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Abstract: This article considers a long-outstanding open question regarding the Ja-
cobian determinant for the relativistic Boltzmann equation in the center-of-momentum
coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coor-
dinates have played a large role in the study of the Newtonian non-cutoff Boltzmann
equation, in particular wemention the widely used cancellation lemma [1]. In this article
we calculate specifically the very complicated Jacobian determinant, in ten variables, for
the relativistic collision map from the momentum p to the post collisional momentum
p′; specifically we calculate the determinant for p �→ u = θp′+(1 − θ) p for θ ∈ [0, 1].
Afterwards we give an upper-bound for this determinant that has no singularity in both p
and q variables. Next we give an example where we prove that the Jacobian goes to zero
in a specific pointwise limit. We further explain the results of our numerical study which
shows that the Jacobian determinant has a very large number of distinct points at which it
is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain
(2012) [12]. These conclusions make it difficult to envision a direct relativistic analog
of the Newtonian cancellation lemma in the center-of-momentum coordinates.
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1. Introduction

The special relativistic Boltzmann equation is a fundamental model for relativistic gases
[3,5] which obey Einstein’s theory of special relativity. The equation describes the
dynamics of the statistical distribution of relativistic particles when the binary collisions
among particles occur frequently enough to dominate the dynamics, so that one can
assume that the rate of change along particle paths in phase space is mainly due to the
binary collisions among the particles. The relativistic Boltzmann equation is a central
model in the relativistic collisional kinetic theory.

The relativistic Boltzmann equation can be expressed as

∂t F + p̂ · ∇x F = Q (F, F) ,

and the normalized velocity of a particle p̂ is given by

p̂ = c
p

p0
= p√

1 + |p|2
c2

.

Above p ∈ R
3, x ∈ � where � is a domain and t ≥ 0. Here c > 0 denotes the speed of

light, which is a constant. Also, p0 = √
c2 + |p|2 denotes the relativistic particle energy

with the rest mass normalized to be 1. For q ∈ R
3, then q0 is defined similarly. From

here on we normalize the speed of light to one by setting c = 1.
The relativistic Boltzmann collision operator is given by

Q ( f, h) =
∫

R3
dq

∫

S2
dw vφ σ (g, ϑ) [ f (

p′) h (
q ′) − f (p) h (q)]. (1.1)

In this operator we consider a pair of relativistic particles with momenta p and q that
after a collision have post-collisional momenta p′ and q ′. The post-collisional momenta
p′ and q ′ can further be written as (1.4) and (1.5) below. Then vφ = vφ (p, q) is the
Mφller velocity which is given by

vφ (p, q)
def=

√∣∣∣ p

p0
− q

q0

∣∣∣
2 −

∣∣∣ p

p0
× q

q0

∣∣∣
2 = g

√
s

p0q0
.

Above g and s are defined below in (1.7) and (1.8) respectively.
Further the relativistic Boltzmann collision kernel σ(g, ϑ) is a non-negative func-

tion which only depends on the relative momentum g and the scattering angle ϑ . The
scattering angle ϑ is defined by

cosϑ
def= k

|k| · w, (1.2)

where k is defined as

k
def= − p + q√

s
(p0 − q0) + (p − q) + (γ − 1)(p + q)

(p + q) · (p − q)

|p + q|2 .

And γ is defined as

γ
def= p0 + q0√

s
.
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The proof for this identity is given in [19, page 5-6]. This angle ϑ was proven to be a
well defined angle in [7]. It is standard to assume that σ takes the form of the product in
its arguments; i.e.,

σ(g, ϑ)
def= 	(g)σ0(ϑ).

In general, we suppose both 	 and σ0 are non-negative functions.
Depending on the local integrability of the angular function ϑ �→ σ0(ϑ), we classify

the problem into two regimes: with and without an angular cutoff. If the angular function
satisfies either ϑ �→ σ0 ∈ L1

loc(S
2) or σ0 ∈ L∞(S2), then we say that the problem is

with an angular cutoff [10]. Otherwise, we say that the problem is without an angular
cutoff. Examples of physical non-cutoff relativistic collision kernels were explained for
example in [13,18].

Without loss of generality, we may assume that the collision kernel σ is supported
on

cosϑ ≥ 0, i.e. 0 ≤ ϑ ≤ π

2
. (1.3)

Otherwise, the following symmetrization [7] will reduce to this case:

σ̄ (g, ϑ) = [σ(g, ϑ) + σ(g,−ϑ)]1cosϑ≥0,

where 1A is the indicator function of the set A.
The post-collisional momenta in the center-of-momentum expression are written as

p′ = p + q

2
+
g

2

(
w + (γ − 1) (p + q)

(p + q) · w

|p + q|2
)

, (1.4)

and

q ′ = p + q

2
− g

2

(
w + (γ − 1) (p + q)

(p + q) · w

|p + q|2
)

. (1.5)

We point out that γ − 1 ≥ 0 from (2.1) below. Note that p, q ∈ R
3 and |w| = 1 is on

the sphere w ∈ S
2.

Further the energy-momentum conservation laws say that

p + q = p′ + q ′, p0 + q0 = p′0 + q ′0. (1.6)

Now the quantities s and g denote the square of the total energy in the center-of-
momentum system p +q = 0 and the relative momentum, respectively. They are defined
as

g = g(p, q) =
√√√√2

(
p0q0 −

3∑
i=1

piqi − 1

)
≥ 0, (1.7)

and

s = s(p, q) = g2 + 4 = 2

(
p0q0 −

3∑
i=1

piqi + 1

)
. (1.8)

We also notice that s ≥ 4.
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For the Newtonian Boltzmann equation the coordinate system which is analogous to
(1.4) and (1.5) is the following:

p′ = p + q

2
+

|p − q|
2

w, q ′ = p + q

2
− |p − q|

2
w. (1.9)

Indeed, taking an appropirate limit as c → ∞ in (1.4) and (1.5) yields (1.9). In the
non-cutoff Newtonian Boltzmann theory the change of variables p → p′ using (1.9),
and in particular the cancellation lemma from [1], has been shown to be very important
for understanding the fractional diffusive behavior of the collision operator. In particular
with (1.9) for

u = θp′ + (1 − θ) p, θ ∈ [0, 1]. (1.10)

The change of variable p → u is known to have Jacobian determinant [2,11]:

∣∣∣∣
dui
dp j

∣∣∣∣ =
(
1 − θ

2

)2 {(
1 − θ

2

)
+

θ

2
〈k, w〉

}
.

Where the unit vector is k = (p − q)/|p − q|. Therefore under the condition that
〈k, w〉 ≥ 0 then this Jacobian is uniformly bounded from below.

In this article we unfortunately notice that the analogous change of variables p �→ u
in the relativistic problem using (1.4) behaves in comparison very badly, and can have
zero determinant even under the corresponding angle condition (1.3).

1.1. A problem with the Jacobian determinant. The rest of this article mainly deals
with a long-outstanding open question regarding the Jacobian determinant, which arises
when one takes a change of variables from a pre-collisional momentum p or q to a
post-collisional momentum p′ or q ′, in the center-of-momentum coordinates.

Historically, thewell-posedness theory for the classical and the relativistic Boltzmann
equations have been studied quite extensively. One of the main difficulties which arise
in the theory of well-posedness for the Boltzmann equation is to obtain an appropriate
a-priori estimate. In other words, one must treat the gain and the loss term appropriately,
so one can obtain some desired estimates on them.

Whenever one deals with estimating the upper- or lower-bounds for the Boltzmann
collision operator (1.1), especially for the gain term in the operator, one encounters the
Jacobian determinant as the functions in the post-collisional momentum p′ or q ′ appear
inside the integration with respect to the pre-collisional measures dp or dq. However, it
unfortunately appears to be of limited utililty to use the change of pre-post collisional
variables p �→ p′ or q �→ q ′ as we will explain how the Jacobian is no longer uniformly
bounded above and below in the relativistic scenario.

