
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04036-8
Commun. Math. Phys. 386, 107–141 (2021) Communications in

Mathematical
Physics

Quasi–invariant Hermite Polynomials and
Lassalle–Nekrasov Correspondence

Misha V. Feigin1,4, Martin A. Hallnäs2 , Alexander P. Veselov3,4,5

1 School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, UK.
E-mail: misha.feigin@glasgow.ac.uk

2 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg,
412 96 Gothenburg, Sweden.
E-mail: hallnas@chalmers.se

3 Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
E-mail: A.P.Veselov@lboro.ac.uk

4 Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
5 Steklov Mathematical Institute, Moscow, Russia

Received: 25 September 2020 / Accepted: 5 February 2021
Published online: 15 March 2021 – © The Author(s) 2021

Abstract: Lassalle and Nekrasov discovered in the 1990s a surprising correspondence
between the rational Calogero–Moser system with a harmonic term and its trigono-
metric version. We present a conceptual explanation of this correspondence using the
rational Cherednik algebra and establish its quasi-invariant extension. More specifically,
we consider configurations A of real hyperplanes with multiplicities admitting the ra-
tional Baker–Akhiezer function and use this to introduce a new class of non-symmetric
polynomials, which we call A-Hermite polynomials. These polynomials form a linear
basis in the space of A-quasi-invariants, which is an eigenbasis for the corresponding
generalised rational Calogero–Moser operator with harmonic term. In the case of the
Coxeter configuration of type AN this leads to a quasi-invariant version of the Lassalle–
Nekrasov correspondence and its higher order analogues.

1. Introduction

In 1971 Calogero [Cal71] studied the quantum system describing N particles on the line
pairwise interacting with the rational potential

UR(x1, . . . , xN ) =
∑

1≤i< j≤N

γ

(xi − x j )2
+ ω2x2, x2 =

N∑

i=1

x2i . (1)

Almost at the same time Sutherland [Sut71] considered the quantum system of N par-
ticles on a circle with trigonometric interaction

UT (x1, . . . , xN ) =
∑

1≤i< j≤N

γ a2

sin2 a(xi − x j )
, (2)
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which in the limit a → 0 turns into the Calogero system without the harmonic term.
At the classical level both of these systems were studied in 1975 by Moser in a very

influential paper [Mos75], who proved their integrability in Liouville sense by finding
their Lax representations. The classical system (1) with nonzero ω was studied indepen-
dently by Adler and Perelomov, see references in [Adl77] and [OP76A]. Olshanetsky
and Perelomov made another substantial contribution, in particular, by introducing the
generalisations related to arbitrary root systems [OP76A,OP83].

Note that the dynamics in the rational and trigonometric cases are very different. In
the rational case (1) the system is isochronous: all solutions are periodic with the same
period T = 2π/ω,while in the trigonometric case themotion is muchmore complicated
[OP76B].

So it came as a surprise when in 1997 Nekrasov [Nek97] discovered that the systems
(both in the classical and the quantum case) are essentially equivalent. More precisely,
he showed that there is a symplectomorphism from the phase space of the rational
system onto the open (positive) part of the phase space of the trigonometric system.
Under this equivalence integrals are mapped to integrals with the Hamiltonian of the
rational systembeingmapped to themomentumof the trigonometric system (which gives
another proof of isochronicity of the rational system). To derive this map Nekrasov used
the Hamiltonian reduction, following the ideas of the work by Kazhdan, Kostant and
Sternberg [KKS78].

This explains an earlier construction of Lassalle [Las91] of multivariable Hermite
polynomials from Jack polynomials, which can be interpreted as a correspondence be-
tween the eigenfunctions of the two quantum systemswith potentials (1) and (2) (see also
Baker and Forrester’s paper [BF97] which, in particular, contains further unpublished
results due to Lassalle). For these reasonswe call this equivalence theLassalle–Nekrasov
correspondence.

One of the aims of this paper is to give a new explanation of the Lassalle–Nekrasov
correspondence in the quantum case using the rational Cherednik algebra and extend it
for the special parameter values γ = 2m(m + 1), m ∈ Z≥0, from the symmetric to the
much wider quasi-invariant setting.

We start with a more general quantum system with the Hamiltonian

HA = −Δ +
∑

α∈A

mα(mα + 1)(α, α)

(α, x)2
+ x2, (3)

where x2 = ∑N
i=1 x2i = (x, x) and A is any configuration of vectors in the Euclidean

spaceRN withmultiplicitiesmα ∈ Z≥0 admitting the so-called rational Baker–Akhiezer
(BA) function φ(x, λ). Any Coxeter configuration belongs to this class, but there are
also non-symmetric configurations (see [CFV99] and the next section).

Following [CV90,CFV99,FV02] we define an algebra of quasi-invariant polynomi-
als QA for any such configuration A. It consists of the polynomials q(x), x ∈ R

N ,
which are invariant up to order 2mα with respect to orthogonal reflection about the
hyperplane (α, x) = 0 for all α ∈ A, or equivalently, for each α ∈ A, the odd nor-
mal derivatives ∂2s−1

α q(x) = (α, ∂
∂x )2s−1q(x) vanish on the hyperplane (α, x) = 0 for

s = 1, 2, . . . , mα .
Our starting observation is that after multiplication by a Gaussian factor the rational

BA function can be considered as the generating function of a new interesting class of
quasi-invariant polynomials, which we call A-Hermite polynomials. In the symmetric
case multivariable generalisations of Hermite polynomials were introduced and studied
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by Lassalle [Las91], with important subsequent contributions including works by Baker
and Forrester [BF97], van Diejen [vDie97] and Rösler [Ros98].

More precisely, choosing a homogeneous basis of quasi-invariants qi , i ∈ Z≥0, we
define the A-Hermite polynomials Hqi (x) by the generating function

φ(x, λ) exp(−λ2/2) =
∞∑

i=0

Hqi (x)qi (λ), x, λ ∈ R
N . (4)

The polynomial Hqi (x) is a non-homogeneous polynomial with the highest degree term
qi (x), where collection of polynomials q j , j ∈ Z≥0, forms the dual basis in the space of
quasi-invariants (see details in Sect. 4). Expansion (4) is a far-reaching generalisation of
a well-known generating function expansion (see e.g. [Sze39]) for the classical Hermite
polynomials:

exp(λx − λ2/2) =
∞∑

n=0

Hn(x)
λn

n! ,

corresponding to m = 0 and N = 1.
More generally, we define the Hermitisation map χH : QA → QA sending q to Hq ,

which can be given explicitly by

Hq(x) = (−1)deg q exp(x2/2)Lq exp(−x2/2)

or, alternatively,

Hq(x) = e−L/2q(x),

where L = Δ−∑
α∈A

2mα

(α,x)
∂α is a (conjugated) rational Calogero–Moser (CM) Hamil-

tonian and Lq is its quantum integral with highest order term q(∂) (see Sect. 4). These
relations generalise properties of the classical Hermite polynomials (see formulae (9),
(10) below). Lassalle’s generalised Hermite polynomials [Las91] correspond to the Cox-
eter configuration A of type AN−1 and Jack symmetric polynomials q.

The corresponding functions Ψq(x) = Am(x)−1Hq(x)e−x2/2, where Am(x) =∏
α∈A(x, α)mα , are (formal) eigenfunctions of the generalised CM Hamiltonian (3)

with harmonic term.
In Sect. 5 we study in more detail the case of the Coxeter configuration A of type

AN−1 with all roots of multiplicity m. In particular, we extend the Lassalle–Nekrasov
correspondence to the quasi-invariants. More precisely, we show that the map χH in-
tertwines the action on QA of quantum integrals Lp, p ∈ R[ξ1, . . . , ξN ]SN , of the
trigonometric CM system in exponential coordinates and the corresponding quantum
integrals LH

p of the rational CM system with harmonic term, so that the diagram

QA QA

QA QA

χH

Lp LH
p

χH

is commutative. The original Lassalle–Nekrasov correspondence is the restriction of this
construction to the subspace of symmetric polynomials R[x1, . . . , xN ]SN ⊂ QA.
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In Sect. 6 we provide a more conceptional explanation of the Lassalle–Nekrasov
correspondence by showing that it can be obtained via an automorphism of the corre-
sponding rational Cherednik algebra.

By considering more general automorphisms in Sect. 7, we establish a higher order
analogue of the Lassalle–Nekrasov correspondence in which the trigonometric side of
the correspondence is unchanged and themomentumoperator corresponds to the rational
operator K = E − L p, where E = ∑

xi∂i is the Euler operator and p = ∑
ξ l+1

i , l ∈ N.
In particular, the operator K has a complete set of commuting quantum integrals.

