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Abstract: We solve the Jang equation with respect to asymptotically hyperbolic “hy-
perboloidal” initial data. The results are applied to give a non-spinor proof of the positive
mass theorem in the asymptotically hyperbolic setting. This work focuses on the case
when the spatial dimension is equal to three.

1. Introduction

The classical positive mass theorem has its roots in general relativity and asserts that for
a nontrivial isolated physical system, the energy of the gravitational field is nonnegative.
Considered from the point of view of differential geometry, the theorem is a statement
about initial data for the Einstein equations. Such initial data is a triple (M, g, K ), where
(M, g) is a Riemannian manifold and K is a symmetric 2-tensor. In the context of the
positive mass theorem it is standard to assume that (M, g, K ) satisfies the so-called
dominant energy condition, a condition on the stress energy tensor of the matter or
electromagnetic fields which is satisfied by almost all “reasonable” fields.

Roughly speaking, a manifold (M, g) is asymptotically Euclidean if outside some
compact set it consists of a finite number of components Mk such that each Mk is
diffeomorphic to a complement of a compact set in Euclidean space. Moreover, it is
required that under these diffeomorphisms, the geometry at infinity of each end Mk tends
to that of the Euclidean space. In this setup, with each Mk one can associate the so-called
Arnowitt-Deser-Misner (ADM) mass which is the limit of surface integrals taken over
large 2-spheres in Mk

1. An initial data set (M, g, K ) is called asymptotically Euclidean
if (M, g) is an asymptotically Euclidean manifold and K falls off to zero sufficiently
fast near infinity. The positive mass theorem for asymptotically Euclidean initial data
sets states that the ADM mass for each Mk is nonnegative provided that the dominant

1 Note that the quantity that we, following the terminology of [SY81b], call ADM mass in this work is
more commonly referred to as ADM energy.
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energy condition is satisfied, and if the mass is zero then M arises as a hypersurface in
Minkowski spacetime, with the induced metric g and second fundamental form K .

A complete proof of this theorem was first obtained by Schoen and Yau in [SY79]
for the special case when K ≡ 0. This result is also known as the Riemannian positive
mass theorem: if Scalg ≥ 0 (the dominant energy condition when K ≡ 0) holds then the
ADM mass of (M, g) is positive unless (M, g) is isometric to Euclidean space. Shortly
after this important case was resolved, Schoen and Yau were able to address the general
case in [SY81b] using a certain reduction argument. The key idea is to consider a smooth
function f on M whose graph � in M × R equipped with the standard product metric
has mean curvature equal to the trace of K (trivially extended to be a tensor defined over
M×R) on�. Schoen and Yau observed that, as long as the dominant energy condition is
satisfied,� can be equipped with an asymptotically Euclidean metric such that its scalar
curvature vanishes and its ADM mass does not exceed the ADM mass of (M, g, K ).
All in all, it follows from the Riemannian positive mass theorem that the ADM mass of
(M, g, K ) is nonnegative, and in the case when the mass is zero the function f provides
the graphical embedding into the Minkowski spacetime.

The prescribed mean curvature equation that plays a central role in Schoen and Yau’s
argument is known as the Jang equation. It first appeared in the eponymous paper of Jang
[Jan78] where it was motivated by a question related to the characterization of the case
when themass is zero:Which conditions ensure that an initial data set (M, g, K ) arises as
a hypersurface in Minkowski spacetime such that the induced metric is g and the second
fundamental form is K ? A substantial part of [SY81b] is devoted to the construction of
a solution and careful analysis of its geometric and analytic properties. In fact, it turns
out that the hypersurface � ⊂ M × R as described above is not necessarily a graph
as it might have asymptotically cylindrical components. Nevertheless, its structure and
asymptotics are well understood so that the reduction argument described above can
be applied. Importantly, the reduction argument of [SY81b] was shown to work in
dimensions 3 < n ≤ 7, see Eichmair [Eic13]. Furthermore, in the light of Schoen and
Yau’s recent work [SY17] it is natural to anticipate the extension of these results to
dimensions n > 7. For other important developments concerning spacetime positive
mass theorem in higher dimensions see [EHLS16,HL20,Loh16].

The current work has been largely motivated by another paper of Schoen and Yau
[SY82], which contains a sketch of the proof that the Bondi mass, representing the total
mass of an isolated physical system measured after the loss due to the gravitational
radiation, is positive. The idea of the argument is to pick a suitable asymptotically null
hypersurface in the radiating Bondi spacetime and use the Jang equation for deforming it
to an asymptotically Euclideanmanifold with “almost nonnegative” scalar curvature and
the ADMmass equal to the positive multiple of the Bondi mass. Completing all steps in
this argument would require one to analyze the Jang equation in the asymptotically null
setting, and the preliminary analysis carried out in [SY82] (see also [HYZ06]) indicates
that this can be somewhat problematic in the radiating regime. Therefore in the current
paper we turn to the non-radiating—but still rather general—setting of asymptotically
hyperbolic initial data sets.

Roughly speaking, a manifold (M, g) is asymptotically hyperbolic if its geometry at
infinity approaches that of the hyperbolic space. The definition of mass for such man-
ifolds is due to Wang [Wan01], and Chrusciel and Herzlich [CH03]; see also [Her05]
where the relation between these two approaches is discussed. The respective (Rieman-
nian) positive mass theorem stating that an n-dimensional asymptotically hyperbolic
manifold (M, g) with Scalg ≥ −n(n − 1) has positive mass unless it is isometric to hy-
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perbolic spacewas proven under spinor assumption in [Wan01] and [CH03]. In [ACG08]
the spinor assumption was replaced by the restriction on dimension and the geometry
at infinity. These assumptions have recently been removed in [CGNP18,CD19], and
[HJM20].

An asymptotically hyperbolic manifold (M, g) with Scalg ≥ −n(n − 1) can be
viewed as either a spacelike totally geodesic hypersurface in an asymptotically anti-de
Sitter spacetime (in which case K = 0) or as an umbilic “hyperboloidal” hypersurface in
an asymptoticallyMinkowski spacetime (in which case K = g). Consequently, an initial
data set (M, g, K ) is called asymptotically hyperbolic if (M, g) is an asymptotically
hyperbolic manifold and either K → 0 or K → g sufficiently fast near infinity. There
is a vast literature devoted to spinor proofs of positive mass theorem in both cases, see
e.g. [CJL04,CM06,CMT06,Mae06,WX15,XZ08,Zha99,Zha04]. The initial data sets
we are considering in this paper are “hyperboloidal”, that is we assume K → g at
infinity.

In this work we apply Schoen and Yau’s reduction argument using the Jang equation
to deform an asymptotically hyperbolic initial data set satisfying the dominant energy
condition to an asymptotically Euclidean manifold with “almost nonnegative” scalar
curvature which in particular yields a proof of the positive mass conjecture in the “hy-
perboloidal” setting. In the current paper we focus on the case when n = 3. In this case,
similarly to [SY81b], the Jang equation can be solved without resorting to techniques
from geometric measure theory that are required for dealing with higher dimensions, see
[Eic13]. Furthermore, we could rely on the findings of [SY82] and [HYZ06] to get some
intuition about the asymptotics of solutions. Our main result is the following theorem.

Theorem 1.1. Let (M, g, K ) be a 3-dimensional asymptotically hyperbolic initial data
set of type (l, β, τ, τ0) for l ≥ 6, 0 < β < 1, 3

2 < τ < 3 and τ0 > 0. Assume that

the dominant energy condition μ ≥ |J |g holds. Then the mass vector (E, �P) is causal
future directed, that is E ≥ | �P|.

Suppose in addition that (M, g, K ) has Wang’s asymptotics. If E = 0 then (M, g) can
be embedded isometrically into Minkowski space as a spacelike graphical hypersurface
with second fundamental form K .

When working towards the proof of this result we encountered a few difficulties that
are not present in the asymptotically Euclidean setting of [SY81b] and [Eic13]. One
problem is that barriers for the Jang equation are required to have more complicated
asymptotics which makes it difficult to find them by inspection. See Sect. 3, where
our construction of barriers is described, for more details. Another difficulty is that
the rescaling technique—which is a commonly used method for proving estimates for
solutions of geometric PDEs in the asymptotically Euclidean setting—does not work
on asymptotically hyperbolic manifolds. Consequently, we had to devise a new method
for proving that the Jang graph is an asymptotically Euclidean manifold, see Sect. 6 for
details. An additional issue that requires some further adjustments is the fact that the
asymptotics of the asymptotically Euclidean metric induced on the Jang graph are worse
than in the setting of [SY81b] and [Eic13], see Sect. 7.

Of course, the result of Theorem 1.1 is essentially covered by some of the aforemen-
tioned spinor proofs (see also [CWY16] where E ≥ | �P| is proven under an additional
assumption on the asymptotic expansion of the initial data). In this connection we would
like to point out that our result is currently being extended to the case 3 < n ≤ 7 in [Lun].
Interestingly, this case turns out to be different from the case n = 3 in a few respects.
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The extension to dimensions n > 7 might also be possible in the view of Schoen and
Yau’s recent work [SY17].

We would also like to stress that the Jang equation has many important applications
besides provingpositivemass theorems.Among themare existence results formarginally
outer trapped surfaces obtained by Andersson, Eichmair and Metzger (see [AEM11] for
an overview) and reduction arguments for the spacetime Penrose conjecture of Bray
and Khuri (see e.g. [BK11]). Other important works where the Jang equation plays a
prominent role include (but do not restrict to) [ADGP18] of Andersson, Dahl, Galloway
and Pollack on topological censorship, [BM19] of Bourni and Moore on the null mean
curvature flow, ofWang and Yau [WY09] on the notion of quasilocal mass, as well as the
recent work of Bryden, Khuri, and Sormani [BKS19] on the stability of the spacetime
positive mass theorem. In the view of these results, we hope that our study of the Jang
equation in the asymptotically hyperbolic setting will be useful in other contexts that
are out of the scope of the current paper.

The paper is organized as follows. Section 2 contains some preliminaries and heuris-
tics behind our arguments. In Sect. 3 we construct barriers for the Jang equation that will
later be used to ensure that the solution has certain asymptotic behavior at infinity. In
Sect. 4 we solve a sequence of regularized boundary value problems for the Jang equa-
tion and in Sect. 5 we construct the geometric limit of the respective solutions when the
domain grows and the regularization parameter tends to zero. This gives us the so-called
geometric solution of the Jang equation. In Sect. 6 we study the asymptotic behavior of
this solution in more depth and in Sect. 7 we analyze its conformal properties. Finally,
we prove Theorem 1.1 in Sects. 8 and 9.

2. Preliminaries

2.1. Initial data sets.

Definition 2.1. An initial data set (M, g, K ) for the Einstein equations of general rela-
tivity consists of a 3-dimensional Riemannianmanifold (M, g) and a symmetric 2-tensor
K . The local mass density μ and the local current density J of (M, g, K ) are defined
via the constraint equations by

2μ := Scalg + (trg K )2 − |K |2g , (1)

J := divg K − d(trg K ) , (2)

where Scalg is the scalar curvature of the metric g, and trg K and |K |g are respectively
the trace and the norm of K with respect to g. We say that (M, g, K ) satisfies the
dominant energy condition if

μ ≥ |J |g. (3)

In this article,we denote the 3-dimensional hyperbolic space byH3 and the hyperbolic
metric by b. We will almost exclusively work with the hyperboloidal model of the
hyperbolic space where (H3, b) is viewed as the unit upper hyperboloid

{
(x0, x1, x2, x3) : x0 =

√
1− (x1)2 − (x2)2 − (x3)2

}
(4)

in Minkowski spacetime R3,1 = (R×R
3,−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2). In this

case we have b = dr2

1+r2
+ r2σ on (0,∞)× S

2, where σ is the standard round metric on

S
2 and r2 = (x1)2 + (x2)2 + (x3)2.
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Our definition of asymptotically hyperbolic initial data sets is the same as in [DS15]:

Definition 2.2. We say that an initial data set (M, g, K ) is asymptotically hyperbolic
of type (l, β, τ, τ0) for l ≥ 2, 0 ≤ β < 1, τ > 3/2, and τ0 > 0 if g ∈ Cl,β(M),
K ∈ Cl−1,β(M), and if there exists a compact set C and a diffeomorphism� : M \C →
(R,∞)× S

2 for some R > 0 such that

• e := �∗g − b ∈ Cl,β
τ (H3),

• η := �∗(K − g) ∈ Cl−1,β
τ (H3),

• �∗μ ∈ Cl−2,β
3+τ0

(H3), and �∗ J ∈ Cl−2,β
3+τ0

(H3).

For the definition of weighted Hölder spaces Cl,β
τ , see [DS15].

In the view of the density result proven in [DS15] (see Theorem 2.4 below), for the
purposes of this article it will mostly suffice to work with initial data having simpler
asymptotics, as described in the following definition.

Definition 2.3. We say that an asymptotically hyperbolic initial data set (M, g, K ) of
type (l, β, τ, τ0) for l ≥ 2, 0 ≤ β < 1, τ > 3/2, and τ0 > 0, has Wang’s asymptotics2

if τ = 3 and the chart at infinity � is such that

�∗g = dr2

1 + r2
+ r2

(
σ +m r−3 + Ol,β(r−4)

)

�∗(K − b)|TS2×TS2
= p r−1 + Ol−1,β(r−2)

where σ is the standard round metric on S
2, and m ∈ Cl,β(S2) and p ∈ Cl−1,β(S2) are

symmetric 2-tensors on S2. The expression Ol,β(r−τ ) stands for a tensor in the weighted
Hölder space Cl,β

τ (H3).

We will now recall the notion of mass in the asymptotically hyperbolic setting. Let
N := {V ∈ C∞(H3) | HessbV = V b}. This is a vector space with a basis of the func-
tions

V(0) =
√
1 + r2, V(i) = xir, i = 1, 2, 3,

where x1, x2, x3 are the coordinate functions onR3 restricted to S2. In the hyperboloidal
model of the hyperbolic space, the functions V(a), a = 0, . . . , 3, have natural interpre-
tation as the restrictions to the upper unit hyperboloid (4) of the coordinate functions
xa of R3,1. In fact, there is a natural correspondence between functions in N and the
isometries of Minkowski space preserving the geometry of the hyperboloid, see e.g.
[DS15, Section 2.2] for details.

Given an asymptotically hyperbolic initial data set as in Definition 2.2 the mass
functional H� : N → R is well-defined by the formula

H�(V ) = lim
R→∞

∫

{r=R}

(
V (divb e − d trb e) + (trb e)dV − (e + 2η)(∇bV, ·)

)
(νr ) dμb,

2 The study of mass of asymptotically hyperbolic manifolds was initiated by Xiaodong Wang in [Wan01].
The asymptotic behavior of the metric considered here is essentially the same as in [Wan01], hence the name.
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where νr = √
1 + r2∂r . If� is a chart at infinity as in Definition 2.2 and I is an isometry

of the hyperbolic metric b then I ◦� is again such a chart and it is not complicated to
verify that

HI◦�(V ) = H�(V ◦ I−1).

The components of the mass vector (E, �P), where �P = (P1, P2, P3), are given by

E = 1
16π H�(V(0)), Pi = 1

16π H�(V(i)), i = 1, 2, 3.

In what follows we will refer to E as the energy of the initial data set (M, g, K ). A
computation shows that in the case when the initial data has Wang’s asymptotics the
energy is given by

E = 1
16π

∫

S2
(trσ m + 2 trσ p) dμσ . (5)

The Minkowskian length of the mass vector is a coordinate invariant which is usually
referred to as the mass. We note that this definition of mass is essentially the one intro-
duced in [CJL04] and refer the reader to [Mic11] for the proof of well-definiteness and
coordinate invariance.

The following density result was proven in [DS15].

Theorem 2.4. Let (M, g, K ) be an asymptotically hyperbolic initial data set of type
(l, β, τ, τ0) for l ≥ 3, 0 < β < 1, 3

2 < τ < 3 and τ0 > 0. Assume that the dominant
energy condition μ ≥ |J |g holds. Then for every ε > 0 there exists an asymptotically
hyperbolic initial data set (M, ḡ, K̄ ) of type (l − 1, β, 3, τ ′0) for some τ ′0 > 0 with
Wang’s asymptotics (possibly with respect to a different chart at infinity) such that the
strict dominant energy condition

μ̄ > | J̄ |ḡ
holds, and the energies of the two initial data sets satisfy

|E − Ē | < ε.

For future reference we also recall the following well-known definition.

Definition 2.5. Let (M, g) be a 3-dimensional Riemannianmanifold.We say that (M, g)
is asymptotically Euclidean if there is a compact C ⊂ M and a diffeomorphism� : M \
C → R

3 \ BR such that in the coordinates (x1, x2, x3) induced by this diffeomorphism
we have

|gi j − δi j | + |x ||∂gi j | + |x |2|∂∂gi j | = O2(|x |−1) as |x | → ∞.

If the scalar curvature Scalg is integrable then the ADM mass of the metric g is defined
by

M(g) = 1

16π
lim

r→∞

∫

|x |=r

3∑
i, j=1

(∂i gi j − ∂ j gii )
x j

|x | dμδ.

If, in addition, g has the following asymptotic expansion near infinity

gi j =
(
1 +

m

2|x |
)4

δi j + O2(|x |−2) for m ∈ R as |x | → ∞

then (M, g) is called asymptotically Schwarzschildean. In this caseM(g) = m.
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Note that the asymptotics considered in this definition are not the most general ones,
however they are sufficient for the purpose of this paper. For a more detailed treatment
of asymptotically Euclidean manifolds and their mass see e.g. [Bar86] or [Mic11].

2.2. The Jang equation. Let (M, g, K ) be an initial data set. Let (x1, x2, x3) be local
coordinates on M , then we can write g = gi j dxi ⊗ dx j and K = Ki j dxi ⊗ dx j . We
use the Einstein summation convention and define gi j by gik gk j = δi

j . In the chosen
coordinates the Jang equation reads

(
gi j − f i f j

1 + |d f |2g

)⎛
⎝ Hessg

i j f√
1 + |d f |2g

− Ki j

⎞
⎠ = 0, (6)

where f i = gi j f j (with f j = ∂ j f ) are the components of the gradient and |d f |2g =
gi j fi f j is the square of its norm. Recall that the components of the second covariant
derivative (or Hessian) of f are computed as Hessg

i j f = ∂i∂ j f − k
i j∂k f , where k

i j

are the Christoffel symbols of the metric g in the coordinates (x1, x2, x3).
The geometric interpretation of the Jang equation is as follows. Consider a function

f : M → R. Its graph � := {(x, f (x)) : x ∈ M} can be seen as a submanifold in
(M × R, g + dt2), where t is the coordinate along the R-factor, with local coordinates
(x1, x2, x3). It is easy to check that the downward pointing unit normal of � is ν =

f i ∂i−∂t√
1+|d f |2g

and that the vectors ei = ∂xi + fi∂t are tangent to�. Consequently, we may use

the base coordinates (x1, x2, x3) to compute that the components of the induced metric

on� are ḡi j = gi j +∂i f ∂ j f with the inverse ḡi j = gi j − f i f j

1+|d f |2g defined by ḡik ḡk j = δi
j .

Similarly, the components of the second fundamental form are Ai j = Hessg
i j f√

1+|d f |2g
. It follows

that

Hg( f ) := H� =
(

gi j − f i f j

1 + |d f |2g

)
Hessg

i j f√
1 + |d f |2g

is the mean curvature of�. Now let us extend K to be a symmetric tensor on M ×R by
setting K (·, ∂t ) = 0. Then the trace of K with respect to the induced metric on � is

trg(K )( f ) := tr� K =
(

gi j − f i f j

1 + |d f |2g

)
Ki j .

We conclude that the Jang equation (6) is a prescribed mean curvature equation

H� = tr� K

which we will also write as

Hg( f )− trg(K )( f ) = 0

whenever we need to make reference to the graphing function.
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2.3. Preliminary considerations. In this section we make an educated guess about the
asymptotics of solutions of the Jang equation in the asymptotically hyperbolic setting.
The existence of solutions having the desired asymptotics will be proven rigorously in
Sects. 3–6.

In [SY82] it was observed that if the initial data is taken to be the unit hyperboloid
in the Minkowski spacetime, that is, if (M, g, K ) = (H3, b, b) where b = dr2

1+r2
+ r2σ is

the hyperbolic metric, then the Jang equation (6) is satisfied by the function f (r, θ, ϕ) =√
1 + r2. Based on this observation, in the case of initial data arising as an asymptotically

null slice in Bondi radiating spacetime, it was suggested in [SY82] and [HYZ06] to look
for solutions in the form

f (r, θ, ϕ) =
√
1 + r2 + α(θ, ϕ) ln r + O3(r

−1+ε) (7)

where α ∈ C3(S2) and ε > 0. At the same time, a computation carried out in [HYZ06,
Proposition 4.1] shows that this asymptotic behavior cannot be expected unless the initial
data satisfies some additional conditions, see Remark 2.7 below.

In the case when (M, g, K ) is initial data with Wang’s asymptotics (see Defini-
tion 2.3), the above considerations have served as motivation to look for solutions of (6)
with asymptotics

f (r, θ, ϕ) =
√
1 + r2 + α(θ, ϕ) ln r + ψ(θ, ϕ) + O3(r

−1+ε) (8)

for α,ψ ∈ C3(S2) and ε > 0. A lengthy but rather straightforward computation shows
that in this case we have

J ( f ) = α +�S
2
ψ − ( 12 tr

σ m + trσ p)

r3
+

�S
2
α ln r

r3
+ O1(r

−4+ε) (9)

where J ( f ) denotes the left hand side of the Jang equation (6). As it turns out, it is
possible to make the leading order terms in this expansion vanish without imposing any
restrictions on the initial data (M, g, K ).

Proposition 2.6. If (M, g, K ) is asymptotically hyperbolic in the sense of Definition 2.3,
then there exists a constant

α = 1

8π

∫

S2
(trσ m + 2 trσ p) dμσ = 2E (10)

and ψ : S2 → R such that

�S
2
ψ = 1

2 tr
σ m + trσ p− α, (11)

Proof. This follows from standard existence theory for linear elliptic equations on closed
manifolds (see e.g. [Bes08, Section I in Appendix]). If we define α by (10), then

∫

S2
( 12 tr

σ m + trσ p− α) dμσ = 0,

which implies the existence of a solution ψ to (11). Note that ψ is uniquely defined
up to an additive constant which is reminiscent of the fact that the Jang equation (6) is
invariant with respect to vertical translations f → f + C , where C is a constant. ��
Remark 2.7. In [HYZ06, Section 4] it was suggested to seek a solution in the form (8)
with ψ ≡ 0. From the above discussion it is clear that this approach might only work
for initial data which satisfies the additional condition 1

2 tr
σ m + trσ p ≡ const.
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3. Construction of Barriers

In this sectionwe construct barriers for the Jang equation (6) in the case when the asymp-
totically hyperbolic initial data set (M, g, K ) has Wang’s asymptotics as in Definition
2.3.

Definition 3.1. We say that functions f+ and f−, which are locally C2 on the subset
{r ≥ r0} ⊂ M , are respectively an upper and a lower barrier for the Jang equation
J ( f ) = 0 if

(∂r f+)|r=r0 = −∞, (∂r f−)|r=r0 = +∞ (12)

and

J ( f+) < 0, J ( f−) > 0 for r > r0. (13)

Such functions f+ and f− with prescribed asymptotic behavior at infinity will be
needed for our construction of a geometric solution of the Jang equation, a hypersurface
� ⊂ M × R satisfying H� = tr� K . In fact, in Sects. 4 and 5 we will see that near
infinity� is given as the graph of a function f satisfying the Jang equation (6) such that
f− ≤ f ≤ f+ on {r ≥ r0}. Our construction of barriers will ensure that f behaves at
infinity as

f (r, θ, ϕ) =
√
1 + r2 + α ln r + ψ(θ, ϕ) + O(r−1+ε), (14)

where α and ψ are as in (10) and (11).
While in the asymptotically Euclidean setting of [SY81b] the barriers with the re-

quired fall off O(r−ε) for ε > 0 are constructed explicitly, it appears difficult to find
the functions f+ and f− satisfying (12), (13) and (14) by inspection. Instead, in our
construction of barriers we rely on the fact that in the spherically symmetric case there
is a substitution which allows to rewrite the Jang equation as a first order ordinary differ-
ential equation, see e.g. [MÓM04, Section 2]. The rough idea is to use this substitution
and rewrite the Jang equation as an ordinary differential equation modulo correction
terms and then construct sub- and supersolutions of this ordinary differential equation
with prescribed boundary values on {r ≥ r0}.

