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Abstract: Having a distance measure between quantum states satisfying the right prop-
erties is of fundamental importance in all areas of quantum information. In this work, we
present a systematic study of the geometric Rényi divergence (GRD), also known as the
maximal Rényi divergence, from the point of view of quantum information theory. We
show that this divergence, together with its extension to channels, has many appealing
structural properties, which are not satisfied by other quantum Rényi divergences. For
example we prove a chain rule inequality that immediately implies the “amortization
collapse” for the geometric Rényi divergence, addressing an open question by Berta et
al. [Letters in Mathematical Physics 110:2277–2336, 2020, Equation (55)] in the area of
quantum channel discrimination. As applications, we explore various channel capacity
problems and construct new channel informationmeasures based on the geometric Rényi
divergence, sharpening the previously best-known bounds based on the max-relative en-
tropy while still keeping the new bounds single-letter and efficiently computable. A
plethora of examples are investigated and the improvements are evident for almost all
cases.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616
1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1617

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1619
3. Geometric Rényi Divergence . . . . . . . . . . . . . . . . . . . . . . . . 1621

3.1 Definitions and key properties . . . . . . . . . . . . . . . . . . . . . 1621
3.2 Detailed proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1624

4. Quantum Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 1628
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628
4.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628
4.3 Unassisted quantum capacity . . . . . . . . . . . . . . . . . . . . . . 1629

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04064-4&domain=pdf
http://orcid.org/0000-0002-9232-6846
http://orcid.org/0000-0001-6026-4102


1616 K. Fang, H. Fawzi

4.4 Two-way assisted quantum capacity . . . . . . . . . . . . . . . . . . 1632
4.5 Extension to bidirectional channels . . . . . . . . . . . . . . . . . . . 1637
4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639

5. Private Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
5.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 1645
5.3 Unassisted private capacity . . . . . . . . . . . . . . . . . . . . . . . 1645
5.4 Two-way assisted private capacity . . . . . . . . . . . . . . . . . . . 1647

6. Classical Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 1649
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1649
6.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 1650
6.3 Unassisted classical capacity . . . . . . . . . . . . . . . . . . . . . . 1651
6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654

7. Magic State Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654
7.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656
7.3 Preliminaries of the resource theory of magic . . . . . . . . . . . . . 1657
7.4 Geometric Rényi Thauma of a channel . . . . . . . . . . . . . . . . . 1659
7.5 Magic state generation capacity . . . . . . . . . . . . . . . . . . . . . 1662
7.6 Quantum channel synthesis . . . . . . . . . . . . . . . . . . . . . . . 1665

8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666
A. Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1667
B. A Hierarchy for Constant-Bounded Subchannels . . . . . . . . . . . . . . 1669
C. A Detailed Comparison for Generalized Amplitude Damping Channels . . 1670
D. Application in Quantum Channel Discrimination . . . . . . . . . . . . . . 1670

1. Introduction

In information theory, an imperfect communication link between a sender and a re-
ceiver is modeled as a noisy channel. The capacity of such a channel is defined as the
maximum rate at which information can be transmitted through the channel reliably.
This quantity establishes the ultimate boundary between communication rates that are
achievable in principle by a channel coding scheme and those that are not. A remark-
able result by Shannon [1] states that the capacity of a classical channel is equal to the
mutual information of this channel, thus completely settling this capacity problem by
a single-letter formula. Quantum information theory generalizes the classical theory,
incorporating quantum phenomena like entanglement that have the potential to enhance
communication capabilities. Notably, the theory of quantum channels is much richer but
less well-understood than that of its classical counterpart. For example, quantum chan-
nels have several distinct capacities, depending on what one is trying to use them for,
and what additional resources are brought into play. These mainly include the classical
capacity, private capacity and quantum capacity, with or without the resource assistance
such as classical communication and prior shared entanglement. The only solved case
for general quantum channels is the entanglement-assisted classical capacity, which is
given by the quantum mutual information of the channel [2] and is believed as the most
natural analog to Shannon’s formula. The capacities in other communication scenar-
ios are still under investigation. Some recent works (e.g [3,4]) also extend the use of
quantum channels to generate quantum resources such as magic state, a key ingredient
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for fault-tolerant quantum computation. The capability of a channel to generate such
resource is thus characterized by its corresponding generation capacity.

In general, the difficulty in finding exact expressions for the channel capacities has led
to awide body ofworks to construct achievable (lower) and converse (upper) bounds.We
will defer the detailed discussion of these bounds to the following individual sections.
There are several important and highly desirable criteria that one would like from any
bound on channel capacities. Specifically, one is generally interested in bounds that are:

• single-letter; i.e., the bound depends only on a single use of the channel. Several
well-established channel coding theorems state that the quantum channel capacity
is equal to its corresponding regularized information measure (e.g. the quantum ca-
pacity of a channel is equal to its regularized coherent information [5–7]). However,
these regularized formulas are simply impossible to evaluate in general using finite
computational resources, thus not informative enough in spite of being able to write
down as formal mathematical expressions. A single-letter formula could be more
mathematically tractable and provides a possibility of its evaluation in practice.

• computable; i.e., the formula can be explicitly computed for a given quantum
channel. This is essentially required by the nature of capacity that quantifies the
“capability” of a channel to transmit information or generate resource.An (efficiently)
computable converse bound can help to assess the performance of a channel coding
scheme in practice and can also be used as a benchmark for the succeeding research.
Note that a single-letter formula is not sufficient to guarantee its computability. An
example can be given by the quantum squashed entanglement, which admits a single-
letter formula but whose computational complexity is proved to be NP-hard [8].

• general; i.e., the bounds holds for arbitrary quantum channels without requiring any
additional assumption on their structure, such as degradability or covariance. There
are bounds working well for specific quantum channels with a certain structure or
sufficient symmetry. However, the noise in practice can be much more versatile than
expected and more importantly does not necessarily possess the symmetry we need.
A general bound is definitely preferable for the sake of practical interest.

• strong converse; i.e., if the communication rate exceeds this bound, then the success
probability or the fidelity of transmission of any channel coding scheme converges to
zero as the number of channel uses increases. In contrast, the (weak) converse bound
only requires the convergence to a scalar not equal to one. Thus a strong converse
bound is conceptually more informative than a weak converse bound, leaving no
room for the tradeoff between the communication rate and its success probability or
fidelity. We call strong converse capacity of a channel the best (smallest) possible
strong converse bound. If the strong converse capacity coincides with the capacity of
a channel, thenwe say this channel admits the strong converse property. This property
is known to hold for all memoryless channels in the classical information theory [9]
while it remains open in the quantum regime in general (except for the entanglement-
assisted classical capacity [10]). A strong converse bound may witness the strong
converse property of certain quantum channels (e.g. [11,12]), further sharpening our
understanding of the quantum theory.

1.1. Main contributions. In this paper we propose new bounds on quantum channel
capacities that satisfy all criteria mentioned above and that improve on previously known
bounds. The main novelty of this work is that our bounds all rely on the so-called
geometric Rényi divergence. We establish several remarkable properties for this Rényi
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divergence that are particularly useful in quantum information theory and show how
they can be used to provide bounds on quantum channel capacities. A key ingredient
used throughout the paper is the semidefinite programming formulation of the weighted
matrix geometric mean [13,14].

Geometric Rényi divergence. The geometric Rényi divergence (GRD), is defined as [15]

̂Dα(ρ‖σ) ≡ 1

α − 1
log Tr

[

σ
1
2

(

σ− 1
2 ρσ− 1

2

)α

σ
1
2

]

, α ∈ (1, 2].

The quantity ̂Dα is also known as the maximal-Rényi divergence [15] as it can be shown
to be the maximal divergence among all quantum Rényi divergences satisfying the data-
processing inequality. Different from the widely studied Petz Rényi divergence [16] or
sandwiched Rényi divergence [17,18], the GRD converges to the Belavkin–Staszewski
relative entropy [19] when α → 1. The geometric Rényi divergence of two channelsN
and M is defined in the usual way as:

̂Dα(N‖M) ≡ max
ρA∈S(A)

̂Dα(NA′→B(φAA′)‖MA′→B(φAA′)),

where S(A) is the set of quantum states and φAA′ is a purification of ρA. We establish
the following key properties of GRD which hold for any α ∈ (1, 2]:
1. It lies between the Umegaki relative entropy and the max-relative entropy,

D(ρ‖σ) ≤ ̂Dα(ρ‖σ) ≤ Dmax(ρ‖σ).

2. Its channel divergence admits a closed-form expression,

̂Dα(NA→B‖MA→B) = 1
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log

∥
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∥

TrB
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∥

∥
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,

where JN and JM are the corresponding Choi matrices of N and M respectively.
3. Its channel divergence is additive under tensor product of channels,

̂Dα(N1 ⊗ N2‖M1 ⊗ M2) = ̂Dα(N1‖M1) + ̂Dα(N2‖M2).

4. Its channel divergence is sub-additive under channel composition,

̂Dα(N2 ◦ N1‖M2 ◦ M1) ≤ ̂Dα(N1‖M1) + ̂Dα(N2‖M2).

5. It satisfies the chain rule for any quantum states ρR A, σR A and quantum channelsN
and M,

̂Dα(NA→B(ρR A)‖MA→B(σR A)) ≤ ̂Dα(ρR A‖σR A) + ̂Dα(N‖M).

These properties set a clear difference of GRD with other Rényi divergences. Of partic-
ular importance is the chain rule property, which immediately implies that the “amorti-
zation collapse” for the geometric Rényi divergence, addressing an open question from
[20, Eq. (55)] in the area of quantum channel discrimination. Moreover, due to the
closed-form expression of the channel divergence and the semidefinite representation of
the matrix geometric means [14], any optimization minM∈V ̂Dα(N‖M) can be com-
puted as a semidefinite program if V is a set of channels characterized by semidefinite
conditions.
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Table 1. Quantum information tasks studied in this paper, and new bounds on capacities obtained using the
geometric Rényi divergence ̂Dα

Tasks Capacities Previous bounds (D or Dmax) New bounds (̂Dα)

Quantum (1) Unassisted Q R [11], Rmax [21] ̂Rα [Theorem 12]
(2) Two-way Q↔ Rmax [22] ̂Rα,� [Theorem 17]
(3) Two-way Qbi,↔ Rbi

max [23] ̂Rbi
α,� [Theorem 21]

Private (4) unassisted P ER [12,24], Emax [25] ̂Eα [Theorem 25]
(5) Two-way P↔ Emax [25] ̂Eα,� [Theorem 29]

Classical (6) Unassisted C Cβ , Cζ [26] ̂ϒα [Theorem 34]
Magic (7) Adaptive Cψ θmax [3] ̂θα [Theorem 43]

Applications in quantum channel capacities. We utilize the geometric Rényi divergence
to study several different channel capacity problems, including (1) unassisted quantum
capacity, (2) two-way assisted quantum capacity, (3) two-way assisted quantum capacity
of bidirectional quantum channels, (4) unassisted private capacity, (5) two-way assisted
private capacity, (6) unassisted classical capacity, (7) magic state generation capacity, as
listed in Table 1. Most existing capacity bounds are based on the max-relative entropy
due to its nice properties, such as triangle inequality or semidefinite representations.
However, these bounds are expected to be loose as the max-relative entropy stands at the
top among the family of quantum divergences. For the bounds based on the Umegaki’s
relative entropy, they are unavoidably difficult to compute in general due to theirminimax
optimization formula. In this work, we construct new channel information measures
based on the geometric Rényi divergence, sharpening the previous bounds based on
the max-relative entropy in general while still keeping the new bounds single-letter and
efficiently computable. 1 A plethora of examples are analyzed in each individual sections
and the improvements are evident for almost all cases.

The significance of this work is at least two-fold. First, from the technical side,
we showcase that the geometric Rényi divergence, which has not been exploited so
far in the quantum information literature, is actually quite useful for channel capacity
problems. We regard our work as an initial step towards other interesting applications
and expect that the technical tools established in this work can also be used in, for
example, quantum network theory, quantum cryptography, as the max-relative entropy
also appears as the key entropy in these topics. We include another explicit application
in the task of quantum channel discrimination in Appendix D. Second, our new capacity
bounds meet all the aforementioned desirable criteria and improve the previously best-
known results in general, making them suitable as new benchmarks for computing the
capacities of quantum channels.

2. Preliminaries

A quantum system, denoted by capital letters (e.g., A, B), is usually modeled by finite-
dimensional Hilbert spaces (e.g., HA, HB). The set of linear operators and the set of
positive semidefinite operators on system A are denoted asL(A) andP(A), respectively.
The identity operator on system A is denoted by 1A. The set of quantum state on system
A is denoted as S(A) ≡ {ρA | ρA ≥ 0, Tr ρA = 1}. A sub-normalized state is a positive
semidefinite operator with trace no greater than one. For any two Hermitian operators X ,

1 For unassisted and two-way assisted private capacities, the new bounds are efficiently computable for
general qubit channels.
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Y , we denote X  Y if their supports has the inclusion supp(X) ⊆ supp(Y ). The trace
norm of X is given by ‖X‖1 ≡ Tr

√
X†X . The operator norm ‖X‖∞ is defined as the

maximum eigenvalue of
√

X†X . The set of completely positive (CP)maps from A to B is
denoted as CP(A : B). A quantum channel or quantum operationNA→B is a completely
positive and trace-preserving linear map from L(A) to L(B). A subchannel or suboper-
ation MA→B is a completely positive and trace non-increasing linear map fromL(A) to
L(B). Let |〉A′ A = ∑

i |i〉A′ |i〉A be the unnormalized maximally entangled state. Then
the Choi matrix of a linear map EA′→B is defined as JE

AB = (IA ⊗EA′→B)(|〉〈|A′ A).
Wewill drop the identity map I and identity operator 1 if they are clear from the context.
The logarithms in this work are taken in the base two.

Notation for semidefinite representation. For the simplicity of presenting a semidefinite
program, we will introduce some new notations to denote semidefinite conditions. De-
note the positive semidefinite condition X ≥ 0 as �X�P, the equality condition X = 0
as �X�E, the Hermitian condition X = X† as �X�H and the linear condition �X�L if X
is certain linear operator. We also denote the Hermitian part of X as XH ≡ X + X†.

Quantum divergences. A functional D : S × P → R is a generalized divergence if it
satisfies the data-processing inequality

D(N (ρ)‖N (σ )) ≤ D(ρ‖σ). (1)

For any α ∈ [1/2, 1) ∪ (1,∞), the sandwiched Rényi divergence is defined as [17,18]

˜Dα(ρ‖σ) ≡ 1

α − 1
log Tr

[

σ
1−α
2α ρσ

1−α
2α

]α

, (2)

which is the smallest quantum Rényi divergence that satisfies a data-processing inequal-
ity, and has been widely used to prove the strong converse property (e.g. [11,18]). In par-
ticular, the sandwiched Rényi divergence is non-decreasing in terms of α, interpolating
the Umegaki relative entropy D(ρ‖σ) ≡ Tr[ρ (log ρ − log σ)] [27] and the max-relative
entropy Dmax(ρ‖σ) ≡ min{log t | ρ ≤ tσ } [28,29] as its two extreme cases,

D(ρ‖σ) = lim
α→1

˜Dα(ρ‖σ) ≤ ˜Dα(ρ‖σ) ≤ lim
α→∞

˜Dα(ρ‖σ) = Dmax(ρ‖σ). (3)

Another commonly used quantum variant is the Petz Rényi divergence [16] defined as

�Dα(ρ‖σ) ≡ 1

α − 1
log Tr

[

ρασ 1−α
]

, (4)

which attains operational significance in the quantum generalization of Hoeffding’s and
Chernoff’s bounds on the success probability in binary hypothesis testing [30,31]. At
the limit of α → 0, the Petz Rényi divergence converges to the min-relative entropy
[29],

lim
α→0

�Dα(ρ‖σ) = − log Tr�ρσ ≡ Dmin(ρ‖σ), (5)

where �ρ is the projector on the support of ρ. Due to the the Lieb-Thirring trace in-
equality [32], it holds for all α ∈ (1,∞) that

˜Dα(ρ‖σ) ≤ �Dα(ρ‖σ). (6)
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Both ˜Dα and �Dα recover the Umegaki relative entropy D at the limit of α → 1. But
they are not easy to optimize over in general.

For any generalized divergence D, the generalized channel divergence between quan-
tum channel NA′→B and subchannel MA′→B is defined as [33,34]

D(N‖M) ≡ max
ρA∈S(A)

D(NA′→B(φAA′)‖MA′→B(φAA′)), (7)

where φAA′ is a purification of ρA. In particular, the max-relative channel divergence
has a simple closed form [20, Lemma 12],

Dmax(N‖M) = Dmax(JN ‖JM), (8)

where JN and JM are the corresponding Choi matrices of N and M respectively.

3. Geometric Rényi Divergence

In this section, we investigate the geometric Rényi divergence and its corresponding
channel divergence. Our main contribution in this section is to prove several crucial
properties of these divergences which are summarized in Theorem 3. These properties
will be extensively used in the following sections.

3.1. Definitions and key properties.

Definition 1 ([15]). Let ρ be a quantum state and σ be a sub-normalized state with
ρ  σ and α ∈ (1, 2], their geometric Rényi divergence 2 is defined as

̂Dα(ρ‖σ) ≡ 1

α − 1
log Tr G1−α(ρ, σ ), (9)

where Gα(X, Y ) is the weighted matrix geometric mean defined as

Gα(X, Y ) ≡ X
1
2

(

X− 1
2 Y X− 1

2

)α

X
1
2 . (10)

Note that a useful fact of matrix geometric mean is that Gα(X, Y ) = G1−α(Y, X)

(see e.g. [36]).

Remark 1. The geometric Rényi divergence converges to the Belavkin–Staszewski rela-
tive entropy [19],

lim
α→1

̂Dα(ρ‖σ) = ̂D(ρ‖σ) ≡ Tr ρ log
[

ρ1/2σ−1ρ1/2]. (11)

Note that D(ρ‖σ) ≤ ̂D(ρ‖σ) in general and they coincide for commuting ρ and σ [37].
Some basic properties such as joint-convexity, data-processing inequality and the con-
tinuity of the geometric Rényi divergence (or more generally, maximal f -divergence)
of states can be found in [15]. Further studies on its reversibility under quantum oper-
ations are given in [38,39]. Moreover, the weighted matrix geometric mean admits a
semidefinite representation [14] (see also Lemma 46 in Appendix A).