Traditionally, this issue has been resolved along the following different lines:

• One approach is to check if the Jacobian of the change of variables p (or q) �→
p′ (or q ′) is uniformly bounded above and below. The situation that onemust consider
is the change of variables in only one variable like (p, q) �→ (p′, q) (or �→ (p, q ′)).
This occurs especially when one considers the linearization of the Boltzmann col-
lision operator (1.1). This, indeed, is useful in the non-relativistic scenario with the
center-of-momentum representation of the variables (1.9). In thisNewtonian situation
it is known, e.g. [1], that the Jacobian is well behaved.
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• Another approach is to check if one can also change both variables (p, q) to (p′, q ′)
at the same time. In the relativistic situation for this approachone canuse the following
coordinates [9]:

p′ = p + a(p, q, w)w, and q ′ − a(p, q, w)w, (1.11)

where

a(p, q, w) = 2(p0 + q0)(w · (p0q − q0 p))

(p0 + q0)2 − (w · [p + q])2 .

These post-collisional coordinates are the relativistic analog of the following New-
tonian post-collisional variables

p′ = p − ((p − q) · w)w, q ′ = q + ((p − q) · w)w.

In this case, the change of variables (p, q) to (p′, q ′) does not really result in any
harm because we have the following:

∣∣∣∣
∂(p, q)

∂(p′, q ′)

∣∣∣∣ = 1, in the non-relativistic case,

= p0q0

p′0q ′0 , in the relativistic case [8].

• A third approach is to use the Carleman representation of the collision operator;
mainly, one derives and uses an alternative representation of the collision operator.
However, this is still not always easy to follow in the relativistic case as discussed in
[13] and [14].

For these approaches, the remaining possible strategies for performing an appropriate
change of variables for the relativistic Boltzmann collision operator is to either consider
the representation (1.11), or to go through deriving an appropriate Carleman-type repre-
sentation for the collision operator and try to prove estimates using this representation.
The variables (1.11) have a disadvantage, as the upper-bound for the Jacobian has huge
momentum growth in p and q variables as

|∇q p
′
i | + |∇qq

′
i | � (p0)5q0.

Although the growth in the q variable can be treated with a compensating exponential
decay in the q variable if one takes the standard symmetric linearization around a rel-
ativsitic Maxwellian as in for instance [6,9,12,17], the growth in the p variable is still
problematic; this difficulty was studied in [12]. The latter method of deriving and using
a Carleman-type representation to change variables is also difficult because it contains
the estimates on an unbounded non-flat hypersurface, as observed in [13,14].

Therefore, in [12], the authors used the center-of-momentum (1.4) representation
away from the singular region; they used the fact that the post-collisional variables p′
and q ′ in the center-of-momentum representation has its singularity (i.e., the Jacobian of∣∣∣ ∂k p′

∂k p

∣∣∣ vanishes) when p− q = 0 if k ≥ 1 and p + q = 0 if k ≥ 2. The authors provided

an upper-bound estimate for the Jacobian away from the singularities and have shown
that the Jacobian does not have a growth in the p variable away from the singularities.
More precisely, what they have computed is the bound for the Jacobian in the region
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away from the singularities, if |p| ≥ 1 and |p|1/m > 2q0 for some integer m ≥ 1 then
they have shown that

|∂β p
′| + |∂βq

′| � (q0)n,

for some integer n ≥ 1 which depends upon β = 0. Here ∂β is the multi-index notation
for the derivatives with respect to the p variable as follows: β = [β1, β2, β3] and

∂β = ∂
β1

p1 ∂
β2

p2 ∂
β3

p3 . So, we can say that the use of the center-of-momentum coordinates
has its own advantage that it does not show any growth in the p variable away from the
singularity; this is explained in Lemma 3 of [12].

In the non-cutoff scenario, when the angular cutoff assumption is removed, the situa-
tion is evenworse as onemust utilize the cancellations from the gain and loss operators to
implement cancellations of the high angular singularities. Therefore, onemust obtain the
upper- and the lower- bounds for the Jacobian of the change of variables (p, q) → (u, q)

where u is defined as (1.10). In this situation, we observe numerically in this work below

that the the zeros of the Jacobian
∣∣∣ ∂p′

∂p

∣∣∣ (which is a singularity for
∣∣∣ ∂p
∂p′

∣∣∣) occur in large

regions depending on all of the variables (θ, p, q, w).
In this paper, we compute the Jacobian determinant in (2.2) for the change of variables

from p to u for the noncutoff Boltzmann theory in the center-of-momentum represen-
tation (1.4) even on the singular region. We calculate a very explicit expression for the
Jacobian and provide its upper-bound that has no singularity in the p and q variables.
This generalizes the work in [12] away from singularities, and the work in [13]. We will
further prove that the Jacobian determinant can go to zero in a limit. And we explain
numerical evidence that the Jacobian (2.2) has a large number of distinct values where
it is machine zero to up to two hundred digits of precision.

We also remark that, after this paper had been completed, the second and third authors
also finished the works [15,16] which together prove as far as we are aware the first
results on the global existence and uniqueness of solutions to the relativistic Boltzmann
equation nearby equilibrium without the angular cutoff assumption. We remark that the
difficulties identified in this this work and the strategies developed in this work were
rather useful also in [15,16].

1.2. Outline of the paper. In the next Section 2 we calculate the Jacobian determinant
(2.2) for the the change of variables from p �→ u in (1.10). We also prove the upper
bound for this Jacobian. Then in Section 3 we prove that the lower bound of the Jacobian
is zero. In Section 4 we present numerical evidence that the Jacobian determinant has
a large number of distinct values which make it machine zero. Then, lastly, in “A” we
give an alternative expression for the determinant(2.2) in Proposition A.1.

2. The Upper-Bound of the Jacobian of the Collision Map

We consider a pair of relativistic particles with momenta p and q that collide and diverge
with post-collisional momenta p′ and q ′. Using the center-of-momentum expressions,
we can represent the post-collisional variables p′ and q ′ as (1.4) and (1.5). In this section,
we are interested in the Jacobian of the collision map (p, q) → (u, q)where u is defined

as u
def= θp′ + (1 − θ) p in (1.10) for some θ ∈ (0, 1). The Jacobian will be computed

explicitly and it will be shown that the Jacobian is bounded above in the variable p and
q.
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This section is in particular devoted to estimate the upper-bound of det
(

∂u
∂p

)
. Recall

that the post-collisional momentum in the center-of-momentum expression is defined as
(1.4) where

γ − 1
def= p0 + q0 − √

s√
s

= (p0 + q0)2 − s√
s
(
p0 + q0 +

√
s
) = |p + q|2√

s
(
p0 + q0 +

√
s
) . (2.1)

We will use the calculation in (2.1) rather frequently in the proofs below. Notice also
that γ − 1 ≥ 0 from (2.1).

We now state our main theorem:

Theorem 2.1. The Jacobian determinant det
(

∂u
∂p

)
is equal to

det

(
∂u

∂p

)
= A3 + P2A

2 + P3A (2.2)

where A ∈ (1 − θ, 1) is defined as

A
def=

(
1 − θ

2

)
+

θ

2

(
g
(γ − 1) (p + q) · w

|p + q|2
)

, (2.3)

and P2 and P3 are defined as in (2.17) and (2.28) below. They satisfy

|P2| � (q0)
3
2

(
1 +

√
p0

s

)
, (2.4)

and

|P3| � q0

s
. (2.5)

Since A ∈ (1 − θ, 1), we obtain the following corollary on the upper-bound for the
derivative of the collision map:

Corollary 2.2. The Jacobian determinant det
(

∂u
∂p

)
is bounded above as

∣∣∣∣det
(

∂u

∂p

)∣∣∣∣ � (p0)
1
2 (q0)

3
2 .