More specifically, we will look for barriers in the form

f (r, θ, ϕ) = φ(r) + ψ(θ, ϕ), (15)

where ψ is a solution of (11). For f as in (15) we define (cf. [MÓM04, Equation (4)])

k(r) := φ′(r)
√
1 + r2√

1 + (1 + r2)(φ′(r))2
. (16)

Note that −1 ≤ k ≤ 1, and that k(r0) = ±1 if and only if φ′(r0) = ±∞, cf. (12).
For f as in (15), we would like to rewrite the left hand side of the Jang equation

J ( f ) = 0 in terms of k. For this purpose it is convenient to introduce

β := 1 + (1 + r2)(φ′)2

1 + |d f |2g
.
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Note that

β = 1

1 + gμνψμψν

1+(1+r2)(φ′)2
= 1 + O(r−2)

in the sense that |1 − β| ≤ Cr−2, where the constant C does not depend on φ. Set
c := K − g, then crr = O(r−5), crμ = O(r−3), cμν = O(r−1), and

gμνcμν = trσ p− trσ m
r3

+ O(r−4). (17)

Lemma 3.2. There exist constants Ci , i = 1, 2, . . . , 8, depending only on (M, g, K )

such that

J ( f )√
1 + r2(1 + |dψ |2g)β

3
2

≤k′ + 2

r

(
k − r√

1 + r2

)
− 1− k2√

1 + r2
− α

√
1− k2

r2
√
1 + r2

+
C1

r2

∣∣∣∣∣∣

√
1− k2

1 + r2
− 3k

r2
+

2

r2

∣∣∣∣∣∣
+

C2

r2

∣∣∣∣∣∣

√
1− k2

1 + r2
− 1

r2

∣∣∣∣∣∣

+
C3

r3

∣∣∣∣k − r√
1 + r2

∣∣∣∣ + C4r−3|k|(1− k2)

+ C5r−3(1− k2) + C6r−5,

and

J ( f )√
1 + r2(1 + |dψ |2g)β

3
2

≥k′ + 2

r

(
k − r√

1 + r2

)
− 1− k2√

1 + r2
− α

√
1− k2

r2
√
1 + r2

− C1

r2

∣∣∣∣∣∣

√
1− k2

1 + r2
− 3k

r2
+

2

r2

∣∣∣∣∣∣
− C2

r2

∣∣∣∣∣∣

√
1− k2

1 + r2
− 1

r2

∣∣∣∣∣∣

− C3

r3

∣∣∣∣k − r√
1 + r2

∣∣∣∣ − C4r−3|k|(1− k2)− C5r−3(1− k2)

− C6r−5 − C7(3− k2)

r

((
1 + C8r−2(1− k2)

) 3
2 − 1

)

holds for any f as in (15).

Proof. As in Sect. 2.2 we write J ( f ) = Hg( f ) − trg(K )( f ) and compute the two
terms in the right hand side separately. In the computations below, for all tensors the
indices are lowered and raised with respect to the metric g, unless stated otherwise. The
Christoffel symbols of the metric g can be found in “Appendix A”. We have

trg(K )( f )

=
(

grr − f r f r

1 + |d f |2g

)
(grr + crr )− 2 f r f νcrν

1 + |d f |2g
+

(
gμν − f μ f ν

1 + |d f |2g

) (
gμν + cμν

)
.
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It is easy to see that the radial term is
(

grr − f r f r

1 + |d f |2g

)
(grr + crr ) =

(
1 + r2 − (1 + r2)2(φ′)2

1 + |d f |2g

)(
1

1 + r2
+ crr

)

=
(
1− (1 + r2)(φ′)2

1 + |d f |2g

) (
1 + (1 + r2)crr

)

= (1− βk2)(1 + (1 + r2)crr )

= (1− k2)(1 + r2crr ) + k2(1− β) + O(r−5).

We use the fact that 1 − k2 = 1
1+(1+r2)(φ′)2 and (17) to find that the sum of the mixed

terms is

−2 f r f νcrν

1 + |d f |2g
= −2(1 + r2)φ′ψνcrνβ

1 + (1 + r2)(φ′)2
= −2k

√
1− k2

√
1 + r2 ψνcrνβ = O(r−4),

and that the sum of the tangential terms is
(

gμν − f μ f ν

1 + |d f |2g

)
(
gμν + cμν

) =
(

gμν − ψμψν

1 + |d f |2g

)
(
gμν + cμν

)

= 2 + gμνcμν −
|dψ |2g

1 + |d f |2g
− cμνψ

μψν

1 + |d f |2g
= 2 +

trσ p− trσ m
r3

− (1− β) + O(r−4).

Consequently,

trg(K )( f ) = (1− k2)(1 + r2crr )− (1− k2)(1− β) + 2 +
trσ p− trσ m

r3
+ O(r−4).

Similarly, we compute Hg( f ) by splitting it into the sum of the radial, mixed, and
tangential terms. To compute the radial term we note that

k′ =
r√
1+r2

φ′ + φ′′√1 + r2

(
1 + (1 + r2)(φ′)2

) 3
2

,

which yields
(

grr − f r f r

1 + |d f |2g

)
Hessg

rr f√
1 + |d f |2g

=
(
1 + r2 − (1 + r2)2(φ′)2

1 + |d f |2g

)
φ′′ + r

1+r2
φ′

√
1 + |d f |2g

=
(
1 + r2 + (1 + r2)|dψ |2g

) (
φ′′ + r

1+r2
φ′

)

(1 + |d f |2g)
3
2

=
√
1 + r2(1 + |dψ |2g)

(
φ′′√1 + r2 + r√

1+r2
φ′

)
β

3
2

(1 + (1 + r2)(φ′)2) 3
2

=
√
1 + r2(1 + |dψ |2g)β

3
2 k′.
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As for the mixed terms, a straightforward computation shows that

− 2 f r f μ

1 + |d f |2g
Hessg

rμ f√
1 + |d f |2g

= 2(1 + r2)φ′ψμ(r
μrφ

′ + ν
μrψν)

(1 + |d f |2g)
3
2

= (1 + r2)φ′∂r gμνψ
μψν

(1 + |d f |2g)
3
2

= (1 + r2)φ′∂r gμνψ
μψνβ

3
2

(1 + (1 + r2)(φ′)2) 3
2

=
√
1 + r2 k(1− k2)∂r gμνψ

μψνβ
3
2 .

Further, it is easy to check that gμν∂r gμν = 4r−1 − 3r−4 trσ m + O(r−5) and that

�gψ = r−2�S
2
ψ + O(r−5). Hence the sum of the tangential terms is

(
gμν − ψμψν

1 + |d f |2g

)
∂2μνψ − λ

μνψλ − r
μνφ

′
√
1 + |d f |2g

=
(

gμν − ψμψν

1 + |d f |2g

)
Hessg

μν ψ + 1
2 (1 + r2)∂r gμνφ

′
√
1 + |d f |2g

= �gψ√
1 + |d f |2g

− ψμψν Hessg
μν ψ

(1 + |d f |2g)
3
2

+
gμν∂r gμν(1 + r2)φ′

2
√
1 + |d f |2g

− ∂r gμνψ
μψν(1 + r2)φ′

2(1 + |d f |2g)
3
2

= �gψ β
1
2√

1 + (1 + r2)(φ′)2
− ψμψν Hessg

μν ψ β
3
2

(1 + (1 + r2)(φ′)2) 3
2

+
(1 + r2)φ′gμν∂r gμνβ

1
2

2
√
1 + (1 + r2)(φ′)2

− (1 + r2)φ′∂r gμνψ
μψνβ

3
2

2(1 + (1 + r2)(ϕ′)2) 3
2

= �gψ
√
1− k2 β

1
2 − ψμψν Hessg

μν ψ(1− k2)
3
2 β

3
2 +

1

2

√
1 + r2 kgμν∂r gμνβ

1
2

−1

2

√
1 + r2 k(1− k2)∂r gμνψ

μψνβ
3
2

= r−2�S
2
ψ

√
1− k2β

1
2 +

√
1 + r2 kβ

1
2

(
2

r
− 3 trσ m

2r4

)

−1

2

√
1 + r2 k(1− k2)∂r gμνψ

μψνβ
3
2 + O(r−4).

Using the fact that �S
2
ψ = 1

2 tr
σ m + trσ p− α by (11), we can now compute

Hg( f )− trg(K )( f )√
1 + r2(1 + |dψ |2g)β

3
2

= k′ +
k(1− k2)∂r gμνψ

μψν

2(1 + |dψ |2g)
+

√
1− k2

( 1
2 tr

σ m + trσ p− α
)

r2
√
1 + r2(1 + |dψ |2g)β
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+
k

(
2
r − 3 trσ m

2r4

)

(1 + |dψ |2g)β
− (1− k2)(1 + r2crr )√

1 + r2(1 + |dψ |2g)β
3
2

+
(1− k2)(1− β)√
1 + r2(1 + |dψ |2g)β

3
2

−2 + (trσ p− trσ m)r−3

√
1 + r2(1 + |dψ |2g)β

3
2

+ O(r−5)

= k′ + 1

2
k(1− k2)∂r gμνψ

μψν +

√
1− k2

1 + r2

(
trσ m
2r2

+
trσ p
r2

− α

r2

)

+
2k

r(1 + |dψ |2g)β
− 3k trσ m

2r4
− 1− k2√

1 + r2(1 + |dψ |2g)β
3
2

− (1− k2)r2crr√
1 + r2

+
(1− k2)(1− β)√
1 + r2(1 + |dψ |2g)β

3
2

− 2√
1 + r2(1 + |dψ |2g)β

3
2

+
trσ m− trσ p

r4
+ O(r−5).

We use the simple identities

1

r(1 + |dψ |2g)β
= 1

r
− |dψ |2g

r(1 + |dψ |2g)
+

1− β

r(1 + |dψ |2g)β
,

1√
1 + r2(1 + |dψ |2g)β

3
2

= 1√
1 + r2

− |dψ |2g√
1 + r2(1 + |dψ |2g)

+
1− β

3
2√

1 + r2(1 + |dψ |2g)β
3
2

to rewrite this as

Hg( f )− trg(K )( f )√
1 + r2(1 + |dψ |2g)β

3
2

= k′ + 2

r

(
k − r√

1 + r2

)
− 1− k2√

1 + r2
− α

√
1− k2

r2
√
1 + r2

+
trσ m
2r2

⎛
⎝

√
1− k2

1 + r2
− 3k

r2
+

2

r2

⎞
⎠ +

trσ p
r2

⎛
⎝

√
1− k2

1 + r2
− 1

r2

⎞
⎠

− 2

r

(
k − r√

1 + r2

) |dψ |2g
1 + |dψ |2g

+
2k(1− β)

r(1 + |dψ |2g)β

−
2

(
1− β

3
2

)

√
1 + r2(1 + |dψ |2g)β

3
2

+
(1− k2)|dψ |2g√
1 + r2(1 + |dψ |2g)

−
(1− k2)

(
1− β

3
2

)

√
1 + r2(1 + |dψ |2g)β

3
2

+
1

2
k(1− k2)∂r gμνψ

μψν

− (1− k2)r2crr√
1 + r2

+
(1− β)(1− k2)√
1 + r2(1 + |dψ |2g)β

3
2

+ O(r−5).

Finally, we note that

1− β

β
= |dψ |2g

1 + (1 + r2)(φ′)2
= (1− k2)|dψ |2g,
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and

1− β
3
2

β
3
2

=
(
1 +

|dψ |2g
1 + (1 + r2)(φ′)2

) 3
2

− 1 =
(
1 + |dψ |2g(1− k2)

) 3
2 − 1,

hence

Hg( f )− trg(K )( f )√
1 + r2(1 + |dψ |2g)β

3
2

= k′ + 2

r

(
k − r√

1 + r2

)
− 1− k2√

1 + r2
− α

√
1− k2

r2
√
1 + r2

+
trσ m
2r2

⎛
⎝

√
1− k2

1 + r2
− 3k

r2
+

2

r2

⎞
⎠ +

trσ p
r2

⎛
⎝

√
1− k2

1 + r2
− 1

r2

⎞
⎠

− 2

r

(
k − r√

1 + r2

) |dψ |2g
1 + |dψ |2g

+
2k(1− k2)|dψ |2g

r(1 + |dψ |2g)

− 3− k2√
1 + r2

((
1 + |dψ |2g(1− k2)

) 3
2 − 1

)
1

1 + |dψ |2g
+

(1− k2)|dψ |2g√
1 + r2(1 + |dψ |2g)

+
1

2
k(1− k2)∂r gμνψ

μψν

− (1− k2)r2crr√
1 + r2

+
(1− β)(1− k2)√
1 + r2(1 + |dψ |2g)β

3
2

+ O(r−5).

(18)

Estimating the right hand side from above and from below, the result follows. ��
Lemmas 3.4 and 3.5 below concern two initial value problems whose solutions will

be used to define the barriers via (15) and (16). To prove these two lemmas we will need
the following simple comparison result for ordinary differential equations.

Lemma 3.3. Let F : [r0,+∞) × [−1, 1] → R be continuous in both variables. If
functions l = l(r) and k = k(r) satisfy l ′ + F(r, l) < k′ + F(r, k) and l(r0) ≤ k(r0) then
l(r) ≤ k(r) for r ≥ r0.

Proof. Assume that l(r) > k(r) for some r > r0. Set r∗ := inf{r > r0 : l(r) > k(r)},
then r∗ ≥ r0 and l(r∗) = k(r∗). But then (l − k)′(r∗) < 0 and (l − k)(r∗) = 0 so
(l − k)(r∗ + ε) < 0 for any sufficiently small ε > 0. Since l and k are continuous we
conclude that l(r) ≤ k(r) for r ≥ r0. ��
Lemma 3.4. Let Ci , i = 1, 2, . . . , 8, be as in Lemma 3.2. For any sufficiently large
r0 > 0 there exists k+ : [r0,+∞) → R such that k+(r0) = −1 and |k+| < 1 for r > r0
satisfying

k′+ +
2

r

(
k+ − r√

1 + r2

)
− 1− k2+√

1 + r2
− α

√
1− k2+

r2
√
1 + r2

+
C1

r2

∣∣∣∣∣∣

√
1− k2+
1 + r2

− 3k+
r2

+
2

r2

∣∣∣∣∣∣
+

C2

r2

∣∣∣∣∣∣

√
1− k2+
1 + r2

− 1

r2

∣∣∣∣∣∣
+

C3

r3

∣∣∣∣k+ −
r√

1 + r2

∣∣∣∣

+ C4r−3|k+|(1− k2+) + C5r−3(1− k2+) + C6r−5 = 0.

(19)
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Similarly, there exists k− : [r0,+∞) → R such that k−(r0) = 1 and |k−| < 1 for r > r0
satisfying

k′− +
2

r

(
k− − r√

1 + r2

)
− 1− k2−√

1 + r2
−

α

√
1− k2−

r2
√
1 + r2

− C1

r2

∣∣∣∣∣∣

√
1− k2−
1 + r2

− 3k−
r2

+
2

r2

∣∣∣∣∣∣
− C2

r2

∣∣∣∣∣∣

√
1− k2−
1 + r2

− 1

r2

∣∣∣∣∣∣

− C3

r3

∣∣∣∣k− − r√
1 + r2

∣∣∣∣ − C4r−3|k−|(1− k2−)− C5r−3(1− k2−)− C6r−5

− C7(3− k2−)

r

((
1 + C8r−2(1− k2−)

) 3
2 − 1

)
= 0.

(20)

Proof. We shall only prove the existence of k+, as the same argument applies in the
case of k−. It is clear that k++(r) ≡ 1 and k−+ (r) ≡ −1 are respectively a super- and
a subsolution of (19) provided that r0 is sufficiently large. Hence by Lemma 3.3, and
the existence theory for ordinary differential equations (see e.g. [Har64, Chapter II]) we
conclude that the solution −1 ≤ k+ ≤ 1 of (19) exists for r ≥ r0.

Note also that our choice of r0 guarantees that at a point r∗ > r0 where k+(r∗) = 1
we have k′+(r∗) < 0, meaning that k+(r∗ − ε) > 1 for any sufficiently small ε > 0,
which contradicts−1 ≤ k+ ≤ 1. That there are no points r∗ > r0 where k+(r∗) = −1 is
proven similarly. ��
Lemma 3.5. For any sufficiently small ε > 0 there exists r0 > 0 such that k+ and k− as
in Lemma 3.4 satisfy

k±(r) = r√
1 + r2

+
α

r3
+ O(r−4+ε). (21)

Proof. First, we will confirm (21) in the case of k+ by gradually improving its asymp-
totics. Then we will briefly comment on the case of k−, which is very similar.

Step 1. We will prove that k+(r) = 1 + O(r−2+ε). For a sufficiently large r0 > 1 set

k−+ (r) = 1− 2r2−ε
0

r2−ε . Then k−+ (r0) = −1. We also have (k−+ )′ = 2(2−ε)r2−ε
0

r3−ε , and

2

r

(
k−+ − r√

1 + r2

)
= 2

r

(
−2r2−ε

0

r2−ε
+

1√
1 + r2(r +

√
1 + r2)

)
≤ −4r2−ε

0

r3−ε
+

1

r3
.

It is also easy to check that

− 1− (k−+ )2√
1 + r2

− α
√
1− (k−+ )2

r2
√
1 + r2

+
C1

r2

∣∣∣∣∣

√
1− (k−+ )2√
1 + r2

− 3k−+
r2

+
2

r2

∣∣∣∣∣

+
C2

r2

∣∣∣∣∣∣

√
1− (k−+ )2

1 + r2
− 1

r2

∣∣∣∣∣∣
+

C3

r3

∣∣∣∣k−+ − r√
1 + r2

∣∣∣∣ + C4r−3|k−+ |
(
1− (k−+ )2

)

+ C5r−3(1− (k−+ )2) + C6r−5 < Cr−3,



918 A. Sakovich

where the constant C > 0 depends only on Ci , i = 1, 2, . . . , 6, and does not depend on

r0. We conclude that k−+ is a subsolution of (19) provided that − 2εr2−ε
0

r3−ε + C+1
r3

< 0 for

r ≥ r0, which is true if r0 ≥
√

C+1
2ε . The claim follows by Lemma 3.3 since k+ ≤ 1.

Step 2. For a chosen ε > 0 we fix r0 as in Step 1, and prove that k+(r) = r√
1+r2

+

O
(

r−3+ ε
2

)
. Write k+ = 1 + k1, then k1 = O(r−2+ε) by Step 1. Then k′+ = k′1,

2

r

(
k+ − r√

1 + r2

)
= 2k1

r
+
2

r

(
1− r√

1 + r2

)
= 2k1

r
+

1

r3
+ O(r−5),

1− k2+√
1 + r2

= −2k1 + k21√
1 + r2

= −2k1
r

+ O(r−5+2ε),

and it is easy to check that the sum of the remaining terms in the left hand side of (19)
is of order O(r−4+ ε

2 ). Consequently, k1 is a solution of the equation

k′1 +
4k1
r

+
1

r3
= p,

where p(r) = O(r−4+ ε
2 ). Then

(
k1r4

)′ = −r + r4 p, and integrating from r0 to r we
obtain

k1(r) = − 1

2r2
+ r−4

(
r20
2

+ k1(r0)r
4
0

)
+ r−4

∫ r

r0
s4 p(s)ds

= − 1

2r2
+ O(r−3+ ε

2 ).

It follows that k+(r) = r√
1+r2

+ O
(

r−3+ ε
2

)
.

Step 3. Finally, we prove that k+(r) = r√
1+r2

+ α
r3

+ O(r−4+ ε
2 ). By Step 2, we can

write k+(r) = r√
1+r2

+ k2, where k2(r) = O(r−3+ ε
2 ). Then k′+ = 1

(1+r2)
3
2
+ k′2 and

2
r

(
k+ − r√

1+r2

)
= 2k2

r . It is also straightforward to check that

1− k2+√
1 + r2

= 1

(1 + r2)
3
2

− 2k2
r

+ O(r−6+ ε
2 ),

and

α
√
1− k2+

r2
√
1 + r2

= α

r4
+ O

(
r−5+ ε

2

)
,

while the remaining terms in the left hand side of (19) are of order O(r−5+ ε
2 ). We

conclude that k2 satisfies

k′2 +
4k2
r

− α

r4
= q,
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where q(r) = O(r−5+ ε
2 ). Equivalently, we have

(
k2r4

)′ = α + qr4. It follows that

k2(r) = αr−3 +
(

k2(r0)r
4
0 − αr0

)
r−4 + r−4

∫ r

r0
s4q(s)ds

= αr−3 + O
(

r−4+ ε
2

)
,

hence k+(r) = r√
1+r2

+ α
r3

+ O(r−4+ ε
2 ).

This argument can also be applied to prove (21) in the case of k−. The only difference
is that the last term on the left hand side of (20), is not present in (19). On Step 1, this
term can be simply estimated from above by zero. On Step 2, the contribution of this
term is of order O(r−5+ε), and on Step 3 it is of order O(r−5). ��
Proposition 3.6. Given ε > 0 there exists r0 > 0 and f+, f− : [r0,∞) → R such that

• f+ (respectively f−) are an upper (respectively lower) barrier for the Jang equation
in the sense of Definition 3.1.
• When r → ∞ we have

f±(r, θ, ϕ) =
√
1 + r2 + α ln r + ψ(θ, ϕ) + O(r−1+ε). (22)

• f− ≤ f+.

Proof. Given ε > 0 let r0, k+, and k− be as in Lemmas 3.4 and 3.5. Recall that r0 > 0
was chosen so that |k′±(r0)| > 0. Hence for some δ > 0 we also have |k′±(r)| > 0
on [r0, r0 + δ], so that 1 ± k±(r) ≥ C(r − r0) for some positive constant C when
r ∈ [r0, r0 + δ]. It follows that (16) or, equivalently,

φ′±(r) = k±(r)√
(1− k2±(r))(1 + r2)

defines (up to an additive constant) the continuous functions φ± on [r0,∞), which are
C2 for r > r0. Since φ′±(r) = 1 + α

r + O(r−2+ε) and since the Jang equation is invariant
with respect to vertical translations we can assume that φ±(r) = r + α ln r + O(r−1+ε).
By Lemma 3.2 and Lemma 3.4 the functions f± = φ± + ψ will satisfy (13). Since
k+(r0) = −1 and k−(r0) = 1 they will also have the property (12).

It only remains to show that f− ≤ f+. For this we use a version of the well-known
Bernstein trick as in the proof of [SY81b, Proposition 3]. Note that the difference f+− f−
depends only on r and is of order O(r−1+ε). Clearly, there exists a constant L ≥ 0 such
that f+ − f− > −L for r ≥ r0. We denote by L0 the infimum of all such constants L .
Then we have

( f+ − f−)(r) ≥ −L0 for all r ∈ [r0,+∞) (23)

and either there exists r∗ ∈ [r0,+∞) such that

( f+ − f−)(r∗) = −L0 (24)

or else

lim
r→∞( f+ − f−)(r) = −L0.
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In the later case we obviously must have L0 = 0 and hence f+ ≥ f− on {r ≥ r0}. We
will complete the proof by showing that the former case is not possible. If we assume
that r∗ = r0, then by (23) and (24) it follows that ( f+− f−)′(r0) ≥ 0, which contradicts
(12). Now suppose that r∗ > r0 and let x∗ ∈ {r > r0} be any point such that r(x∗) = r∗.
In this case x∗ is an interior minimum point for the function f+ − f−. Let (x1, x2, x3)
denote coordinates in the neighborhood of x∗. Using (13) and the fact that the first order
partial derivatives of f+ and f− coincide at x∗ we obtain

(1 + |d f+|2g(x∗))−
1
2

(
gi j (x∗)− ( f+)i (x∗)( f+) j (x∗)

1 + |d f+|2g

)
∂2( f+ − f−)

∂xi∂x j
(x∗) < 0,

which contradicts the fact that gi j (x∗)− ( f+)i (x∗)( f+) j (x∗)
1+|d f+|2g and ∂2( f+− f−)

∂xi ∂x j (x∗) are nonneg-
ative definite. ��

4. A Boundary Value Problem for the Regularized Jang Equation

A distinctive feature of the Jang equation J ( f ) = 0 is the lack of a priori estimates
for supM | f |: in fact, the solutions may blow up for general initial data. In order to
construct solutions, Schoen and Yau introduced in [SY81b] the so called capillarity
regularization, that is the equation J ( f ) = τ f for τ > 0 for which a (τ -dependent) a
priori estimate is available. This section is concerned with the existence of a solution to
a certain boundary value problem for the regularized equation, see Proposition 4.4. In
Sect. 5 we will construct the so-called geometric solution to the Jang equation by letting
the regularization parameter go to zero as the domain grows in a controlled way.

