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Abstract: We establish rapid mixing of the random-cluster Glauber dynamics on ran-
dom Δ-regular graphs for all q ≥ 1 and p < pu(q,Δ), where the threshold pu(q,Δ)

corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster
model on the (infinite) Δ-regular tree. It is expected that this threshold is sharp, and for
q > 2 the Glauber dynamics on random Δ-regular graphs undergoes an exponential
slowdown at pu(q,Δ). More precisely, we show that for every q ≥ 1, Δ ≥ 3, and
p < pu(q,Δ), with probability 1 − o(1) over the choice of a random Δ-regular graph
on n vertices, the Glauber dynamics for the random-cluster model hasΘ(n log n)mixing
time. As a corollary, we deduce fast mixing of the Swendsen–Wang dynamics for the
Potts model on random Δ-regular graphs for every q ≥ 2, in the tree uniqueness region.
Our proof relies on a sharp bound on the “shattering time”, i.e., the number of steps re-
quired to break up any configuration into O(log n) sized clusters. This is established by
analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying
random graph with clusters of the Glauber dynamics configuration on it, at a given time.

1. Introduction

The random-cluster model is a random graph model, unifying the study of electrical
networks, independent bond percolation, and the ferromagnetic Ising/Potts model from
statistical physics [21,31]. It is defined on a graph G = (V, E) and parametrized by an
edge probability p ∈ (0, 1) and cluster weight q > 0. Each configuration consists of a
subset of edges ω ⊆ E (equivalently ω ∈ {0, 1}E ) and is assigned probability

πG,p,q(ω) = 1

ZG,p,q
p|ω|(1 − p)|E |−|ω|qc(ω), (1.1)

where c(ω) is the number of connected components in (V, ω) and ZG,p,q is a normalizing
constant.
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Aside from its inherent interest as a model of random networks, the random-cluster
model provides an elegant class of Markov Chain Monte Carlo (MCMC) algorithms
for sampling from the Ising/Potts model. For integer q ≥ 2, a sample ω from (1.1)
can be transformed into one for the q-state ferromagnetic Potts model by independently
assigning a random spin from {1, . . . , q} to each connected component of (V, ω); see,
e.g., [18,31]. Such sampling algorithms, which include the popular Swendsen–Wang
algorithm [50], are a widely-used alternative to the standard Ising/Potts Markov chains
since the former are often efficient at “low-temperatures” (large p) where the latter suffer
exponential slowdowns (see [8,33]).

Our focus here is on the Glauber dynamics of the random-cluster model. Specifically,
we consider the following discrete-time Glauber dynamics chain, which we refer to as
theFK-dynamics. From a configurationωt ⊆ E , one step of the FK-dynamics transitions
to a new configuration ωt+1 ⊆ E as follows:

1. Choose an edge et ∈ E uniformly at random;

2. Setωt+1 = ωt∪{et }withprobability
{
p̂ := p

q(1−p)+p if et is a “cut-edge” in (V, ωt );
p otherwise;

3. Otherwise set ωt+1 = ωt \ {et }.
We say e is a cut-edge in (V, ωt ) if changing the state of et changes the number of
connected components c(ωt ) in (V, ωt ). This chain is, by design, reversible with respect
to πG,p,q .

A central question in the study of Markov chains is how the mixing time—defined as
the number of steps until theMarkov chain is close to stationarity starting from the worst
possible initial configuration—grows as the size of the graph G increases. Of particular
interest in the context of random-cluster and Ising/Potts dynamics is the relation of
mixing times to the rich equilibrium phase transitions of the model.

We consider this question when G is a random Δ-regular graph on n vertices. The
study of spin systems and their dynamics on random graphs is quite active [12,14–
16,19,20,25,44,45].RandomΔ-regular graphs are a canonical example of graphs having
exponential volume growth, with a non-trivial geometry, making them an attractive
alternative to lattices or trees. More generally, the study of spin systems on random
graphs yields insight into hard instances of the classical computational problems of
sampling, counting, learning and testing [2,23,48,49] and features in the study of random
constraint satisfaction problems [32,54].

The phase transition of the random-cluster model on random Δ-regular graphs is
expected to involve three critical points [10,34,39,41]. Most relevant to us would be
the critical threshold pu(q,Δ) corresponding to a uniqueness/non-uniqueness phase
transition for the random-cluster model on the infiniteΔ-regular wired tree (in which the
leaves are externally wired to be in the same connected component). Roughly speaking,
the uniqueness/non-uniqueness phase transition captures whether the wired boundary
has an effect or not on the configuration near the root of the tree (in the limit as the
height of the tree grows). It is believed that the mixing time slows down at pu(q,Δ),
either polynomially or exponentially depending on q ≤ 2 or q > 2.

In this paper, we establish optimal mixing for the FK-dynamics on randomΔ-regular
graphs throughout the uniqueness region p < pu(q,Δ) for all real q ≥ 1 and allΔ ≥ 3.

Theorem 1. Fix any q ≥ 1,Δ ≥ 3, and p < pu(q,Δ). Consider the FK-dynamics on
a uniformly random Δ-regular graph on n vertices. With probability 1 − o(1) over the
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choice of the random graph G, the mixing time of the FK-dynamics on G is Θ
(
n log n

)
.

1

The FK-dynamics are known to be resistant to sharp analysis with the known tech-
niques for Markov chains for spin systems. This is due, in part, to the fact that the
random-cluster model presents highly non-local interactions: an update on an edge et
depends on the entire configurationωt (E \{et }). Indeed, the only other setting where the
speed of convergence of FK-dynamics is well-understood via direct analysis is in square
subsets of Z2 [6,8,26–29]. Other bounds to date have been obtained either indirectly,
via comparison with global Markov chains using the results of [52,53] (and as a result,
these bounds are off by polynomial factors), or by taking either p very small (e.g., under
a Dobrushin-type condition) or very large, or q large. This is the state of affairs even on
the (geometrically trivial) complete graph [8,30,38].

Our results are tight in the sense that the FK-dynamics is expected to undergo a
slowdown at pu(q,Δ), as we describe next. The equilibrium phase transition of the
random-cluster model on random Δ-regular graphs should qualitatively resemble those
on the Δ-regular tree and the complete graph. Based on this relation, and understand-
ings of those phase diagrams [10,34,39,41], it is expected to involve three critical points
pu(q,Δ) ≤ pc(q,Δ) ≤ p∗

u(q,Δ). The tree uniqueness/non-uniqueness phase tran-
sition at pu(q,Δ) manifests on the finite Δ-regular tree in the form of existence/non-
existence of root-to-leaf paths under wired boundary conditions. The threshold p∗

u(q,Δ)

corresponds to a (conjectured) second non-uniqueness/uniqueness transition; above this
point even the Δ-regular tree under free boundary conditions has root-to-leaf connec-
tions (see [25,34,36,39] for more details). The threshold pc(q,Δ), on the other hand,
corresponds to an order-disorder transition captured by the emergence of a “giant com-
ponent” of linear size on the random graph (which, roughly, imposes “typical" boundary
conditions on its treelike balls).

When q ∈ (1, 2] the phase transition is of second-order and these three thresh-
olds coincide; namely pu(q,Δ) = pc(q,Δ) = p∗

u(q,Δ). On the other hand when
q > 2, the phase transition on random Δ-regular graphs is conjectured to be of first-
order and pu(q,Δ) < pc(q,Δ) < p∗

u(q,Δ). Here, the uniqueness threshold pu(q,Δ)

should mark the onset of the metastability phenomenon, and that should persist up to
p∗
u(q,Δ). Metastability has been linked to an exponential slowdown for both random-

cluster and Potts Glauber dynamics on the complete graph [7,13,24,30], and the same
slowdown is expected to occur on random Δ-regular graphs. Namely, in the window
(pu(q,Δ), p∗

u(q,Δ)), the ordered and disordered phases should each be “metastable"
behaving locally (on treelike balls) like the configurations onwired and free trees, respec-
tively. The coexistence of these metastable phases with exponentially small boundaries,
facilitates states from which reversible Markov chains cannot easily escape (i.e., these
sets have bad conductance). It is thus expected that on randomΔ-regular graphs, for every
q > 2, the FK-dynamics mixes exponentially slowly throughout (pu(q,Δ), p∗

u(q,Δ)).
For q sufficiently large, such slowdown was established in [25] at p = pc(q,Δ) ∈
(pu(q,Δ), p∗

u(q,Δ)).
From Theorem 1 we obtain an efficient MCMC sampling algorithm, for both the

random-cluster model and the ferromagnetic Ising/Potts model on random Δ-regular
graphs in the uniqueness regime.

1 Throughout this paper, for two sequences an , bn , we say an = O(bn) if lim sup an/bn < ∞, and say
an = Θ(bn) if both bn = O(an) and an = O(bn). Further, we say an = Ω(bn) if lim an/bn = ∞, and say
an = o(bn) if bn = Ω(an).
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Corollary 2. Fix any q ≥ 1,Δ ≥ 3, p < pu(q,Δ) and any accuracy parameter
δ ∈ (0, 1). Then, with probability 1 − o(1) over the choice of the random Δ-regular
n-vertex graph G, there is a sampling algorithm which, given the graph G, outputs a
random-cluster configuration ω whose distribution is within total variation distance δ

of πG,p,q . The running time of the algorithm is O(n(log n)3 log(1/δ)).

The extra O((log n)2) factor in the running time of the algorithm comes from the
(amortized) computational cost of checkingwhether the chosen edge is a cut-edge in each
step of the FK-dynamics. This is equivalent to the fully dynamic connectivity problem
which has been thoroughly studied (see, e.g., [37,51]).

For integer q, the algorithm in Corollary 2 combinedwith the O(n) cost of translating
between the random-cluster and Potts configurationsmentioned earlier yields a sampling
algorithm for the ferromagnetic q-state Potts model on random regular graphs up to the
Potts uniqueness threshold (the uniqueness thresholds of both these models coincide).
This improves on the best previously known sampling algorithm for both these models
in [5], which runs in Õ(n6/5) time, and it is a “weak sampler” in the sense that it outputs
samples that are close in total variation distance to the target distribution but with a fixed
accuracy. (See also the recent work of [36] for a poly(n) sampler for all p ∈ (0, 1) but
provided q is sufficiently large.)

As another important corollary of Theorem 1, we deduce fast mixing of the standard
Swendsen-Wang (SW) algorithm for the ferromagnetic q-state Potts model [50]. This
is an extensively-used global-update Markov chain. The dynamics starts from a Potts
configuration σt ∈ {1, . . . , q}V , moves to a “joint” spin/random-cluster configuration
(σt , ωt ) by including each monochromatic edge independently with probability p and
then assigns to each connected component of (V, ωt ) a uniform at random spin from
{1, ..., q} to obtain a new Potts configuration σt+1 (see [18,50]).

Corollary 1. Fix any integer q ≥ 2 and Δ ≥ 3, and let p < pu(q,Δ). Consider the
Swendsen-Wang dynamics on a uniformly random Δ-regular graph on n vertices. With
probability 1 − o(1) over the choice of the random graph G, the mixing time of the
Swendsen–Wang dynamics on G is O

(
n2 log n

)
.

Corollary 1 follows immediately from Theorem 1 and the comparison results of
Ullrich [52,53]. Previously, our understanding of the speed of convergence of the SW
dynamics on random Δ-regular graphs was very limited. For the special case of q = 2,
which corresponds to the Isingmodel, it was established in [4] that the spectral gap of the
SW dynamics is Ω(1) for all p < pu(2,Δ); this implies an O(n) mixing time bound.
In addition, Guo and Jerrum [33] established an O(n10) mixing time bound for the SW
dynamics that applies to any graph and any p ∈ (0, 1). The methods in both of these
works are specific to the Ising model (q = 2) and do not generalize to other values of
q. Beyond the special case of q = 2, no sub-exponential bound was previously known
for either the FK-dynamics or the SW dynamics throughout the uniqueness regime
p < pu(q,Δ).

1.1. Proof ideas. We comment briefly on the techniques and main innovations in our
analysis next: for more details and an extended proof sketch, we refer the reader to
Section 3. The main ingredient in our proof is an O(n log n) bound on the “shattering
time” of the FK-dynamics (Theorem 4); this is the number of steps the chain requires
to break up any configuration into connected components of size at most O(log n). The
bound on the shattering time uses a novel and delicate iterative scheme to simultaneously
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reveal the underlying random graph and the connected components of the FK-dynamics
configuration on it at a given time: see Definition 11 and Figures 2–3. While revealing
procedures are a standard tool in the study of both random graphs and of the random-
cluster model, their combined analysis is highly non-trivial, as the law of the random-
cluster configuration at an edge depends on the global geometry of the graph. To our
knowledge, this the first direct upper bound for the shattering time of the FK-dynamics
in any setting. In fact, understanding the shattering time is usually the main obstacle for
proving rapid mixing of the FK-dynamics on other graphs: e.g., on the complete graph,
the shattering time is not known and only loose mixing time bounds (off by Θ(n2)
factors) can be derived [7].

Once the dynamics has shattered, we use standard methods (i.e., censoring [46]) to
reduce the analysis of the FK-dynamics to localized dynamics in balls of radius o(

√
n)

centered at each vertex, but with random boundary conditions induced by the current
state outside the ball. In random Δ-regular graphs, these balls are “treelike" and, after
shattering, their boundary conditions are “almost free”, in that only O(1) vertices in their
boundaries are connected through the external configuration. This implies that the FK-
dynamics mix quickly and satisfy a log-Sobolev inequality akin to a product measure in
each of these balls. The last ingredient in our proof is an exponential decay of correlation
property (sometimes called spatial mixing) between the root and boundary of such balls.
A delicate point is that since these balls have radius Θ(log n), we need exact control on
the rate of this exponential decay to sustain the union bound over the n balls.

Remark 1. We expect our methods for the analysis of the shattering phase to have ap-
plications to other locally tree-like graphs, e.g., wired trees and Erdős–Rényi random
graphs. In the latter case, however, the possibility of having a small number of vertices
of large degree poses technical obstructions to direct extension of our methods. Whereas
this should not affect the equilibrium phase diagram of the model, interestingly, in the
case of the Glauber dynamics for the Ising model on an Erdős–Rényi random graph,
the high maximum degree is known to slow down the high-temperature mixing time to

n1+Ω( 1
log log n ) [44].

1.2. Organizationof paper. The rest of the paper is organized as follows. InSection2,we
provide a number of preliminary definitions and notations we will use. In Section 3, we
give a detailed proof overview highlighting some of the key novelties in our arguments.
Our revealing procedures to bound the shattering time are the focus of Section 4. In
Section 5 we establish the sharp rate of spatial mixing on treelike graphs with sparse
boundary conditions. We combine these to conclude the proof of the upper bound of
Theorem 1 in Section 6. We prove the matching lower bound on the mixing time in
Section 7.

2. Preliminaries

In this section, we collect some standard definitions and properties that are necessary
to present our proofs, and to which the reader can refer throughout. See the standard
texts [11], [31], and [40] for more details on random graphs, the random-cluster model,
and Markov chain mixing times, respectively.
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2.1. Random Δ-regular graphs. We begin by considering the underlying geometry we
work on. Fix Δ ≥ 3 and consider the uniform distribution Prrg over Δ-regular graphs
on n vertices. (Let us always assume n is such that Δn is even, so that such a graph
exists.) We identify the vertices V (G)with the set {1, ..., n}, and the randomness of Prrg
will be over the edge-subset of {i j = j i : 1 ≤ i, j ≤ n}. Throughout this paper, we set
d := Δ − 1 for convenience.

2.1.1. Random graphs are treelike A key ingredient in our proof is the fact that random
Δ-regular graphs are locally treelike. While this can be formalized in various ways, we
use a notion that is most relevant to this paper, and applies uniformly to all vertices (as
opposed to a vertex chosen uniformly at random).

For a graph G = (V (G), E(G)) and a vertex v ∈ V (G), we define the ball of radius
R around v as:

BR(v) := {w ∈ V (G) : d(w, v) ≤ R},
where d(w, v) is the graph distance. For a vertex set, B ⊂ V (G), define E(B) = {v,w ∈
B : vw ∈ E(G)}.
Definition 1. We say that a graph G = (V, E) is L-Treelike if there is a set H ⊂ E
with |H | ≤ L such that the graph (V, E \ H) is a tree.

Definition 2. We say that a Δ-regular graph G = (V (G), E(G)) is (L , R)-Treelike if
for every v ∈ V (G) the subgraph (BR(v), E(BR(v)) is L-Treelike.

