd)⊗n)⊗t. We can thus obtain a generating set
of the commutant by averaging each Weyl operator Wx with respect to the tensor power
action of the Clifford group. According to Lemma 2.1, we can for each symplecticmatrix
Γ fix a Clifford unitary UΓ such that the set of {UΓWb} equals the Clifford group, up
to global phases. Let us denote by fΓ the phase function corresponding to UΓ , as in
Eq. (2.8). Thus, the average of the Weyl operator Wx is, up to overall normalization,
given by

ΛCliff(Wx) := d−2n
∑

Γ∈Sp(2n,d)

∑

b∈Z
2n
d

(UΓWb)
⊗t

Wx (UΓWb)
†,⊗t

= d−2n
∑

Γ∈Sp(2n,d)

∑

b∈Z
2n
d

ω[b,x1+···+xt]U⊗t
Γ WxU

†,⊗t
Γ

= δx∈Wt

∑

Γ∈Sp(2n,d)

ωfΓ (x)WΓx,

where fΓ (x) =
∑t

i=1 fΓ (xi) and Γx := (Γx1, . . . , Γxt).
When d is odd, the phase function f can be chosen to vanish (Lemma 2.1). Thus, the

averaged operator is equal to the sum of Weyl operators over the Sp(2n, d)-orbit of x,

6 In Ref. [vdNDdM05], the relative phasesωfΓ (x) that appear in our Eq. (4.5) are all taken to be trivial (for
qubits). The origin seems to lie in their Section II, where it is stated—in their language—that α1α2α3 = 1.
But this holds only if their π is cyclic. Clifford operations inducing non-cyclic permutations do, however,
exist. We thank Huangjun Zhu for identifying the root of the apparent contradiction.
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provided x ∈ Wt, and zero otherwise. Since distinct orbits are disjoint, it is clear that
we obtain a basis of the commutant by averaging one Weyl operator for each orbit of
the diagonal action of Sp(2n, d) on Wt.

Now consider the case where d = 2. To each x ∈ Wt, associate the phase φx (a
power of τ) such that

Wx1
· · ·Wxt = φx I.

Then, for each Γ ∈ Sp(2n, d),

φx I = UΓWx1
· · ·WxtU

†
Γ = (UΓWx1

U
†
Γ ) · · · (UΓWxtU

†
Γ )

= ωfΓ (x)WΓx1
· · ·WΓxt

= ωfΓ (x)φΓx.

It follows that the phase function fΓ (x) depends only on x and Γx (rather than directly
on Γ ) and is given explicitly by the quotient

ωfΓ (x) =
φx

φΓx
. (4.5)

Thus, for x ∈ Wt,

ΛCliff(Wx) =
∑

Γ∈Sp(2n,d)

φx

φΓx
WΓx = φx

∑

Γ∈Sp(2n,d)

WΓx

φΓx
.

In particular, if y is in the same Sp(2n, d)-orbit as x then ΛCliff(Wy) =
φy
φx

ΛCliff(Wx),
i.e., the two averaged operators only differ by a global phase. Thus, also for d = 2 we
obtain a basis of the commutant by averaging one Weyl operator for each orbit of the
diagonal action of Sp(2n, d) on Wt.

We now derive an explicit formula for the dimension of the commutant.

Theorem 4.9 (Dimension of commutant). Let n � t − 1. Then the dimension of the
commutant of Cliff(n, d)⊗t is equal to

∏t−2
k=0(d

k + 1).

Proof. To count the number of orbits of the action (4.4), we will associate to any orbitO
an invariant, the dimension, defined by dim(O) = dim span {x1, . . . , xt−1}, where
(x1, . . . , xt−1) is any point in the orbit. We write Ωt for the set of all orbits and Ω�

t for
the set of orbits with dimension . We will establish and solve the following recursion
relation:

|Ω�
t| = |Ω�

t−1|d� + |Ω�−1
t−1|d�−1 (4.6)

To see why this is true, suppose (x1, . . . , xt−1) ∈ Ω�
t. Then there are two cases:

1. xt−1 ∈ span {x1, . . . , xt−2}: Then the orbit through (x1, . . . , xt−2) is inΩ�
t−1, and

there are d� ways to choose xt−1 ∈ span{x1, . . . , xt−2}. Together, this contributes
|Ω�

t−1|d� many orbits to Ω�
t.

2. xt−1 	∈ span {x1, . . . , xt−2}: Then the orbit through (x1, . . . , xt−2) is in Ω�−1
t−1,

and we have to count the number of ways that we can add a new vector xt−1 to
span {x1, . . . , xt−2} such that we get different orbits. By Witt’s theorem, which also
holds for alternating forms in characteristic two [Wil09], the only invariants are the
inner products between xt−1 and a basis of span {x1, . . . , xt−2}. By assumption, the
latter space has dimension  − 1 � t − 2 < n, so we have d�−1 options for xt−1.
Together, this contributes |Ω�−1

t−1|d�−1 many orbits to Ω�
t.



1358 D. Gross, S. Nezami, M. Walter

We have thus established the recursion relation (4.6). Since Ω2,0 = {{0}} and Ω2,1 =
{x1 	= 0}, we find the initial conditions |Ω2,0| = |Ω2,1| = 1. The solution to the
recursion relation is

|Ω�
t| = d�(�−1)/2

(
t − 1



)

d

,

as can be verified by using Pascal’s rule (4.2). Using the binomial formula (4.3), we
conclude that

|Ωt| =

t−1∑

�=0

|Ω�
t| =

t−1∑

�=0

d�(�−1)/2

(
t − 1



)

d

=

t−2∏

k=0

(dk + 1). (4.7)

This establishes the desired formula for the dimension of the commutant.

Next, we count the number of stochastic Lagrangian subspaces. To this end, define
the “diagonal subspace”

Δ = {(x, x) | x ∈ Z
t
d} ⊂ Z

2t
d .

Theorem 4.10 (Cardinality of Σt,t). We have |Σt,t(d)| =
∏t−2

k=0(d
k + 1).

Proof. LetΣ�
t,t(d) denote the set of subspaces T ∈ Σt,t(d) such that dim(T∩Δ) = t−.

We will show that
∣
∣
∣Σ�

t,t(d)
∣
∣
∣ = d�(�−1)/2

(
t − 1



)

d

, (4.8)

which implies the claim by the same calculation as in Eq. (4.7). To start, consider a
subspace T ∈ Σ�

t,t(d) and consider

TΔ := T ∩ Δ = {(x, x) : x ∈ X},

with X a (t − )-dimensional subspace that is uniquely determined by T . Since T is
stochastic, we know that 1t ∈ X. Fix a basis x1, . . . , xt−� of X and extend it by vectors
z1, . . . , z� to a basis ofZ

t
d. Denote the dual basis with respect to the ordinary dot product

by x̂1, . . . , x̂t−�, ẑ1, . . . , ẑ�. Now, any vector in Z
2t
d , so particularly in T , can be written

uniquely in the form (a+b, b). The subspace of vectors where b is a linear combination
of z1, . . . , z� forms a complement of TΔ ⊆ T , which we shall denote by TN. Since
TN ∩ Δ = {0}, we know that a 	= 0 for any nonzero vector in TN. The condition that
T is self-orthogonal implies that a · xi = 0 for all i = 1, . . . , t − , so that a is a
linear combination of ẑ1, . . . , ẑ�. Since also dim TN = , this implies that TN has a
unique basis of the form (ẑ1 +w1, w1), …, (ẑ� +w�, w�), where each wi is of the form
wi =

∑�
j=1 Aijzj. We still need to implement the condition that TN is self-orthogonal.

In terms of the matrix A = (Aij), this means that

0 = (ẑi + wi) · (ẑj + wj) − wi · wj = ẑi · ẑj + Aij + Aji (mod d) (4.9)

for any i, j. This means that the lower triangular part of A is uniquely determined by the
upper triangular part.
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For d 	= 2, (4.9) furthermore implies that the diagonal entries of A are fixed, so
there are in total d�(�−1)/2 many options for A. We have thus implemented all condi-
tions for T to be a subspace in Σ�

t,t(d) since, according to Remark 4.2, for d 	= 2, any
self-orthogonal T is automatically totally isotropic. The set of (t− )-dimensional sub-
spaces of Z

t
d that contain 1t are in bijection with the (t− − 1)-dimensional subspaces

in Z
t
d/Zd1t, hence there are

(
t−1

t−�−1

)
d
=
(
t−1

�

)
d
many choices for X. Together, we

obtain (4.8).
For d = 2, (4.9) gives no constraint about the diagonal entries ofA. Instead, it asserts

that ẑi · ẑi = 0 or, equivalently, that ẑi · 1t = 0 for i = 1, . . . , , which is automatically
satisfied since 1t ∈ X. We will now show that there is a unique choice for the diagonal
entries ofA such that T is totally isotropicwith respect to theZ4-valued quadratic form q.
By the discussion in Remark 4.2, since T is self-orthogonal, it suffices to consider TΔ

and its complement TN separately. But the vectors in TΔ are automatically isotropic,
while for TN total isotropy amounts to the condition that

0 = (ẑi + wi) · (ẑi + wi) − wi · wi = ẑi · ẑi + 2Aii (mod 4),

which fixes the Aii uniquely. We thus obtain (4.8) by the same counting as above.

We finally obtain Theorem 4.3 as a consequence of the preceding results.

Proof of Theorem 4.3. BycombiningLemma4.5 andTheorems4.9 and4.10,we see that
the operators R(T) form a basis of the commutant of Cliff(n, d)⊗t on
((Cd)⊗n)⊗t.

It is interesting to note that all elements R(T) of our basis of the commutant of
Cliff(n, d)⊗s have the property that 〈S⊗t|R(T)|S⊗t〉 = 1 for every stabilizer state |S〉.
Indeed, if T ∈ Σt,t(d) and |S〉 = U |0〉⊗n for some Clifford unitary U, then

〈S⊗t|R(T)|S⊗t〉 = 〈S⊗t|R(T)U⊗t|0⊗tn〉 = 〈S⊗t|U⊗tR(T)|0⊗tn〉
= 〈0⊗tn|R(T)|0⊗tn〉 = 1, (4.10)

where we used that 0 ∈ T (see also Eq. (4.13) below).

4.2. Structure of the commutant. Theorem 4.3 is in the spirit of Schur–Weyl duality
in that it establishes a natural basis of the commutant of the tensor power action of the
Clifford group (a subgroup of the unitary group), generalizing the permutation operators.
Yet, in contrast to the permutation group, Σt,t(d) is not in general a group and the
operators R(T) for T ∈ Σt,t(d) are not always invertible. In this section we show that
Σt,t(d) has a rich algebraic structure.

Wefirst observe that there is amaximal subset ofΣt,t(d) that carries a group structure
such that the R(T) form a (unitary) representation. The following definition and lemma
identify these elements:

Definition 4.11. (Ot) Consider the quadratic form q : Z
t
d → ZD defined by q(x) :=

x · x. 7 We define Ot(d) as the group of t × t-matrices O with entries in Zd that satisfy
the following properties:

1. O is a q-isometry: i.e., Ox · Ox = x · x (mod D) for all x ∈ Z
t
d.

7 Recall that for x ∈ Zd, x
2 is well-defined modulo D.
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2. O is stochastic: O1t = 1t (mod d).

We will refer to Ot(d) as the stochastic orthogonal group; its elements will be called
stochastic isometries.

To see that Ot(d) forms a group we only need to observe that O−1 = OT is again in
Ot(d). The following remark is completely analogous to Remark 4.2.

Remark 4.12. Recall that a linear map is an isometry with respect to a quadratic form q
if q(Ox) = q(x) for all x ∈ Z

t
d. This justifies our terminology in Definition 4.11. As

before, we note that q is a ZD-valued quadratic form associated to the Zd-bilinear form
x · y in the sense of [Woo93], namely,

q(x + y) = q(x) + q(y) + 2x · y (mod D). (4.11)

In particular, anyO ∈ Ot(d) is an orthogonalmatrix in the ordinary sense thatOTO = I
(mod d), i.e., Ox · Oy = x · y for all x, y ∈ Z

t
d. If d is odd then q(x) = x · x, so any

orthogonal matrix is automatically a q-isometry.
If d = 2 then Eq. (4.11) implies that an orthogonal matrixO is a q-isometry provided

that q(x) = 1 (mod 4) for every column ofO or, equivalently, for every row ofO (since
OT = O−1). In particular, any q-isometry is automatically stochastic.