The following result has been established in [AEM11, Theorem 3.1], [Eic09, Lemma
2.2], [AM09, Corollary 3.6], [SY83, Proposition 2], [Yau01, Section 5].

Theorem 4.1. Let � be a bounded domain in the initial data set (M, g, K ) with C2,α

boundary ∂�. Let H∂� denote the mean curvature of ∂� computed as the tangential
divergence of the outward unit normal to ∂�, and let tr∂� K be the trace of the restriction
of K to ∂� with respect to the induced metric on ∂�. Suppose that

H∂� − | tr∂� K | > 0. (25)

If τ ∈ (0, 1) is sufficiently small and φ ∈ C2,α(∂�), then there exists f ∈ C2,α(�) ∩
C3(�) such that

Hg( f )− trg(K )( f ) = τ f in � (26a)

f = φ on ∂�. (26b)

The proof, which we include for the sake of self-consistency, is very similar to that
of [SY81b, Lemma 3] and is based on the continuity method. For s ∈ [0, 1]we consider
the supplementary boundary value problem

Hg( fs)− s trg(K )( fs) = τ fs in � (27a)

fs = sφ on ∂�. (27b)

The first step is to obtain uniform a priori estimates for the solutions.
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Lemma 4.2. Let � and φ be as in Theorem 4.1. Suppose that τ > 0 is sufficiently small
and fs ∈ C2,α(�) satisfies (27a)–(27b). Then there exists a constant C depending only
on α, τ , φ, �, and the initial data (M, g, K ), such that ‖ fs‖C2,α(�) ≤ C.

Proof. The proof is divided into the following steps.

(1) C0 bound for fs . Suppose that fs attains its maximum at an interior point p ∈ �,
then from (27a) it follows that

τ fs(p) =
(

gi j Hessi j ( fs)
)
(p)− s

(
trg K

)
(p) ≤ −s

(
trg K

)
(p) ≤ max

�

∣∣trg K
∣∣ .

Similarly, if q ∈ � is an interior minimum point we have τ fs(q) ≥ −max� |trg K | ,
thus

τ | fs | < μ1 := max

{
max
�

∣∣trg K
∣∣ ,max

∂�
|φ|

}
on �.

(2) Interior gradient estimates for fs . It is straightforward to check that

Hg( fs) = ∇i

⎛
⎝ ( fs)

i

√
1 + |d fs |2g

⎞
⎠ .

Applying the covariant derivative ∇k to the both sides of (27a) and commuting the
covariant derivatives we thereby obtain

τ( fs)k = ∇k
(
Hg( fs)

) − s∇k
(
trg(K )( fs)

)

= ∇i

⎛
⎝

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
Hess jk( fs)√
1 + |d fs |2g

⎞
⎠ − Ricik( fs)

i

√
1 + |d fs |2g

+
2sKil( fs)

l Hessk j ( fs)

1 + |d fs |2g

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)

− s

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
∇k Ki j .

As a consequence, we have

τ |d fs |2g = ( fs)
k∇i

⎛
⎝

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
Hess jk( fs)√
1 + |d fs |2g

⎞
⎠ − Ricik( fs)

i ( fs)
k

√
1 + |d fs |2g

+
2sKil( fs)

l( fs)
k Hessk j ( fs)

1 + |d fs |2g

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)

− s

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
∇k Ki j ( fs)

k .
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Let us = |d fs |2g . Then

−Ricik( fs)
i ( fs)

k

√
1 + |d fs |2g

≤ |Ric|g|d fs |2g√
1 + |d fs |2g

≤ C1(us)
1
2

and

(
gi j − ( fs)i ( fs) j

1 + |d fs |2g

)
2Kil ( fs)l ( fs)k Hessk j ( fs)

1 + |d fs |2g
=

(
gi j − ( fs)i ( fs) j

1 + |d fs |2g

)
Kil ( fs)l∇ j (us)

1 + |d fs |2g
.

We also have

( fs)
k∇i

⎛
⎝

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
Hess jk( fs)√
1 + |d fs |2g

⎞
⎠

= ∇i

⎛
⎝

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)
( fs)

k Hess jk( fs)√
1 + |d fs |2g

⎞
⎠

−
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)
gkl Hess jk( fs)Hessil( fs)√

1 + |d fs |2g

= 1

2
∇i

⎛
⎝

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

) ∇ j

(
|d fs |2g

)
√
1 + |d fs |2g

⎞
⎠

−
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)
( fs)

k( fs)
l

1 + |d fs |2g
Hess jk( fs)Hessil( fs)√

1 + |d fs |2g

−
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)(
gkl − ( fs)

k( fs)
l

1 + |d fs |2g

)
Hess jk( fs)Hessil( fs)√

1 + |d fs |2g

= 1

2
∇i

⎛
⎝ ḡi j∇ j (us)√

1 + |d fs |2g

⎞
⎠ − |d(us)|2ḡ

4(1 + |d fs |2g)
3
2

− |Hess( fs)|2ḡ√
1 + |d fs |2g

≤ 1

2
∇i

⎛
⎝ ḡi j∇ j (us)√

1 + |d fs |2g

⎞
⎠

where ḡ is the metric induced on the graph of the function fs : � → R in the product
manifold (M × R, g + dt2), cf. Sect. 2.2. Finally, we can estimate

−
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)
s∇k Ki j ( fs)

k ≤ |ḡi j∇Ki j |g|d fs |g ≤ C2(us)
1
2 .
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We conclude that us = |d fs |2g satisfies the differential inequality

∇i (Ai j∇ j (us)) + B j∇ j (us) + C(us)
1
2 ≥ τus,

where Ai j = ḡi j

2
√
1+|d fs |2g

is nonnegative definite, B j = sḡi j Kil ( fs )
l

1+|d fs |2g is bounded, and

C > 0 is a constant that only depends on the initial data (M, g, K ). If us attains
its maximum at an interior point p ∈ �, then the above inequality implies that

C(us(p))
1
2 ≥ τus(p). Recalling the definition of us we conclude that τ |d fs |g(p) ≤

μ2 where μ2 depends only on the initial data (M, g, K ).
(3) Boundary gradient estimates. The bounds for |d fs |g restricted to ∂� can be obtained

bymeans of the so-called barriermethod. Thismethod is described in [GT01, Chapter
14], and its application to the boundary value problem (27a)–(27b) is summarized in
“Appendix B”.

Since (25) holds, by choosing τ > 0 to be sufficiently small, we may ensure that
H∂� − | tr∂� K | − τ |φ| > 0. Using the function ρ = dist(·, ∂�) we can foliate a
neighborhoodU of ∂� by the hypersurfaces Eρ of constant ρ. If {x1, x2} are coordinates
on ∂� then (ρ, x1, x2) are coordinates on U , and we can write the metric on U as
g = dρ2 + gρ , where gρ is the induced metric on Eρ . From now on it will be assumed
that U = {0 ≤ ρ < ρ0}, where ρ0 > 0 is as small as to ensure that

HEρ
− | trEρ

K | − τ |φ| > 0 (28)

holds for any ρ ∈ [0, ρ0).
We will show that for a sufficiently large constant B > 0 the functions f = sφ + Bρ

and f = sφ−Bρ are boundary barriers for (27a)–(27b), in the sense that they satisfy the
conditions of Proposition B.1. The mean curvature of the hypersurfaces Eρ computed
with respect to the normal ∂ρ (chosen so that the orientations of ∂� and Eρ agree) is

HEρ
= (gρ)

μν
(

AEρ

)
μν

= (gρ)
μνg((∇μ∂ν)|Eρ

, ∂ρ) = (gρ)
μνg(ρ

μν∂ρ, ∂ρ) = (gρ)
μν

ρ
μν.

Using the fact that ρ
ρρ = 

μ
ρρ = 

ρ
ρμ = 0, one computes

Hg(sφ ± Bρ)

= ± 2Bs2φμν
ρμφν

(1 + B2 + s2|dφ|2gρ
)
3
2

+

(
(gρ)

μν − s2φμφν

1 + B2 + s2|dφ|2gρ

)
s Hessμν φ ∓ B

ρ
μν√

1 + B2 + s2|dφ|2gρ

= ∓HEρ
+ O(B−1),

and

trg(K )(sφ ± Bρ) =
(
1− B2

1 + B2 + s2|dφ|2gρ

)
Kρρ ∓ 2BsφμKρμ

1 + B2 + s2|dφ|2gρ

+ (gρ)
μν Kμν − s2φμφν Kμν

1 + B2 + s2|dφ|2gρ

= trEρ
K + O(B−1).
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Consequently, in the view of (28), we have

Hg( f )− s trg(K )( f )− t f = −HEρ
− s trEρ

K − τ sφ − τ Bρ + O(B−1)

< −HEρ
+

∣∣trEρ
K

∣∣ + τ |φ| + C B−1 < 0,

and

Hg( f )− s trg(K )( f )− t f = HEρ
− s trEρ

K − τ sφ + τ Bρ + O(B−1)

> HEρ
− ∣∣trEρ

K
∣∣ − τ |φ| − C B−1 > 0,

for any 0 ≤ ρ < ρ0, provided that B > 0 is large enough. Finally, recall that the
functions fs are uniformly bounded in C0 norm and satisfy (27b). Hence, by increasing
B if needed, we can ensure that f < fs < f holds on Eρ0 .

Since the first order partial derivatives of f and f in U are bounded by a constant
independent of s, by Proposition B.1 there exists a constantμ3 > 0 such that the uniform
estimate |d fs |g < μ3 holds on ∂�.

4) C2,α bounds on fs . Let x = (x1, x2, x3) be coordinates on�. We may write (27a)
as

ai j (x, D fs)∂
2
i j fs + b(x, fs, D fs) = 0, (29)

where D fs denotes the Euclidean gradient of fs , and

ai j (x, D fs) =
(

gi j − gik g jl( fs)k( fs)l

1 + gkl( fs)k( fs)l

)
1√

1 + gkl( fs)k( fs)l

,

b(x, fs, D fs) = −
(

gi j − gik g jl( fs)k( fs)l

1 + gkl( fs)k( fs)l

)(
k

i j ( fs)k√
1 + gkl( fs)k( fs)l

+ sKi j

)
− τ fs .

Note that 2) and 3) imply that |d fs |g ≤ max{μ2
τ
, μ3}. Suppose that Kτ is a positive

constant depending on τ such that sup� | fs | + sup� |D fs | < Kτ . Then the differential
operator in the left hand side of (29) is strictly elliptic with uniform ellipticity constant
λKτ for all s. It is also obvious that we can choose a constant μKτ so that

|ai j (x, p)| + |∂xk ai j (x, p)| + |∂pk ai j (x, p)| + |b(x, z, p)| ≤ μKτ

for x ∈ �, |z| + |p| < Kτ , and k = 1, 2, 3. From the fundamental global Hölder
estimate of Ladyzhenskaya andUral’tseva [GT01, Theorem 13.7] we conclude that there
exists β = β(Kτ , μKτ /λKτ , �) such that D fs is bounded in C0,β norm by a constant
C = C(Kτ , μKτ /λKτ , �,�), where � is a C2,α norm of φ. That is, |D fs |C0,β < C
uniformly in s.

We are now in a position to treat the Jang equation as a linear elliptic equation for
fs ∈ C2,α(�), namely,

αi j∂2i j fs + β i∂i fs + γ fs = F, (30)

where the coefficients

αi j =
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)
1√

1 + |d fs |2g
,
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βk = −
(

gi j − ( fs)
i ( fs)

j

1 + |d fs |2g

)
k

i j√
1 + |d fs |2g

,

γ = −τ,

F = sKi j

(
gi j − ( fs)

i ( fs)
j

1 + |d fs |2g

)

are uniformly bounded in C0,β(�). Applying [GT01, Theorem 6.6] we deduce that fs
are uniformly bounded in C2,β(�). Then fs are uniformly bounded in C1,α(�). One
more application of [GT01, Theorem 6.6] completes the proof. ��
Proof of Theorem 4.1. The proof is very similar to [SY81b, Lemma 3] and consists in
applying the continuity method to (27a)–(27b). Let S be the set of s ∈ [0, 1] such that
(27a)–(27b) has a solution fs ∈ C2,α(�). Clearly, S is non-empty, since 0 ∈ S. Hence
if we show that S is both open and closed in [0, 1] it will follow that S = [0, 1].

That S is closed is an immediate consequence of Lemma 4.2. Suppose that sn ∈ S
for n = 1, 2, . . . are such that sn → s as n → ∞. By Lemma 4.2 we have a uniform
bound ‖ fsn‖C2,α(�) ≤ C . Hence by Arzela-Ascoli theorem there is a subsequence of fsn

which converges uniformly along with its first and second derivatives to a limit fs . Thus
s ∈ S, so S is closed.

That S is open will follow from implicit function theorem. Consider a C1 map

T : C2,α(�)× R → C0,α(�)× C2,α(∂�)× R

defined by

T ( f, s) = (Hg( f )− s trg(K )( f )− τ f, f |∂� − sφ, s).

Suppose that s0 ∈ S and that f0 ∈ C2,α(�) is the respective solution of (27a)–(27b).
The linearization of T at ( f0, s0) is a map

L( f0,s0)T : C2,α(�)× R → C0,α(�)× C2,α(∂�)× R (31)

given by

L( f0,s0)T (η, ς) = (L( f0,s0)
(
Hg( f )− s trg(K )( f )− τ f

)
(η, ς), η|∂� − ςφ, ς

)
.

It is straightforward to check that

L( f0,s0)
(
Hg( f )− s trg(K )( f )

)
(η, ς)

= Gi j Hessi j η +
(
∇ j G

k j + 2s0Gkj ( f0)
i Ki j (1 + |d f0|2g)−

1
2

)
ηk − ς trg(K )( f0)

where

Gi j =
(

gi j − ( f0)i ( f0) j

1 + |d f0|2g

)
1√

1 + |d f0|2g
.

By standard theory for linear elliptic equations (see e.g. [GT01, Theorem 6.14]), for any
ς ∈ [0, 1],� ∈ C0,α(�), and ξ ∈ C2,α(∂�) there exists a unique solution η ∈ C2,α(�)

to the boundary value problem

Gi j∂2i jη + Hk∂kη − τη = � + ς trg(K )( f0) in �
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η = ςφ + ξ on ∂�

where

Hk = ∇ j G
k j + 2s0Gkj ( f0)

i Ki j (1 + |d f0|2g)−
1
2 − Gi j

k
i j .

Consequently, the map (31) is an isomorphism and by the implicit function theorem
there is an interval I = (s0 − δ, s0 + δ) ⊆ [0, 1] such that for every s ∈ I there is a
solution fs ∈ C2,α(�) to the boundary value problem (27a)–(27b). Hence S is open.

The existence of f ∈ C2,α(�) satisfying (26a)–(26b) is thereby proven. That f ∈
C3,α(�) follows at once by interior Schauder estimates (see e.g. [GT01, Theorem 6.17])
applied to (30) with s = 1. ��

The following elementary lemma provides an example of a domain � in an asymp-
totically hyperbolic initial data set (M, g, K ) such that the condition (25) is satisfied.

Lemma 4.3. Let (M, g, K ) be an asymptotically hyperbolic initial data set in the sense
of Definition 2.3. If R > 0 is sufficiently large, then H∂BR − | tr∂BR K | > 0 holds for
BR = M \ {r ≥ R}.
Proof. A computation shows that the mean curvature of ∂BR is

H∂BR = 2 + R−2 + O(R−3)

and

tr∂BR K = 2 + O(R−3),

hence H∂BR − | tr∂BR K | > 0 for a sufficiently large R > 0. ��
Combining Theorem 4.1 and Lemma 4.3 we have

Proposition 4.4. Let (M, g, K ) be an asymptotically hyperbolic initial data set with
Wang’s asymptotics as in Definition 2.3. Let f−, f+ : {r ≥ r0} → R be the barrier
functions as in Proposition 3.6. Given a sufficiently large R > r0 and a sufficiently small
τ ∈ (0, 1), for any φR ∈ C2,α(∂BR) such that f− ≤ φR ≤ f+ on ∂BR, there exists a
solution f ∈ C2,α(BR) ∩ C3(BR) to the boundary value problem

Hg( f )− trg(K )( f ) = τ f in BR (32a)

f = φR on ∂BR (32b)

such that f− ≤ f ≤ f+ on {r0 ≤ r ≤ R}.
Proof. The existence of f ∈ C2,α(BR) ∩ C3(BR) follows from Theorem 4.1 and
Lemma 4.3, so we only need to confirm that f− ≤ f ≤ f+ holds on {r0 ≤ r ≤ R}. Note
that f+ and f− satisfy (13) and are bounded on {r0 ≤ r ≤ R}. Hence by assuming that
τ > 0 is sufficiently small we can ensure that

Hg( f+)− trg(K )( f+)− τ f+ < 0, (33a)

Hg( f−)− trg(K )( f−)− τ f− > 0. (33b)

Combining (32a) with (33a)–(33b) we may argue as in the proof of Proposition 3.6 (see
also [SY81b, Proposition 3]) to show that f− ≤ f ≤ f+ on {r0 ≤ r ≤ R}. ��
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5. The Existence of a Geometric Solution

In this section we construct a geometric solution of the Jang equation with respect
to asymptotically hyperbolic initial data (M, g, K ) which is assumed to have Wang’s
asymptotics as in Definition 2.3 with l ≥ 5. By a geometric solution we mean a prop-
erly embedded complete C3 hypersurface � ⊂ M × R satisfying the prescribed mean
curvature equation H� = tr� K where K is extended parallelly along the R-factor as
described in Sect. 2.2. The existence and properties of the constructed geometric so-
lution are summarized in Theorem 5.5. The theorem is proven by suitably modifying
the respective construction in the asymptotically Euclidean case that was carried out in
[SY81b]. Alternatively, one could rely on the geometric measure theory based methods
as in [Eic13]. However, we choose not to discuss these methods here as the less technical
argument of [SY81b] suffices for our purposes.

The main ingredient of the proof are the so-called local parametric estimates for
graphical hypersurfaces in M × R whose graphing functions f : � → R are defined
by the boundary value problem

Hg( f )− trg(K )( f ) = τ f in � (34a)

f = φ on ∂� (34b)

where� ⊂ M and φ are as in Theorem 4.1. These estimates are obtained in Proposition
5.4. In Sect. 5.3 we apply these estimates to prove the existence of a geometric solution.
Let us briefly outline the main idea of the construction. From the proof of Lemma 4.2
we know that if f is a solution of (34a)–(34b) then τ | f | ≤ max{C1, τC2}, where C1
depends only on (M, g, K ) while C2 might also depend on � and φ. Consequently, if
we choose τ so that τ ∈ (0,C−1

2 ) then τ | f | ≤ μ1 in � for some μ1 depending only
on (M, g, K ). For similar reasons we may assume that τ |d f |g ≤ μ2 holds in � for μ2
depending only on (M, g, K ). Now consider a sequence {Rn}n∈N such that Rn > r0
and Rn → ∞ as n → ∞. For every n ∈ N we choose φn ∈ C2,α(∂BRn ) so that
f− ≤ φn ≤ f+. In the view of the above discussion we can choose τn so that τn ↘ 0
as n → ∞, and τn| f | ≤ μ1, τn|d f |g ≤ μ2 holds in BRn for μ1 and μ2 depending
only on (M, g, K ). Such a choice of τn ensures that the solutions of the boundary value
problems

Hg( f )− trg(K )( f ) = τn f in BRn

f = φn on ∂BRn

satisfy the local parametric estimates of Proposition 5.4 with uniform constants depend-
ing only on (M, g, K ). With these estimates at hand one can study the limit of the
respective solutions fn as n → ∞. This limit might blow up/down inside the compact
set where the barriers are not defined, but wherever the barriers are defined the limit is
graphical and is trapped between the barriers.

5.1. Setup. When l ≥ 5 in the Definition 2.3 the manifold (M × R, ĝ = g + dt2)
admits uniformly controlled normal coordinates, see e.g. [SY94, Lemma V.3.4]. More
specifically, there exists ρ0 > 0 such that at every point p ∈ M × R there is a normal
coordinate chart

ϕ : M × R ⊃ B4
ρ0
(p) → B4

ρ0
(0) ⊂ R

4 : q �→ (y1(q), y2(q), y3(q), y4(q)), (35)
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such that � = ϕ∗ĝ − δ satisfies

sup
x∈B4

ρ0
(0)

(
|x |−2|� | + |x |−1|∂� | + |∂2� | + |∂3� |

)
≤ C (36)

for a constant C > 0 independent of p, where δ denotes the Euclidean metric on R
4

and ∂ stands for the respective coordinate derivatives. Let ĝab denote the components of
ĝ in the described normal coordinates, that is ϕ∗ĝ = ∑4

a,b=1 ĝabdyadyb, and we will
write ∂a = ∂ya . In this section we let the indices a, b, . . . run from 1 to 4, and the indices
i, j, . . . run from 1 to 3.

Given a C3,α
loc graphical hypersurface � ⊂ M × R and p ∈ � we may without loss

of generality assume that the tangent space to� at p corresponds to the coordinate slice
{y4 = 0}. In this case, � can be locally written as the graph of a function w = w(y)
where y = (y1, y2, y3).Wewill callw a local defining function and denote its domain by
Dw. Local parametric estimates to be obtained in Sect. 5.2 are certain uniform estimates
for defining functions.

5.2. Local parametric estimates. A key ingredient for deriving local parametric esti-
mates is the C0-bound on the second fundamental form of �.

Proposition 5.1. Let � be a hypersurface given as the graph of f : � → R, where f
is a solution to the boundary value problem (34a)–(34b), and suppose that τ | f | ≤ μ1,
τ |d f |g ≤ μ2, where μ1 and μ2 depend only on (M, g, K ). Let A denote the second
fundamental form of �. Then for any sufficiently small ρ > 0 there exists a constant
C > 0 depending only on ρ and (M, g, K ) such that for any p = (x, f (x)) ∈ � with
dist(x, ∂�) ≥ ρ we have |A|2(p) ≤ C.

Proof. See [Sak12, Appendix E] where the proof of [SY81b, Proposition 1] is adapted to
the current setting. Since the required modifications are minor we choose not to include
this rather lengthy proof here. ��

The following result is stated in [SY81b] in the case when� = M . Even though this
result appears to be standard, we include its proof as it seems difficult to find it in the
literature, and since we will refer to it later in the text.

Lemma 5.2. For every sufficiently small ρ > 0 and ρ0 > 0 there exists a constant C > 0
depending only on (M, g, K ), ρ and ρ0 such that the inequality

C(1 + |∂w|2)3 ≥
3∑

i, j=1

(∂i∂ jw)2 (37)

holds on Dw ∩ {|y| < ρ0} for every p = (x, f (x)) ∈ � such that dist(x, ∂�) ≥ ρ.

Proof. Assume that p ∈ � and let

{(y, y4) : y4 = w(y), y ∈ Dw ∩ {|y| < ρ0}}
be the local graphical parametrization of � near p. In this case, the vectors ei = ∂i +
(∂iw)∂4 are tangent to�. Let ḡi j = ĝ(ei , e j )be the respective components of the induced
metric on �. In what follows we tacitly assume that all computations are carried out at
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a fixed point q ∈ � covered by the above local parametrization, and we let C denote a
generic constant that may vary from line to line but depends only on (M, g).