Fact 3. Fix any Δ ≥ 3. For every δ > 0, there exists L(δ,Δ) such that if R = ( 12 −
δ) logd n, we have

Prrg
(
G is (L , R)-Treelike

) = 1 − o(n−1).

We include a short proof of Fact 3 after introducing the configuration model in
Section 4.1. It is known that when R > 1

2 logd n, the number of cycles in every ball
BR(v) goes to ∞ with n.

2.2. The random-cluster model. For a graph G = (V, E), recall the definition of the
random-cluster model from (1.1). We say an edge e ∈ E is open or wired if ω(e) = 1
and closed or free if ω(e) = 0. We say two vertices are connected in ω if they are in
the same connected component of the sub-graph (V, {e ∈ E : ω(e) = 1}). For a vertex
set V ⊂ V , denote by CV (ω) the union of connected components (clusters) containing
v ∈ V in this sub-graph. For a configuration ω and edge set A ⊂ E , we use ω(A) for
the restriction of ω to A.

2.2.1. Boundary conditions To help study the random-cluster measure, we introduce
boundary conditions.

Definition 3. A random-cluster boundary condition ξ on G = (V, E) is a partition of
V , such that the vertices in each element of the partition are identified with one another.
The random-cluster measure with boundary conditions ξ , denoted π

ξ
G,p,q , is the same as

in (1.1) except the number of connected components c(ω) = c(ω; ξ) would be counted
with this vertex identification, i.e., if v,w are in the same element of ξ , they are always
counted as being in the same connected component of ω in (1.1). In this manner, the
boundary condition can alternatively be seen as ghost “wirings” of the vertices in the
same element of ξ .
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The freeboundary condition, ξ = 0, is the onewhosepartition consists only of singletons.
For a subset ∂V ⊂ V , the wired boundary condition on ∂V , denoted ξ = 1, is the one
whose partition has all vertices of ∂V in the same element and all vertices of V \ ∂V as
singletons; i.e., ξ = {∂V } ∪⋃{v : v ∈ V \ ∂V }. For boundary conditions ξ, ξ ′ we say
that ξ ≤ ξ ′ if ξ is a finer partition than ξ ′. We have the following important monotonicity
in boundary conditions: for any two boundary conditions ξ and ξ ′ with ξ ≥ ξ ′, we have
π

ξ
G,p,q � π

ξ ′
G,p,q where � denotes stochastic domination.

2.2.2. Uniqueness/non-uniqueness transition on the Δ-regular tree As the geometry of
the random graph is locally treelike, its dynamical transition point should be inherited
from a transition on the Δ-regular tree. Throughout this paper, we denote by Th :=
Th,Δ = (V (Th), E(Th)) the rooted (at ρ) Δ-regular complete tree of depth h (the root
has Δ children, and all other vertices have Δ − 1 children and one parent). Since the
tree has depth h < ∞, evidently it is not actually Δ-regular, and has leaves ∂Th = {w ∈
V (Th) : d(ρ,w) = h} (where d(·, ·) denotes graph distance); observe that

|V (Th)| = 1 + Δ

h∑
i=1

di−1 ≤ 2Δdh, and |E(Th)| = Δ

h∑
i=1

di−1 ≤ 2Δdh,

(2.1)

and |∂Th | = Δdh−1. The wired boundary condition “1” is the one that wires all vertices
of ∂Th together.

For every Δ ≥ 3 and q ≥ 1, the random-cluster measure π1
Th ,p,q undergoes a

transition at pu(q,Δ): when p < pu(q,Δ) the probability that ρ is connected to ∂Th
in ω goes to 0 as h → ∞, whereas when p > pu(q,Δ) it stays bounded away from
zero [34]. (While in general pu(q,Δ) does not have a closed form, it can be expressed
as the root of an explicit formula: see [5,34].) A key fact (see [34, Theorem 1.5]) we
will use is that whenever p < pu(q,Δ) we have that p̂ (the probability of a cut-edge
being open) satisfies

p̂ := p

q(1 − p) + p
<

1

d
, where d := Δ − 1. (2.2)

2.3. Markov chain mixing times. Consider a (discrete-time) Markov chain with transi-
tionmatrix P on a finite state spaceΩ , reversible with respect to an invariant distribution
π ; denote the chain initialized from x0 by (Xx0

t )t≥0. Its mixing time is given by

tmix = tmix(1/4), where tmix(ε) = min{t : max
x0∈Ω

‖P(Xx0
t ∈ ·) − π‖tv ≤ ε},

where the total-variation distance between μ and ν is given by

‖μ − ν‖tv = 1

2
‖μ − ν‖1 = inf

(U,V )∼P:
U∼μ,V∼ν

P(U �= V ).

Here the infimum runs over all couplings ofμ, ν. By this definition, to bound the mixing
time, it suffices to bound the coupling timeof the dynamics; i.e., ifwe construct a coupling
P of the steps of the chain such that for each x0, y0 ∈ Ω , we have P(Xx0

T �= X y0
T ) ≤ 1/4,

then tmix ≤ T . It is a standard fact that tmix(δ) ≤ tmix log(2δ−1). See chapters 4–5 of [40]
for more details.
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2.3.1. A coupling for the FK-dynamics Recall the definition of the FK-dynamics from
the introduction. Note that in the presence of boundary conditions ξ , the only change is
that in step (2) of the FK-dynamics transitions, the status of e being a cut-edge is dictated
by whether its presence changes c(ωt ; ξ).

For the FK-dynamics, there is a canonical choice of coupling known as the identity
coupling. This is the coupling that couples the evolution of two copies of the FK-
dynamics, (Xx0

t ) and (X y0
t ), by using the same random edge et and the same uniform

random number Uet ,t to decide whether to add or remove et . When q ≥ 1, the identity
coupling is a monotone coupling, in the sense that if Xx0

t ≤ X y0
t then Xx0

t+1 ≤ X y0
t+1 with

probability 1. The identity coupling can also be extended to a simultaneous coupling of
all the Markov chains (Xx0

t ) indexed by their initial configuration x0 ∈ {0, 1}E (i.e., a a
grand coupling), so that if x0 ≤ y0 we have X

x0
t ≤ X y0

t for all t ≥ 0. As a consequence,
the coupling time starting from any pair of configurations is bounded by the coupling
time starting from the free x0 = 0 and wired y0 = 1 configurations.

3. Extended Proof Sketch

In this section, we provide a detailed sketch of our proof of Theorem 1, outlining the
structure of the argument and highlighting some of the key technical difficulties we
encountered. Most of the paper is dedicated to upper bounding the mixing time of the
FK-dynamics by O(n log n), so the sequel is dedicating to sketching that proof. The
matching lower bound follows from coupling a certain projection of the FK-dynamics
to a product chain and is derived in Section 7.

3.1. Proof outline. Let G = (V (G), E(G)) be an n-vertex graph. Let (X1
t )t≥0 and

(X0
t )t≥0 be two realizations of the FK-dynamics started from the all-wired and all-

free configurations, respectively, and coupled via the identity coupling as defined in
Section 2.

Our goal is to show that there exists T = O(n log n) such that for every vertex
v ∈ V (G), with probability 1 − o(n−1), the configurations X1

T and X0
T agree on the Δ

edges incident v, denoted

Nv := {e ∈ E(G) : v ∈ e}. (3.1)

A union bound over the n vertices would then imply that under the identity coupling
X1
T = X0

T with probability 1 − o(1). By the monotonicity of the FK-dynamics under
the identity coupling, this would show that the mixing time of the FK-dynamics is at
most T = O(n log n).

There are two key stages to establishing this coupling, each of which we describe
next.
Stage I. In the first stage of the coupling, we show that after an initial burn-in period
of T = O(n log n) steps, the configuration X1

T is shattered. That is, its connected
components have constant size in expectation, and every component is of size O(log n)

with high probability;more precisely, we show that the size of the connected components
have exponential tails. Since X1

T ≥ X0
T , the same holds for X0

T .
The intuition behind our proof of shattering after T steps goes as follows. Consider

the balls Br (v) for v ∈ V (G) where r = O(1) is a sufficiently large constant. For each
v ∈ V (G), let (Zv

t ) denote the chain on Br (v) with a fixed wired boundary condition
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r v

Fig. 1. Left: Upon exposing the localized FK-dynamics Zv
T on Br (v), the connected component of v (purple)

reaches two boundary points of Br (v) (blue). Middle: The revealing procedure then exposes their localized
configurations, in their balls of radius r . Right: The procedure continues in that manner until these connected
components die out

outside of Br (v). The evolution of (Zv
t ) and (X1

t ) can be coupled with the same identity
coupling by ignoring the updates outside of Br (v) for (Zv

t ); by monotonicity, for every
v ∈ V (G) and t ≥ 0, we have Zv

t ≥ X1
t (Br (v)). Consequently, we can even take the

minimum (intersection) of the chains Zv
t over v ∈ V (G), to obtain a configuration ωt

by setting ωt (e) = 1 if Zv
t (e) = 1 for all v ∈ V (G). Since all these chains are coupled

using the same randomness, we maintain the domination ωt ≥ X1
t for all t ≥ 0.

We thus focus on showing the shattering property for ωT . Notice that we can bound
the connected component of a vertex v in ωT via an iterative exploration process. We
initialize a set A as the connected component Cv of v in Zv

T (Br (v)) and initialize ∂A to
Cv ∩ ∂Br (v). For each u ∈ ∂A (while ∂A �= ∅), we
1. Add to A the connected component Cu of u in Zu

T (Br (u))

2. Add to ∂A all vertices in Cu ∩ ∂Br (u). Remove u from ∂A.

The procedure ends when ∂A is empty and outputs an edge set A necessarily contain-
ing the component of v inωT . See the depiction in Figure 1. The nature of this exploration
process lends itself naturally to comparison with a branching process in which the “chil-
dren" of u are the vertices connected to u through Zu

T . (It turns out that the revealing of
these configurations can be done in such a way that although they are all coupled, the
dependencies between configurations Zu

T (Br (u)) are negligible: we comment on this
later.) We will show that with high probability over G, the resulting branching process
is sub-critical.

To see this, first note that since the mixing time on Br (v) is O(1) (r is constant),
after T = Θ(n log n) steps, enough updates have occurred in each ball Br (v) so that
the chains (Zv

t ) have all mixed with high probability. Hence, up to a small error, we can
consider instead the branching process where the number of children of v is given by
the number of connections of v to the boundary of Br (v) in a sample from π1

Br (v).
Now, most O(1)-sized balls in a random Δ-regular graph are trees. A key charac-

teristic of the uniqueness regime p < pu(q,Δ) is that in the wired Δ-regular tree Tr ,
the expected number of leaves connected to v under π1

Tr is less than 1 as long as r is
large. As long as the role played by non-tree balls in G is bounded, this would imply
the desired sub-criticality of the dominating branching process. We in fact need concen-
tration bounds on the number of explored vertices in this branching process; towards
this we show that p̂ is the actual exponential decay rate of root-to-leaf connectivities on
Δ-regular (wired) trees.
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Lemma 1. Let Th denote the rooted Δ-regular complete tree of depth h and let p <

pu(q,Δ). Let (1,�) be the wired boundary condition on ∂Th that additionally wires
the root of Th to ∂Th. There exists a constant C = C(p, q,Δ) such that for every h and
every leaf u ∈ ∂Th,

π
(1,�)

Th (u is connected to the root of Th) ≤ C p̂h .

Since there are O(dr ) leaves in Tr , the lemma implies that the expected number of
connections from v to the boundary is O(( p̂d)r ), which is less than one for r large (as
p̂d < 1 when p < pu(q,Δ)). The reason we establish this decay for the boundary con-
dition (1,�), instead of simply the wired one, is to eliminate the potential dependencies
between the chains (Zu

t ) through their roots.
To conclude our sketch of the ideas in Stage I, we mention two fundamental chal-

lenges to implementing the above approach. First, since all the chains (Zv
t ) are coupled

via the identity coupling, revealing their configurations while maintaining some inde-
pendence is delicate (see Lemma 5). We perform this revealing by additionally wiring
the root to the boundary as hinted by the (1,�), and for each u, only revealing the new
randomness needed to run the resulting chain on BR(u) up to time T . Roughly speaking,
the wired boundary conditions allow us to evolve the un-revealed configuration in Br (v)

in isolation.
Secondly, not every ball Br (v) in G will be a tree, and there are strong correlations

between the short cycles of the underlying graph and the places where the random-
cluster configuration is more wired. A key contribution of our work is to construct a
simultaneous revealing procedure for the random graph G with the overlayed random-
cluster configuration of ωT in a manner that handles these dependencies and can be
approximated by the above sub-critical branching process; see Definition 11.

Putting all these ideas together, we establish the following exponential tail bound
(shattering estimate) on cluster sizes of X1

T after a burn-in period of O(n log n) time.

Theorem 4. Let p < pu(q,Δ) and suppose that G is sampled from Prrg, the uniform
distribution over Δ-regular graphs on n vertices. Then, for every v ∈ V (G), k ≥ 1
and T ≥ Cn log n, where C > 0 is a sufficiently large constant, with probability
1 − exp(−Ω(k)) − O(n−5), the random graph G is such that

P(|Cv(X
1
T )| ≥ k) ≤ exp(−Ω(k)) + O(n−5).

(Recall that Cv(X1
T ) denotes the component of vertex v in X1

T .) By a union bound,
Theorem 4 implies that all components of X1

T are of size at most O(log n) with high
probability. Theorem 4 is proved in §4.

Using the above arguments, we can further show that for each v ∈ V (G) the boundary
condition induced on the ball BR(v) of radius R = ( 12 − δ) logd n by the configuration
of X1

T on the edges outside of BR(v) is typically K -sparse, i.e., the boundary condition
induces only K = O(1) many connections on ∂BR(v). Theorem 5 establishes that this
property holds for all v ∈ V (G) simultaneously with high probability.

Stage II. After the initial T = O(n log n) steps of the burn-in phase, the configurations
X1
T and X0

T shatter and induce sparse boundary conditions (with up to O(1) vertices
wired through the boundary) on every ball BR(v) of radius R = ( 12 − δ) logd n with
high probability. It remains to show that the copies of the FK-dynamics will couple on
Nv except with probability 1 − o(n−1) in an additional O(n log n) steps.
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Starting at time T , we consider localized copies of the FK-dynamics in each ball
BR(v)with v ∈ V (G). This is done by ignoring (or censoring) themoves of the dynamics
outside of BR(v)which has the effect of “freezing” the two distinct boundary conditions
induced by X1

T (E(G) \ BR(v)) and X0
T (E(G) \ BR(v)) on the boundary of BR(v). With

the sparse boundaries conditions frozen on ∂BR(v), the two coupled chains continue
to run inside BR(v), and we can more easily analyze their configurations near v. The
censoring technology of [46] implies that if these censored chains are coupled on Nv ,
then so are the original chains.

In Lemma 11, we show that if X1
T (E(G) \ BR(v)) and X0

T (E(G) \ BR(v)) induce
sparse boundary conditions on BR(v), and G is (L , R)-Treelike with L = O(1) (see
Definition 2), the mixing time of the FK-dynamics on BR(v) is O(dR log(dR)). In
fact, we can establish a tight bound on the log-Sobolev constant of the FK-dynamics
on Br (v) under sparse boundary conditions, showing that tmix(ε) = O(dR log(dR/ε)).
This slightly stronger fact turns out to be crucial for deducing the tight O(n log n) bound
on the mixing time of the FK-dynamics on G, i.e., without an additional polylog(n)

factor.
With this optimal bound on the local mixing on treelike balls, we know that the

localized chains have all mixed after O(n log n) steps of the FK-dynamics. Therefore,
the probability that two instances of the FK-dynamics on BR(v) with distinct sparse
boundary conditions ξ and ξ ′ are not coupled on Nv is given by the total variation

distance between π
ξ

BR(v) and π
ξ ′
BR(v) on Nv . We show that this distance is O( p̂2R).

Proposition 1. Consider a vertex v in a Δ-regular graph G. If BR(v) is L-Treelike
and ξ, ξ ′ are any two K-sparse boundary conditions on ∂BR(v), there exists a constant
C = C(p, q,Δ, L , K ) such that

‖πξ

BR(v)(ω(Nv) ∈ ·) − π
ξ ′
BR(v)(ω(Nv) ∈ ·)‖tv ≤ C p̂2R .