The significance of Definition 4.11 is the following observation.

Lemma 4.13. For every O ∈ Ot(d), the subspace

TO := {(Ox, x) : x ∈ Z
t
d}

is an element of Σt,t(d) and the operators

r(O) := r(TO) =
∑

x

|Ox〉 〈x| , R(O) := r(O)⊗n = R(TO) (4.12)

are unitary. Conversely, if R(T) is invertible then T = TO for some O ∈ Ot(d).
Moreover, the operators R(O) define a unitary representation of Ot(d) on (Cd)⊗tn.

Proof. Only the converse needs justification. Note that in order for R(T) to be invertible,
both subspaces {x : (x, y) ∈ T } and {y : (x, y) ∈ T } of Z

t
d should be t-dimensional

(corresponding to r(T) having full row and column rank). The claim now follows
easily.

Wewill often regardOt(d) as a subset ofΣt,t(d) via the assignmentO �→ TO. Note that
any permutation matrix satisfies the conditions of Definition 4.11, so we can consider
St as a subgroup of Ot(d) for every value of d, and hence as a subset of Σt,t(d).

Remark 4.14. The Clifford group is a t-design (for n � t − 1) if and only if St =
Ot(d) = Σt,t(d), i.e., if and only if

tW = |St| = |Σt,t(d)| =

t−2∏

k=0

(dk + 1).

This identity always holds up to t = 2, and up to t = 3 precisely in the case of qubits
(d = 2). Thus the multiqubit Clifford group is a 3-design (but not a 4-design), while in
higher dimensions the Clifford group is only a 2-design (but not a 3-design), reproducing
prior beautiful results [Zhu15,Web16].
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For O ∈ Ot(d), Eq. (4.10) implies that

R(O) |S〉⊗t = |S〉⊗t (4.13)

for every stabilizer state |S〉. That is, stochastic isometries stabilize any stabilizer tensor
power. We will return to discussing the implications of this important fact in Sect. 5
below.

Next, we note that the group Ot(d) naturally acts on the elements of Σt,t(d) from
left and right, suggesting that it is the natural symmetry group of Σt,t(d).

Definition 4.15 (Left and right action on subspaces). Consider a subspace T ∈ Σt,t(d)
and a matrix O ∈ Ot(d). We define the left action of O on T as follows:

OT = {(Ox, y) : (x, y) ∈ T }. (4.14)

Similarly, the right action of O on T is defined as:

TO = {(x, OT y) : (x, y) ∈ T }. (4.15)

It is easy to check that OT, TO ∈ Σt,t(d).

Note that this action is consistent with the composition of the operators R(T) and
R(O): For all T ∈ Σt,t(d) and O,O ′ ∈ Ot(d) we have that

R(O)R(T)R(O ′) = R(OTO ′).

We can therefore decompose Σt,t(d) into a disjoint union of double cosets with respect
to the left and right action:

Σt,t(d) = Ot(d)T1Ot(d) ∪ · · · ∪ Ot(d)TkOt(d), (4.16)

where T1, . . . , Tk are choices of subspaces in Σt,t(d) that represent the different cosets.
We note that Ot(d) is always one of the double cosets in Eq. (4.16), corresponding to,
e.g., the choice T1 = Δ.

We will now derive a complete classification of the double cosets. We start with
the central definition. Recall the quadratic form q : Z

t
d → ZD, q(x) := x · x from

Definition 4.11.

Definition 4.16 (Defect subspaces). A defect subspace is a subspace N ⊆ Z
t
d with the

following properties:

1. N is totally q-isotropic: i.e., q(x) = 0 (mod D) for all x ∈ N.
2. N is co-stochastic: 1t ∈ N⊥, i.e., x · 1t = 0 (mod d) for every x ∈ N.

ThequotientN⊥/N inherits aZD-valuedquadratic form,whichwealso denote byq([y])
:= q(y).

Given two defect subspaces N and M, we write Iso(N,M) for the set of defect
isomorphisms, by which we mean invertible linear maps J : N⊥/N → M⊥/M with the
following two properties:

1. J is a q-isometry: i.e., q(J[y]) = q([y]) for all [y] ∈ N⊥/N.
2. J is stochastic: J[1t] = [1t].

The inverse of J is again a map in Iso(M,N).
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This definition is central as it allows us to construct elements in Σt,t(d). If N, M
are defect subspaces and J ∈ Iso(M,N), then

T = {(x + z, y + w) : [y] ∈ M⊥/M, [x] = J[y], z ∈ N, w ∈ M}

= {(x, y) : y ∈ M⊥, x ∈ J[y]}
(4.17)

is an element in Σt,t(d). Note that, necessarily, dimN = dimM (since J is invertible)
and 1t ∈ N if and only if 1t ∈ M (since J is also stochastic). We now show that all
elements of Σt,t(d) can be obtained in this way.

Proposition 4.17. Let T ∈ Σt,t(d).

1. The subspaces TLD := {x : (x, 0) ∈ T } and TRD := {y : (0, y) ∈ T } are defect
subspaces. We call them the left and right defect subspaces of T , respectively.

2. dim TLD = dim TRD and 1t ∈ TLD if and only if 1t ∈ TRD.
3. T⊥

LD = TL := {x : (x, y) ∈ T } and T⊥
RD = TR := {y : (x, y) ∈ T },

4. For every y ∈ T⊥
RD, choose some x(y) such that (x(y), y) ∈ T . Then TJ : [y] �→ [x(y)]

is a well-defined defect isomorphism, i.e., an element in Iso(TRD, TLD).
5. The data (TLD, TRD, TJ) is uniquely determined by T .
6. T is of the form (4.17), with TLD = N, TRD = M, and TJ = J.

Proof. The first claim is clear from Definition 4.1. Since T is stochastic, so (1t, 0) ∈ T
if and only if (0, 1t) = 12t − (1t, 0) ∈ T , which proves half of the second claim. Next,
consider the maps

πL : T → Z
t
d, (x, y) �→ x and πR : T → Z

t
d, (x, y) �→ y.

Then TLD
∼= ker πR and TRD

∼= ker πL, while TL = ranπL and TR = ranπR. Note that
TL ⊆ T⊥

LD and TR ⊆ T⊥
RD, since T is totally isotropic. Using the rank-nullity theorem,

dim T⊥
LD = dim T − dim TLD = dim T/ ker πR = dim ranπR = dim TR � dim T⊥

RD,

dim T⊥
RD = dim T − dim TRD = dim T/ ker πL = dim ranπL = dim TL � dim T⊥

LD.

Adding the two inequalities we see that they must both be equalities, hence dim TLD =
dim TRD as well as TL = T⊥

LD, TR = T⊥
RD. This establishes the second and third claim.

For the fourth claim, first recall from above that T⊥
LD = TL and T⊥

RD = TR, which
means that for any y ∈ T⊥

RD there exists some x ∈ T⊥
LD such that (x, y) ∈ T . Next,

suppose that (x, y), (x ′, y ′) ∈ T such that y − y ′ ∈ TRD. Then (0, y − y ′) ∈ T , so

(x − x ′, 0) = (x, y) − (0, y − y ′) − (x ′, y ′) ∈ T,

which means that x − x ′ ∈ TLD. As a consequence, [y] �→ [x(y)] is well-defined as
a map from T⊥

RD/TRD to T⊥
LD/TLD. Using Definition 4.1, it is not hard to see that it

defines an element of Iso(TRD, TLD).
The fifth claim is clear by construction of TLD and TRD and from the fact that

[y] �→ [x(y)] is well-defined. And the last claim can be seen to hold since the right-
hand side of (4.17) is clearly a subset of T for our choice of N, M, and J, but also of
dimension t.
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Thus we can cleanly decompose a subspace T into the two defect subspaces TLD

and TRD as well as the defect isomorphism TJ : [y] �→ [x(y)]. When T corresponds to a
stochastic isometry O ∈ Ot(d), i.e., T = TO = {(Oy, y)}, then both defect subspaces
are trivial and the defect isomorphism TJ can be identified with O itself.

According to Proposition 4.17, for every T ∈ Σt,t(d), the left and right defect
subspaces TLD and TRD necessarily have the same dimension and 1t ∈ TLD if and only
if 1t ∈ TRD. Note that if T ∈ Σt,t(d) and O,O ′ ∈ Ot(d), then T ′ = OTO ′ has defect
subspaces

T ′
LD = OTLD and T ′

RD = (O ′)TTRD (4.18)

and defect isomorphism

T ′
J : [y] �→ [Ox(O ′y)]. (4.19)

Which elements T ′ ∈ Σt,t(d) can be obtained in this way? Clearly, the left-right action
by Ot(d) preserves the common dimension of the defect subspaces and whether the
all-ones vector is contained. We will now show that these are the only two invariants.

Lemma 4.18. Let N,M ⊆ F
t
d be two defect subspaces with dimN = dimM and

1t ∈ N if and only if 1t ∈ M. Then there exists O ∈ Ot(d) such that ON = M.

Proof. Let Ñ := N+Zd1t and M̃ := M+Zd1t. The assumption implies that dim Ñ =
dim M̃. Choose any linear isomorphism Õ : Ñ → M̃ such that Õ1t = 1t. Since both
N and M are totally isotropic and co-stochastic, Õ is an isometry with respect to the
symmetric bilinear form x · y.

If d > 2, we can directly apply the usual version of Witt’s lemma for symmetric
bilinear forms of odd characteristic [Wil09] to see that Õ extends to an isometry map O
which by construction is also stochastic, i.e., O ∈ Ot(d).

For d = 2, we appeal to the version ofWitt’s lemma from [Woo93] for theZ4-valued
quadratic form q(x) = x · x (mod 4) from Remark 4.12. Here we need to verify two
conditions: (i) Õ should be an isometry with respect to q, i.e., q(Õx) = q(x) for every
x ∈ Ñ. Since we already know that Õ is orthogonal, it suffices to check this condition
on a generating set. By construction, Õ1t = 1t, so the condition is clearly true for
x = 1t. On the other hand, both defect subspaces are totally isotropic, which means
that q(Õx) = 0 = q(x) (mod 4) for every x ∈ N. Thus, the first condition is satisfied.
(ii) We also need to check is that Ñ ∩ I⊥ = M̃ ∩ I⊥, where I := {y ∈ Z

t
2 : y · y = 0

(mod 2)}. But I = 1⊥
t and hence I⊥ = Z21t. By construction, 1t ∈ Ñ and 1t ∈ M̃,

so the second condition is also satisfied. We conclude that Õ extends to an isometry O
with respect to the quadratic form q, which implies that O ∈ Ot(2) (Remark 4.12).

Corollary 4.19. Let N,M ⊆ F
t
d be two defect subspaces with dimN = dimM and

1t ∈ N if and only if 1t ∈ M. Then there exists T ∈ Σt,t(d) such that TLD = N and
TRD = M.

Proof. Take O ∈ Ot(d) as in Lemma 4.18. Then, OTM = N, OTM⊥ = N⊥, and
hence J : [y] �→ [OT y] is a defect isomorphism. Then the subspace (4.17) has the desired
defect spaces.

Lemma 4.20. Let J : N⊥/N → M⊥/M be a defect isomorphism. Then there exists an
O ∈ Ot(d) inducing J, i.e., ON = M and [Ox] = J[x] for every [x] ∈ N⊥.
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Proof. (Sketch) Note that the existence of J implies that dimM = dimN as well as
1t ∈ M if and only if 1t ∈ N. This means that we can choose a linear isomorphism
J̃ : N⊥ → M⊥ that fixes 1t, sends N to M and which restricts to J. As in the proof of
Lemma 4.18, we can use the appropriate version of Witt’s lemma to obtain the existence
of an extension O ∈ Ot(d).

Corollary 4.21 (Equivalenceof double cosets).LetT, T ′ ∈ Σt,t(d). Then,T ′ ∈ Ot(d)T
Ot(d) if and only if dim TLD = dim T ′

LD and 1t ∈ TLD iff 1t ∈ T ′
RD. In particular,

Σt,t(d) consists of no more than t double cosets.