Let � be the largest eigenvalue of ḡ = {ḡi j } and let X = Xi ei with (X1)2 + (X2)2 +
(X3)2 = 1 be the respective eigenvector. We set Y = Xi∂i and let � denote the largest
eigenvalue of ĝ = {ĝab} with respect to the Euclidean metric δ. Relying on (36) we
estimate

� = ḡ(X, X)

= ĝi j X i X j + 2(∂iw)ĝ4 j X i X j + (∂iw)(∂ jw)ĝ44Xi X j

= ĝ(Y,Y ) + 2ĝ(∂4,Y )dw(Y ) + ĝ44(dw(Y ))2

≤ ĝ(Y,Y ) + 2|∂4|ĝ|dw|ĝ|Y |2ĝ + |ĝ44||dw|2ĝ|Y |2ĝ
≤ Cĝ(Y,Y )(1 + |dw|ĝ)2
≤ C�(1 + |dw|2ĝ)
≤ C(1 + |∂w|2)

which yields a lower bound for the smallest eigenvalue�−1 of ḡ−1 = {ḡi j }. We note for
the record that the lowest eigenvalue of ḡ is uniformly bounded in terms of the lowest
eigenvalue of ĝ, which gives the uniform upper bound for the largest eigenvalue of ḡ−1.

In the rest of the proof we identify all bilinear forms with their matrices in the basis
{e1, e2, e3}. Let O be the orthogonal matrix such that Oḡ−1OT = D, where D is
diagonal, and let Ã = O AOT . Then

|A|2 = tr(ḡ−1Aḡ−1A) = tr(D ÃD Ã) ≥ �−2 tr Ã2 = �−2 tr A2 ≥ C tr A2

(1 + |∂w|2)2 .

Set W (y, y4) = y4 − w(y). Using (36) it is straightforward to check that

tr A2 =
3∑

i, j=1

A(ei , e j )
2

=
3∑

i, j=1

(Hess W (ei , e j ))
2|dW |−2

ĝ

≥ (1− Cε)
∑

i, j (∂i∂ jw)2 − Cε(1 + |∂w|2)3
C(1 + |∂w|2)

where ε > 0 can be assumed to be as small as we want up to decreasing ρ0 if necessary.
Hence

|A|2 ≥ (1− Cε)
∑

i, j (∂i∂ jw)2 − Cε(1 + |∂w|2)3
C(1 + |∂w|2)3 ,

and (37) follows at once by Proposition 5.1. ��
Lemma 5.3. If ρ > 0 is sufficiently small then there exists ρ′ > 0 depending only on
(M, g, K ) and ρ such that for every p = (x, f (x)) ∈ � with dist(x, ∂�) ≥ ρ the local



930 A. Sakovich

defining function w is defined on {|y| ≤ ρ′}. Moreover, there exists a constant C > 0
depending only on (M, g, K ) and ρ such that

sup
|y|≤ρ′

(|w(y)| + |∂w(y)| + |∂∂w(y)|) ≤ C. (38)

Proof. The proof is outlined in [SY81b] and we include it here only for the sake of
completeness. We assume that ρ and ρ0 are such that the conclusion of Lemma 5.2
holds true. Let ξ be a Euclidean unit vector in the y1y2y3-space. For any 0 ≤ ρ̃ ≤ ρ0
we define the function

Sξ (ρ̃) = max
0≤λ≤ρ̃

sξ (λ), where sξ (λ) =
3∑

i=1

(∂iw)2(λξ) = |∂w|2(λξ).

Since (∂w)(0) = 0, by the mean value theorem we can write sξ (λ) = s′ξ (θλ)λ for some
0 ≤ θ ≤ 1. Using the Cauchy-Schwartz inequality, (37) and the fact that |ξ | = 1, we
may estimate s′ξ = 2

∑3
i, j=1(∂iw)(∂i∂ jw)ξ j as

|s′ξ | ≤ C |∂w|(1 + |∂w|2) 3
2 ≤ C(1 + |∂w|2) 5

2 .

Here and in the rest of the proof C > 0 is a generic constant that depends only on the
quantities mentioned in the statement of the lemma. Combining the above estimates one
can check that

Sξ (ρ̃) ≤ C(1 + Sξ (ρ̃))
5
2 ρ̃,

or, equivalently,

Sξ (ρ̃)(1 + Sξ (ρ̃))
− 5

2 ≤ C ρ̃.

In this case, it is clear that there exists ρ′ > 0 depending only on C such that Sξ (ρ̃)

remains uniformly bounded as long as 0 ≤ ρ̃ < ρ′. This, in particular, implies that
w is defined on {|y| ≤ ρ′} and that sup|y|<ρ′ |∂w| < C for a uniform constant C . We
conclude the proof by noting that the bound on |∂∂w| follows from (37), and the bound
on |w| is a simple consequence of the mean value theorem. ��

With (38) at hand, one can finally obtain the local parametric estimates. The following
result is essentially Proposition 2 in [SY81b], but we nevertheless include the proof so
that we can refer to some intermediate steps in the later sections.

Proposition 5.4. If ρ > 0 is sufficiently small then there exists ρ̃ > 0 depending only
on (M, g, K ) and ρ such that for every p = (x, f (x)) ∈ � with dist(x, ∂�) ≥ ρ the
local defining function w is defined on {|y| ≤ ρ̃} and the following holds.

• For any α ∈ (0, 1) there exists a constant C depending only on (M, g, K ), ρ, and
α such that

‖w‖C3,α({|y|≤ρ̃}) < C. (39)

• Let ν be the downward pointing unit normal to � and let v = −∂t . Then the
following Harnack type inequality

sup
�∩B4

ρ̃ (p)

〈ν, v〉 ≤ C inf
�∩B4

ρ̃ (p)
〈ν, v〉 (40)

holds for a constant C depending only on (M, g, K ) and ρ.
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• We have � ∩ B4
ρ̃ ⊆ {y4 = w(y)}.

Proof. Let ρ′ be as in Lemma 5.3. Set W (y, y4) = y4 − w(y). Since the bilinear form{
ĝab − W a W b

|dW |2ĝ

}
is degenerate in the direction of dW and is equal to {ĝab}when restricted

to the cotangent space of �, as a consequence of (34a) W satisfies
(

ĝab − W a W b

|dW |2ĝ

)(
Hessab W

|dW |ĝ − Kab

)
= τ t|� ,

where t|� is the coordinate along theR-factor in M×R restricted to�. As a consequence,
the local defining function w satisfies an equation of the form

Bi j (y, w, ∂w)∂i∂ jw = D(y, w, ∂w)

on {|y| ≤ ρ′}. By the eigenvalue estimates from the proof of Lemmas 5.2 and 5.3, it
follows that the differential operator in the left hand side is strictly elliptic, and that
the coefficients of the equation are Hölder continuous functions of y. The estimate (39)
follows at once for any ρ̃ ∈ (0, ρ′) by standard arguments combining Lemma 5.3,
Schauder estimates, and a simple bootstrap.

We shall now focus on proving theHarnack type inequality (40). Recall from [SY81b,
equation (2.28)] that the function η = 〈v, ν〉 ≥ 0 satisfies

�ḡη +
(
tr� R̂(ν, ·, ν, ·) + νH + |A|2

)
η = 0,

where R̂ is the curvature tensor of the metric ĝ and H = H� = tr� A is the mean
curvature of �. Using the notations as in the proof of Lemma 5.2 we may rewrite this
as the following equation for η = η(y):

αi j ∂i∂ jη + βk ∂kη + γ η = 0, (41)

where

αi j = ḡi j ,

βk = −ḡi j
(
̂k

i j + 2(∂iw)̂k
4 j + (∂iw)(∂ jw)̂k

44

)
,

γ = tr� R̂(ν, ·, ν, ·) + νH + |A|2.
Using the formulae ν = −|dW |−1

ĝ ∇ ĝW ,

|A|2 =
(

ĝac − W a W c

|dW |2ĝ

) (
ĝbd − W bW d

|dW |2ĝ

) (
Hessab W

|dW |ĝ
)(

Hesscd W

|dW |ĝ
)
,

and

H =
(

ĝab − W a W b

|dW |2ĝ

)
Hessab W

|dW |2ĝ
, (42)

it is straightforward to rewrite γ in terms of the defining function w. By the eigenvalue
estimates from the proof of Lemma 5.2 the differential operator in the left hand side is
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strictly elliptic, and combining (36) with (39) we conclude that it has uniformly bounded
coefficients on {|y| ≤ ρ̃}. Applying [GT01, Corollary 8.21] we conclude that η satisfies
the Harnack inequality

sup
|y|≤3ρ̃/4

η ≤ C inf|y|≤3ρ̃/4
η (43)

with C depending only on ρ and (M, g, K ). Redefining ρ̃ as 3ρ̃/4, (40) follows.
Finally, we prove the last claim of the proposition. In fact, by slightly refining the

arguments above, one can see that the coefficients of equation (41) are uniformly bounded
in C0,α norm on {|y| ≤ ρ̃}. Standard interior elliptic estimates then imply that

sup
|y|≤ρ̃/2

|∂η| ≤ C sup
|y|≤3ρ̃/4

|η|

Combining this estimate with (43) and bounds on the eigenvalues of ḡ, we get

sup
|y|≤ρ̃/2

|dη|ḡ ≤ C inf|y|≤ρ̃/2
η,

hence

sup
|y|≤ρ̃/2

|d(ln η)|ḡ ≤ C. (44)

Let�ρ be the set of x ∈ � such that dist(x, ∂�) ≥ ρ and set�ρ := {(x, f (x)) : x ∈
�ρ}. Since the constant C in (44) does not depend on p ∈ �, we have

sup
�ρ

|d(ln η)|ḡ ≤ C, (45)

where C depends only on (M, g, K ) and ρ. In fact, a simple computation in an or-

thonormal frame (see the derivation of [SY81b, equation (2.24)]) shows that |∇ ĝ
ν ν|2ĝ =

|d(ln η)|2ḡ . Thus (45) amounts to |∇ ĝ
ν ν|2ĝ ≤ C which in combinationwith Proposition 5.1

gives

|∇ ĝν|ĝ ≤ C, (46)

which holds on �ρ , and, more generally, in�ρ ×R. With this estimate at hand one can
prove the last claim of the proposition using implicit function theorem. For more details,
see the proof of Corollary 6.3 below where a version of this argument is used. ��

5.3. Passing to the limit. We finally prove the existence of a geometric solution of the
Jang equation.

Theorem 5.5. Let (M, g, K )be an asymptotically hyperbolic initial data set with Wang’s
asymptotics as in Definition 2.3. Then there exists a properly embedded complete C3

hypersurface � ⊂ M × R such that

(1) � is the boundary of some open set O ⊂ M ×R. Moreover, H� − tr� K = 0 where
H� is the mean curvature of � computed as the tangential divergence of the normal
pointing out of O.
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(2) � consists of finitely many connected components �̃. Each component is either a
cylinder of the form E ×R, where E is a closed properly embedded C3 hypersurface
in M, or it is a graph of a C3 function f�̃ whose domain U�̃ is an open subset of
M. The function f�̃ is a solution of the Jang equation Hg( f�̃) − trg(K )( f�̃) = 0
on U�̃ .

(3) The boundary of the domain U�̃ for every graphical component graph( f�̃,U�̃) of
� is a closed properly embedded C3 hypersurface in M. In fact, ∂U�̃ consists of two
disjoint unions of components E+ and E− such that f�̃(x) → ±∞ as x → E±. We
have HE± ∓ trE± K = 0, where the mean curvature is computed as the tangential
divergence of the unit normal pointing out of U�̃ . Furthermore, the hypersurfaces
graph( f� − C,U�) ⊂ M × R converge locally uniformly in C3,α to the cylinder
E± × R when C → ±∞.

(4) � has a graphical component �̃0 = graph( f�̃0
,U�̃0

) such that the domain U�̃0
contains the region {r ≥ r0}. We have

f�̃0
=

√
1 + r2 + α ln r + ψ(θ, ϕ) + O3(r

−1+ε) (47)

in U�̃0
for a sufficiently small ε ∈ (0, 1).

Remark 5.6. Although

f�̃0
=

√
1 + r2 + α ln r + ψ(θ, ϕ) + O(r−1+ε) (48)

follows directly from the construction, proving (47) requires quite a bit of work. There-
fore in the current sectionwe only prove the first three claims of the theorem. The lengthy
and technical proof of (47) is carried out in Sect. 6.

Proof. Let Rn and τn be positive real numbers such that Rn → ∞ and τn → 0 as
n → ∞. By Proposition 4.4 for each sufficiently large n we can solve the boundary
value problem

Hg( f )− trg(K )( f ) = τn f in BRn

f = φn on ∂BRn

where φn is a function on ∂BRn such that f− ≤ φn ≤ f+. Let the respective solution
be denoted by fn , and let �n be its graph. As discussed in the beginning of Sect. 5,
we may without loss of generality assume that τn is chosen so that τn| fn| ≤ μ1, and
τn|d fn|g ≤ μ2, where μ1 and μ2 depend only on (M, g, K ), so that the results of
Sect. 5.2 apply to �n .

Let us study the convergence of �n when n → ∞. The argument is standard, see
e.g. [PR02, Section 4]. We fix some small ρ > 0 and choose ρ̃ > 0 as in Proposition 5.4
so that the estimate (39) holds for any p = (x, fn(x)) ∈ �n where x ∈ BRn−ρ . Since
f− ≤ fn ≤ f+ holds on {r ≥ r0}, it is obvious that the sequence {�n}n has accumulation
points in M ×R. We choose a countable dense set {p1, p2, . . .} in M ×R and proceed
as follows.

Consider the geodesic ball B4
ρ̃/2(p1). Suppose that this ball contains an accumulation

point q1 of the sequence {�n}n . In this case we consider the ball B4
ρ̃ (q1) ⊃ B4

ρ̃/2(p1).
Without loss of generality, we assume that there is a sequence of points q1,n ∈ �n such
that q1,n → q1 as n → ∞. Let νn(q1,n) be the (downward pointing) unit normal to
�n at q1,n . Since S3 is compact, we can choose a subsequence of q1,n denoted by the
same notation such that the respective normals νn(q1,n) converge to some unit vector
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ν(q1) when n → ∞. In fact, we can assume that νn(q1,n) = ν(q1) without violating the
uniform estimate ‖wn‖C3,α({|y|≤ρ̃}) < C(α) which holds for the defining functions wn
of �n such that wn(0) = q1,n . This allows us to apply the Arzela-Ascoli theorem and
extract a subsequence of these defining functions converging in C3 on {|y| ≤ ρ̃} to a
function y4 = w(y). We thus obtain a subsequence {�n,1}n converging with multiplicity
one to a C3 hypersurface � in B4

ρ̃/2(p1).

If B4
ρ̃/2(p1) contains no accumulation points of �n then we can instead take {�n,1}n

to be a subsequence of �n such that �n,1 ∩ B4
ρ̃/2(p1) = ∅.

We repeat this procedure with the sequence {�n,1}n in B4
ρ̃/2(p2) and extract a subse-

quence {�n,2}n , which either converges with multiplicity one to a C3 hypersurface� in
B4
ρ̃/2(p2), or satisfies �n,2 ∩ B4

ρ̃/2(p2) = ∅. Iterating this process, we see that the diag-
onal subsequence {�n,n}n converges to a properly embedded complete C3 hypersurface
� ⊂ M×R. If each�n is viewedas the boundaryof the set {(x, t) : t > fn(x), x ∈ BRn },
then it is clear that � is the boundary of some open subset O ⊂ M × R, and that �
satisfies H� − tr� K = 0 with respect to the normal pointing out of O . By the Harnack
inequality (40), each connected component of � is either graphical or cylindrical. We
can view the union of the graphical components of � as the graph of f�̃ : U�̃ → R,
where {r ≥ r0} ⊂ U�̃ where U�̃ might be disconnected. It is clear that f�̃ solves the
Jang equation Hg( f�̃) − trg(K )( f�̃) = 0 on U�̃ , and that f− ≤ f�̃ ≤ f+ holds on
{r ≥ r0}, which implies that it has the asymptotic behavior as in (48). It is also obvious
that when we approach a connected component E of ∂U�̃ the graph of f�̃ asymptotes
the cylinder E×R. Taking the limit C → ∞ of f�̃ ±C we see that E×R is a geometric
solution of the Jang equation. From this it is easy to conclude that HE ∓ trE K = 0 with
respect to the normal pointing out of U�̃ , the sign depending on whether f�̃ → +∞
or f�̃ → −∞ as we approach E . Finally, we note that � has finitely many connected
components, since the region Br0 (where multiple graphical or cylindrical components
might occur) is precompact, and since by Proposition 5.4 there is a uniform ρ̃ such that
� ∩ B4

ρ̃ ⊂ {y4 = w(y)} holds over this region. ��

6. The Jang Graph is an Asymptotically Euclidean Manifold

The goal of this section is to show that the graphical component

�̃0 = graph( f�̃0
,U�̃0

), where {r ≥ r0} ⊆ U�̃0
,

of the geometric solution of the Jang equation constructed in Theorem 5.5 is an asymp-
totically Euclidean manifold in the sense of Definition 2.5. For this, we need to obtain
information about the derivatives of f�̃0

; more specifically, we need to confirm that (47)
holds. Note that the function f�̃0

is defined on an asymptotically hyperbolic manifold.
As scalar multiplication is not a homothety for the hyperbolic metric we cannot directly
rely on the rescaling technique which was used for similar purposes in [SY81b]. Instead,
we will first show that near infinity wemay view �̃0 as the graph of a function defined on
an asymptotically Euclidean manifold (roughly speaking, the graph of the lower barrier
�− that was constructed in Sect. 3). Applying the rescaling technique to the equation
that the graphing function satisfies, we will show that its derivatives fall off sufficiently
fast for concluding that �̃0 is an asymptotically Euclideanmanifold.Wewill then rewrite
these estimates in terms of f�̃0

thereby establishing (47).
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6.1. Setup. We will use the notation MR = {r ≥ R} for any R ≥ r0. Recall from
Sect. 5 that f− ≤ f ≤ f+ holds in Mr0 where f− and f+ are barriers for the Jang
equation constructed in Sect. 3. These barriers are defined implicitly by using solutions
of certain initial value problems. For this reason it is not very convenient to use them for
the purposes of this section. At the same time, the properties of the barriers established
in Sect. 3 allow us to pick a sufficiently large r1 > r0 and two functions3 f− : Mr1 → R

and f+ : Mr1 → R such that

f± = φ±(r) + ψ(θ, ϕ) =
√
1 + r2 + α ln r + ψ(θ, ϕ) + O4(r

−1+ε) (49)

and f− ≤ f ≤ f+ on Mr1 . These two functions are defined on a potentially smaller
neighborhood of infinity than the actual barriers but the asymptotic behavior of their
derivatives is more explicit. The graphs of these two functions are denoted by �− and
�+ respectively. Note that the submanifolds (�−, g�−) and (�+, g�+) of M × R are
asymptotically Euclidean by Lemma D.2.

Rather than using the standard product coordinates on M × R, in this section we
will work in the so called Fermi (or normal geodesic) coordinates adapted to the sub-
manifold �−. To ensure that these coordinates have good properties (more specifically,
that Proposition 6.1 below holds), in this section we work under the assumption that
(M, g, K ) is as in Definition 2.3 with l ≥ 5. To avoid excessive notation, in this section
we use usual unhatted symbols like R, ∇,  etc to denote various quantities associated
with the metric ĝ = dt2 + g = 〈·, ·〉. We will also drop ĝ in the norms. Furthermore, we
will write � = graph( f,U ) instead of �̃0 = graph( f�̃0

,U�̃0
).

Let u = (u1, u2, u3) be an asymptotically Euclidean Cartesian coordinate system on
�− obtained from the natural polar coordinate system (see e.g. LemmaD.1) by the usual
(spherical coordinates) transformation. Since�− has bounded second fundamental form,
we may argue as in Sect. 5 to conclude that �− is a uniformly embedded submanifold
in the manifold (M × R, ĝ) that has bounded geometry, hence there exists a normal
neighborhood Nγ (�−) of radius γ > 0, see [Eld13, Chapter 2]. We then define the
coordinates y on Nγ (�−) ∼= �−×(−γ, γ ) such that y(·, 0) = u and ∂y

∂ρ
= ν�ρ with ν�ρ

being the upward pointing unit normal to �ρ := y(·, ρ). Note that in these coordinates
we may write ĝ = dρ2 + gρ , where gρ is the induced metric on �ρ . In what follows we
let Aρ denote the second fundamental form of �ρ given by (Aρ)i j = 〈∇∂i (−∂ρ), ∂ j 〉
where ∂i for i ∈ {1, 2, 3} denote the respective tangent vectors to �ρ .

The following result is proven in “Appendix C”.

Proposition 6.1. There exist constants ρ0 > 0 and C > 0 such that |Aρ | < C and
1
C δi j ≤ (gρ)i j ≤ Cδi j for any 0 ≤ ρ ≤ ρ0. Furthermore, all partial derivatives of
(gρ)i j and (Aρ)

i
j up to order 3 in the Fermi coordinates are bounded.

We note that the proof of this result contains a few important equations that we will
use below, most notably (93) and (97).

6.2. The height function: existence and a priori estimates. The aim of this section is to
show that near infinity � is given as the graph of a function h : �− → [0, γ ), that is

� = graph h = {y(q, h(q)) : q ∈ �−}, (50)

3 Denoted by the same notation as the actual barriers, since the later will not be used in the rest of this
paper.
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and to obtain some a priori estimates for this function. In what follows, we will refer to
h as the height function of � with respect to �−.

Using the fact that � is “squeezed” between the graphs of the barrier functions and
that its second fundamental form is bounded, we obtain the following estimate for its
normal.

Lemma 6.2 (“Tilt-excess” estimate for�). Let ν− and ν be the respective upward point-
ing normal vector fields to �− and � extended parallelly along the R-factor in M ×R.
Then there exists a constant C > 0 such that at every p ∈ M2r1 × R we have

|ν(p)− ν−(p)| ≤ Cr(p)
−1+ε
2 .

Proof. We will use the following notation: for z ∈ M × R we define zM := projM z
where projM : M × R → M is the standard projection operator.

Let p ∈ � be such that r(p) > 2r1. We shift �− vertically so that it intersects �

at p. The resulting hypersurface, which we denote by �, is the graph of the function
f̄ : Mr1 → R given by

f̄ = f− + ( f (pM )− f−(pM )).

Define F− : Mr1 × R → R by F−(x, t) = t − f̄ (x). Then we have

∇F−
|∇F−| = ν− in Mr1 × R,

F− = 0 on �.

For a point q ∈ �, let γ be a unit speed geodesic in� such that γ (0) = p and γ (s) = q.
Since F−(p) = 0, for some θ ∈ [0, 1] we may write

F−(q) = d F−(γ̇ (0))s +
s2

2
(Hess� F−)(γ̇ (θs), γ̇ (θs)). (51)

The claim will be proven by making a suitable choice of γ̇ (0) and s = dist�(p, q) in
this formula.

From (49) we know that there exists a constant C0 > 0 such that 0 ≤ ( f+− f−)(r) ≤
C0r−1+ε on Mr1 . Set δ := 3C0r(p)−1+ε and let q be such that dist�(p, q) = √

δ. We
claim that in this case we may without loss of generality assume that r(p)

2 ≤ r(q) ≤
2r(p). Indeed, if we for instance assume that r(q) < r(p)

2 then a computation using the
fact that (M, g) is asymptotically hyperbolic with Wang’s asymptotics shows that

√
3C0r(p)−1+ε = dist�(p, q)

≥ distM (pM , qM )

≥
∫ r(p)

r(q)

dr√
1 + r2

≥
∫ r(p)

r(p)
2

dr√
1 + r2

≥ r(p)

2
√
1 + (r(p))2

= 1

2
√
(r(p))−2 + 1

,
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which cannot be true for a sufficiently large r1 > 0. Similarly, one reaches a contradiction
in the case when r(q) > 2r(p).

Since r(p)
2 ≤ r(q) ≤ 2r(p), we have in particular r(q) ≥ r1 so that f−(qM ) and

f+(qM ) are well-defined. Let q1 ∈ � be such that (q1)M = qM . In this case we have

distM×R(q1, q) = | f̄ (qM )− f (qM )|
= |( f−(qM )− f (qM )) + ( f (pM )− f−(pM ))|
≤ | f+(qM )− f−(qM )| + | f+(pM )− f−(pM )|
≤ C0(r(qM ))−1+ε + C0(r(pM ))−1+ε

≤ 3C0(r(p))−1+ε

= δ.