(Recall that we say a boundary condition is K -sparse when there are only K boundary
wirings.)We stress the importance of obtaining the sharp p̂2 decay rate here for the spatial
mixing to support a union bound over n vertices. Since p̂ < 1/d and R = ( 12 −δ) logd n,
we have p̂2R = o(n−1), but any weaker bound on the decay rate would force us to
choose a larger R, which would cross the threshold at which point balls of G are no
longer (L , R)-Treelike for L = O(1), and we would lose control over the mixing time
on BR(v).

The proof of this spatial mixing property is based on the fact that in order for in-
formation to travel from the boundary of BR(v) to Nv there must be two disjoint open
paths from Nv to non-singleton elements of ξ in ∂BR(v). We contrast this to the more
traditional bound on influence by the existence of a single connection from the center
of a ball to its boundary, which in our setting would only yield a bound of p̂R . (Such a
bound by a single connectivity event is the one traditionally used on amenable graphs
like Z

2 to go from spatial mixing with any positive rate of exponential decay to fast
mixing: see [1,8,42].)

4. The FK-Dynamics Shatters Quickly on Random Graphs

Our first goal in this section is to prove Theorem 4 establishing existence of Tburn =
O(n log n) such that for t ≥ Tburn, the configuration X1

G,t is shattered. We will then use

this to conclude that the boundary conditions X1
G,t induces on any ball of volume o(

√
n)

are O(1)-sparse. Let us now be more precise.
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Definition 4. A random-cluster boundary condition ξ on an edge-subset H ⊂ E(G) is
said to be K -Sparse if the number of vertices in non-trivial (non-singleton) boundary
components of ξ is at most K .

Definition 5. Arandom-cluster configurationω onG = (V (G), E(G)) is (K , R)-Sparse
if, for every v ∈ V (G), the boundary conditions induced on BR(v) by ω(E(G) \
E(Br (v))) are K -Sparse.

The following key result asserts that the boundary of every ball about a vertex is
O(1)-Sparse with high probability after an O(n log n) burn-in time: this is proven in
Section 4.5.

Theorem 5. Fix p < pu(q,Δ). There existsC(p, q,Δ) such that for every t ≥ Cn log n,
the following holds. For every δ > 0, if R := ( 12 − δ) logd n, there exists K (p, q,Δ, δ)

such that with Prrg-probability 1 − o(1), G is such that

P
(
X1
G,t is (K , R) − Sparse

) ≥ 1 − O(n−2). (4.1)

Remark 2. By monotonicity of the FK-dynamics, for every G, we have that X1
G,t � πG ,

from which it follows that both Theorem 5, and the exponential tails of Theorem 4, hold
under πG , i.e., if one replaces X1

G,T by an equilibrium configuration ω ∼ πG .

In Section 4.1, we construct the relevant revealing procedures for FK-dynamics clus-
ters on random graphs, and define the branching process we dominate it by. In Sec-
tions 4.2–4.4, we analyze these processes, and in Section 4.5, we complete the proofs
of Theorems 4 and 5.

4.1. Couplings and revealing schemes for the FK-dynamics on random graphs. In this
section, we summarize the key couplings and revealing schemes for the connected com-
ponents of X1

G,t . These are fundamental to the proof of shattering for X1
G,t in the unique-

ness region after an O(n log n) burn-in time.

4.1.1. The configuration model The configuration model Pcm is a distribution over
multigraphs on n vertices and fixed degree distribution, which we take to be Δ for
every vertex, defined as follows [9]. Give every vertex v ∈ {1, ..., n} Δ-half-edges and
select a matching on the Δn many half-edges uniformly at random to form the Δn/2
edges of the graph. Let Mn be the set of possible edges (the set of pairs of half-edges).

The configuration model is a useful tool for studying the random Δ-regular graph,
as the distribution Prrg is equal to the distribution Pcm(· | G ∈ Γrrg) where Γrrg is the
event that the graph G is simple (i.e., has no self-loops or multi-edges). In particular, it
is standard (see e.g., [9]) that Pcm(Γrrg) > c for some c(Δ) > 0, and therefore for any
event Γ ,

Prrg(Γ ) = Pcm(Γ, Γrrg)
(
Pcm(Γrrg)

)−1 ≤ c−1Pcm(Γ ). (4.2)

Refer to the book [22] for more on the configuration model. We will use (4.2), with
an iterative revealing scheme of a matching of theΔn half-edges, to analyze the random
Δ-regular graph.

The configuration model lends itself to revealing procedures. Towards introducing
the joint revealing procedure for the random graph G ∼ Pcm and the configuration X1

G,t ,
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let us first recall a standard revealing procedure for random Δ-regular graphs according
to Pcm on its own. This procedure is useful to proving random graph estimates for the
configurationmodel andΔ-regular randomgraph. It also serves as a buildingblock for the
revealing procedure of the random graph together with the FK-dynamics configuration.

The following iterative algorithm is a way to sample from the configuration model
for a given degree sequence. The fact that this gives a valid sample from Pcm is straight-
forward after naturally identifying samples from Pcm with samples from the uniform
distribution over matchings on Δn.

Definition 6. Assign every v ∈ {1, ..., n}, Δ half-edges. Suppose f is a (possibly ran-
dom) function from edge-sets A ⊂ Mn (a set of matched pairs of half-edges) to a
half-edge not matched in A.

(1) Initialize the set of exposed edges as A0 = ∅.
(2) For every 1 ≤ m ≤ Δn

2 , match f (Am−1) to a half-edge selected uniformly at random
from the remaining un-matched ones to form the edge em . LetAm := Am−1 ∪ {em}.
Observe, importantly, that the choice of next half-edge tomatch (given by the function

f ) can be adaptive, specifically, adapted to the filtration generated by (A0, ...,Am−1).
Definition 6 provides an adaptive sampling method from the configuration model

distribution Pcm (see e.g., [43]) and can be used to prove myriad properties of random
Δ-regular graphs. In particular, it yields a simple proof of Fact 3 that G ∼ Prrg is

(L , R)-Treelike for R ≤ n
1
2−δ and L = O(1); see Section 4.2.

Remark 3. The definitions of the random-cluster model (1.1), and the FK-dynamics
extend naturally to multigraphs, where G = (V, E) is such that V is identified with
{1, ..., n} and E ⊂ Mn is a multiset. The random-cluster model and FK-dynamics then
live over subsets of E , identified with ω : E → {0, 1}, and connectivity components of
a configuration ω are understood naturally.

4.1.2. A coupling of localizedFK-dynamics chains Our goal is to simultaneously expose
edges of G ∼ Pcm while revealing the FK-dynamics configuration X1

G,t at time t on G.
We show that under their joint distribution the size of the connected components of
X1
G,t have exponential tails; this in turn implies that the boundary condition on Br (v) is

O(1)-Sparse (see Definition 4).
Note that a ball of radius O(log n) about a vertex v may have many cycles—indeed

it may encompass the entire graph G—but a typical FK cluster of size O(log n) does not
use most of these cycles. Thus, we expose the edges of Pcm guided by the revealing of
the random-cluster component of a vertex v in X1

G,t ; in this way, to expose the Cv(X1
G,t )

we will not have to reveal much of the random graph.
There are two key difficulties to consider when constructing a joint revealing process

for (G, X1
G,t ):

1. Under either of X1
G,t or e.g., the random-cluster measure πG , the value ω(e) on an

edge e shown to belong to E(G), affects the distribution of the remainder of the
underlying random graph.

2. Unlike the random-cluster measure πG , the law of X1
G,t does not satisfy any domain

Markov property. Indeed, the distribution of X1
G,t (e) conditionally on some X1

G,t (A)

is quite difficult to analyze.
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The key to overcoming these obstructions will be to reveal the configurations of a
family of FK-dynamics chains that are localized (in the sense that their distribution only
depends on a small O(1) sized subset of edges of the graph) and whose concatena-
tion stochastically dominates the distribution of X1

G,t . Let us be more precise next and
explicitly construct a coupling of a family of localized FK-dynamics chains.

Definition 7. For a graph G and edge subset A ⊂ E(G), let ∂A be the set of vertices in
V (A) that are adjacent to vertices of V (G) \ V (A), and let π1

A be the random-cluster
measure on Awithwired boundary conditions on ∂A. Let (X1

A,t )t≥0 be the FK-dynamics
chain that starts from all wired on E(G), censors (ignores) all updates in E(G) \ A, and
makes FK-dynamics updates w.r.t. π1

A when it updates edges in A.

Importantly, the wiring on ∂A ensures that the law of X1
A,t does not depend on

E(G) \ A.

Definition 8. For any graphG, we can construct (X 1
t )t≥0 = {(X1

A,t )t≥0
}
A⊂E(G)

, a grand

monotone coupling of the ensemble of FK-dynamics chains (X1
A,t )t≥0 for A ⊂ E(G) as

follows:

(1) Initialize X1
A,0 ≡ 1 for all A ⊂ E(G); i.e., the all wired configuration on A.

(2) Let (et )t≥1 = (e1, e2, ...) be drawn i.i.d. from E(G).
(3) Let (Ue,t )e∈E(G),t≥1 be a sequence of i.i.d. uniform random variables on [0, 1].
For A ⊂ E(G), construct (X1

A,t )t≥1 as follows: for each t ≥ 1, set X1
A,t (e) = X1

A,t−1(e)
for e �= et and

X1
A,t (et ) =

⎧⎪⎨
⎪⎩
1 if et /∈ A;
1 if et ∈ A and Uet ,t ≤ �;
0 if et ∈ A and Uet ,t > �;

for � = π1
A

(
ω(et ) = 1 | ω(A \ {et }) = X1

A,t−1(A \ {et })
)
; i.e., if et ∈ A, we resample

et given the remainder of the configuration on A, together with the wired boundary
condition on ∂A, using the same uniform random variableUet ,t for every X1

A,t such that
et ∈ A.

As in the grand coupling for different initializations, this is a monotone coupling. In
particular, we have X1

G,t ≤ X1
A,t for all A ⊂ E(G) and thus X1

G,t ≤⋂A⊂E(G) X
1
A,t .

A key observation for our revealing process is that for every A, the configuration
X1
A,t depends only on:

(1) the number of updates amongst (es)s≤t that belong to A, which we denote by κA,t ;
(2) the choice of edges to be updated on A on those κA,t updates; we denote such set by

OA,κA,t ; and
(3) the family of uniform random variables on those edges, (Ue,s)e∈A,s≤t .

With this observation in hand, we can extend this to a coupling of (X1
A,t ) averaged over

G ∼ Pcm.

Definition 9. Let P1
t be the distribution over pairs (G, ωt ) where ωt is a random-cluster

configuration on G that results by first drawing G ∼ Pcm, then drawing ωt ∼ P(X1
G,t ∈

·). Likewise, for every set A ⊂ Mn , let P1
A,t be the distribution over pairs (G, ωA∩E(G),t )

where ωA,t ∼ P(X1
A∩E(G),t ∈ ·). Couple, under the distribution P, the family of distri-

butions (P1
A,t )A⊂Mn ,t≥1 by selecting the same random graph G ∼ Pcm for all of them,

then using the coupling of Definition 8 of the family (X1
A,t )A,t .



Random-Cluster Dynamics on Random Regular Graphs 1257

In this manner, we have constructed a monotone coupling of the family (G,

(X1
A,t )t≥1)A⊂Mn . Note that we use this coupling for sets A which we know have

E(G) ∩ A = A, so that the averaging is only over the edges of E(G) \ A, which
we earlier noted X1

A,t is independent of; thus the role of this coupling is only to put the
random graphs with their random-cluster configurations on the same probability space.
We defer detailed discussion of the properties of the coupling to Section 4.2 (after con-
structing the revealing procedure in the sequel) but emphasize that by construction, if
A ∩ B = ∅, the only dependency of X1

A,t and X1
B,t is through the distributions of the

binomial random variables κA,t and κB,t .

4.1.3. The joint revealing procedure We now construct a revealing procedure for G and
a configuration ω̃t on G that stochastically dominates X1

G,t . Fix r to be chosen as a large
constant (depending on p, q,Δ) later.

Definition 10. Given an exposed set of edges A of the random graph G ∼ Pcm, we
define Bout

r (v) = Bout
r (v;A) as the ball of radius r in E(G) \ Nv(A) where Nv(A) is

the set of edges in A incident to v. We drop the A from the notation when understood
contextually.

Definition 11. Initialize: k = 0; m = 1; F0 = ∅; A0 ⊂ E(G);
V0 ⊂ V (G);

for each k ≥ 0 while Vk �= ∅
for each v ∈ Vk

(1) Set vm = v. Conditionally on Am−1, reveal the edges of the random graph in
Bout
r (vm) and set

Am := Am−1 ∪ E(Bout
r (vm));

Let Am := Am \ Am−1 be the set of new edges revealed in G.
(2) Reveal the triplet HAm ,t := {κAm ,t ,OAm ,κAm ,t , (Ue,s)e∈Am ,s≤t } conditionally on

Fm−1. Recall that κAm ,t is the number of updates of the FK-dynamics in Am ,
OAm ,κAm ,t is the sequence of edges to be updated in Am , and (Ue,s)e∈Am ,s≤t is the
family of uniform random variables used for the edges updates in Am .

(3) Construct the random-cluster configuration X1
Am ,t (Am) from the triplet HAm ,t by

simulating the steps of the FK-dynamics on Am with wired boundary conditions.
Concatenate X1

Am ,t (Am) with ω̃m−1 to obtain a new configuration ω̃m onAm \A0.
(4) Add to Vk+1 all vertices of ∂(Am \A0) that are in the component of V0 in ω̃m(Am \

A0) and are not in
⋃

�≤k V�.
(5) Let Fm = (Fm−1,HAm ,t ) and increase m by 1.

For an edge-set A0 ⊂ Mn revealed to be part of E(G) and a vertex set V0 ⊂
V (G), we construct a joint iterative procedure to expose (a set containing) the connected
components CV0(X

1
G,t (E(G) \ A0)). The examples to have in mind are (1) A0 = ∅ and

V0 = {v} and (2) A0 = E(BR(v)) and V0 = ∂BR(v).
Through this process we will keep track of the following variables at each step:

– Am : the set of edges of the random graph that have been revealed by step m;
– Vk : the set of vertices in the k-th generation we want to explore out of;
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v1 v1

Fig. 2. Left: We initialize the process with r = 5 from V0 = {v1} (dark purple) and incident edge A0
(black). The process begins by revealing A1 = Bout

r (v1), depicted in gray. Right: The process then reveals
the configuration X1

A1,t
, given by κA1,t steps of FK-dynamics for π1

A1
, to form ω̃1 (open edges in red/pink).

Vertices in ∂A1 shown to be connected to v1 in X1
A1,t

(A1) are added to V1 (purple)

– ω̃m : the random-cluster configuration revealed up to step m;
– Fm : elements of the filtration with respect to which the configuration ω̃m on Am is
measurable.

The process is defined as follows (see Figures 2 and 3 for a depiction of several steps of
this process):

Let κ∅ be the first k such that Vk = ∅ and letmk∅ =∑k∅
k=0 |Vk |. Let ω̃t = ω̃t (Amk∅ \

A0) be the random-cluster configuration revealed when the process terminates. The
key observation about the above process is that we can control the cluster of V0 in
X1
t (E(G)\A0) by the setAmk∅ ; the size of this set will then be approximately controlled

by comparison to a sub-critical branching process in the following subsection.

Observation 6. The connected components of V0 in X1
t (E(G) \A0) are a subset of the

connected components of V0 in ω̃t (E(G) \ A0). In particular, the number of vertices in
non-trivial (i.e., non-singleton) components of the boundary condition X1

t (E(G) \ A0)

induces on A0 is less than the number of vertices in non-trivial components of the
boundary condition ω̃t (E(G) \ A0) induces on A0. The edges in both of these sets of
connected components are subsets of the edge-set Amk∅ \ A0.

With Observation 6 in hand, we focus on obtaining the exponential tail bound of
Theorem 4 for Cv(ω̃t ) (the component of v in ω̃t ) and likewise, the sparsity bound of
Proposition 2 for VBR(v)(ω̃t ).

4.1.4. Constructing a dominating branching process Towards proving Proposition 2,
we construct a (non-Markovian, size-dependent) branching process which we will show
stochastically dominates the sequence (Vk)k≥0 of our joint reveleaing process. This
process (Zk)k≥0 will then be shown to be sub-critical and satisfy exponential tail bounds
on its total population, implying the same for the cluster of V0 in ω̃t .