Proof. It is clear that the two conditions are necessary. We will now argue that they
are sufficient. First, use Lemma 4.18 to find O and O ′ such that OT ′

LD = TLD and
O ′TRD = T ′

RD. Then T ′′ := OT ′O ′ is such that T ′′
LD = TLD and T ′′

RD = TRD

(Eq. (4.18)). Next, use Lemma 4.20 to obtain some O ′′ that induces the defect isomor-
phism TJ(T

′′
J )−1 : T⊥

LD/TLD → T⊥
LD/TLD. Then O ′′T ′′ = T , concluding the proof.

For the last remark, note that the dimension of a totally isotropic subspace is never larger
than t/2. If the dimension is zero, then it cannot contain 1t, while if the dimension is t/2
then it is Lagrangian, hence must contain 1t. Hence the number of possible dimensions
is at most 1 + (t/2 − 1)2 + 1 = t.

Remark 4.22. We can also restrict to either the left or the right action. In this case, the
resulting cosets are classified by the right and left defect subspace, respectively, which
is an arbitrary defect subspace in the sense of Definition 4.16.

Next, we give an explicit description of the operators R(T) = r(T)⊗n in terms of
the defect subspaces and the defect isomorphism. If N is a defect subspace, define the
coset states

|N, [x]〉 := |N|−1/2
∑

z∈N

|x + z〉 ,

which form an orthonormal family for [x] ∈ N⊥/N.

Lemma 4.23. Let T ∈ Σt,t(d), with defect subspaces TLD, TRD and defect isomor-
phism TJ : T⊥

LD/TLD → T⊥
RD/TRD. Then:

1

|TLD|
r(T) =

∑

[y]∈T⊥
RD

/TRD

|TLD, TJ[y]〉 〈TRD, [y]| . (4.20)

Thus, r(T) is proportional to a partial isometry, and rank r(T) = |T⊥
LD/TLD| =

|T⊥
RD/TRD|.

Proof. We obtain (4.20) directly from Proposition 4.17 and (4.17). Since the coset states
form two orthonormal families and TJ is a bijection, the formula for the rank follows at
once.

Now consider the case when the left and right defect subspaces coincide and the
defect isomorphism is trivial. That is,

T = {(x + z, x + w) : [x] ∈ N⊥/N, z, w ∈ N}

= {(x, y) : y ∈ N⊥, x ∈ [y]} = {(x, y) : x ∈ N⊥, y ∈ [x]},
(4.21)
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where N := TLD = TRD is an arbitrary defect subspace. In view of Corollary 4.21, any
double coset contains a subspace of this form. In this case, r(T) and R(T) are related to
a well-known family of codes in quantum information theory. To state the result, define
the Weyl operators of, respectively, shift and multiply type:

Zp = Wp,0 and Xq = W0,q.

Given any totally isotropic subspace N ⊆ Z
t
d, the set

CSS(N) := {ZpXq : q, p ∈ N}

forms a stabilizer group of cardinality |N|2 (since N is self-orthogonal, the Weyl op-
erators commute). Such codes are a simple variant of Calderbank-Shor-Sloane (CSS)
codes [Ste96b,CS96,Ste96a]. The projection onto the code space can be written as

PCSS(N) =
1

|N|2

∑

q,p∈N

ZpXq (4.22)

By taking the trace of Eq. (4.22), one finds the dimension of the code is given by
dt−2 dimN = |N⊥/N|. One can readily confirm that the coset states |N, [z]〉 for [z] ∈
N⊥/N form an orthonormal basis, so

PCSS(N) =
∑

[x]∈N⊥/N

|N, [x]〉 〈N, [x]| , (4.23)

In particular, all this applies in the situation of Eq. (4.21). It follows that r(T) and R(T)
are proportional to orthogonal projections onto CSS codes associated with the defect
subspaces:

Theorem 4.24 (CSS codes). Suppose that T is of the form (4.21), i.e., its left and right
defect subspaces coincide and that the defect isomorphism is trivial. Let N := TLD =
TRD. Then,

r(T) = |N|PCSS(N) = ddimNPCSS(N).

Conversely, if T ∈ Σt,t(d) is such that r(T) is an orthogonal projection, then T is of the
form (4.21).

Proof. The formula for r(T) follows directly by comparing Eqs. (4.20) and (4.23).
Conversely, suppose that r(T) is an orthogonal projection. We see from Eq. (4.20)

that the range of r(T) is spanned by the |TLD, [x]〉, so we must have

|TLD, [x]〉 = r(T) |TLD, [x]〉 =
∑

[y]∈T⊥
RD

/TRD

|TLD, TJ[y]〉 〈TRD, [y] | TLD, [x]〉 .

Since the coset states |TLD, [x]〉 form a basis, it follows that

〈TRD, [y] | TLD, [x]〉 = δ[x],TJ[y]

for all x ∈ TLD and y ∈ TRD. When [x] = TJ[y], then 〈TRD, [y] | TLD, [x]〉 = 1,
which implies that TLD = TRD (the inner product is at most |TLD ∩ TRD|/|TLD| in
absolute value). Denoting the common defect subspace by N, it follows that δ[x],[y] =

〈N, [y]|N, [x]〉 = δ[x],TJ[y], so TJ is trivial.
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Finally,we can equip the set of subspacesΣt,t(d)with a semigroup structure, denoted
by ◦, such that the assignment T �→ R(T) becomes a representation, i.e.,

R(T1)R(T2) = |N1 ∩ N2|n R(T1 ◦ T2) = dn dim(N1∩N2) R(T1 ◦ T2). (4.24)

First, if T1 or T2 are associated to a stochastic isometry in Ot(d), then we can simply
define T1 ◦ T2 as in Definition 4.15. In particular, the diagonal subspace is the identity
element.

Next, consider the case that T1 and T2 are of the form (4.21), associated to defect sub-
spacesN1 andN2. Then we may define T1 ◦T2 as the Lagrangian stochastic subspace T
with

TLD = (N1 + N2) ∩ N⊥
1 = N⊥

1 ∩ N2 + N1,

TRD = (N1 + N2) ∩ N⊥
2 = N1 ∩ N⊥

2 + N2,

TJ : T⊥
RD/TRD → T⊥

LD/TLD, [y] �→ [x]

(4.25)

where x is such that x − y ∈ N1 + N2.

Lemma 4.25. The data in (4.25) defines a subspace in T ∈ Σt,t(d) such that Eq. (4.24)
holds.

Proof. We first verify that TLD is a defect subspace. Thus, let n1 + n2 ∈ N⊥
1 , where

n1 ∈ N1 and n2 ∈ N2. Then,

q(n1 + n2) = q(n1) + q(n2) + 2n1 · n2 = 2n1 · n2 = 0 (mod D),

The second step holds since N1 and N2 are defect subspaces, so q(n1) = q(n2) = 0

(mod D), and the third step holds since n2 ∈ N1+N⊥
1 = N⊥

1 , so n1 ·n2 = 0 (mod d).
Moreover, 1t ∈ N⊥

1 ∩ N⊥
2 ⊆ T⊥

LD, so TLD is also co-stochastic. Similarly, one can
check that TRD is defect subspace.

Next, we verify that TJ is a well-defined defect space isomorphism. Note that

T⊥
LD = (N1 + N⊥

2 ) ∩ N⊥
1 = N⊥

1 ∩ N⊥
2 + N1,

T⊥
RD = (N⊥

1 + N2) ∩ N⊥
2 = N⊥

1 ∩ N⊥
2 + N2.

which shows that for every y ∈ T⊥
RD there exists x ∈ T⊥

LD such that x − y ∈ N1 +N2.
The same holds vice versa, so the map

T⊥
RD → T⊥

LD/TLD, y �→ [x] (4.26)

is surjective provided it is well-defined. Assume that x, x ′ ∈ T⊥
LD are two vectors such

that x − y, x ′ − y ∈ N1 + N2. Then, x − x ′ ∈ T⊥
LD ∩ (N1 + N2) = TLD, which

shows that (4.26) is indeed well-defined. Note that its kernel is given by T⊥
RD ∩ (N1 +

N2) = TRD. Thus, the induced map, which is precisely TJ from (4.25), is a well-defined
invertible linear map. We still need to verify that TJ is an isometry and stochastic. The
latter is clear, since 1t − 1t = 0 ∈ N1 +N2. For the former, consider [x] ∈ T⊥

LD/TLD

and [y] ∈ T⊥
RD/TRD such that y−x = n1 +n2, where n1 ∈ N1 and n2 ∈ N2. Without

loss of generality, we may assume that x, y ∈ N⊥
1 ∩ N⊥

2 , so in particular x − y ⊥ y and
n2 ∈ N⊥

1 . SinceN1 andN2 are totally isotropic, it follows that q(x−y) = 2n1 ·n2 = 0
(mod D) and q(x) = q(y) + q(x − y) + 2y · (x − y) = 0 (mod D).
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Finally, we will establish that Eq. (4.24) holds with T1 ◦ T2 = T . It sufices to prove
the claim for n = 1:

r(T1)r(T2) =
∑

x∈N⊥
1

∑

y∈N⊥
2

∣
∣[x] ∩ [y]

∣
∣ |x〉 〈y| = |N1 ∩ N2|

∑

x∈N⊥
1

∑

y∈N⊥
2

δy−x∈N1+N2
|x〉 〈y|

= |N1 ∩ N2|
∑

y∈T⊥
RD

∑

x∈T⊥
LD

δy−x∈N1+N2
|x〉 〈y| = |N1 ∩ N2|

∑

y∈T⊥
RD

∑

x∈TJ[y]

|x〉 〈y|

= |N1 ∩ N2| r(T).

In the third step, we used that for x ∈ N⊥
1 and y ∈ N⊥

2 , the condition that y − x ∈
N1 + N2 implies that x ∈ T⊥

LD and y ∈ T⊥
RD, and in the fourth step we used the

definition of TJ.

Finally, if T1 and T2 are arbitrary subspaces in Σt,t(d) then we can always left
and right multiply T1 and T2 by suitable stochastic isometries, thereby reducing to
the preceding two cases (cf. Eq. (4.18)). The semigroup structure is highly useful for
calculations (see Sect. 4.3 below and [Dam18]).We believe that the projections exhibited
by Theorem 4.24 and the semigroup structure of Eq. (4.24) will be instrumental in
understanding the fine-grained decomposition of H⊗t

n into irreducible representations
of Cliff(n, d) and Ot(d), generalizing the results discussed below. First results in this
direction will be reported in [MMG20], with a full analysis being a direction for future
work.

4.3. Examples. It is instructive to compute the commutant for small values of t. One can
verify that every subspace inΣ2,2(d), aswell as inΣ3,3(2) corresponds to a permutation.
That is, in this case, Σt,t(d) = Ot(d) = St. This is consistent with the fact that the
Clifford group is always a unitary 2-design, and even a 3-design in the case of qubits
[Zhu15].

For certain larger values of d and t, it is still true that Σt,t(d) = Ot(d), e.g., for
t = 3 and d ≡ 2 (mod 3) [NW16]. In this case, the double commutant theorem implies
that we have a proper duality akin to Schur–Weyl duality:

((Cd)⊗n)⊗t =
⊕

λ

VCliff(n,d),λ ⊗ VOt(d),λ, (4.27)

where the VCliff(n,d),λ and VOt(d),λ are pairwise inequivalent irreducible representa-
tions of Cliff(n, d) and of Ot(d), respectively. It would be interesting to identify these
representations further. In fact, it would be more appropriate to call Eq. (4.27) a form
of a Howe duality, of which an example are well-known dualities between metaplectic
and orthogonal groups.

In general, however, Ot(d) is a proper subset of Σt,t(d), and it is an open problem
to obtain a complete duality theory in positive characteristic [How73,GH16]. We now
discuss some explicit examples.

Example 4.26. (d = 3, t = 3) In this case, O3(3) = S3, and we have that [NW16]

Σ3,3(3) = S3 ∪ S3

⎡

⎣
1 −1 0 1 −1 0

0 0 0 1 1 1

1 1 1 0 0 0

⎤

⎦S3 (4.28)
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where we identify thematrix with its row space, a Lagrangian stochastic subspace T . The
double coset of T contains only two elements, T and (12)T . In total, Σ3,3(3) contains
6 + 2 = 8 elements, which is in agreement with Theorem 4.10.