2 It is also called the maximal Rényi divergence (see e.g. [35, Section 4.2.3]) as it is the largest possible
quantum Rényi divergence satisfying the data-processing inequality. We here use the term “geometric” as its
closed-form expression is given by the matrix geometric means, depicting the nature of this quantity.
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Definition 2. For any quantum channel NA′→B , subchannel MA′→B , and α ∈ (1, 2],
their geometric Rényi channel divergence is defined as

̂Dα(N‖M) ≡ max
ρA∈S(A)

̂Dα(NA′→B(φAA′)‖MA′→B(φAA′)), (12)

where φAA′ is a purification of ρA.

The following Theorem summarizes several crucial properties of the geometric Rényi
divergence and its channel divergence. We present their detailed proofs in the next
section.

Theorem 3 (Main technical results). The following properties of the geometric Rényi
divergence and its channel divergence hold.3

1. (Comparison with D and Dmax): For any quantum state ρ, sub-normalized quantum
state σ with ρ  σ and α ∈ (1, 2], it holds

D(ρ‖σ) ≤ ̂Dα(ρ‖σ) ≤ Dmax(ρ‖σ). (13)

2. (Closed-form expression of the channel divergence): For any quantum channelNA′→B,
subchannel MA′→B and α ∈ (1, 2], the geometric Rényi channel divergence is given
by

̂Dα(N‖M) = 1

α − 1
log

∥

∥

∥TrB G1−α(JN
AB, JM

AB )

∥

∥

∥∞, (14)

where JN
AB and JM

AB are the corresponding Choi matrices of N and M respectively.
Moreover, for the Belavkin–Staszewski channel divergence, its has the closed-form
expression:

̂D(N‖M) =
∥

∥

∥TrB

{

(JN
AB)

1
2 log

[

(JN
AB)

1
2 (JM

AB )−1(JN
AB)

1
2

]

(JN
AB)

1
2

}∥

∥

∥∞ . (15)

3. (Additivity under tensor product): Let N1 and N2 be two quantum channels and let
M1 and M2 be two subchannels. Then for any α ∈ (1, 2], it holds that

̂Dα(N1 ⊗ N2‖M1 ⊗ M2) = ̂Dα(N1‖M1) + ̂Dα(N2‖M2). (16)

4. (Chain rule): Let ρ be a quantum state on HR A, σ be a subnormalized state on HR A
and NA→B be a quantum channel, MA→B be a subchannel and α ∈ (1, 2]. Then

̂Dα(NA→B(ρR A)‖MA→B(σR A)) ≤ ̂Dα(ρR A‖σR A) + ̂Dα(N‖M) . (17)

5. (Sub-additivity under channel composition): For any quantum channels N 1
A→B,

N 2
B→C , any subchannels M1

A→B, M2
B→C and α ∈ (1, 2], it holds

̂Dα(N2 ◦ N1‖M2 ◦ M1) ≤ ̂Dα(N1‖M1) + ̂Dα(N2‖M2). (18)

3 Note that all of the properties can be trivially extended to general completely positive maps. We only state
these properties for quantum channels or subchannels as they are most frequently used in quantum information
theory.
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6. (Semidefinite representation): LetV be a set of subchannels from A to B characterized
by certain semidefinite conditions. For any quantum channel NA→B and α(�) =
1 + 2−� with � ∈ N, the optimization minM∈V ̂Dα(N‖M) can be computed by a
semidefinite program:

2� · logmin y s.t. �M, {Ni }�i=0, JM, y�H,
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

N0 − JM
�

E
,

�

y1A − TrB M

�

P
,M ∈ V,

(19)

where JN and JM are the corresponding Choi matrices of N and M respectively.
Here the short notation that �X�P, �X�E and �X�H represent the positive semidefinite
condition X ≥ 0, the equality condition X = 0 and the Hermitian condition X = X†,
respectively.

Remark 2. Inequality (13) acts as a starting point of our improvement on the previous
capacity bounds built on the max-relative entropy. The closed-form expression of the
channel divergence directly leads to the additivity property in Item 3 and the semidefinite
representation in Item 6. These properties should be contrasted with the situation for
the Petz or sandwiched Rényi divergence for channels, for which it is unclear how they
can be calculated efficiently. The chain rule is another fundamental property that sets a
difference of the geometric Rényi divergence with other variants. Using the notion of
amortized channel divergence [20]

̂D A
α (N‖M) ≡ sup

ρR A,σR A∈S(R A)

[

̂Dα(NA→B(ρR A)‖MA→B(σR A)) − ̂Dα(ρR A‖σR A)
]

,

(20)

the chain rule is equivalent to

̂D A
α (N‖M) = ̂Dα(N‖M) for α ∈ (1, 2]. (21)

That is, the “amortization collapse” for the geometric Rényi divergence. This solves an
open question from [20, Eq. (55)] in the area of quantum channel discrimination.

Remark 3. Note that the properties in Item 3,4,5 do not hold for the Umegaki relative
entropy in general unless we consider the regularized channel divergence [40]. This
implies that these properties are not satisfied by the Petz or sandwiched channel Rényi
divergences for α in the neighbourhood of 1. As such, defining a measure with such
desirable properties requires going away from the Umegaki relative entropy. We also
note that it is unclear whether the Petz or sandwiched channel Rényi divergences are
efficiently computable, let alone having a simple closed-form expression. These indicate
that the results we obtained in this work based on the geometric Rényi divergence cannot
be easily extended to the Umegaki relative entropy.

Remark 4. Except for the conditionM ∈ V , the semidefinite representation in the above
Item 6with α(�) = 1+2−� is described by �+3 linear matrix inequalities, each of size no
larger than 2d × 2d with d = |A||B|. Thus the computational complexity (time-usage)
for computing minM∈V ̂Dα(N‖M) is the same as computing minM∈V Dmax(N‖M).
In practice, taking � = 0 (α = 2) already gives an improved result and choosing � around
8−10 will make the separation more significant. Moreover, a slight modification can be
done [14] to compute the optimization for any rational α ∈ (1, 2]. But we will restrict
our attention, without loss of generality, to the discrete values α(�) = 1 + 2−� with
� ∈ N.
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3.2. Detailed proofs. In the following, we give a detailed proof of each property listed
in Theorem 3.

Lemma 4 (Comparison with D and Dmax). For any quantum state ρ, sub-normalized
quantum state σ with ρ  σ and α ∈ (1, 2], the following relation holds

D(ρ‖σ) ≤ ˜Dα(ρ‖σ) ≤ �Dα(ρ‖σ) ≤ ̂Dα(ρ‖σ) ≤ Dmax(ρ‖σ). (22)

Proof. The first two inequalities follow from Eqs. (3) and (6). The third inequality
follows since the geometric Rényi divergence is the largest Rényi divergence satisfying
the data-processing inequality (see [15] or [35, Eq. (4.34)]). It remains to prove the
last one. Since the geometric Rényi divergence is monotonically non-decreasing with
respect to α,4 it suffices to show that ̂D2(ρ‖σ) ≤ Dmax(ρ‖σ). This has been proved
in [28, Remark 5.3.2]. We provide here a different proof by using their semidefinite
representations. Recall that Dmax(ρ‖σ) = min{log t | ρ ≤ tσ }. Denote the optimal
solution as t , and we have Dmax(ρ‖σ) = log t with 0 ≤ ρ ≤ tσ . Note that

̂D2(ρ‖σ) = log Tr
[

ρσ−1ρ
]

= logmin
{

Tr M
∣

∣ ρσ−1ρ ≤ M
} = logmin

{

Tr M

∣

∣

∣

∣

[

M ρ

ρ σ

]

≥ 0

}

, (23)

where the last equality follows from the Schur complement characterization of the block
positive semidefinite matrix. Take M = tρ, and we have

[

M ρ

ρ σ

]

=
[

tρ ρ

ρ σ

]

≥
[

tρ ρ

ρ t−1ρ

]

=
[

t 1
1 t−1

]

⊗ ρ ≥ 0. (24)

Thus M = tρ is a feasible solution of optimization (23) which implies ̂D2(ρ‖σ) ≤
log Tr[tρ] = log t = Dmax(ρ‖σ). This completes the proof. ��

Comparedwith Dmax, it is clear that ̂Dα gives a tighter approximation of theUmegaki
relative entropy D from above. We provide a concrete example in Fig. 1 to give an
intuitive understanding of the relations between different divergences.

Lemma 5 (Closed-form expression). For any quantum channel NA′→B, subchannel
MA′→B and α ∈ (1, 2], the geometric Rényi channel divergence is given by

̂Dα(N‖M) = 1

α − 1
log

∥

∥

∥TrB G1−α(JN
AB, JM

AB )

∥

∥

∥∞, (25)

where JN
AB and JM

AB are the corresponding Choi matrices of N and M respectively.
Moreover, for the Belavkin–Staszewski channel divergence, its has the closed-form ex-
pression:

̂D(N‖M) =
∥

∥

∥TrB

{

(JN
AB)

1
2 log

[

(JN
AB)

1
2 (JM

AB )−1(JN
AB)

1
2

]

(JN
AB)

1
2

}∥

∥

∥∞ . (26)

4 This is clear from the minimization formula of ̂Dα in [15, Eq. (11)] and the monotonicity of classical
Rényi divergence.
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Fig. 1. Relations between Umegaki relative entropy D, Belavkin–Staszewski relative entropy ̂D, max-relative
entropy Dmax, sandwiched Rényi divergence ˜Dα , Petz Rényi divergence Dα and geometric Rényi divergence
̂Dα

Proof. Note that for any quantum state ρA and its purification φAA′ , we have the relation

NA′→B(φAA′) = NA′→B

(√
ρA|〉〈|AA′

√
ρA

)

= √
ρA JN

AB
√

ρA . (27)

By definition of the geometric Rényi divergence we have

̂Dα(N‖M) = max
ρA∈S(A)

̂Dα(
√

ρA JN
AB

√
ρA ‖√

ρA JM
AB

√
ρA ) (28)

= 1

α − 1
log max

ρA∈S(A)
Tr G1−α(

√
ρA JN

AB
√

ρA,
√

ρA JM
AB

√
ρA ) (29)

= 1

α − 1
log max

ρA∈S(A)
Tr

√
ρA G1−α(JN

AB, JM
AB )

√
ρA (30)

= 1

α − 1
log max

ρA∈S(A)
Tr G1−α(JN

AB, JM
AB )(ρA ⊗ 1B) (31)

= 1

α − 1
log max

ρA∈S(A)
Tr

(

[

TrB G1−α(JN
AB, JM

E B)
]

ρA
)

(32)

= 1

α − 1
log

∥

∥

∥TrB G1−α(JN
AB, JM

AB )

∥

∥

∥∞ , (33)

where the third step follows from the transformer inequality given in Lemma 47 in
Appendix A and the fact that we can assume by continuity that ρA has full rank.5 The
last line follows from the semidefinite representation of the infinity norm ‖X‖∞ =
maxρ∈S Tr Xρ.

The expression for ̂D follows exactly the same steps by using Corollary 48 in Ap-
pendix A and replacing the weighted matrix geometric mean with the operator relative
entropy. ��

5 We recall that this follows from a standard continuity argument which works because the geometric Rényi
divergence has nice continuity properties, see [41, Page 2] or [15, Eq. (72)].
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Lemma 6 (Additivity). Let N1 and N2 be two quantum channels and let M1 and M2
be two subchannels. Then for any α ∈ (1, 2] it holds that

̂Dα(N1 ⊗ N2‖M1 ⊗ M2) = ̂Dα(N1‖M1) + ̂Dα(N2‖M2). (34)

Proof. Due to the closed-form expression in Lemma 5, we have

̂Dα(N1 ⊗ N2‖M1 ⊗ M2) = 1

α − 1
log

∥

∥TrB1B2 G1−α(JN1 ⊗ JN2 , JM1 ⊗ JM2)
∥

∥∞
(35)

= 1

α − 1
log

∥

∥TrB1B2 G1−α(JN1 , JM1) ⊗ G1−α(JN2 , JM2)
∥

∥∞ (36)

= 1

α − 1
log

∥

∥TrB1 G1−α(JN1, JM1)
∥

∥∞
∥

∥TrB2 G1−α(JN2 , JM2)
∥

∥∞ (37)

= ̂Dα(N1‖M1) + ̂Dα(N2‖M2). (38)

The first and last lines follow from Lemma 5. The second and third lines follow since the
weighted matrix geometric mean and the infinity norm are multiplicative under tensor
product. ��
Lemma 7 (Chain rule). Let ρ be a quantum state on HR A, σ be a subnormalized state
on HR A and NA→B be a quantum channel, MA→B be a subchannel and α ∈ (1, 2].
Then

̂Dα(NA→B(ρR A)‖MA→B(σR A)) ≤ ̂Dα(ρR A‖σR A) + ̂Dα(N‖M) . (39)

Proof. Let |〉S A = ∑

i |i〉S|i〉A be the unnormalized maximally entangled state. De-
note JN

SB and JM
SB as the Choi matrices corresponding to N andM, respectively. Then

we have the identities (see e.g. [22, Eq.(11)])

NA→B(ρR A) = 〈

S A
∣

∣ρR A ⊗ JN
SB

∣

∣S A
〉

and MA→B(σR A) = 〈

S A
∣

∣σR A ⊗ JM
SB

∣

∣S A
〉

. (40)

For y = ‖TrB G1−α(JN
SB, JM

SB )‖∞, Lemma 5 ensures that

̂Dα(N‖M) = 1

α − 1
log y (41)

and by definition of the infinity norm we find

TrB G1−α(JN
SB, JM

SB ) ≤ y 1S . (42)

By definition of the geometric Rényi divergence and by using (40) we can write

̂Dα

(NA→B(ρR A)‖MA→B(σR A)
)

= 1

α − 1
log Tr G1−α(

〈

S A
∣

∣ρR A ⊗ JN
SB

∣

∣S A
〉

,
〈

S A
∣

∣σR A ⊗ JM
SB

∣

∣S A
〉

) (43)

≤ 1

α − 1
log Tr

〈

S A
∣

∣G1−α(ρR A ⊗ JN
SB, σR A ⊗ JM

SB )
∣

∣S A
〉

(44)

= 1

α − 1
log Tr

〈

S A
∣

∣G1−α(ρR A, σR A) ⊗ G1−α(JN
SB, JM

SB )
∣

∣S A
〉

(45)
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= 1

α − 1
log Tr

〈

S A
∣

∣G1−α(ρR A, σR A) ⊗ TrB G1−α(JN
SB, JM

SB )
∣

∣S A
〉

(46)

≤ 1

α − 1
log Tr

〈

S A
∣

∣G1−α(ρR A, σR A) ⊗ y 1S
∣

∣S A
〉

(47)

= 1

α − 1
log

(

y Tr G1−α(ρR A, σR A)
)

(48)

= 1

α − 1
log y +

1

α − 1
log Tr G1−α(ρR A, σR A) (49)

= ̂Dα(N‖M) + ̂Dα(ρR A‖σR A) , (50)

where the first inequality follows from the transformer inequality given in Lemma 47
in Appendix A. The third line follows from the multiplicativity of weighted matrix
geometric mean under tensor product. The second inequality uses (42) and the fact that
X �→ Tr K X is monotone for positive operator K . Equation (48) follows from the
identity 〈S A|YR A ⊗ 1S|S A〉 = TrA YR A. ��
Lemma 8 (Sub-additivity). For any quantum channelsN 1

A→B,N 2
B→C , any subchannels

M1
A→B, M2

B→C and α ∈ (1, 2], it holds

̂Dα(N2 ◦ N1‖M2 ◦ M1) ≤ ̂Dα(N1‖M1) + ̂Dα(N2‖M2). (51)

Proof. This is a direct consequence of the chain rule in Lemma 7. For any pure state
φAR , we have

̂Dα(N2 ◦ N1(φAR)‖M2 ◦ M1(φAR)) ≤ ̂Dα(N2‖M2) + ̂Dα(N1(φAR)‖M1(φAR))

(52)

≤ ̂Dα(N2‖M2) + ̂Dα(N1‖M1) + ̂Dα(φAR‖φAR) (53)

= ̂Dα(N2‖M2) + ̂Dα(N1‖M1). (54)

Taking a maximization of φAR on the left hand side, we have the desired result. ��
Lemma 9 (Semidefinite representation). Let V be a set of subchannels from A to B
characterized by certain semidefinite conditions. For any quantum channel NA→B and
α(�) = 1 + 2−� with � ∈ N, the optimization minM∈V ̂Dα(N‖M) can be computed by
a semidefinite program:

2� · logmin y s.t. �M, {Ni }�i=0, JM, y�H,
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

N0 − JM
�

E
,

�

y1A − TrB M

�

P
,M ∈ V,

(55)

where JN and JM are the corresponding Choi matrices of N and M respectively.

Proof. This is a direct consequence of the closed-form expression in Lemma 5 and the
semidefinite representation of the weighted matrix geometric means in [14] (see also
Lemma 46 in Appendix A), as well as the semidefinite representation of the infinity
norm of an Hermitian operator ‖X‖∞ = min{y | X ≤ y1}. ��
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4. Quantum Communication

4.1. Background. The quantum capacity of a noisy quantum channel is the maximum
rate at which it can reliably transmit quantum information over asymptotically many
uses of the channel. There are two different quantum capacities of major concern, the
(unassisted) quantum capacity Q and the two-way assisted quantum capacity Q↔ ,
depending on whether classical communication is allowed between each channel uses.

The well-established quantum capacity theorem shows that the quantum capacity is
equal to the regularized channel coherent information [5–7,42–44],

Q(N ) = lim
n→∞

1

n
Ic(N⊗n) = sup

n∈N
1

n
Ic(N⊗n), (56)

where Ic(N ) ≡ maxρ∈S
[

H(N (ρ)) − H(N c(ρ))
]

is the channel coherent informa-
tion, H is the von Neumann entropy and N c is the complementary channel of N . The
regularization in (56) is necessary in general since the channel coherent information
is non-additive [45,46] and an unbounded number of channel uses may be required to
detect capacity [47]. For this reason, the quantum capacity is notoriously difficult to
evaluate, not to mention the scenario with two-way classical communication assistance.