Note that in the case l = 1, which corresponds to the usual Lassalle–Nekrasov corre-
spondence, the operator K is conjugated to the rational CMoperator with harmonic term.
In the simplest one-dimensional case with multiplicity 0 and arbitrary l its polynomial
eigenfunctions are known as Gould–Hopper polynomials [GH62], which were studied
in various relations, in particular, in [Cha11,DLMT96,VL13]. We show that our gener-
alisations of these polynomials satisfy certain bispectrality properties (cf. Duistermaat
and Grünbaum [DG86]).

InSect. 8weextend theLassalle–Nekrasov correspondence to thedeformedCalogero–
Moser systems describing the interaction of two types of particles [CFV98,SV04].

2. Baker–Akhiezer Function Related to Configurations of Hyperplanes

Let A be a finite collection of non-collinear vectors α = (α1, . . . , αN ) ∈ R
N with

multiplicities mα ∈ N. Consider the corresponding configuration of hyperplanes with
multiplicities (which we also denote as A) defined by

Am(x) :=
∏

α∈A
(x, α)mα = 0.

The (rational)Baker–Akhiezer (BA) function φ(x, λ), x, λ ∈ C
N associated toA satisfies

the following two conditions [CV90]:

(I) φ(x, λ) is of the form φ(x, λ) = P(x, λ)e(x,λ) with P(x, λ) a polynomial in x with
highest degree term equal to Am(x)Am(λ);

(II) for all α ∈ A, we have the vanishing conditions

∂αφ(x, λ) = ∂3αφ(x, λ) = · · · = ∂2mα−1
α φ(x, λ) ≡ 0 when (x, α) = 0,

where ∂α = (α, ∂/∂x) is the normal derivative in direction α.

The existence ofφ puts a strong restriction onA. The known cases besides theCoxeter
arrangements with invariant multiplicities include their deformed versionsAN−1(p) and
CN (r, s) as well as some special 2-dimensional configurations, see [CFV99,FJ14].

It is known that if the BA function φ exists, then it is unique and symmetric with
respect to x and λ: φ(x, λ) = φ(λ, x), see [CFV99].

The key fact [CV90,CFV99,VSC93] is that if the configuration A admits the BA
function φ(x, λ), then there is a homomorphism χA mapping a quasi-invariant q ∈ QA
to a differential operator Lq(x, ∂

∂x ) such that

Lqφ(x, λ) = q(λ)φ(x, λ). (5)

In particular, φ satisfies the eigenvalue equation

Lφ = λ2φ, λ2 =
N∑

i=1

λ2i , (6)
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for the CM operator

L = Δ −
∑

α∈A

2mα

(α, x)
∂α, Δ =

N∑

i=1

∂2i . (7)

If A is a Coxeter system, then L is gauge-equivalent to the generalised CM operator
from Olshanetsky–Perelomov [OP83] in the special case of integer parameters.

In the general case the BA function φ(x, λ) can be given in terms of the operator L
by Berest’s formula [Ber98]

φ(x, λ) = (
2|m||m|!)−1(

L − λ2
)|m| (

Am(x)2e(λ,x)
)

,

where |m| = ∑
α∈A mα , see Theorem 3.1 in [CFV99].

In theCoxeter case Etingof andGinzburg [EG02A] observed that the functionφ(x, λ)

has the expansion

φ(x, λ) =
∞∑

i=0

qi (x)qi (λ), (8)

where qi , i ∈ Z≥0, is a homogeneous basis of quasi-invariants, and qi is the dual basis
with respect to a natural bilinear form 〈·, ·〉m (see formulae (27)–(28) in Sect. 4). The
same statement and proof hold true in the general case provided that φ(0, 0) �= 0, which
is satisfied in all the known cases (see [FV03,FHV13]).

Multiplication of the left-hand side of formula (8) by the Gaussian factor exp(−λ2/2)
remarkably leads to a very interesting quasi-invariant version of Lassalle’s multivariable
Hermite polynomials, see formula (4) above.

In the next section we study these polynomials in the simplest one-dimensional case,
leaving the general case for Sect. 4.

3. m-Hermite Polynomials on the Line

The classical Hermite polynomials Hn(x) (in the “probabilistic" convention) are the
monic orthogonal polynomials with Gaussian weight w(x) = e−x2/2 (see e.g. [Sze39]).
They satisfy the recurrence relation

Hn+1(x) = x Hn(x) − nHn−1(x)

and the differential equation

(− d2

dx2
+ x

d

dx
)Hn = nHn .

The corresponding functions ψn(x) = e−x2/4Hn(x) are the eigenfunctions of the quan-
tum harmonic oscillator

(− d2

dx2
+

x2

4
)ψn = (n +

1

2
)ψn .
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The Hermite polynomials can be given by the formulas

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2, (9)

Hn(x) = e
− 1

2
d2

dx2 xn . (10)

Here are the first few of them:

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x .

It will be important for us that Hermite polynomials can also be defined by the
following generating series [Sze39]:

ekx−k2/2 =
∞∑

n=0

Hn(x)
kn

n! . (11)

Let us define now their m-version, where m ∈ Z≥0. In our geometric setting they
correspond to the configuration A consisting of the point 0 taken with multiplicity m.

Consider the corresponding Schrödinger operator

Hm = − d2

dx2
+

x2

4
+

m(m + 1)

x2
,

which is the simplest case of a CM operator with harmonic term. It is well known that
it is the result of Darboux transformations applied to the harmonic oscillator H0 at the
first m odd levels.

Namely, let W1,3,...,2m−1 be the Wronskian of the first m odd Hermite polynomials

W1,3,...,2m−1 = W [H1(x), H3(x), . . . , H2m−1(x)].
Then it is easy to check that

W1,3,...,2m−1 = W [x, x3, . . . , x2m−1] =
m−1∏

j=1

(m − j)! 2m(m−1)
2 x

m(m+1)
2 .

Introduce the notation

W1,3,...,2m−1[ f ] := W [x, x3, . . . , x2m−1, f ] = W [H1, H3, . . . , H2m−1, f ]
and the differential operator Dm by

Dm( f ) = W1,3,...,2m−1[ f ex2/4]
W1,3,...,2m−1

e−x2/4.

Then one can check that the following intertwining relation holds:

(Hm + m) Dm = DmH0. (12)

Define now the m-Hermite polynomials on the line by

H (m)
n (x) = 1

∏m−1
j=1 (m − j)! (2x)−

m(m−1)
2 W1,3,...,2m−1[Hn]. (13)
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From the intertwining relation (12) it follows that

ψ(m)
n := Dm(ψn) = x−m H (m)

n e−x2/4 (14)

is an eigenfunction of the CM operator Hm :

Hmψ(m)
n = (n − m +

1

2
)ψ(m)

n . (15)

The operator (7) in this case has the form

Lm = d2

dx2
− 2m

x

d

dx
.

The rational BA function, satisfying the equation

Lmφm(x, λ) = λ2φm(x, λ),

can be written as

φm(x, λ) = xm W1,3,...,2m−1[eλx ]
W1,3,...,2m−1

,

(see [CFV99]), or, more explicitly,

φm(x, λ) = (x
d

dx
− 2m + 1)(x

d

dx
− 2m + 3) . . . (x

d

dx
− 1)eλx . (16)

Theorem 1. The m-Hermite polynomials have the generating function

φm(x, k)e−k2/2 =
∞∑

n=0

H (m)
n (x)

kn

n! .

Proof. Consider the operator Φm given by Φm[ f ] = xm W1,3,...,2m−1[ f ]
W1,3,...,2m−1

. The statement
follows by applying the operator Φm to the equality (11). �

More properties of these polynomials are given by the following

Proposition 1. The m-Hermite polynomials H (m)
n have the following properties:

1. H (m)
n (−x) = (−1)n H (m)

n (x),

2. H (m)
1 = H (m)

3 = . . . = H (m)
2m−1 = 0,

3. Lm H (m)
n = nH (m)

n , where Lm = − d2

dx2
+ x d

dx + 2m
x

d
dx ,

4. H (m)
n (x) = cm,ne−Lm/2xn, where cm,n = ∏m

k=1(n − 2k + 1),

5. H (m)
n = cm,n p(m)

n (x), where p(m)
n (x) ∈ Z[x] is a monic polynomial of degree n,

6. 〈H (m)
n (x) : n ∈ Z≥0〉 = Qm, where Qm = 〈1, x2, x4, . . . , x2m, x2m+1, . . .〉 is the

corresponding algebra of quasi-invariants.
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Proof. Properties 1 and 2 follow from the definition of m-Hermite polynomials (13).
Property 3 follows from formulas (14), (15) and the relation

Lm = xmex2/4(Hm + m − 1

2
)x−me−x2/4.