Next, we note that T corresponds to a CSS code as in Eq. (4.21) and Theorem 4.24,
with defect subspace N spanned by the all-ones vectors 13. Thus, R(T) = 3nP, where

P := PCSS(N)=p⊗n, p :=

2∑

x=0

⎛

⎝ 1√
3

2∑

y=0

|x+y, y−x, y〉
⎞

⎠

(
1√
3

2∑

z=0

〈x+z, z−x, z|

)

(4.29)

is a projector of rank 3n (Eq. (4.23)).
It is now straightforward to derive the decomposition of ((C3)⊗n)⊗3 into irreducible

representations of the Clifford group (for n � 2). We start with Schur–Weyl duality,
which asserts that

((C3)⊗n)⊗3 =
⊕

λ�3

VU(3n),λ ⊗ VS3,λ (4.30)

= Sym3((C3)⊗n) ⊕ U3n

(2,1) ⊗ VU(3n),(2,1) ⊕ Alt3((C3)⊗n),

(4.31)

where λ runs over all partitions of 3. By Eq. (4.28), the commutant is generated by S3

and the projection P. Since P commutes with all permutations, it follows that

P+ := Π
sym
3 PΠ

sym
3 =

3−n

2
(R(T) + R((12)T)) ,

P− := Πalt
3 PΠalt

3 =
3−n

2
(R(T) + R((12)T))

are orthogonal projections onto subrepresentations of the Clifford group. We can com-
pute their dimensions readily by using the formula tr[R(S)] = dn dim(S∩Δ):

dimW± = tr[P±] =
3n ± 1

2
(4.32)

Thus we can decompose the symmetric and anti-symmetric subspaces further into four
subrepresentations:

Sym3((C3)⊗n) ∼= W+ ⊕ W⊥
+ ,

Alt3((C3)⊗n) ∼= W− ⊕ W⊥
− .

Since the commutant has dimension |Σ3,3(3)| = 8, these four representations alongwith
VU(3n),(2,1) (which appears twice in (4.30)) are necessarily irreducible and pairwise

inequivalent. We have thus fully decomposed ((C3)⊗n)⊗3 into irreducible representa-
tions of Cliff(n, 3) × S3.

Next, we discuss some multi-qubit examples.
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Example 4.27 (d = 2, t = 4). As before, we find that O4(2) = S4. In addition to the
4W = 24 permutation subspaces, there exist 6more Lagrangian subspaces inΣ4,4(2)—
making a total of 30, which is known to be the dimension of the commutant of the
multi-qubit Clifford group for n � 3 [Zhu15, (10)]. We can decompose Σ4,4(2) into
two double cosets in a form that is completely analogous to Eq. (4.28):

Σ4,4(2) = S4 ∪ S4

⎡

⎢
⎣

1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

⎤

⎥
⎦S4 (4.33)

The given matrix is the generator matrix of a Lagrangian subspace which we denote
by T4. Similarly to above, the operator R(T4) is proportional to a projector onto a CSS
code, with defect subspace spanned by the all-ones vector 14. This projector is given by
Eq. (3.6), and it can be used to decompose ((C2)⊗n)⊗4 into irreducible representations
of the Clifford group, as explained in [ZKGG16].

Example 4.28 (d = 2, t = 5). Likewise, for t = 5, it is not hard to see that (cf. [Dam18])

Σ5,5(2) = S5 ∪ S5

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 0
0 0 1 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 0

1 1 1 1 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

S5. (4.34)

The displayed matrix corresponds to a subspace T5 of the form Eq. (4.21), with defect
subspace spanned by the vector (1, 1, 1, 1, 0), and the operator R(T5) is proportional to
a projector onto a CSS code. Indeed, we have

R(T5) = R(T4) ⊗ I⊗n
2 .

We now discuss some interesting elements in the groups Ot(d). For qubits, we have
the class of anti-permutations introduced previously in Eq. (1.4).

Definition 4.29 (Anti-permutation). Let π ∈ St. We define the anti-permutation π̄ as
the binary complement of the corresponding permutation matrix. Formally, it is the
t × t-matrix

π̄ = 1t1T
t − π

with entries in F2, where we identify π with the corresponding permutation matrix.

Lemma 4.30. Let π ∈ St. If t ≡ 2 (mod 4) then π̄ ∈ Ot(d).

Proof. By Remark 4.12, it suffices to check that π̄ is orthogonal and that q(x) = 1 for
each column. The latter holds since each column of π̄ contains t−1 ≡ 1 (mod 4) ones.
For the former,

π̄T π̄ = (1t1T
t − πT )(1t1T

t − π) = (t − 2)1t1T
t + I ≡ I (mod 2),

where we used that ordinary permutation matrices are orthogonal and stochastic, as well
as that t is even.
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Remark 4.31. More generally, the entrywise binary complement maps any A ∈ Ot(2)
to an element Ā ∈ Ot(2) provided that the rows of A each have Hamming weight w
such that t ≡ 2w (mod 4).

For t � 6, the anti-permutations are distinct from the permutations, so in particular
Ot(2) � St. (For t = 2, the two sets coincide.)

Example 4.32 (d = 2, t = 6). The anti-identity 1̄ ∈ O6(2) and the corresponding
subspace T1̄ ⊆ Z

6
2 ⊕ Z

6
2 are given by (cf. Eqs. (1.4) and (3.13)).

1̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, T1̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 1 1 0 0 0 0 0
1 0 1 1 1 1 0 1 0 0 0 0
1 1 0 1 1 1 0 0 1 0 0 0
1 1 1 0 1 1 0 0 0 1 0 0
1 1 1 1 0 1 0 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The anti-permutations admit several possible generalizations to odd primes d. One
class of generalizations is given as follows. For π ∈ St with d � t, define

π̄ = 2t−11t1T
t − π, (4.35)

where t−1 denotes the multiplicative inverse of t in Fd. It is easy to verify that π̄ ∈
Ot(d). Moreover, π̄ is the only nontrivial linear combination of 1t1T

t and π with this
property.

Another class of generalizations is given by the formula in Eq. (3.17). Let p ∈ F
t
d

be vector with entries in {±1} that is ‘balanced’, i.e., p · 1t = 0 (this requires that t is
even). If d � t and π ∈ St is a permutation that stabilizes p up to a sign, i.e., πp = ±p,
then

π̃ = π ∓ 2t−1ppT (4.36)

is an element in Ot(d). In particular, this yields a large family of ‘anti-identities’ for
odd d.

Another non-trivial example of a stochastic isometry can be constructed from the
adjacency matrix A of the edge-vertex graph of the icosahedron. The icosahedron has
12 vertices, so A is a 12 × 12 binary matrix. Any two vertices share either zero or two
neighbors, which implies that A is orthogonal. Moreover, each vertex has 5 neighbors,
which implies q(x) = 1 for each column x of A. By Remark 4.12, it follows that
A ∈ O12(2). The space TĀ generated by the element-wise complement of A is just the
extended Golay code G24. The latter plays an important role in the invariant theory of
the Clifford group as detailed in [NRS06]. Note, however, that unlike A and TA, it is
not the case that Ā ∈ O12(2) or TĀ ∈ Σ12,12(2). Working out the precise connection
between TA, the extended Golay code, and their respective roles in the representation
theory of the Clifford group is an interesting problem we leave open. Likewise, we leave
open the question of whether R(A) can be given a physical interpretation, as was the
case for the anti-identity.
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5. Statistical Properties of Stabilizer States

In this section we discuss the statistical properties of the stabilizer states. We use the
techniques that we developed in the last section to prove an explicit formula for the
t-th moment of random stabilizer states, which vastly generalizes previous results in the
quantum information literature [Zhu15,KG15,Web16,ZKGG16,HWW16]. Throughout
this section, d is assumed to be a prime.

5.1. Moments of random stabilizer states. We start by studying the operator-valued t-th
moment of the uniform distribution over all stabilizer states in (Cd)⊗n:

E

[
|S〉 〈S|⊗t

]
:=

1

|Stab(n, d)|

∑

|S〉〈S|∈Stab(n,d)

|S〉 〈S|⊗t (5.1)

Clearly this operator can be used to calculate the average value of any polynomial of
degree t in the coefficients of the wavefunction of a random stabilizer state.

Note that the operator E[|S〉 〈S|⊗t] is invariant under conjugation by Clifford oper-
ators. This is because the set of stabilizer states is a single orbit of the Clifford group.
Thus E[|S〉 〈S|⊗t] is in the commutant of the Clifford group and, assuming n � t − 1,
can be written in terms of the basis R(T) from Theorem 4.3,

E

[
|S〉 〈S|⊗t

]
=

∑

T∈Σt,t(d)

γT R(T), (5.2)

for certain coefficients γT ∈ C. In this section, we will show that these coefficients are
all equal and establish an explicit formula for the t-th moment of a random stabilizer
state which holds for all values of t and n. We start with some useful lemmas.

Remark 5.1 (Sum of traces of the R(T)). Recall that in order to establish Theorem 4.10,
we determined the cardinality of the set Σ�

t,t(d), whose elements are the subspaces
T ∈ Σt,t(d) with dim(T ∩ Δ) = t − . The significance of the parameter  is that

tr R(T) = (tr r(T))n = d(t−�)n

for every subspace T ∈ Σ�
t,t(d). Thus, we can e.g. compute the sum of the traces of all

R(T) by using Eq. (4.8) and the Gaussian binomial formula Eq. (4.3):

∑

T∈Σt,t(d)

tr R(T)=
t−1∑

�=0

∣
∣Σ�

t,t(d)
∣
∣d(t−�)n=dnt

t−2∏

k=0

(1 + dk−n)=dn
t−2∏

k=0

(dk + dn).

This number can be expressed in terms of the q-Pochhammer symbol as
∑

T∈Σt,t(d)

tr R(T) = dnt(−d−nId)t−1.

For n = 0, we recover the cardinality of Σt,t(d), in agreement with Theorem 4.10.

Next, we prove a formula that relates moments of stabilizer states for different num-
bers of qudits.
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Lemma 5.2. Let N � n > 0. Then:
(
I⊗nt ⊗ 〈0|⊗(N−n)t

)
EStab(N,d)

[
|S〉 〈S|⊗t

]

(
I⊗nt ⊗ |0〉⊗(N−n)t

)
∝ EStab(n,d)

[
|S〉 〈S|⊗t

]
,

and both operators are nonzero.

Proof. If |S〉 ∈ Stab(N,d) is a stabilizer state then thepartial projection
(
I ⊗ 〈0|⊗(N−n)

)

|S〉 is either zero or proportional to a stabilizer state in Stab(n, d) (see, e.g., [HNQ+16,
App. G]). Thus, there exist coefficients αS ′ for S ′ ∈ Stab(n, d) such that

(
I⊗nt ⊗ 〈0|⊗(N−n)t

)
EStab(N,d)

[
|S〉 〈S|⊗t

] (
I⊗nt ⊗ |0〉⊗(N−n)t

)

=
∑

S ′∈Stab(n,d)

αS ′ |S ′〉 〈S ′|⊗t

It is clear that the left-hand side operator is nonzero and invariant under conjugation by
U⊗t for any Clifford unitary U ∈ Cliff(n, d). Thus, we can replace the right-hand side

by its Clifford average, which is plainly proportional to EStab(n,d)

[
|S〉 〈S|⊗t

]
.

Theorem 5.3 (t-th moment). Let n, t � 1. Then the t-th moment of a random stabilizer
state in (Cd)⊗n is given by the formula

EStab(n,d)

[
|S〉 〈S|⊗t

]
=

1

Zn,d,t

∑

T∈Σt,t(d)

R(T), (5.3)

where Zn,d,t = dn
∏t−2

k=0(d
k + dn) = dnt(−d−nId)t−1.

Proof. It suffices to argue that the left-hand side and right-hand side are proportional,
since the formula for the proportionality constant Zn,d,t follows immediately from
Remark 5.1 and comparing traces. Fixing d and t, we will proceed in two steps. First,
we will argue that there exist αn ∈ C and βT ∈ C for each T ∈ Σt,t(d) such that

EStab(n,d)

[
|S〉 〈S|⊗t

]
= αn

∑

T∈Σt,t(d)

βT r(T)⊗n. (5.4)

We will show this first for n � t − 1 and then for all n. Afterwards, we will find that
the βT are necessarily equal, which as just discussed implies the claim.