Substantial efforts have been made in providing single-letter lower and upper bounds
on Q and Q↔ (e.g. [48–53]). Most of them require certain symmetries of the channel to
be computable or relatively tight. Of particular interest is a strong converse bound given
by Tomamichel et al. [11]. Inspired by the Rains bound from entanglement theory [54],
they introduced the Rains information (R) of a quantum channel and further proved that
it is a strong converse rate for quantum communication through the channel. However, R
is not known to be computable in general due to itsminimax optimization of theUmegaki
relative entropy. For the ease of computability, Wang et al. [21] relaxed the Umegaki
relative entropy to the max-relative entropy, obtaining a variant known as the max-
Rains information (Rmax). Leveraging the semidefinite representation of themax-relative
entropy, they showed that Rmax is efficiently computable via a semidefinite program. It
was later strengthened by Berta and Wilde [22] that Rmax is also a strong converse rate
for quantum communication under two-way classical communication assistance. Since
then, the max-Rains information Rmax is arguably6 the best-known computable strong
converse bound on both assisted and unassisted quantum capacities in general.

4.2. Summary of results. In this part, we aim to improve the bound given by the max-
Rains information in both assisted and unassisted scenarios. The structure of this part is
organized as follows (see also a schematic diagram in Fig. 2).

In Sect. 4.3wediscuss the unassisted quantumcommunication.Based on the notion of
the generalized Rains information in [11], we exhibit that the generalized Rains informa-
tion induced by the geometric Rényi divergence (̂Rα) can be computed as a semidefinite
program, improving the previously known result of the max-Rains information [21] in
general. That is, we show that

Q(N ) ≤ Q†(N ) ≤ R(N ) ≤ ̂Rα(N ) ≤ Rmax(N ), with ̂Rα(N ) SDP computable,

6 Another known strong converse bound is the entanglement-assisted quantum capacity [10] which can be
estimated by a algorithm in [55,56]. But this bound is usually larger than the max-Rains information since the
entanglement assistance is too strong.
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where Q(N ) and Q†(N ) denote the unassisted quantum capacity of channelN and its
corresponding strong converse capacity, respectively.

In Sect. 4.4, we study the quantum communication with PPT assistance, an assis-
tance stronger than the two-way classical communication. We introduce the generalized
Theta-information which is a new variant of channel information inspired by the channel
resource theory (similar to the Upsilon-information in [57]). More precisely, we define
the generalized Theta-information as a “channel distance” to the class of subchannels
given by the zero set of Holevo–Werner bound (Q�) [48]. Interestingly, we show that the
max-Rains information Rmax coincides with the generalized Theta-information induced
by the max-relative entropy Rmax,�, i.e., Rmax = Rmax,�, thus providing a completely
new perspective of understanding the former quantity. Moreover, we prove that the gen-
eralized Theta-information induced by the geometric Rényi divergence (̂Rα,�) is a strong
converse bound on the PPT-assisted quantum capacity by utilizing an “amortization ar-
gument”. Together with its SDP formula, we conclude that ̂Rα,� improves the previous
result of the max-Rains information [22] in general. That is, we show that

QPPT,↔(N ) ≤ QPPT,↔,†(N ) ≤ ̂Rα,�(N ) ≤ Rmax(N ), with ̂Rα,�(N ) SDP computable,

where QPPT,↔(N ) and QPPT,↔,†(N ) denote the PPT-assisted quantum capacity of
channel N and its corresponding strong converse capacity, respectively.

In Sect. 4.5, we consider the PPT-assisted quantum communication via bidirectional
quantum channels, a more general model than the usual point-to-point channels. We
extend the results in Sect. 4.4 to this general model and demonstrate an improvement to
the previous result of the bidirectional max-Rains information (Rbi

max) [23]. That is, we
show that

Qbi,PPT,↔(N ) ≤ Qbi,PPT,↔,†(N ) ≤ ̂Rbi
α,�(N ) ≤ Rbi

max(N ),with ̂Rbi
α,�(N ) SDP computable,

where Qbi,PPT,↔(N ) and Qbi,PPT,↔,†(N ) denote the PPT-assisted quantum capacity of
a bidirectional channel N and its corresponding strong converse capacity, respectively.

Finally in Sect. 4.6 we investigate several fundamental quantum channels, demon-
strating the efficiency of our new strong converse bounds. It turns out that our newbounds
work exceptionally well and exhibit a significant improvement on the max-Rains infor-
mation for almost all cases.

4.3. Unassisted quantum capacity. In this section, we discuss converse bounds on the
unassisted quantum capacity.7

Definition 10 ([11]). For any generalized divergence D, the generalized Rains bound of
a quantum state ρAB is defined as

R(ρAB) ≡ min
σAB∈PPT′(A:B)

D(ρAB‖σAB), (57)

where the minimization is taken over the Rains set PPT′(A : B) ≡ {

σAB
∣

∣ σAB ≥
0,

∥

∥σ
TB
AB

∥

∥

1 ≤ 1
}

.

7 We refer to the work [11, Section II] for rigorous definitions of the unassisted quantum capacity and its
strong converse rate.
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Fig. 2. Relations between different converse bounds for quantum communication. Q∗ and Q∗,† are the
quantum capacity with assistance ∗ and its corresponding strong converse capacity, respectively. R, ̂Rα and
Rmax are the generalized Rains information induced by different quantum divergences. ̂Rα,� and Rmax,�
are the generalized Theta-information induced by different quantum divergences. Q� is the Holevo–Werner
bound. The circled quantities are those of particular interest in quantum information theory. The key quantities
and the main contributions in this part are marked in red. The quantity at the start point of an arrow is no
smaller than the one at the endpoint. The double arrow represents that two quantities coincide. The inequality
sign represents that two quantities are not the same in general. The dotted arrow represents that the relation
holds under certain restrictions, where “cov.” stands for “covariant”. The parameter α is taken in the interval
(1, 2]. The quantities in the shaded area are SDP computable in general

Definition 11 ([11]). For any generalized divergence D, the generalized Rains informa-
tion of a quantum channel NA′→B is defined as

R(N ) ≡ max
ρA∈S(A)

R(NA′→B(φAA′)) = max
ρA∈S(A)

min
σAB∈PPT′(A:B)

D(NA′→B(φAA′)‖σAB)

(58)

where φAA′ is a purification of quantum state ρA.

In particular, the Rains information is induced by the Umegaki relative entropy [11],

R(N ) = max
ρA∈S(A)

min
σAB∈PPT′(A:B)

D(NA′→B(φAA′)‖σAB). (59)

The max-Rains information is induced by the max-relative entropy [21],

Rmax(N ) = max
ρA∈S(A)

min
σAB∈PPT′(A:B)

Dmax(NA′→B(φAA′)‖σAB). (60)

Denote ̂Rα as the generalized Rains information induced by the geometric Rényi
divergence. We have the following result.

Theorem 12 (Application 1). For any quantum channel N and α ∈ (1, 2], it holds

Q(N ) ≤ Q†(N ) ≤ R(N ) ≤ ̂Rα(N ) ≤ Rmax(N ), (61)

where Q(N ) and Q†(N ) denote the unassisted quantum capacity of channel N and its
corresponding strong converse capacity, respectively.

Proof. The first two inequalities follow since the Rains information R(N ) has been
proved to be a strong converse bound on the unassisted quantum capacity [11]. The last
two inequalities are direct consequences of the inequalities in Lemma 4. ��
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Remark 5. Note that in the limit of α → 1, the bound ̂Rα will converge to the Rains
information induced by the Belavkin–Staszewski relative entropy due to Eq. (11).

The following result shows how to compute the newly introduced bound ̂Rα(N ) as
an SDP.

Proposition 13 (SDP formula). For any quantum channel N and α(�) = 1 + 2−� with
� ∈ N, it holds

̂Rα(N ) = � · 2� − (2� + 1) log(2� + 1) + (2� + 1) log Sα(N ), (62)

with Sα(N ) given by the following SDP

Sα(N ) = max Tr
[(

KH − ∑�
i=1Wi

)

· JN
]

s.t. �K , {Zi }�i=0�L, �{Wi }�i=1, ρ�H,

�
ρ ⊗ 1 K

K † ZH
�

�

P
,

{�
Wi Zi

Z†
i ZH

i−1

�

P

}�

i=1

,

�

ρ ⊗ 1 ±
[

ZH
0

]TB
�

P
,

�

Tr ρ − 1

�

E
, (63)

where JN is the Choi matrix of N and XH ≡ X + X† denotes the Hermitian part of X.

Proof. The proof involves a non-trivial scaling technique for variables replacement,
which is important for simplifying the minimax optimization of ̂Rα to a single SDP.
More formally, this proof contains two steps. First we derive a suitable SDP formula for
̂Rα(ρAB) in terms of a maximization problem. Second, we replace ρAB as the channel’s
output state NA′→B(φAA′) and maximize over all the input state ρA. Since the SDP
maximization formula for ̂Rα(ρAB) is not necessarily unique, we need to find a suitable
one which is able to give us an overall semidefinite optimization in the second step.
Step One: Combining the semidefinite representation of the geometric Rényi divergence
inLemma46 and the semidefinite representation of theRains set PPT′(A : B) = {

σAB ≥
0 | σTB

AB = X AB − YAB, Tr(X AB + YAB) ≤ 1, X AB ≥ 0, YAB ≥ 0
}

, we have the SDP
formula for the geometric Rényi Rains bound as,

̂Rα(ρAB) = 2� · logmin
[

Tr M
]

s.t. �M, {Ni }�i=0�H, �X, Y �P ,
�

M ρ

ρ N�

�

P
,

{�
ρ Ni
Ni Ni−1

�

P

}�

i=1
,

�

NTB
0 − X + Y

�

E
,

�

1 − Tr(X + Y )

�

P
. (64)

By the Lagrange multiplier method, the dual SDP is given by

̂Rα(ρAB) = 2� · logmax
[

Tr
[(

KH − ∑�
i=1Wi

)

· ρ
]

− f
]

s.t. �K , {Zi }�i=0�L, �{Wi }�i=1, f �H,
�
1 K

K † ZH
�

�

P
,

{�
Wi Zi

Z†
i ZH

i−1

�

P

}�

i=1

,

�

f 1 ±
[

ZH
0

]TB
�

P
. (65)

Due to the Slater’s condition, we can easily check that the strong duality holds. Note
that both (64) and (65) are already SDPs for any quantum state ρAB . However, the last
condition in (65) will introduce a non-linear term if we perform the second step of proof
at this stage. The following trick will help us get rid of the variable f which is essential
to obtain the final result. Note that the last condition above implies f ≥ 0 and together
with the rest conditions we necessarily have f > 0. Replacing the variables as

˜K = f −1/(2�+1)K , ˜Wi = f −1/(2�+1)Wi , ˜Zi = f −(2�−i+1)/(2�+1)Zi , (66)
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we obtain an equivalent SDP of ̂Rα(ρAB) as

2� · logmax
[

f 1/(2
�+1) Tr

[(

˜KH − ∑�
i=1

˜Wi

)

· ρ
]

− f
]

s.t. �˜K , {˜Zi }�i=0�L,

�{ ˜Wi }�i=1, f �H,

�
1 ˜K
˜K †

˜ZH
�

�

P
,

{�
˜Wi ˜Zi
˜Z†

i
˜ZH

i−1

�

P

}�

i=1

,

�

1 ±
[

˜ZH
0

]TB
�

P
. (67)

Denote the objective function f 1/(2
�+1) ·a − f with a = Tr

[(

˜KH −∑�
i=1

˜Wi
) ·ρ] ≥ 0.

For any fixed value a, the optimal solution is taken at f = [a/(2� + 1)]1+1/2�
with the

maximal value 2�[a/(2� + 1)]1+1/2�
. Without loss of generality, we can replace the ob-

jective functionwith 2�[a/(2� + 1)]1+1/2�
and get rid of the variable f . Direct calculation

gives us

̂Rα(ρAB) = � · 2� − (2� + 1) log(2� + 1) + (2� + 1) log Sα(ρAB) with

Sα(ρAB) = max Tr
[(

KH − ∑�
i=1Wi

)

· ρ
]

s.t. �K , {Zi }�i=0�L, �{Wi }�i=1�H,

�
1 K

K † ZH
�

�

P
,

{�
Wi Zi

Z†
i ZH

i−1

�

P

}�

i=1

,

�

1 ±
[

ZH
0

]TB
�

P
. (68)

Step Two: Note that NA′→B(φAA′) = √
ρA JN

√
ρA holds for any quantum state ρA

with purification φAA′ . Thus the final result is straightforward from (68) by replacing the
input state ρAB as

√
ρA JN

√
ρA, replacing K , Zi , Wi as ρ

−1/2
A Kρ

−1/2
A , ρ

−1/2
A Ziρ

−1/2
A ,

ρ
−1/2
A Wiρ

−1/2
A respectively and maximizing over all input state ρA. ��

4.4. Two-way assisted quantum capacity. In this section, we discuss converse bounds
on two-way assisted quantum capacity.8 Recall that the Rains bound in (57) is essentially
established as the divergence between the given state and the Rains set—a set of sub-
normalized states given by the zero set9 of the log-negativity EN (ρAB) ≡ log ‖ρTB

AB‖1
[58]. With this in mind, we introduce a new variant of the channel’s analog of Rains
bound, compatible with the notion of channel resource theory. Specifically, consider the
Holevo–Werner bound [48]—a channel’s analog of the log-negativity,

Q�(N ) ≡ log ‖�B ◦ NA→B‖♦, (69)

where � is the transpose map and ‖FA′→B‖♦ ≡ supX AA′ ∈L(AA′) ‖FA′→B

(X AA′)‖1/‖X AA′ ‖1 is the diamond norm [59]. In particular, this bound can be rep-
resented as the following SDP,

Q�(N ) = logmin
{

y
∣

∣

∣ YAB ± JTB
N ≥ 0, TrB YAB ≤ y1A

}

. (70)

Inspired by the formulation of the Rains set, we define the set of subchannels given by
the zero set of the Holevo–Werner bound Q� as

V� ≡
{

M ∈ CP(A : B)

∣

∣

∣ ∃ YAB, s.t. YAB ± JTB
M ≥ 0, TrB YAB ≤ 1A

}

. (71)

8 We refer to [22, Section 4] for rigorous definitions of the PPT/two-way assisted quantum capacity and its
strong converse rate.

9 It makes no difference by considering ‖ρTB
AB‖1 = 1 or ‖ρTB

AB‖1 ≤ 1.
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Definition 14 (Theta-info.). For any generalized divergence D, the generalized Theta-
information10 of a quantum channel NA′→B is defined as

R�(N ) ≡ min
M∈V�

D(N‖M) = min
M∈V�

max
ρA∈S(A)

D(NA′→B(φAA′)‖MA′→B(φAA′)),

(72)

where V� is the Theta set in (71) and φAA′ is a purification of quantum state ρA.

Remark 6. On the r.h.s. of Eq. (72), the objective function is concave in ρA and convex
inM [57, Proposition 8]. Thus we can swap the min and max by using Sion’s minimax
theorem [60].

The following result compares the generalized Theta-information in (72) and the
generalized Rains information in (58) presented in the previous section. Interestingly,
these two quantities coincide for the max-relative entropy in general.

Proposition 15. For any generalized divergence D and any quantum channelN , it holds

R(N ) ≤ R�(N ). (73)

Moreover, for the max-relative entropy the equality always holds, i.e,

Rmax(N ) = Rmax,�(N ). (74)

Proof. We prove the relation (73) first. Note that for any pure state φAA′ andMA′→B ∈
V�, we have

‖(MA′→B(φAA′))TB ‖1 = ‖�B ◦ MA′→B(φAA′)‖1 ≤ ‖�B ◦ MA′→B‖♦ ≤ 1. (75)

This implies MA′→B(φAA′) ∈ PPT′(A : B). Then it holds

R(N ) = max
ρA∈S(A)

min
σAB∈PPT′(A:B)

D(NA′→B(φAA′)‖σAB) (76)

≤ max
ρA∈S(A)

min
M∈V�

D(NA′→B(φAA′)‖MA′→B(φAA′)) (77)

= min
M∈V�

max
ρA∈S(A)

D(NA′→B(φAA′)‖MA′→B(φAA′)) (78)

= R�(N ). (79)

The first and last line follow by definition. The inequality holds sinceMA′→B(φAA′) ∈
PPT′(A : B) and thus the first line is minimizing over a larger set. In the third line, we
swap the min and max by the argument in Remark 6.

We next prove the Eq. (74). Recall that the SDP formula of themax-Rains information
is given by ([21, Proposition 5] or [61, Eq. (11)])

Rmax(N ) = logmin
{

μ
∣

∣ (V − Y )TB ≥ JN ,TrB(V + Y ) ≤ μ1A, Y, V ≥ 0
}

. (80)

Replace V and Y with μV and μY respectively, and then denote N = (V − Y )TB , we
have

Rmax(N ) = logmin
{

μ

∣

∣

∣ JN ≤ μN , N = (V − Y )TB , TrB(V + Y ) ≤ 1A, Y, V ≥ 0
}

.

(81)

10 The name follows from the Theta set V� where � was originally used as the transpose map in the
Holevo–Werner bound.
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Notice that the second to the last conditions define a set of CP maps

V ≡
{

M ∈ CP(A : B)
∣

∣ ∃ VAB , YAB , s.t. JTB
M = V − Y,TrB(V + Y ) ≤ 1A, Y, V ≥ 0

}

.

(82)

Combining (81) and (82), we obtain Rmax(N ) = minM∈V Dmax(N‖M). Thus it suf-
fices for us to show the equivalenceV = V�. For anyM ∈ V�, take V = (R + JTB

M )/2

and Y = (R − JTB
M )/2. Then V ≥ 0, Y ≥ 0, JTB

M = V − Y and TrB(V +Y ) = TrB R ≤
1A, which implies M ∈ V . On the other hand, for any M ∈ V , take R = V + Y . We
can check that TrB R = TrB(V + Y ) ≤ 1A, R + JTB

M = (V + Y ) + (V − Y ) = 2V ≥ 0

and R − JTB
M = (V + Y ) − (V − Y ) = 2Y ≥ 0, which implies M ∈ V�. Finally we

have

Rmax(N ) = min
M∈V

Dmax(N‖M) = min
M∈V�

Dmax(N‖M) = Rmax,�(N ), (83)

which completes the proof. ��
We proceed to consider the geometric Rényi divergence and show its amortization

property, a key ingredient to proving the strong converse bound on the assisted quantum
capacity in Theorem 17.

Suppose Alice and Bob share a quantum state ρA′ AB′ with the system cut A′ A : B ′.
Their shared entanglement with respect to the measure ̂Rα is given by ̂Rα(ρA′ A:B′). If
Alice redistributes part of her system A through the channel NA→B and Bob receives
the output system B, then their shared state becomes to ωA′:B B′ = NA→B(ρA′ A:B′)with
the shared entanglement evaluated as ̂Rα(ωA′:B B′). The amortization inequality shows
that the amount of entanglement change after the state redistribution is upper bounded
by the channel’s information measure ̂Rα,�(N ).