Definition 12. Initialize Z0 = |V0|, and let (Zk)k≥1 be the (size-dependent) branch-
ing process, which for each k, has progeny (χi,k)i≤Zk drawn i.i.d. from the following
distribution:

1. With probability n−1/2, let χi,k = |V (Tr )|∑�≤k Z� and say the progeny number χi,k
is Bad.
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v2

v3

Fig. 3. Left: Proceeding fromabove, in the next generation, starting from v2 ∈ V1, reveal the edges of Bout
t (v2)

in G; in this case, this is not a tree, but is disjoint fromA1, so that A2 = Bout
r (v2). The configuration X1

A2,t
is

generated and concatenated with ω̃1 to form ω̃2. Right: For v3 ∈ V1, Bout
r (v3) is a tree, but it intersects A2.

As such, A3 = Bout
r (v3) \A2. Running the FK-dynamics on A3 with all-wired boundary conditions ensures

that X1
A3,t

is nonetheless independent of the configuration we had revealed in ω̃2. The light purple vertices

are connected to V0 in ω̃3 and are added to V2 to form the next generation

2. Otherwise, sample χi,k from the distribution of the number of leaves in the connected
component of the root under π

(1,�)

Tr (the random-cluster measure on the Δ-regular
tree of depth r with a wired boundary condition and with the root also wired to ∂Tr ).

Let Zk+1 = ∑
i≤Zk

χi,k ; that is, the i-th member of the k’th generation gets χi,k many
children.

Note that this is not a branching process in the traditional sense, since the progeny
distribution is not i.i.d. and depends on the population up to that generation. Nonetheless,
we will show good tail bounds on (Zk)k≥0 by dominating it by sub-critical branching
processes between the Bad steps.

To justify the above construction, let us formalize the relation between (Zk)k and the
revealed vertices of the process in Definition 11, (Vk). Intuitively, we want to identify
vertices vm ∈ Vk with those of generation k in (Zk); the progeny of vm will then be those
vertices added to Vk+1 in step (4) of Definition 11. Item (1) from the progeny distribution
of Definition 12 corresponds to situations where:

(1) Bout
r (vm) intersects Am−1;

(2) Bout
r (vm) is not a tree; or

(3) There are an insufficient number of updates on Bout
r (vm) for X1

Am ,t to mix.

Examples of situations (1)–(2) were depicted in Figure 3. The n−1/2 probability assigned
to these bad situations by the dominating branching process comes from the fact that
Theorem 5 requires us to consider |A0| of size n−1/2+δ , and thus any edge has at least

probability n− 1
2−δ of intersecting A0. On the complement of situations (1)–(3) above,

X1
Am ,t is mixed, and is comparable to the (1,�)-tree of depth r .

4.1.5. Comparing the revealing procedure and branching process We conclude the sec-
tion by stating the main two lemmas comparing the revealing procedure to the branching
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process defined above. Towards stating these, denote by tmix(Tr , (1,�) the mixing time
of FK-dynamics on Tr with (1,�) boundary conditions, and define the burn-in time

Tburn = Tburn(C0, r) := C0n log n · tmix(Tr , (1,�))

|E(Tr )| . (4.3)

Recall, the definition of the update numbers (κAm ,t )m and define, for every t ≥ Tburn,
the event

Et = E∞
t where Em

t :=
{
(es)s≤t :

m⋂
l=1

{
κAl ,t ≤ 4|E(Tr )|

Δn
t
}}

. (4.4)

Standard tail estimates for binomial random variables will imply that Et holds with high
probability.

Letm0 = 0 and for each k ≥ 0, letmk+1 = mk+|Vk |, i.e., the total number of exposed
vertices on the boundaries of explored balls, and in the same connected component as
V0 before the exploration for the (k + 1)-th generation begins. This will be the quantity
which we compare to the population of the branching process of Definition 12. More
precisely, on the event Et , by construction of (Zk), and the choice of Tburn, we are able
to show the following stochastic domination.

Lemma 2. There exists C0(p, q,Δ) in the definition of (4.3) such that the following

holds for every t ≥ Tburn. For every A0,V0 such that |A0|, |V0| ≤ n
1
2−δ for δ > 0,

every K > 0 fixed, and every � ≥ 1,(|V j |1{Em j
t }1{m j−1 ≤ n1/2−δ/2}) j≤�

� (Z j ) j≤�.

In this manner, we will have reduced the analysis of the set of exposed vertices
through the revealing process of (G, ω̃t ), and thus, the clusters of X1

G,t , to the analysis
of the process (Zk), which except on some rare Bad increments, is a simple branching
process with subcritical progeny distribution dictated by connectivity probabilities in
the wired measure π

(1,�)

Tr . We will establish the following tail estimate for (Zk).

Lemma 3. Suppose p < pu(q,Δ) and fix any δ > 0, any M ≥ 1, and any 1 ≤
Z0 ≤ n

1
2−δ . There exist r0(p, q,Δ), C(p, q,Δ, M), K0(p, q,Δ, M) such that for

every r ≥ r0 fixed and every 0 < λ ≤ n
1
2−δ ,

P

(∑
k≥0

Zk ≥ K0Z0 + λ
)

≤ C exp(−λ/C) + CeMn−δM .

4.1.6. Outline of remainder of section Having sketched the key revealing procedures
and the way they fit together to provide the desired bounds on the clusters of X1

G,t ,
let us prove the various relations and bounds claimed above. In Section 4.2, we prove
various key properties of the configuration model revealing process of Definition 6 and
the coupling of Definition 8 that will be central to the analysis of the revealing procedure
of Definition 11. Then in Section 4.3, we show that the size-dependent branching process
(Zk) of Definition 12 stochastically dominates the FK process (Vk) of Definition 11 on
a high-probability event, proving Lemma 2. In Section 4.4, we analyze the process (Zk)

by comparing its population to the sum of O(1)many sub-critical branching processes to
deduce Lemma 3. In Section 4.5, we combine these ingredients to conclude Theorem 4
and Proposition 2, and from that Theorem 5.
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4.2. Key properties of the revealing procedure for (G, ω̃t ). In this section, we describe
some of the key properties of the coupling constructed in Definition 8, and the reveal-
ing procedure constructed for the clusters of V0 in ω̃t in Definition 11. The following
preliminary lemmas describe the law of the random graph edges and overlaying FK
configurations through the revealing process.

4.2.1. Properties of the configuration model revealing procedure We begin with the
following lemma on the law of the random graph G conditionally on a set Am which
we have revealed to be a subset of E(G). Recall the configuration model’s revealing
procedure from Definition 6 and say a vertex is discovered if at least one of its half-
edges has been matched, and exhausted if all of its half-edges have been matched.

Lemma 4. LetA be any set of edges (pairing of half-edges) revealed to belong to E(G).
For every r ,

sup
v∈{1,...,n}

Pcm
(
Bout
r (v) ∩ A �= ∅ or Bout

r (v) is not a tree | A) ≤2Δdr (|V (A)| + dr )

n − (|V (A)| + dr )
.

Proof. Fix any edge-setA. We can sample from the conditional distribution Pcm(· | A)

by defining the adaptive scheme f in Definition 6 so that it first matches the half-edges
belonging to A, yielding the set A|A|/2 = A after |A|/2 steps, then setting f to do a
breadth-first search (BFS) of Bout

r (v): this latter part is done by choosing f so that it
first exhausts v, then exhausts each of the neighbors of v, and so on.

Revealing the entire set Bout
r (v) takes at most |E(Tr )| many steps beyond |A|/2. If

for every m ∈ {|A|/2 + 1, ..., |A|/2 + dr } the half-edge from f (Am−1) is not matched
to a half-edge belonging to a vertex in V (Am−1), then evidently Bout

r (v) ∩ A = ∅ and
Bout
r (v) is a tree.
Since on each of these steps, the half-edge f (Am) is being matched to a u.a.r. un-

matched half-edge, uniformly over the at most |E(Tr )| steps it takes to reveal Bout
r (v),

the probability that the half-edge it is matched to belongs to Am−1 is at most

d(|V (A)| + dr )

Δn − (d|V (A)| + dr )
≤ |V (A)| + dr

n − (|V (A)| + dr )
.

(The first inequality here uses the fact that in the BFS of Bout
r (v), there are at most dr

vertices of the ball that have been discovered but not exhausted.) Union bounding over
the at most |E(Tr )| ≤ 2Δdr such attempts yields the desired bound. ��

We can use a similar reasoning as the proof above to deduce a proof of Fact 3 as
follows.

Proof of Fact 3. Fix any v and choose f so that the revealing scheme performs a BFS
revealing of BR(v). In order for BR(v) to not be L-Treelike, it must be the case that
for more than L different m’s in the first |E(TR)| steps, the half-edge f (Am−1) is being
matched to a half-edge belonging toAm−1. (If there were at most L such steps, then the
removal of the at-most L edges formed by those at-most L matchings in the revealing
scheme, evidently leaves a tree, so that BR(v) would be L-Treelike.) Uniformly over
Am−1, the probability of this in the m’th step is at most dR+1/(Δ(n − m)). Summing
over the at most |E(TR)| many such attempts while revealing BR(v), we find that for
every � ≥ 1,

Pcm(BR(v) is not � − Treelike) ≤ P

(
Bin

(|E(TR)|, dR

n − |E(TR)|
)

> �
)
. (4.5)
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Recall that the standard Chernoff bound applied to a Poisson binomial distribution with
mean μ = Np says that for every s ≥ μ,

P
(
Bin(N , p) ≥ s

) ≤ es−μ
( s
μ

)−s
. (4.6)

With the choice R = ( 12 − δ) logd n, so that dR = n
1
2−δ and |E(TR)| ≤ 2ΔdR , (4.6)

implies that the right-hand side of (4.5) is at most (Cn−δ)� for some C(Δ) and large
enough n. As a consequence, choosing L > 2δ−1, we would find

sup
v∈{1,...,n}

Pcm(BR(v) is not L − Treelike) ≤ o(n−2). (4.7)

It remains to translate this to a bound under Prrg. This follows by the following standard
comparison argument. Let Γrrg be the event that the graph G ∼ Pcm has no self-loops
or double edges (i.e., it is a simple graph). Taking Γ = {G : G is not (L , R)−Treelike}
in (4.2) and union bounding (4.7) over the n vertices yields the desired bound. ��

4.2.2. Properties of the coupling of localized Markov chains The following lemma is
the key fact about the construction of the grand coupling of FK dynamics, Definition 8,
whereby after revealing some X1

A,t , we can control the influence that revealing has on

X1
B,t for A ∩ B = ∅. In this manner, through the revealing procedure of Definition 11,

which reveals different localized configurations X1
Am ,t iteratively, as long as t ≥ Tburn

these are each close to their respective stationary distributions of π1
Am

, so that it is
approximately a concatenation of localized FK models on treelike graphs, inducing an
exponential decay of connectivities.

Lemma 5. Recall the coupling of Definitions 8–9 of the distributions (P1
A,t )A⊂Mn ,t≥1.

Suppose we have revealed edges in E(G) showing E(G) ∩ A = A.

(1) The configuration X1
A,t (A) is measurable with respect to κA,t (the number of edge-

updates in A), the edges chosen to updateOA,κA,t , and the uniform random variables
(Ue,s)e∈A,s≤t on those edges. The number κA,t is distributed as Bin(t, 2|A|/Δn);
the sequence OA,κA,t is distributed as (ẽ j ) j≤κA,t drawn i.i.d. from A. The values
(Ue,s)e∈A,s≤t are distributed as i.i.d. Unif[0, 1].

(2) Suppose B is such that E(G)∩B = B and A∩B = ∅. Conditionally on κA,t ,OA,κA,t ,
and (Ue,s)e∈A,s≤t , the distribution of X1

B,t (B) is given as follows. The number of
updates κB,t is drawn fromBin(t−kA,t , 2|B|/(Δn−2|A|)), and the edges chosen are
distributed as (ẽ j ) j≤κB,t drawn i.i.d. amongst B. The random variables (Ue,s)e∈B,s≤t
are distributed as i.i.d. Unif[0, 1].

Proof. Let G be any graph having E(G) ∩ A = A. We claim that uniformly over G,
items (1)–(2) above hold. Observe first that |E(G)| = Δn/2 necessarily, and therefore
uniformly over such G, the number of updates on edges in A by time t in the update se-
quence (es)s≤t is distributed as Bin(t, 2|A|/(Δn)). Evidently, the distribution ofOA,κA,t

only depends on κA,t and not on the times these updates were; in particular, given that
e j ∈ A for some j , the law of e j is clearly uniform at random on A. Finally, notice that
for every e, the sequence (Ue,s)s≤t is independent of all other sources of randomness,
implying the desired item (1).

Turning to item (2), we fix a κA,t ,OA,κA,t and family (Ue,s)e∈A,s≤t . We can condition
further on the exact times of the updates in A, i.e., (es)s≤t∩A. Conditionally on that set of
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updates, the distribution on the remaining updates is evidently t − κA,t i.i.d. draws from
E(G) \ A. It is then clear that κB,t counts the number of times, amongst these remaining
draws, that the update is in B. As in item (1), the induced distribution onOB,κB,t is then
the same as κB,t i.i.d. draws from the edges of B. Finally, for every e ∈ B, the uniform
random variables (Ue,s)s≤t are independent of all other sources of randomness. ��

4.3. Domination by the modified branching process (Zk). In this section, we establish
the stochastic domination of the sequence (Vk)k≥0 from Definition 11 by the branching
process (Zk) of Definition 12.

Proof of Lemma 2. Weprove the desired stochastic domination by induction over �. The
base case, Z0 = |V0|, is by construction. Now fix � ≥ 1 and suppose by way of induction
that the following stochastic domination holds:

(|V j |1Em j
t

1{m j−1≤n1/2−δ/2}) j≤�−1 � (Z j ) j≤�−1.

Thus there exists a monotone coupling of the sequence on the left-hand side, such
that it is below the sequence (Z j ) j≤�−1 in the natural element-wise ordering on the
sequence.Working on that coupling, it suffices for us to then show that on the intersection
E
m�
t ∩ {m�−1 ≤ n1/2−δ/2}, for every m ∈ {m�−1 + 1, ...,m�}, the distribution of the

children of vm is stochastically below the progeny distribution of Definition 12.
Observe, first of all, that for every m ∈ {m�−1 + 1, ...,m�}, on E

m�
t ∩ {m�−1 ≤

n1/2−δ/2}, deterministically the number of children of vm is bounded by

V (|Am \ A0|) ≤ |V (Tr )|m�−1 ≤ |V (Tr )|
∑
j≤�−1

|V j | ≤ |V (Tr )|
∑
j≤�−1

Z j ,

where the last inequality is by the inductive hypothesis, and the fact that Em�
t ∩{m�−1 ≤

n1/2−δ/2} implies E
m j
t ∩ {m j−1 ≤ n1/2−δ/2} for all j < �.

Now, for every set of revealed edges (Al)l≤m−1, define the following events on
Fm−1 consisting of (κAl ,t )l≤m−1, edge-values (OAl ,κAl ,t

)l≤m−1, uniform random vari-
ables ((Ue,s)e∈Al ,s≤t )l≤m−1:

(1) Let Γtree,m be the event that Bout
r (vm) ∩Am−1 = ∅ and Am = Am \Am−1 is a tree.

(2) Let Γupd,m be the event that κAm ,t ≥ dr Tburn/(2Δn)

We first claim that these two events each happen with probability 1− 1
3n

−1/2, uniformly
over (Al)l≤m−1 and elements of Fm−1 such that E�

t holds and m�−1 ≤ n1/2−δ/2. Given
vm , the law of Am is independent of Fm−1, and only depends on Am−1. (This can be
seen from the explicit construction of the law of Fm−1 in Lemma 5 as independent of
E(G) \ Am−1.) Notice that if m�−1 ≤ n1/2−δ/2 and |A0| ≤ n1/2−δ then |V (Am−1)| ≤
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(1+ |V (Tr )|)n1/2−δ/2. As such, by Lemma 4, for everyA0,V0 such that |A0| ≤ n1/2−δ ,

sup

(Am−1,Fm−1)∈Em�
t ∩{m�−1≤n

1
2− δ

2 }
Pcm(Γ c

tree,m | Am−1,Fm−1)

≤ sup
Am−1:

V (Am−1)≤2|V (Tr )|n
1
2− δ

2

sup
vm

Pcm(Bout
r (vm ) ∩ Am−1 �= ∅ or Bout

r (vm ) is not a tree | Am−1)

≤ sup
Am−1:

V (Am−1)≤4Δdr n
1
2− δ

2

2Δdr (|V (Am−1)| + dr )

n − (|V (Am−1)| + dr )
≤ 10Δ2d2r n

1
2− δ

2

n − 5Δdr n
1
2− δ

2

.