Let us first assume thatn � t−1. By Theorem 4.3, there exist coefficients γn,T ∈ C

such that

EStab(n,d)

[
|S〉 〈S|⊗t

]
=

∑

T∈Σt,t(d)

γn,T r(T)⊗n, (5.5)

since the left-hand side commutes with arbitrary t-th tensor powers of Clifford unitaries.
It follows that, for every N � n,
(
I⊗nt ⊗ 〈0|⊗(N−n)t

)
EStab(N,d)

[
|S〉 〈S|⊗t

] (
I⊗nt ⊗ |0〉⊗(N−n)t

)

=
∑

T∈Σt,t(d)

γN,T r(T)⊗n 〈0⊗t|r(T)|0⊗t〉N−n
=

∑

T∈Σt,t(d)

γN,T r(T)⊗n,
(5.6)
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since 0 ∈ T for every subspace T . From Lemma 5.2 we know that Eqs. (5.5) and (5.6)
are proportional and nonzero. Since the operators r(T)⊗n are also linearly independent
for n � t − 1, it follows that there exist αn and βT such that γT,n = αnβT for all
n � t− 1 (e.g., we can choose βT := γT,t−1). Thus, we have established Eq. (5.4) for
n � t− 1. To extend its validity to all values of n, we observe that Eq. (5.6) holds also
when N � t − 1 > n. Together with Lemma 5.2, we find that, indeed,

EStab(n,d)

[
|S〉 〈S|⊗t

]
∝

∑

T∈Σt,t(d)

γN,T r(T)⊗n ∝
∑

T∈Σt,t(d)

βT r(T)⊗n,

which shows that there exist constants αn and βT such that Eq. (5.4) holds for all values
of n.

We will now argue that, in this case, the βT are necessarily all equal. For this, we
compute the expectation value of an operator R(T)† = r(T)⊗n,†. On the one hand, by
Eq. (4.10),

tr
[
R(T)†EStab(n,d)

[
|S〉 〈S|⊗t

]]
= EStab(n,d) 〈S⊗t|R(T)†|S⊗t〉 = 1.

On the other hand,

tr
[
R(T)†EStab(n,d)

[
|S〉 〈S|⊗t

]]

= αn

∑

T ′∈Σt,t(d)

βT ′
(
tr r(T)†r(T ′)

)n

= αn

∑

T ′∈Σt,t(d)

βT ′ dn dim(T∩T ′) = αndnt
(
βT + O(d−n)

)

in the limit of large n. Thus, all βT must be equal, and the statement of the theorem
follows.

Remark 5.4. Theorem 5.3 is reminiscent of the following average formula for the tensor
power of a Haar-random pure state ψ in C

D, which follows from Schur’s lemma and
Schur–Weyl duality:

EψHaar

[
|ψ〉 〈ψ|⊗t

]
] =

1
∏t−1

k=0(k + D)

∑

π∈St

R(π). (5.7)

Remark 5.5. When d is an odd prime, Σt,t(d) = St for t � 2, but not for t � 3. Thus
Eqs. (5.3) and (5.7) match for t � 2 and deviate for t � 3. Since the operators R(T)
are linearly independent for sufficiently large n, this shows that stabilizer states in odd
prime dimension are 2-designs, but not 3-designs or higher (provided n � 2). Similarly,
for d = 2, Σt,t(2) = St for t � 3, but not or t � 4, which shows that multiqubit
stabilizer states form 3-designs, but not 4-designs or higher [KG15] (provided n � 3).

Remarkably, the theory developed in this section allows us to design complex pro-
jective t-designs for any order t from the Clifford group orbits of a finite number of
fiducial states. We explain this in Sect. 6 below.
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5.2. Minimal projections for stabilizer testing. We now return to the problem of sta-
bilizer testing; we revisit our solution from Sect. 3 and characterize minimal stabilizer
tests with perfect completeness.

In Sect. 3, we found that perfectly complete stabilizer tests were in any local dimen-
sion d given by the following accepting POVM element on t = 2s copies of (Cd)⊗n,

Πs,accept =
1

2
(I + Vs) , (5.8)

where Vs is the Hermitian unitary defined in Eq. (3.15) and (d, s) = 1. This means
that Vs is a unitary operator with the property that 2s-th tensor powers of every pure
stabilizer state |S〉 are contained in its +1 eigenspace:

Vs |S〉⊗2s = |S〉⊗2s (5.9)

for any pure stabilizer states |S〉. Our soundness result implies that, conversely, these are
the only tensor power states with this property.

Note thatVs is an operator in the commutant of the Clifford action. This is immediate
by comparing Eqs. (3.18) and (4.12), which also shows that Vs is precisely the operator
R(1̃) associated with the ‘anti-identity’ 1̃ defined in Eq. (3.17)!

In fact, any R(O) stabilizes the t-th tensor powers of stabilizer states: For all O ∈
Ot(d),

R(O) |S〉⊗t = |S〉⊗t
. (5.10)

We proved this in Eq. (4.13). As we just saw, Vs is such an operator, so Eq. (5.10)
generalizes Eq. (5.9).

Note that, since 1̃ squares to the identity, it generates a subgroup of Ot(d) that
contains two elements: {1, 1̃}. We can thus interpret the projector (5.8) as the projector
onto the invariant subspace for the action of this subgroup. This suggest that we look
more generally at the invariant subspaces associated with subgroups of Ot(d). Larger
subgroups corresponds to projectors onto smaller invariant subspaces. In particular, the
minimal projector corresponds to the full group Ot(d), i.e.,

Πmin
t :=

1

|Ot(d)|

∑

O∈Ot(d)

R(O). (5.11)

By Eq. (5.10), Πmin
t accepts all stabilizer tensor powers. Remarkably, it is the minimal

projector with this property, as follows from the following theorem.

Theorem 5.6 (Minimal stabilizer test with perfect completeness). Let d be a prime and
n, t � 1. Then the projector Πmin

t is the orthogonal projector onto span {|S〉⊗t :
|S〉 〈S| ∈ Stab(n, d)}.

Proof. Note that the t-th moment ρ := E

[
|S〉 〈S|⊗t

]
defined in Eq. (5.1) is a density

operator that is exactly supported on the span of the stabilizer tensor powers. By the
preceding discussion, it remains to prove that the support of Πmin

t is contained in the
support of ρ. We start with Eq. (5.3):

EStab(n,d)

[
|S〉 〈S|⊗t

]
=

1

Zn,d,t

∑

T∈Σt,t(d)

R(T)
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Recall from Eq. (4.16) that we can decompose Σt,t(d) into k double cosets,

Σt,t(d) = Ot(d)T1Ot(d) ∪ · · · ∪ Ot(d)TkOt(d).

One of the double cosets is just Ot(d), say the first, corresponding to T1 = Δ and
R(T1) = I. As a consequence of Corollary 4.21, we can choose each representative Ti

to be of the form (4.21). Then, Theorem 4.24 shows that R(Ti) is proportional to an
orthogonal projection (by a positive proportionality constant) so in particular R(Ti) � 0.
On the other hand, we can compute the sum over each double coset by

∑

T∈Ot(d)TiOt(d)

R(T)=
|Ot(d)TiOt(d)|

|Ot(d)| × |Ot(d)|

∑

O,O′∈Ot(d)

R(O)R(Ti)R(O′)=ci Πmin
t R(Ti)Π

min
t

where ci := |Ot(d)TiOt(d)| > 0. Together, we obtain that

ρ =
1

Zn,d,t

∑

T∈Σt,t(d)

R(T) =
1

Zn,d,t

k∑

i=1

ci Πmin
t R(Ti)Π

min
t

=
c1

Zn,d,t

(

Πmin
t +

k∑

i=2

ci

c1

Πmin
t R(Ti)Π

min
t

)

� c1

Zn,d,t

Πmin
t ,

which shows that the support of ρ indeed contains the support of Πmin
t .

Note that there is no condition on t in Theorem 5.6. Indeed, while the theorem
identifies the projector onto the span of stabilizer tensor powers precisely, it makes no
assertion about whether this subspace contains other tensor power states than stabilizer
states or not. It therefore complements our results on stabilizer testing, from which we
can read off values of t such that the projector Πt and hence Πmin

t � Πt contains only
stabilizer tensor powers.

It is also interesting to ask about the minimal number of copies necessary for there
to exist a perfectly complete stabilizer test that is dimension-independent. For d = 2, it
is possible to show that t = 4, 5 copies of a random stabilizer state become on average
indistinguishable from a Haar-random pure state as n → ∞. This can be done by an
explicit calculation of the 4th and 5th moments using our Theorem 5.3 Eqs. (4.33) and
(4.34) (for t = 4, this has been carried out in [Dam18]). Thus, t = 6 copies as in
our Theorem 3.3 are indeed optimal for multiqubit stabilizer testing. For odd d (prime
or not), we know from Theorem 3.11 that t = 4 copies always suffice. For d ≡ 1, 5
(mod 6) it follows from Theorem 8.6 below that even t = 3 copies suffice (and are
optimal). For d ≡ 3 (mod 6), we leave the question of minimal t open.

6. Construction of Designs

Next we describe a construction of projective t-designs for arbitrary t based on weighted
Clifford orbits. As in Sects. 4 and 5, we assume that d is prime.

First, we derive expressions for the average tensor powers of the Clifford orbits of
arbitrary states. For any pure state |Ψ〉, the average EU∈Cliff(n,d)[(U |Ψ〉 〈Ψ|U†)⊗t]

commutes with Cliff(n, d)⊗t. By Theorem 4.3, and assuming that n � t − 1, it can
therefore be expressed as

EU∈Cliff(n,d)

[(
U |Ψ〉 〈Ψ|U†

)⊗t
]
=

∑

T∈Σt,t(d)

α ′
TR(T) (6.1)
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for someα ′
T ∈ C.Not all of theα ′

T are independent. This is because each (U |Ψ〉 〈Ψ|U†)⊗t

is invariant under the action of St × St (acting from the left and from right), and also
under taking the conjugate transpose. This motivates the following definition:

Definition 6.1 (Equivalence relation ∼S). We define an equivalence relation ∼S on
Σt,t(d) in the following way: T ∼S T ′ if and only if there exist π, π ′ ∈ St such
that T ′ = πTπ ′ or T ′ = πTtπ ′, where the transposed subspace Tt is defined by Tt =
{(y, x) : (x, y) ∈ T }.

We correspondingly decompose Σt,t(d) into equivalence classes:

Σt,t(d) =

Mt,d⋃

i=1

Ft,i(d)

For convenience, we choose Ft,1(d) to be the set of subspaces corresponding to the
permution group St (these form a single equivalence class). We also define

Ri :=
∑

T∈Ft,i(d)

R(T).

We note that the operators Ri are Hermitian and linearly independent.
Since the R(T) are linearly independent and R(T)† = R(Tt), it follows that the

coefficients α ′
T in Eq. (6.1) must be the same for the elements of each equivalence class.

Thus,

EU∈Cliff(n,d)

[(
U |Ψ〉 〈Ψ|U†

)⊗t
]
=

Mt,d∑

i=1

αiRi (6.2)

for some coefficients αi. Note that αi ∈ R because the Ri are Hermitian.

Theorem 6.2. Letdbe a prime andn � t−1. Then there exists an ensemble {pi, Ψi}
Mt,d

i=1

of fiducial states in (Cd)⊗n such that:

Ei∼pEU Clifford

[(
U |Ψi〉 〈Ψi|U

†
)⊗t
]
= EΨ Haar

[
|Ψ〉 〈Ψ|⊗t

]

Importantly, the number Mt,d of Clifford orbit is independent of n, the number of
qudits.

Proof. We start the proof by taking an arbitrary finite t-design given by an ensemble
{pj, Ψj}

K
j=1. Such designs exist (see for example the early work [SZ84]), but K can be

very large. If we replace each Ψj by a random element in its Clifford orbit then the
resulting ensemble still forms a projective t-design. This means that

Ej∼pEU∈Cliff(n,d)

[
(U |Ψj〉 〈Ψj|U

†)⊗t
]

∝ R1.