Remark 2.3. Here we remark that our estimate on the Jacobian is the first result which
does not contain any singularity in p andq variables in the use of the center-of-momentum
coordinates. A similar work on the relativistic Jacobian has been done by Glassey and
Strauss [8] in 1991 with the use of an alternative representation of the post-collisional
momenta (1.11). More precisely, they proved that

|∇q p
′
i | + |∇qq

′
i | � (p0)5q0.

Further, as we discussed in the previous section, the use of the variables (1.11) creates
a growth in q variable that can cause severe difficulties. One can remove the growth in
|q| by averaging in w variable as

∑
i, j

∫

S2

{∣∣∣∣
∂p′

i

∂q j

∣∣∣∣ +
∣∣∣∣
∂q ′

i

∂q j

∣∣∣∣
}
dw �

(
p0

)5
.

Note that the growth in |p| is not removed. This is proven in [8, Theorem 2].
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We will frequently use the following well known coercive inequality for the relative
momentum in the center of momentum framework.

Lemma 2.4 (Lemma 3.1 (i) on page 316 of [9]). The relative momentum g satisfies the
following inequalities:

|p − q|√
p0q0

≤ g(p, q) ≤ |p − q|. (2.6)

We remark that in [9], the notation g is used for 1
2g from (1.7); this would change

the constant in the upper and lower bound of (2.6) by two. A proof of (2.6) can also be
found in [20, Proposition 3.1].

We nowgive a brief outline of the proof of Theorem2.1.Wefirst take a derivative of ui
in (1.10) with respect to p j and decompose the derivative ∂ui

∂p j
into a linear combination

of the elements of the tensor product of (pi , qi , wi )
� with (p j , q j , w j )

�. In order to
obtain the Jacobian determinant, we define the orthonormal basis {w, w̄, w̃} of R3 and
further represent the derivative ∂ui

∂p j
as a linear combination of the elements of the tensor

product of (wi , w̄i , w̃i )
� and (w j , w̄ j , w̃ j )

�. The main difficulty in this proof is to
choose carefully several very complicated row and column reductions. After that we
are able to represent the Jacobian determinant as a cubic polynomial with respect to
the quantity A in (2.2). Then we estimate the upper-bounds for each coefficient of the
polynomial, and we further use those to obtain the upper-bounds of whole the Jacobian
determinant.

Proof for Theorem 2.1. The post-collisional momenta in the center-of-momentum ex-
pression are written as (1.4) and (1.5). We further recall (2.1), so that we also have

p′ = p + q

2
+
g

2

(
w + (p + q)

(p + q) · w√
s(p0 + q0 +

√
s)

)
, (2.7)

Now we compute the derivative

∂ui
∂p j

= (1 − θ) δi j + θ
∂p′

i

∂p j
,

for any choices of i, j ∈ {1, 2, 3}.
By (1.4) and (2.7) we have

∂p′
i

∂p j
= 1

2

(
δi j +

∂g

∂p j
wi +

∂g

∂p j
(γ − 1) (pi + qi )

(p + q) · w

|p + q|2

+ g
(p + q) · w√

s
(
p0 + q0 +

√
s
)δi j + g (pi + qi )

∂

∂p j

(
(p + q) · w√

s
(
p0 + q0 +

√
s
)
))

.

Then from (1.7) we have that

∂g

∂p j
= ∂

∂p j

(√
− (

p0 − q0
)2 + |p − q|2

)

= 1

2g

∂

∂p j

(
−

(
p0 − q0

)2
+ |p − q|2

)
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= 1

2g

(
−2

(
p0 − q0

) ∂p0

∂p j
+ 2|p − q|∂|p − q|

∂p j

)

= 1

g

(
−

(
p0 − q0

) p j

p0
+

(
p j − q j

)) = 1

g

(
q0

p0
p j − q j

)
.

Also, we have

∂

∂p j

(
(p + q) · w√

s
(
p0 + q0 +

√
s
)
)

=
w j

(√
s
(
p0 + q0 +

√
s
)) − (p + q) · w ∂

∂p j

(√
s
(
p0 + q0 +

√
s
))

s
(
p0 + q0 +

√
s
)2 .

Note that we have

∂
√
s

∂p j
= ∂

∂p j

(√(
p0 + q0

)2 − |p + q|2
)

= 1

2
√
s

∂

∂p j

((
p0 + q0

)2 − |p + q|2
)

= 1

2
√
s

(
2

(
p0 + q0

) ∂p0

∂p j
− 2|p + q|∂|p + q|

∂p j

)

= 1√
s

((
p0 + q0

) p j

p0
− (

p j + q j
)) = 1√

s

(
q0

p0
p j − q j

)
.

Then we obtain that

∂

∂p j

(√
s
(
p0 + q0 +

√
s
))

= ∂
√
s

∂p j

(
p0 + q0 +

√
s
)
+

√
s

(
∂p0

∂p j
+

∂
√
s

∂p j

)

=
(
q0

p0
p j − q j

)
p0 + q0 + 2

√
s√

s
+

√
s

p0
p j .

Therefore, combining the calculations above we have

∂p′
i

∂p j
= 1

2

(
δi j +

1

g

(
q0

p0
p j − q j

)(
wi + (γ − 1) (pi + qi )

(p + q) · w

|p + q|2
)

+ g
(p + q) · w√

s
(
p0 + q0 +

√
s
)δi j + g (pi + qi )

∂

∂p j

(
(p + q) · w√

s
(
p0 + q0 +

√
s
)
) )

= 1

2

(
δi j +

1

g

(
q0

p0
p j − q j

)(
wi + (γ − 1) (pi + qi )

(p + q) · w

|p + q|2
)

+ g
(p + q) · w√

s
(
p0 + q0 +

√
s
)δi j

+ g (pi + qi )
w j

(√
s
(
p0 + q0 +

√
s
)) − (p + q) · w ∂

∂p j

(√
s
(
p0 + q0 +

√
s
))

s
(
p0 + q0 +

√
s
)2

)
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=
(
1

2
+
1

2
g

(p + q) · w√
s
(
p0 + q0 +

√
s
)
)

δi j

+
1

2g

(
q0

p0
p j − q j

) (
wi + (γ − 1) (pi + qi )

(p + q) · w

|p + q|2
)

+
1

2
g (pi + qi )

(
w j√

s
(
p0 + q0 +

√
s
)
)

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (pi + qi )

(
p0 + q0 + 2

√
s√

s

(
q0

p0
p j − q j

)
+

√
s

p0
p j

)
.

Therefore, the terms that contain pi p j in the representation above are

1

2g

(
q0

p0
p j

) (
(γ − 1) (pi )

(p + q) · w

|p + q|2
)

and

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (pi )

(
p0 + q0 + 2

√
s√

s

(
q0

p0
p j

)
+

√
s

p0
p j

)
.

Therefore, the sum of them are equal to

1

2g

(
q0

p0
p j

) (
(γ − 1) (pi )

(p + q) · w

|p + q|2
)

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (pi )

(
p0 + q0 + 2

√
s√

s

(
q0

p0
p j

)
+

√
s

p0
p j

)

= 1

2g

(
q0

p0
p j

) (
(pi )

(p + q) · w√
s(p0 + q0 +

√
s)

)

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (pi )

(
p0 + q0 + 2

√
s√

s

(
q0

p0
p j

)
+

√
s

p0
p j

)

= pi p j (p + q) · w

2gp0
(
p0 + q0 +

√
s
)2

s
3
2

(
q0s(p0 + q0 +

√
s) − g2(p0 + q0 + 2

√
s)q0 − sg2

)
.

On the other hand, the terms that contain qiq j are

1

2g

(−q j
) (

(γ − 1) (qi )
(p + q) · w

|p + q|2
)

and

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (qi )

(
p0 + q0 + 2

√
s√

s

(−q j
))

.