Thus, for n large enough and r = o(log n), the above is at most 1
3n

−1/2 as desired.
We next turn to the probability of Γ c

upd,m ∩Γtree,m . Recall from item (2) of Lemma 5
that conditionally on Fm−1, the distribution of κAm ,t is

κAm ,t ∼ Bin
(
t −

∑
l≤m−1

κAl ,t ,
2|Am |
Δn

)
.

Sinceweare on the eventEm�
t and thusEm−1

t ,wehave that
∑

l≤m−1 κAl ,t ≤ 4m|E(Tr )|t/
(Δn), from which we deduce, using m ≤ m� ≤ |V (Tr )|m�−1 ≤ |V (Tr )|n1/2−δ/2, that
the number of trials in the binomial is at least

t (1 − 16Δd2r n− 1
2− δ

2 ) ≥ t/2,

as long as r = o(log n). Since we are on the event Γtree,m , we have dr ≤ |Am | ≤
|E(Tr )| ≤ 2Δdr , and we see from lower tail estimates on binomial random variables
that

sup
(Am−1,Fm−1)∈Em−1

t ∩{m�−1≤n1/2−δ/2}
P
(
Γ c
upd,m ∩ Γtree,m | Am−1,Fm−1

)

≤ P
(
Bin(Tburn/2, 2d

r/(Δn)) ≤ dr Tburn/(2Δn)
) ≤ 1

3
n−1/2,

as long as C0 in (4.3) is sufficiently large (depending on r,Δ).
By item (2) of Lemma 5, conditionally on any (Al)l≤m−1 and Fm−1, and any Am ∈

Γtree,m and κAm ,t ∈ Γupd,m , the conditional distribution of X1
Am ,t (Am) is equivalent

(up to relabeling of edges) to that of κAm ,t updates of a heat-bath chain (Y 1
s )s on a

subtree T̂r of the complete tree Tr with (1,�)-wired boundary conditions, initialized
fromY 1

0 ≡ 1.Notice that the equivalent sub-tree T̂r consists of some k ≤ d of the children
of the root, together with their complete sub-trees. In particular, the random-cluster
model on Am with wired boundary conditions is stochastically below the FK model on
the corresponding subset of Tr with its (1,�) boundary conditions. In particular, the
number of leaves in the FK cluster of the root under π

(1,�)

T̂r
is stochastically below the

same quantity under π
(1,�)

Tr . It therefore suffices for us to show that as long as Am is a
tree disjoint from Am−1 and κAm ,t ≥ dr Tburn/(2Δn), we have

∥∥P(Y (1,�)
κAm ,t

∈ ·)− π
(1,�)

T̂r

∥∥
tv ≤ 1

3
n−1/2.
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This follows as long as C0 is sufficiently large (depending on Δ), from the fact that

dr Tburn
2Δn

≥ C0dr

2Δ|E(Tr )| log n · tmix(Tr , (1,�)) ≥ C0dr

2Δ|E(Tr )| log n · tmix(T̂r , (1,�)),

and |E(Tr )| ≤ 2Δdr , together with the sub-multiplicativity of total-variation
distance. ��

4.4. Sub-criticality and tail bounds for the dominating branching process. We now
analyze the process (Zk) of Definition 12, and show that it indeed is sub-critical, and
satisfies good tails on its total population. For ease of notation, let Pk = ∑

�≤k Z� be
the total population after k generations.

Proof of Lemma 3. Since (Zk) is a size-dependent, non-Markov process, we cannot
directly use results on branching processes to control its growth. Instead, to control
the population of the process (Zk), we compare it to a sum of branching processes in
the following manner. Consider the stopping generation κλ for exceeding population
K0Z0 + λ, i.e.,

κλ = inf{k : Pκ > K0Z0 + λ}.
Our aim is to control the probability that κλ < ∞. Let ΓM,k be the event that no more
than M of the progeny counts ((χi,�)i≤Z�

)�≤k−1 were Bad. By (4.6), we get

P(Γ c
M,κ ) ≤ P

(
Bin(K0Z0 + λ, n− 1

2 ) > M
) ≤ exp

(
M − μ − M log M

μ

)

whereμ is themean of theBinomial, i.e.,μ = (K0Z0+λ)n− 1
2 . As long as n is sufficiently

large and Z0, λ ≤ n
1
2−δ for δ > 0, so that μ ≤ 2K0n−δ , this implies for some C > 0,

P(Γ c
M,κ ) ≤ CeMn−δM .

Next consider the event that κ < ∞ on the event ΓM,k . On ΓM,k , we dominate the
population Pk by the following sum of sub-critical branching processes with bounded
progeny distributions.

Define (Z̃ (1)
k )k to be the branching process initialized at Z̃ (1)

0 = Z0 with progeny

(χ̃
(1)
i,k ), distributed i.i.d. from the distribution of the number of leaves connected to the

root, in a sample from π
(1,�)

Tr , i.e., the distribution of (χi,k) conditionally on the progeny

number not being Bad. Let P̃(1)
k = ∑

�≤k Z̃
(1)
k . For each 1 ≤ j ≤ M , iteratively let

Z̃ ( j)
k be an independent branching process with the same progeny distribution, initialized

from Z̃ ( j)
0 = |V (Tr )|P̃( j−1)∞ , where we recall |V (Tr )| ≤ 2Δdr .

The following stochastic domination is clear by construction if we decompose the
process (Zk) revealed in a breadth-first manner, into its excursions between the at most
M times (on the event ΓM,k) when the progeny number χi,k was Bad.

Claim. Fix any k ≥ 1. We have the stochastic domination

Pk1{ΓM,k} �
∑
j≤M

P̃( j)∞ .
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With this domination in hand, notice that in order for κ < ∞while ΓM,κ holds, there
must exist some k ≤ K0Z0 + λ such that ΓM,k holds and Pk ≥ K0Z0 + λ. Therefore, by
a union bound,

P

(
P∞ ≥ K0Z0 + λ, ΓM,κ

)
≤

∑
k≤K0Z0+λ

P

(
Pk ≥ K0Z0 + λ, ΓM,k

)

≤ (K0Z0 + λ)P
( ∑

j≤M

P̃( j)∞ ≥ K0Z0 + λ
)
.

We claim that if
∑

j≤M P̃( j)∞ ≥ K0Z0 + λ holds, there must exist j ≤ M for which

Z̃ ( j)
0 ≤ K0Z0 + λ, and

P̃( j)∞ ≥ |V (Tr )|−1
(K0

M

)1/M
(Z̃ ( j)

0 + K−1
0 M−2λ) =: Cr,Δ,MK 1/M

0 (Z̃ ( j)
0 + K−1

0 M−2λ).

Indeed, if no such j existed, as long as K0 is sufficiently large, we could bound∑
j≤M P̃( j)∞ by

∑
j≤M

Cr,Δ,MK 1/M
0 (Z̃ ( j)

0 + λ) ≤ M
[K0

M
Z̃ (1)
0 + K−1

0 M−2λ(1 + · · · + K0

M
)
]

≤ K0Z0 + λ.

Now fix any j ≤ M , any Z̃ ( j)
0 and consider the branching process Z̃ ( j)

k . This is
a branching process with progeny distribution having mean m = A( p̂d)r for some
A(p, q) per Lemma 7. Since p̂ < d−1 when p < pu(q,Δ), as long as r is greater
than some r0(p, q,Δ), for n sufficiently large we have m < 1, and Z̃ ( j)

k is sub-critical.

Additionally, the progeny distribution of Z̃ ( j)
k is almost surely bounded by |∂Tr | ≤

Δdr−1. As such, using the standard breadth-first exploration of the total population
of the branching process Z̃ ( j)

k (through which P̃( j)
k is expressed as the random walk

Z̃ ( j)
0 +

∑
�≤k
∑

i≤Z̃ ( j)
k

(χ̃
( j)
i,k − 1)), we can bound

P

(
P̃( j)∞ ≥ N ( j)

λ

)
≤ P

( ∑
i≤N ( j)

λ

χ̃i > N ( j)
λ − Z̃ ( j)

0

)

for N ( j)
λ := Cr,Δ,MK 1/M

0 (Z̃ ( j)
0 + K−1

0 M−2)λ,

where χ̃i are i.i.d. copies of χ̃
( j)
i,k . Now observe that if K0(p, q,Δ, M) is sufficiently

large, the right-hand in the probability above exceeds the mean mN ( j)
λ by some cN ( j)

λ
for c = c(p, q,Δ, M, K0) > 0. As this is a tail probability for a sum of i.i.d. random
variables, by Hoeffding’s inequality, it is at most

exp
(− (cN ( j)

λ )2/(4N ( j)
λ d2r )

) ≤ exp(−c′N ( j)
λ ),

for some c′(r,Δ, M) > 0. Taking a union bound over the M possible values of j ≤ M ,
we altogether find

∑
k≤K0Z0+λ

P

(
Pk ≥ K0Z0 + λ, ΓM,k

)
≤ (K0Z0 + λ)M exp

(− c′N ( j)
λ

)
.
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It follows from this, and the definition of N ( j)
λ , that for some C(p, q,Δ, M, K0) large

enough,

P(κ < ∞) ≤ P(Γ c
M,κ ) +

∑
k≤K0Z0+λ

P

(
Pk ≥ K0Z0 + λ, ΓM,k

)
≤ Cn−δM

+ C exp
(− (Z0 + λ)/C

)
,

concluding the proof. ��

4.5. Proof of exponential tail on cluster sizes and shattering. We are now in position
to conclude the proof of the exponential tail bound on clusters of X1

G,t , and use that to

deduce that X1
G,t is (K , R)-Sparse, except with probability o(n−2). We begin by using

Lemmas 2–3 to prove the following tail bound on the sequence (Vk), which are the roots
of the balls revealed through the revealing process of Definition 11.

Lemma 6. Fix δ > 0 and consider the revealing procedure for any initial subsets

A0 and V0 having |A0|, |V0| ≤ n
1
2−δ . For every M ≥ 1, there exist C(p, q,Δ, M),

K0(p, q,Δ, M) and C0(p, q,Δ, δ, M) r(p, q,Δ) in the definition of Tburn in (4.3)

such that for all t ≥ Tburn and all 0 ≤ λ ≤ n
1
2−δ ,

P

( ∑
0≤k≤k∅

|Vk | ≥ K0|V0| + λ
)

≤ C exp(−λ/C) + Cn−δM ,

Proof. Fix K0 large to be chosen later, and define the following stopping generation

ς = inf{� : m�−1 > K0|V0| + λ}.
RecallEt from (4.4). Since for every� ≤ ς ,wehave fromLemma2, that (|V�|1{Et }) j≤� �
(Z j ) j≤�, we have that if C0 in (4.3) is sufficiently large, the probability of {ς < ∞} is
bounded by the probability of P∞ =∑k≥0 Zk ≥ K0Z0 + λ. By Lemma 2, we obtain

P

( ∑
k≤k∅

|Vk | ≥ K0|V0| + λ
)

≤ P

(∑
k≥0

Zk ≥ K0Z0 + λ
)
+ P(Ec

t ).

Lemma 3 implies the existence of r(p, q,Δ) such that the first-term above is at most
C1 exp(−λ/C1) + C1n−δM for some C1(p, q,Δ, M).

Next, consider P(Ec
t ). By a union bound and item (1) of Lemma 5, with the trivial

observations that mk∅ ≤ n and |Am | ≤ |E(Tr )| ≤ 2Δdr necessarily, we get for every
t ≥ Tburn,

P(Ec
t ) ≤ nP

(
Bin

(
t,
2|E(Tr )|

Δn

)
>

4|E(Tr )|
Δn

t
)
.

The above entails a deviation of at least 4tdr n−1 from its mean; as such, by standard
tail estimates for binomials, for every t ≥ Tburn,

P(Ec
t ) ≤ n exp(−tdr n−1), (4.8)

which is at most n−δM for n large, as long as C0 in (4.3) is sufficiently large (depending
on δM). The desired bound then follows up to a change of the constant C . ��



1268 A. Blanca, R. Gheissari

Before proceeding to prove Proposition 2, let us translate the tail bound of Lemma 6
on
∑

k |Vk | to a tail bound on the FK cluster of a single vertex under X1
G,t and πG .

Notice that towards the proofs of Theorem 4 and Proposition 2, it suffices to show
these for t ≥ Tburn for some fixed choices of C0, r in (4.3) depending on p, q,Δ (as
tmix(Tr , (1,�)) is of course independent of n).

Proof of Theorem 4. Fix any v ∈ {1, ..., n}, letA0 = ∅ and letV0 = {v} inDefinition 11.
By Observation 6, for each G ∼ Pcm, the cluster of v in the configuration X1

G,t , denoted

Cv(X1
G,t ) is a subset of Cv(ω̃t ), which in turn is a subset of V (Am∅), so that

|Cv(X
1
G,t )| ≤ |Cv(ω̃t )| ≤ |V (Tr )|

∑
k≤k∅

|Vk | ≤ 2Δdr
∑
k≤k∅

|Vk |.

By Lemma 6 and the above, we find that for each M , there exists C(p, q,Δ, M) such
that

P
(
(G, X1

G,t ) : |Cv(X
1
G,t )| ≥ 2Δdr (1 + λ)

) ≤ C exp(−λ/C) + Cn−δM .

Observing that P(X1
G,t ∈ ·) = Ecm[P(X1

G,t ∈ ·)], we can use Markov’s inequality to
write

Pcm

(
G : P

(
X1
G,t : |Cv(X

1
G,t )| ≥ 2Δdr (1 + λ)

)
≥
√
Ce−λ/C + Cn−δM

)

≤
√
Ce−λ/C + Cn−δM .

We can obtain the same bound for Prrg by (4.2), up to a multiplicative c(Δ)−1 on the
right-hand side. TakingM such that δM > 2K and using the fact that

√
a + b ≤ √

a+
√
b

for all a, b ≥ 0, we deduce the desired tail bound on |Cv(X1
G,t )| up to the change of

constant C to 2C . Using the monotonicity X1
G,t � π1

G implies the analogous bound for
|Cv(ω)| where ω ∼ πG . ��

We now turn to proving that for typical random graphs, the configuration X1
G,t is

(K , R)-Sparse with high probability for all t ≥ Tburn. This allows us to localize to
treelike balls with sparse boundary conditions. Let us define the following subset of the
boundary of a set H , which we will apply with the choice H = BR(v).

Definition 13. For a subgraph H = (V (H), E(H)) of G and a configuration ω on
E(G), let us defineVH (ω) as the subset of vertices in V (H) in non-trivial components
in the boundary condition induced on H by ω(E(G) \ E(H)) (a connected component
is non-trivial when it has at least two vertices).

We first prove the following proposition, giving a tail bound on VBR(v)(X1
G,t ); after

proving this proposition,we straightforwardly use it to conclude (K , R)-sparsity of X1
G,t ,

i.e., Theorem 5.

Proposition 2. Let p, q,Δ be such that p < pu(q,Δ). Fix δ > 0 and let R = ( 12 −
δ) logd n. There exists K (p, q,Δ, δ) such that if G ∼ Pcm, with probability 1−O(n−2),
G is such that for all t ≥ Tburn

sup
v∈V (G)

P
(
X1
G,t : |VBR(v)(X

1
G,t )| > K

) ≤ O(n−2).
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Proof of Proposition 2. Fix v ∈ {1, ..., n} and δ > 0, and let R = ( 12 − δ) logd n.
We apply the revealing procedure of Definition 11 with the choicesA0 = E(BR(v))

and V0 = ∂BR(v). Recall from Observation 6 that the FK-clusters of V0 induced by
ω̃t (E(G) \ A0) (ω̃t was extended to be all wired off of Amk∅ \ A0) are confined to the

set Amk∅ \ A0, and the extended configuration ω̃t satisfies ω̃t ≥ X1
G,t . Thus, the sets

VBR(v)(ω̃t ) and in turnVBR(v)(X1
G,t ), are below the number of vertices in V0 that share

a connected component of Amk∅ \ A0 with another vertex of V0.
Suppose that through the revealing process of Definition 11, for eachm, the edges of

Bout
r (vm) are revealed one at a time per Definition 6. Notice then, that |VBR(v)(Amk∅ \

A0)| is bounded by the number of times through the revealing ofAmk∅ , that a half-edge
is matched up to a half-edge belonging to a vertex that has been discovered at that point.
Throughout this process, conditionally on an exposed edge-set A (and the edge-update
sequence, and uniform random variables given by the filtration up to that step of the
revealing, but E(G) \ A is independent of these), the law of the next half-edge to be
matched is uniform amongst un-matched half-edges. Thus on any such edge-revealing,
uniformly on the history of the revealing, the probability that it matches with a half-edge

belonging to a discovered vertex is at most
|V (Amk∅ )|

n−2|V (Amk∅ )| .
By a union bound, we obtain for Λ a sufficiently large constant (depending on

p, q,Δ, r ), for all k ≥ 1,

P

(
(G, ω̃t ) : |Vv,R(X1

G,t )| > k
)

≤ P

(
|V (Amk∅ )| > Λ2|V0|

)
+ P

(
Bin

(
Λ2|V0|, 2Λ

2|V0|
n

)
> k
)

≤ P

( ∑
k≤k∅

|Vk | ≥ Λ|V0|
)
+ P

(
Bin

(
Λ2|V0|, 2Λ

2|V0|
n

)
> k
)
.