It follows from more general Propositions 4, 8 below that H (m)
n is proportional to

e−Lm/2xn . It is easy to see from Theorem 1 that the coefficient of proportionality equals
cm,n , which proves property 4.

Consider a monic polynomial p(x) of degree n, it has the form

p(x) =
n∑

i=0

ai xn−i

for some ai ∈ C with a0 = 1. We have to show that the equality

Lm p = np (17)

implies that ai ∈ Z for all i . It is easy to see that ai = 0 if i is odd. Also the equality
(17) implies the following recurrence relation for any even i , 0 ≤ i ≤ n:

(n − i)(n − i − 1 − 2m)ai = −(i + 2)ai+2, (18)

where we put an+1 = an+2 = 0. By applying relation (18) iteratively we get for i = 2k,
k ∈ Z, that

k∏

j=1

(n − 2( j − 1))
k∏

j=1

(n − 2m − 1 − 2( j − 1)) = (−1)k2kk!a2k . (19)

Depending on the parity of n one of the two products in the left-hand side of equality
(19) is the product of k successive even integers. If n is even then the first product
divided by 2kk! equals (n/2

k

)
. If n is odd then the second product divided by 2kk! equals(

(n−2m−1)/2
k

)
, where

(x
k

) := x(x − 1) . . . (x − k + 1)/k! is integer for all integer x . This
implies that ai ∈ Z for all i .

As to the final property the quasi-invariance of H (m)
n follows from Theorem 1 and

property (II) of the BA function. The statement that these polynomials generate the space
of quasi-invariants Qm follows from property 5. �

Wenote that integrality property 5 also follows frommoregeneral results in [BHSS18].

Remark 1. Arithmetical properties of Hermite polynomials were studied by Schur in
remarkable papers [Sch29,Sch31]. In particular, he proved that all polynomials H2k and
x−1H2k−1 (with the exception of H2(x) = x2 − 1) are irreducible over Q. It would be
interesting to investigate similar problems for our m-Hermite polynomials.

We also note that combinatorial and representation theoretic interpretations of the
coefficients of general Wronskians of Hermite polynomials were obtained recently in
[BDS20].
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Here are the first few examples of m-Hermite polynomials for m = 1:

H (1)
0 = − 1, H (1)

1 = 0, H (1)
2 = x2 + 1, H (1)

3 = 2x3, H (1)
4 = 3(x4 − 2x2 − 1),

H (1)
5 = 4x3(x2 − 5), H (1)

6 = 5(x6 − 9x4 + 9x2 + 3), H (1)
7 = 6x3(x4 − 14x2 + 35),

H (1)
8 = 7(x8 − 20x6 + 90x4 − 60x2 − 15), H (1)

9 = 8x3(x6 − 27x4 + 189x2 − 315),

H (1)
10 = 9(x10 − 35x8 + 350x6 − 1050x4 + 525x2 + 105).

Note that m-Hermite polynomials H (m)
2k+1, k ∈ Z≥0, are odd and divisible by x2m+1.

Indeed, they are quasi-invariant and x2m+1 is the odd quasi-invariant of the lowest degree.
Let us define the monic polynomials E (m)

k (x) and G(m)
k (x) of degree k, k ∈ Z≥0,

such that

cm,2k E (m)
k (x2) = H (m)

2k (x), cm,2k+2m+1x2m+1G(m)
k (x2) = H (m)

2k+2m+1(x).

Let us recall that the generalised Laguerre polynomials L(α)
n are polynomials of degree

n with the highest order coefficient (−1)n/n!, which satisfy the differential equation

z
d2L(α)

n (z)

dz2
+ (α + 1 − z)

d L(α)
n (z)

dz
+ nL(α)

n (z) = 0. (20)

We have the following relation of m-Hermite polynomials with the generalised La-
guerre polynomials for special values of the parameter α (cf. [BDS20] where general
Wronskians of Hermite polynomials were expressed via Wronskians of Laguerre poly-
nomials).

Proposition 2. We have

E (m)
n (x) = (−1)nn!L(α)

n (
1

2
x2), α = −m − 1

2
,

and

G(m)
n (x) = (−1)nn!L(α)

n (
1

2
x2), α = m +

1

2
,

for any n ∈ Z≥0.

Proof. Let us do the change of variables z = 1
2 x2 in equation (20). We get the following

equation:

d2L(α)
n (x2)

dx2
+
2α + 1

x

d L(α)
n (x2)

dx
− x

d L(α)
n (x2)

dx
+ 2nL(α)

n (x2) = 0. (21)

which coincides with the equation in property 3 of Proposition 1 for H2n(x) when
α = −m − 1

2 .

Let us conjugate the equation (21) by x2α . It follows that f = x2α L(α)
n (x2) satisfies

the equation

d2 f

dx2
+
1 − 2α

x

d f

dx
− x

d f

dx
+ (2α + 2n) f = 0,

which coincides with the equation in property 3 of Proposition 1 for H2n+2m+1(x) when
α = m + 1

2 . �
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Recall that generalised Laguerre polynomials are orthogonal with respect to the bilinear
form

( f, g) =
∫ ∞

0
xα f (x)g(x)e−x dx .

Note that the integral in general diverges for α ≤ −1 but it can be regularised using com-
plex contour integrals. A related problem for the corresponding m-Hermite polynomials
was discussed in a wider context of exceptional Hermite polynomials in [HHV16].

4. A-Hermite Polynomials: Definition and Properties

Let us assume now that the configurationA is such that the rational BA function φ(x, λ)

exists and satisfies the condition φ(0, 0) �= 0. This function is both symmetric and
homogeneous in the sense that

φ(x, λ) = φ(λ, x) (22)

and

φ(t x, λ) = φ(x, tλ), t ∈ C, (23)

respectively. Symmetry follows from Theorem 2.3 in [CFV99], whereas homogeneity
is a simple consequence of the defining conditions and uniqueness.

It also satisfies the following integral identity
∫

iξ+RN

φ(−i z, λ)φ(i z, μ)

Am(z)2
dγ (z) = e−(λ2+μ2)/2φ(λ,μ), (24)

where dγ (z) = (2π)−N/2e−z2/2dz, and ξ ∈ R
N is such that Am(ξ) �= 0, which was

established in [FHV13].
For each homogeneous q ∈ QA, there exists a unique homogeneous differential

operator

Lq = q(∂1, . . . , ∂N ) + l.o.t.

of homogeneity degree− deg q such that [Lq , L] = 0. Such operators form a commuta-
tive ring isomorphic toQA, with L corresponding to x2 and the ring isomorphism given
by

Lqφ(x, λ) = q(λ)φ(x, λ). (25)

Moreover, as it follows from [Ber98,Cha98,CFV99],

LqQA ⊂ QA, ∀q ∈ QA. (26)

Attached to QA is a natural bilinear form, given by

(p, q)m = (L pq)(0), p, q ∈ QA, (27)

which can be seen to be symmetric [EG02A,FV03]. Then Theorem 3.1 in [FHV13]
yields the integral representation

(p, q)m = φ(0, 0)
∫

iξ+RN

(eL/2 p)(−i x)(eL/2q)(i x)

Am(x)2
dγ (x).
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To proceed further, we find it convenient to renormalise the bilinear form (·, ·)m : we
set

〈p, q〉m = φ(0, 0)−1(p, q)m, p, q ∈ QA. (28)

Choosing a homogeneous basis qi , i ∈ Z≥0, in QA, the defining condition (II) for φ

entails that

φ(x, λ) =
∞∑

i=0

qi (x)qi (λ) (29)

for some polynomials qi . By symmetry (22) and homogeneity (23), we have qi ∈ QA
and deg qi = deg qi . Etingof and Ginzburg [EG02A] showed that the quasi-invariants
qi , i ∈ Z≥0, constitute a dual basis in QA:

〈qi , q j 〉m = δi j . (30)

(Strictly speaking, they considered only the Coxeter case but their arguments work in
our more general case as well, see also [FV03].)