Proposition 16 (Amortization). For any quantum state ρA′ AB′ , any quantum channel
NA→B and the parameter α ∈ (1, 2], it holds

̂Rα(ωA′:B B′) ≤ ̂Rα(ρA′ A:B′) + ̂Rα,�(NA→B) with ωA′:B B′ = NA→B(ρA′ A:B′).
(84)

Proof. This is a direct consequence of the chain rule property of the geometric Rényi
divergence in Lemma7. Suppose the optimal solutions of ̂Rα(ρA′ A:B′) and ̂Rα,�(NA→B)

are taken at σA′ AB′ ∈ PPT′(A′ A : B ′) and M ∈ V�, respectively. Let γA′ B B′ =
MA→B(σA′ AB′). We have

∥

∥

∥γ
TB B′
A′ B B′

∥

∥

∥

1
=

∥

∥

∥�B ◦ MA→B(σ
TB′
A′ AB′)

∥

∥

∥

1
≤ ‖�B ◦ MA→B‖♦

∥

∥

∥σ
TB′
A′ AB′

∥

∥

∥

1
≤ 1, (85)

where the first inequality follows from the definition of diamond norm and the second
inequality follows from the choice of σA′ AB′ and MA→B . Thus γA′ B B′ ∈ PPT′(A′ :
B B ′) and forms a feasible solution for ̂Rα(ωA′:B B′). Then we have

̂Rα(ωA′:B B′) ≤ ̂Dα(ωA′:B B′ ‖γA′ B B′) (86)

= ̂Dα(NA→B(ρA′ A:B′)‖MA→B(σA′ AB′)) (87)

≤ ̂Dα(N‖M) + ̂Dα(ρA′ A:B′ ‖σA′ AB′) (88)

= ̂Rα,�(NA→B) + ̂Rα(ρA′ A:B′). (89)

The second inequality follows from the chain rule of the geometric Rényi divergence in
Lemma 7, and the last line follows by the optimality assumption of M and σ . ��
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Fig. 3. A schematic diagram for the protocol of O-assisted quantum communication that uses a quantum
channel n times, whereO is usually chosen as LOCC or PPT. Every channel use is interleaved by an operation
in the class O. The goal of such a protocol is to produce an approximate maximally entangled state ωMA MB
between Alice and Bob. The systems in red are held by Alice while the systems in blue are held by Bob

Theorem 17 (Application 2). For any quantum channel N and α ∈ (1, 2], it holds

QPPT,↔(N ) ≤ QPPT,↔,†(N ) ≤ ̂Rα,�(N ) ≤ Rmax(N ),

(90)

where QPPT,↔(N ) and QPPT,↔,†(N ) denote the PPT-assisted quantum capacity of
channel N and its corresponding strong converse capacity, respectively.

Proof. The first inequality holds by definition. The last inequality holds since we have
̂Rα,�(N ) ≤ Rmax,�(N ) = Rmax(N ) by Lemma 4 and Proposition 15, respectively. It
remains to prove the second one. Once we have the amortization inequality in Proposi-
tion 16, the proof of the second inequality will closely follow the one in [22, Theorem 3].
Consider n round PPT-assisted quantum communication protocol illustrated in Fig. 3.
For the i-th round, denote the input state ofN as ρ

(i)

A′ AB′ and the output state as σ
(i)

A′ B B′ .
The final state after n rounds communication is denoted as ωMA MB . Then we have

̂Rα(ωMA MB ) ≤ ̂Rα

(

σ
(n)

A′:B B′
)

(91)

= ̂Rα

(

σ
(n)

A′:B B′
) − ̂Rα

(

ρ
(1)
A′ A:B′

)

(92)

≤ ̂Rα

(

σ
(n)

A′:B B′
)

+
∑n−1

i=1

[

̂Rα

(

σ
(i)

A′:B B′
) − ̂Rα

(

ρ
(i+1)
A′ A:B′

)]

− ̂Rα

(

ρ
(1)
A′ A:B′

)

(93)

=
∑n

i=1

[

̂Rα

(

σ
(i)

A′:B B′
) − ̂Rα

(

ρ
(i)

A′ A:B′
)

]

(94)

≤ n ̂Rα,�(N ). (95)

The first and third lines follow from the monotonicity of the geometric Rényi Rains
bound ̂Rα with respect to the PPT operations [11, Eq. (22)]. The second line follows
since ρ

(1)
A′ A:B′ is a PPT state and thus ̂Rα(ρ

(1)
A′ A:B′) = 0. The last line follows from

Proposition 16.
Note that any communication protocol is characterized by a triplet (n, r, ε) with

the number of rounds n, the communication rate r , and the error tolerance ε. Denote
k ≡ 2nr and we have Trk ω ≥ 1 − ε with k being the k-dimensional maximally
entangled state. Moreover, for any σ ∈ PPT′, it holds Trkσ ≤ 1/k [54]. Without loss
of generality, we can assume that ε ≤ 1− 2−nr . Otherwise, any rate above the capacity
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would satisfy the strong converse property since 1 − ε < 2−nr . Thus for any σ ∈ PPT′
we have

1 − Trkω ≤ ε ≤ 1 − 2−nr ≤ 1 − Trkσ. (96)

LetN (γ ) = (Trkγ )|0〉〈0|+(Tr(1−k)γ )|1〉〈1|. Due to the data-processing inequal-
ity, we have

̂Dα(ω‖σ) ≥ ̂Dα(N (ω)‖N (σ )) = δα(1 − Trkω‖1 − Trkσ) ≥ δα(ε‖1 − 2−nr ),

(97)

where δα(p‖q) ≡ 1
α−1 log

[

pαq1−α + (1− p)α(1−q)1−α
]

is the binary classical Rényi
divergence. The last inequality in (97) follows from the monotonicity property that
δα(p′‖q) ≤ δα(p‖q) if p ≤ p′ ≤ q and δα(p‖q ′) ≤ δα(p‖q) if p ≤ q ′ ≤ q [62]. Then
we have

̂Rα(ω) = min
σ∈PPT′

̂Dα(ω‖σ) (98)

≥ δα(ε‖1 − 2−nr ) (99)

≥ 1

α − 1
log(1 − ε)α(2−nr )1−α (100)

= α

α − 1
log(1 − ε) + nr. (101)

Combining Eqs. (91) and (98), we have

α

α − 1
log(1 − ε) + nr ≤ n ̂Rα,�(N ), (102)

which is equivalent to

1 − ε ≤ 2
−n

(

α−1
α

)

[

r−̂Rα,�(N )
]

. (103)

This implies that if the communication rate r is strictly larger than ̂Rα,�(N ), the fidelity
of transmission 1 − ε decays exponentially fast to zero as the number of channel use
n increases. Or equivalently, we have the strong converse inequality QPPT,↔,†(N ) ≤
̂Rα,�(N ) and completes the proof. ��

Let Q↔ and Q↔,† be the two-way assisted quantum capacity and its strong converse
capacity respectively. We have the following as a direct consequence of Theorem 17,
since PPT assistance is stronger.

Corollary 18. For any quantum channel N and α ∈ (1, 2], it holds

Q↔(N ) ≤ Q↔,†(N ) ≤ ̂Rα,�(N ) ≤ Rmax(N ). (104)

Finally, we present how to compute ̂Rα,�(N ) as an SDP.
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Fig. 4. A model of bidirectional quantum channel where A1, A2 are held by Alice and B1, B2 by Bob

Proposition 19 (SDP formula). For any quantum channel NA′→B and α(�) = 1 + 2−�

with � ∈ N, the geometric Rényi Theta-information can be computed as an SDP:

̂Rα,�(N ) = 2� · logmin y s.t. �M, {Ni }�i=0, R, y�H,
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

R ± NTB
0

�

P
,

�

1 − TrB R

�

P
,

�

y1A − TrB M

�

P
, (105)

where JN is the Choi matrix of N .

Proof. This directly follows from Lemma 9 and the definition of the Theta set V�

in (71). ��

4.5. Extension to bidirectional channels. In this section we showcase that the above
results for the PPT/two-way assisted quantum capacity can be extended to amore general
scenario where Alice and Bob share a bidirectional quantum channel.

A bipartite quantum channel NA1B1→A2B2 is a completely positive trace-preserving
map that sends composite system A1B1 to A2B2. This channel is called bidirectional
channel if A1A2 are held by Alice and B1B2 are held by Bob. That is, Alice and Bob
each input a state to this channel and receive an output [63], as depicited in Fig. 4. This
is the most general setting for two-party communications and will reduce to the usual
point-to-point channel when the dimensions of Bob’s input and Alice’s output are trivial,
i.e., dim(HB1) = dim(HA2) = 1.

In [23], the authors introduced the bidirectional version of themax-Rains information
as

Rbi
max(NA1B1→A2B2) ≡ logmin ‖TrA2B2(VA1B1 A2B2 + YA1B1 A2B2)‖∞ s.t. (106)

VA1B1 A2B2 ≥ 0, YA1B1 A2B2 ≥ 0, (VA1B1 A2B2 − YA1B1 A2B2)
TB1B2 ≥ JN

A1B1 A2B2
.

Let Qbi,PPT,↔ and Qbi,PPT,↔,† be the PPT-assisted quantum capacity of a bidirec-
tional channel and its strong converse capacity respectively.11 It was proved in [23]
that

Qbi,PPT,↔(NA1B1→A2B2) ≤ Qbi,PPT,↔,†(NA1B1→A2B2) ≤ Rbi
max(NA1B1→A2B2).

(107)

Following a similar approach in Sect. 4.4, we can further strengthen this bound by
exploiting the geometric Rényi divergence.

11 We refer to the work [23, Page 2-3] for rigorous definitions of the PPT/two-way assisted quantum capacity
of a bidirectional channel and its strong converse rate.
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We start with a bidirectional version of the Werner–Holevo bound12

Qbi
�(NA1B1→A2B2) ≡ log ‖�B2 ◦ NA1B1→A2B2 ◦ �B1‖♦, (108)

and define its zero set Vbi
� which admits a semidefinite representation as

Vbi
� =

{

M ∈ CP(A1B1 : A2B2)
∣

∣

∣ ∃RA1B1 A2B2 , s.t. R ± J
TB1B2
M ≥ 0, TrA2B2 R ≤ 1A1B1

}

.

(109)

Using the same idea as the point-to-point scenario, we defined the generalized Theta-
information of a bidirectional channel NA1B1→A2B2 as the “channel distance”

13

Rbi
�(NA1B1→A2B2) ≡ min

M∈Vbi
�

D(N‖M), (110)

where D is a generalized divergence and the channel divergence follows from the usual
definition

D(N‖M) ≡ max
φA1B1A3B3

D(NA1B1→A2B2(φA1B1 A3B3)‖MA1B1→A2B2(φA1B1 A3B3))

(111)

by maximizing over all the pure states φA1B1 A3B3 .
Following a similar proof of Proposition 15, we can show that the bidirectional max-

Rains information defined in (106) coincides with the bidirectional Theta-information
induced by the max-relative entropy. That is,

Rbi
max(NA1B1→A2B2) = Rbi

max,�(NA1B1→A2B2). (112)

Denote the bidirectional Rains bound as ̂Rbi
α (ρ) ≡ min

σ≥0,‖σTB1B2 ‖1≤1
̂Dα(ρ‖σ). A

similar proof as Proposition 16 gives us the following amortization inequality.

Proposition 20 (Amortization). For any quantum state ρA1 A3:B1B3 , any bidirectional
quantum channel NA1B1→A2B2 and α ∈ (1, 2], it holds

̂Rbi
α (ωA2 A3:B2B3) ≤ ̂Rbi

α (ρA1 A3:B1B3) + ̂Rbi
α,�(NA1B1→A2B2), (113)

with the output state ωA2 A3:B2B3 = NA1B1→A2B2(ρA1 A3:B1B3).

Using the amortization inequality in Proposition 20 and a standard argument as
Theorem 17, we have the analog results of Theorem 17 andCorollary 18 for bidirectional
channels as follows:

12 Note that this quantity was also independently introduced in [64, Eq. (122)] as well as in [65, Eq. (4.38)]
when studying the resource theory of bidirectional quantum channels.
13 Note that the definition of Eq. (110) was independently defined in the recent work [65, Eq. (4.61)] and

the relation in Eq. (112) was also independently found in [65, Proposition 4].
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Theorem 21 (Main result 3). For any bidirectional channelNA1B1→A2B2 and α ∈ (1, 2],
it holds

Qbi,PPT,↔(N ) ≤ Qbi,PPT,↔,†(N ) ≤ ̂Rbi
α,�(N ) ≤ Rbi

max(N ), (114)

where Qbi,PPT,↔(N ) and Qbi,PPT,↔,†(N ) denote the PPT-assisted quantum capacity of
a bidirectional channel N and its corresponding strong converse capacity, respectively.
As a consequence, it holds

Qbi,↔(N ) ≤ Qbi,↔,†(N ) ≤ ̂Rbi
α,�(N ) ≤ Rbi

max(N ), (115)

where Qbi,↔(N ) and Qbi,↔,†(N ) denote the two-way assisted quantum capacity of a
bidirectional channel N and its corresponding strong converse capacity, respectively.

Proposition 22 (SDP formula). For any bidirectional channel NA1B1→A2B2 and α(�) =
1+2−� with � ∈ N, the bidirectional geometric Rényi Theta-information can be computed
as an SDP:

̂Rbi
α,�(N ) = 2� · logmin y s.t. �M, {Ni }�i=0, R, y�H, (116)
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

R ± N
TB1B2
0

�

P
,

�

1 − TrA2B2 R

�

P
,

�

y1 − TrA2B2 M

�

P
,

where JN is the Choi matrix of N .

Proof. This directly follows from Lemma 9 and the definition of Vbi
� in (109). ��

4.6. Examples. In this section, we investigate several fundamental quantum channels as
well as their compositions. We use these toy models to test the performance of our new
strong converse bounds, demonstrating the improvement on the previous results. The
semidefinite programs are implemented in MATLAB via the CVX package [66,67], by
the solver “Mosek” [68] with the best precision.14

Fundamental quantum channels The quantum depolarizing channel with dimension d
is defined as

Dp(ρ) = (1 − p)ρ + p1/d, p ∈ [0, 1]. (117)

The quantum erasure channel is defined as

Ep(ρ) = (1 − p)ρ + p|e〉〈e|, p ∈ [0, 1], (118)

where |e〉 is an erasure state orthogonal to the input Hilbert space. The quantum dephas-
ing channel is defined as

Zp(ρ) = (1 − p) ρ + pZρZ , p ∈ [0, 1], (119)

14 All the data and codes can be found on the GitHub page https://github.com/fangkunfred.

https://github.com/fangkunfred
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where Z = |0〉〈0| − |1〉〈1| is the Pauli-z operator. These three classes of channels are
covariant with respect to the whole unitary group. The generalized amplitude damping
(GAD) channel is defined as

Aγ,N (ρ) =
4

∑

i=1

Aiρ A†
i , γ, N ∈ [0, 1] (120)

with the Kraus operators

A1 = √
1 − N (|0〉〈0| + √

1 − γ |1〉〈1|), A2 = √

γ (1 − N )|0〉〈1|, (121)

A3 = √
N (

√

1 − γ |0〉〈0| + |1〉〈1|), A4 = √

γ N |1〉〈0|. (122)

TheGADchannel is oneof the realistic sources of noise in superconducting-circuit-based
quantum computing [69], which can viewed as the qubit analogue of the bosonic thermal
channel. When N = 0, it reduces to the conventional amplitude damping channel with
two Kraus operators A1, A2.

Comparison for the unassisted quantum capacity For the unassisted quantum capacity,
we compare the qubit depolarizing channel Dp, the qubit erasure channel Ep, the qubit
dephasing channel Zp and the generalized amplitude damping channels Ap,N with
different choices of parameter N .

Since Dp, Ep and Zp are covariant with respect to the unitary group, the optimal
input state ρA of their Rains information is taken at the maximally mixed state [11,
Proposition 2]. Therefore, their Rains information can be computed via the algorithm
in [55,56]. Moreover, for any parameters γ, N ∈ [0, 1], the GAD channel Aγ,N is
covariant with respect to the Pauli-z operator Z . That is, Aγ,N (ZρZ) = ZAγ,N (ρ)Z
for all quantum state ρ. To compute its Rains information, it suffices to perform the
maximization over input states with respect to the one-parameter family of states ρA =
(1 − p)|0〉〈0| + p|1〉〈1| [70]. This can be handled, for example, by MATLAB function
“fminbnd”.

The comparison results are shown in Fig. 5. It is clear that the geometric Rényi Rains
information ̂Rα(10) coincide with the Rains information R for all these channels except
for the particular case Ap,0 in subfigure (d). For all cases, ̂Rα(10) sets a big difference
from the max-Rains information Rmax.

Comparison for the two-way assisted quantum capacity For the two-way assisted quan-
tum capacity, we consider the channels Dp, Ep and Zp composed with the amplitude
damping channelAp,0, and the generalized amplitude damping channelAp,N with dif-
ferent choices of parameter N . Because these channels are not covariant w.r.t. the whole
unitary group, their Rains information are not known as valid converse bounds on the
two-way assisted quantum capacity.

The comparison result15 for the two-way assisted quantum capacity is given in Fig. 6.
ThegeometricRényiTheta-information ̂Rα(10),� demonstrates a significant improvement
over the max-Rains information Rmax for all these channels except for one particular
case Ap,0 in subfigure (d).