(52)

Since F−(q1) = 0 and since ∇F− is constant along R-factor in M × R, we may now
estimate the left hand side of (51) as follows

F−(q) = |F−(q)− F−(q1)| ≤ δ|∇F−|(q).

As for the right hand side, note that|Hess� F−| ≤ |Hess F−| + |∇F−||A� | ≤ C |∇F−|
for some C > 0, since the second fundamental forms A� and A�− = Hess F−

|∇F−| are

bounded. Consequently, choosing s = √
δ in (51) and estimating the left hand side and

the right hand side as described above we obtain

δ |∇F−|(q) ≥
√
δ d F−(γ̇ (0))− Cδ sup

0≤θ≤1
|∇F−|(γ (θs)). (53)

Since |∇F−| = r + O(1) and since γ is the geodesic such that γ (0) = p and γ (s) = q
where r(p)

2 ≤ r(q) ≤ 2r(p) we can also estimate

sup
0≤θ≤1

|∇F−|(γ (θs)) ≤ 2max{r(p), r(q)} < 4r(p) < 8|∇F−|(p).

Applying this estimate to (53), after division by
√
δ|∇F−|(p) we obtain

〈ν−(p), γ̇ (0)〉 ≤ C
√
δ,

possibly for a larger constant C > 0. Finally, let γ̇ (0) = ∇� F−(p)
|∇� F−(p)| . Then at the point p

we have

C
√
δ ≥

〈
ν−,

∇� F−
|∇� F−|

〉

= 〈ν−,∇F− − 〈∇F−, ν〉ν〉
|∇� F−|
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= 〈ν−,∇F−〉 − 〈∇F−, ν〉〈ν, ν−〉
|∇� F−|

= 〈∇F−, ν− − 〈ν, ν−〉ν〉
|∇� F−|

= |∇F−|〈ν−, ν− − 〈ν, ν−〉ν〉
|∇� F−|

= (1− 〈ν, ν−〉2)|∇F−|
|∇F− − 〈∇F−, ν〉ν|

= 1− 〈ν, ν−〉2
|ν− − 〈ν, ν−〉ν|

=
√
1− 〈ν, ν−〉2.

Thus 〈ν, ν−〉2(p) = 1 + O(δ), and |ν(p) − ν−(p)| = O(
√
δ). Recalling the definition

of δ the claim follows. ��

With Lemma 6.2 at hand we can prove the existence of the height function h.

Corollary 6.3 (Existence of height function). There exists a C3
loc-function h : �− →

R≥0 and r2 > 0 such that � ∩ (Mr2 × R) = graph h in the Fermi coordinates as
described in Sect. 6.1.

Proof. We use the same notations as in Lemma 6.2, in particular we let ν and ν− denote
the upward pointing unit normal vector fields to � and �− extended parallelly along
the R-factor in M × R. Let F : M2r1 × R → R be given by F(x, t) = t − f (x). Then
we have

∇F

|∇F | = ν in M2r1 × R,

F = 0 on �.

We will show that ∂ρ F is bounded away from zero on � ∩ (Mr2 × R) provided that
r2 > 0 is sufficiently large. The claim will then follow by the implicit function theorem.

Fix q ∈ � ∩ (M3r1 × R). We let q− denote the orthogonal projection of q on �−
and we let qM denote the vertical projection of q ∈ M × R on M as in the proof of
Lemma 6.2. The same type of argument as in the proof of Lemma 6.2 shows that we
may without loss of generality assume that 1

2r(q) ≤ r(q−) ≤ 2r(q). Since ∂ρ = ν− on
�−, by Lemma 6.2 we have

∂ρ F(q−)

|∇F(q−)| = 〈ν(q−), ν−(q−)〉 = 1 + O(r(q−)
−1+ε
2 ).
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Recalling (46) we obtain

∣∣∣∣
∂ρ F(q)

|∇F(q)| −
∂ρ F(q−)

|∇F(q−)|
∣∣∣∣ ≤

∣∣∣∣
∇F(q)

|∇F(q)| −
∇F(q−)

|∇F(q−)|
∣∣∣∣

≤ |ν(q)− ν(q−)|
≤ sup |∇ν| distM×R(q, q−)

≤ C( f (qM )− f−(qM ))

= O(r(q)−1+ε),

hence

∂ρ F(q)

|∇F(q)| = 1 + O(r(q)
−1+ε
2 ).

Finally, since |∇F | =
√
1 + |d f |2g ≥ 1, we conclude that

∂ρ F(q) ≥ 1
2 |∇F(q)| ≥ 1

2 ,

provided that r(q) ≥ r2 for a sufficiently large r2 > 0. ��
Estimating the “vertical gap” between the barriers it is straightforward to see that the

height function satisfies h = O(r−1+ε). In the following lemma we refine this estimate
to h = O(r−2+ε) by estimating the “horizontal gap” instead. We also obtain some
preliminary estimates for the coordinate derivatives of h.

Lemma 6.4 (A priori estimates for the height function). Let h : �− → R be the height
function of � as described in Corollary 6.3. Then h = O(r−2+ε), |∂h| = O(r−1+ε),
and |∂∂h| = O(1).

Proof. We address each estimate separately. Recall the following notation: for any z ∈
M ×R we denote zM = projM z where projM : M ×R → M is the standard projection
operator.

Proving that h = O(r−2+ε). By considering sufficiently large r we may assume that
the functions φ±(r) = f±(r, θ, ϕ) − ψ(θ, ϕ) = √

1 + r2 + α ln r + O(r−1+ε) are both
increasing. Let p ∈ �+ and q ∈ �− be such that q is the orthogonal projection of p
on �−. We define z ∈ �− so that (θ(z), ϕ(z)) = (θ(p), ϕ(p)) and f+(pM ) = f−(zM ).
Clearly, we have h(q) ≤ distM×R(p, q) ≤ distM×R(p, z), so we want to estimate
distM×R(p, z).

We denote rp = r(pM ), rz = r(zM ), rq = r(qM ). Sinceφ−(rp) < φ+(rp) = φ−(rz),
we have rp < rz . We also have φ+(rp) = φ−(rp) + O(r−1+ε

p ), hence

φ−(rz)− φ−(rp) = φ+(rp)− φ−(rp) = O(r−1+ε
p ).

As a consequence, there exists β ∈ [0; 1] such that

φ′−
(
βrz + (1− β)rp

)
(rz − rp) = φ−(rz)− φ−(rp) = O(r−1+ε

p ).
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Since φ′−(r) = 1 + O(r−1) we conclude that rz − rp = O(r−1+ε
p ) so

distM×R(p, z) =
∫ rz

rp

dr√
1 + r2

≤ rz − rp√
1 + r2p

= O(r−2+ε
p ).

In order to prove the claim it only remains to replace O(r−2+ε
p ) by O(r−2+ε

q ) in the
right hand side of this inequality. This can be achieved by estimating

Cr−2+ε
p ≥ distM×R(p, z)

≥ distM×R(p, q)

≥ distM (pM , qM )

≥
∣∣∣∣∣
∫ rq

rp

dr√
1 + r2

∣∣∣∣∣

≥ |rq − rp|√
1 + (rp + rq)2

=
∣∣∣rqr−1

p − 1
∣∣∣

√
r−2

p + (rqr−1
p + 1)2

≥
∣∣∣rqr−1

p − 1
∣∣∣

√
2(rqr−1

p + 1)
,

which clearly implies that rqr−1
p is bounded when rp → ∞. We conclude that h(q) =

O(r−2+ε
q ).

Proving that ∂h = O(r−1+ε). We slightly modify the argument in the proof of
Lemma 6.2. We fix a point p ∈ �, and let p0 denote the orthogonal projection of p
on �−. For ρ0 = h(p0) consider the function � = �(ρ) := ρ0 − ρ. Arguing as in the
proof of Lemma 6.2, we conclude that |Hess� �| ≤ C . Then if γ is a unit speed
geodesic in � such that γ (0) = p and γ (s) = q, we have

�(q) ≥ d�(γ̇ (0)) dist�(p, q)− C(dist�(p, q))2, (54)

cf. (51). We have already proven that there exists C0 such that h(z) ≤ C0r(z)−2+ε for
any z ∈ �− so we set s = √

δ, where δ := 5C0r(p)−2+ε.
Let q0 denote the orthogonal projection of q on �−. Again, it is straightforward to

show that r(p0)
2 ≤ r(q0) ≤ 2r(p0) provided that r(p) is sufficiently large. The left hand

side of (54) can then be estimated as follows

|�(q)| = |h(p0)− h(q0)|
≤ C0r(p0)

−2+ε + C0r(q0)
−2+ε

≤ 5C0r(p0)
−2+ε

= δ.

(55)
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Consequently, it follows from (54) that d�(γ̇ (0)) ≤ C
√
δ for some C > 0. If we now

choose γ̇ (0) = ∇��
|∇��| then at the point (p0, ρ0) = (p0, h(p0)) we have

C
√
δ ≥ 〈∇�,∇��〉

|∇��|
= 〈∂ρ, ∂ρ − 〈ν, ∂ρ〉ν〉√

1− 〈ν, ∂ρ〉2
=

√
1− 〈ν, ∂ρ〉2,

(56)

where, as before,

ν = ∂ρ −∇gρ h√
1 + |dh|2gρ

is the upward pointing unit normal of �. It follows that

1− 1

1 + |dh|2gρ

= O(δ),

and hence |dh|2gρ
= O(δ) at the point (p0, ρ0) = (p0, h(p0)). Recalling the definition

of δ and Propostion 6.1 the second claim follows.
Proving that |∂∂h| = O(1). Combining the argument used in the proof of Lemma 5.2

with Propostion 6.1 one can obtain the following estimate for the second fundamental
form:

3∑
i, j=1

A�(ei , e j )
2 ≤ C(1 + |∂h|2)2,

where ei := ∂i + (∂i h)∂ρ for i = 1, 2, 3. It is also straightforward to check that

A�(ei , e j )
2 =

(
∂i∂ j h − (ρ)

k
i j hk + (Aρ)i j + 2(Aρ)

k
i h j hk

)2
(1 + |dh|2gρ

)−1,

see Sect. 6.3 for details. Using the inequality (a + b)2 ≥ a2
2 − b2, Proposition 6.1 and

the fact that |∂h| = O(r−1+ε), the last claim of the proposition follows. ��

6.3. The height function: a posteriori estimates. We begin this section by rewriting the
Jang equation in terms of the height function using Fermi coordinates. For this purpose it
is convenient to think of� as the level set {F = 0} of the function F(u, ρ) = h(u)−ρ.
A computation shows that

Hessρρ F = 0,

Hessρi F = (Aρ)
k
i hk,

Hessi j F = Hess
gρ

i j h + (Aρ)i j ,

where we, as before, use the notation hi = ∂i h, and tacitly assume that i, j, k ∈ {1, 2, 3},
and that the indices are raised with respect to the metric gρ . We remind the reader that
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our sign convention for the second fundamental form of the surfaces {ρ = const} is
(Aρ)i j = 〈∇∂i (−∂ρ), ∂ j 〉.

In this setting, the vector −∂ρ + ∇gρ h is normal, and the vectors ei = ∂i + (∂i h)∂ρ
are tangent to � at the point with Fermi coordinates (u, ρ) = (u, h(u)). The induced
metric on � has components

gi j := ĝ(ei , e j ) = (gρ)i j + hi h j ,

and its inverse is

ḡi j = (gρ)
i j − hi h j

1 + |dh|2gρ

. (57)

The mean curvature of � is then given by

H� = ḡi j A�(ei , e j )

= ḡi j Hess F
(
∂i + (∂i h)∂ρ, ∂ j + (∂ j h)∂ρ

)

|∇F |

=
ḡi j

(
Hess

gρ

i j h + (Aρ)i j + 2(Aρ)
k
i h j hk

)
√
1 + |dh|2gρ

,

(58)

and the trace of K with respect to the induced metric on � is given by

tr� K = ḡi j K (ei , e j ) = ḡi j (Ki j + 2hi Kρ j + hi h j Kρρ). (59)

Note that all quantities in the Eqs. (58) and (59) are computed at the point with Fermi
coordinates (u, ρ) = (u, h(u)).

We may now rewrite the Jang equation H� − tr� K = 0 in terms of the height
function as follows.

Proposition 6.5. The height function h satisfies the equation

ai j∂i∂ j h + bk∂kh = c, (60)

with the coefficients given by

ai j = ḡi j

√
1 + |dh|2gρ

, bk = − ḡi j (ρ)
k
i j√

1 + |dh|2gρ

− 2ḡik Kiρ,

c = ḡi j

⎛
⎝− (Aρ)i j + 2(Aρ)

k
i h j hk√

1 + |dh|2gρ

+ Ki j + hi h j Kρρ

⎞
⎠ ,

where (ρ)
k
i j are the Christoffel symbols of the metric gρ , and ḡi j is given by (57).

Applying standard elliptic theory and rescaling technique to (60) we will obtain our
a posteriori estimates for the height function. It will be convenient to use the following
definition (see e.g. [Bar86,CD03,Mey63]).
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Definition 6.6. Let B be a closed ball in R
n with center at the origin. For every k ∈

{0, 1, 2, . . .}, α ∈ (0, 1) and τ ∈ R we define the weighted Hölder space Ck,α
τ (Rn \ B)

as the collection of f ∈ Ck,α
loc (R

n \ B) with

∑
|I |≤k

sup
x∈Rn\B

|x ||I |+τ |(∂(I ) f )(x)| + sup
x∈Rn\B

|x |k+τ+α sup
4|x−y|<|x |

|∂k f (x)− ∂k f (y)|
|x − y|α < ∞.

Remark 6.7. This definition extends in a standard way (see e.g. [EHLS16, Definition 1])
to define the weighted Hölder space Ck,α

τ (M) on a Ck manifold M which outside of a
compact set is diffeomorphic to Rn \ B as well as to the case of tensor bundles on M . In
what follows, we will write Ck,α

τ instead of Ck,α
τ (M) whenever the context is clear and

denote by Ok,α(r−τ ) a tensor in the weighted Hölder space Ck,α
τ .

Proposition 6.8. The height function h satisfies h = O2,α(r−2+ε) and |∂∂∂h| =
Oα(r−4+ε) for some α ∈ (0, 1).

Remark 6.9. The positive constant εmay be assumed to be arbitrarily small by choosing
an appropriate r0 > 0 in Lemma 3.5 and a sufficiently small β > 0 in the proof below.
Since we are not interested in the explicit form of ε, in what follows we will mostly let
ε > 0 denote a generic constant possessing the above properties.

Proof. We prove the proposition by completing the following steps.
Proving that ∂h = O(r−2+ε). From Lemma 6.4 we know that h = O(r−2+ε),

∂h = O(r−1+ε), ∂∂h = O(1). Consequently, Proposition 6.1 implies that ai j is bounded
in C1 norm, that bk is bounded, and that the equation is uniformly elliptic. It is also clear
that

c = −Hρ + trgρ K + O(|∂h|2), (61)

where Hρ is the mean curvature of �ρ .
In order to estimate the coefficient c more accurately, recall that Aρ satisfies the

Mainardi equation

−∂ρ(Aρ)
i
j + (Aρ)

i
k(Aρ)

k
j = Ri

ρρ j ,

see “Appendix C” for details. Taking the trace, we obtain

∂ρ Hρ = Ric(∂ρ, ∂ρ) + |Aρ |2.

Differentiating with respect to ρ one more time, we get

∂2ρρ Hρ = 2∂ρ(Aρ)
i
k(Aρ)

k
i + ∂ρRic(∂ρ, ∂ρ)

= 2(Aρ)
i
l (Aρ)

l
k(Aρ)

k
i − 2Ri

ρρk(Aρ)
k
i + ∂ρRic(∂ρ, ∂ρ).

Since ∇∂ρ ∂ρ = 0, we have ∂ρRic(∂ρ, ∂ρ) =
(∇∂ρRic

)
(∂ρ, ∂ρ). Consequently,

|∂2ρρ Hρ | ≤ 2|Aρ |3 + 2|Aρ ||R| + |∇Ric|,
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which is bounded for all ρ ∈ [0, ρ0] by Proposition 6.1 and by our assumptions on the
initial data. As a consequence, by Lemma D.1, for ρ = h(u) = O(r−2+ε) we obtain

Hρ = H0 + (∂ρ Hρ)|ρ=0ρ + O(ρ2)

= H�− +
(
Ric(ν−, ν−) +

∣∣A�− ∣∣2) ρ + O(r−4+ε)

= H�− + O(r−4+ε).

We also need to estimate trgρ K . For this we note that

trgρ K = trĝ K − Kρρ.

Again, in the view of ∇∂ρ ∂ρ = 0 we have

∂ρ(tr
gρ K ) = ∂ρ(tr

ĝ K )− (∇∂ρ K )(∂ρ, ∂ρ)

and

∂2ρρ(tr
gρ K ) = ∇∂ρ∇∂ρ (tr

ĝ K )− (∇∂ρ∇∂ρ K )(∂ρ, ∂ρ).

In particular, we see that ∂2ρρ(tr
gρ K ) is bounded for any ρ ∈ [0, ρ0]. As a consequence,

using the asymptotic properties of K (see Sect. 2), we obtain

trgρ K = trg0 K + ∂ρ(tr
gρ K )|ρ=0ρ + O(ρ2)

= tr�− K +
(
∇ν−(tr

ĝ K )− (∇ν− K
)
(ν−, ν−)

)
ρ + O(ρ2)

= tr�− K + O(r−4+ε).

Recall now that �− is a graphical hypersurface such that (10) and (11) hold. It follows
from (9) that H�− − tr�− K = O(r−4+ε), which implies

c = O(r−4+ε) + O(|∂h|2) = O(r−2+ε). (62)

Applying elliptic regularity in the balls of fixed radius followed by Sobolev embed-
ding we conclude from (60) that |h|C1,α(B2(p)) = O(r(p)−2+ε) for any p ∈ �− with
sufficiently large r(p). The estimate ∂h = O(r−2+ε) follows.

Proving that h = O2,α(r−2+ε). Note that interior Schauder estimates and a standard
bootstrap argument, in the view of our assumptions on the initial data and Lemma 6.1,
yield |h|C3,α(B3/2(p)) = O(r(p)−2+ε). In order to improve this estimate we fix a point

p0 ∈ �− with asymptotically Euclidean coordinates u0 = (u1
0, u2

0, u3
0) and define the

coordinates ũ = u−u0
σ

, where σ = r0/2 for r0 = r(u0) = |u0|. In terms of ũ, our
equation becomes

ai j ∂̃i ∂̃ j h + σbk ∂̃kh = σ 2c, (63)

where ∂̃i = ∂ũi for i = 1, 2, 3. We will consider this equation in U3/2 := {|ũ| < 3/2}.
We will use the notation UR = {|ũ| < R} throughout the proof.

Recall that the coefficients ai j , bk and c of the equation (60) are computed at the
point (u, ρ) = (u, h(u)), so the chain rule must be applied whenever these coefficients
are differentiated with respect to ui , i = 1, 2, 3. For instance, in the case of ai j we have

∂k(a
i j (u, h(u))) = (∂kai j + ∂ρai j∂kh)(u, h(u)), (64)
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where

∂kai j + ∂ρai j∂kh = ∂k(gρ)
i j + ∂ρ(gρ)

i j∂kh + O(r−4+ε)

= ∂k(g0)
i j + O(r−2+ε)

= O(r−2+ε)

in the view of the above estimate for h, Proposition 6.1 and Lemma D.1. It follows that
maxU3/2 |∂̃kai j | = O(r−1+ε

0 ).
Let bk

1 = −2ḡk j Kρ j and bk
2 = −ai j (ρ)

k
i j so that bk = bk

1 + bk
2. In order to estimate

the C0,β(U3/2)-norm of bk
1 we first note that

∂ρ(dt (∂ρ)) = (∇∂ρ dt)(∂ρ) + dt (∇∂ρ ∂ρ) = 0,

hence (dt (∂ρ))(u, ρ) = (dt (∂ρ))(u, 0) = (dt (ν−))(u). In the view of Lemma D.1 we
then have

K (∂ρ, ∂ j ) = ĝ(∂ρ, ∂ j )− dt (∂ρ)dt (∂ j ) + (K − g)(∂ρ, ∂ j )

= −dt (ν−)dt (∂ j ) + (K − g)(∂ρ, ∂ j )

= O(r−1)

(65)

where we have also used the fact that r(p) and r(p−) are comparable, cf. the proof of
Corollary 6.3. It follows that bk

1 = O(r−1). Furthermore, using (65), we also obtain

∂ρ K (∂ρ, ∂ j ) = (∇∂ρ K )(∂ρ, ∂ j ) + K (∂ρ,∇∂ρ ∂ j )

= −Kρk(Aρ)
k
j + O(r−4)

= O(r−1).

Similarly, differentiating (65) and using Proposition 6.1, Lemma D.1, and the fact that
∇∂l ∂ j = (ρ)

k
l j∂k where (ρ)

k
l j = (0)

k
l j + O(r−2+ε) = O(r−2+ε) we conclude that

∂l K (∂ρ, ∂ j ) =− ∂l(dt (ν−))dt (∂ j )− dt (ν−)dt (∇∂l ∂ j )

+ ∇∂l (K − g)(∂ρ, ∂ j )− (K − g)(∇∂l ∂ρ, ∂ j )− (K − g)(∂ρ,∇∂l ∂ j )

=O(r−2).

Applying the chain rule as in (64), we conclude that maxU3/2 |∂̃lbk
1| = O(r−1

0 ).

A similar argument shows that bk
2 = O(r−2+ε) and ∂lbk

2 = O(r−2+ε) hence ∂̃lbk
2 =

O(r−1+ε
0 ) on U3/2. This gives us the estimate

σ |bk
2(x̃)− bk

2(ỹ)|
|x̃ − ỹ|β = σ

|bk
2(x̃)− bk

2(ỹ)|β
|x̃ − ỹ|β |bk

2(x̃)− bk
2(ỹ)|1−β

≤ Cr1+(−1+ε)β+(−2+ε)(1−β)
0

= Cr−1+ε+β
0

(66)

for x̃, ỹ ∈ U1. Hence

‖σbk
2‖C0,β (U3/2)

= O(r−1+ε+β
0 ).
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Further, in the view of ∂h = O(r−2+ε) the estimate (62) improves and we obtain
c = O(r−4+2ε). Combining the formulas that we obtained when proving the estimate
∂h = O(r−2+ε) with Lemma D.1 and (9), we also find that

∂l c =− ∂l(Hρ − trgρ K ) + O(r−4+ε)

=− ∂l(H�− − tr�− K )− ∂l

(
Ric(ν−, ν−) +

∣∣A�− ∣∣2) ρ

+ ∂l

(
∇ν−(tr

ĝ K )− (∇ν− K
)
(ν−, ν−)

)
ρ + O(r−4+2ε)

=O(r−4+2ε)

and

∂ρc = −∂ρ(Hρ − trgρ K )|ρ=0 + O(r−2+ε) = O(r−2+ε).

Applying the chain rule as in (64) and estimating as in (66) we find that

‖σ 2c‖C0,β (U3/2)
= O(r−2+2ε+β

0 ).

We are now in a position to apply interior Schauder estimates which gives

‖h‖C2,β (U5/4)
= O(r−2+2ε+β

0 ).

Changing back to the unrescaled coordinates u = (u1, u2, u3), the estimate follows
up to redefining ε.