Let us introduce now the analogues of the Hermite polynomials in the algebra of
quasi-invariants QA. Let

F(x, λ) = φ(x, λ) exp(−λ2/2). (31)

We define a linear “Hermitisation" map χH : QA → QA, q �→ Hq , by

Hq(x) = 〈F(x, ·), q(·)〉m, q ∈ QA. (32)

Polynomials Hq(x) for homogeneous q ∈ QA are called A-Hermite polynomials. For
a quasi-invariant polynomial q of degree d the polynomial Hq(x) has the form

Hq(x) = q(x) +
�d/2�∑

n=1

H (d−2n)
q (x), (33)

with H (d ′)
q ∈ QA[d ′], whereQA[d ′] denotes the space of homogeneous quasi-invariants

of degree d ′.
For the basis qi of quasi-invariants QA we can define the corresponding A-Hermite

polynomials by the generating function expansion

F(x, λ) =
∞∑

i=0

Hqi (x)qi (λ). (34)

Proposition 3. The A-Hermite polynomials Hqi (x) form a basis in the space of quasi-
invariants QA.

Proof. Quasi-invariance of the polynomials Hqi (x) follows from formulae (31), (34) and
property (II) of the BA function. It is also clear from formula (33) that these polynomials
are linearly independent and span the space QA. �
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Now we establish some properties of A-Hermite polynomials. Let us introduce the
Euler operator

E = Ex =
N∑

i=1

xi∂i

and the following “harmonic” version of the operator (7):

LH = L − E = Δ −
∑

α∈A

2mα

(α, x)
∂α −

N∑

i=1

xi∂i . (35)

Proposition 4. For q ∈ QA[d], Hq(x)satisfies the differential equation

LHHq = −d Hq . (36)

Proof. Taking t → 0 in the identity (φ(t x, λ) − φ(x, tλ))/t = 0 (see (23)), we obtain

Exφ(x, λ) − Eλφ(x, λ) = 0.

When combining this identity with equation (6), we readily find that F(x, λ) satisfies
the differential equation

LH
x F = −EλF.

Note that the operator E is self-adjoint with respect to 〈·, ·〉m since homogeneous quasi-
invariants of different degrees are orthogonal. Hence, for any q ∈ QA, we get

(
LHχH

)
(q) = 〈

LH
x F(x, ·), q(·)〉m = −〈F(x, ·), Eq(·)〉m = −(χH E)(q),

which implies the statement. �
Proposition 5. For q ∈ QA[d], Hq(x) is the unique quasi-invariant polynomial of the
form (33) that satisfies the differential equation (36).

Proof. Let us treat (33) as an ansatz. From [Cha98,CFV99] we derive that

L(QA[d]) ⊂ QA[d − 2], d ≥ 2.

Substituting the right-hand side of (33) for Hq in (36), and using

E H (d−2n)
q = (d − 2n)H (d−2n)

q ,

we arrive at the recurrence relation

2nH (d−2n)
q = −L H (d−2n+2)

q , n = 1, . . . �d/2�,

which implies uniqueness of the solution Hq(x) such that H (d)
q = q. �

The next proposition details an integral representation for Hq , obtained as a straight-
forward consequence of formula (31) and the integral identity (24).
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Proposition 6. Let q ∈ QA[d]. Then we have

Hq(x) = exp(x2/2)
∫

iξ+RN

q(−i z)φ(i z, x)

Am(z)2
dγ (z), (37)

where dγ (z) = (2π)−N/2e−z2/2dz and ξ ∈ R
N satisfies Am(ξ) �= 0 as before.

Proof. By linearity in q, it suffices to prove (37) for q = qi , i ∈ Z≥0. Multiplying (24)
by exp(μ2/2) and taking μ → x , we obtain

F(x, λ) = exp(x2/2)
∫

iξ+RN

φ(−i z, λ)φ(i z, x)

Am(z)2
dγ (z). (38)

Due to formula (29) we have

φ(−i z, λ) =
∞∑

j=0

q j (−i z)q j (λ).

By substituting this expansion into formula (38) and comparing it with the expansion
(34) for F(x, λ) we get the claim. �
Proposition 7. For q ∈ QA[d], we have

Hq(x) = (−1)d exp(x2/2)Lq exp(−x2/2).

Proof. By using formula (25) and the fact that q ∈ QA[d], we rewrite (37) as

Hq(x) = (−1)d exp(x2/2)Lq

∫

iξ+RN

φ(i z, x)

Am(z)2
dγ (z).

From (29) it is evident that φ(x, 0) = φ(0, λ) = φ(0, 0). Setting λ = 0 in the identity
(24), we thus find that

∫

iξ+RN

φ(i z, x)

Am(z)2
dγ (z) = exp(−x2/2),

and the claim follows. �
The polynomials Hq can also be written in the following form (cf. Theorem 3.4 in

Rösler [Ros98]).

Proposition 8. For q ∈ QA[d], we have

Hq(x) = e−L/2q.

Proof. Note that [E, L] = −2L , which implies [E, e−L/2] = Le−L/2. Therefore

LHe−L/2q = (L − E)e−L/2q = −e−L/2Eq = −d(e−L/2q),

and the statement follows by Proposition 5. �
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As the following theorem demonstrates, theHermitisationmapχH becomes a unitary
map when the domain has the bilinear form 〈·, ·〉m and the codomain is equipped with
the bilinear form

{p, q}m ≡
∫

iξ+RN

p(z)q(z)

Am(z)2
dγ (z), p, q ∈ QA.

Theorem 2. For p, q ∈ QA, we have

{Hp, Hq}m = 〈p, q〉m .

Proof. By linearity, we may and shall assume p ∈ QA[d] and q ∈ QA[d ′] for some
d, d ′ ∈ Z≥0. From the integral identity (24), and using property (23) with t = ±i , we
infer

∫

iξ+RN

F(z,−iλ)F(z, iμ)

Am(z)2
dγ (z) = φ(λ,μ). (39)

Note that

〈p(ν), F(z,±iν)〉m = (±i)d〈p(ν), F(z, ν)〉m . (40)

Therefore by applying 〈p, ·〉m in λ to the equality (39), it follows from fornulas (32) and
(5) that

(−i)d
∫

iξ+RN

Hp(z)F(z, iμ)

Am(z)2
dγ (z) = p(μ).

The claim now follows by applying 〈q, ·〉m inμ to this equality and using again formulae
(32) and (40). �

5. The Lassalle–Nekrasov Correspondence and Multivariable m-Hermite
Polynomials

In this section, we consider the case of the Coxeter configuration A of type AN−1 in
which A is the set of positive roots AN−1+ = {ei − e j : 1 ≤ i < j ≤ N } ⊂ R

N with
all the roots taken with the same multiplicity m ∈ Z≥0. We will call the corresponding
A-Hermite polynomials multivariable m-Hermite polynomials.

The one-dimensional m-Hermite polynomials from Sect. 3 correspond to a different
embedding of the root system A1 ⊂ R. Moreover, as explained in further detail at the
end of this section, Lassalle’smultivariableHermite polynomials [Las91]with parameter
α = −1/m can be viewed as special instances of multivariable m-Hermite polynomials.

Throughout this section, we use the standard notation

ΛN = C[x1, . . . , xN ]SN

for the algebra of symmetric polynomials in N variables x1, . . . , xN .
In the present case, the operator (35) takes the form

LH = Δ −
N∑

i< j

2m

(xi − x j )
(∂i − ∂ j ) −

N∑

i=1

xi∂i (41)



Quasi–invariant Hermite polynomials and Lassalle–Nekrasov correspondence 121

and is conjugated to the N -particle CM operator

LH = Δ −
N∑

i< j

2m(m + 1)

(xi − x j )2
− 1

4

N∑

i=1

x2i ,

LH = Ψ̂ −1
0 (LH − 1

2
m N (N − 1) +

N

2
)Ψ̂0,

where Ψ̂0 is the operator of multiplication by Ψ0 = ∏N
i< j (xi − x j )

−m exp(−x2/4).

It can be included in a commutative ring of differential operators LH
p , p ∈ ΛN , with

highest order terms p(∂21 , . . . , ∂2N ) (see [OP83,Poly92]), given explicitly by formula
(48) below.

Lassalle [Las91] (in the quantum case) and Nekrasov [Nek97] (both in the classical
and quantum cases) discovered a remarkable correspondence between this system and
Sutherland’s version of the CM system with the Hamiltonian

HN = −Δ +
N∑

i< j

2m(m + 1)

sin2(zi − z j )
.