15 A detailed comparison of the GAD channels with other weak converse bounds in [70] is given in Ap-
pendix C.



Geometric Rényi Divergence and its Applications 1641

F
ig

.5
.
C
om

pa
ri
so
n
of

th
e
st
ro
ng

co
nv
er
se

bo
un

ds
on

th
e
un

as
si
st
ed

qu
an
tu
m

ca
pa
ci
ty

of
th
e
qu

bi
td

ep
ol
ar
iz
in
g
ch
an
ne
lD

p
,t
he

qu
bi
te
ra
su
re

ch
an
ne
lE

p
,t
he

qu
bi
td

ep
ha
si
ng

ch
an
ne
lZ

p
an
d
th
e
ge
ne
ra
liz

ed
am

pl
itu

de
da
m
pi
ng

ch
an
ne
ls
A

p,
N
.T

he
ho
ri
zo
nt
al
ax
is
ta
ke
s
va
lu
e
of

p
∈[

0,
1]

an
d
th
e
pa
ra
m
et
er

α
(1
0)

=
1
+
2−

10



1642 K. Fang, H. Fawzi

F
ig

.6
.
C
om

pa
ri
so
n
of

th
e
st
ro
ng

co
nv
er
se

bo
un

ds
on

th
e
tw
o-
w
ay

as
si
st
ed

qu
an
tu
m

ca
pa
ci
ty

of
th
e
ch
an
ne
ls
D

p
,E

p
an
d
Z p

co
m
po

se
d
w
ith

th
e
am

pl
itu

de
da
m
pi
ng

ch
an
ne
l

A
p,
0
,a
nd

th
e
ge
ne
ra
liz

ed
am

pl
itu

de
da
m
pi
ng

ch
an
ne
ls
A

p,
N
w
ith

di
ff
er
en
tp

ar
am

et
er
s.
T
he

ho
ri
zo
nt
al
ax
is
ta
ke
s
va
lu
e
of

p
∈[

0,
1]

an
d
th
e
pa
ra
m
et
er

α
(1
0)

=
1
+
2−

10



Geometric Rényi Divergence and its Applications 1643

Comparison for the two-way assisted quantum capacity of bidirectional channels Con-
sider a typical noise in a quantum computer which is modeled as [23]

NA1B1→A2B2(ρ) = pSρS† + (1 − p)Uφ SρSU †
φ, p ∈ [0, 1] (123)

where S is the swap operator andUφ = |00〉〈00|+eiφ |01〉〈01|+eiφ |10〉〈10|+e2iφ |11〉〈11|
is the collective dephasing noise. The comparison result of our new bound ̂Rbi

α(10),� with
the previous bound Rbi

max is given in Fig. 7.

5. Private Communication

5.1. Background. The private capacity of a quantum channel is defined as themaximum
rate at which classical information can be transmitted privately from the sender (Alice)
to the receiver (Bob). By “private”, it means a third party (Eve) who has access to the
channel environment cannot learn anything about the information that Alice sends to
Bob. There are also two different private capacities of major concern, the (unassisted)
private capacity P and the two-way assisted private capacity P↔, depending on whether
classical communication is allowed between each channel uses.

In the same spirit of the quantum capacity theorem, the private capacity theorem
states that the private capacity of a quantum channel is given by its regularized private
information [7,71],

P(N ) = lim
n→∞

1

n
Ip(N⊗n) = sup

n∈N
1

n
Ip(N⊗n), (124)

where Ip(N ) ≡ maxE
[

χ(E ,N ) − χ(E ,N c)
]

is the private informationwith themaxi-
mization taken over all quantum state ensembles E = {pi , ρi }, χ(E ,N ) ≡
H(

∑

i piN (ρi )) − ∑

i pi H(N (ρi )) is the Holevo information of the ensemble E , H
is the von Neumann entropy and N c is the complementary channel of N . The regu-
larization in (124) is necessary in general since the private information is proved to be
non-additive [72] and an unbounded number of channel uses may be required to achieve
its private capacity [73].

Despite their importance in understanding the fundamental limits of quantum key
distributions [74], much less is known about the converse bounds on private capacities,
mostly due to their inherently involved settings. The squashed entanglement of a channel
was proposed in [75] and proved to be a converse bound on the two-way assisted private
capacity. But it remains unknown to be a strong converse rate and the quantity itself is
difficult to compute exactly [8]. The entanglement cost of a channel was introduced in
[76] and shown to be a strong converse bound on the two-way assisted private capacity
[25]. But it was not given by a single-letter formula. A closely related quantity to this
part is the relative entropy of entanglement of a channel (ER), which was proved as
a (weak) converse bound on the two-way assisted private capacity for channels with
“covariant symmetry” [24]. This was later strengthened in [12] as a strong converse
bound on the unassisted private capacity for general quantum channels and a strong
converse bound on the two-way assisted private capacity for channels with “covariant
symmetry”. Moreover, the max-relative entropy of entanglement of a channel (Emax)
was proved as a strong converse bound on the two-way assisted private capacity in
general [25].
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5.2. Summary of results. In this part, we extend the techniques used in the previous
sections to the task of private communication and aim to improve the max-relative
entropy of entanglement of a channel in both assisted and unassisted scenarios. The
structure is organized as follows (see also a schematic diagram in Fig. 8).

In Sect. 5.3 we discuss the unassisted private communication. While the relative
entropy of entanglement ER established the best known strong converse bound in this
case, the difficulties of its evaluation are two-fold: the optimization over the set of
separable states and the minimax optimization of the Umegaki relative entropy. The first
difficulty will be automatically removed for qubit channels since separability can be
completely characterized by the positive partial transpose conditions [77]. The second
can be handled by relaxing the Umegaki relative entropy to a semidefinite representable
one, such as the max-relative entropy. Based on a notion of the generalized relative
entropy of entanglement of a channel, we exhibit that the entanglement of a channel
induced by the geometric Rényi divergence (̂Eα) lies between ER and Emax. That is, we
show that

P(N ) ≤ P†(N ) ≤ ER(N ) ≤ ̂Eα(N ) ≤ Emax(N ),

where P(N ) and P†(N ) denote the unassisted private capacity of channel N and its
corresponding strong converse capacity, respectively. Moreover, ̂Eα(N ) is given by a
conic program in general and reduces to a semidefinite program for all qubit channels.

In Sect. 5.4, we study the private communication with two-way classical communica-
tion assistance. We introduce the generalized Sigma-information which is a new variant
of channel information inspired by the channel resource theory (similar to the Upsilon-
information in [57]). More precisely, we define the generalized Sigma-information as
a “channel distance” to the class of entanglement breaking subchannels. We show that
the max-relative entropy of entanglement Emax coincides with the generalized Sigma-
information induced by the max-relative entropy Emax,� , i.e., Emax = Emax,� , thus
providing a completely new perspective of understanding the former quantity. More-
over, we prove that the generalized Sigma-information induced by the geometric Rényi
divergence (̂Eα,�) is a strong converse bound on the two-way assisted private capacity
by utilizing an “amortization argument”, improving the previously best-known result of
the max-relative entropy of entanglement [25] in general. That is, we show that

P↔(N ) ≤ P↔,†(N ) ≤ ̂Eα,�(N ) ≤ Emax(N ),

where P↔(N ) and P↔,†(N ) denote the two-way assisted private capacity of channel
N and its corresponding strong converse capacity, respectively. Moreover, ̂Eα,�(N ) is
given by a conic program in general and reduces to a semidefinite program for all qubit
channels.

5.3. Unassisted private capacity. In this section we discuss converse bounds on the
unassisted private capacity.16

Definition 23 ([78]). For any generalized divergence D, the generalized relative entropy
of entanglement of a quantum state ρAB is defined as

E(ρAB) ≡ min
σAB∈SEP•(A:B)

D(ρAB‖σAB), (125)

16 We refer to the work [12, Section V.A] for rigorous definitions of the unassisted private capacity and its
strong converse rate.
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Fig. 8. Relations between different converse bounds for private communication. P∗ and P∗,† are the private
capacity with assistance ∗ and its corresponding strong converse capacity, respectively. ER , ̂Eα and Emax
are the generalized relative entropy of entanglement of a channel induced by different quantum divergences.
̂Eα,� and Emax,� are the generalized Sigma-information induced by different quantum divergences. The
circled quantities are those of particular interest in quantum information theory. The key quantities and the
main contributions in this section are marked in red. The quantity at the start point of an arrow is no smaller
than the one at the end point. The double arrow represents that two quantities coincide. The inequality sign
represents two quantities are not the same in general. The dotted arrow represents that the relation holds under
certain restrictions, where “cov.” stands for “covariant”. The parameter α is taken in the interval (1, 2]. The
quantities in the shaded area are given by conic programs and are SDP computable for all qubit channels (or
more generally channels with dimension |A||B| ≤ 6)

where SEP•(A : B) is the set of sub-normalized separable states between A and B.

If the generalized divergence satisfies the dominance property, i.e., D(ρ‖σ) ≥
D(ρ‖σ ′) if σ ≤ σ ′, then the optimal solution of the above minimization problem
can always be taken at a normalized separable states. Since the dominance property is
generic for most divergences of concern, the above definition is consistent with the one
defined over the set of normalized separable states (e.g. [78]).

Definition 24 ([24]). For any generalized divergence D, the generalized relative entropy
of entanglement of a quantum channel NA′→B is defined as

E(N ) ≡ max
ρA∈S(A)

E(NA′→B(φAA′)) = max
ρA∈S(A)

min
σAB∈SEP•(A:B)

D(NA′→B(φAA′)‖σAB),

(126)

where φAA′ is a purification of quantum state ρA.

In particular, the relative entropy of entanglement for a channel is induced by the
Umegaki relative entropy [24],

ER(N ) = max
ρA∈S(A)

min
σAB∈SEP•(A:B)

D(NA′→B(φAA′)‖σAB). (127)

The max-relative entropy of entanglement for a channel is induced by the max-relative
entropy [25],

Emax(N ) = max
ρA∈S(A)

min
σAB∈SEP•(A:B)

Dmax(NA′→B(φAA′)‖σAB). (128)
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These two quantities are known as strong converse bounds for private communication
with and without classical communication assistance, respectively. That is,

P†(N ) ≤ ER(N ) [12] and P↔,†(N ) ≤ Emax(N ) [25]. (129)

The computability of ER is usually restricted to qubit covariant channels where the
input state ρA can be taken as the maximally mixed states and the set of separable states
coincides with the set of PPT states [77]. The following result relaxes ER to its geometric
Rényi version ̂Eα , which is SDP computable for all qubit channels and is tighter than
Emax in general.

Theorem 25 (Application 3). For any quantum channel NA′→B and α ∈ (1, 2], it holds

P(N ) ≤ P†(N ) ≤ ER(N ) ≤ ̂Eα(N ) ≤ Emax(N ), (130)

where P(N ) and P†(N ) denote the unassisted private capacity and its corresponding
strong converse capacity, respectively. Moreover, the bound ̂Eα(N ) with α(�) = 1+2−�

and � ∈ N can be given as

̂Eα(N ) = � · 2� − (2� + 1) log(2� + 1) + (2� + 1) log Tα(N ), (131)

with Tα(N ) given by the following conic program

Tα(N ) = max Tr
[(

KH − ∑�
i=1Wi

)

· JN
]

s.t. �K , {Zi }�i=0�L, �{Wi }�i=1, ρ�H,

�
ρ ⊗ 1 K

K † ZH
�

�

P
,

{�
Wi Zi

Z†
i ZH

i−1

�

P

}�

i=1

, ρ ⊗ 1 − ZH
0 ∈ BP(A : B),

�

Tr ρ − 1

�

E
,

(132)

where JN is the Choi matrix of N and BP(A : B) is the set of block-positive operators
which reduces to a semidefinite cone if |A||B| ≤ 6.

Proof. The first inequality in (130) follows by definition. The second inequality in (130)
wasproved in [12].The last two inequalities in (130) are direct consequences ofLemma4.
The derivation of the conic program (132) follows the same steps as Proposition 13. The
block positive cone BP(A : B) is the dual cone of the set of separable operators. When
the channel dimension satisfies |A||B| ≤ 6, this cone admits a semidefinite represen-
tation as BP(A : B) = {X + Y TB | X ≥ 0, Y ≥ 0} [79, Table 2.2]. Thus the conic
program (132) reduces to a semidefinite program. ��

5.4. Two-way assisted private capacity. In this section we discuss converse bounds on
the two-way assisted private capacity.17

A quantum channel NA′→B is called entanglement breaking if its output state
NA′→B(ρAA′) is separable for any input ρAA′ or equivalently if its Choi matrix is separa-
ble [80]. Since every entanglement breaking channel can be simulated by ameasurement-
preparation scheme [80,81], any two-way assisted private communication protocol via
entanglement breaking channel will end up with a separable state. This indicates that

17 We refer to [12, Section V.A] for rigorous definitions of the two-way assisted private capacity and its
strong converse rate.



1648 K. Fang, H. Fawzi

these channels are useless for private communication. With this in mind, we consider
the set of entanglement breaking subchannels as

V� ≡ {M ∈ CP(A : B)
∣

∣ JM ∈ SEP(A : B), TrB JM ≤ 1A
}

, (133)

where SEP(A : B) denotes the cone of separable operators.

Definition 26 (Sigma-info.). For any generalized divergence D, the generalized Sigma-
information of a quantum channel NA′→B is defined as

E�(N ) ≡ min
M∈V�

D(N‖M) = min
M∈V�

max
ρA∈S(A)

D(NA′→B(φAA′)‖MA′→B(φAA′)),

(134)

where φAA′ is a purification of quantum state ρA.

As mentioned in Remark 6, the min and max in the above definition can be swapped.
Analogous to Proposition 15, the following result establishes the relation between the

generalized Sigma-information E� and the generalized relative entropy of entanglement
of a channel E.

Proposition 27. For any generalized divergence D and any quantum channelN , it holds

E(N ) ≤ E�(N ). (135)

Moreover, for the max-relative entropy the equality always holds, i.e,

Emax(N ) = Emax,�(N ). (136)

Proof. This first inequality can be proved in a similar manner as Proposition 15 by using
the fact that MA′→B(φAA′) = √

ρA JM
√

ρA ∈ SEP•(A : B) for any ρA ∈ S(A) and
M ∈ V� . We now prove the Eq. (136). It has been shown in [22, Lemma 7] that

Emax(N ) = logmin
{

‖TrB YAB‖∞
∣

∣

∣ JN ≤ YAB, YAB ∈ SEP(A : B)
}

. (137)

Using the semidefinite representation of infinity norm and replacing YAB = t JM, we
have

Emax(N ) = logmin
{

t
∣

∣

∣ JN ≤ t JM, JM ∈ SEP(A : B),TrB JM ≤ 1A

}

. (138)

By the definition of Dmax and V� , we have

Emax(N ) = min
M∈V�

Dmax(JN ‖JM) = min
M∈V�

Dmax(N‖M) = Emax,�(N ), (139)

where the second equality follows from Eq. (8). ��
Remark 7. The idea of considering the set of entanglement breaking channels also ap-
pears in [25, Theorem V.2], where an upper bound of Emax(N ) is given as Emax(N ) ≤
Bmax(N ) with

Bmax(N ) ≡ min
{

Dmax(JN ‖JM)
∣

∣M is an entanglement breaking quantum channel
}

.

(140)

However, the key difference here is that Emax,� is minimizing over all the entanglement
breaking subchannels which is a strictly superset of entanglement breaking channels.
Such extension is essential to get the equality Emax(N ) = Emax,�(N ) instead of an
upper bound.
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We further consider the Sigma-information induced by the geometric Rényi diver-
gence. Following a similar argument as Proposition 16, we can have the amortization
property.

Proposition 28 (Amortization). For any quantum state ρA′ AB′ and quantum channel
NA→B and the parameter α ∈ (1, 2], it holds

̂Eα(ωA′:B B′) ≤ ̂Eα(ρA′ A:B′) + ̂Eα,�(N ) with ωA′:B B′ = NA→B(ρA′ A:B′). (141)

Proof. The proof is similar to that of Proposition 16. We only need to show that for
any sub-normalized state σA′ AB′ ∈ SEP•(A′ A : B ′) and map MA→B ∈ V� , it holds
γA′ B B′ ≡ MA→B(σA′ AB′) ∈ SEP•(A′ : B B ′). This can be checked as follows. First it
is clear that Tr γA′ B B′ ≤ 1 since both M and σ are sub-normalized. Denote the tensor
product decomposition σA′ AB′ = ∑

i, j σ i
A′ A ⊗σ

j
B′ and JM

SB = ∑

k,� J k
S ⊗ J �

B . Let |〉S A
be the unnormalized maximally entangled state. Then we have

γA′ B B′ = 〈

S A
∣

∣JM
SB ⊗ σA′ AB′

∣

∣S A
〉 =

∑

i, j,k,�

〈

S A
∣

∣σ i
A′ A ⊗ J k

S

∣

∣S A
〉 ⊗ σ

j
B′ ⊗ J �

B,

(142)

where the r.h.s. belongs to SEP(A′ : B B ′). This completes the proof. ��
Combining the amortization inequality and a similar argument in [25, Theorem IV.1.],

we can obtain an improved strong converse bound as follows:

Theorem 29 (Application 4). For any quantum channel NA′→B and α ∈ (1, 2], it holds

P↔(N ) ≤ P↔,†(N ) ≤ ̂Eα,�(N ) ≤ Emax(N ), (143)

where P↔(N ) and P↔,†(N ) denote the two-way assisted private capacity of channel
N and its corresponding strong converse capacity, respectively. Moreover, the bound
̂Eα,�(N ) with α(�) = 1 + 2−� and � ∈ N can be given by a conic program

̂Eα,�(N ) = 2� · logmin y s.t. �M, {Ni }�i=0, y�H, N0 ∈ SEP(A : B)
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

1A − TrB N0

�

P
,

�

y1 − TrB M

�

P
,

(144)

which reduces to a semidefinite program if the dimension satisfies |A||B| ≤ 6.

6. Classical Communication

6.1. Background. The classical capacity of a quantum channel is the maximum rate at
which it can reliably transmit classical information over asymptotically many uses of
the channel. Since classical messages are of major concern here, the communication
assistance is usually given by the shared entanglement instead of the two-way clas-
sical communication discussed in the quantum/private communication scenarios. The
entanglement-assisted classical capacity has been completely solved as themutual infor-
mation of the channel [2], which is believed to be a natural counterpart in the classical
Shannon theory. In this sense, shared entanglement simplifies the quantum Shannon
theory.
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When it comes to the unassisted classical capacity, the best-known characterization
is given by the classical capacity theorem, which states that the classical capacity of a
quantum channel is given by its regularized Holevo information [82,83],

C(N ) = lim
n→∞

1

n
χ(N⊗n) = sup

n∈N
1

n
χ(N⊗n), (145)

where χ(N ) ≡ maxE χ(E ,N ) is the Holevo information with the maximization
taken over all quantum state ensembles E = {pi , ρi }, χ(E ,N ) ≡ H(

∑

i piN (ρi )) −
∑

i pi H(N (ρi )) is the Holevo information of the ensemble E , and H is the von Neu-
mann entropy. An impressive work by Hastings [84] shows that the Holevo information
is not additive in general, indicating the necessity of the regularization in (145). More-
over, as computing χ itself is already NP-complete [85], its regularized quantity for a
general quantum channel is expected to be more difficult to evaluate. Even for the qubit
amplitude damping channel, its unassisted classical capacity is still unknown [26].