Proving that |∂∂∂h| = Oα(r−4+ε). Recall that maxU3/2 |∂̃kai j | = O(r−1+ε
0 ) and that

the second derivatives of ai j with respect to unrescaled coordinates uk are bounded. Es-
timating as in (66) we conclude that ‖ai j‖C1,β (U5/4)

= O(r−1+ε
0 ). Further, in the view of

h = O2(r−2+ε) we have ∂lbk
2 = O(r−3+ε). Again, the second derivatives of bk

2 with re-
spect to unrescaled coordinates are bounded so it follows that ‖σbk

2‖C1,β (U5/4)
is bounded

along the lines of (66). Furthermore, one can check that the second order derivatives
of bk

1 in the unrescaled coordinates are of order O(r−3) which implies boundedness of
‖σbk

1‖C1,β (U5/4)
. Finally, using the earlier estimate ∂l c = O(r−4+ε) and the boundedness

of |∂∂c| we obtain

‖σ 2c‖C1,β (U5/4)
= O(r−1+ε

0 )

up to redefining ε. The desired estimate follows by applying interior Schauder estimates
and changing back to the unrescaled coordinates. ��
Remark 6.10. Note that the above method does not allow us to prove the expected es-
timate |∂∂∂h| = Oα(r−5+ε) due to the fact that the estimate ∂l c = O(r−4+ε) cannot
be improved to ∂l c = O(r−5+ε) unless we include more terms in the Taylor expansion.
At the same time, a much weaker estimate |∂∂∂h| = Oα(r−2+ε) would suffice for our
purposes, as one can see by inspecting the proofs below.
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Corollary 6.11. The induced metric ḡ on the Jang graph is asymptotically Euclidean
such that

ḡ = g�− + O2,β(r−2+ε). (67)

In particular, the ADM masses of the metrics ḡ and g�− are equal:

M(ḡ) = M(g�−) = α = 2E . (68)

Proof. We perform the computation in the asymptotically Euclidean coordinate chart�
as described in Lemma D.2. Let e = ḡ − g�− . Using h = O2(r−2+ε) we compute as in
the proof of Proposition 6.8 that

ei j = (gρ)i j − (g0)i j + hi h j = ∂ρ(gρ)i j |ρ=0 ρ + O(r−4+ε) = O(r−2+ε),

where ∂ρ(gρ)i j = −2(Aρ)
k
i (gρ)k j . Similarly, in the view of Lemma D.1 we obtain

∂l ei j = ∂l
(
(gρ)i j − (g0)i j

)
+ ∂ρ

(
(gρ)i j − (g0)i j

)
hl + O(r−7+ε)

= ∂l
(
∂ρ(gρ)i j |ρ=0

)
ρ + O(r−3+ε)

= −2∂l(A0)i jρ + O(r−3+ε)

= O(r−3+ε).

Recalling ∂∂∂h = O(r−4+ε), by Lemma D.1 we also have

∂k∂l ei j = ∂k∂l
(
(gρ)i j − (g0)i j

)
+ ∂ρ∂l

(
(gρ)i j − (g0)i j

)
hk

+ ∂k∂ρ
(
(gρ)i j − (g0)i j

)
hl + ∂2ρ

(
(gρ)i j − (g0)i j

)
hlhk

+ ∂ρ
(
(gρ)i j − (g0)i j

)
∂k∂l h + O(r−7+ε)

= −2∂k∂l(A0)i jρ − 2∂l(A0)i j hk − 2∂k(A0)i j hl + O(r−4+ε)

= O(r−4+ε).

It follows that ḡ = g�−+O2(r−2+ε). In particular, this implies thatM(ḡ) = M(g�−)
so (68) follows by Lemma D.2.

To complete the proof it remains to show that ∂k∂l ei j = Oβ(r−4+ε). For this, we
write ei j = (ei j − hi h j ) + hi h j . The third order coordinate derivatives of the first term
are bounded and the second order coordinate derivatives fall off as O(r−4+ε), see the
above computation. Arguing as in the the proof of Proposition 6.8), we conclude that
∂k∂l(ei j − hi h j ) = Oβ(r−4+ε). That ∂k∂l(hi h j ) = Oβ(r−4+ε) is a direct consequence
of Proposition 6.8. ��

We have now all ingredients ready for proving (47).
Proof that f = √

1 + r2 + α ln r + ψ(θ, ϕ) + O3(r−1+ε).
We write

f =
√
1 + r2 + α ln r + ψ(θ, ϕ) + η(r, θ, ϕ),
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where η = O(r−1+ε). On the one hand, (67) implies that

ḡrr = grr + (∂r f−)2 + O(r−2+ε)

= 1

1 + r2
+

(
r√

1 + r2
+

α

r
+ O(r−2+ε)

)2

+ O(r−2+ε)

= 1

1 + r2
+

(
r√

1 + r2
+

α

r
+ O(r−2+ε)

)2

.

On the other hand, we have

ḡrr = grr + (∂r f )2 = 1

1 + r2
+

(
1√

1 + r2
+

α

r
+ η′r

)2

.

It follows that η′r = O(r−2+ε). Note that when comparing the two expressions we have
tacitly relied on the fact that r(p) = r(p−) + O(r(p−)−2+ε).

With this estimate at hand, one finds that η′μ = O(r−1+ε) by computing the compo-
nents of ḡrμ in two different ways as discussed above.

Estimates for the second and third order derivatives follow in a similar way. ��

7. The Conformal Structure of the Jang Graph

As in Sect. 6, we denote by (�, ḡ) the graphical component of the geometric solution
of the Jang equation. The graphing function is denoted by f , and it is assumed that its
domain U contains the region {r ≥ r0}. The goal of this section is to show that� admits
a metric satisfying the conditions of positive mass theorem for asymptotically Euclidean
manifolds, that is, a complete metric with nonnegative scalar curvature. This metric is
constructed mostly following [SY81b] (see also [Eic13]), although we need to take care
of some additional complications arising from the fact that ḡ− δ has a somewhat slower
fall-off rate as r → ∞ in our setting.

In this section 0 < ε < 1 and C > 0 are generic constants that may vary from line
to line. The particular value is not important.

Proposition 7.1. The metric ḡ = g + d f ⊗ d f on U ⊂ M is complete and C2,β
loc . Its

scalar curvature satisfies

Scalḡ = 2�S
2
ψ

r3
+ O(r−4+ε) (69)

and the integral inequality
∫

�

(
Scalḡϕ2 + 2|dϕ|2ḡ

)
dμḡ ≥

∫

�

(
2(μ− |J |g)ϕ2 + |A − K |2ḡϕ2

)
dμḡ (70)

holds for ϕ ∈ C1
c (�).

As a consequence, if the strict dominant energy condition holds near ∂U then the
spectrum of the operator−�γi + 1

8Scal
γi is positive on each connected component ∂Ui of

∂U, i = 1, . . . , l. In particular, each of (∂Ui , γi := g|∂Ui
), i = 1, . . . , l, is topologically

a sphere.
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Proof. We recall that the scalar curvature of (�, ḡ) can be computed using the Schoen
and Yau identity [SY81b, (2.25)]:

Scalḡ = 2(μ− J (w)) + |A − K |2ḡ + 2|q|2ḡ − 2 divḡ q, (71)

where the 1-form q is as defined in Lemma D.1 and the vector field w is such that
|w|g < 1. Since f satisfies (47) the asymptotics of all terms in the right hand side of
(71) can be made precise using Lemma D.1 and Definition 2.3. In particular, we see that
divḡ q = −r−3�S

2
ψ + O(r−4), while the remaining terms are of order O(r−4+ε) or

lower. This proves (69).
It is also straightforward to check that (70) holds by integrating (71) against ϕ2, where

ϕ ∈ C1
c (�), and using a simple estimate

−
∫

�

2ϕ2 divḡ q dμḡ =
∫

�

4ϕq(∇ ḡϕ) dμḡ ≥ −
∫

�

(
2|q|2ḡϕ2 + 2|dϕ|2ḡ

)
dμḡ,

together with the fact that |w|g < 1.
The second part of the claim follows from the same separation of variables argument

as in [SY81b, p. 254-255]. Suppose that 2(μ− |J |g) > λ > 0 near ∂U , then using the
fact that � has ends that are C3,α asymptotic to (∂Ui × R, γi + dt2), i = 1, . . . , l, we
obtain from (70) the inequality

∫

∂U×R

(
Scalγ ϕ2 + 2|dϕ|2

γ+dt2

)
dμγ+dt2 ≥ λ

∫

∂U×R

ϕ2 dμγ+dt2 , (72)

where γ = g|∂U . Now let ϕ = ξχ where ξ : ∂U → R and χ : R → R is a cutoff
function such that χ(t) = 1 for |t | ≤ T , χ(t) = 0 for |t | ≥ T + 1, and |∂tχ | ≤ 2. For
this choice of ϕ in (72) we obtain

∫

∂U
ξ2Scalγ dμγ

∫

R

χ2dt + 2
∫

∂U
|dξ |2γ dμγ

∫

R

χ2dt + 8
∫

∂U
ξ2 dμγ

≥ λ

∫

∂U
ξ2 dμγ

∫

R

χ2 dt.

Dividing by
∫
R
χ2dt and letting T → ∞ we get

∫

∂U
ξ2Scalγ dμγ + 2

∫

∂U
|dξ |2γ dμγ ≥ λ

∫

∂U
ξ2 dμγ .

Applying this with ξ that vanishes on all components of ∂U except for ∂Ui shows that
for every i = 1, . . . , l the operator −�γi + 1

8Scal
γi on ∂Ui has positive spectrum. In

particular, if ξ = 1 on ∂Ui and zero elsewhere, we conclude by Gauss-Bonnet theorem
that ∂Ui is topologically a sphere. ��
Proposition 7.2. Let f : U → R be as described in the beginning of this section.
Assume that U  = M, that the dominant energy condition μ ≥ |J |g holds on U and that
this inequality is strict near ∂U. For every sufficiently large number T0 that is a regular
value for both f and − f there exists a complete Riemannian metric g̃ on � ⊂ M × R

such that
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(1) There is a compact set � ⊂ � such that its complement � \ � has finitely many
components C1, . . . ,Cl and N. The induced metric on N is the asymptotically
Euclidean metric g̃|N = ḡ|N , and each (Ci , g̃) is isometric to a half-cylinder (∂Ui ×
(T0,∞), γi × dt2), where ∂Ui , i = 1, . . . , l, are the connected components of ∂U.
The metric g̃ is uniformly equivalent to ḡ on all of �.

(2) For every ϕ ∈ C1
c (�) we have

∫

�

(
|dϕ|2g̃ + 1

8Scal
g̃ϕ2

)
dμg̃ ≥ 1

8

∫

N
|A − K |2ḡϕ2 dμḡ + 3

4

∫

�

|dϕ|2g̃ dμg̃.

(73)

Proof. Just as in [SY81b] wemay slightly perturb themetric ḡ so that the asymptotically
cylindrical ends�∩{|t | > T0} for a sufficiently large T0 > 0 become exactly cylindrical.
Sinceμ−|J |g > 0 near ∂U , in the view of (71) wemay ensure that the perturbed metric
g̃ satisfies

1
2Scal

g̃ − 1
2 |A − K |2ḡ − |q|2g̃ + divg̃ q ≥ 1

2 (μ− J (w)) ≥ 1
2 (μ− |J |g). (74)

Integrating this against ϕ2 with respect to the measure dμg̃ and arguing as in the proof
of Proposition 7.1 the claim follows in the view of the dominant energy condition. ��

From now on we will refer to N as an asymptotically Euclidean end of (�, g̃) and
to C1, . . . ,Cn as its cylindrical ends. If U = M then we take g̃ = ḡ.

Remark 7.3. Note that in the asymptotically Euclidean setting of [SY81b] and [Eic13]
the inequality (73) is satisfied not only for ϕ ∈ C1

c (�) but for all ϕ ∈ C1(�) such that
(spt ϕ) ∩ Ci , i = 1, . . . , n, is compact. In particular, it applies to ϕ vanishing outside
of a compact set in the asymptotically cylindrical ends and satisfying ϕ → 1 in the
asymptotically Euclidean end of�. This is not the case in the asymptotically hyperbolic
setting, as we merely have Scalg̃ = O(r−3) by (69). This becomes important when
analyzing the asymptotic behavior of certain conformal factors, see Proposition 7.7
below.

We start with the metric g̃ with exactly cylindrical ends on�, as described in Propo-
sition 7.2, and deform it into the metric satisfying the conditions of the positive mass
theorem for asymptotically Euclidean manifolds that was proven in [SY79]. For this we
essentially follow the same steps as in [SY81b] and [Eic13], apart from some adjustments
needed to deal with the fact that the asymptotics of the asymptotically Euclidean metric
ḡ are slightly worse than in the setting of [SY81b] and [Eic13]. Describing how the
mass changes in this deformation process requires careful bookkeeping. The argument
proceeds as follows:

(1) In Proposition 7.4 we make a conformal change to zero scalar curvature in the
cylindrical ends. More specifically, we construct a conformal factor � > 0 that
“conformally closes” the cylindrical endsCi , i = 1, . . . , l, and yields an incomplete
asymptotically Euclidean metric g̃� = �4g̃ with l conical singularities. We have
g̃� = g̃ = ḡ in N , in particular, the mass of the metric is preserved.

(2) In Proposition 7.6 we construct a conformal factor u > 0 such that the metric
g̃u� = u4g̃� = (u�)4g̃ has zero scalar curvature everywhere. This conformal
transformation may change the mass, in which case the mass of g̃u� is at least a
half of the mass of g̃, see Proposition 7.7.
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(3) In Proposition 7.8 the metric g̃u� is deformed to a metric ĝ which is asymptotically
Schwarzschildean in the sense of Definition 2.5 and has zero scalar curvature.
The mass changes arbitrarily little. This step is not needed in the asymptotically
Euclidean setting of [SY81b] or [Eic13].

(4) Finally, in Proposition 7.9 we construct a conformal factor that we will later use for
“opening up” the conformally compactified asymptotically Euclidean ends while
changing themass arbitrarily little. Aswewill see in Sect. 8, this deformation results
in a complete metric with nonnegative scalar curvature to which the positive mass
theorem of [SY79] can be applied.

Proposition 7.4. There is a conformal factor � > 0 such that g̃� := �4g̃ has vanishing
scalar curvature Scalg̃� = 0 on each cylindrical end. Further, for each compactly
supported ϕ ∈ C1(�) we have∫

�

(
|dϕ|2g̃�

+ 1
8Scal

g̃�ϕ2
)

dμg̃� ≥ 3
4

∫

�

�−2|d(ϕ�)|2g̃�
dμg̃� + 1

8

∫

N
|A − K |2ḡϕ2 dμḡ.

(75)

Proof. Let (Ci , g̃) = (∂Ui × (T0,∞), γi + dt2) be one of the exact cylindrical ends of
(�, g̃). (If (Ci , g̃) = (∂Ui × (−∞,−T0), γi + dt2), replace t by −t in the argument
below.)Let 0 < φi ∈ C2,β(∂Ui )be thefirst eigenfunction of the operator−�γi +1

8Scal
γi ,

so that

−�γi φi +
1

8
Scalγi φi = λiφi

for λi > 0. If we set�i = e−
√
λi tφi , then the scalar curvature of the metric�4

i (γi +dt2)

vanishes on ∂Ui × R. Let si = 1
2
√
λi

e−2
√
λi t , then (Ci , �

4
i (γi + dt2)) is isometric to

(∂Ui ×(0, 1
2
√
λi

e−2
√
λi T0), φ4

i (4λi s2i γi +ds2i )), in particular, it is uniformly equivalent to

the cone (∂Ui × (0, 1
2
√
λi

e−2
√
λi T0), s2i γi +ds2i ). Fix a function� > 0 such that� = �i

on Ci and � = 1 on N , and let g̃� := �4g̃. The scalar curvature Scalg̃� vanishes on
each cylindrical end of �.

In order to obtain (75), we first replace ϕ by ϕ� in (73), which gives∫

�

(
Scalg̃(ϕ�)2 + 2|d(ϕ�)|2g̃

)
dμg̃ ≥

∫

N
|A − K |2ḡϕ2 dμḡ.

Further, we note that∫

�

Scalg̃(ϕ�)2 dμg̃ =
∫

�

(8��g̃� + Scalg̃��6)ϕ2 dμg̃

where ∫

�

Scalg̃��6ϕ2 dμg̃ =
∫

�

Scalg̃�ϕ2 dμg̃�

and

8
∫

�

ϕ2��g̃� dμg̃ = −8
∫

�

(
ϕ2|d�|2g̃ + 2ϕ� g̃(∇ g̃�,∇ g̃ϕ)

)
dμg̃

= −8
∫

�

(
|d(ϕ�)|2g̃ −�2|dϕ|2g̃

)
dμg̃

= −8
∫

�

(
�−2|d(ϕ�)|2g̃�

− |dϕ|2g̃�

)
dμg̃� .
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Similarly, we have

2
∫

�

|d(ϕ�)|2g̃ dμg̃ = 2
∫

�

�−2|d(ϕ�)|2g̃�
dμg̃� .

Summing up, we obtain (75). ��
Following [Eic13] we may now introduce a new distance function s = s(x) such that

0 < s ∈ C3,β(�), s = r on N , and s = si on Ci . When U = M we just set s = r
everywhere on �. One may now add a point at infinity to each of the asymptotically
cylindrical ends of (�, g̃) and extend the new distance function s to these virtual singular
points by zero. In this way each cylindrical end of (�, g̃) corresponds to a conical
singularity of (�, g̃�).

Remark 7.5. These conical singularities have vanishing harmonic capacity, as explained
in [Eic13]: Take a smooth cut off functionχε such that 0 ≤ χε ≤ 1,χε = 0 for 0 ≤ s ≤ ε,
χε = 1 for s ≥ 2ε, and |∇ g̃�χε| ≤ Cε−1 where C does not depend on ε. Then

∫

�

|dχε |2g̃�
dμg̃� = O(ε).

Proposition 7.6. There exists u ∈ C2,β
loc (�) such that

−�g̃� u + 1
8Scal

g̃� u = 0 on �, (76)

u → 1 as r → ∞, and c−1 ≤ u ≤ c for some c ≥ 1. As a consequence, the metric
g̃u� := u4g̃� has zero scalar curvature.

Proof. Here we essentially repeat a part of the proof of [Eic13, Proposition 12] which in
turn is based on [SY81b, Lemma 4], for the reader’s convenience. Let σ0 be as small as
to ensure that Scalg̃� = 0 for 0 < s < 2σ0. For σ < σ0 consider a sequence of Dirichlet
problems

−�g̃� vσ + 1
8Scal

g̃� vσ = − 1
8Scal

g̃� in {σ < s < σ−1},
vσ = 0 on {s = σ } ∪ {s = σ−1}.

The solution vσ exists and is unique as (75) implies that the respective homogeneous
problem only has a zero solution. Extending each vσ by zero to be a compactly supported
Lipschitz function on � we obtain

(∫

{s≥σ0}
|vσ |6 dμg̃�

)1/3

≤ C

(∫

{s≥σ0}
|vσ�|6 dμg̃�

)1/3

≤ C
∫

{s≥σ0}
|d(vσ�)|2g̃�

dμg̃�

≤ C
∫

{s≥σ0}
�−2|d(vσ�)|2g̃�

dμg̃�

≤ C
∫

{σ≤s≤σ−1}

(
|dvσ |2g̃�

+ 1
8Scal

g̃� v2σ

)
dμg̃�

= C
∫

{σ≤s≤σ−1}
vσ

(
−�g̃� vσ + 1

8Scal
g̃� vσ

)
dμg̃�
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≤ C
∫

{s≥σ0}
|Scalg̃� ||vσ | dμg̃�

≤ C

(∫

{s≥σ0}
|Scalg̃� |6/5 dμg̃�

)5/6 (∫

{s≥σ0}
|vσ |6 dμg̃�

)1/6

,

where the constant C > 0 may vary from line to line, but is independent of σ . In the first
line we relied on the fact that � is bounded away from zero on {s ≥ σ0}. In the second
line we used the Sobolev inequality in the form of [Eic13, Lemma 18]. The third line
is a consequence of the fact that � is bounded from above on {s ≥ σ0}. In the fourth
line we used the fact that vσ vanishes outside of {σ ≤ s ≤ σ−1} and applied (75) with
ϕ = vσ . In the fifth line we performed integration by parts. In the sixth line we made use
of the equation that vσ satisfies together with the fact that Scalg̃� = 0 for 0 ≤ s ≤ 2σ0.
We conclude by applying the Hölder inequality in the last line.

Since Scalg̃� = 0 for 0 ≤ s ≤ 2σ0 and |Scalg̃� |6/5 = O(r−18/5) in N , it follows
that vσ are uniformly bounded in L6 on {s ≥ σ0}. Applying elliptic regularity in the
balls of fixed radius followed by the Sobolev embedding it follows that |vσ | < C on
{s ≥ 2σ0} for a constant C > 0 independent of σ . Further, note that vσ are harmonic on
{σ ≤ s ≤ 2σ0} and vanish on {s = σ }. Since harmonic functions attain their maximum
and minimum on the boundary, it follows that |vσ | < C on {σ ≤ s ≤ 2σ0} as well. All
in all, we obtain the uniform bound |vσ | < C on {σ ≤ s ≤ σ−1}. A standard diagonal
subsequence extraction argument gives a subsequence of uσ := vσ + 1 that converges
to a solution u ∈ C2,β

loc of (76) as σ ↘ 0. Note that the above discussion shows that
|uσ | < c for some c > 1.

In order to show that u is bounded away from zero, we will first show that uσ > 0 on
{σ < s < σ−1}. From the definition of vσ it is clear that this is true in a neighborhood
of the boundary of this set. Let ε > 0 be a sufficiently small regular value of −uσ , then
min{uσ +ε, 0} is a Lipschitz continuous function with support in {σ < s < σ−1}. Using
it as a test function in (75) we obtain

3
4

∫

{uσ<−ε}
�−2|d((uσ + ε)�)|2g̃�

dμg̃�

≤
∫

{uσ<−ε}

(
|d(uσ + ε)|2g̃�

+ 1
8Scal

g̃� (uσ + ε)2
)

dμg̃�

≤
∫

{uσ<−ε}
(uσ + ε)

(
−�g̃� (uσ + ε) + 1

8Scal
g̃� (uσ + ε)

)
dμg̃�

≤ ε

∫

{uσ<−ε}
1
8Scal

g̃� (uσ + ε) dμg̃� ,

where we used the equation that uσ satisfies in the last line. Letting ε ↘ 0, we see that
�uσ = const on {uσ < 0}, hence {uσ < 0} = ∅. As uσ = 1 on {s = σ } ∪ {s = σ−1}
we have uσ > 0 by Harnack theory, thus u ≥ 0 everywhere on �. Combining the fact
that the subsequential limit v of vσ satisfies

∫
{s≥σ0} |v|6 dμg̃� < C with standard elliptic

theory for the equation that v satisfies we conclude that u → 1 as r → ∞. Again, by
Harnack theory it follows that u > 0 on �. Since uσ are harmonic on {σ < s < 2σ0}
and uniformly approach u > 0 on a neighborhood of {s = 2σ0}, it follows that they are
uniformly bounded away from zero on {σ < s < 2σ0} by some constant independent
of σ . Combining this with the fact that u > 0 is bounded away from zero for large r , we
conclude that u > c−1 for some c > 1 everywhere in �, which completes the proof. ��
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We recall that (N , g̃�) is (a part of) the graphical component of the geometric solution
of the Jang equation and that the graphing function f : U → R satisfies

f (r, θ, ϕ) =
√

r2 + 1 + α ln r + ψ(θ, ϕ) + O3(r
−1+ε)

as r → ∞, where α = 2E is twice the energy of the initial data set (M, g, K ) and the
function ψ : S2 → R defined by the equation (11) is such that

∫
S2

ψ dμσ = 0. We shall
now see how these quantities enter the asymptotics of the conformal factor u constructed
in Proposition 7.6.

Proposition 7.7. Let u be as in Proposition 7.6. Then

u = 1 + (A + 1
4ψ)r−1 + O2,β(r−2+ε) in N (77)

where the constant A satisfies A ≤ −α
4 . Consequently, g̃u� := u4g̃� = (u�)4g̃ is a

(possibly incomplete) asymptotically Euclidean metric, and its mass satisfiesM(g̃u�) ≤
α/2 = E.

Proof. By Corollary 6.11 we have ḡ = g�− + O2,β(r−2+ε). Recalling (49) it is straight-

forward to verify that Scalg�− = 2�S2ψ

r3
+ Oβ(r−4+ε), either by a direct computation

or using the full version of the Schoen and Yau identity [SY81b, (2.25)]. It follows that

Scalḡ = 2�S2ψ

r3
+ Oβ(r−4+ε). If we now set u = 1+ 1

4ψ r−1 +u0, then as a consequence
of (76), we see that u0 in N satisfies the equation

�ḡu0 = 1
4r−3�S

2
ψ u0 + Oβ(r−4+ε).