It has an eigenfunction Φ0 = ∏N
i< j sin

−m(zi − z j ) with eigenvalue λ0 = m2N (N 2 −
1)/3. Its gauged version 1

4 Φ̂
−1
0 (HN − λ0)Φ̂0, written in the exponential coordinates

x j = e2i z j , takes the form

HN =
N∑

i=1

(xi∂i )
2 − m

N∑

i< j

xi + x j

xi − x j
(xi∂i − x j∂ j ). (42)

To construct the corresponding quantum integrals, Heckman [Hec91B] introduced
the following version of the Dunkl operators:

Di = xi∂i − m

2

N∑

j �=i

xi + x j

xi − x j
(1 − si j ), i = 1, . . . , N ,

where si j is the transposition acting on functions by permuting the coordinates xi and
x j . They are related to the original Dunkl operators [Dun89]

Di = ∂i + m
∑

j �=i

1

xi − x j
(si j − 1)

by

Di = xi Di − m

2

∑

j �=i

(si j − 1).

Heckman’s operators Di do not commute, but the differential operators

Lk = Res (Dk
1 + · · · +Dk

N ), (43)
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where Resmeans the restriction to the space of symmetric polynomialsΛN , do commute
with each other. Since L2 = HN they are integrals of the quantum trigonometric CM
system (42).

For our purposes, it is convenient to replace Heckman’s operators Di by Polychron-
akos’ operators [Poly92]

πi = xi Di , i = 1, . . . , N .

The corresponding differential operators

Lk = Res (πk
1 + · · · + πk

N ) (44)

pair-wise commute and L2 = HN , (see [SV15, Proposition 5.2] for the precise relation
between the two sets of quantum integrals (43) and (44)). Note that

L1 = L1 = x1∂1 + · · · + xN ∂N

is simply the total momentum of the system (in the exponential coordinates).
More generally, for every p ∈ ΛN , there exists a unique SN -invariant differential

operator Lp such that

Lpq = p(π1, . . . , πN )q, ∀q ∈ ΛN ,

which commutes with all other such operators Lr , r ∈ ΛN . The operator (44) corre-
sponds to the Newton power sum pk(ξ) = ξ k

1 + · · · + ξ k
N .

Consider now the algebra of quasi-invariantsQA,whichwe in this casewill denote by
Qm . It consists of the polynomials p(ξ1, . . . , ξN )which are invariant under permutations
si j of ξi and ξ j up to order 2m:

p(ξ) − p(si jξ) ≡ 0 mod (ξi − ξ j )
2m+1.

The symmetric algebra ΛN is a subalgebra of the algebra Qm .
First we show that the algebra Qm is preserved by the operators Lp.

Proposition 9. For each p ∈ ΛN , we have

LpQm ⊂ Qm .

Proof. Let Hm be the rational Cherednik algebra corresponding to the symmetric group
SN and parameters t = 1, c = m [EG02B]. It is generated by operators Di , xi , and si j .

Consider the spherical subalgebra eHme ⊂ Hm , where e = 1
N !

∑
w∈SN

w. One can
identify operators p(π1, . . . , πN ), p ∈ ΛN , with elements

me(p) := p(π1, . . . , πN )e ∈ eHme.

Since, up to analogous identifications, C[x1, . . . , xN ]SN and C[D1, . . . , DN ]SN gener-
ate eHme [BEG02], we can write p(π1, . . . , πN ) as a polynomial in (non-commuting)
operators of multiplication by q(x1, . . . , xN ) and q(D1, . . . , DN ) with q ∈ ΛN . There-
fore the differential operator Lp can be expressed as a polynomial in q(x) and Lq . The
statement follows from formula (26). �

To proceed further, we need the following lemma (cf. [DJO94] where a related prop-
erty was studied).
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Lemma 1. The restriction of (·, ·)m to ΛN is non-degenerate.

Proof. Let

Ker(m) = {p ∈ ΛN : (p, q)m = 0, ∀q ∈ ΛN }.
For p ∈ Ker(m) and q, q ′ ∈ ΛN , we have

(Lq p, q ′)m = (p, qq ′)m = 0.

Hence Ker(m) is a graded ideal in ΛN which is invariant under the operators Lq . As-
suming Ker(m) �= {0}, we choose a non-zero homogenous p ∈ Ker(m) of minimal
degree. By the invariance of Ker(m) and minimality of p,

Lq p = 0, ∀q ∈ ΛN ,

that is p ism-harmonic in the terminology of [FV02]. Since the subspace of SN -invariant
m-harmonic polynomials coincides with C we must have p ∈ C. Then (p, p)m = p2,
which implies p = 0, and the statement follows. �

This enables us to establish self-adjointness of the operators Lp with respect to the
bilinear form (·, ·)m .

Proposition 10. For each p ∈ ΛN , we have

(Lpq, q ′)m = (q,Lpq ′)m, q, q ′ ∈ Qm . (45)

Proof. We recall that any differential operator in variables x1, . . . , xN that has rational
coefficients with poles located only along the hyperplanes xi = x j , 1 ≤ i < j ≤ N , is
completely determined by its action on ΛN , see e.g. Lemma 2.8 in [Opd95]. Both Lp
and its dual L∗

p are such differential operators. This is immediate for Lp, and it follows
forL∗

p from the proof of Proposition 9 and the fact that L∗
q = q, q∗ = Lq for all q ∈ Qm .

By Lemma 1, it thus suffices to prove (45) for q, q ′ ∈ ΛN .
To this end, we recall the bilinear form [DJO94]

[p, q]m := (
p(D1, . . . , DN )q

)
(0), p, q ∈ C[x1, . . . , xN ],

and its properties

[x j p, q]m = [p, D j q]m, [D j p, q]m = [p, x j q]m, (46)

for all j = 1, . . . , N . It follows from relations (46) that

[π j p, q]m = [p, π j q]m . (47)

Now let q, q ′ ∈ ΛN . We deduce by the property (47) that

(Lpq, q ′)m = [
p(π1, . . . , πN )q, q ′]

m = [
q, p(π1, . . . , πN )q ′]

m = (q,Lpq ′)m,

and the claim follows. �
As a simple consequence, we can now prove that the BA function φ(x, λ) satisfies

the following remarkable symmetry property.
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Theorem 3. For any p ∈ ΛN , we have

Lp,xφ(x, λ) = Lp,λφ(x, λ),

where notations Lp,x and Lp,λ stand for the operator Lp acting in the variables x =
(x1, . . . , xN ) and λ = (λ1, . . . , λN ), respectively.

Proof. Let qi and qi be dual bases of quasi-invariants Qm so that formulas (29)–(30)
hold. Defining

a j
i := 〈Lpqi , q j 〉m, b j

i := 〈qi ,Lpq j 〉m,

we have by Proposition 10 and formula (28) that a j
i = b j

i for all i, j ∈ Z≥0. It follows
that

Lp,xφ(x, λ) =
∑

i

qi (λ)
∑

j

a j
i q j (x) =

∑

j

q j (x)
∑

i

b j
i qi (λ) = Lp,λφ(x, λ).

�
For p ∈ ΛN , let Lp = Lp,x , and let L be given by (7), which in this case is

L = Δ −
∑

i< j

2m

xi − x j
(∂i − ∂ j ).

Following Baker and Forrester [BF97], we consider the differential operators

LH
p = Lp +

1

2
[Lp, L] + 1

222! [[Lp, L], L] + · · · + 1

2dd! [· · · [Lp, L], . . . , L], (48)

where the last term contains d = deg p commutators.
The operatorsLH

p have order 2 deg p and the constant coefficient highest order terms
(−1)d p(∂21 , . . . , ∂2N ). In particular,when p(ξ) = ξ1+· · ·+ξN the corresponding operator

LH
p =

N∑

i=1

xi∂i − L = −LH

coincides up to a sign with the CM operator (41). As we will see below, these operators
commute and thus are quantum integrals of the CM system with harmonic term. This
statement can also be extracted from the work of Baker and Forrester [BF97].

Let χH : Qm → Qm be the Hermitisation map defined by (32), and Lp,LH
p the

operators defined above. Note that both of them preserve the algebra of quasi-invariants
due to Proposition 9 and the fact that L preserves Qm .

We are now ready to state and prove our generalisation of the Lassalle-Nekrasov
correspondence to the algebra of quasi-invariants Qm .

Theorem 4. The Hermitisation map χH intertwines the trigonometric CM operator
and the rational CM operator in an harmonic field and their quantum integrals. More
precisely, the diagram

Qm Qm

Qm Qm

χH

Lp LH
p

χH



Quasi–invariant Hermite polynomials and Lassalle–Nekrasov correspondence 125

is commutative for all p ∈ ΛN , that is

LH
p ◦ χH = χH ◦ Lp.