Deriving a single-letter expression for the classical capacity of a quantum channel
remains a major open problem in quantum information theory. Several general converse
bounds are given in [34] by an “continuity argument”, extending the idea in [51] from
quantum capacity to classical capacity. However, those bounds are not known to be
strong converse and typically work well only if the channel possesses certain structures,
such as close to entanglement breaking channel or sufficiently covariant.18 Two best-
known strong converse bounds are given byCβ andCζ in [26], and both bounds are SDP
computable. An attempt to improve the bound Cβ is discussed in [57] by a notion called
Upsilon-information (ϒ), similar to the Theta-information and Sigma-information in the
previous parts. However, a (weak) sub-additivity of the Upsilon-information induced by
the sandwiched Rényi divergence is required for showing ϒ as a strong converse bound
for general quantum channels. This sub-additivity was only proved in [57] for covariant
channels while the general case was left open.

6.2. Summary of results. In this part, we aim to push forward the analysis in [57] by
considering the geometric Rényi divergence and improve both of the two strong converse
bounds Cβ and Cζ in general. The structure of this part is organized as follows (see also
a schematic diagram in Fig. 9).

In Sect. 6.3, we first study the generalized Upsilon-information induced by the max-
relative entropy (ϒmax) and prove that it is no greater than Cβ and Cζ in general. We
then discuss the generalized Upsilon-information induced by the geometric Rényi diver-
gence (̂ϒα) and show that it is a strong converse bound on classical capacity by proving
its sub-additivity. Due to the relation that ̂Dα ≤ Dmax, we have ̂ϒα ≤ ϒmax. Then we
have an improved strong converse bound ̂ϒα satisfying

C(N ) ≤ C†(N ) ≤ ̂ϒα(N ) ≤ min
{

Cβ(N ), Cζ (N )
}

with ̂ϒα(N ) SDP computable,

where C(N ) and C†(N ) denote the unassisted classical capacity of channel N and its
corresponding strong converse capacity, respectively.

In Sect. 6.4, we investigate several fundamental quantum channels, demonstrating
the efficiency of our new strong converse bounds. It turns out that our new bounds work
exceptionally well and exhibit a significant improvement on previous results for almost
all cases.
18 These are two main limitations of converse bounds established by using the continuity of the channel

capacities.
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Fig. 9. Relations betweendifferent converse bounds for classical communication.C andC† are the classical ca-
pacity and the strong converse capacity, respectively.ϒ , ̂ϒα andϒmax are the generalizedUpsilon-information
induced by different quantum divergences. Cβ and Cζ are the SDP strong converse bounds in [26]. χ is the
Holevo information. The circled quantities is the one of particular interest in quantum information theory. The
key quantities and the main contributions in this section are marked in red. The quantity at the start point of
an arrow is no smaller than the one at the end point. The inequality sign represents two quantities are not the
same in general. The dotted arrow represents that the relation holds under certain restrictions, where “cov.”
stands for “covariant”. The parameter α is taken in the interval (1, 2]. The quantities in the shaded area are
SDP computable in general

6.3. Unassisted classical capacity. In this section we discuss converse bounds on the
unassisted classical capacity of a quantum channel.19

A quantum channel is called constant channel or replacer channel if it always output
a fixed quantum state, i.e., there exists σB ∈ S(B) such that NA→B(ρA) = σB for
all ρA ∈ S(A). Unlike quantum or private communication where the sets of useless
channels are not completely determined yet, the useless set for classical communication
is fully characterized by the set of constant channels. That is, C(N ) = 0 if and only if
N is a constant channel.20 As a natural extension, the work [57] proposed to consider
the set of constant-bounded subchannels,

Vcb ≡ {M ∈ CP(A : B)
∣

∣ ∃ σB ∈ S(B) s.t.MA→B(ρA) ≤ σB,∀ρA ∈ S(A)
}

. (146)

It seems not easy to find a semidefinite representation for the set Vcb directly. Thus a
restriction of Vcb was given in [57] as

Vβ ≡ {M ∈ CP(A : B)
∣

∣β(JM) ≤ 1
}

with

β(JM) ≡ min
{

Tr SB

∣

∣

∣ RAB ± JTB
M ≥ 0, 1A ⊗ SB ± RTB

AB ≥ 0
}

. (147)

This subset can be seen as the zero set21 of the strong converse bound Cβ(N ) ≡
logβ(JN ) [26]. As discussed in Appendix B, we will see that Vcb can be approxi-
mated by a complete semidefinite hierarchy, where the subsetVβ can be considered as a
symmetrized version of its first level. In the following, we proceed our analysis, without
loss of generality, over the set Vβ . A more detailed discussion of Vcb can be found in
Appendix B.

19 We refer to [26, Section IV.A] for rigorous definitions of the unassisted classical capacity and its strong
converse rate.
20 This can be easily seen from the radius characterization of the Holevo capacity χ(N ) =

minσ maxρ D(N (ρ)‖σ) [86].
21 It makes no difference by considering β(JM) ≤ 1 or β(JM) = 1.
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Definition 30 (Upsilon-info. [57]). For any generalized divergence D, the generalized
Upsilon-information of a quantum channelNA′→B with respect to the setVβ is defined
as

ϒ(N ) ≡ min
M∈Vβ

D(N‖M) = min
M∈Vβ

max
ρA∈S(A)

D(NA′→B(φAA′)‖MA′→B(φAA′)),

(148)

where φAA′ is a purification of quantum state ρA.

As mentioned in Remark 6, the min and max in the above definition can be swapped.
Let us first consider the generalized Upsilon-information induced by themax-relative

entropy ϒmax.

Proposition 31. For any quantum channel N , the generalized Upsilon-information in-
duced by the max-relative entropy ϒmax(N ) is given as an SDP,

ϒmax(N ) = logmin
{

Tr SB

∣

∣

∣ JN ≤ K AB, RAB ± KTB
AB ≥ 0, 1A ⊗ SB ± RTB

AB ≥ 0
}

.

(149)

Proof. By definition we have ϒmax(N ) ≡ minM∈Vβ
Dmax(N‖M) =

minM∈Vβ
Dmax(JN ‖JM), where the second equality follows from Eq. (8). Then it

is clear that

ϒmax(N ) = logmin
{

t
∣

∣

∣ JN ≤ t JM, Tr G ≤ 1, W ± JTB
M ≥ 0, 1 ⊗ G ± WTB ≥ 0

}

.

(150)

Replacing K = t JM, S = tG and R = tW , we have the desired result. ��
Besides the bound Cβ , there is another SDP strong converse bound given in [26] as

Cζ (N ) ≡ logmin
{

Tr SB

∣

∣

∣ JN ≤ K AB , 1A ⊗ SB ± KTB
AB ≥ 0

}

. (151)

We can show that ϒmax is no greater than both of these quantities in general.

Proposition 32. For any quantum channelN , it holdsϒmax(N ) ≤ min
{

Cβ(N ), Cζ (N )
}

.

Proof. The result is clear by comparing their SDP formulas. Specifically, by restricting
K AB = JN in ϒmax, we can retrieve Cβ . By restricting RAB = 1A ⊗ SB in ϒmax, we
can retrieve Cζ . ��

We further consider the generalized Upsilon-information induced by the geometric
Rényi divergence ̂ϒα . The following sub-additivity is a key ingredient to proving that
̂ϒα is a strong converse bound in Theorem 34.

Proposition 33 (Sub-additivity). For any quantum channels N1, N2 and α ∈ (1, 2], it
holds

̂ϒα(N1 ⊗ N2) ≤ ̂ϒα(N1) + ̂ϒα(N2). (152)
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Proof. This is a direct consequence of the additivity of the geometric Rényi channel
divergence in Lemma 6 and the sub-additivity of the quantity β(·) in (147). More specif-
ically, suppose the optimal solution of ̂ϒα(N1) and ̂ϒα(N2) are taken atM1 ∈ V1

β and

M2 ∈ V2
β respectively. Then we can check that M1 ⊗ M2 ∈ V12

β which is a feasible

solution for ̂ϒα(N1 ⊗ N2). Thus we have

̂ϒα(N1 ⊗ N2) ≤ ̂Dα(N1 ⊗ N2‖M1 ⊗ M2) = ̂Dα(N1‖M1) + ̂Dα(N2‖M2)

= ̂ϒα(N1) + ̂ϒα(N2),

where the last inequality follows by the optimality assumption of M1 and M2. ��
Based on the sub-additivity, we are ready to show our improved strong converse

bound.

Theorem 34 (Application 5). For any quantum channel N and α ∈ (1, 2], it holds

C(N ) ≤ C†(N ) ≤ ̂ϒα(N ) ≤ ϒmax(N ) ≤ min
{

Cβ(N ), Cζ (N )
}

, (153)

where C(N ) and C†(N ) denote the unassisted classical capacity of channel N and its
corresponding strong converse capacity, respectively.

Proof. Thefirst inequality holds bydefinition.The third inequality follows fromLemma4.
The last inequality was proved in Proposition 32. It remains to prove the second inequal-
ity C†(N ) ≤ ̂ϒα(N ). For any classical communication protocol with a triplet (r, n, ε),
it holds by a standard argument [57, Proposition 20] that

1 − ε ≤ 2
−n

(

α−1
α

)[

r− 1
n
˜ϒα(N⊗n)

]

, (154)

where ˜ϒα is the Upsilon information induced by the sandwiched Rényi divergence ˜Dα .
Due to the sub-additivity of ̂ϒα in Proposition 33 and the inequality in Lemma 4, we
have

n̂ϒα(N ) ≥ ̂ϒα(N⊗n) ≥ ˜ϒα(N⊗n). (155)

Combining (154) and (155), we have

1 − ε ≤ 2
−n

(

α−1
α

)[

r− 1
n
˜ϒα(N⊗n)

]

≤ 2
−n

(

α−1
α

)

[

r−̂ϒα(N )
]

. (156)

This implies that if the communication rate r is strictly larger than ̂ϒα(N ), the success
probability of the transmission 1 − ε decays exponentially fast to zero as the number
of channel use n increases. Or equivalently, we have the strong converse inequality
C†(N ) ≤ ̂ϒα(N ) and completes the proof. ��

Finally, we present how to compute the geometric Rényi Upsilon information.

Proposition 35. (SDP formula) For any quantum channel NA′→B and α(�) = 1 + 2−�

with � ∈ N, the geometric Rényi Upsilon information can be computed by the following
SDP:

̂ϒα(N ) = 2� · logmin y s.t. �M, {Ni }�i=0, R, S, y�H, �y1 − TrB M�P
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,
�

R ± NTB
0

	

P
,
�
1 ⊗ S ± RTB

	

P
,
�
1 − Tr S

	

P
.

(157)

Proof. This directly follows from Lemma 9 and the definition of the set Vβ in (147).
��
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6.4. Examples. In this section, we study several fundamental quantum channels as well
as their compositions.We use these toy models to test the performance of our new strong
converse bounds, demonstrating the improvement on the previously known results.

Consider the depolarizing channelDp defined in (117), the erasure channelEp defined
in (118) and the dephrasure channelNp,q (ρ) ≡ (1−q)[(1−p)ρ+pZρZ ]+q Tr(ρ)|e〉〈e|,
where |e〉 is an erasure flag orthogonal to the input Hilbert space. Since these channels
are covariant with respect to the unitary group, their Upsilon informations are known
as strong converse bounds [57, Proposition 20] and can be computed via the algorithm
in [55,56]. As for the generalized amplitude damping (GAD) channel Aγ,N defined
in (120), its Upsilon information is not known as a valid converse bound.

The comparison results22 are shown in Fig. 10. It is clear that ̂ϒα(10) demonstrates
significant improvements over Cβ and Cζ for all these channels except for one particular
case Ap,0 in subfigure (d) where all bounds coincide. It is interesting to note that an
analytical expression of the boundsCβ(Aγ,N ) = Cζ (Aγ,N ) = log(1+

√
1 − γ ) is given

in [70, Proposition 6], which is independent on the parameter N . However, this is clearly
not the case for our new bound ̂ϒα . For covariant channelsDp, Ep andNp,p2 , the bound
̂ϒα(10) also coincides with the Upsilon information ϒ in subfigures (a–c). In particular,
̂ϒα(10) is given by 1 − p in subfigure (b), witnessing again the strong converse property
of the qubit erasure channel C(Ep) = C†(Ep) = 1 − p [87]. Such tightness can also
be observed here for the dephrasure channel Np,q and it would be easy to show that
χ(Np,q) = C(Np,q) = C†(Np,q) = 1−q which is independent of the dephasing noise
parameter p.

From Fig. (10e), ̂ϒα does not give improvement for the amplitude damping channel
Aγ,0. However, when considering the composition channel Mp ≡ Ap,0 ◦ Zp, which
was studied by Aliferis et al. [88] in the context of fault-tolerant quantum computation,
the strong converse bound ̂ϒα works unexpectedly well, as shown in Fig. 11.

Since Mp is an entanglement-breaking channel at p = 1/2, it is expected that
Mp is approximately entanglement-breaking around this point. Therefore, a converse
bound CEB was established in [34, Corollary III.7] by using a continuity argument of
the classical capacity. It has been shown in [34, Figure 5] that this continuity bound CEB
gives certain improvement on Cβ for the interval around p = 1/2. However, Fig. 11
shows that the new strong converse bound ̂ϒα(10) is much tighter than both CEB and Cβ

for allMp with p ∈ [0, 0.75]. The Holevo information χ is also numerically computed
by utilizing the algorithm23 in [89]. We observe that the upper bound ̂ϒα(10) and the
lower bound χ are very close, leading to a good estimation to the classical capacity of
Mp.

7. Magic State Generation

7.1. Background. The idea of fault-tolerant quantum computation proposes a reliable
framework to implement practical quantum computation against noise and decoherence
(e.g. [90–93]). Due to the Gottesman-Knill theorem [94,95], quantum circuits con-
structed by stabilizer operations can be efficiently simulated by a classical computer.
Therefore, to fully power the universal quantum computation the stabilizer operations

22 A detailed comparison of the GAD channels with other weak converse bounds in [70] is given in Ap-
pendix C.
23 The MATLAB codes we use are given from [34].
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Fig. 11. Upper and lower bounds on the classical capacity of the composition channel Mp = Ap,0 ◦ Zp

with the amplitude damping channel Ap,0 and the dephasing channel Zp . All of Cβ , Cζ and ̂ϒα(10) are
strong converse upper bounds. Cβ coincides with Cζ in this case. CEB is known as a weak converse bound
given in [34, Corollary III.7]. The Holevo information χ is a lower bound. The horizontal axis takes value of
p ∈ [0, 0.75] and the parameter α(10) = 1 + 2−10

must be supplemented with some other fault-tolerant non-stabilizer resource. A cele-
brated scheme for this is given by the state injection technique that allows us to implement
non-stabilizer operations bymixing the stabilizer operations with a key ingredient called
“magic states” [96,97]. These are non-stabilizer states that must be prepared using the
experimentally costly process of magic state distillation (e.g. [98,99]). While extensive
efforts have been devoted to construct efficient distillation codes (e.g. [94,99–101]),
recent study in [3] as well as [4] initiate the investigation of magic state generation via
a general quantum channel, aiming to exploit the power and the limitations of a noisy
quantum channel in the scenario of fault-tolerant quantum computation.

Of particular interest is thework [3] which identifies a larger class of operations (com-
pletely positive Wigner preserving (CPWP) operations), that can be efficiently simulated
via classical algorithms. Based on this notion of free operations, the authors established
a complete resource theory framework and introduced two efficiently computable magic
measures for quantum channels, named mana (M) and max-Thauma (θmax) respectively.
They proved several desirable properties of these two measures, and further showcased
that these channel measures provided strong converse bounds for the task of magic state
generation as well as lower bounds for the task of quantum channel synthesis.

7.2. Summary of results. In this part, we aim to push forward the study in [3] by con-
sidering the Thauma measure induced by the geometric Rényi divergence. Our results
can be summarized as follows.

In Sect. 7.4, we prove that the geometric Rényi Thauma of a channel (̂θα) possesses all
the nice properties that are held by themana andmax-Thauma, including the reduction to
states, monotonicity under CPWP superchannels, faithfulness, amortization inequality,
subadditivity under channel composition, additivity under tensor product as well as a
semidefinite representation.
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In Sect. 7.5, we exhibit that the geometric Rényi Thauma of a channel is a strong
converse bound on the magic state generation capacity (the maximum number of magic
state that can be produced per channel use of N via adaptive protocols), improving the
max-Thauma in general. More precisely, we show that

Cψ(N ) ≤ C†
ψ(N ) ≤ ̂θα(N )

θmin(ψ)
≤ θmax(N )

θmin(ψ)
, with ̂θα(N ) SDP computable,

where Cψ(N ) and C†
ψ(N ) denote the capacity of a channelN to generate magic stateψ

and its corresponding strong converse capacity, respectively, and θmin(ψ) is a constant
coefficient for given ψ .

In Sect. 7.6, we show that the geometric Rényi Thauma can also provide lower bounds
for the task of quantum channel synthesis. That is, we prove that the number of uses
of a channel N ′ required to implement another channel N is bounded from below by
̂θα(N )/̂θα(N ′) for all α ∈ (1, 2]. This new bound complements the previous results by
mana and max-Thauma.