Therefore, the sum of them are equal to

1

2g

(−q j
) (

(γ − 1) (qi )
(p + q) · w

|p + q|2
)
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− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (qi )

(
p0 + q0 + 2

√
s√

s

(−q j
))

= 1

2g

(−q j
) (

(qi )
(p + q) · w√

s(p0 + q0 +
√
s)

)

− (p + q) · w

2s
(
p0 + q0 +

√
s
)2 g (qi )

(
p0 + q0 + 2

√
s√

s

(−q j
))

= qiq j (p + q) · w

2g
(
p0 + q0 +

√
s
)2

s
3
2

(
− s(p0 + q0 +

√
s) + g2(p0 + q0 + 2

√
s)

)
.

In addition, note that the coefficients of pi p j and qi p j are equal. Similarly, the coeffi-
cients of piq j and qiq j are equal.

Putting all these together, we can write:

∂ui
∂p j

= Aδi j +Bpi p j +Cqiq j + Dpiq j + Eqi p j + Fpiw j +Gqiw j +Hwi p j + Iwi q j ,

where the scalars are (2.3) and

B = θ
(p + q) · w

2gp0
(
p0 + q0 +

√
s
)2

s
3
2

(
q0s

(
p0+q0+

√
s
)

−g2q0
(
p0 + q0 + 2

√
s
)

−g2s
)

,

C = θ
(p + q) · w

2g
(
p0 + q0 +

√
s
)2

s
3
2

(
−s

(
p0 + q0 +

√
s
)
+ g2

(
p0 + q0 + 2

√
s
))

,

D = C,

E = B,

F = θ
g

2
√
s
(
p0 + q0 +

√
s
) ,

G = F,

H = θ
q0

2gp0
,

I = − θ

2g
. (2.8)

We will use these notations above throughout the proof.
Notice from (2.1) and (2.3) that (1 − θ) < A < 1 since

∣∣∣∣g
(γ − 1) (p + q) · w

|p + q|2
∣∣∣∣ =

∣∣∣∣∣
g (p + q) · w√
s
(
p0 + q0 +

√
s
)
∣∣∣∣∣ ≤ g√

s

|p + q|
p0 + q0

< 1, (2.9)

as s = g2 + 4 > g2 and |p + q| < p0 + q0. We will use this to compute the determinant
of the matrix 	 = (

	i j
)
where 	i j = ∂ui

∂p j
.

We first decompose the pre-collisional vector p as below:

p = (p · w) w + w × (p × w) .

Define w̄
def= w×(p×w)

|p×w| . Then, w̄ ∈ S
2 and w̄ ⊥ w. Also, define w̃

def= p×w
|p×w| .
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Then, w̃ ∈ S
2 and w̃ ⊥ w and w̃ ⊥ w̄. Thus, {w, w̄, w̃} is an orthonormal basis for

R
3. Then, we can decompose q as below:

q = (q · w)w + w × (q × w)

= (q · w)w + ((w × (q × w)) · w̄) w̄ + w̄ × ((w × (q × w)) × w̄)

= (q · w)w + (q · w̄) w̄ + (q · w̃) w̃

def= aw + bw̄ + cw̃.

Here we record

a = (q · w) , b = (q · w̄) , c = (q · w̃) . (2.10)

Similarly, write:

p = (p · w)w + w × (p × w) = (p · w)w + |p × w|w̄ def= dw + ew̄.

Here we also record

d = (p · w) , e = |p × w|. (2.11)

Notice that a2 + b2 + c2 = |q|2 and d2 + e2 = |p|2.
Then, we can rewrite the matrix element 	i j :

	i j = Aδi j + B ′wiw j + C ′w̄i w̄ j + D′w̃i w̃ j + E ′wi w̄ j + F ′wi w̃ j

+ G ′w̄iw j + H ′w̄i w̃ j + I ′w̃iw j + J ′w̃i w̄ j ,

where

B ′ = Bd2 + Ca2 + Dad + Ead + Fd + Ga + Hd + I a

C ′ = Be2 + Cb2 + Deb + Eeb,

D′ = Cc2

E ′ = Bde + Cab + Dbd + Eae + He + I b,

F ′ = Cac + Dcd + I c

G ′ = Bde + Cba + Dae + Ebd + Fe + Gb,

H ′ = Cbc + Dce

I ′ = Cac + Ecd + Gc,

J ′ = Cbc + Ece.

Therefore, we have

	 = AI + B ′ww� + C ′w̄w̄� + D′w̃w̃� + E ′ww̄� + F ′ww̃�

+ G ′w̄w� + H ′w̄w̃� + I ′w̃w� + J ′w̃w̄�. (2.12)

Note that {w, w̄, w̃} forms an orthonormal basis for R3. Now we define a 3 by 3 matrix
M of the orthonormal basis as

M = (
w w̄ w̃

) =
⎛
⎝

w1 w̄1 w̃1
w2 w̄2 w̃2
w3 w̄3 w̃3

⎞
⎠ .
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Then the determinant of 	 is the same as that of M�	M as M is the matrix of an
orthonormal basis. Now we observe that

(M�	M)11 = w�	w = A + B ′,
(M�	M)21 = w̄�	w = G ′,
(M�	M)31 = w̃�	w = I ′,
(M�	M)12 = w�	w̄ = E ′,

(M�	M)22 = w̄�	w̄ = A + C ′,
(M�	M)32 = w̃�	w̄ = J ′,
(M�	M)13 = w�	w̃ = F ′,
(M�	M)23 = w̄�	w̃ = H ′,

and

(M�	M)33 = w̃�	w̃ = A + D′.

Therefore, the determinant of 	 is equal to:

det (	) = det
(
M�	M

)
=

∣∣∣∣∣∣
A + B ′ E ′ F ′
G ′ A + C ′ H ′
I ′ J ′ A + D′

∣∣∣∣∣∣
.

We will further row reduce this determinant to obtain the expression in (2.2). We write
the matrix 	 = (

	i j
)
to represent the components.

Subtracting (Column 3)× a
c from (Column 1) and subtracting (Column 3)× b

c from
(Column 2) gives

	11 = A + Bd2 + Ead + Fd + Ga + Hd,

	21 = Bde + Ebd + Fe + Gb,

	31 = Ecd + Gc − a

c
A

	12 = Bde + Eae + He,

	22 = A + Be2 + Ebe,

	32 = Ece − b

c
A.

There is no change on Column 3 by this column reduction. These row reductions do not
change the determinant.

Now, subtracting (Column 2)× d
e from (Column 1) gives

	11 = A + Fd + Ga, 	21 = −d

e
A + Fe + Gb, 	31 =

(
bd

ce
− a

c

)
A + Gc.

Now, we subtract (Row 3)× a
c from (Row 1) and (Row 3)× b

c from (Row 2) respectively.
Then, we have the matrix elements to be:

	11 =
(
1 − abd

c2e
+
a2

c2

)
A + Fd,
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	21 =
(
ab

c2
− d

e
− b2d

c2e

)
A + Fe

	31 =
(
bd

ce
− a

c

)
A + Gc,

	12 = ab

c2
A + Bde + He,

	22 =
(
1 +

b2

c2

)
A + Be2

	32 = −b

c
A + Ece,

	13 = −a

c
A + Dcd + I c,

	23 = −b

c
A + Dce,

	33 = A + Cc2.

We do one more row reduction: subtract (Row 2)× d
e from (Row 1). This gives

det (	) =
∣∣∣∣∣∣

a11A a12A + He a13A + I c
a21A + Fe a22A + Be2 a23A + Dce
a31A + Gc a32A + Ece a33A + Cc2

∣∣∣∣∣∣
where

a11 = 1 − abd

c2e
+
a2

c2
− abd

c2e
+
d2

e2
+
b2d2

c2e2

a21 = ab

c2
− d

e
− b2d

c2e
,

a31 = bd

ce
− a

c
,

a12 = ab

c2
− d

e
− b2d

c2e

a22 = 1 +
b2

c2
,

a32 = −b

c
,

a13 = bd

ce
− a

c
,

a23 = −b

c
,

a33 = 1.