By Lemma 6 and the fact that Λ|V0| ≤ n
1
2− δ

2 for n large, as long as Λ is large enough,

the first term is at most n−5. Using the fact that |V0| ≤ n
1
2−δ , we see that the mean of

the binomial is at most n−3δ/2, so that by (4.6), for every fixed k ≥ 1,

P

(
(G, X1

G,t ) : |Vv,R(X1
G,t )| > k

)
≤ n−δk∧4, (4.9)

for n large enough. Choosing k = K sufficiently large (depending on δ), we can make
the right-hand side at most n−4.We deduce the proposition by usingMarkov’s inequality
to write

Pcm

(
G : P(X1

G,t : |VBR(v)(X
1
G,t )| ≥ K ) > n−2

)

≤ n2Ecm[P(X1
G,t : |VBR(v)(X

1
G,t )| ≥ K )],

and noticing that the expectation on the right equals the probability bounded in (4.9).

Proof of Theorem 5. First of all, a union bound of Proposition 2 over v ∈ {1, ..., n},
with Pcm-probability 1 − O(n−1), G is such that

P
(
X1
G,T :

⋃
v∈V (G)

{|VBR(v)(X
1
G,t )| > K

}) ≤ n−1.
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We now translate this to a bound under Prrg. Taking

Γ =
{
G : P

(
X1
G,t :

⋃
v∈V (G)

{|VBR(v)(X
1
G,t )| > K }

)
> n−1

}
,

in (4.2), we deduce that Prrg(Γ ) ≤ c−1Pcm(Γ ) ≤ c−1n−1 for some c(Δ) > 0, as
needed.

5. Sharp Rates of Correlation Decay in Trees and Treelike Graphs

In this section we establish the precise exponential decay rate of influence from an
O(1)-Sparse boundary condition on the root of an O(1)-Treelike ball. We recall from
Section 3, that getting the right decay rate, (as opposed to e.g., using the decay rate of
connectivity from the root to the boundary) is central to pushing our argument through
for all p < pu . In particular, the decay rate of influence will be inherited from twice the
exponential decay rate of the wired tree.

Recall that the uniqueness point pu(q,Δ) is defined by a transition on the wired
Δ-regular tree, where the measure π1

Th transitions between exponentially small (in h)
probability of a root-to-leaf connection, to giving this event uniformly positive proba-
bility. A recursion for this connectivity probability was calculated in [5, Lemma 33]. A
careful examination of this recursion will yield the following identification of the rate
of the exponential decay with p̂ of (2.2).

Lemma 7. Let p < pu(q,Δ). There exists C(p, q,Δ) such that for every h and every
leaf u ∈ ∂Th,

π
(1,�)

Th (ω : u ∈ Cρ(ω)) ≤ C p̂h .

In particular, the probability of the root being connected to ∂Th in ω is at most C( p̂d)h.

In Section 5.1, we establish Lemma 7. In Section 5.2, we show that influence in
the random-cluster model travels through the existence of two distinct connections;
thus on Treelike graphs, influence has twice the exponential decay rate of root-to-leaf
connectivities on the wired tree. This will yield Proposition 1.

5.1. Exponential decay rate in the wired Δ-regular tree. Because of its recursive struc-
ture, connectivity properties of the random-cluster measure on the wired tree can be
analyzed sharply. In this section, we pursue this and show that in the uniqueness regime
of p < pu , the probability of a connection from the root to a leaf at depth h is O( p̂h), as
one would have for the free tree (corresponding to i.i.d. Ber( p̂) percolation on Th). We
first show that the probability of a root-to-boundary connection decays exponentially in
h.

Let Th be the completeΔ-regular tree of height h rooted at ρ. The wired “1" boundary
conditions on Th are those that wire all leaves of Th (all vertices in ∂Th). Define the
probability

ϕh := π1
Th (ω : Cρ(ω) ∩ ∂Th �= ∅),
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that the root is connected to a leaf of Th . Using the recursive structure of the tree, it was
shown in [5, Lemma 33] that if we define μ := p

q + 1 − p, for every h, we have

ϕh+1 = f (ϕh), where f (x) =
(
μ + p(1 − 1

q )x
)d − (μ − p

q x
)d

(
μ + p(1 − 1

q )x
)d + (q − 1)

(
μ − p

q x
)d , (5.1)

and for every p < pu(q,Δ), this satisfies limh→∞ ϕh = 0. The following lemma
establishes that this convergence is exponentially fast.

Lemma 8. Let p < pu(q,Δ).Wehave limh→∞ ϕh+1
ϕh

= p̂d.Moreover,ϕh ≤ ( p̂d)h+o(h).

Proof. Consider the recursion of (5.1) for ϕh . Since limh→∞ ϕh = 0, if limx→0
f (x)
x

exists, we would have

lim
h→∞

ϕh+1

ϕh
= lim

x→0

f (x)

x
= lim

x→0

(
μ + p(1 − 1

q )x
)d − (μ − p

q x
)d

x
(
μ + p(1 − 1

q )x
)d + x(q − 1)

(
μ − p

q x
)d . (5.2)

Since both the numerator and denominator of (5.2) are differentiable and have limit 0
as x → 0, using L’Hôpital’s rule we get

lim
x→0

f (x)

x
= lim

x→0

∂x

[(
μ + p(1 − 1

q )x
)d − (μ − p

q x
)d]

∂x

[
x
(
μ + p(1 − 1

q )x
)d + x(q − 1)

(
μ − p

q x
)d]

= dp(1 − 1
q )μd−1 + d p

q μd−1

μd + (q − 1)μd
= dp

qμ
= dp

p + q(1 − p)
= d p̂.

Recall that for every 0 < p < pu , we have 0 < d p̂ < 1. Thus, there exists a sequence
{εh} such that limh→∞ εh = 0 and for every h,

ϕh = ϕ1 · ϕh

ϕh−1
. . .

ϕ2

ϕ1
= ϕ1 ·

h∏
i=2

( p̂d + εi ).

Expanding this out, we deduce

ϕh = ϕ1( p̂d)h exp

⎛
⎝ h∑
i=2

ln

(
1 +

εi

p̂d

)⎞
⎠ ≤ ϕ1( p̂d)h exp

⎛
⎝( p̂d)−1

h∑
i=2

εi

⎞
⎠ = ( p̂d)h+o(h),

as desired. ��
Our aim is to now prove Lemma 7, bounding connectivities of the root to a single

leaf.

Proof of Lemma 7. To prove Lemma 7, we write a recursion for the root-to-leaf con-
nection probability. Let ϑh be the probability under π1

Th that the root is connected to

the left-most leaf of depth h. Let ϑ�
h be the probability of the same event, under π

(1,�)

Th
where we recall that the (1,�) boundary conditions additionally wire the leaves of Th to
the root. By monotonicity we have ϑh ≤ ϑ

�
h and by Lemma 10, we have ϑ

�
h ≤ q2ϑh .
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Let (Ii )i≤Δ be the indicator function of the event that there is a root-to-boundary path
going through the i-th child of the root; set I =∑Δ

i=2 Ii . Then, we can write

ϑh ≤ p · π1
Th (I ≥ 1) · ϑ

�
h−1 + p̂ϑh−1 ≤ ϑh−1

[
pq2 · π1

Th (I ≥ 1) + p̂
]
,

where in the first inequality we used the fact that in order for the root to be connected to
the left-most leaf, it is required that the root is connected to its left-most child w1, and
that w1 is connected to the left-most leaf of its sub-tree. The former event occurs with
probability p or p̂, depending on whether or not the root is connected to ∂Th through
any child besides w1.

By monotonicity, for every i = 2, ..., Δ, the law of Ii under π1
Th is below its law

under π
(1,�)

Th and the same holds for I . Since, by Lemma 10 a single external wiring

may distort the distribution by at most a q2 factor, we get π(1,�)

Th (Ii = 1) ≤ pq2ϕh for

all i . Hence, under π
(1,�)

Th , I is stochastically below Q, where Q ∼ Bin(d, pq2ϕh). A
union bound and Lemma 8 then imply

π
(1,�)

Th (I ≥ 1) ≤ P(Q ≥ 1) ≤ dpq2( p̂d)h−o(h) ≤ C( p̂d)(1−ε)h,

for all h; note that ε can be chosen as small as needed provided the constantC(p, q,Δ, ε)

is large enough. Thus, setting a = Cpq2 p̂−1 we obtain

ϑh ≤ p̂ϑh−1

[
1 + a( p̂d)(1−ε)h

]
≤ p̂h

h∏
i=1

[
1 + a( p̂d)(1−ε)i

]
,

by continuing the recursion. Now, observe that since p̂d < 1 when p < pu ,

h∏
i=1

[
1 + a( p̂d)(1−ε)i

]
= exp

[
h∑

i=1

log
(
1 + a( p̂d)(1−ε)i

)]
≤ exp

[
a

h∑
i=1

( p̂d)(1−ε)i

]

≤ exp

[
a

( p̂d)1−ε

]
.

Combining the above two bounds, there exists an absolute constant A = A(p, q,Δ)

such that for every h we have ϑh ≤ A p̂h and thus ϑ
�
h ≤ Aq2 p̂h . The first inequality

in the lemma follows by noticing that all the leaves in Th are equivalent, and the second
follows from a union bound over the Δdh−1. ��

5.2. Exponential decay rate in (L , R)-Treelike graphs. Let G = (V, E) be an (L , R)-
Treelike graph. For v ∈ V , let B := BR(v) denote the ball of radius R around the vertex
v. Recall that we useNv ⊆ E for the set of edges incident to v. For each 1 ≤ � ≤ R, let
Q� = {u ∈ B : d(u, v) ≥ �}.

For a boundary condition ξ on ∂B, recall the set VB,ξ of vertices in non-trivial
boundary components of ξ from Definition 13. For any u ∈ B such that d(u, v) = �, let

u
Q�←→ VB,ξ denote the event that u is connected toVB,ξ by a path of open edges fully

contained in Q�: i.e.,

{u Q�←→ VB,ξ } := {ω : Cu(ω(Q�)) ∩ VB,ξ �= ∅}.
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Define the event

ΥB,ξ := {ω ∈ {0, 1}E(B) : |{u ∈ B : d(u, v) = �, u
Q�←→ VB,ξ }| ≥ 2 for all 1 ≤ � ≤ R}.

Notice that ΥB,ξ is an increasing event. We claim that ΥB,ξ controls the propagation of
influence from ∂B.

Lemma 9. Fix a graph G = (V, E), a vertex v ∈ V and consider the ball BR(v); let
ξ ≥ τ denote two boundary conditions on ∂BR(v) = {w ∈ BR(v) : d(v,w) = R}.
Then,

‖πξ

BR(v)(ω(Nv) ∈ ·) − πτ
BR(v)(ω(Nv) ∈ ·)‖tv ≤ π

ξ

BR(v)(ΥBR(v),ξ ).

Proof of Lemma 9. For ease of notation let B := BR(v), Υξ = ΥB,ξ and Vξ = VB,ξ .

We construct a monotone coupling P of ωξ ∼ π
ξ
B and ωτ ∼ πτ

B . The coupling P

reveals the configurations ωξ ∼ π
ξ
B and ωτ ∼ πτ

B on B one edge at a time using i.i.d.
uniform random variables Ue ∈ [0, 1] for each e ∈ E(B). The same Ue is used to
reveal the values ωξ (e) and ωτ (e) from the corresponding conditional measures. The
order in which the uniform variables are revealed is irrelevant and can be adaptive; this
will allow us to reveal the boundary components. (For more details on the process of
revealing random-cluster components under the monotone coupling, see below, as well
as e.g., [6,8].)

We construct an adaptive revealing scheme that ensures that on the event Υ c
ξ for the

top sample ωξ , the samples ωξ and ωτ agree on Nv . This implies the desired result as
one would then have by the definition of total-variation distance,

‖πξ
B(ω(Nv) ∈ ·) − πτ

B(ω(Nv) ∈ ·)‖tv ≤ P(ωξ (Nv) �= ωτ (Nv)) ≤ π
ξ
B(ΥB,ξ ).

We construct P with the following iterative scheme which proceeds level-by-level from
the leaves of B. Recall that for each � ≥ 1, we let Q� = {u ∈ B : d(u, v) ≥ �} and
E(Q�) is the set of edges with both endpoints in Q�. At any time in the revealment
process, we say that a vertex u ∈ Q� is unsaturated in Q� if there exists w ∈ Q� such
that the edge-values (ωξ (uw), ωτ (uw)) have not been revealed. Let (Ue)e∈E(B) be a
family of i.i.d. uniform random variables on [0, 1] and reveal the configuration ωξ as
follows:

Definition 14. Initialize Vξ = Vξ and Eξ = ∅;
for i = 1, 2, ..., R do
while ∃u ∈ Vξ such that u is unsaturated in QR−i

for each vertex w ∈ QR−i : uw ∈ E(QR−i )

(1) Reveal ωξ (uw) from π
ξ
B(· | ω(Eξ )) using Uuw, i.e., set

ωξ (uw) =
{
1 if π

ξ
B(ω(uw) = 1 | ω(Eξ )) ≥ Uuw

0 else
;

(2) Add the edge uw to the set Eξ ;
(3) If ωξ (uw) = 1, add the vertex w to Vξ ;
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Fig. 4. Top: The ball BR(v) for R = 5, with a K -sparse boundary condition τ for K = 4 (left), and the free
boundary condition ξ = 0 (right). Bottom: The configurations revealed by the procedure of Definition 14,

showing Ci0V(ωτ ) (red, left) along with its outer edge boundary in Qi0 (light blue), revealing the dotted line
(depth i0) to be the largest i for which the set Vi is a singleton. The vertices that would have been exposed

for larger values of i are colored in different colors. The coupled edge configuration ω0(Ci0V(ωτ )) is depicted

on the right (open edges in red, closed edges in blue). The exposed configurations on Ci0V(ωτ ) induce free

boundary conditions on E(B) \ C̄i0V(ωτ )

Note that we can use the same family (Ue)e∈E(B) in this process to generate coupled
samples of ωξ and ωτ . Notice that this coupling is monotone, so that because ξ ≥ τ ,
ωξ ≥ ωτ almost surely. Let CiV(ωξ ) denote the set of open edges revealed up to the
i-th iteration of the procedure; we observe that CiV(ωξ ) is not necessarily equal to the
intersection of CV(ωξ ) with E(QR−i ), but it is a subset of CV(ωξ ) ∩ E(QR−i ). Refer
to Figure 4 for a depiction of the above revealing procedure.

Through this revealing process, we see that ωξ is open on the edges in the random set
CiV(ωξ ) and free on the edges in its outer (edge) boundary in QR−i . Let C̄iV(ωξ ) be the
union CiV(ωξ ) with its outer (edge) boundary in QR−i , and note that this corresponds to
the state of Eξ after the i’th iteration. The random set CiV(ωξ ) is measurable with respect
to the uniform random variables assigned to edges of C̄iV(ωξ ).