Thus, if we define α
(j)
i as the coefficient of Ri in the Clifford average of the fiducial

state Ψj,

EU∈Cliff(n,d)

[(
U |Ψj〉 〈Ψj|U

†
)⊗t
]
=

Mt,d∑

i=1

α
(j)
i Ri,
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then

Ej∼p

[
α
(j)
i

]
= 0 for i = 2, . . . ,Mt,d. (6.3)

Conversely, if {pj} is an arbitrary probability distribution that satisfies Eq. (6.3) then the
ensemble obtained by first choosing a random fiducial state according to this distribution
and then a random state in its Clifford orbit is a projective t-design. We will now explain
how to modify the probabilities pj step by step, setting more and more probabilities to
zero while ensuring that Eq. (6.3) continues to hold—until all but Mt,d of them are
zero. Without loss of generality, assume that p1 > 0.

Each step proceeds as follows: Suppose that there exist indices 2 � j1 < j2 < · · · <
jMt,d

� K such that pjm
> 0 for all m = 1, . . . ,Mt,d. (If no such indices exist then

we are done.) Consider the linear system

Mt,d∑

m=1

qmα
(jm)
i = 0 for i = 2, . . . ,Mt,d

in the indeterminates {qm}
Mt,d

m=1. This system is real, homogeneous, and undercon-
strained, so there always exists a nontrivial real solution q ∈ R

Mt,d . We can also
assume that some component ofq is positive (otherwise replaceq by−q). Now consider
pjm

− xqm for x ∈ R. At x = 0, all pjm
are strictly positive. At some critical x = xc,

one of the values pjm
−xcqm becomes zero, while all other ones are still non-negative.

Thus, if we modify the probabilities pj,m by the rule

pjm
�→ pjm

− xcqm for m = 1, . . . ,Mt,d

then it still holds true that
∑Mt,d

j=1 pjα
(j)
i = 0, but there is now at least one additional

zero among the pj,m. This continues to hold if we further normalize the {pj} to be a
probability distribution, i.e.,

pj �→ pj∑
j ′ pj ′

for j = 1, . . . , K,

which is always possible since p1 > 0. Thus, we obtain a probability distribution {pj}
with strictly smaller support satisfying Eq. (6.3) and p1 > 0.

We can repeat this process until there are at most Mt,d − 1 nonzero probabilities
among the {pj}

K
j=2. By including p1, we arrive at an ensemble of at most Mt,d fidu-

cial vectors. The corresponding probabilities satisfy Eq. (6.3), which is necessary and
sufficient for the ensemble of Clifford orbits to be a design. This completes the proof.

Remark 6.3. A simple upper bound for Mt,d is |Σt,t(d)| =
∏t−2

k=0(d
k + 1) from

Theorem 4.10. However, in general this is a rather pessimistic estimate. For example,
consider d = t = 3. Then, |Σt,t(d)| = 8, while there are just Mt,d = 2 equivalence
classes, as follows from Eq. (4.28). One of them is the set of permutations S3, with 6
elements, and the other one has 2 elements.

For d = 3 and t = 4, |Σt,t(d)| = 80, whileMt,d = 3. Again, one of the equivalence
classes is the permutation group with 4W = 24 elements. The second equivalence class
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is the class of the anti-permutations as defined in Eq. (4.35), which is represented by
the row space of the matrix

⎡

⎢
⎣

1 2 2 2 1 0 0 0
2 1 2 2 0 1 0 0
2 2 1 2 0 0 1 0
2 2 2 1 0 0 0 1

⎤

⎥
⎦

(the Lagrangian subspace corresponding to the qutrit anti-identity 1̄). This equivalence
class again has 24 elements. The last equivalence class can be represented by

⎡

⎢
⎣

1 1 1 1 1 1 1 1
0 1 2 0 0 2 1 0

0 0 0 0 1 1 1 0

1 1 1 0 0 0 0 0

⎤

⎥
⎦ ,

and it has 32 elements.

Remark 6.4. The criterion used in the proof of Theorem 6.2 can also be used to determine
fiducial states that generate a projective t-design. For example, the Clifford orbit through
a single fiducial state Ψ forms a projective t-design if and only if the coefficients αi in
Eq. (6.2) vanish for i 	= 1.

Let us illustrate this strategy by showing that, for any n � 2, there exists a qutrit
state |ψ〉 ∈ C

3 such that the Clifford orbit of Ψ = ψ⊗n forms a projective 3-design.
We note that this state cannot be a stabilizer state, since we know that the ensemble of
qutrit stabilizer states does not form a 3-design (Remark 5.5)! Instead of with R1 and
R2, we will work with their multiples Π

sym
3 ∝ R1 and P+ := Π

sym
3 PΠ

sym
3 ∝ R2, where

P is the projector defined in Eq. (4.29). Now consider the third moment

ρ3 := EU∈Cliff(n,3)

[
(U |Ψ〉 〈Ψ|U†)⊗3

]
,

and expand it as

ρ3 = α(ψ)Π
sym
3 + β(ψ)P+

for coefficients α(ψ), β(ψ) ∈ R which depend on the choice of fiducial state. We wish
to argue that for every n there exists a single-qutrit state |ψ〉 such that β(ψ) = 0. For
this, we note that the coefficients can be computed as follows:

1 = tr[ρ3] = α(ψ) tr[Πsym
3 ] + β(ψ) tr[P+]

〈ψ⊗3|r(T)|ψ⊗3〉n = tr[R(T)ρ3] = 3nα(ψ) tr[P+] + 3nβ(ψ) tr[P+].

It follows that β(ψ) = 0 if and only if

〈ψ⊗3|r(T)|ψ⊗3〉n = 3n tr[P+]

tr[Πsym
3 ]

=
3

3n + 2
,

where we used Eq. (4.32). Thus, the Clifford orbit through ψ⊗n forms a projective
3-design if and only if

〈ψ⊗3|r(T)|ψ⊗3〉 =
(

3

3n + 2

)1/n

∈
[

1
3
, 3

5

]
(6.4)
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But the the left-hand side is equal to one if ψ is a stabilizer state, e.g., |ψ〉 = |0〉
(Eq. (4.10)), while is vanishes for, e.g., the non-stabilizer state |ψ〉 = 1√

2
(|0〉 − |1〉). By

continuity it follows that there always exists a single-qutrit state |ψ〉 satisfying Eq. (6.4).
It is easy to find such an |ψ〉 explicitly, e.g., by considering the one-parameter family of
states |ψ(θ)〉 = cos(θ) |0〉 − sin(θ) |1〉 and solving Eq. (6.4) for θ ∈ [0, π

2
].

7. De Finetti Theorems for Stabilizer Symmetries

In this section we establish a direct connection between our results on stabilizer testing
and the celebrated quantum de Finetti theorems, which play an important role in char-
acterizing entanglement and correlations in quantum states with permutation symmetry
(cf. discussion in Sect. 1.4).

We first recall the finite quantum de Finetti theorem from [CKMR07]. Let ρ be a
quantum state on (C�)⊗t that commutes with all permutations (i.e., [rπ, ρ] = 0 for all
π ∈ St). Then there exists a probability measure μ on the space of mixed states on C

�

such that

1

2

∥
∥
∥
∥ρ1...s −

∫
dμ(σ)σ⊗s

∥
∥
∥
∥

1

� 22
s

t
. (7.1)

Since any quantum state that commutes with permutations admits a purification on the
symmetric subspace, Eq. (7.1) follows directly from a similar result for the symmetric
subspace, namely, that for every |Ψ〉 ∈ Symt(C�) there exists a probability measure μ

on pure states on C
� such that

1

2

∥
∥
∥
∥Ψ1...s −

∫
dμ(φ)φ⊗s

∥
∥
∥
∥

1

� 2
s

t
. (7.2)

In this section, we prove de Finetti theorems adapted to stabilizer states. The key idea
is to extend the permutation symmetry to invariance under a larger group:

1. the stochastic orthogonal group Ot(d) (for qudits in any prime dimension d), or
2. the group generated by the permutations and the anti-identity (3.13) (for qubits).

These symmetries are natural since they are carried by the tensor powers of any stabilizer
state, as we proved in Eq. (4.13).

In both cases, our theorems show that the reduced density matrices are close to
convex combinations of tensor powers of stabilizer states. In the first case, we find that
the reduced state is in fact exponentially (in the number of traced out systems) close
to a state of this form, which is a much stronger guarantee than provided by the finite
de Finetti theorems of Eqs. (7.1) and (7.2) (cf. [Ren07,KM09]). In the second case, we
obtain power law convergence but the symmetry requirements are drastically reduced.
We establish our results first for pure states (Sects. 7.1 and 7.2) and then extend them
by a standard purification argument to mixed states (Sect. 7.3).

7.1. Exponential stabilizer de Finetti theorem. Let d be an arbitrary prime. We start
with the observation that, for any two distinct stabilizer states,

|〈S|S ′〉|2 � 1

d
(7.3)
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(this can be seen from, e.g., Eq. (2.17)). It follows that, for fixed d and n, the stabilizer
tensor powers |S〉⊗t approach orthonormality as t → ∞. The following lemma makes
this precise.

Lemma 7.1. Let d be a prime and n, t � 1. Consider the Gram matrix GS,S ′ = 〈S|S ′〉t,
where S, S ′ ∈ Stab(n, d). If

ε := d
1
2 ((n+2)2−t) <

1

2

then the following holds:

1. The Gram matrix is ε-close to the identity matrix in operator norm: ‖G − I‖∞ � ε.
In particular, the stabilizer tensor powers |S〉⊗t are linearly independent.

2. The nonzero eigenvalues of Q :=
∑

S |S〉⊗t 〈S|⊗t and its pseudoinverse Q+ lie in
the interval 1 ± 2ε.

3. The vectors (Q+)1/2 |S〉⊗t for S ∈ Stab(n, d) are orthonormal.

Proof. 1. The first claim follows directly from the element-wise bound (7.3):

‖G − I‖∞ � ‖G − I‖�2
� ‖G − I‖�∞ |Stab(n, d)|

�
(
max
S�=S ′|〈S|S ′〉|t

)
|Stab(n, d)| � d

1
2 ((n+2)2−t) = ε,

where we used the bound

|Stab(n, d)| = dn
n∏

i=1

(di + 1) � d(n+2)2/2. (7.4)

The cardinality of the set of stabilizer states has been computed in [AG04, Prop. 2] for
d = 2 and in [Gro06, Cor. 21] for odd d.

Since ε < 1, the statement about the Gram matrix implies that the stabilizer tensor
powers are linearly independent.

2. Now define

H =
∑

S∈Stab(n,d)

|S〉⊗t 〈eS| ,

where |eS〉 denotes an orthonormal basis labeled by the set of stabilizer states Stab(n, d).
Then,

G = H†H and Q = HH†,

and thus the nonzero eigenvalues of G and Q are both identical (to the squared singular
values of H). By part 1, the eigenvalues of G lie in the interval 1 ± ε, hence the same
is true for the nonzero eigenvalues of Q. Since we assumed that ε < 1/2, it follows
that the nonzero eigenvalues of the pseudoinverse Q+ are in the interval 1 ± 2ε. This
establishes the second claim.

3. By the first claim, the stabilizer tensor powers are linearly independent. On the
other hand,

|S〉⊗t = QQ+ |S〉⊗t =
∑

S ′
|S ′〉⊗t 〈S ′|⊗t

Q+ |S〉⊗t
.

Thus, the linear independence implies that the vectors (Q+)1/2 |S〉⊗t are
orthonormal.
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Theorem 7.2 (Pure-state exponential stabilizer de Finetti theorem). Let d be a prime
and |Ψ〉 ∈ Symt((Cd)⊗n) a pure quantum state that is left invariant by the action of
Ot(d). Let 1 � s � t. Then there exists a probability distribution p on Stab(n, d), the
set of pure stabilizer states of n qudits, such that

1

2

∥
∥
∥
∥
∥
Ψ1...s −

∑

S

p(S) |S〉⊗s 〈S|⊗s

∥
∥
∥
∥
∥

1

� 2d
1
2 (n+2)2

d− 1
2 (t−s).

Proof. By assumption, Πmin
t |Ψ〉 = |Ψ〉, where Πmin

t is the minimal projector from
Eq. (5.11). Theorem 5.6 shows that |Ψ〉 is contained in the span of stabilizer tensor
powers, i.e.,

|Ψ〉 =
∑

S∈Stab(n,d)

αS |S〉⊗t

for certain coefficients αS ∈ C. We now use the third and second claim of Lemma 7.1
to see that

∑

S

|αS|2 = ‖(Q+)1/2 |Ψ〉‖2 ∈ [1 − 2ε, 1 + 2ε] (7.5)

where ε := d
1
2 ((n+2)2−t). Here we have assumed that ε < 1/2, for otherwise the

statement of the theorem is vacuous. We now compute the partial trace over all but s
subsystems:

Ψ1...s =
∑

S

|αS|2 |S〉⊗s 〈S|⊗s +
∑

S�=S ′
αSαS ′ |S〉⊗s 〈S ′|⊗s 〈S ′|S〉t−s

.