Since B = E , C = D, and G = F , we can do one more row reduction: (Row 2)-(Row
3)× e

c . This gives

	21 =
(
ab

c2
− d

e
− b2d

c2e
− bd

c2
+
ae

c2

)
A

def= a′
21A
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	22 =
(
1 +

b2

c2
+
be

c2

)
A

def= a′
22A,

	23 =
(

−b

c
− e

c

)
A

def= a′
23A.

Finally, we have

det (	) =
∣∣∣∣∣∣

a11A a12A + He a13A + I c
a′
21A a′

22A a′
23A

a31A + Gc a32A + Ece a33A + Cc2

∣∣∣∣∣∣
,

where

a11 = c2|p|2 + L2

c2e2
,

a′
21 = L (b + e) − c2d

c2e
,

a31 = − L

ce
,

a12 = bL − c2d

c2e
,

a′
22 = b2 + c2 + be

c2
,

a32 = −b

c
,

a13 = − L

ce
,

a′
23 = −b + e

c
,

a33 = 1,

with L
def= ae − bd.

Then the determinant is

det (	) = A

(
a11A

(
a′
22A + Cc2a′

22 − a′
23a32A − a′

23Ece
)

− (a12A + He)
(
a′
21A + a′

21Cc2 − a′
23a31A − a′

23Gc
)

+ (a13A + I c)
(
a′
21a32A + a′

21Ece − a′
22a31A − a′

22Gc
) )

.

Here we further reduce the determinant. First, notice that

a′
22 = b2 + c2 + be

c2
= 1 +

(
−b

c

) (
−b + e

c

)
= 1 + a32a

′
23.

Thus, we obtain

a′
22A − a′

23a32A = A.
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Also, we have

a′
21 − a′

23a31 = L (b + e) − c2d

c2e
−

(−b − e

c

) (−L

ce

)
= −d

e
,

and

a′
21a32 − a′

22a31 = L (b + e) − c2d

c2e

(−b

c

)
−

(
b2 + be

c2
+ 1

) (−L

ce

)
= a

c
.

Then the determinant is now

det (	) = A

(
a11A

(
A + Cc2a′

22 − a′
23Ece

)

− (a12A + He)

(
−d

e
A + a′

21Cc2 − a′
23Gc

)

+ (a13A + I c)
(a
c
A + a′

21Ece − a′
22Gc

) )

=
(
a11 + a12

d

e
+ a13

a

c

)
A3

+

(
a11a

′
22Cc2 − a11a

′
23Ece + Hd − a12a

′
21Cc2

+ a12a
′
23Gc + I a + a13a

′
21Ece − a13a

′
22Gc

)
A2

+
(
−a′

21CHc2e + a′
23GHce + a′

21 I Ec
2e − a′

22 IGc2
)
A.

Thus

det (	) = P1A
3 + P2A

2 + P3A,

where

P1 = a11 + a12
d

e
+ a13

a

c
(2.13)

P2 = a11a
′
22Cc2 − a11a

′
23Ece + Hd − a12a

′
21Cc2 (2.14)

+ a12a
′
23Gc + I a + a13a

′
21Ece − a13a

′
22Gc,

P3 = −a′
21CHc2e + a′

23GHce + a′
21 I Ec

2e − a′
22 IGc2. (2.15)

We will further simplify and compute P1, P2 and P3 from (2.13), (2.14) and (2.15)
below.

We compute P1 from (2.13) first. It can be simply estimated as

P1 = c2|p|2 + L2

c2e2
+
bdL − c2d2

c2e2
− Lae

c2e2

= 1

c2e2

(
c2e2 + L2 + L (bd − ae)

)
= 1

c2e2

(
c2e2 + L2 − L2

)
= 1.

This is all we need for P1.
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We now simplify P2 from (2.14). From the previous calculations we have

P2 =Cc2
(
a11a

′
22 − a12a

′
21

)
+ Ece

(
a13a

′
21 − a11a

′
23

)

+ Gc
(
a12a

′
23 − a13a

′
22

)
+ θ

1

2g

(
q0

p0
d − a

)
.

We first have

a11a
′
22 − a12a

′
21

= 1

c4e2

((
c2|p|2 + L2

) (
b2 + c2 + be

)
−

(
bL − c2d

) (
L (e + b) − c2d

))

= 1

c4e2

(
c4

(
|p|2 − d2

)
+ b2c2|p|2 + bc2

(
|p|2e + 2Ld

)
+ c2

(
L2 + Lde

))

= 1 +
1

c2e2

(
b2|p|2 + b

(
|p|2e + 2Ld

)
+ L2 + Lde

)

= 1 +
1

c2e2

(
b2e2 + |p|2be + e2a2 + e2ad − bd2e

)

= 1

c2e2

(
|q|2e2 + be3 + e2ad

)
= 1

c2

(
|q|2 + be + ad

)
.

We also have

a13a
′
21 − a11a

′
23 = 1

c3e2

(
−L2 (e + b) + Lc2d +

(
c2|p|2 + L2

)
(b + e)

)

= 1

c3e2

(
Lc2d + bc2|p|2 + c2|p|2e

)

= 1

c3e2

(
c2dea − bc2d2 + bc2|p|2 + c2|p|2e

)
= 1

ce

(
ad + be + |p|2

)
.

Lastly, we observe

a12a
′
23 − a13a

′
22 = 1

c3e

((
bL − c2d

)
(−b − e) + L

(
b2 + c2 + be

))

= 1

c3e

(
c2d (b + e) + Lc2

)

= 1

c3e

(
c2db + c2de + c2ea − c2bd

)
= a + d

c
.

Thus, we put these computations together to obtain

P2 = C
(
ad + be + |q|2

)
+ E

(
ad + be + |p|2

)
+ G (a + d)

+ θ
1

2g

(
q0

p0
d − a

)
. (2.16)

We also have using s = g2 + 4 and (2.1) that

E = B = θ

p0
(p + q) · w

2g
(
p0 + q0 +

√
s
)2

s
3
2

(
4q0

(
p0 + q0 +

√
s
)

− g2
√
s
(
q0 +

√
s
))
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= θ
(a + d)

2gp0
(γ − 1)2

|p + q|4
(
4q0 (γ + 1) − g2

(
q0 +

√
s
))

.

We again use (2.1) to obtain that

C = D = θ
(p + q) · w

2g
(
p0 + q0 +

√
s
)2

s
3
2

(
−4

(
p0 + q0 +

√
s
)
+ g2

√
s
)

= θ
(a + d)

2g

(γ − 1)2

|p + q|4
(
−4 (γ + 1) + g2

)
,

and further using (2.1) again

G = F = θ
g

2
√
s
(
p0 + q0 +

√
s
) = θ

(γ − 1) g

2|p + q|2 .

Then we reduce P2 as

P2 = C
(
ad + be + |q|2

)
+ E

(
ad + be + |p|2

)
+ G (a + d) + θ

1

2g

(
q0

p0
d − a

)

= θ
(γ − 1)2 (p + q) · w

2gp0|p + q|4
( (

|q|2 + ad + be
) (

p0g2 − 4p0 (γ + 1)
)

+
(
|p|2 + ad + be

) (
4q0 (γ + 1) − g2

(
q0 +

√
s
))

+
|p + q|2
(γ − 1)

p0g2 +
|p + q|4
(γ − 1)2

(
q0d − p0a

)

a + d

)

= θ
(γ − 1)2 (p+q) · w

2gp0|p+q|4
(

(ad+be)
(
4

(
q0 − p0

)
(γ +1)+g2

(
p0 − q0

)
− g2

√
s
)

+
(
4γ + 4 − g2

) (
|p|2q0 − |q|2 p0

)
− g2|p|2√s

+
|p + q|2
(γ − 1)

p0g2 +
|p + q|4
(γ − 1)2

(
q0d − p0a

)

a + d

)

= θ
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(

(ad + be)
((

q0 − p0
) (

4γ + 4 − g2
)

− g2
√
s
)

+
(
4γ + 4 − g2

) (
p0 − q0

) (
1 + p0q0

)
− g2|p|2√s

+
|p + q|2
(γ − 1)

p0g2 +
|p + q|4
(γ − 1)2

(
q0d − p0a

)

a + d

)
.