7.3. Preliminaries of the resource theory of magic. Wefirst review somebasic formalism
of the resource theory of magic. Throughout this part, a Hilbert space implicitly has an
odd dimension, and if the dimension is not prime, it should be understood to be a tensor
product of Hilbert spaces each having odd prime dimension. Let {| j〉}d−1

j=0 be the standard
computational basis. For a prime number d, the generalized Pauli operator (or sometimes
called the shift and boost operators) X, Z are respectively defined as

X | j〉 = | j ⊕ 1〉, Z | j〉 = ω j | j〉, with ω = e2π i/d , (158)

where ⊕ denotes the addition modulo d. The Heisenberg–Weyl operators are defined
as24

Tu = τ−a1a2 Za1 Xa2 , with τ = e(d+1)π i/d , u = (a1, a2) ∈ Zd × Zd . (159)

For a systemwith compositeHilbert spaceHA⊗HB , theHeisenberg–Weyl operators are
the tensor product of the Heisenberg–Weyl operators on subsystems TuA⊗uB = TuA ⊗
TuB . For each point u ∈ Zd × Zd in the discrete phase space, there is a corresponding
operator

Au ≡ TuA0T †
u with A0 ≡ 1

d

∑

u

Tu (160)

The value of the discrete Wigner representation of a quantum state ρ at Au is given by

Wρ(u) ≡ 1

d
Tr[Auρ]. (161)

The Wigner trace and Wigner spectral norm of an Hermitian operator V are defined as

‖V ‖W,1 ≡
∑

u

|WV (u)|, and ‖V ‖W,∞ ≡ d max
u

|WV (u)|, (162)

24 The definition here is sightly different from some literatures. We adopt the same notion as in [102].
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respectively. For any Hermiticity-preserving map N , its discrete Wigner function is
defined as

WN (v|u) ≡ 1

dB
Tr[AvBN (AuA )] = 1

dB
Tr[JN (AuA ⊗ AvB )], (163)

with JN being the Choi matrix of N . The set of quantum states with a non-negative
Wigner function is denoted as

W+ ≡ {ρ | ρ ≥ 0,Tr ρ = 1, Wρ(u) ≥ 0,∀u}. (164)

A quantum operation E is CPWP if the following holds for any system R with odd
dimension [3]

idR ⊗ EA→B(ρR A) ∈ W+ ∀ρR A ∈ W+. (165)

Definition 36 (Mana). The mana of a quantum state ρ is defined as [103]

M(ρ) ≡ log ‖ρ‖W,1. (166)

The mana of a quantum channel NA→B is defined as25 [3]

M(NA→B) ≡ logmax
uA

‖NA→B(AuA )‖W,1 = logmax
uA

∑

vB

1

dB
|Tr JN (AuA ⊗ AvB )|.

(167)

Definition 37 (Thauma). Let D be a generalized quantum divergence. The generalized
Thauma of a quantum state ρ is defined as [102]

θ(ρ) ≡ min
σ∈W

D(ρ‖σ), (168)

whereW ≡ {σ |M(σ ) ≤ 0, σ ≥ 0} is the set of sub-normalized states with non-positive
mana. The generalized Thauma of a quantum channel NA→B is defined as [3]

θ(N ) ≡ min
E∈VM

D(N‖E), (169)

where VM ≡ {E ∈ CP(A : B)|M(E) ≤ 0} is the set of subchannels with non-positive
mana.

In particular, the max-Thauma of a channel is induced by the max-relative entropy
[3]

θmax(N ) ≡ min
E∈VM

Dmax(N‖E). (170)
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Table 2. Comparison of properties for the geometric Rényi Thauma, max-Thauma and mana of quantum
channels

Property Quantifier

Geometric Rényi Thauma (̂θα) Max-Thauma (θmax) Mana (M)

Reduction to states ✓ Lemma 38 ✓ ✓
Monotonicity under CPWP ✓ Lemma 38 ✓ ✓
Faithfulness ✓ Lemma 38 ✓ ✓
Amortization ✓ Lemma 39 ✓ ✓
Subadditivity under ◦ ✓ Lemma 40 ✓ ✓
SDP computable ✓ Lemma 41 ✓ ✓
Additivity under ⊗ ✓ Lemma 42 (α = 2) ✓ ✓

7.4. Geometric Rényi Thauma of a channel. In this section, we investigate the general-
ized Thauma induced by the geometric Rényi divergence:

̂θα(ρ) ≡ min
σ∈W

̂Dα(ρ‖σ) and ̂θα(N ) ≡ min
E∈VM

̂Dα(N‖E). (171)

The authors in [3] proved that the mana and max-Thauma of a channel possess several
nice properties, as listed in Table 2. Here we aim to show that all the desirable proper-
ties are also held by the geometric Rényi Thauma as well. These basic properties will
be utilized in the next two sections for improving the converse bound on magic state
generation capacity and the efficiency of quantum channel synthesis.

Lemma 38. The following properties hold for the geometric Rényi Thauma of a channel
when α ∈ (1, 2]:

• (Reduction to states): Let N (ρ) = Tr[ρ]σ be a replacer channel with fixed σ for
any ρ. Then

̂θα(N ) = ̂θα(σ ). (172)

• (Monotonicity): LetN be a quantum channel and � be a CPWP superchannel. Then

̂θα(�(N )) ≤ ̂θα(N ). (173)

• (Faithfulness): ̂θα(N ) is nonnegative for any quantum channel N and

̂θα(N ) = 0 if and only if N ∈ CPWP. (174)

Proof. The first two properties directly follow from the argument for the generalized
Thauma in [3, Proposition 9 and 10]. The third property follows from the argument in
[3, Proposition 11] and the fact that the geometric Rényi divergence is continuous and
strongly faithful (i.e, ̂Dα(ρ‖σ) ≥ 0 in general and ̂Dα(ρ‖σ) = 0 if and only if ρ = σ ).

��
Lemma 39 (Amortization). For any quantum state ρR A, any quantum channel NA→B
and the parameter α ∈ (1, 2], it holds

̂θα(NA→B(ρR A)) − ̂θα(ρR A) ≤ ̂θα(NA→B). (175)

25 This can be seen as an analog ofHolevo–Werner bound for quantum capacity of a channel or log-negativity
of a quantum state.
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Proof. The proof follows the similar steps as Proposition 16. We only need to show
that for any sub-normalized state σR A ∈ W and any subchannel E ∈ VM, it holds
γR B ≡ EA→B(σR A) ∈ W . This can be checked as follows:

‖γR B‖W,1 =
∑

uR ,vB

|WγR B (uR, vB)| (176)

=
∑

uR ,vB

∣

∣

∣

∑

yA

WE (vB | yA)WσR A( yA, uR)

∣

∣

∣ (177)

≤
∑

uR ,vB , yA

∣

∣

∣WE (vB | yA)

∣

∣

∣

∣

∣

∣WσR A( yA, uR)

∣

∣

∣ (178)

=
∑

uR , yA

[

∑

vB

∣

∣

∣WE (vB | yA)

∣

∣

∣

]

∣

∣

∣WσR A( yA, uR)

∣

∣

∣ (179)

≤
∑

uR , yA

∣

∣

∣WσR A( yA, uR)

∣

∣

∣ (180)

≤ 1. (181)

The first line is the definition of the Wigner trace norm in (162). The second line is a
chain relation in [3, Lemma 1]. The third line follows from the triangle inequality of
the absolute value function. The fourth line follows by grouping the components with
respect to index vB . The fifth line follows since E ∈ VM and thus

∑

vB

∣

∣WE (vB | yA)
∣

∣ ≤
max yA

∑

vB

∣

∣WE (vB | yA)
∣

∣ ≤ 1. The last line follows since σR A ∈ W . Thus we can
conclude that γR B ∈ W . This completes the proof. ��
Lemma 40 (Sub-additivity). For any two quantum channels N1, N2 and α ∈ (1, 2], it
holds

̂θα(N2 ◦ N2) ≤ ̂θα(N1) +̂θα(N2). (182)

Proof. Suppose the optimal solution of ̂θα(N1) and ̂θα(N2) are taken at E1 and E2,
respectively. By the subadditivity of the mana under composition, we haveM(E2 ◦E1) ≤
0 (see [3, Proposition 5]). Thus E2 ◦ E1 is a feasible solution for ̂θα(N2 ◦ N2) and we
have

̂θα(N2 ◦ N2) ≤ ̂Dα(N2 ◦ N2‖E2 ◦ E1) ≤ ̂Dα(N1‖E1) + ̂Dα(N2‖E2) = ̂θα(N1) +̂θα(N2),

(183)

where the second inequality follows from Lemma 8, the last equality follows from the
optimality assumption of E1 and E2. ��
Lemma 41 (SDP formula). For any quantum channelN and α(�) = 1+2−� with � ∈ N,
it holds

̂θα(N ) = 2� · logmin y s.t. �M, {Ni }�i=0, y�H, �y1 − TrB M�P
�

M JN
JN N�

�

P
,

{�
JN Ni
Ni Ni−1

�

P

}�

i=1
,

�

1 − 1

dB

∑

vB

∣

∣Tr N0(AuA ⊗ AvB )
∣

∣

�

P
,∀uA.

(184)
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Proof. This directly follows fromLemma 9 and the definition ofmana in (167). Note that
the absolute value conditions can be written as semidefinite conditions by introducing
slack variables. ��
Lemma 42 (Additivity). The geometric Rényi Thauma at α = 2 is additive under tensor
product. That is, for any two quantum channels N1, N2, it holds

̂θ2(N1 ⊗ N2) = ̂θ2(N1) +̂θ2(N2). (185)

Proof. We first prove the sub-additivity. Suppose the optimal solution of ̂θ2(N1) and
̂θ2(N2) are taken at E1 and E2 respectively. Then we have M(E1 ⊗ E2) = M(E1) +
M(E2) ≤ 0 since mana is additive under tensor product [3, Proposition 4]. This implies
that E1 ⊗ E2 is a feasible solution for̂θ2(N1 ⊗ N2). Thus we have

̂θ2(N1 ⊗ N2) ≤ ̂D2(N1 ⊗ N2‖E1 ⊗ E2) = ̂D2(N1‖E1) + ̂D2(N2‖E2)
= ̂θ2(N1) +̂θ2(N2), (186)

where the first equality follows from Lemma 6 and the second equality follows from the
optimality assumption of E1 and E2.

We now show the super-additivity by utilizing the dual formula of (184). According
to the Lagrangian method, we have the dual problem as

̂θ2(N ) = logmax Tr
[

JN
(

K + K †
)]

−
∑

u

fu s.t.

[

ρA ⊗ 1B K
K † Z

]

≥ 0, |Tr Z(Au ⊗ Av)/dA| ≤ fu,∀u, v,Tr ρ = 1. (187)

It is easy to check that the strong duality holds.Note that ifwe replace K as x K with |x | =
1, the optimization is unchanged. Thus we can choose scalar x = Tr(JN K )†/|Tr JN K |
to make the term Tr JN (x K ) = |Tr JN K | to a real scalar. Thus optimization (187) is
equivalent to

̂θ2(N ) = logmax 2|Tr JN K | −
∑

u

fu s.t.

[

ρA ⊗ 1B K
K † Z

]

≥ 0, |Tr Z(Au ⊗ Av)/dA| ≤ fu,∀u, v,Tr ρ = 1. (188)

Again, by replacing ˜K = K/w, ˜Z = Z/w2 and ˜fu = fu/w2, we have

̂θ2(N ) = logmax 2w|Tr JN ˜K | − w2
∑

u

˜fu s.t.

[

ρA ⊗ 1B ˜K
˜K †

˜Z

]

≥ 0, |Tr ˜Z(Au ⊗ Av)/dA| ≤ ˜fu,∀u, v,Tr ρ = 1. (189)

For any fixed |Tr JN ˜K | and ∑

u
˜fu, we can quickly check that the optimal solution

of the objective function is always taken at w = |Tr JN ˜K |/(∑u
˜fu) with the optimal

value |Tr JN ˜K |2/(∑u
˜fu). Thus the optimization (189) is equivalent to
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Fig. 12. A schematic diagram for the magic state generation protocol that uses a quantum channel n times.
Every channel use is interleaved by a free CPWP operation F (i). The goal of such a protocol is to produce an
approximate magic state ωS in the end

̂θ2(N ) = logmax |Tr JN K |2/
(
∑

u
fu

)

s.t.
[

ρA ⊗ 1B K
K † Z

]

≥ 0, |Tr Z(Au ⊗ Av)/dA| ≤ fu,∀u, v,Tr ρ = 1. (190)

Suppose the optimal solution of ̂θ2(N1) and ̂θ2(N2) are taken at {K1, Z1, f 1u , ρ1} and
{K2, Z2, f 2v , ρ2} respectively. We can check that their tensor product {K1 ⊗ K2, Z1 ⊗
Z2, f 1u f 2v , ρ1 ⊗ ρ2} forms a feasible solution for̂θ2(N1 ⊗ N2) in (190). Thus we have

̂θ2(N1 ⊗ N2) ≥ log
|Tr(JN1 ⊗ JN2)(K1 ⊗ K2)|2

∑

u,v f 1u f 2v
= ̂θ2(N1) +̂θ2(N2), (191)

which completes the proof. ��
Remark 8. Based on numerical observations, we expect that the additivity of the geo-
metric Rényi Thauma holds for general α ∈ (1, 2]. However, the current proof seems to
only work for α = 2.

7.5. Magic state generation capacity. In [3], the authors study an information task
which uses a quantum channel to produce magic states and quantifies the “magic of
channel” by the amount of magic state generated per channel use. Here, we simply dub
it as the magic state generation capacity26 as it characterizes the capability of a channel
to generate magic states. The most general protocol to produce a magic state can be
proceeded as follows (see Fig. 12).

First, we start from preparing a quantum state ρ
(1)
R1 A1

via a free CPWP operation

F (1)
∅→R1 A1

. Then we apply the given channel N on system A1 and obtain a quantum

state σ
(1)
R1B1

= NA1→B1(ρ
(1)
R1 A1

). After this, we perform another free CPWP operation

F (2)
R1B1→R2 A2

and then apply the channel N again. These processes can be conducted

iteratively n times, and we obtain a quantum state σ
(n)

Rn Bn
. At the end of such a protocol,

a final free CPWP operation F (n+1)
Rn Bn→S is performed, producing a quantum state ωS .

26 It is named as “distillable magic of a channel” in [3]. We here call it magic state generation capacity as
it is consistent with the name of entanglement/coherence generation capacity in the existing literature.
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For any error tolerance ε ∈ [0, 1], the above procedure defines an (n, k, ε) ψ-magic
state generation protocol, if the final state ω has a sufficiently high fidelity with k copies
of the target magic state ψ ,

Tr ωS|ψ〉〈ψ |⊗k ≥ 1 − ε. (192)

A rate r is achievable if for all ε ∈ (0, 1] and δ > 0 and sufficiently large n, there exists an
(n, n(r −δ), ε) ψ-magic state generation protocol as depicted above. Then theψ-magic
state generation capacity of the channelN is defined as the supremum of all achievable
rates and is denoted as Cψ(N ). On the other hand, r0 is called a strong converse rate
if for every r > r0, the fidelity 1 − ε of any generation protocol will decays to zero as
the number of rounds n increases. The strong converse capacity, denoted as C†

ψ(N ) is

the infimum of all strong converse rates. By definition, we have Cψ(N ) ≤ C†
ψ(N ) in

general.
Based on the amortization inequality in Lemma 39, a similar argument as [3, Propo-

sition 20] gives us the following improved bound on the magic state generation capacity:

Theorem 43 (Application 6). For any quantum channel N and α ∈ (1, 2], it holds

Cψ(N ) ≤ C†
ψ(N ) ≤ ̂θα(N )

θmin(ψ)
≤ θmax(N )

θmin(ψ)
, (193)

where θmin(ψ) = minσ∈W Dmin(ψ‖σ) is the min-Thauma of the magic state ψ .

Proof. The first inequality holds by definition. The last inequality is a direct consequence
of the relation ̂Dα(ρ‖σ) ≤ Dmax(ρ‖σ) proved in Lemma 4. It remains to show the
second inequality. The main ingredient to prove this is the amortization property of
the geometric Rényi Thauma in Lemma 39. Consider n round magic state generation
protocol as shown in Fig. 12. For each round, denote the input state of the channelN as
ρ

(i)
Ri Ai

and the output state as σ
(i)
Ri Bi

. The final state after n round operations is denoted
as ωS . Thus we have

̂θα(ωS) ≤ ̂θα(σ
(n)

Rn Bn
) (194)

= ̂θα(σ
(n)

Rn Bn
) − ̂θα(ρ

(1)
R1 A1

) (195)

≤ ̂θα(σ
(n)

Rn Bn
) +

∑n−1

i=1

[

̂θα(σ
(i)
Ri Bi

) − ̂θα(ρ
(i+1)
Ri Ai

)
]

− ̂θα(ρ
(1)
R1 A1

) (196)

=
∑n

i=1

[

̂θα(σ
(i)
Ri Bi

) − ̂θα(ρ
(i)
Ri Ai

)
]

(197)

≤ n̂θα(N ). (198)

The first and third lines follow from the monotonicity of the geometric Rényi Thauma of
a quantum state under CPWP operations. The second line follows sincêθα(ρ

(1)
R1 A1

) = 0.
The last line follows from Lemma 39.

Note that any ψ-magic state generation protocol is characterized by a triplet (n, k, ε)

with the number of rounds n, the number of target magic states k and the error tolerance
ε. Denote r = k/n. By definition, we have Tr

[

ωS|ψ〉〈ψ |⊗k
] ≥ 1 − ε . Moreover, for

any σS ∈ W , it holds Tr
[

σS|ψ〉〈ψ |⊗k
] ≤ 2−nrθmin(ψ) [102]. Without loss of generality,

we can assume that ε ≤ 1−2−nrθmin(ψ). Otherwise, any value above the capacity would
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already be a strong converse rate since 1 − ε < 2−nrθmin(ψ). Thus for any σS ∈ W , we
have the inequalities

1 − Tr
[

ωS|ψ〉〈ψ |⊗k
]

≤ ε ≤ 1 − 2−nrθmin(ψ) ≤ 1 − Tr
[

σS|ψ〉〈ψ |⊗k
]

. (199)

Consider a quantumchannelN (γ ) = [

Tr |ψ〉〈ψ |⊗kγ
] |0〉〈0|+[

1 − Tr |ψ〉〈ψ |⊗kγ
] |1〉〈1|.

Due to the data-processing inequality, we have

̂Dα(ω‖σ) ≥ ̂Dα(N (ω)‖N (σ ))

= δα

(

1 − Tr |ψ〉〈ψ |⊗kω

∥

∥

∥1 − Tr |ψ〉〈ψ |⊗kσ
)

≥ δα

(

ε

∥

∥

∥1 − 2−nrθmin(ψ)
)

,

(200)

where δα(p‖q) ≡ 1
α−1 log

[

pαq1−α + (1− p)α(1− q)1−α
]

. The last inequality follows
from themonotonicity property that δα(p′‖q) ≤ δα(p‖q) if p ≤ p′ ≤ q and δα(p‖q ′) ≤
δα(p‖q) if p ≤ q ′ ≤ q [62]. Then we have

̂θα(ωS) = min
σ∈W

̂Dα(ω‖σ) ≥ δα

(

ε

∥

∥

∥1 − 2−nrθmin(ψ)
)

≥ 1

α − 1
log(1 − ε)α

(

2−nrθmin(ψ)
)1−α = α

α − 1
log(1 − ε) + nrθmin(ψ).