For each CiV(ωξ ), let V i (ωξ ) be the vertices in CiV(ωξ ) at distance exactly R− i from
v. Then,

V i (ωξ ) ⊆ CV(ωξ ) ∩ {w : d(w, v) = R − i}.
On Υ c

B , there must be some i for which |CV(ωξ ) ∩ {w : d(w, v) = R − i}| ≤ 1, and
therefore |V i (ωξ )| ≤ 1. Let i0 be the first i for which |V i0(ωξ )| ≤ 1, and for ease of
notation set V0 = V i0(ωξ ), C̄V,0 = C̄i0V(ωξ ) and set C̄cV,0 = E(B) \ C̄V,0. Notice the
inclusion

C̄iV(ωξ ) ⊂ C̄i+1V (ωξ ),

and from that deduce that i0 is measurable with respect to the uniform random variables
assigned to edges of C̄i0V(ωξ ). By the domain Markov property (see e.g., [31]), condi-
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tionally on ωξ (C̄V,0), the configuration ωξ (C̄cV,0) (respectively, ω
τ (C̄cV,0)) is distributed

according to the random-cluster distribution on C̄cV,0 with boundary conditions induced

by ξ and ωξ (C̄V,0), respectively τ and ωτ (C̄V,0).
To conclude the proof, it suffices to see that because |V0| ≤ 1, both ωξ (C̄V,0) and

ωτ (C̄V,0) induce the free boundary conditions on C̄cV,0. In that case ωξ and ωτ would

agree on C̄cV,0 and in particular on Nv . By monotonicity, it suffices for us to show that

the boundary conditions induced by ξ and ωξ (C̄V,0) on C̄cV,0 are free. Since the wirings

of ξ are only on vertices of Vξ ⊂ C̄V,0, the only way for the boundary conditions on
C̄cV,0 to be not free is if multiple vertices on its boundary are incident to open edges of

ωξ (C̄V,0). By construction, the only vertices in C̄V,0 which can be incident to an open
edge of ωξ (C̄V,0) must be at distance exactly R − i0 from v. By the assumption that
|V0| ≤ 1, there can be at most one such vertex, and therefore there are no non-trivial
(i.e., non-singleton) boundary components induced on C̄cV,0 by the boundary condition

(ξ, ωξ (C̄V,0)), implying the desired conclusion. ��
Proof of Proposition 1. With Lemma 9 in hand, it suffices for us to prove the following:
there exists C(p, q, K , L) > 0 such that if G = (V, E) is an (L , R)-Treelike graph and
ξ is a K -Sparse boundary condition for the L-Treelike ball B := BR(v) about some
v ∈ V , we have

π
ξ
B(ΥB,ξ ) ≤ C p̂2R . (5.3)

Let H ⊂ E(B) be a set of at most L edges such that the subgraph (V, E(B) \ H) is
a tree; the existence of such a set is guaranteed by the fact that BR(v) is L-Treelike. Let
Z = {d1, ..., dk} be the subset of distances (from v) which H intersects, i.e., Z = {1 ≤
� < R : ∃w ∈ V (H) : d(w, v) = �}. See Figure 5 for a depiction. Observe that each
edge of H intersects either one or two consecutive depths in Z . Since B Is L-Treelike,
we clearly have |Z| ≤ 2L . Letting d0 = 0 and dk+1 = R, for i = 0, . . . , k we define:

Fi := {u ∈ B : di < d(u, v) < di+1}.
For each 0 ≤ i ≤ k, the graph Fi = (Fi , E(Fi )) is a forest. For each i , let Ti j =
(Ti j , E(Ti j )) for j = 0, 1, . . . denote the distinct connected components (subtrees) of
Fi so that Fi =⋃ j≥0 Ti j . (For some i , this may be empty, and for other i , this may be
a single vertex.)

Now, in order for ΥB,ξ to hold, it must be the case that in each Fi , every depth � is
intersected by at least two sites in the FK cluster ofVB,ξ in Q�. Specifically, for each i ,
at distance di + 1 from v there must be at least two distinct vertices connected to VB,ξ

with paths in Qdi+1. Thus, for each i there must exist two open monotone paths (each
intersecting each height inFi at exactly one vertex), γi ⊂ E(Ti j ) and γ ′

i ⊂ E(Ti j ′)with
j �= j ′ such that γi (resp., γ ′

i ) connects the root of Ti j (resp., Ti j ′ ) to one of its leaves.
If there are multiple such paths, choose according to some predetermined ordering, and
call the sequences of paths Γ = γ0, . . . , γk and Γ ′ = γ ′

0, . . . , γ
′
k . See Figure 6 for a

depiction.
We enumerate over the choices of such sequences of paths and then show that for

any two fixed sequences of paths, the probability that they are both open is bounded by
C p̂2R for some C(p, q,Δ, K , L). (We say that a sequence of paths is open if all of its
paths are.)
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Fig. 5. Left: An L-Treelike ball with K -Sparse boundary conditions is depicted for L = K = 6: the L edges
that need to be removed to leave a tree are indicated in blue. Right: We modify the boundary conditions to
be all wired (the wired component is depicted in purple) at or one away from heights in Z (marked by red
dashes)

In order to enumerate over the choices of sequences of paths, for each monotone path
γi , let xi be its bottom endpoint, and define x ′

i for γ ′
i similarly. Since ξ is K -Sparse,

there are evidently at most K many choices of x0, and K choices of x ′
0. Now observe

that since γi is a monotone path on a tree, for each i , the bottom endpoint xi determines
the entire path γi . Since these paths form parts of the connections toVB,ξ the sequence
of paths can be required to have endpoints at depths di+1 − 1 that are either an ancestor
of x0, or an ancestor of V (H) . Here, at each height h /∈ Z an ancestor of a vertex u at
height h is a vertex along the geodesic from v to u. We make the following observation.

Claim. If BR(v) is L-Treelike, if u is such that d(u, v) = h, for every h′ < h, u has at
most 2L many ancestors at height h′.

Indeed, except along the edges in H , every vertex has a unique parent which is
an ancestor of that vertex at one smaller depth. Thus, the geodesics of B are uniquely
determined by their endpoints together, possibly, with a subset of edges of H traversed
along the geodesic, yielding the at most 2L available choices.

Returning to the enumeration over Γ, Γ ′, the heights of the endpoints xi , x ′
i are

predetermined by i , and therefore, having chosen x0, x ′
0 for each i , there are at most 2L

many choices of bottom end-point xi , and likewise of x ′
i , and therefore at most 2L · 2L

many choices of γi and γ ′
i .

Hence, a union bound implies

π
ξ
B(ΥB,ξ ) ≤ K 2(2L)2L(2L)2L sup

Γ,Γ ′
π

ξ
B(ω(Γ ∪ Γ ′) = 1). (5.4)

Now fix any two such sequences of paths Γ, Γ ′, and consider the probability that
ω(Γ ∪ Γ ′) = 1. Observe that Γ and Γ ′ are vertex-disjoint by construction. Our aim is
to make the events that Γ and Γ ′ are open in ω independent. For this, let ρi be the set
of roots of the trees in Fi . We introduce auxiliary wirings (as shown in Figures 5–6) for
all vertices at depths {d : mini=0,...,k+1 |d − di | ≤ 1}. Call the resulting distribution π̃B ;
by monotonicity,

π
ξ
B(ω(Γ ∪ Γ ′) = 1) ≤ π̃B(ω(Γ ∪ Γ ′) = 1). (5.5)

The distribution π̃B is a product measure over the Ti j ’s with boundary condition (1,�)

in each Ti j (recall that this boundary condition wires all leaves ∂Ti j together with the
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Fig. 6. Left: Two disjoint components (red) of the vertices inVB,ξ , together intersect every depth in the ball
and satisfy the event ΥB,ξ . Right: The two components contain corresponding sequences of open leaf-to-root
paths (red) in independent wired subtrees (shaded, orange) whose endpoints are amongst the ancestors of
vertices of H or VB,ξ

root of Ti j ). Hence, since Γ and Γ ′ are such that, for each i ≥ 0, γi and γ ′
i belong to

distinct subtrees Ti ji , Ti j ′i of the forest Fi , and we have

π̃B(ω(Γ ∪ Γ ′) = 1) =
k∏

i=0

π
(1,�)

Ti ji
(γi )

k∏
i=0

π
(1,�)

Ti j ′i
(γ ′

i ).

Let hi = di+1 − di be the height of the trees in Fi . We deduce from Lemma 7 that
there exists a constant A(p, q,Δ) > 0 such that uniformly over Γ, Γ ′,

π̃B(ω(Γ ∪ Γ ′) = 1) ≤ A2L
k∏

i=0

p̂2hi ≤ A2L p̂2(R−4L).

Plugging this bound into (5.4)–(5.5), we obtain

π
ξ
B(ΥB,ξ ) ≤ K 2((2L)(2L) p̂−4A)2L p̂2R,

from which the required (5.3) follows. ��
Remark 4. A matching lower bound of Ω( p̂2R) for the decay rate in Proposition 1 is
easy to construct by e.g., taking the K -Sparse boundary conditions ξ that wires two
leaves w1, w2 on distinct sub-trees of v, and the free boundary conditions ξ ′ = 0 on TR .
The event that the root is connected tow1 and its corresponding child is connected tow2
has probability at least C p̂2R by Lemma 7 and the FKG inequality (see e.g., [31]). On
this event, the probability that the edge incident v down towards w2 is open is p under
the boundary condition ξ and p̂ under ξ ′ = 0.

6. Proof of Fast Mixing

In this section, we combine the results of Sections 4–5 to conclude the proof of Theo-
rem 1. As indicated in Section 3, the analysis of Sections 4–5 reduce the mixing time of
the FK-dynamics on a random graph to understanding the convergence to equilibrium

on O(1)-Treelike balls of volume O(n
1
2−δ) with O(1)-Sparse boundary conditions.

In Section 6.1, we recall the log-Sobolev inequality and comparison bounds for the
log-Sobolev constant under different boundary conditions. In Section 6.2, we bound
this log-Sobolev constant via straightforward comparison to a product chain. Then in
Section 6.3, we proceed to combine all of the above ingredients to deduce the proof of
Theorem 1 using the censoring inequalities of [46].
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6.1. Mixing time preliminaries. Let us recall some standard tools to help us bound the
rate of convergence to equilibrium of the FK-dynamics on treelike balls with sparse
boundary conditions.

6.1.1. Log-Sobolev inequalities Recall, for a Markov chain with transition matrix P ,
the Dirichlet form

E( f, f ) := 1

2

∑
ω,ω′∈{0,1}E

π(ω)P(ω, ω′)( f (ω) − f (ω′))2, (6.1)

for f : Ω → R. Then the log-Sobolev constant is given by

α(P) := min
f :Entπ [ f 2]�=0

E( f, f )

Entπ [ f 2] , where Entπ [ f 2] = Eπ

[
f 2 log

f 2

Eπ [ f 2]
]
.

(6.2)

As such, a log-Sobolev inequality takes the form E( f, f ) ≥ γ · Entπ [ f 2] for all f .
A log-Sobolev inequality is stronger than a mixing time bound, in the sense that it im-
plies exponential convergence with rate γ in total-variation distance from the stationary
distribution. This is captured by the following standard fact (e.g., a proof in the discrete
time setting we consider follows immediately from Lemma 2.8 and Eq. (2.10) of [3]).

Fact 7. Consider an ergodic finite state Markov chain (Xt )t≥0 with transition matrix P
reversible with respect to stationary measure π . If the chain has a log-Sobolev constant
α = α(P), then for every γ < α,

max
x0∈Ω

‖P(Xx0
t ∈ ·) − π‖tv ≤ e−γ t/2

(
log

1

minx∈Ω π(x)

)1/2
.

6.1.2. Boundary condition comparisons for the FK-dynamics The following formalizes
the notion that sparse boundary conditions are “close to free", and allows us to compare
the induced mixing time on balls with sparse boundary to those with free boundary.

Definition 15 (Definition 2.1 of [6]). For two boundary conditions (partitions) φ ≤ φ′,
define D(φ, φ′) := c(φ) − c(φ′) where c(φ) is the number of components in φ. For
two partitions φ, φ′ that are not comparable, let φ′′ be the smallest partition such that
φ′′ ≥ φ and φ′′ ≥ φ′ and set D(φ, φ′) = c(φ) − c(φ′′) + c(φ′) − c(φ′′).
Lemma 10 (Lemma 2.2 of [6]). Let G = (V, E) be an arbitrary graph, p ∈ (0, 1) and
q > 0. Let φ and φ′ be two partitions of V encoding two distinct external wirings on

the vertices of G. Let π
φ
G, π

φ′
G be the resulting random-cluster measures. Then, for all

FK configurations ω ∈ {0, 1}E , we have
q−2D(φ,φ′)πφ′

G (ω) ≤ π
φ
G(ω) ≤ q2D(φ,φ′)πφ′

G (ω).

From Lemma 10, and the definition of the Dirichlet form, (6.1), we deduce the
following.

Corollary 8. Let G = (V, E) be an arbitrary graph, p ∈ (0, 1) and q > 0. Consider
the FK-dynamics on G with boundary conditions φ and φ′, and let EGφ , EGφ′ denote
their Dirichlet forms, respectively. Then

q−4D(φ,φ′))EGφ′ ( f, f ) ≤ EGφ ( f, f ) ≤ q4D(φ,φ′))EGφ′ ( f, f ), for all f : {0, 1}E → R.
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Together with Corollary 8 and Lemma 10 again, this controls the change in both log-
Sobolev constant (6.2), and mixing time, under two boundary conditions with distance
D(φ, φ′).

6.2. Local mixing: fast mixing on treelike graphs with sparse boundary conditions. In
this section we establish a bound for the speed of convergence of the FK-dynamics on
L-Treelike balls with K -Sparse boundary conditions (see Definitions 1 and 4). Our
goal is to prove the following lemma.

Lemma 11. Suppose BR(v) is L-Treelike. Let ξ be a K -Sparse boundary condition on
∂BR(v). For every p ∈ (0, 1) and q > 0, the log-Sobolev constant of the FK-dynamics
on BR(v) with boundary condition ξ is Ω(|E(BR(v))|−1) = Ω(d−R).

Lemma 11 follows by comparing log-Sobolev on an L-Treelike ball with K -Sparse
boundary to a tree with K -Sparse boundary conditions, whose log-Sobolev constant
is bounded by comparison to a product chain. We first note the following bound on the
log-Sobolev constant on trees with sparse boundaries.

Corollary 2. There exists c(p, q) > 0 such that the following holds. For every rooted
(not necessarily complete) tree T̂h = (V (T̂h), E(T̂h)) of depth h and degree at most
Δ, and every K -Sparse boundary condition φ on T̂h, the log-Sobolev constant of the
FK-dynamics on T̂h with boundary conditions φ is at least cq6K |E(T̂h)|−1

.

Proof. Consider the FK-dynamics on T̂h under the free boundary conditions. In this
case, the random-cluster measure is a Ber( p̂) product measure and thus the log-Sobolev

constant of the FK-dynamics is c|E(T̂h)|−1
for some c(p, q) > 0; see, e.g., [17]. The

result then follows from Lemma 10 and Corollary 8. ��
To move from mixing on an L-Treelike ball to mixing on a tree, the following fact

will be useful.

Fact 9. Let G be a subgraph of G ′ such that V (G) = V (G ′) and E(G) ⊂ E(G ′); let
H = E(G ′) \ E(G). Suppose φ is a boundary condition on G,G ′ such that for every
e ∈ H, the endpoints of e are wired in φ. For every p ∈ (0, 1) and q > 0, let PG and PG ′
be the transition matrices of the FK-dynamics on G and G ′, respectively, with boundary
conditions φ, and let α(PG) and α(PG ′) be their log-Sobolev constants. There exists a
constant c(p) > 0 such that

α(PG ′) ≥ min

{ |E(G)|
|E(G)| + |H | · α(PG),

c|H |
|E(G)| + |H |

}
.

Proof. The FK-dynamics on G ′ is a product Markov chain on {0, 1}E(G) × {0, 1}H
with stationary distribution π

φ

G ′ = π
φ
G ⊗∏|H |

i=1 νi , where (νi )1≤i≤|H | are independent
Ber(p) distributions over edges in H . The result then follows from the tensorization of
the log-Sobolev inequality (e.g., [47, Lemma 2.2.11]). ��

We can now combine the above ingredients to deduce the bound of Lemma 11.

Proof of Lemma 11. Let B = BR(v) and let H ⊂ E(B) be a set of at most L edges
such that (B, E(B) \ H) is a tree. Consider the tree T̂R = (V (B), E(B) \ H) and let



1280 A. Blanca, R. Gheissari

φ be the boundary condition that includes all the connections from ξ and adds wirings
between w and w′ for every edge ww′ ∈ H .