We note that a + d = (p + q) · w. Thus, we obtain from the above that

P2 = θ
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)

− θ
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
ad + be + |p|2

)
g2

√
s

+ θ
(γ − 1) (p + q) · w

2gp0|p + q|2 p0g2 + θ
(p + q) · w

2gp0

(
q0d − p0a

)

a + d
.

(2.17)
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For an upper-bound estimate for |P2|, we estimate each term in (2.17). First of all, we
note from (2.10) and (2.11) that

|a|, |b|, |c| � q0, |d|, |e| � p0. (2.18)

We also have from for instance (1.7) that

g ≤ √
s ≤ 2

√
p0q0. (2.19)

Finally, we observe that

∣∣∣∣
p0 − q0

g

∣∣∣∣ ≤ |p − q|
g

≤
√
p0q0,

which holds by (2.6). Therefore, we obtain that the first term in (2.17) is bounded above
as

θ

∣∣∣∣∣
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)∣∣∣∣∣

= θ

∣∣∣∣
(p + q) · w

2gp0s(p0 + q0 +
√
s)2

(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)∣∣∣∣

≤ θ

√
p0q0 |p + q|

2p0s(p0 + q0 +
√
s)2

∣∣∣1 + p0q0 − ad − be
∣∣∣
∣∣∣4γ + 4 − g2

∣∣∣

�
√
p0q0 |p + q|

2p0s(p0 + q0 +
√
s)2

(p0q0)max{p0 + q0, s} � q0
√
p0q0

p0 + q0
max{p0 + q0, s}

s
,

where we again used (2.1) and that

|4γ + 4 − g2| ≤ 4γ + 4 + g2 = 4(p0 + q0)√
s

+ s ≤ 4max{p0 + q0, s}.

(1) In the case that max{p0 + q0, s} = s, if p0 ≥ q0, we observe that

q0
√
p0q0

p0 + q0
max{p0 + q0, s}

s
= q0

√
p0q0

p0 + q0
≤ q0 p0

p0 + q0
≤ q0.

On the other hand, if q0 ≥ p0, we observe that

q0
√
p0q0

p0 + q0
max{p0 + q0, s}

s
= q0

√
p0q0

p0 + q0
≤ q0.

Therefore, we conclude

θ

∣∣∣∣∣
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)∣∣∣∣∣ � q0.

(2.20)
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(2) In the case that max{p0 + q0, s} = p0 + q0, we observe that

q0
√
p0q0

p0 + q0
max{p0 + q0, s}

s
= q0

√
p0q0

s
.

Therefore, we conclude

θ

∣∣∣∣∣
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)∣∣∣∣∣

� (p0)
1
2 (q0)

3
2

s
. (2.21)

We now estimate the second term in the (RHS) of (2.17). We observe that the second
term is bounded above as

θ

∣∣∣∣∣
(γ − 1)2 (p + q) · w

2gp0|p + q|4
(
ad + be + |p|2

)
g2

√
s

∣∣∣∣∣

= θ

∣∣∣∣
(p + q) · w

2gp0s(p0 + q0 +
√
s)2

(
ad + be + |p|2

)
g2

√
s

∣∣∣∣

� |p + q|(p0q0 + |p|2)g
p0

√
s(p0 + q0)2

� 1. (2.22)

We now estimate the third term in the (RHS) of (2.17). We observe that the third term
is bounded above as

θ

∣∣∣∣
(γ − 1) (p + q) · w

2|p + q|2 g

∣∣∣∣ = θ

∣∣∣∣
(p + q) · w

2
√
s(p0 + q0 +

√
s)
g

∣∣∣∣ ≤ θ. (2.23)

Finally, using (2.10) and (2.11), we estimate the last term in the (RHS) of (2.17) as
below:

θ

∣∣∣∣
(p + q) · w

2gp0
q0d − p0a

a + d

∣∣∣∣ = θ

∣∣∣∣
(q0 p − p0q) · w

2gp0

∣∣∣∣

≤ θ

∣∣∣∣
(q0 p − q0q) · w

2gp0

∣∣∣∣ + θ

∣∣∣∣
(q0q − p0q) · w

2gp0

∣∣∣∣

≤ θ
q0|p − q|
2gp0

+ θ
|q||p0 − q0|

2gp0
≤ θ

q0|p − q|
gp0

≤ θ
q0

√
p0q0

p0
= θ

(q0)3/2

(p0)1/2
, (2.24)

where we used |p0 − q0| ≤ |p − q| and (2.6). Together with (2.20), (2.21), (2.22), and
(2.23), we have that

|P2| � q0
(
1 +

√
p0q0

s

)
+

(q0)
3
2

(p0)
1
2

� (q0)
3
2

(
1 +

√
p0

s

)
. (2.25)

This completes our estimates for P2.
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We now simplify P3. Recall from (2.15) that

P3 = −a′
21CHc2e + a′

23GHce + a′
21 I Ec

2e − a′
22 IGc2

= a′
21c

2e (I E − CH) + G
(
a′
23Hce − a′

22 I c
2
)

=
(
abe − bde + ae2 − c2d − b2d

)
(I E − CH)

− G
(
(b + e) He + I

(
b2 + c2 + be

))
.

(2.26)

From (2.8) and (2.1) we have that

I E − CH = − θ

2g
E − θ

q0

2gp0
C

= − θ

2g

(
−C

q0

p0
− (a + d) g

√
s

2p0
(γ − 1)2

|p + q|4 + C
q0

p0

)
= θ2

(a + d) (γ − 1)2
√
s

4p0|p + q|4 .

Notice from (2.8) that the second term in (2.26) is equal to

− G
(
(b + e) He + I

(
b2 + c2 + be

))

= −θ
g

2
√
s(p0 + q0 +

√
s)

((
be + e2

)
θ

q0

2gp0
− θ

2g

(
b2 + c2 + be

))

= θ2
1

4p0
√
s(p0 + q0 +

√
s)

((
q0

(
−be − e2

)
+ p0

(
b2 + c2 + be

)))

= θ2
(γ − 1)

4p0|p + q|2
( (

q0
(
−be − e2

)
+ p0

(
b2 + c2 + be

)) )
,

using again (2.1). Then we can further reduce P3, using (2.1), as

P3 = θ2
(a + d) (γ − 1)2

√
s

4p0|p + q|4
(
abe − bde + ae2 − c2d − b2d

)

+ θ2
(γ − 1)

4p0|p + q|2
( (

q0
(
−be − e2

)
+ p0

(
b2 + c2 + be

)) )

= θ2
(γ − 1)

4p0|p + q|2
(

(a + d)
(
abe − bde + ae2 − c2d − b2d

)

p0 + q0 +
√
s

+ be
(
p0 − q0

)
+ p0

(
|q|2 − a2

)
− q0

(
|p|2 − d2

) )

= θ2
(γ − 1)

4p0|p + q|2
1

p0 + q0 +
√
s

( (
e2a − bde + abe − b2d − c2d

)
(a + d)

+
(
p0 + q0 +

√
s
) (

p0
(
be + |q|2 − a2

)
+ q0

(
−be − |p|2 + d2

)))

= θ2
(γ − 1)

4p0|p + q|2
1

p0 + q0 +
√
s

(I1 + I2) . (2.27)

Here, we have

I1
def=

(
e2a − bde + abe − b2d − c2d

)
(a + d)
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=
(
a2 − d2

)
(ad + be) +

(
a2 − d2

) ((
p0

)2 − 1

)
+

(
ad + d2

)((
p0

)2 −
(
q0

)2)

=
(
a2 − d2

)
(ad + be − 1) +

(
p0

)2 (
a2 + ad

)
− (q0)2

(
ad + d2

)
,

and

I2
def=

(
p0 + q0 +

√
s
)
I3.