Proof. As before we will use subscript x or λ to indicate the variables the operators act
in. Let us start with the following conjugation relation

eλ2/2Lp,λe−λ2/2 = Lp,λ +
1

2
[λ2,Lp,λ] + 1

222! [λ
2, [λ2,Lp,λ]]

+ · · · + 1

2dd! [λ
2, . . . , [λ2,Lp,λ] · · · ], (49)

where the last commutator is applied d = deg p times. Here we used the standard
formula AdeX = eadX with X being the operator of multiplication by λ2/2, and the fact
that the operator adX is lowering the order of a differential operator at least by one, so
that after d = deg p times the commutator becomes zero.

Now using formula (49), Theorem 3, and the eigenfunction property Lxφ = λ2φ we
get

Lp,λ F(x, λ) = e−λ2/2(eλ2/2Lp,λe−λ2/2)φ

=
(
Lp,x +

1

2
[Lp,x , Lx ] + 1

222! [[Lp,x , Lx ], Lx ]

+ · · · + 1

2dd! [· · · [Lp,x , Lx ], . . . , Lx ]
)
φ e−λ2/2 = LH

p,x F(x, λ).

Therefore by Proposition 10 we get
(
LH

p χH
)
(q) = 〈

LH
p,x F(x, ·), q(·)〉m = 〈F(x, ·),Lpq(·)〉m = (χHLp)(q),

as required. �
As a corollary, the commutativity of the operators LH

p immediately follows.

Corollary 1. The operators (48) commute:

[LH
p ,LH

q ] = 0 (50)

for all p, q ∈ ΛN and thus are quantum integrals of the CM system in an harmonic field
(41).

Note that the coefficients of the operators LH
p depend polynomially on m, and there-

fore commutativity (50) holds for any value of the parameter m, not necessarily integer.
In the quantum case, the Lassalle–Nekrasov correspondence [Las91,Nek97] is given

by the linear map χL N : ΛN → ΛN , χL N (p) = e−L/2 p, p ∈ ΛN , which is such that
the diagram

ΛN ΛN

ΛN ΛN

χL N

Lp LH
p

χL N

(51)

is commutative for all p ∈ ΛN . (See the introduction for anoutline of the correspondence
in the classical case.) Strictly speaking, the case corresponding to p(ξ) = ξ1 + · · · + ξN
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appeared in [Las91], whereas the general case can be found in [BF97]. Although this
formulation of the correspondence is not present in these works, it is readily extracted
from the latter paper. In our case with m ∈ Z≥0 we have by Proposition 8 the relation
χH |ΛN = χL N . Moreover, our definition in (32) of the Hermitisation map χH is readily
modified to yield χL N for non-integer m: the BA function should be replaced by a par-
ticular generalised hypergeometric series (cf. (3.2b) in [BF97]) and 〈·, ·〉m by a suitable
L2-inner product with respect to which the Jack polynomials are orthogonal.

This establishes the equivalence between the rational CM system in an harmonic
field and Sutherland’s version of this system, which sounds surprising, especially at the
classical level. Indeed, these two systems have very different dynamics: the orbits of
CM system with harmonic field are known to be periodic with the same period 2π ,
while for the Sutherland case they are much more complicated. In fact, there is no
contradiction here since the Hamiltonian LH

1 corresponds to the momentum L1, but not
to the Hamiltonian L2.

Let us demonstrate this in the simplest case m = 0. In this case the quasi-invariant al-
gebraQ0 = C[x1, . . . , xN ] coincideswith the set of all polynomials. For any polynomial
p the corresponding operators are

Lp = p(x1∂1, . . . , xN ∂N ), LH
p = p(x1∂1 − ∂21 , . . . , xN ∂N − ∂2N ).

The Hermitisation χH sends the monomial xμ = xμ1
1 . . . xμN

N to the product

Hμ(x) = Hμ1(x1) . . . HμN (xN )

of the usual Hermite polynomials, and extends to the general polynomial by linearity.
Note that the monomials xμ are the joint eigenvectors of all operators Lp:

Lpxμ = p(μ)xμ,

while Hμ(x) are the joint eigenvectors of LH
p :

LH
p Hμ(x) = p(μ)Hμ(x)

with the same eigenvalue p(μ).

On the other hand, allowing any m ∈ N while restricting attention to ΛN ⊂ Qm ,
we can recover Lassalle’s multivariable Hermite polynomials. More specifically, for
partitions λ = (λ1, . . . , λN ) consider the (monic) Jack polynomials P(α)

λ (x) in N vari-
ables x = (x1, . . . , xN ), see e.g. [Mac95]. For us, the relevant parameter values are
α = −1/m. Note that not all Jack polynomials can be specialized to such a parameter
value, e.g.

P(−1/m)

(3,1) (x) = m(3,1)(x) +
2m

m − 1
m(2,2)(x) +

m(5m − 3)

(m − 1)2
m(2,1,1)(x)

+
12m2

(m − 1)2
m(1,1,1,1)(x)

is well-defined if and only if m �= 1. (Here, the monomial symmetric polynomials
mλ(x) = ∑

a∈SN (λ) xa1
1 · · · xaN

N .) For m and λ such that no α-poles are encountered, we
consider the symmetric m-Hermite polynomials

H (m)
λ := χH

(
P(−1/m)

λ

)
.
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From Proposition 5, we infer that H (m)
λ is the unique symmetric polynomial of the

form

H (m)
λ (x) = P(−1/m)

λ (x) + lower degree terms,

with lower degrees of the form |λ|−2k, k = 1, . . . , � 1
2 |λ|�, that satisfies the differential

equation

LH H (m)
λ = −|λ|H (m)

λ .

Since Lassalle’s multivariable Hermite polynomials also have these two properties (see
Théorème 1 and Corollaire to Théorème 3 in [Las91]), they must coincide with the
symmetric multivariable m-Hermite polynomials (up to a choice of normalisation and
after setting the parameter α = −1/m).

6. Lassalle–Nekrasov Correspondence and Automorphisms of Cherednik
Algebras

Recall the rational Cherednik algebra Hm associated with the symmetric group SN and
parameter m [EG02B] (we assume the parameter t = 1). This algebra is generated by
two polynomial rings C[x] = C[x1, . . . , xN ], C[y] = C[y1, . . . , yN ] and the group
algebra CSN with defining relations

wp(x) = p(w−1x)w, wq(y) = q(w−1y)w, yi x j − x j yi = Si j ,

where Si j = msi j if i �= j , Sii = 1 − m
∑

k �=i sik if i = j , and p(x) ∈ C[x],
q(y) ∈ C[y], w ∈ SN .

The algebra Hm has a faithful polynomial representationρ : Hm → End(C[x])where
the elements xi ∈ Hm act onC[x] by multiplication, the elements yi ∈ Hm act by Dunkl
operators Di , and the elements si j act as transpositions of xi and x j .

Consider the following automorphisms aτ,l , bτ,l of the rational Cherednik algebra
Hm [EG02B]:

aτ,l(xi ) = xi + τ yl
i , aτ,l(yi ) = yi , aτ,l(w) = w,

bτ,l(xi ) = xi , bτ,l(yi ) = yi + τ xl
i , bτ,l(w) = w, (52)

where τ ∈ C, l ∈ Z≥0, w ∈ SN , and 1 ≤ i ≤ N .
LetG be the group of automorphisms of the rational Cherednik algebra Hm generated

by these elements aτ,l , bτ,l . Note that elements of G preserve the spherical subalgebra
eHme ⊂ Hm , where e = 1

N !
∑

w∈SN
w.

Consider the subalgebra of Hm generated by the elements σk = e
∑N

i=1 πk
i , where

πi = xi yi , k ∈ Z≥0 become Polychronakos operators [Poly92] in the polynomial
representation. The elements πi satisfy the commutation relation

[πi , π j ] = m(πi − π j )si j

for any i, j , which implies that the elements σk pairwise commute, cf. Polychronakos
[Poly92].

Recall that operators Lk = Res σk generate an algebra of (symmetric) quantum
integrals of the trigonometric CM system. In particular L1 = E = ∑N

i=1 xi∂i is the
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Euler operator, and L2 = HN , where HN is the Hamiltonian of the trigonometric CM
system (42).

Let us describe the action of the generating automorphisms aτ,l , bτ,l ∈ G in terms of
the adjoint action of the elements

yl :=
N∑

i=1

yl
i , xl :=

N∑

i=1

xl
i .

Namely, the following statement takes place (cf. [EG02B]).