A standard argument using the fact that is ḡ = δ + O2,β(r−1) and [Mey63, Theorem 2]
yields u0 = A r−1 + O2,β(r−2+ε), where A ∈ R, which implies (77).

Our goal now is to estimate the constant A from above. In contrast to [SY81b] and
[Eic13] we cannot use (75) for this purpose, see Remark 7.3. Instead we will work
directly with (74), and rely on the fact that u, as a consequence of (76), satisfies

Scalg̃ = 8(u�)−1�g̃(u�). (78)

In this case we have

4u��g̃(u�) + (u�)2 divg̃ q − 1
2 (u�)2|A − K |2ḡ − (u�)2|q|2g̃ ≥ 1

2 (u�)2(μ− |J |g),
which yields

divg̃(4u�d(u�) + (u�)2q)− 4|d(u�)|2g̃ − 2u�q(∇ g̃(u�))− (u�)2|q|2g̃
≥ 1

2 (u�)2|A − K |2ḡ + 1
2 (u�)2(μ− |J |g).

(79)

Applying Cauchy-Schwartz inequality in the left hand side we obtain

divg̃(4u�d(u�) + (u�)2q)− 3|d(u�)|2g̃ ≥ 1
2 (u�)2|A − K |2ḡ + 1

2 (u�)2(μ− |J |g).
(80)

We intend to integrate this inequality with respect to the measure dμg̃ on �, so we first
need to clarify why such an integration makes sense.
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Note that as a consequence of (71) and (78) in the asymptotically Euclidean end,
where � ≡ 1, we have

divg̃(4u�d(u�) + (u�)2q) = divḡ(4u du + u2q)

= 4|du|2ḡ + 2uq(∇ ḡu) + u2|q|2ḡ
+ 1

2u2|A − K |2ḡ + u2(μ− J (w))

= O(r−4+ε),

(81)

and all other terms in (80) are O(r−4+ε) in the asymptotically Euclidean end as well.4 In
the case when (�, g̃) has cylindrical ends all terms in the right hand side of (80) fall off
exponentially as t → ∞ as they all include � and since all other quantities appearing
in these terms are bounded. As for the left hand side of (80), we note that

| divg̃(4u�d(u�) + (u�)2q)|
= 4|d(u�)|2g̃ + 1

2 (u�)2|Scalg̃| + (u�)2| divg̃ q| + 2|u�q(∇ g̃(u�))|
≤ 5|d(u�)|2g̃ + (u�)2|q|2g̃ + 1

2 (u�)2|Scalg̃| + (u�)2| divg̃ q|
≤ 10�2|du|2g̃ + 10u2|d�|2g̃ + (u�)2|q|2g̃ + 1

2 (u�)2|Scalg̃| + (u�)2| divg̃ q|,

where we used the Cauchy-Schwartz inequality in the third and fourth line. Clearly, all
terms in the last line, except for possibly the first one, are integrable on {s ≤ σ0}. Thus,
in order to be able to integrate (80) we only need to show that

∫

{s≤σ0}
�2|du|2g̃ dμg̃ =

∫

{s≤σ0}
|du|2g̃�

dμg̃� < ∞. (82)

This has actually been explained in [Eic13, Proof of Proposition 12]. For the reader’s
convenience, we briefly recall this argument.

We have −�g̃� u + 1
8Scal

g̃� u = 0, where Scalg̃� ≡ 0 on {s ≤ σ0}. Consequently,
for any function ξ ∈ C1 that has compact support in {s ≤ σ } for 0 < σ ≤ σ0 we have

∫

{s≤σ }
du(∇ g̃� ξ) dμg̃� =

∫

{s=σ }
ξνg̃�

(u) dμg̃� , (83)

where νg̃�
is the outward pointing unit normal with respect to the metric g̃� . Applying

this identity with ξ = uχ2
ε for χε as in the Remark 7.5 and letting ε ↘ 0 the desired

bound (82) follows in the view of the L∞-bound on u. With this bound at hand, using
test functions ξ = uχε in (83), we also obtain

∫

{s<σ }
|du|2g̃�

dμg̃� =
∫

{s=σ }
u du(νg̃�

) dμg̃� . (84)

4 It is actually the main advantage of (80) that the terms with slow fall off arising from Scalg̃ and divg̃ q
in (74) are combined together in one quickly decaying term (81).
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As a consequence, integrating (80) over (�, g̃) and performing integration by parts,
we obtain

0 ≤ 1
2

∫

N
(u�)2(μ− |J |g) dμḡ + 1

2

∫

N
(u�)2|A − K |2ḡ dμḡ + 3

∫

�

|d(u�)|2g̃ dμg̃

≤
∫

�

divg̃(4u�d(u�) + (u�)2q) dμg̃

= lim
σ→0

∫

{s=σ−1}
(4u du + u2q)(νg̃) dμg̃ + lim

σ→0

∫

{s=σ }
(4u� d(u�) + (u�)2q)(νg̃) dμg̃

(85)

where νg̃ is the outward pointing unit with respect to g̃ normal to the domain {σ < s <

σ−1}. Using the exponential fall off of �, (84), and the finiteness of
∫
�
|du|2g̃�

dμg̃� it
is straightforward to check that

lim
σ→0

∫

{s=σ }
(4u� d(u�) + (u�)2q)(νg̃) dμg̃ = lim

σ→0

∫

{s=σ }
4�2u du(νg̃) dμg̃

= lim
σ→0

∫

{s=σ }
4u du(νg̃�

) dμg̃�

= lim
σ→0

∫

{s<σ }
4|du|2g̃�

dμg̃� = 0.

Further, using asymptotic expansions in the asymptotically Euclidean end and recalling
that

∫
S2

ψ dμσ = 0 we obtain

lim
σ→0

∫

{s=σ−1}
(4u du + u2q)(νg̃) dμg̃ = −

∫

S2
(4A + ψ + α) dμσ

= −(4A + α) vol(S2).

The desired estimate A ≤ −α/4 follows by (85).
Finally, we compute the mass of the asymptotically Euclidean metric g̃u� :

M(g̃u�) = M(u4ḡ)

= 1

16π
lim

R→∞

∫

{r=R}

(
divδ(u4ḡ)− d trδ(u4ḡ)

)
(∂r ) dμδ

= M(ḡ) +
1

16π
lim

R→∞

∫

{r=R}
4u3 (

ḡ(∇δu, ∂r )− (trδ ḡ) ∂r u
)

dμδ

= M(ḡ) +
1

16π
lim

R→∞

∫

{r=R}
(−8∂r u + o(r−2)) dμδ

= α + 2A

≤ α/2 = E,

where we used Corollary 6.11 in the last two lines. ��
While the metric g̃u� is asymptotically Euclidean with zero scalar curvature, it may

fail to satisfy the assumptions of the Riemannian positive mass theorem in [SY79],
since it might have conical singularities and since it does not approach the Euclidean
metric sufficiently fast. In the view of these potential issues, we first adapt a well-known
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construction from [SY81a] to “improve” the asymptotics of the metric (Proposition 7.8)
and then we “open up” the previously conformally closed cylindrical ends (Proposition
7.9). This results in a complete metric with nonnegative scalar curvature to which the
Riemannian positive mass theorem of [SY79] can be applied.

Proposition 7.8. For any sufficiently large R > 0 there exists a metric ĝ = ĝ(R) on �

such that

(1) For s ≥ 2R we have ĝ = v4gSchw where gSchw = (
1 + m

2r

)4
δ is the Schwarzschild

metric of the mass m = M(g̃u�). For s ≤ R we have ĝ = v4g̃u� .
(2) The scalar curvature of the metric ĝ = ĝ(R) is zero.
(3) The conformal factor v = v(R) ∈ C2,α

loc satisfies c−1 ≤ v ≤ c in � for a constant
c > 1 that is independent of R and v = 1+ar−1+O2,α(r−2) in N for a = a(R) ∈ R.
As a consequence, the metric ĝ = ĝ(R) is asymptotically Schwarzschildean in the
sense of Definition 2.5 with the mass M(ĝ) = M(g̃u�) + 2a. We also have

lim
R→∞ a(R) = 0.

Proof. Following [SY81a], we begin by splitting g̃u� into the “Schwarzschildean” part
and the “massless” part. That is, we write g̃u� = h +

(
1 + m

2r

)4
δ, where m = M(g̃u�),

so that the contribution of the symmetric 2-tensor h = O(r−1) to the mass of g̃u� is
zero. Let χ be a smooth cutoff function such that 0 ≤ χ ≤ 1,χ = 0 for s ≤ R,χ = 1 for
s ≥ 2R, |∇χ | ≤ c1R−1, and |∇∇χ | ≤ c2R−2 for some constants c1 and c2 independent
of R. We define a new metric

ǧ = g̃u� − χh = (1− χ)h +
(
1 + m

2r

)4
δ.

Note that Scalǧ = 0 for s ∈ (0, R] ∪ [2R,∞), since both g̃u� and gSchw = (
1 + m

2r

)4
δ

are scalar flat. Note also that Scalǧ = O(R−3).
Next step is to construct a conformal factor v such that the metric ĝ = v4ǧ has zero

scalar curvature everywhere. We fix σ0 > 0 and note that Scalǧ vanishes on {s ≤ 2σ0}
when R is sufficiently large. For each σ ∈ (0, σ0) we consider the mixed Dirichlet-
Neumann problem

−�ǧϕσ + 1
8Scal

ǧϕσ = 0 in {σ < s < σ−1} (86)

ϕσ = 0 on {s = σ−1} (87)

νǧ(ϕσ ) = 0 on {s = σ } (88)

where νǧ denotes the outward ǧ-unit normal to the domain {σ < s < σ−1}. Recalling
that Scalǧ = O(R−3), and using the Sobolev inequality in the form of [Eic13, Lemma
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18] on {s ≥ σ0}, we conclude that the solutions satisfy

8
∫

{σ≤s≤σ−1}
|dϕσ |2ǧ dμǧ = −

∫

{σ0≤s≤σ−1}
Scalǧϕ2

σ dμǧ

≤
(∫

{σ0≤s≤σ−1}
|Scalǧ|3/2 dμǧ

)2/3 (∫

{σ0≤s≤σ−1}
ϕ6
σ dμǧ

)1/3

≤ C R−1
(∫

{σ0≤s≤σ−1}
ϕ6
σ dμǧ

)1/3

≤ C R−1
∫

{σ0≤s≤σ−1}
|dϕσ |2 dμǧ

≤ C R−1
∫

{σ≤s≤σ−1}
|dϕσ |2 dμǧ,

where the constant C > 0 might vary from to line but remains independent of σ and R.
Choosing R > C in this estimate we see that ϕσ ≡ 0 is the only solution of (86)–(88).

Consequently, for each σ ∈ (0, σ0) there exists a unique solution ϕσ to the mixed
Dirichlet-Neumann problem

−�ǧϕσ + 1
8Scal

ǧϕσ = − 1
8Scal

ǧ in {σ < s < σ−1}
ϕσ = 0 on {s = σ−1}

νǧ(ϕσ ) = 0 on {s = σ }.
We extend each ϕσ by zero to a Lipschitz continuous function on {s ≥ σ }. Using the
Sobolev inequality [Eic13, Lemma 18], and the fact that Scalǧ vanishes on {s ≤ 2σ0}
we obtain that

C−1
(∫

{s≥σ0}
ϕ6
σ dμǧ

)1/3

≤ 8
∫

{s≥σ0}
|dϕσ |2ǧ dμǧ

=
∫

{σ≤s≤σ−1}
(−Scalǧφ2

σ − Scalǧφσ ) dμǧ

≤
(∫

{s≥σ0}
|Scalǧ|3/2 dμǧ

)2/3 (∫

{s≥σ0}
ϕ6
σ dμǧ

)1/3

+

(∫

{s≥σ0}
|Scalǧ|6/5 dμǧ

)5/6 (∫

{s≥σ0}
ϕ6
σ dμǧ

)1/6

≤ C1R−1
(∫

{s≥σ0}
ϕ6
σ dμǧ

)1/3

+ C2R−1/2
(∫

{s≥σ0}
ϕ6
σ dμǧ

)1/6

for constants C , C1 and C2 independent of σ and R. This shows that ‖ϕσ ‖L6({s≥σ0}) ≤
C R−1/2 for a constant C independent of R and σ . Arguing as in the proof of Propo-
sition 7.6 we conclude that ‖ϕσ‖L∞({s≥2σ0}) ≤ C R−1/2. This in combination with the
fact that ϕσ are harmonic in {σ < s < 2σ0} implies that |ϕσ | < C R−1/2 for the same
constant C > 0 in {σ < s < 2σ0} by a simple argument using the Harnack inequality.
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All in all, we obtain that ‖ϕσ‖L∞({σ<s<σ−1}) ≤ C R−1/2 for a constant C independent
of R and σ .

Let ϕ be a subsequential limit of ϕσ as σ ↘ 0. Then�ǧϕ− 1
8Scal

ǧ(ϕ + 1) = 0 in�

and c−1 ≤ ϕ +1 ≤ c for some constant c > 1 independent of R in the view of the above
uniform estimate for ϕσ . Note that ϕ is harmonic on {s ≥ 2R}, in which case a simple
asymptotic analysis as in the proof of Proposition 7.7 yields that ϕ = a r−1 + O2,β(r−2)

as r → ∞. To estimate the constant a = a(R), we first note that
∫
{s=σ0} νǧ(ϕ) dμǧ = 0

since each ϕσ is harmonic on {σ < s < σ0} and satisfies the Neumann boundary
condition on {s = σ }. It follows that
1
8

∫

{s≥σ0}
Scalǧ(ϕ + 1) dμǧ =

∫

{s≥σ0}
�ǧϕ dμǧ = lim

R→∞

∫

{r=R}
νǧ(ϕ) dμǧ = −4πa.

(89)

Combined with the Taylor formula for the scalar curvature Scalǧ at ǧ = δ (see e.g.
[Mic11]), (89) gives:

−32πa(R) =
∫

�

Scalǧ(ϕ + 1) dμǧ

=
∫

{R≤r≤2R}
divδ(divδ ǧ − d trδ ǧ) dμδ + O(R−1)

=
∫

{r=2R}
(divδ ǧ − d trδ ǧ) (∂r ) dμδ

−
∫

{r=R}
(divδ ǧ − d trδ ǧ) (∂r ) dμδ + O(R−1)

= 16πm − I (R) + O(R−1),

where

I (R) :=
∫

{r=R}
(divδ ǧ − d trδ ǧ) (∂r ) dμδ → 16πm as R → ∞.

It follows that limR→∞ a(R) = 0, so the metric ĝ := v4ǧ for v = 1 + ϕ has all the
required properties. ��
Proposition 7.9. Let ĝ be as in Proposition 7.8. Then there is a positive function w ∈
C2,α

loc (�) such that�ĝw ≤ 0with strict inequality for large r , andw = b r−1+O2,α(r−2)

as r → ∞ for some constant b ∈ R. Moreover, there is a constant c > 1 such that
c−1(uvs)−1 ≤ w ≤ c(uvs)−1 as s → 0.

Proof. The proof is very similar to [Eic13, Proposition 13]. By Proposition 7.8 we have
ĝ = v4(u�)4g̃ in {s < 2σ0}. Recall also that Scalĝ = 0. A simple computation using
the definition of � (see the proof of Proposition 7.4) shows that the metric (vus)−4ĝ =
s−4�4g̃ has zero scalar curvature in {s < 2σ0} hence�ĝ(vus)−1 = 0 in {s < 2σ0}. Fix
a non-negative functionw0 ∈ C2,α

loc (�) such that it agreeswith (vus)−1 in {s < 2σ0}, and
such that (suppw0)∩{s > σ0} is compact. Now fix a nonnegative function q ∈ C2,α

loc (�)

with (supp q)∩{s < 2σ0} = ∅ and such that q(x) = r−6 when r = r(x) is large. Given
σ ∈ (0, σ0), let wσ be the unique solution of
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−�ĝ(w0 + wσ ) = q on {σ < s < σ−1},
wσ = 0 on {s = σ } ∪ {s = σ−1}.

Note that w0 + wσ is positive by the maximum principle. We extend wσ by zero to a
Lipschitz continuous function on all of�. Using the Sobolev inequality [Eic13, Lemma
18], the equation that wσ satisfies, and the properties of q and w0 we obtain

C−1
(∫

{s≥σ0}
|wσ |6 dμĝ

)1/3

≤
∫

{s≥σ0}
|dwσ |2 dμĝ ≤

∫

{σ≤s≤σ−1}
|dwσ |2 dμĝ

=
∫

{σ≤s≤σ−1}
wσ (q +�ĝw0) dμĝ ≤

∫

{s≥σ0}
|wσ ||q +�ĝw0| dμĝ

≤
(∫

{s≥σ0}
|wσ |6 dμĝ

)1/6 (∫

{s≥σ0}
|q +�ĝw0|6/5 dμĝ

)5/6

.

It follows that
∫
{s≥σ0} |wσ |6 dμĝ is bounded independently of σ ∈ (0, σ0). A standard

argument as in the proof of Proposition 7.6 yields a uniform L∞-bound for wσ and
also allows us to pass to a subsequential limit when σ → 0, thereby obtaining a non-
negative function w := w0 + limi→∞ wσi ∈ C2,α

loc (�) such that −�ĝw = q. Since w

is a non-constant subharmonic function in � we see that w > 0 in � by the Hopf
maximum principle. The asymptotics of w follow from the fact that ĝ is asymptotically
Schwarzschildean near infinity as a consequence of Proposition 7.8. Finally, recall that
w0 = (vus)−1 where c−1 ≤ uv ≤ c for some c > 1 in {s < 2σ0}. Since w > 0 is
bounded we conclude that c−1(uvs)−1 ≤ w ≤ c(uvs)−1 as s → 0, up to increasing c
if necessary. ��

8. Positive Mass Theorem in the Asymptotically Hyperbolic Setting

In this section we prove the positivity part of Theorem 1.1.

Theorem 8.1. Let (M, g, K ) be a 3-dimensional asymptotically hyperbolic initial data
set of type (l, β, τ, τ0) for l ≥ 6, 0 < β < 1, 3

2 < τ < 3 and τ0 > 0. Assume that

the dominant energy condition μ ≥ |J |g holds. Then the mass vector (E, �P) is causal
future directed, that is E ≥ | �P|.
Proof. We will first prove that E ≥ 0 holds in the case when (M, g, K ) satisfies the
assumptions of the theorem. Assume first that the initial data has Wang’s asymptotics
and satisfies the strict dominant energy condition μ > |J |g . By Proposition 7.6 and
Proposition 7.7 we know that in this case there is a Riemannian metric g̃u� which is
asymptotically Euclidean (possibly with finitely many conical singularities) and such
that

M(g̃u�) = α + 2A ≤ α/2 = E .

Then, by Proposition 7.8, for any N > 0 there is a radius RN > 0 and an asymptotically
Schwarzschildean metric ĝN := ĝ(RN ) that retains the eventual conical singularities of
the metric g̃u� and such that

|M(g̃u�)−M(ĝN )| < 1/N .
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Further, by Proposition 7.9 there is another asymptotically Schwarzschildean com-
plete metric ĝε

N := (1 + εwN )4ĝN that has nonnegative scalar curvature everywhere
and strictly positive scalar curvature for large r . Applying the Riemannian positive mass
theorem of [SY79] and [SY81b] 5 we see that

M(ĝε
N ) = M(ĝN ) + 2εbN ≥ 0

where bN is the leading order term in the expansion of wN for r → ∞, see Proposi-
tion 7.9. Since this holds for every ε > 0 we conclude that M(ĝN ) ≥ 0 for any N .
Passing to the limit when N → ∞ we conclude that

E ≥ M(g̃u�) ≥ 0. (90)

Thus E ≥ 0 holds when the initial data has Wang’s asymptotics and the strict dominant
energy condition holds. That E ≥ 0 holds under the assumptions of the theorem follows
at once by the density result of Theorem 2.4.

To complete the proof, it remains to show that we have E − | �P| ≥ 0. In fact, in the
asymptotically hyperbolic case this is a straightforward consequence of E ≥ 0. Indeed,
suppose on the contrary thatwehave 0 ≤ E < | �P|. Since boosts ofMinkowski spacetime
restrict to (nonlinear) isometries of the unit upper hyperboloid, we may compose the
given asymptotically hyperbolic coordinate chart with the boost of the slope θ ∈ (0, 1)
and thereby obtain another asymptotically hyperbolic coordinate chart with the same
asymptotic properties defined on the complement of a compact set in M . Recall that the
mass vector transforms equivariantly under the changes of coordinates near infinity (see
e.g. [Mic11]), in particular the first component of the mass vector in the boosted chart is

E ′ = E−θ | �P|
1−θ2

. Clearly, for any θ ∈
(

E
| �P| , 1

)
we have E ′ < 0, which is a contradiction.

Note that such an argument does not directly apply in the asymptotically Euclidean
setting because boosts of Minkowski spacetime do not restrict to isometries of constant
time slices, cf. the final remark in [EHLS16]. ��

9. Rigidity

In this section we prove the rigidity part of Theorem 1.1.

Theorem 9.1. Let (M, g, k) be initial data satisfying the assumptions of Theorem 8.1.
If (M, g, K ) has Wang’s asymptotics and E = 0 then (M, g) can be embedded iso-
metrically into Minkowski spacetime as a spacelike graphical hypersurface with second
fundamental form K .

Remark 9.2. This result does not seem to be optimal for the following reasons:

• We have to assumeWang’s asymptotics, which is rather restrictive. This assumption
needs to be imposed so that we can solve the Jang equation. Solving the Jang equation
for general asymptotics would require the existence of “uniform” barriers (cf. the
proof of [Eic13, Proposition 16]), something that our construction does not provide.

5 See also the two final remarks made in the proof of [Eic13, Proposition 14] which explain why the original
proof of Schoen and Yau can be extended to account for non-asymptotically Euclidean ends such as (Ci , ĝε

N ),
i = 1, . . . , l.
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• In the view of the results in the asymptotically Euclidean and asymptotically anti-
de Sitter setting (see e.g. [HL20, Theorem 3], [CM06, Theorem 1.2]), and [CMT06,
Theorem4]) onewould expect the conclusion of the theorem to hold under theweaker
assumption E = |P|, meaning that the mass vector is future directed null. It appears
that the Jang equation reduction technique is not capable of providing results of this
kind, as [SY81b, Theorem 2], [Eic13, Theorem 3], and our Theorem 9.1 indicate. The
same comment can presumably be made about spinor methods in the asymptotically
hyperbolic “hyperboloidal” setting, see e.g. [Mae06, Theorem 5.1]. At the same time,
the optimal rigidity theorem for asymptotically hyperbolic manifolds has recently
been proven in [HJM20]. It is feasible that the methods of [HJM20] and [HL20] can
be used to prove more general rigidity results for asymptotically hyperbolic initial
data than Theorem 9.1.