Also

I3
def= p0

(
be + |q|2 − a2

)
+ q0

(
−be − |p|2 + d2

)
.

Thus, we have

I1 + I2 = √
s I3 + (ad + be)

(
a2 − d2 +

(
p0

)2 −
(
q0

)2) −
(
a2 − d2

)

+
(
p0

)2 |q|2 −
(
q0

)2 |p|2 + p0q0
(
−|p|2 + d2 + |q|2 − a2

)

= √
s I3 +

(
ad + be − p0q0

)(
a2 − d2 +

(
p0

)2 −
(
q0

)2)

−
(
a2 − d2

)
+

(
p0

)2 |q|2 −
(
q0

)2 |p|2

= √
s I3 +

(
1 + p0q0 − ad − be

) (
d2 − a2 −

(
p0

)2
+

(
q0

)2)

= √
s I3 +

(
1 + p0q0 − ad − be

) (
−e2 + b2 + c2

)
.

Therefore, we finally obtain

P3 = θ2
(γ − 1)2

4p0
√
s|p + q|4

(√
s
((

be + e2
) (

p0 − q0
))

+
(
1 + p0q0 − ad − be

) (√
s p0 − e2 + b2 + c2

))
. (2.28)

This completes our calculation of P3
We now estimate the upper-bound for |P3|. Recall (2.1), (2.18) and (2.19).We further

have s ≥ max{g2, 4}. Therefore, we have

|P3| = θ2
∣∣∣∣

1

4p0s3/2(p0 + q0 +
√
s)2

∣∣∣∣
∣∣∣∣
√
s
((

be + e2
) (

p0 − q0
))

+
(
1 + p0q0 − ad − be

) (√
s p0 − e2 + b2 + c2

) ∣∣∣∣

� 1

4p0s3/2(p0 + q0 +
√
s)2

∣∣∣∣
√
s
((

p0q0 + (p0)2
) (

p0 − q0
))

+ (p0q0)
(√

s p0 + |p|2 + |q|2
) ∣∣∣∣
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� |p0 − q0|
4s(p0 + q0 +

√
s)

+
q0((p0 + q0)p0 + |p|2 + |q|2)

4s3/2(p0 + q0 +
√
s)2

� 1

s
+

q0

s3/2
� q0

s
.

Therefore, |P3| � q0

s . This completes the proof. ��
This completes our discussion of the derivation of the Jacobian determinant in (2.2)

and calculating the upper bounds for it in Theorem 2.1. In the next section we give an
example which proves that the Jacobian determinant can become zero.

3. The Lower-Bound of the Jacobian of the Collision Map

This section is devoted to proving that the the Jacobian determinant det
(

∂u
∂p

)
indeed

attains the value zero. We prove that in the following theorem:

Theorem 3.1. Suppose that the post-collisional momentum p′ is defined as (1.4) and
u = θp′ + (1 − θ)p for θ ∈ (0, 1) as in (1.10). Then we have

lim
θ→1

lim|q|→∞

∣∣∣∣det
(

∂u

∂p

)∣∣∣∣
at p=0 and q=−|q|w

= 0.

Proof. We use the formula on the Jacobian determinant from Theorem 2.1. By Theo-
rem 2.1, we have the determinant as (2.2) with (2.3) and P2 and P3 are defined as in
(2.17) and (2.28), respectively.

We now compute each value of A, P2, and P3 when p = 0 and q = −|q|w. If p = 0
and q = −|q|w, using also (2.1) we have the following identities:

p0 = 1,

g =
√
2q0 − 2,

s = 2q0 + 2,

γ = 1 + q0√
2q0 + 2

,

γ − 1 = |q|2√
2q0 + 2(q0 + 1 +

√
2q0 + 2)

,

|p + q| = |q|,
a = −|q|, and

b = c = d = e = 0.

(3.1)

Then, we can further observe that

A = 1 − θ

2
− θ

2

( √
2q0 − 2|q|√

2q0 + 2(q0 + 1 +
√
2q0 + 2)

)
→ 1 − θ, as |q| → ∞. (3.2)

We will use this limit at the end of the proof.
Now we study P2, by (2.17), we have

P2 = θ
(γ − 1)2 (p + q) · w

2gp0|p + q|4
( (

1 + p0q0 − ad − be
) (

p0 − q0
) (

4γ + 4 − g2
)
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−
(
ad + be + |p|2

)
g2

√
s

)
+ θ

(γ − 1) g (p + q) · w

2|p + q|2 + θ

(
q0d − p0a

)

2gp0

= − θ |q|
2
√
2q0 − 2(2q0 + 2)(q0 + 1 +

√
2q0 + 2)2

×
((

1 + q0
) (

1 − q0
) (

4
1 + q0√
2q0 + 2

− 2q0 + 6

))

− θ

√
2q0 − 2|q|

2
√
2q0 + 2(q0 + 1 +

√
2q0 + 2)

+ θ
|q|

2
√
2q0 − 2

= − θ |q|
2
√
2q0 − 2(2q0 + 2)(q0 + 1 +

√
2q0 + 2)2

×
( (

1 + q0
) (

1 − q0
)(

4
1 + q0√
2q0 + 2

− 2q0 + 6

)

− (2q0 + 2)(q0 + 1 +
√
2q0 + 2)2

)

− θ

√
2q0 − 2|q|

2
√
2q0 + 2(q0 + 1 +

√
2q0 + 2)

. (3.3)

We continue to further calculte P2 below, and in the last linewe further note the important
exact cancellation of the highest order (q0)3 terms, as

P2 = − θ |q|
2
√
2q0 − 2(2q0 + 2)(q0 + 1 +

√
2q0 + 2)2

×
( (

1 − (q0)2
) (

4
1 + q0√
2q0 + 2

+ 6

)
− 2q0(1 − (q0)2)

− 2(q0 + 1)3 − (2q0 + 2)(2q0 + 2 + 2
√
2q0 + 2(q0 + 1))

)

− θ

√
2q0 − 2|q|

2
√
2q0 + 2(q0 + 1 +

√
2q0 + 2)

= − θ |q|
2
√
2q0 − 2(2q0 + 2)(q0 + 1 +

√
2q0 + 2)2

×
(

− |q|2
(
4

1 + q0√
2q0 + 2

+ 6

)
− 2q0 − 2(3(q0)2 + 3q0 + 1)

− (2q0 + 2)(2q0 + 2 + 2
√
2q0 + 2(q0 + 1))

)

− θ

√
2q0 − 2|q|

2
√
2q0 + 2(q0 + 1 +

√
2q0 + 2)

. (3.4)

Here, we note that we find an exact cancellation to remove the highest order terms in q0

to obtain the last identity, as the limit of |q| → ∞ blows up otherwise.



On the Determinant Problem for the Relativistic Collision map 1937

Then, we further compare the coefficients of the highest order terms in |q| of the top
and the bottom above. Thus we obtain the following limit

P2 → −θ
−4 − 4

√
2

4
√
2

− θ

√
2

2
√
2

= 1 +
√
2

2
θ, as |q| → ∞. (3.5)

We will use this limit at the end of the proof.
Finally, we can observe from (2.28) that P3 would look like

P3 = θ2
(γ − 1)2

4p0
√
s|p + q|4

(√
s
((

be + e2
) (

p0 − q0
))

+
(
1 + p0q0 − ad − be

) (√
s p0 − e2 + b2 + c2

))

= θ2
1

4
√
2q0 + 2(2q0 + 2)(q0 + 1 +

√
2q0 + 2)2

((
1 + q0

) √
2q0 + 2

)

= θ2
1

8(q0 + 1 +
√
2q0 + 2)2

→ 0, as |q| → ∞.