The norm of the cross terms is small:

∥
∥
∥
∥
∥
∥

∑

S�=S ′
αsαS ′ |S〉⊗s 〈S ′|⊗s 〈S ′|S〉t−s

∥
∥
∥
∥
∥
∥

1

�
∑

S�=S ′
|αS||αS ′ |d−(t−s)/2 �

(
∑

S

|αS|

)2

d−(t−s)/2

�
(

∑

S

|αS|2

)

d(n+2)2/2d−(t−s)/2

� (1 + 2ε)d(n+2)2/2d−(t−s)/2 � 2d(n+2)2/2d−(t−s)/2I

the first inequality uses Eq. (7.3), the third inequality is Eq. (7.4), the fourth inequality
is the upper bound in Eq. (7.5), and the last step uses that ε < 1/2. Finally, define
p(S) := |αS|2/

∑
S ′ |αS ′ |2 (the denominator is positive by the lower bound in Eq. (7.5)
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and ε < 1/2). Then:

∥
∥
∥
∥
∥
Ψ1...s −

∑

S

p(S) |S〉⊗s 〈S|⊗s

∥
∥
∥
∥
∥

1

�
∥
∥
∥
∥
∥
Ψ1...s −

∑

S

|αS|2 |S〉⊗s 〈S|⊗s

∥
∥
∥
∥
∥

1

+
∑

S

∣
∣
∣|αS|2 − p(S)

∣
∣
∣

� 2d(n+2)2/2d−(t−s)/2 +

∣
∣
∣
∣
∣
1 −

∑

S ′
|αS ′ |2

∣
∣
∣
∣
∣
� 2d(n+2)2/2d−(t−s)/2 + 2ε

� 4d(n+2)2/2d−(t−s)/2.

7.2. Stabilizer de Finetti theorem for the anti-identity. We now prove a stabilizer de
Finetti theorem with reduced symmetry requirements. For concreteness, we restrict to
the multi-qubit case (d = 2) and to tensor powers that are multiples of six. Neither re-
striction is essential. The following theorem shows that the reduced states of an arbitrary
permutation-symmetric quantum state that is invariant under the anti-identity opera-
tor V = R(1̄) from Eq. (3.13), but not necessarily under other stochastic isometries, are
well-approximated by convex mixtures of tensor powers of stabilizer states.

Theorem 7.3. (Pure-state stabilizer de Finetti theorem for the anti-identity) Let |Ψ〉 ∈
Symt((C2)⊗n) be a quantum state that is left invariant by the action of the anti-
identity (3.13) on some (and hence every) subsystem consisting of six n-qubit blocks.
Let s < t be a multiple of six. Then there exists a probability distribution p on Stab(n, 2),
the set of pure stabilizer states of n qubits, such that

1

2

∥
∥
∥
∥
∥
Ψ1...s −

∑

S

p(S) |S〉⊗s 〈S|⊗s

∥
∥
∥
∥
∥

1

� 6
√

2n+1

√
s

t
.

Proof. By the ordinary finite quantum de Finetti theorem (7.2), there exists a probability
measure dμ(φ) on the set of pure states such that

1

2

∥
∥
∥
∥Ψ1...s −

∫
dμ(φ)φ⊗s

∥
∥
∥
∥

1

� 2n+1 s

t
. (7.6)

Let Πn = (I + R(1̄))/2 denote the projector onto the +1-eigenspace of the 6 × 6-

anti identity for n qubits. By assumption, (Π⊗(s/6)
n ⊗ I⊗(t−s)) |Ψ〉 = |Ψ〉, and hence

tr[Ψ1...sΠ
⊗s/6
n ] = 1. Since the trace distance satisfies 1

2
‖ρ−σ‖1 = max0�Q�I tr[(ρ−

σ)Q], it follows that

∫
dμ(φ)

(
1 − tr

[
Π

⊗(s/6)
n φ⊗s

])
� 2n+1 s

t
.

Now recall from Eq. (3.11) that the accepting POVM element for qubit stabilizer testing
is given by Πaccept =

1
2
(I + U), where U = V(I⊗4 ⊗ F), where F = R((12)) is the
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operator that swaps two blocks of n qubits (see discussion above Eq. (3.12)). Since
tensor powers of pure states are permutation-symmetric,

∫
dμ(φ)

(
1 − tr

[
Πacceptφ

⊗6
]s/6

)
� 2n+1 s

t
(7.7)

According to Theorem 3.3 Eq. (3.8) and using Lemma 7.4 below, for each pure state φ
there exists a pure stabilizer state Sφ such that

|〈Sφ|φ〉|2(s/6) � 4 tr
[
Πacceptφ

⊗6
]s/6

− 3.

Using the estimate 1 − p6 � 6(1 − p), which holds for all p ∈ [0, 1], we obtain

1 − |〈Sφ|φ〉|2s � 6
(
1 − |〈Sφ|φ〉|2(s/6)

)
� 24

(
1 − tr

[
Πacceptφ

⊗6
]s/6

)
.

Combining this estimate with Eq. (7.7), we get
∫

dμ(φ)
(
1 − |〈Sφ|φ〉|2s

)
� 24 · 2n+1 s

t
.

It follows that replacing each pure state φ by the nearby stabilizer state Sφ incurs only
a small error:

1

2

∥
∥
∥
∥

∫
dμ(φ)φ⊗s −

∫
dμ(φ)S⊗s

φ

∥
∥
∥
∥

1

�
∫

dμ(φ)
1

2

∥
∥
∥φ⊗s − S⊗s

φ

∥
∥
∥

1
�

∫
dμ(φ)

√
1 − |〈φ|Sφ〉2s

�
√∫

dμ(φ)
(
1 − |〈φ|Sφ〉2s

)
�
√

24 · 2n+1
s

t
,

where we have used the triangle inequality, the relation between the trace distance and
the fidelity between pure states, and the concavity of the square root. Together with
Eq. (7.6), we obtain

1

2

∥
∥
∥
∥Ψ1...s −

∫
dμ(φ)S⊗s

φ

∥
∥
∥
∥

1

� 2n+1 s

t
+

√
24 · 2n+1

s

t
� 6
√

2n+1

√
s

t

where we have assumed without loss of generality that 2n+1 s
t

� 1 (otherwise, the
right-hand side is larger than one so the resulting bound is trivially true).

Lemma 7.4. The following bound holds for all k � 1 and p ∈ [0, 1] such that the
right-hand side is non-negative:

(4p − 3)k � 4pk − 3.

Proof. We will prove the inequality for all k � 1 and p ∈ [3
4
, 1]. For this, note that the

two expressions coincide for p = 1 and that the derivative of their difference is negative
for all p ∈ [3

4
, 1]. Indeed,

∂p

(
(4p − 3)k − (4pk − 3)

)
� 0 ⇔ (4p − 3)k−1 � pk−1.

In the interval that we are considering, 0 � 4p−3 � p, so the right-hand side condition
holds.
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7.3. Extension to mixed states. In this section, we extend Theorems 7.2 and 7.3 to the
case of mixed density matrices. This is done using a standard purification argument as
used to derive the ordinary quantum de Finetti theorem for mixed states from the version
for pure states (i.e., Eq. (7.1) fromEq. (7.2)). For the next lemma, recall the vectorization
operation from Definition 4.6.

Lemma 7.5 (Purification and symmetries). Let ρ be positive semi-definite, |Ψ〉 = vec
(ρ1/2) its standard purification, and O a unitary with real matrix elements in the com-
putational basis. Then the following conditions are equivalent:

1. (O ⊗ O) |Ψ〉 = |Ψ〉.
2. [ρ,O] = 0.

Proof. We observe that

(O ⊗ O) |Ψ〉 =
(
O ⊗ (O−1)T

)
|Ψ〉 = vec(Oρ1/2O−1).

Thus, condition 1 is equivalent toOρ1/2O−1 = ρ1/2. It follows that condition 1 implies
condition 2 by squaring. Conversely, assuming condition 2,

ρ = OρO−1 =
(
Oρ1/2O−1

)(
Oρ1/2O−1

)
.

Hence Oρ1/2O−1 is a positive semi-definite square root of ρ. Since such square roots
are unique, this implies that Oρ−1/2O−1 = ρ1/2 and hence condition 1.

Clearly, the operators R(O) for O ∈ Ot(d) have real matrix elements in the compu-
tational basis. In fact, they are given by permutation matrices in the computational basis,
as can be seen from the formula given in Eq. (4.12). Thus they satisfy the conditions
of Lemma 7.5. We use this now to extend our de Finetti theorems to mixed states.

Theorem 7.6 (Exponential stabilizer de Finetti theorem). Let d be a prime and ρ a
quantum state on ((Cd)⊗n)⊗t that commutes with the action of Ot(d) ⊇ St. Let
1 � s � t. Then there exists a probability distribution p on the (finite) set of mixed
stabilizer states 8 of n qudits, such that

1

2

∥
∥
∥
∥
∥
ρ1...s −

∑

σS

p(σS)σ
⊗s
S

∥
∥
∥
∥
∥

1

� 2d
1
2 (2n+2)2

d− 1
2 (t−s).

Proof. Using Lemma 7.5, we can find a purification |Ψ〉 ∈ ((Cd)⊗2n))⊗t ∼=
(Cd)⊗n)⊗t ⊗ (Cd)⊗n)⊗t of ρ, which is invariant under the action of O ∈ Ot(d).
(In particular, |Ψ〉 is an elemenrt of the symmetric subspace.) Here we crucially use that
the operators R(O) for 2n qudits are just the second tensor powers of the corresponding
operators for n qudits, as is clear from Eq. (4.12). Thus we can apply Theorem 7.2 to
the state |Ψ〉. Since the local Hlibert space now contains 2n qudits, we obtain that there
exists a probability distribution p over pure stabilizer states on (Cd)⊗2n such that

1

2

∥
∥
∥
∥
∥
Ψ1...s −

∑

S

p(S) |S〉 〈S|⊗s

∥
∥
∥
∥
∥

1

� 2d
1
2 (2n+2)2

d− 1
2 (t−s).

Taking the partial trace over the purifying systems does not increase the trace distance.
Since reduced density matrices of pure stabilizer states are mixed stabilizer states, we
obtain the result.

8 A mixed stabilizer state is a maximally mixed state on a stabilizer code (see Sect. 2.4).
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The very same argument yields the following version of Theorem 7.3 for mixed states:

Theorem 7.7 (Stabilizer de Finetti theorem for the anti-identity). Let ρ be a quantum
state on ((C2)⊗n)⊗t that commutes with all permutations as well as with the action
of the anti-identity (1.4) on some (and hence every) subsystem consisting of six n-qubit
blocks. Let s < t be a multiple of six. Then there exists a probability distribution p on
the (finite) set of mixed stabilizer states of n qubits, such that

1

2

∥
∥
∥
∥
∥
ρ1...s −

∑

σS

p(σS)σ
⊗s
S

∥
∥
∥
∥
∥

1

� 6
√

2 · 2n

√
s

t
.

8. Robust Hudson Theorem

The methods developed in Sect. 3 also allow us to prove a robust version of the finite-
dimensional Hudson theorem. Recall that from Eq. (2.18) that, for odd d, the Wigner
function of a pure stabilizer state is necessarily nonnegative. Hudson theorem states
that, for pure states, this condition is also sufficient, i.e., the Wigner function of a pure
quantum state is non-negative if and only if the state is a stabilizer state [Gro06]. We
will show in Theorem 8.4 that if the Wigner or sum-negativity

sn(ψ) :=
∑

x:wψ(x)<0

|wψ(x)| =
1

2

(
∑

x

|wψ(x)| − 1

)

.

is small then the state is close to a stabilizer state.
TheWigner negativity is immediately related to themana M(ψ) = log(2 sn(ψ)+1),

a monotone that plays an important role in the resource theory of stabilizer computation
[Got97]. Throughout this section we assume that d is odd, so that the Wigner function
is well-behaved (cf. Sect. 2.3).