Proposition 11. The action of the automorphisms aτ,l and bτ,l can be given as

aτ,l(h) = e
ad τ

l+1 yl+1
h, bτ,l(h) = e

−ad τ
l+1 xl+1

h, (h ∈ Hm), (53)

where adA(X) = AX − X A.

Proof. It is well known that the exponential of any nilpotent derivation is a homomor-
phism, so it is sufficient to prove formulas (53) for h = xi , yi , (i = 1, . . . , N ). The
following commutation relations can be checked directly:

[xi , yl+1] = −(l + 1)yl
i , [yi , xl+1] = (l + 1)xl

i . (54)

The right-hand side of the formula (53) for aτ,l(xi ) has two non-zero terms only by
formula (54), which are aτ,l(xi ) = xi + τ yl

i as required. It is also clear that the first
formula (53) states aτ,l(yi ) = yi as required. The second formula (53) can be checked
similarly. �
Recall the standard formula from linear algebra

AdeA = eadA , (55)

where AdC X = C XC−1.
In the polynomial representation we have a well defined action of the operators of

the form ep(D), p ∈ C[x] since p(D) are locally nilpotent operators. We also have the
natural action of the operators p(D) on the functions of the form e−q(x)r(x), where
r ∈ C[x], q ∈ C[x]SN , which allows us to consider the operator

Adeq(x) p(D) := eq(x) p(D)e−q(x)

acting on the space of polynomials C[x].
In view of formula (55) we can now restate Proposition 11 as follows.

Proposition 12. In the polynomial representation the action of elements aτ,l(h) and
bτ,l(h) for any h ∈ Hm can be given as

aτ,l(h) = e
τ

l+1 Dl+1
he− τ

l+1 Dl+1
, bτ,l(h) = e− τ

l+1 xl+1
he

τ
l+1 xl+1

,

where Dl+1 := ∑N
i=1 Dl+1

i .
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This leads us to another interpretation of the Lassalle–Nekrasov correspondence ϕL N
between quantum integrals of the trigonometric CM system and the rational CM system
in an harmonic field, sending Lp to LH

p , p ∈ ΛN , see diagram (51).
Let T be the commutative subalgebra in Hm generated by the elements

πk :=
N∑

i=1

πk
i , k ∈ Z≥0. (56)

Define R = γ (T ) to be its image under the automorphism γ = a−1,1 ∈ G. More
explicitly, the algebra R is generated by the elements

γ (πk) =
N∑

i=1

(xi yi − y2i )k .

LetDT
C M andDR

C M be the algebras of quantum integrals of the trigonometric CM system
and the rational CMsystemwith an harmonic termgenerated by the differential operators
Lp and LH

p , p ∈ ΛN , respectively.

Proposition 13. The following diagram is commutative:

T R

DT
C M DR

C M ,

γ

Res Res
ϕL N

where ϕL N is the Lassalle–Nekrasov correspondence between the quantum integrals:

ϕL N (Lp) = LH
p ,

with the operator LH
p defined by (48). Furthermore, this operator can also be given as

LH
p = e−L/2LpeL/2, L = Δ −

N∑

i< j

2m

xi − x j
(∂i − ∂ j ). (57)

Proof. All the maps in the diagram are homomorphisms so it is sufficient to compare
the maps ϕL N ◦ Res and Res ◦ γ applied to πk ∈ T .

Recall that L given in (57) is the Hamiltonian of the rational CM system (without
harmonic term) which can be expressed as

L = Res
N∑

i=1

y2i ,

see [Dun89,Hec91B].Therefore byProposition12wehaveRes (γ (πk)) = e−L/2LkeL/2,
where Lk = Resπk is the quantum integral of the trigonometric CM system.

On the other hand by Proposition 8 and Theorem 4 we have e−L/2LkeL/2 = LH
k as

required. �
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7. Higher Analogues of Multivariable m-Hermite Polynomials and Bispectrality

Consider now the triangular automorphism γ of the rational Cherednik algebra Hm
which is a composition of automorphisms (52):

γ (xi ) = xi + Pγ (yi ), γ (yi ) = yi , γ (w) = w, (58)

where Pγ (z) = ∑l
j=0 τ j z j is a polynomial of degree l ∈ Z≥0, τ j ∈ C. The same

arguments as above in the case l = 1 lead to the next proposition (see also [Hor16,
Hor18,VZh09] who used automorphisms of the Weyl algebra in a related context).

Recall that L j = Res
∑N

i=1 D j
i defines a higher order quantum integral of the rational

CM system, see Heckman [Hec91A]. Define Lγ as

Lγ =
l∑

j=0

τ j L j+1.

Proposition 14. The algebra DR,γ

C M = ResRγ , where Rγ = γ (T ), is a commutative
algebra of differenial operators with rational coefficients which is isomorphic to the
algebra of polynomials in N variables. The lowest order differential operator in the
algebra DR,γ

C M has the form

Kγ = Res γ (

N∑

i=1

xi yi ) = Res
N∑

i=1

(xi yi + yiPγ (yi )) = E + Lγ , (59)

where E = ∑
xi∂i is the Euler operator.

Note that this proposition holds for any value of m, not necessarily integer. For integer
m the operator Kγ admits an operator intertwining it with a corresponding constant
coefficient differential operator. Let T = T (x, ∂) be a differential operator such that the
BA function is given as

φ(x, λ) = T e(x,λ). (60)

We have the following result, which for l = 1 is contained in [BC20].

Proposition 15. For any m ∈ Z≥0 the operator Kγ satisfies the intertwining relation

Kγ T = T (

l∑

j=0

τ j∂
j+1 + E),

where ∂ j = ∑N
i=1 ∂

j
i .

Proof. Relation (60) and the property L jφ(x, λ) = λ jφ(x, λ), where λ j = ∑N
i=1 λ

j
i ,

imply the intertwining relation

L j T = T ∂ j .

The operator T is homogeneous of degree 0 by the homogeneity relation (23) of the BA
function φ(x, λ). Hence [E, T ] = 0 and the statement follows. �
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Recall that the operator Lγ preserves the space of quasi-invariant polynomials Qm
and it acts on this space as a locally nilpotent operator. Similarly to Propositions 4 and
8, we have the following result.

Proposition 16. For any homogeneous q ∈ Qm the polynomial

Pγ
q = e

∑l
j=0

τ j
j+1 L j+1q (61)

is an eigenfunction of the operator Kγ :

Kγ Pγ
q = deg q Pγ

q .

More generally, we have the operator e
∑l

j=0
τ j
j+1 L j+1 intertwining the action of the alge-

bras DR,γ

C M and DT
C M on quasi-invariants Qm.

The spectrum of the operator Kγ on Qm thus coincides with the spectrum of the Euler
operator E .

In the simplest one-dimensional case with m = 0 and τ j = 0 for j < l, τl = τ we
have the operator

Kγ = x
d

dx
+ τ

dl+1

dxl+1 .

The corresponding polynomials

Pn(x; τ) = e
τ

l+1
dl+1

dxl+1 xn

are known as Gould–Hopper polynomials [GH62]. These polynomials appear in relation
with various problems from probability, quantum mechanics and integrable systems
[Cha11,DLMT96,VL13].

Note that for l ≥ 2 these polynomials do not satisfy any three-term recurrence relation
and hence by Favard’s theorem do not form an orthogonal system (but satisfy a more
general vector orthogonality property, see Horozov [Hor16]).

The corresponding eigenvalue equation with τ = −l − 1

Kγ Ψ = x
dΨ

dx
− (l + 1)

dl+1Ψ

dxl+1 = λΨ (62)

has interesting non-polynomial solutions

Ψ = mk =
∫ +∞

0
zke−z2(l+1)+xz2dz, k ≥ 0,

which are the moments of the generalised Shohat–Freud weight [Fre76] (see e.g. [CJ20]
where moments are expressed through generalised hypergeometric functions for l =
2, 3, 4). Indeed, it is easy to see that

Kγ e−z2(l+1)+xz2 = 1

2
z

d

dz
e−z2(l+1)+xz2 ,

which after integration by parts gives the relation (62) with λ = − k
2 .
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Going back to the general case consider the function

Fγ (x, λ) = φ(x, λ)e
∑l

j=0
τ j
j+1λ j+1

,

where λ j+1 = ∑N
i=1 λ

j+1
i . For a homogeneous basis qi , i ∈ Z≥0 in the space of quasi-

invariantsQm consider the polynomials Pγ

i (x) := Pγ
qi (x) given by formula (61), where

qi is the dual basis in quasi-invariants Qm .

Proposition 17. We have the following expansion

Fγ (x, λ) =
∑

i

Pγ

i (x)qi (λ).