(3.6)

Therefore, we conclude from (3.2), (3.5), and (3.6) that

lim|q|→∞

∣∣∣∣det
(

∂u

∂p

)∣∣∣∣
at p=0 and q=−|q|w

= (1 − θ)3 +
1 +

√
2

2
θ(1 − θ)2. (3.7)

Finally, we take the limit as θ → 1 in (3.7) to finish the proof. ��
This completes our discussion of the specific limit where the Jacobian in (2.2) can

go to zero. In the next section we will explain the results of our numerical study where
we have seen that this Jacobian determiant in fact has a large number of distinct zeros.

4. Numerical Investigation of the Jacobian

Understanding the roots of the Jacobian (2.2) provides us with information about the
existence of solutions to the relativistic Boltzmann equation. We used numerical tech-
niques to gain some understanding of the zeroes of the Jacobian. Random sampling

of the domain showed that most points gave det
(

∂u
∂p

)
> 0. Accordingly, we reduce

the problem to that of finding (θ, p, q, w) which make the determinant negative. Fol-
lowing this, we pick another point with positive determinant and perform the bisection
method along the path between these points. This allows us to obtain zeroes of arbitrary
precision, relatively quickly.

Examining the equations for the Jacobian in (2.2), one can show that ∂u
∂p j

is continuous
away from p = q. In general, there is a jump discontinuity along p = q, but this
does not hinder the bisection method. Consider two points α = (θ, p, q, w) and β =
(θ ′, p′, q ′, w′). Let γ (t) = (θ(t), p(t), q(t), w(t)) be the path from α to β. Then this
path intersects the set {p = q} if and only if p(t) = q(t) for some t . Geometrically, if
we plot p(t) and q(t) in R3, then this occurs if and only if these line segments intersect.
This occurs with probability 0 and so in general the bisection method never encounters
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the jump discontinuity on {p = q}. Therefore the bisection method converges almost
surely.

The descent algorithm chosen is random search. The algorithm begins by making an

initial guess (θ, p, q, w). While det
(

∂u
∂p

)
(θ, p, q, w) > 0, a new point (θ, p′, q ′, w′) is

chosen randomly in some ball about (θ, p, q, w). If det
(

∂u
∂p

)
(θ, p′, q ′, w′) < det

(
∂u
∂p

)

(θ, p, q, w), then the guess is updated by setting p = p′, q = q ′, w = w′. This method
terminates after a negative determinant is found, or 100,000 iterations pass. Random
search performed better than random guessing, particularly for small θ . It did not find
zeroes when θ ≤ .1. Random sampling of 200,000 points for θ ≤ .1 also failed to find
negative values of the determinant.

The script was written in SageMath and run on the General Purpose Cluster at the
University of Pennsylvania. In order to guarantee high precision, we set the precision
to 200 bits. Following this, we iterated over θ ∈ {.01, .02, ..., .99} and left θ fixed
during the random search and bisection method. Before implementing this, the search
algorithm tended to converge to values of θ close to 1. For each θ , we performed the
random search 50 times. After obtaining points (θ, p, q, w) and (θ, p′, q ′, w′) with
determinants of opposite sign, we used the bisection method on these points and 49
other randomly generated points. This is done to obtain more data as the random search
is computationally expensive. Finally, zeroes that do not satisfy the angle condition in
(1.3)with (1.2) are removed from the data set. Thewritten code used to run this algorithm
is contained in [4].

Figure 1 shows plots of the roots. The plot for p is very scattered, while the plots for
q and w appear to be relatively ordered. This is due to the fact that only the first 2000
points are plotted, which corresponds to smaller values of θ in the data. This pattern
does not hold for larger theta as can be seen in Figure 2 where the data is very scattered.

Examining plots of the data did not show any clear patterns. Figure 2 shows that the
zeros do not have a clear dependence on angle viewed independent of one another. In
particular, the plot for p displays roots of all angles and appears independent of θ . The
plots for q and w in Figure 2 show more complexity and dependence on θ , but there are
no clear patterns in the plot.
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A. Appendix A. An Alternative Representation of the Jacobian

In this appendix, we derive an alternative expression for the Jacobian determinant from
the one in (2.2). For the expression in (2.2), we remark that P2 in (2.17) and P3 in (2.28)
are not independent of A in (2.3) because both still contain the term g(a+d)(γ−1)

|p+q|2 which

is equal to 2
θ

(
A − 1 + θ

2

)
. Define

K
def= g (a + d) (γ − 1)

|p + q|2 = ((p + q) · w) g(
p0 + q0 +

√
s
) √

s
. (A.1)

The last calculation follows from (2.1), (2.10) and (2.11). Therefore, as in (2.9), |K |
is bounded by 1. Then we can write the Jacobian as a cubic polynomial in K as in the
following proposition:

Proposition A.1. The Jacobian determinant can also be written as

det

(
∂u

∂p

)
= D1K

3 + D2K
2 + D3K + D4,

where Di for i = 1, 2, 3, 4 is a function of p,q,w, and θ, which are defined explicitly in
(A.2) below.

Proof of Proposition A.1. We rewrite the coefficient A in (2.3) and the coefficients P2
and P3 in (2.17) and (2.28) respectively in terms of K as

A =
(
1 − θ

2

)
+

θ

2
K .

We now rewrite P2 in terms of K . We obtain directly from (2.17) with (A.1) that

P2 = K θ

(
(γ − 1)

2|p + q|2 p0g2 {
(
1 + p0q0 − ad − be

) (
p0 − q0

) (
4γ + 4 − g2

)

−
(
ad + be + |p|2

)
g2

√
s} + 1

2

)
+ θ

1

2g

(
q0

p0
d − a

)

def= P21K + P22.

Similarly, we use (2.27) to calculate for P3 that

P3 = θ2
(a + d) (γ − 1)2

√
s

4p0|p + q|4
(
abe − bde + ae2 − c2d − b2d

)

+ θ2
(γ − 1)

4p0|p + q|2
(
q0

(
−be − e2

)
+ p0

(
b2 + c2 + be

))
.

Then, from (A.1), we have

P3 = θ2
(γ − 1)

√
s

4p0|p + q|2g
(
K

(
abe − bde − ae2 − c2d − b2d

)

+
g√
s
{q0

(
−be − e2

)
+ p0

(
b2 + c2 + be

)
}
)

def= P31K + P32.
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Now, using the simplifications above, the determinant from (2.2) is

det (	) = A3 + A2P2 + AP3

=
((

1 − θ

2

)
+

θ

2
K

)3

+

((
1 − θ

2

)
+

θ

2
K

)2

(P21K + P22)

+

((
1 − θ

2

)
+

θ

2
K

)
(P31K + P32)

=
((

θ

2

)3

+ P21

(
θ

2

)2
)
K 3

+

(
θ

2

(
1 − θ

2

)(
3θ

2
+ 2P21

)
+

θ

2

(
P22

(
θ

2

)
+ P31

))
K 2

+

(
3

(
1 − θ

2

)2
θ

2
+

(
1 − θ

2

)2

P21 + θ

(
1 − θ

2

)
P22 +

(
1 − θ

2

)
P31 +

θ

2
P32

)
K

+

((
1 − θ

2

)3

+ P22

(
1 − θ

2

)2

+ P32

(
1 − θ

2

))

def= D1K
3 + D2K

2 + D3K + D4. (A.2)

This completes the proof. ��
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