(201)

Combining Eqs. (198) and (201), we have

α

α − 1
log(1 − ε) + nrθmin(ψ) ≤ n̂θα(N ), (202)

which is equivalent to

1 − ε ≤ 2
−nθmin(ψ)

(

α−1
α

)

[

r−̂θα(N )/θmin(ψ)
]

. (203)

This implies that if the generation rate r is strictly larger than̂θα(N )/θmin(ψ), the fidelity
of the generation protocol 1 − ε decays exponentially fast to zero as the number of
rounds n increases. Or equivalently, we have C†

ψ(N ) ≤ ̂θα(N )/θmin(ψ) and completes
the proof. ��
Remark 9. If the target magic state is T state |T 〉 := (ξ |0〉 + |1〉 + ξ−1|2〉)/√3 with
ξ = e2π i/9 or H+ state (the eigenstate of a qutrit Hadamard gate with corresponding
eigenvalue +1), we have θmin(T ) = log(1 + 2 sin(π/18)) and θmin(H+) = log(3− √

3),
respectively [102, Proposition 2].

Consider a qutrit quantum channel Dp ◦ T composed by a T -gate with a qutrit
depolarizing noise Dp. The above Fig. 13 compares different converse bounds on the
T -magic state generation capacity of the channel Dp ◦ T . It is clear that our new bound
based on the geometric Rényi divergence is significantly tighter than the others.
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Fig. 13. Comparison of the strong converse bounds on the T -magic state generation capacity of the qutrit
quantum channel Dp ◦ T , where the depolarizing noise parameter p ∈ [0, 1] and α(10) = 1 + 2−10

Fig. 14. A schematic diagram for the quantum channel synthesis protocol that uses n times of the channel
N ′. Every channel use is interleaved by a free CPWP operation F (i). The goal of such a protocol is to make
the effective channel in the dashed box simulate a target channel N

7.6. Quantum channel synthesis. Another fundamental question in the resource theory
of magic asks how many instances of a given quantum channel N ′ are required to
simulate another quantum channelN , when supplemented with free CPWP operations.
Such a general scheme is illustrated in Fig. 14. Denote S(N ′ → N ) as the smallest
number of N ′ channels required to implement the target channel N exactly.

The following result establishes new fundamental limits on the quantum channel
synthesis problem by employing the geometric Rényi Thauma of the resource and target
channels, respectively.

Theorem 44. Let N ′ and N be two qudit quantum channels. Then the number of uses
of a channel N ′ required to implement N is bounded from below as

S(N ′ → N ) ≥ ̂θα(N )/̂θα(N ′), ∀α ∈ (1, 2]. (204)

Proof. Suppose the optimal simulation protocol requires to use the resource channel
n = S(N ′ → N ) times and the protocol is given by

N = F (n+1) ◦ N ′ ◦ F (n) ◦ · · · ◦ F (2) ◦ N ′ ◦ F (1), (205)
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with F (i) being CPWP operations. Using the subadditivity of the geometric Rényi
Thauma in Lemma 40 iteratively, we have

̂θα(N ) ≤ n̂θα(N ′) +
n+1
∑

i=1

̂θα(F (i)) = n̂θα(N ′), (206)

where the equality follows from the faithfulness of the geometric Rényi Thauma in
Lemma 38. Therefore, we have S(N ′ → N ) = n ≥ ̂θα(N )/̂θα(N ′), which concludes
the proof. ��

Together with the previous result in [3, Proposition 23], we have

Corollary 45. Let N ′ and N be two qudit quantum channels. Then the number of uses
of a channel N ′ required to implement N is bounded from below as

S(N ′ → N ) ≥ max

{

M(N )

M(N ′)
,

θmax(N )

θmax(N ′)
,

̂θα(N )

̂θα(N ′)

}

, ∀α ∈ (1, 2]. (207)

Remark 10. Note that each lower bound is given by a quotient of two quantities. It is thus
not known which one is tighter in general, despite that ̂θα(N ) ≤ θmax(N ) ≤ M(N ).

8. Conclusions

Wehave established several fundamental properties of the geometricRényi divergence as
well as its channel divergence.We further demonstrated the usefulness of these properties
in the study of quantum channel capacity problems, strengthening the previously best-
known results based on the max-relative entropy in general. We expect that the technical
tools established in this work can find a diverse range of applications in other research
areas, such as quantum network theory and quantum cryptography. For example, we
illustrate one more application of the geometric Rényi divergence in the task of quantum
channel discrimination in Appendix D.

There are also some interesting problems left for future investigation. The Umegaki
relative entropy is the most commonly studied quantum divergence because of its op-
erational interpretation as an optimal error exponent in the hypothesis testing problem
(known as the quantum Stein’s lemma) [37,104]. One open question is to know whether
the geometric Rényi divergence as well as the Belavkin–Staszewski relative entropy
have any operational interpretation.
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A. Technical Lemmas

In this section, we present several technical lemmas that are used in the main text.

Lemma 46 ([14]). For any positive semidefinite operators X and Y with X  Y , Hermi-
tian operator M and α(�) = 1+2−� with � ∈ N, the matrix inequality G1−α(X, Y ) ≤ M
holds if and only if

∃ �N0, N1, · · · N��H , s.t.

�
M X
X N�

�

P
,

{�
X Ni
Ni Ni−1

�

P

}�

i=1
, �N0 − Y �E . (208)

When � = 0, the conditions in the loop are taken as trivial. Here the short notation that
�X�P, �X�E and �X�H represent the positive semidefinite condition X ≥ 0, the equality
condition X = 0 and the Hermitian condition X = X†, respectively.

The following lemma proves a transformer inequality of the weighted geometric
matrix means. Here we require this result to hold for a specific range of the weighting
parameter that to the best of our knowledge has not been stated properly before.

Lemma 47 (Transformer inequality). Let X and Y be two positive operators, K be any
linear operator, and α ∈ (1, 2]. Then it holds

G1−α(K X K †, K Y K †) ≤ K G1−α(X, Y )K † . (209)

Furthermore, if K is invertible the statement above holds with equality.

Proof. Before proving the assertion of the lemma we need to collect some basic prop-
erties. We start by recalling the known result [41] that for β ∈ [0, 1], we have

Gβ(K X K †, K Y K †) ≥ K Gβ(X, Y )K † . (210)

As a next preparatory fact we show that the desired statement is correct for α = 2, i.e.,

G−1(K X K †, K Y K †) ≤ K G−1(X, Y )K † . (211)

To see this we recall that by Schur’s complement [105, Theorem 1.3.3] we have

G−1(X, Y ) = XY −1X ≤ M ⇐⇒
(

M X
X Y

)

≥ 0. (212)

Choosing M = G−1(X, Y ) thus gives
(

G−1(X, Y ) X
X Y

)

≥ 0 , (213)

which then implies
(

K G−1(X, Y )K † K X K †

K X K † K Y K †

)

≥ 0 , (214)

because Z �→ K Z K † is a positive map [105, Exercise 3.2.2]. Using (212) again then
implies (211). Because the maps t �→ t−1 is operator anti-monotone [106, Table 2.2]
we have

Y ≥ ω ⇒ G−1(X, Y ) ≤ G−1(X, ω) . (215)
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As a final property we recall a fact from [56, Equation 19] stating that

Gs(X, Gt (X, Y )) = Gst (X, Y ) . (216)

Now we are ready to prove the assertion of the lemma. For any β ∈ [−1, 0), using (216)
we have

Gβ(K X K †, K Y K †) = G−1(K X K †, G−β(K X K †, K Y K †)) (217)

≤ G−1(K X K †, K G−β(X, Y )K †) (218)

≤ K G−1(X, G−β(X, Y ))K † (219)

= K Gβ(X, Y )K † , (220)

where the first inequality step follows from (210) and (215). The second inequality is
implied by (211). The final step uses (216) again.

The fact that the transformer inequality holds with equality in case K is invertible
follows by applying the inequality twice as

G1−α(K X K †, K Y K †) ≤ K G1−α(X, Y )K † (221)

= K G1−α

(

K −1K X K †(K †)−1, K −1K Y K †(K †)−1)K †

(222)

≤ G1−α(K X K †, K Y K †) , (223)

which proves that the two inequalities above actually hold with equality. ��
Corollary 48. Let X and Y be two positive operators, K be any linear operator. Let

Dop(X, Y ) = X
1
2 log

(

X
1
2 Y −1X

1
2
)

X
1
2 be the operator relative entropy. Then the Dop

satisfies the transformer inequality:

Dop(K X K †, K Y K †) ≤ K Dop(X, Y )K †. (224)

Furthermore, if K is invertible the statement above holds with equality.

Proof. Due to the fact that limγ→0 − 1
γ
(xγ − 1) = log(x), we have the limit identity

lim
γ→0

− 1

γ
(Gγ (X, Y ) − X) = Dop(X, Y ). (225)

Then we have

Dop(K X K †, K Y K †) = lim
α→1

1

α − 1

[

G1−α(K X K †, K Y K †) − K X K †
]

(226)

≤ lim
α→1

1

α − 1

[

K G1−α(X, Y )K † − K X K †
]

(227)

= K lim
α→1

1

α − 1

[

G1−α(X, Y ) − X
]

K † (228)

= K Dop(X, Y )K †, (229)

where the first and last equalities follow from Eq. (225), the inequality follows from
Lemma 47. ��
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B. A Hierarchy for Constant-Bounded Subchannels

In this section we discuss the set of constant-bounded subchannels

Vcb ≡ {M ∈ CP(A : B)
∣

∣ ∃ σB ∈ S(B) s.t.MA→B(ρA) ≤ σB,∀ρA ∈ S(A)
}

. (230)

DenoteNσ as the constant map induced by the state σ . For anyM ∈ Vcb the condition
M(ρ) ≤ σ for all ρ is equivalent thatNσ −M is a positive map. In terms of their Choi
matrices, we have 1A ⊗ σB − JM ∈ BP(A : B) where BP(A : B) is the cone of block
positive operators. Thus we have

Vcb = {M ∈ CP(A : B)
∣

∣ ∃ σB ∈ S(B) s.t. 1A ⊗ σB − JM ∈ BP(A : B)
}

. (231)

Due to the difficulty of finding a semidefinite representation for BP [107], we do not
expect that there is a semidefinite representation for the set Vcb. Nevertheless, the cone
BP can be approximated by a complete hierarchy from the inside as

DPS∗
1 ⊆ DPS∗

2 ⊆ · · · ⊆ DPS∗
k ⊆ · · · ⊆ BP, (232)

where DPS∗
k is the dual cone of the well-known DPS hierarchy [108,109] and is given

by the semidefinite representation [110]

DPS∗
k =

{

MAB1

∣

∣

∣

∣

MAB1 ⊗ 1B[2:k] = (

YAB[k] − �kYAB[k]�k
)

+
k

∑

s=0

W
TB[s]
s,AB[k]

where YAB[k] ∈ Herm, Ws,AB[k] ≥ 0,∀s ∈ [0 : k]
}

, (233)

where the index [s1 : s2] ≡ {s1, s1+1, . . . s2}, [s] ≡ [1 : s] and�k is the projector on the
symmetry subspace of H⊗k

B . Then we can construct a complete semidefinite hierarchy
for the set Vbc as

V1
cb ⊆ V2

cb ⊆ · · · ⊆ Vk
cb ⊆ · · · ⊆ Vcb, (234)

with each level given by

Vk
cb = {M ∈ CP(A : B)

∣

∣ ∃ σB ∈ S(B) s.t. 1A ⊗ σB − JM ∈ DPS∗
k

}

, (235)

Consider the first level of the hierarchy

V1
cb =

{

M ∈ CP(A : B)

∣

∣

∣ ∃ σB ∈ S(B), W0, W1 ≥ 0 s.t. 1A ⊗ σB − JM = W0 + WTB
1

}

(236)

Denote R = 1A ⊗ σB − W0, we obtain

V1
cb =

{

M ∈ CP(A : B)

∣

∣

∣ ∃ σB ∈ S(B), s.t. 1A ⊗ σB − R ≥ 0, RTB − JTB
M ≥ 0

}

(237)

By symmetrizing the conditions X − Y ≥ 0 to X ± Y ≥ 0, we will retrieve the set Vβ .
Similarly, by using a different way of variable replacement V = 1A ⊗σ − W1, we have

V1
cb =

{

M ∈ CP(A : B)

∣

∣

∣ ∃ σB ∈ S(B), s.t. 1A ⊗ σB − V TB ≥ 0, V − JM ≥ 0
}

.

(238)
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Then symmetrizing the conditions, we will obtain a set of subchannels Vζ which is
exactly the zero set of the strong converse bound Cζ .

The restriction to symmetric conditions ensures that the set is closed under tensor
product, which is a key ingredient to proving the sub-additivity of the geometric Rényi
Upsilon-information in Proposition 33. Thus a further improvement of the result in the
main text can be made by considering a symmetric restriction of a higher level set Vk

cb.
But we also note that the size of the SDP will exponentially increase in the level of k.

C. A Detailed Comparison for Generalized Amplitude Damping Channels

In this section we give a detailed comparison of our new strong converse bounds with
previously known results for the generalized amplitude damping (GAD) channels. This
class of channels has been systematically investigated in [70], with several converse
bounds being established therein based on the data-processing inequality and the conti-
nuity of channel capacities as well as a few different techniques. The following plots of
previous weak converse bounds are generated via the MATLAB codes provided in the
arXiv submission of [70].

Due to the covariance symmetry of the GAD channels under the Pauli-z operator, the
quantities introduced in this work do not provide advantage over the Rains information
R (resp. the relative entropy of entanglement ER) in terms of the unassisted quantum
(resp. private) capacity. In the following, we will focus our comparison for the two-
way assisted scenarios where both R and ER are not known as valid converse bounds.
The comparison result for the two-way assisted quantum capacity is given in Fig. 15.
The red solid line is the previously best-known converse bound composed by several
different quantities. It is clear that our new strong converse bound ̂Rα(10),� can be much
tighter in most cases. Note that for the two-way assisted private capacity, we will obtain
exactly the same result as Fig. 15 by replacing Rmax with Emax and ̂Rα(10),� with ̂Eα(10),�

respectively.
The comparison result for the classical capacity is given in Fig. 16. The red solid line

is the previously best-known converse bound composed by several different quantities.
It is clear that our new strong converse bound ̂ϒα(10) can make further improvement
at some parameter range, particularly for low to medium amplitude damping noise. In
the range of high noise, the GAD channel becomes entanglement-breaking. Thus the
ε-entanglement breaking upper bound CEB will be the tightest one, as expected. We do
not show the plot for N = 0.5, because the channel becomes a qubit unital channel and
thus its Holevo information is already tight [112]. We do not explicitly depict the weak
converse bound in [113] since it is not tight to the cases we present.

D. Application in Quantum Channel Discrimination

A fundamental problem in quantum information theory is to distinguish between two
quantum channels N and M. In the asymmetric hypothesis testing setting (Stein’s
setting), we aim to minimize the type II error probability, under the condition that the
type I error probability does not exceed a constant ε ∈ (0, 1). More precisely, for any
given two quantum channelsN andM, denote the corresponding type I and type II error
of the adaptive protocol {Q,A} as αn({Q,A}) and βn({Q,A}). Then the asymmetric
distiguishibility is defined as

ζn(ε,N ,M) := sup
{Q,A}

{

−1

n
logβn({Q,A})

∣

∣

∣αn({Q,A}) ≤ ε

}

. (239)
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Fig. 17. This figure displays the difference between the upper and lower bounds in the Stein setting for
the GAD channels A0.8,N1 and A0.7,N2 . We vary the parameter N1, N2 ∈ [0, 1]. The upper surface
is the difference Dmax(A0.8,N1‖A0.7,N2 ) − D(A0.8,N1‖A0.7,N2 ). The lower surface is the difference
̂Dα(10)(A0.8,N1‖A0.7,N2 ) − D(A0.8,N1‖A0.7,N2 )

Its asymptotic quantities are defined as

ζ (ε,N ,M) := lim inf
n→∞ ζn(ε,N ,M), ζ (ε,N ,M) := lim sup

n→∞
ζn(ε,N ,M) (240)

The best-known single-letter strong converse bound on ζ (ε,N ,M) is given by the
channel’s max-relative entropy Dmax(N‖M) [20, Corollary 18], i.e.,

D(N‖M) ≤ ζ (ε,N ,M) ≤ ζ (ε,N ,M) ≤ Dmax(N‖M). (241)

In the following,we sharpen this upper bound by the geometricRényi channel divergence
in general. This gives a more accurate estimation of the fundamental limits of channel
discrimination under adaptive strategies.

Theorem 49. Let N and M be two quantum channels and ε ∈ (0, 1), α ∈ (1, 2]. It
holds

D(N‖M) ≤ ζ (ε,N ,M) ≤ ζ (ε,N ,M) ≤ ̂Dα(N‖M) ≤ Dmax(N‖M). (242)

Moreover, ̂Dα(N‖M) is also a strong converse bound.

Proof. The first two inequalities follow from (241). The last inequality follows from
the relation that ̂Dα(ρ‖σ) ≤ Dmax(ρ‖σ) in Lemma 4. In the following, we show that
ζ (ε,N ,M) ≤ ̂Dα(N‖M). This follows a similar step as [20, Proposition 17].

Let {Q,A} be an arbitary adaptive protocol for discriminatingN andM. Let p and
q denote the final decision probabilities. As argued in [20, Proposition 17], we can take
αn({Q,A}) = ε. Then

̂Dα(p‖q) ≥ 1

α − 1
log pαq1−α = 1

α − 1
log(1 − ε)αq1−α = α

α − 1
log(1 − ε) − log q.

(243)
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By applying the meta-converse in [20, Lemma 14] as well as the chain rule of the
geometric Rényi divergence, we have

−1

n
log q ≤ ̂Dα(N‖M) +

1

n

α

α − 1
log

1

1 − ε
. (244)

Since Eq. (244) holds for any channel discrimination protocol, we have ζ (ε,N ,M) ≤
̂Dα(N‖M). ��

Note that our new strong converse bound is also single-letter and efficient computable
via semidefinite program (it even admits a closed-formexpression as shown inLemma5).
The following example of the GAD channelsA0.8,N1 andA0.7,N2 demonstrates that ̂Dα

is much tighter than Dmax.
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