Proof of Theorem 9.1. We denote the chart at infinity with respect to which (M, g, K )

hasWang’s asymptotics by�. Under the assumptions of the theorem there is a sequence
of initial data (gi , Ki ), i = 1, 2, . . ., suitably asymptotically hyperbolic with respect to
�, satisfying the assumptions of Theorem 8.1, and such that the strict dominant energy
condition μi > |Ji |gi holds, see [DS15, Proposition 5.2]) for details. Furthermore,
there is a sequence of charts �i , constructed by means of a standard procedure called
adjustment6 such that (gi , Ki ) have Wang’s asymptotics with respect to �i (again,
the reader is referred to the proof of [DS15, Theorem 5.2] for details). We may use
the chart �i to construct a geometric solution �i of the Jang equation with respect
to every initial data set (gi , Ki ), i = 1, 2, . . .. In particular, inspecting the arguments
of Sect. 3, we see that there exist uniform constants R > 0 and C > 0 such that
for every i the barrier functions f+,i and f−,i are defined on {r ≥ R} and satisfy
| f±,i −

√
1 + r2 − αi ln r − ψi | ≤ Cr−1+ε there. Here αi = 2Ei is twice the energy of

the initial data set (Mi , gi , Ki ) and ψi : S2 → R such that
∫
S2

ψi dμσ = 0 is defined in
terms of the asymptotic expansions of the initial data by

�S
2
ψi = Mi := 1

2 tr
σ mi + trσ pi − αi , (91)

see Sect. 2 for details. Note that the described asymptotics of the barrier functions f±,i
are the same in either of the charts �i and �, as the adjustment will introduce only
lower order corrections in this case (see the proof of [DS15, Theorem 5.2] for details).
As in Sect. 5, the hypersurfaces �i ⊂ M × R satisfy the uniform curvature estimates
and we may pass to a subsequential limit as i → ∞, thereby obtaining a geometric
solution of the Jang equation with respect to initial data (M, g, K ). Clearly, this limit
has a connected component� ⊂ M ×R given as the graph of a function f such that its
domainU contains the set {r ≥ R}. To clarify the asymptotics of the function f , we first
note that limi→∞ αi = 2E = 0 holds by the continuity of the mass functional. Further,
define ψ such that

∫
S2

ψ dμσ = 0 by

�S
2
ψ = M := 1

2 tr
σ m + trσ p, (92)

6 A term coined in [CDG16]; this procedure is also referred to as change of conformal gauge.
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then as a consequence of (91), (92) and the Poincare inequality we obtain
∫

S2
(ψ − ψi )

2 dμσ ≤ C
∫

S2
|∇ψ − ∇ψi |2 dμσ

= C
∫

S2
(Mi −M)(ψ − ψi ) dμσ

≤ C

(∫

S2
(M−Mi )

2 dμσ

)1/2 (∫

S2
(ψ − ψi )

2 dμσ

)1/2

.

SinceM−Mi → 0 uniformly on S2 (see the proof of [DS15, Theorem 5.2] for details)
it follows that ψ −ψi converges to zero in L2(S2). A standard bootstrap argument then
yields ψi → ψ in C3,α(S2). We conclude in the view of the above uniform estimate for
barriers that f = √

1 + r2 +ψ + O(r−1+ε). Arguing as in Sect. 6 we may now show that
the metric ḡ = g + d f ⊗ d f induced on � ⊂ M ×R is asymptotically Euclidean, with
the properties described in Corollary 6.11.

Note however that the conclusionofProposition7.1might fail to hold for the boundary
components ∂Ui of the domain of the graphing function f as we do not necessarily have
a strict inequality in the dominant energy condition μ ≥ |J |g . Therefore the analysis of
the conformal structure of � cannot be approached directly by the methods of Sect. 7.

As in [Eic13, Proof of Proposition 16] we choose t i
0 ↗ ∞ to be a sequence such that

±t i
0 are regular values for both fi and f . Let g̃i be the metrics on�i as in Proposition 7.2

such that g̃i = ḡi on Ni := �i ∩ (M × (−t i
0, t i

0)). Further, let ui ∈ C2,α
loc (�i ) be the

solution of −�g̃i ui + 1
8Scal

g̃i ui = 0 as in Proposition 7.6. Arguing as in the proof of
Proposition 7.7 we see that

0 ≤
∫

Ni

|dui |2ḡi
≤ −(αi + 4Ai )Vol S

2.

From the above discussion we know that limi→∞ αi = 0. Furthermore, the proof of
Theorem 8.1 shows that αi + 2Ai ≥ 0 hence −αi

2 ≤ Ai ≤ −αi
4 , hence limi→∞ Ai = 0.

In conjunction with the Sobolev inequality and the equation that ui satisfies we see that
ui → 1 as r → ∞ uniformly in i . Using standard elliptic theory we conclude that ui

converges in C2,α
loc to the constant function one on�. Inspecting the proof of Proposition

7.7 once more we also conclude that Scalḡ = 0, and A = K on �.
Now recall that the asymptotically Euclidean metric ḡ = g + d f ⊗ d f satisfies

ḡ = δ + O2(r−1). Consequently, the asymptotically Euclidean initial data set (�, ḡ, 0)
has Sobolev type (2, p, q, q0, α), as defined in [EHLS16, Definition 1], for p > 3,
q ∈ ( 12 , 1), for some α ∈ (0, 1) and for every q0 > 0. Since Scalḡ = 0 and M(ḡ) = 0,
a version of the variational argument used by Schoen and Yau in [SY79] to prove the
Riemannian positive mass theorem, yields that (�, ḡ) is isometric to the Euclidean
space. The reader is referred to [Eic13, Proof of Proposition 16] where the details of
this argument are provided. Combining this with the fact that A = K , it follows as in
[SY81b, p. 260] that g respectively K arise as the inducedmetric respectively the second
fundamental form of the graph of the function f : R3 → R in the Minkowski spacetime
(R× R

3,−dt2 + δ). ��
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Appendix A. Christoffel Symbols

For g as in Definition 2.3 the Christoffel symbols are as follows:

r
rr = − r

1 + r2
, μ

rr = 0, r
rμ = 0,

ν
rμ = 1

2
gλν∂r gλμ, r

μν = −1

2
(1 + r2)∂r gμν,

κ
μν = 1

2
gκλ

(
∂gλν

∂xμ
+

∂gμλ

∂xν
− ∂gμν

∂xλ

)
.

Appendix B. The Barrier Method for Boundary Gradient Estimates

Here we recall barrier method for deriving boundary gradient estimates as described in
[GT01, Chapter 14], applied to the boundary value problem (27a)–(27b).

Proposition B.1. Suppose that in some neighborhood U of ∂� we have two functions
f , f ∈ C2(� ∩ U ) ∩ C1(� ∩ U ) such that

Hg( f )− s trg(K )( f ) < τ f , Hg( f )− s trg(K )( f ) > τ f in U ∩�,

and

f = f = sφ on ∂�.

If fs ∈ C2(�)∩C0(�) is a solution of (27a)–(27b) such that f ≤ fs ≤ f on ∂(�∩U )

then |d fs |g restricted to ∂� is bounded by a constant depending only on f and f .

Proof. Subtracting Hg( fs)−s trg(K )( fs)−τ fs = 0 from Hg( f )−s trg(K )( f )−τ f <

0 we get

http://creativecommons.org/licenses/by/4.0/
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0 >

(
gi j − f

i
f

j

1 + |d f |2g

)
Hessi j

(
f − fs

)
√
1 + |d f |2g

+

⎛
⎝

(
gi j − f

i
f

j

1 + |d f |2g

)
1√

1 + |d f |2g
−

(
gi j − ( fs)i ( fs) j

1 + |d fs |2g

)
1√

1 + |d fs |2g

⎞
⎠Hessi j ( fs)

+ s

(
( fs)i ( fs) j

1 + |d fs |2g
− f

i
f

j

1 + |d f |2g

)
Ki j − τ( f − fs)

=
(

gi j − f
i

f
j

1 + |d f |2g

)
Hessi j

(
f − fs

)
√
1 + |d f |2g

+ bi∇i
(

f − fs
) − τ( f − fs),

where the existence of locally bounded functions bi follows from the mean value theo-
rem. It is clear from the above inequality that f − fs cannot have a nonpositive interior
minimum in � ∩ U . Since f ≥ fs on ∂(� ∩ U ), we conclude that f ≥ fs in � ∩ U .
The same argument shows that fs ≥ f in � ∩ U . From the fact that f ≤ fs ≤ f in

� ∩ U , and f = fs = f on ∂� we conclude that

f (p)− f (p0)

|p − p0| ≤ fs(p)− fs(p0)

|p − p0| ≤ f (p)− f (p0)

|p − p0|
for any p0 ∈ ∂� and p ∈ �∩U . The result follows by comparing partial derivatives of
fs with the respective partial derivatives of f and f . ��

Appendix C. Some Basic Properties of Fermi Coordinates

In this appendix we include the proof of the result which is repeatedly used in Sect. 6.We
would like to remark that this result is the main reason behind the regularity assumptions
that aremade throughout the paper: as wewill see, for this result to hold certain curvature
bounds are required. Notations and conventions are as in Sect. 6.1.

Proposition C.1. There exist constants ρ0 > 0 and C > 0 such that |Aρ | < C and
1
C δi j ≤ (gρ)i j ≤ Cδi j for any 0 ≤ ρ ≤ ρ0. Furthermore, all partial derivatives of
(gρ)i j and (Aρ)

i
j up to order 3 in the Fermi coordinates are bounded.

Proof. The first part of this result is proven by a standard comparison argument, cf.
[Pet06, Chapter 5, Theorem 27] and [Bah07, Theorem 15]. Recall that our convention
for the second fundamental form of the hypersurfaces �ρ of constant ρ is Aρ(X,Y ) =
〈∇X Y, ∂ρ〉. It is well-known that the respective shape operator (the associated (1, 1)-
tensor) which we denote by the same notation Aρ satisfies the Mainardi equation

− ∂ρ(Aρ)
i
j + (Aρ)

i
k(Aρ)

k
j = Ri

ρρ j , (93)

see e.g. [Pet06]. We rewrite this equation in a simplified form as

−A′(ρ) + A2(ρ) = −RN (ρ),

where RN (ρ) is a normal sectional curvature operator defined by 〈RN (ρ)V, V 〉 =
sec(V, ∂ρ) for V⊥∂ρ , the prime denotes the derivative with respect to ρ, andwe suppress
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the dependence on the tangential coordinates. The eigenvalues of the shape operator A(0)
are bounded, and we want to prove that the same is true for the eigenvalues of A(ρ) for
0 < ρ ≤ ρ0.

Let �(ρ) be the largest eigenvalue of A(ρ). Since �(ρ) is obtained through a max-
imum procedure (from the Rayleigh quotient) it is Lipschitz continuous and hence dif-
ferentiable almost everywhere. At a point ρ̃ where it is differentiable we pick a unit
eigenvector v with respect to the Euclidean metric. Then we extend it to a parallel vec-
tor field v such that v(u, ρ) = v(u, ρ̃) for ρ ∈ [0, ρ0]. Set ϕ(ρ) = vT A(ρ)v. Then
ϕ(ρ̃) = �(ρ̃) and ϕ(ρ) ≤ �(ρ) for ρ ∈ [0, ρ0], hence ϕ′(ρ̃) = �′(ρ̃). As a conse-
quence, we have

−�′(ρ̃) +�2(ρ̃) = −ϕ′(ρ̃) + ϕ2(ρ̃)

= vT (−A′(ρ̃) + A2(ρ̃))v

= vT (−RN (ρ̃))v.

Since the curvature term in the right hand side is uniformly bounded we conclude that
� satisfies the differential inequality

−C1 < −�′(ρ) +�2(ρ) < C1

for some constant C1 > 0 and for almost every ρ ∈ [0, ρ0].
Let now μ(ρ) = √

C1 tan
(√

C1ρ + arctan C0√
C1

)
be the solution of the initial value

problem

−μ′(ρ) + μ2(ρ) = −C1,

μ(0) = C0,

for some C0 > |�(0)|. Up to decreasing ρ0 if necessary, we may assume that μ(ρ) is
defined and bounded as long as ρ ∈ [0, ρ0]. Furthermore, we have

�′(ρ)−�2(ρ) < C1 = μ′(ρ)− μ2(ρ) (94)

and

− (�(ρ) + μ(ρ))′ + (�2(ρ) + μ2(ρ)) < 0 (95)

for almost every ρ ∈ [0, ρ0]. Note also that |�(0)| < μ(0).
We will now show that �(ρ) < μ(ρ) for all ρ ∈ [0, ρ0]. Since � is Lipschitz

continuous we have �(ρ) = �(0) +
∫ ρ

0 �′(τ ) dτ for all ρ ∈ [0, ρ0]. Combining this
with (95) we find that

�(ρ) + μ(ρ) =
∫ ρ

0
(�(τ) + μ(τ))′ dτ + μ(0) +�(0) > 0,

hence �(ρ) > −μ(ρ) for ρ ∈ [0, ρ0]. Furthermore, by (94) we have

�(ρ)− μ(ρ) =
∫ ρ

0
(�′(τ )− μ′(τ )) dτ +�(0)− μ(0) <

∫ ρ

0
(�2(τ )− μ2(τ )) dτ

(96)

for ρ ∈ (0, ρ0]. Now let ρ∗ = inf{ρ : �(ρ) > μ(ρ)}. Since �(0) < μ(0) we have
ρ∗ > 0. On the one hand, we have�(ρ∗) = μ(ρ∗). On the other hand, we have�(ρ) <
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μ(ρ) for 0 ≤ ρ < ρ∗ and�(ρ) > −μ(ρ) for ρ ∈ [0, ρ0]. Then�2(ρ)−μ2(ρ) < 0 for
ρ ∈ [0, ρ∗] so (96) yields�(ρ∗) < μ(ρ∗), a contradiction. It follows that�(ρ) < μ(ρ)

for all ρ ∈ [0, ρ0].
Arguing as above one shows that the smallest eigenvalue λ(ρ) of A(ρ) satisfies for

almost every ρ ∈ [0, ρ0] and some constant C1 > 0 the differential inequality

−C1 < −λ′(ρ) + λ2(ρ) < C1.

Then λ′ > λ2 − C1 > −C1 hence

λ(ρ) = λ(0) +
∫ ρ

0
λ′(τ ) dτ > λ(0)− C1ρ > λ(0)− C1ρ0

holds for all ρ ∈ [0, ρ0]. This shows that λ(ρ) is uniformly bounded from below.
Combining this with the above estimate for�(ρ) the uniform bound |Aρ | < C follows.

To obtain the metric estimate, we note that gρ satisfies the linear equation

∂ρ(gρ)i j = −2(Aρ)
k
i (gρ)k j . (97)

Let �(ρ) be the largest eigenvalue of gρ with respect to the Euclidean metric. Again,
� = �(ρ) is Lipschitz continuous and, in the view of the shape operator estimate,
from (97) we see that whenever � is differentiable it satisfies �′(ρ) ≤ C1�(ρ), or
equivalently, (�(ρ)e−C1ρ)′ ≤ 0 for some C1 > 0. Let (ρ) = C0eC1ρ be the solution
of the equation ((ρ)e−C1ρ)′ = 0 such that (0) = C0 > �(0). Then

(�(ρ)− (ρ))e−C1ρ =
∫ ρ

0
((�(τ)− (τ))e−C1τ )′ dτ +�(0)− (0) < 0

thus �(ρ) < (ρ) = C0eC1ρ for all ρ ∈ [0, ρ0]. Similar analysis applies to the lowest
eigenvalue and the desired bound 1

C δi j ≤ (gρ)i j ≤ Cδi j for some C > 0 follows.
Next we observe that the obtained estimates for (gρ)i j and (Aρ)

i
j in combination

with (93) and (97) yield the required bounds on ∂ρ(Aρ)
i
j and ∂ρ(gρ)i j . In order to prove

that ∂k(Aρ)
i
j and ∂k(gρ)i j are bounded we may argue as in [BG11, Section 3]. As a

consequence of (93) and (97) we have

∂ρ∂k(Aρ)
i
j = ∂k(Aρ)

i
l (Aρ)

l
j + (Aρ)

i
l∂k(Aρ)

l
j − ∂k Ri

ρρ j , (98a)

∂ρ∂k(gρ)i j = −2∂k(Aρ)
l
i (gρ)l j − 2(Aρ)

l
i∂k(gρ)l j . (98b)

By the well-known formula relating the coordinate and covariant derivatives, using the
fact that ρ

kρ = 0 and the properties of the curvature tensor, we obtain

∂k Ri
ρρ j = ∇k Ri

ρρ j − i
kl Rl

ρρ j + l
kρ Ri

lρ j + l
kρ Ri

ρl j + l
k j Ri

ρρl .

Since l
kρ = −(Aρ)

l
k , it follows by the above estimates for gρ and Aρ that all terms in

the right hand side of this formula are bounded, possibly except fori
kl andl

k j , which in
their turn can be written as a linear combination of the first order coordinate derivatives
of gρ with bounded coefficients. As a consequence, the above system can be compactly
written as

(∂ Aρ)
′ = K1∂ Aρ + K2∂gρ + K3,
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(∂gρ)
′ = K4∂ Aρ + K5∂gρ,

where Ki , i = 1, . . . , 5, are 33 × 33 matrices, and ∂ Aρ and ∂gρ are treated as vectors

in R
33 with the respective components ∂k(Aρ)

i
j and ∂k(gρ)i j . We will not need the

explicit form of the matrices Ki , only the fact that their entries are bounded. We set
x(ρ) = |∂ Aρ | and y(ρ) = |∂gρ |. These functions are continuous and smooth as long as
they are nonzero.Moreover, it follows byCauchy-Schwartz inequality that x ′ ≤ |(∂ Aρ)

′|
and y′ ≤ |(∂gρ)

′| whenever x and y are nonzero. As a consequence we have

x ′ ≤ c1x + c2y + c3,

y′ ≤ c4x + c5y + c6

for some constants ci > 0, i = 1, . . . , 6. By [Bah09, Theorem 10] we conclude that
x < x̃ , y < ỹ on [0, ρ0], where (x̃, ỹ) is a smooth positive solution of the system

x̃ ′ = c1 x̃ + c2 ỹ + c3,

ỹ′ = c4 x̃ + c5 ỹ + c6

for ρ ∈ [0, ρ0] such that x(0) < x̃(0) and y(0) < ỹ(0). (That such a solution exists is a
simple consequence of Picard-Lindelöf theorem; note that we may need to decrease ρ0
in order to ensure that the solution remains positive in [0, ρ0].) It follows that ∂k(gρ)i j

and ∂k(Aρ)
i
j are bounded for ρ ∈ [0, ρ0]. As a consequence of these estimates and

(98a)–(98b), we see that ∂ρ∂k(gρ)i j and ∂ρ∂k(Aρ)
i
j are bounded. Taking onemore partial

derivative of (93) and (97)with respect toρ it also follows that ∂ρ∂ρ(gρ)i j and ∂ρ∂ρ(Aρ)
i
j

are bounded.
With the above estimates at hand, we take one more tangential derivative of (98a)–

(98b), and use standard formulae relating covariant and coordinate derivatives to con-
clude that

(∂∂ Aρ)
′ = K1∂∂ Aρ + K2∂∂gρ + K3,

(∂∂gρ)
′ = K4∂∂ Aρ + K5∂∂gρ + K6,

where Ki , i = 1, . . . , 6, are 34× 34 matrices with bounded entries, and ∂∂ Aρ and ∂∂gρ

are treated as vectors in R
34 with the respective components ∂k∂l(Aρ)

i
j and ∂k∂l(gρ)i j .

Repeating the above argument, we are again in a position to apply [Bah09, Theorem 10]
and the boundedness of ∂k∂l(Aρ)

i
j and ∂k∂l(gρ)i j follows.

Similar analysis yields the desired estimates for the third order coordinate derivatives
of gρ and Aρ . ��
Remark C.2. In order to keep the proof of Proposition 6.1 as elementary as possible,
we only used very rough bounds for the geometry of (M × R, g + dt2). It is possible
that the estimates of Proposition 6.1 can be improved if one uses more accurate bounds,
cf. [BG11, Section 3]. However, as Proposition 6.1 in its current form suffices for our
purposes we choose not to proceed in that direction.



Jang Equation and Positive Mass Theorem in AH Setting 969

Appendix D. Some Asymptotic Expansions

In this article we repeatedly make use of the following two lemmas.

Lemma D.1. Let (M, g, K ) be an asymptotically hyperboloidal initial data with Wang’s
asymptotics in the sense of Definition 2.3 for l ≥ 3. If f : M → R is such that
f = √

1 + r2 + α ln r + ψ + O3(r−1+ε) then

(1) The components of the induced metric ḡi j = g + fi f j are given by

ḡrr = 1 + 2α r−1 + O2(r
−2+ε),

ḡrμ = ψμ + O2(r
−1+ε),

ḡμν = r2σμν + ψμψν + O2(r
ε).

(2) If ḡi j is given by ḡik ḡk j = δi
j then

ḡrr = 1− 2α r−1 + O2(r
−2+ε),

ḡrμ = −r−2σμνψν + O2(r
−3+ε),

ḡμν = r−2σμν + O2(r
−5).

(3) The components of the downward pointing unit normal ν of graph f ⊂ (M ×R, g +
dt2) satisfy

νt = −r−1 + O2(r
−2),

νr = r + O2(r
−1),

νμ = O2(r
−3).

As a consequence, the Ricci curvature of the product metric ĝ = g + dt2 satisfies
Ric(ν, ν) = −2 + O1(r−2).

(4) The components of the second fundamental form Ai j = Hessi j f (1 + |d f |g)−1/2 of
graph f ⊂ M × R are given by

Arr = r−2 − α r−3 + O1(r
−4+ε),

Arμ = −r−2ψμ + O1(r
−3+ε),

Aμν = r2σμν + O1(1).

In particular, |A|2ḡ = 2 + O1(r−2) and |A − K |2ḡ = O(r−4).

(5) The components of the 1-form q given by qi = f j (Ai j − Ki j )(1+ |d f |g)−1/2 satisfy

qr = −α r−2 + O1(r
−3+ε), qμ = −r−1ψμ + O1(r

−2+ε).

We also have

divḡ q = −r−3�S
2
ψ + O(r−4).

Proof. A computation. ��
Lemma D.2. If (M, g, k) is asymptotically hyperboloidal initial data with Wang’s asymp-
totics and f = √

1 + r2 +α ln r +ψ +O3(r−1+ε) then the Jang metric ḡ = g+d f ⊗d f is
asymptotically flat in the sense of Definition (2.5, and its ADM mass isM(ḡ) = α = 2E.
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Proof. It is clear that the graphof f in M×Rhas an enddiffeomorphic to (R,∞)×S
2, the

coordinate diffeomorphism� being naturally induced by the asymptotically hyperbolic
chart � : M \ C → (R,∞) × S

2. We have �∗ḡ = δ + O2(r−1) as a consequence of
Lemma D.1.

We compute the mass M(ḡ) of the asymptotically Euclidean metric ḡ using the
formula

M(ḡ) = 1

16π

∫

S∞
(divδ �∗ḡ − d trδ �∗ḡ)(ν) dμσ .

Note that in this case we have

̊r
rr = ̊α

rr = ̊r
αr = 0, ̊r

αβ = −rσαβ, ̊α
βr = r−1δαβ , ̊α

βγ = (σ )
α
βγ ,

where ̊l
i j and (σ )

α
βγ are Christoffel symbols for the metrics δ and σ respectively, and

hence

(divδ �∗g)(ν) = (divδ �∗g)(∂r )

= ∇̊r grr + r−2σαβ∇̊βgαr

= ∂r grr − 2̊l
rr glr + r−2σαβ(∂βgαr − ̊l

αβglr − ̊l
βr gαl)

= −r−2σαβgαγ ̊
γ
βr + O(r−3)

= −2r−1 + O(r−3).

Furthermore

divδ(d f ⊗ d f )(ν) = divδ(d f ⊗ d f )(∂r )

= ∇̊r ( f 2r ) + r−2σαβ∇̊β( fα fr )

= 2 fr ∇̊rr f + r−2σαβ( fr ∇̊αβ f + fα∇̊βr f ),

with

2 fr ∇̊rr f = −2αr−2 + O(r−3+ε),

r−2σαβ fα∇̊βr f = −r−2σαβ fα̊
γ
βr fγ + O(r−3) = O(r−3),

and

r−2σαβ fr ∇̊αβ f = r−2σαβ fr ∇̊αβψ + r−2σαβ fr ∇̊αβ( f − ψ)

= r−2 fr�
σψ − r−2σαβ fr ̊

r
αβ( f − ψr + O(r−3+ε))

= r−2�σψ + 2r−1( fr )
2 + O(r−3+ε)

= r−2�σψ + 2r−1 + 4αr−2 + O(r−3+ε).

Finally, we have

(d trδ �∗ḡ)(ν) = ∂r (ḡrr + r−2σαβ ḡαβ)

= ∂r (grr + f 2r + r−2σαβ(gαβ + fα fβ))

= ∂r ( f 2r ) + O(r−3)

= −2αr−2 + O(r−3+ε).
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Summing up, we conclude that

M(ḡ) = 1

16π

∫

S∞

[
(�σψ + 4α)r−2 + O(r−3+ε)

]
dμσ = α = 2E .

��
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