8.1. Exact Hudson theorem. We first give a new and succinct proof of the finite-
dimensional Hudson theorem. For pure states, 1 = trψ2 =

∑
x dnwψ(x)2. Thus

we can define a probability distribution based on the Wigner function,

qψ(x) = dnwψ(x)2,

similar to the pψ distribution that we defined in Eq. (3.2) via the characteristic function.
Note that 0 � qψ(x) � d−n, since |wψ(x)| � d−n.

We now consider the sum of the absolute value of the Wigner function,

‖ψ‖W :=
∑

x

|wψ(x)| = d−n/2
∑

x

qψ(x)1/2.

It holds that ‖ψ‖W �
∑

x wψ(x) = 1, with equality if and only if wψ(x) � 0 for all
x. By the Hölder inequality (with p1 = p2 = p3 = 3, so

∑
k 1/pk = 1):

1 =
∑

x

qψ(x) =
∑

x

qψ(x)1/6qψ(x)1/6qψ(x)2/3

�
(

∑

x

qψ(x)1/2

)2/3(∑

x

qψ(x)2
)1/3

.
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Thus we obtain the following fundamental bound:

∑

x

qψ(x)2 � 1

dn‖ψ‖2
W

. (8.1)

Crucially, we can interpret the left-hand side as the average of the function qψ with
respect to the same probability distribution, Ex∼qψ

qψ(x). Now suppose that theWigner

function is nowhere negative, so that the bound simplifies to
∑

x qψ(x)2 � d−n. But
qψ(x) � d−n for all x, so we conclude that the function qψ must be equal tod−n on its
support. In other words, qψ(x) is the uniform distribution on a subset of cardinality dn.
This gives a rather direct proof of the finite-dimensional Hudson theorem:

Theorem 8.1 (Finite-dimensional Hudson theorem, [Gro06]). Let d be an odd integer
and ψ a pure quantum state of n qudits. Then the Wigner function of ψ is everywhere
nonnegative, wψ(x) � 0, if and only if ψ is a stabilizer state.

Proof. In view of Eq. (2.18) we only need to show that if wψ(x) � 0 for all x then ψ

is a stabilizer state. By the preceding discussion, we know that wψ(x) = d−n1T (x),
where 1T denotes the indicator function of some subset T ⊆ Vn of cardinality dn. In
other words, 〈ψ|Ax|ψ〉 = 1T (x) and so Ax |ψ〉 = |ψ〉 for all x ∈ T .

It remains to show that T is of the form T = a +M, where M is a maximal isotropic
subspace. For this, consider any three points x, y, z ∈ T and use Eq. (2.12), which asserts
thatAxAyAz = ω2[z−x,y−x]Ax−y+z. Because |ψ〉 is an eigenvector ofAx, Ay, Az, with
eigenvalue +1, we obtain

1 = 〈ψ|AxAyAz|ψ〉 = ω2[z−x,y−x] 〈ψ|Ax−y+z|ψ〉 .

But Ax−y+z is Hermitian, so this is impossible unless [z − x, y − x] = 0. Therefore, T
is the translate of an totally isotropic set M of cardinality dn. Since the maximal size
of a totally isotropic subspace is also dn [Gro06, App. C], T is necessarily a maximal
isotropic subspace. We conclude that ψ is a stabilizer state.

8.2. Robust Hudson theorem. To obtain a robust version of theHudson theorem,wewill,
similarly as in our approach to stabilizer testing, combine Eq. (8.1) with an uncertainty
relation that generalizes the proof of Theorem 8.1.

Lemma 8.2. Let d be an odd integer and ψ a pure state of n qudits. Suppose that
tr[ψAx], tr[ψAy], tr[ψAz] >

√
1 − 1/2d2. Then [z − x, y − x] = 0, i.e., Wz−x and

Wy−x must commute.

Proof. Note that the assumption implies that

‖Ax |ψ〉 − |ψ〉‖ <

√√
√
√2

(

1 −

√

1 −
1

2d2

)

� 1

d
,

and likewise for y and z. Thus we obtain the following inequalities:

‖Ax |ψ〉 − |ψ〉‖ <
1

d
, ‖Ay |ψ〉 − |ψ〉‖ <

1

d
, ‖Az |ψ〉 − |ψ〉‖ <

1

d
.



Schur–Weyl Duality for the Clifford Group with Applications 1387

As a consequence of the triangle inequality, and using ‖Az‖ � 1, along with Eq. (2.12),
we obtain

‖Ax−y+z |ψ〉 − ω−2[z−x,y−x] |ψ〉‖ = ‖AxAyAz |ψ〉 − |ψ〉‖ <
3

d
.

We can simply expand this relation and see that it is equivalent to

1 −
9

2d2
< 〈ψ|Ax−y+z |ψ〉 cos(2[z − x, y − x]

2π

d
).

If [z − x, y − x] 	= 0, then

1 −
9

2d2
< 〈ψ|Ax−y+z |ψ〉 cos(2[z − x, y − x]

2π

d
)

� − cos(
d − 1

2
· 2π

d
) = cos(

π

d
).

But, one can see that exactly for d � 3, 1− 9
2d2 � cos(π

d
), which is contradiction. This

shows that [z − x, y − x] = 0.

Corollary 8.3. Let d be an odd integer and ψ a pure state of n qudits. Then T := {x ∈
Vn : wψ(x) > d−n

√
1 − 1/2d2} is a subset of an affine totally isotropic subspace.

We now prove the main result of this section:

Theorem 8.4 (Robust finite-dimensional Hudson theorem). Let d be odd and ψ a pure
quantum state of n qudits. Then there exist a stabilizer state |S〉 such that |〈S|ψ〉|2 �
1 − 9d2 sn(ψ).

Proof. Suppose that sn(ψ) � ε. Then ‖ψ‖W � 1+ 2ε and we find from Eq. (8.1) that

∑

x

qψ(x)2 � 1

dn(1 + 2ε)2
,

i.e.,

∑

x

qψ(x)
(
d−n − qψ(x)

)
� d−n

(
1 −

1

(1 + 2ε)2

)
� 4εd−n. (8.2)

We would like to show that the probability of the set T from Corollary 8.3 with respect
to the probability distribution qψ is close to one. First, though, let us consider

T̃ =

{
x : |wψ(x)| > d−n

√
1 − 1/2d2

}
=

{
x : qψ(x) > d−n

(
1 − 1/2d2

)}

which is defined just like T but for the absolute value of the Wigner function! Then,
using Markov’s inequality and Eq. (8.2), we have

∑

x∈T̃

qψ(x) � 1 −

∑
x qψ(x)

(
d−n − qψ(x)

)

d−n · 1/2d2
� 1 − 8d2ε.
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But then T is likewise a high-probability subset:

∑

x∈T

qψ(x) �
∑

x∈T̃

qψ(x) −
∑

wψ(x)<0

qψ(x) �
∑

x∈T̃

qψ(x)

−
∑

wψ(x)<0

|wψ(x)| � 1 − 8d2ε − ε,

where we used qψ(x) = dn|wψ(x)|2� |wψ(x)|.
As a result of Corollary 8.3, T is a subset of some affine totally isotropic subspace

a + M. If |S〉 denotes the corresponding stabilizer state then

|〈ψ|S〉|2 = dn
∑

x

wψ(x)wS(x) =
∑

x∈a+M

wψ(x) =
∑

x∈T

wψ(x)

+
∑

x∈(a+M)\T

wψ(x) �
∑

x∈T

wψ(x) − ε

�
∑

x∈T

qψ(x) − ε � 1 − (8d2 + 2)ε > 1 − 9d2ε.

In the fifth step we used that, for x ∈ T , wψ(x) = |wψ(x)| � dn|wψ(x)|2=
qψ(x).

8.3. Stabilizer testing revisited: minimal number of copies. Wewill now revisit stabilizer
testing from the perspective of the Wigner function and show that for d ≡ 1, 5 (mod 6)
it is in fact possible to perform stabilizer testing with just three copies of the state. This
is clearly optimal, since the set of stabilizer states forms a projective 2-design.

We start with the phase space point operators Ax from (2.11), Consider the operator

V := d−n
∑

x

A⊗3
x = d−2n

∑

y1+y2+y3=0

Wy1
⊗ Wy2

⊗ Wy3
. (8.3)

We remark that it is clear from Eq. (2.13) that V is an element of the commutant.
Moreover, we have the following analog of Lemma 3.8:

Lemma 8.5. For d ≡ 1, 5 (mod 6), the operator V defined in Eq. (8.3) is a Hermitian
unitary.

Proof. Since the operators Ax are Hermitian, V is Hermitian as well. Thus it remains to
prove that V is unitary. For this we compute:

V2 = d−4n
∑

y1+y2+y3=0, z1+z2+z3=0

Wy1Wz1 ⊗ Wy2Wz2 ⊗ Wy3Wz3

= d−4n
∑

a1+a2+a3=0,b1+b2+b3=0

Wa1 ⊗ Wa2 ⊗ Wa3ω
1
8 [a1+b1,a1−b1]+ 1

8 [a2+b2,a2−b2]+ 1
8 [a3+b3,a3−b3]

= d−4n
∑

a1+a2+a3=0,b1,b2

Wa1 ⊗ Wa2 ⊗ Wa3ω− 1
4 [a1−a3,b1]− 1

4 [a2−a3,b2]

=
∑

a1+a2+a3=0

δa1,a3δa2,a3 Wa1 ⊗ Wa2 ⊗ Wa3 = I,
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where, for the second equality, we used the change of variables ai = yi + zi and
bi = yi − zi.

We now consider the binary POVM measurement with accepting projector

Πaccept =
1

2
(I + V).

Theorem 8.6 (Stabilizer testing from three copies). Let d ≡ 1, 5 (mod 6) and ψ a
pure state of n qudits. Denote by paccept = tr[ψ⊗3Πaccept] the probability that the
POVM element Πaccept accepts given three copies of ψ. If ψ is a stabilizer state then it
accepts with certainty, paccept = 1. On the other hand, if maxS|〈S|ψ〉|2 � 1 − ε2 then
paccept � 1 − ε2/16d2.

Proof. We first note that

paccept = tr
[
Πacceptψ

⊗3
]
=

1

2

(

1 + d−n
∑

x

tr
[
A⊗3

x ψ⊗3
])

=
1

2

(

1 + d2n
∑

x

w3
ψ(x)

)

,

where wψ denotes the Wigner function defined in Eq. (2.10). It is clear from Eq. (2.18)
that if ψ is a stabilizer state then paccept = 1.

Now assume thatψ is an arbitrary pure state. Since q(x) = dnw2
ψ(x) is a probability

distribution, we can rewrite the above as
∑

x

qψ(x)
(
1 − dnwψ(x)

)
= 2
(
1 − paccept

)
.

Moreover, q(x) � d−n for all x, so we can use Markov’s probability for the set

T =

{
x ∈ Vn : wψ(x) > d−n

√
1 − 1/2d2

}

to see that
∑

x∈T

qψ(x) � 1 −
2
(
1 − paccept

)

1 −
√

1 − 1/2d2
� 1 − 8d2

(
1 − paccept

)
. (8.4)

We now argue similarly as in the proof of the robust Hudson theorem (Theorem 8.4).
FromCorollary 8.3 belowwe know that there exists an affine Lagrangian subspace a+M
that contains T . Let |S〉 denote the corresponding stabilizer state. Then,

|〈ψ|S〉|2 = dn
∑

x

wψ(x)wS(x) =
∑

x∈a+M

wψ(x) =
∑

x∈T

wψ(x) +
∑

x∈(a+M)\T

wψ(x)

For x ∈ T , wψ(x) � 0 and so wψ(x) � qψ(x). Thus the first sum can be lower-
bounded by using Eq. (8.4). For the second sum, we note that Eq. (8.4) also implies that
1 − 8d2

(
1 − paccept

)
� d−n|T |, since qψ(x) � d−n, and so

∑

x∈(a+M)\T

wψ(x) � −d−n|(a + M) \ T | = −d−n (dn − |T |) � −8d2
(
1 − paccept

)
.

Together, we obtain that |〈ψ|S〉|2 � 1 − 16d2
(
1 − paccept

)
, or paccept � 1 − ε2/16d2,

which is what wanted to show.
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