Corollary 2 implies that the log-Sobolev constant for the FK-dynamics on T̂R with

boundary condition φ is at least cq6(K+L)|E(T̂R)|−1
for some c(p, q) > 0. We then

get from Fact 9 that the log-Sobolev constant for the FK-dynamics on B with boundary
condition φ is at least cq6(k+L)|E(B)|−1. Lemma 10 and Corollary 8 then imply that the
log-Sobolev constant on B with boundary conditions ξ is at least cq6K+12L |E(B)|−1. ��

6.3. Proof of Theorem 1: upper bound. Fix p < pu(q,Δ), let ε = 1 − p̂d (positive
when p̂ < pu) and fix δ > 0 small enough (depending on ε,Δ) such that

2δ + (1 − 2δ) logd(1 − ε) < 0,

in which case the following is polynomially decaying in n:

n p̂(1−2δ) logd n = nd(−1+2δ) logd n(1 − ε)(1−2δ) logd n = n2δ(1 − ε)(1−2δ) logd n . (6.3)

Let R = ( 12 −δ) logd n and let K be a constant sufficiently large (depending on p, q,Δ)
that both Fact 3 and Theorem 5 hold for (K , R). For each t , let Γt be the set ofΔ-regular
graphs on n vertices having

Γt = {G : G is (K , R)-Treelike} ∩ {G : P(X1
G,t is (K , R)-Sparse) ≥ 1 − n−2}.

By Fact 3 and Theorem 5, there exists C0(p, q,Δ) such that if T = C0n log n, then
Prrg(Γ

c
T ) ≤ o(1). It suffices for us to prove that the mixing time of the FK-dynamics

on any G ∈ ΓT is O(n log n).
Fix any G ∈ ΓT and for every configuration ω on E(G), let Xω

t = Xω
G,t be the FK-

dynamics chain on G initialized from Xω
0 = ω. Couple the family of chains

((Xω
t )t≥0)ω∈{0,1}E(G) using the grand coupling as in Definition 8: recall that this is the

coupling that in each step picks the same random e ∈ E(G) to update, and the same uni-
form random variableUe,t on [0, 1] to decide the next state on the edge e. As mentioned
earlier, this coupling is monotone when q > 1 so that for every t ≥ 0, if Xω

t ≤ Xω′
t ,

then Xω
t+1 ≤ Xω′

t+1.
It follows from the definition of tmix and monotonicity of the grand coupling (see

e.g., [40]), that it suffices for us to show that there exists Ĉ(p, q,Δ) such that if T̂ =
T + Ĉn log n,

P
(
X1
T̂

�= X0
T̂

) ≤ 1

4
.

By a union bound over the n edge-neighborhoodsNv (edges ofG incident v), this reduces
to showing

sup
v∈V (G)

P
(
X1
T̂
(Nv) �= X0

T̂
(Nv)

) ≤ 1

4n
. (6.4)

Now fix any such v and consider the probability above. For ease of notation, let Bv =
BR(v) and Bc

v = E(G) \ Bv . Introduce two new Markov chains Y 1
t and Y 0

t that are
coupled via the grand coupling to X1

t , X
0
t except that they censor (ignore) all updates
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on edges of Bc
v after time T = C0n log n. The censoring inequality [46, Lemma 2.3]

implies the stochastic relations Y 1
t � X1

t and Y 0
t � X0

t for all t ≥ 0 and thus

P
(
X1
t (Nv) �= X0

t (Nv)
) ≤ Δ sup

e∈Nv

P
(
X1
t (e) �= X0

t (e)
)

≤ Δ sup
e∈Nv

[P(Y 1
t (e) = 1

)− P
(
Y 0
t (e) = 1

)].
Fix any e ∈ Nv and consider the difference in probabilities on the right-hand side. Let
ET be the event (measurable with respect to the first T steps of the Markov chain) that
the boundary conditions induced by X1

T (Bc
v) are K -Sparse. Observe that K -sparsity

of a boundary condition is a decreasing event, so that on ET , the boundary conditions
induced by X0

T (Bc
v) are also K -Sparse. As such, for all t ≥ T ,

P(Y 1
t (e) = 1) − P(Y 0

t (e) = 1) ≤ P(EcT ) + sup
φ0,φ1∈{0,1}Bcv

φ1 is K−Sparse ;φ0≤φ1

P(Y 1
t (e) = 1 | Y 1

T (Bc
v) = φ1) (6.5)

− P(Y 0
t (e) = 1 | Y 0

T (Bc
v) = φ0).

Since G ∈ ΓT , and Y 1
T = X1

T , the first term is at most n−2. Turning to the second term,
fix any two configurations φ1, φ0 on Bc

v such that φ0 ≤ φ1 and φ1 (and therefore also
φ0) induce K -Sparse boundary conditions on Bv , and consider the difference

P(Y 1
T+s(e) = 1 | Y 1

T (Bc
v) = φ1) − P(Y 0

T+s(e) = 1 | Y 0
T (Bc

v) = φ0)

≤ |P(Y 1
T+s(e) = 1 | Y 1

T (Bc
v) = φ1) − πG(ω(e) = 1 | ω(Bc

v) = φ1)| (6.6)

+ |πG(ω(e) = 1 | ω(Bc
v) = φ1) − πG(ω(e) = 1 | ω(Bc

v) = φ0)| (6.7)

+ |P(Y 0
T+s(e) = 1 | Y 0

T (Bc
v) = φ0) − πG(ω(e) = 1 | ω(Bc

v) = φ0)|. (6.8)

Observe that Y 1
T+s(Bv) is distributed as a lazy FK-dynamics chain Z1

s on Bv with bound-
ary conditions induced by φ1, initialized from the random configuration Z1

0(Bv) =
Y 1
T (Bv): the laziness is in the choice that at each step, Z1

s makes an FK-dynamics update
on Bv with probability |E(Bv)|/|E(G)| and makes no update otherwise. The analogous
statement holds for Y 0

T+s(Bv)with respect to some lazy chain Z0
s . The invariant measure

of Z1
s is easily seen to be

πG(ω(Bv) ∈ · | ω(Bc
v) = φ1) = π

φ1

Bv
,

and the analogous statement holds for Z0
s .

Now let T̂ = T + Ŝ where Ŝ = Ĉn log n for a constant Ĉ to be chosen sufficiently
large depending on p, q,Δ. The expected number of updates in Bv between time T and
T + Ŝ is

Ĉn log n · |E(Bv)|
|E(G)| ≥ 2Δ−1Ĉ |E(Bv)| log n.

Let C1(p, q,Δ, K ) be a constant such that the Ω(d−R) bound on the log-Sobolev con-
stant guaranteed by Lemma 11 (with the choice of L = K ) is at least C−1

1 d−R . For any
C2, if Ĉ is sufficiently large, a Chernoff bound (namely (4.6) applied to Bin(Ŝ, |E(Bv)|/
|E(G)|)) implies that with probability 1 − o(n−2), at least C1C2|E(Bv)| log n updates
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are made in E(Bv) between times T and T̂ . By K -sparsity of φ1, Lemma 11, and Fact 7,
the term in (6.6) is bounded by

‖P(Z1
Ŝ
(Bv) ∈ ·) − π

φ1

Bv
‖tv ≤ 1√

logminω π(ω)
exp
(

− C1C2|E(Bv)| log n
2C3|E(Bv)|

)
+ o(n−2)

≤ O(
√
n) · e−C1C2 log n/(2C3) + o(n−2),

for someC3(p, q,Δ); we thus have forC2 sufficiently large (and therefore Ĉ sufficiently
large), that this is at most o(n−2). By the same reasoning, by K -sparsity of φ0, the same
bound applies to (6.8).

Finally, since both φ1 and φ0 induce K -Sparse boundary conditions on Bv , by
Proposition 1 there exists a constant C(p, q,Δ, K ) > 0 such that (6.7) is at most

‖πφ1

Bv
(ω(Nv) ∈ ·) − π

φ0

Bv
(ω(Nv) ∈ ·)‖tv ≤ C p̂2R,

which is o(n−1) by our choice of δ and (6.3). Putting these three bounds together we see
that as long as Ĉ is sufficiently large (depending on p, q,Δ) the difference in (6.5) is
o(n−1), from which the bound of (6.4) follows for n sufficiently large, concluding the
proof. ��

7. Matching Lower Bound on the Mixing Time

In this section, we show a matching Ω(n log n) lower bound on the mixing time of the
FK-dynamics on a random Δ-regular graph and thus complete the proof of Theorem 1
from the introduction. A general lower bound for the mixing time of the Glauber dynam-
ics on spin systems was show in [35]. However, the non-locality of the FK-dynamics
complicates extending the ideas from [35] to the random-cluster setting. In [8], the ar-
gument from [35] was adapted to the random-cluster model on Z2 when p �= pc(q), but
the amenability of Z2 together with the exponential decay of connectivities at p < pc
was key to this extension.

In our setting, the non-amenability of the random Δ-regular graph prevents us from
bounding the speed of disagreement percolation under couplings of the FK-dynamics
and implementing the argument of [35] directly. Instead, we use the locally treelike
structure of the random Δ-regular graph to directly couple a projection of the model
on a certain set of nε edges to a product measure on nε edges, for which the coupon
collector problem gives an immediate lower bound.

Claim. With Prrg-probability 1 − o(1), G is such that there exist n1/5 vertices whose
balls of radius 1

5 logd n are disjoint, and are trees.

Proof. Per (4.2), it suffices to prove the above underPcm.We prove the claim by repeated
application of Lemma 4. Namely, consider the procedure where we repeatedly take an
arbitrary vertex v that has not been discovered yet, and reveal its ball of radius R. Let vi
be the i’th vertex to be selected in this procedure, and letAi be

⋃
j≤i E(BR(v j )). Then,

for integer m ≤ n the probability that (BR(v1), ..., BR(vm)) are disjoint trees, is at least

1 −
m∑
i=1

Pcm
(
BR(vi ) ∩ Ai−1 = ∅ or BR(vi ) is not a tree | Ai−1

)
.
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By Lemma 4 (using the fact that each vi /∈ V (Ai−1) so that Bout
R (vi ) = BR(vi )) each of

the summands is at most O(md2R/(n − O(mdR))). Taking R = δ logd n and m = nδ ,
we see that the sum above is at most O(n4δ/(n−O(n2δ))which is o(1) as long as δ < 1

4 .��
Fix ε ∈ (0, 1/5) to be taken sufficiently small later. For every G having n1/5 many

vertices whose balls of radius 1
5 logd n are disjoint trees, choose arbitrarily some nε

vertices amongst the n1/5 of Claim 7, and for each vertex collect a representative edge
incident to it to form the set C = Cε(G). Our proof will rely on a coupling of the
restrictions of Xt,G and πG to C to Ber( p̂) product chains. For this, let:

1. Xt = Xt,G be a realization of the FK-dynamics;
2. Yt = Yt,G be a realization of the FK-dynamics that censors all updates in E(G) \ C;
3. ν as the product measure over |C| many Ber( p̂) random variables.

As before, let Y 0
t be the chain Yt initialized from the all-0 configuration.

Lemma 12. Let G be a graph with at least n1/5 vertices whose balls of radius 1
5 logd n

are disjoint trees. For every q > 1, integerΔ ≥ 3, and p < pu(q,Δ), there exists ε > 0
sufficiently small such that we have the following for C = Cε(G):

(1) For all t ≤ T = O(n log n),

‖P(X0
t (C) ∈ ·) − P(Y 0

t (C) ∈ ·)‖tv ≤ o(1).

(2) ‖πG(ω(C) ∈ ·) − ν‖tv ≤ o(1).

Proof. We start with part (1). Our aim is to show that under the grand coupling of X0
t

and Y 0
t , for every t ≤ T = O(n log n), we have P(X0

t �= Y 0
t ) ≤ o(1). Under the grand

coupling, let TT = (t1, t2, ..., ts(T )) denote the sequence of times on which the updated
edge is in C, so that s(T ) counts the number of updates in C by time T . We can then
bound

P(X0
t �= Y 0

t ) ≤ P(s(T ) > n2ε) + P(X0
t �= Y 0

t , s(T ) ≤ n2ε).

Thefirst termon the right-hand side is atmost the probability thatBinom(T, |C|/|E(G)|) ≥
n2ε which is o(1) by the Chernoff bound (4.6). It thus suffices to work on the event
s(T ) ≤ n2ε.

Let R := 1
6 logd n and let Zt be the FK-dynamics chain (coupled to Xt ,Yt through the

grand coupling) that freezes the configuration onC∪(E(G)\⋃e∈C E(BR(e))) to be all-1.
Let Z0

t be the chain Zt initialized from the configuration that is all-0 on
⋃

e∈C E(BR(e))
(but all-1 on the frozen edges). Observe, trivially, that X0

t ≤ Z0
t for all t ≥ 0. Also,

observe that the updates of Z0
t are stochastically dominated by Glauber updates on the

union of 2|C| many d-ary trees (Te,1, Te,2)e∈C of depth R, rooted at the endpoints of the
edges of C, and each having (1,�) boundary conditions. By the monotonicity of the
FK-dynamics, for all t ≥ 0, we have that

P

(
Z0
t

(⋃
e∈C

{
E(BR(e)) \ {e}}) ∈ ·

)
�
⊗
e∈C

⊗
i∈{1,2}

π
(1,�)

Te,i . (7.1)

For each time ti ∈ TT , when an edge eti ∈ C is updated, Y 0
ti (eti ) is drawn from

Ber( p̂). At the same time, X0
ti (eti ) is drawn from Ber( p̂) if the endpoints of eti are
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not connected in X0
ti , which in turn must occur if none of (Te,1, Te,2)e∈C have an open

root-to-leaf path in Z0
t , as X

0
t ≤ Z0

t .
By the stochastic domination of (7.1) on Z0

t , and Lemma 7, the probability that
the endpoints of eti are connected in Z0

ti is at most 2C( p̂d)R ; for ε sufficiently small
(depending on p, q, d), the above is O(n−3ε). On the event that {s(T ) ≤ n2ε}, we can
union bound the above probability over the s(T ) times in TT , to find that P(X0

t �=
Y 0
t , s(T ) ≤ n2ε) is at most O(n−ε) = o(1) as desired.
For part (2), consider the 2|C| many d-ary trees (Te,1, Te,2)e∈C emanating from the

endpoints of the edges of C. Notice that if none of (Te,1, Te,2)e∈C have an open root-
to-leaf path, then the values ω(C) are conditionally distributed as a product of Ber( p̂)
random variables, i.e., ω(C) would conditionally be distributed as ν(A).

As such, the total-variation distance ‖πG(ω(C) ∈ ·) − ν‖tv is bounded by the πG-
probability that one of (Te,1, Te,2)e∈C has an open root-to-leaf path. By the stochastic
domination

πG(ω(
⋃
e∈C

Te,1 ∪ Te,2) ∈ ·) �
⊗
e∈C

⊗
i∈{1,2}

π
(1,�)

Te,i .

By a union bound, the πG-probability that one of (Te,1, Te,2)e∈C has an open root-to-leaf
path is at most

∑
e∈C

∑
i∈{1,2}

π
(1,�)

Te,i (e ↔ ∂Te,i ),

which by Lemma 7 is at most 2nε · C( p̂d)R . For ε sufficiently small (depending on
p, q, d) this is o(1). ��
Proof of Theorem 1: lower bound. Take any n-vertex graph G with n1/5 many vertices
whose balls of radius 1

5 logd n are disjoint trees. Note that by Claim 7, such graphs have
Prrg-probability 1 − o(1). Take ε sufficiently small per Lemma 12. Consider the event
A+ ⊂ {0, 1}C that at least p̂nε −n2ε/3 of the edges in C are open. Let (Y s) be the standard
product chain over |C| = nε many i.i.d. Ber( p̂) random variables, coupled to Yt (C) via
Y s(t) = Yt (C) for all t , where s(t) counts the number of updates in C by time t . By item
(1) of Lemma 12, for every T = O(n log n),

P(X0
T (C) ∈ A+) ≤ P(s(T ) > cnε log nε) + P(Y 0

T ∈ A+, s(T ) ≤ cnε log nε) + o(1)

≤ P(s(T ) > cnε log n) + sup
s≤cnε log n

P(Y
0
s ∈ A+) + o(1).

Taking T := c2n log nε = Θ(n log n) for c > 0 sufficiently small, the probability that
s(T ) is more than cnε log nε is o(1) by the Chernoff bound (4.6). Turning to the middle
term above, by the standard coupon collector bound, for every c > 0 sufficiently small,

sup
s≤cnε log nε

P(Y
0
s ∈ A+) ≤ o(1).

Combining the above, we obtain

P(X0
T (C) ∈ A+) = o(1).
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At the same time, by a Chernoff bound,

ν(A+) = P(Bin(nε, p̂) ≥ p̂nε − n2ε/3) = 1 − o(1),

so that by item (2) of Lemma 12, we have πG(A+) = 1− o(1). This implies the mixing
time is at least T = Ω(n log n).
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