Proof. The function Fγ (x, λ) can be expanded as

Fγ (x, λ) =
∑

i

P̃γ

i (x)qi (λ)

for some quasi-invariant polynomials P̃γ

i (x) with the highest degree term qi (x). Simi-
larly to the proof of Proposition 4 we have the relation

Kγ Fγ (x, λ) = EλFγ (x, λ),

where the operator Kγ is given by formula (59). Therefore

Kγ P̃γ

i (x) = deg qi P̃γ

i (x). (63)

Since the polynomial solution of differential equation (63) with the highest degree term
qi is unique, it follows by Proposition 16 that P̃γ

i (x) = Pγ

i (x). �
This function satisfies the following bispectrality property in the sense ofDuistermaat

and Grünbaum [DG86].

Proposition 18. For any quasi-invariant polynomial q ∈ Qm the following differential
equations hold:

Lq,x Fγ (x, λ) = q(λ)Fγ (x, λ), L̂q,λFγ (x, λ) = q(x)Fγ (x, λ),

where L̂q,λ = e
∑l

j=0
τ j
j+1λ j+1

Lq,λe−∑l
j=0

τ j
j+1λ j+1

.

The proof follows directly from property (5) of the BA function and its symmetry
(22). This leads to the following result.

Theorem 5. For any homogeneous quasi-invariant q(x) ∈ Qm[d] the polynomials
Pγ

i (x) satisfy the recurrence relation

q(x)Pγ

i (x) =
∑

j :di −ld≤deg q j ≤di+d

C j
i Pγ

j (x), C j
i = 〈L̂qq j , qi 〉m, (64)

where di = deg Pγ

i = deg qi , which together with the differential equation

Kγ Pγ

i (x) = di Pγ

i (x)

gives the differential–difference bispectral property for the polynomials Pγ

i (x).
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Proof. Let us write the operator L̂q,λ in the basis qi (λ):

L̂q,λqi (λ) =
∑

j

Ci
j q

j (λ), (65)

where the coefficients Ci
j = 〈L̂qqi , q j 〉m since 〈q j , qk〉m = δ

j
k . The operator L̂q,λ can

be given by replacing partial derivatives ∂i in Lq,λ with ∂i −Pγ (λi ). Since the operator
Lq,λ is lowering the degree of quasi-invariants by d and the multiplication by Pγ (λi ) is
increasing the degree by l the inner product Ci

j = 〈L̂qqi , q j 〉m = 0 if deg q j > di + ld
or deg q j < di − d.

By applying the operator L̂q,λ to the function Fγ (x, λ) and using formula (65) and
Propositions 17 and 18 we get the required relation (64). �

Let us illustrate Theorem 5 by a one-dimensional example with Pγ (z) = τ zl . Let us
define polynomials pl

k , k ∈ Z≥0 by the expansion

φm(x, λ)e
τ

l+1λl+1 =
∞∑

k=0

pl
k(x)λk,

where the BA function φm is given by (16). Note that pl
2s−1(x) = 0 for s = 1, . . . , m.

The relation of polynomials pl
k at l = 1, τ = −1 with m-Hermite polynomials is given

by the formula

H (m)
k (x) = k!p1k (x).

In this case the operator L̂q,λ for q = x2 takes the form

L̂ x2,λ = ∂2λ − 2(τλl + mλ−1)∂λ + τ 2λ2l + (2m − l)τλl−1,

and hence

x2 pl
k = (k + 2)(k − 2m + 1)pl

k+2 + τ(l − 2(k − m + 1))pl
k−l+1 + τ 2 pl

k−2l . (66)

Let now m = 1. Then x3 ∈ Qm and the corresponding differential operators Lx3,λ

and L̂ x3,λ have the form

Lx3,λ = ∂3λ − 3λ−1∂2λ + 3λ−2∂λ,

L̂ x3,λ = Lx3,λ − 3τλl∂2λ + 3(τ (2 − l)λl−1 + τ 2λ2l)∂λ

−τ(l − 1)(l − 3)λl−2 + 3(l − 1)τ 2λ2l−1 − τ 3λ3l .

The corresponding recurrence relation has the form

x3 pl
k = (k + 3)(k + 1)(k − 1)pl

k+3

−τ(3k2 − 3kl + l2 + 3k − l − 3)pl
k−l+2 + 3τ 2(k − l)pl

k−2l+1

−τ 3 pl
k−3l . (67)

We note that when l = 1 recurrence relations of this type were considered by Gómez-
Ullate et al. [GKMM16] in the context of exceptional Hermite polynomials [GGM14].
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In this case formulas (66), (67) take the form of the following recurrence relations for
m-Hermite polynomials:

x2H (1)
k = k − 1

k + 1
H (1)

k+2 + (2k − 1)H (1)
k + k(k − 1)H (1)

k−2,

x3H (1)
k = k − 1

k + 2
H (1)

k+3 + 3(k − 1)H (1)
k+1 + 3k(k − 1)H (1)

k−1 + k(k − 1)(k − 2)H (1)
k−3.

8. Deformed Calogero–Moser Systems

Let us recall the following generalised CM Hamiltonian which describes interaction of
two types of particles [CFV98,SV04]:

L N1,N2 = k−1
N1∑

i=1

∂2zi
+

N2∑

j=1

∂2w j
−

N1∑

i1<i2

2

zi1 − zi2
(∂zi1

− ∂zi2
)

−
N2∑

j1< j2

2k−1

w j1 − w j2
(∂w j1

− ∂w j2
) −

N1∑

i=1

N2∑

j=1

2

zi − w j
(k−1∂zi − ∂w j ),(68)

where N1, N2 ∈ Z≥0. This Hamiltonian is known to be integrable for any non-zero
k ∈ C.

Consider the rational Cherednik algebra H1/k associated with the symmetric group
SN , where k ∈ N, k ≤ N . In this case the polynomial representation C[x] has a
submodule I consisisting of polynomials p(x) vanishing on the SN orbit of the subspace
Π given by

x1 = . . . = xk =: z1,

xk+1 = . . . = x2k =: z2,

...

x(N1−1)k+1 = . . . = xN1k =: zN1 ,

where N1 ∈ N is such that N2 := N − k N1 ∈ N (see [ESG09] and the arXiv version of
[Fei12], where this statement first appeared).

Let us consider the action of an SN–invariant element h ∈ H1/k in the quotientmodule
C[x]/I . It gives rise to a differential operator ResΠ h acting on functions in variables
z, w, where z = (z1, . . . , zN1), and w = (w1, . . . , wN2) is given by wi = xN1k+i ,
i = 1, . . . , N2. Let Σ ⊂ Π be the union of hyperplanes in Π where two coordinates
from the set zi , w j become equal. Then this operator may be defined by the formula

ResΠ h( f ) = h( f̃ )|Π,

where f is a regular function on a small open set U ⊂ Π \ Σ , and f̃ is its SN -invariant
regular extension to an SN -invariant open set V ⊂ C

N , U ⊂ V , such that f̃ |U = f . It
was established in [Fei12] that

ResΠ

N∑

i=1

y2i = L N1,N2 . (69)
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Let us also consider the trigonometric version of the Hamiltonian (68) which (in the
exponential coordinates) has the form [CFV98,SV04]

LN1,N2 = k−1
N1∑

i=1

(zi∂zi )
2 +

N2∑

j=1

(w j∂w j )
2 −

N1∑

i1<i2

zi1 + zi2

zi1 − zi2
(zi1∂zi1

− zi2∂zi2
)

−k−1
N2∑

j1< j2

w j1 + w j2

w j1 − w j2
(w j1∂w j1

− w j2∂w j2
)

−
N1∑

i=1

N2∑

j=1

zi + w j

zi − w j
(k−1zi∂zi − w j∂w j ).

Lemma 2. The following relations hold:

ResΠ

N∑

i=1

(xi yi )
2 = LN1,N2 , (70)

and

ResΠ

N∑

i=1

xi yi =
N1∑

i=1

zi∂zi +
N2∑

j=1

w j∂w j =: EN1,N2 . (71)

Proof. Recall that

HN = Res
N∑

i=1

D2
i = Res

N∑

i=1

(xi yi )
2

=
N∑

i=1

(xi∂xi )
2 − k−1

N∑

i< j

xi + x j

xi − x j
(xi∂xi − x j∂x j ).

Let us consider orthonormal coordinates (z̃, w) on the space Π , where z̃ = k1/2z. In
order to calculate the operator ResΠ

∑N
i=1(xi yi )

2 one has to replace in the operatorHN

coordinates x jk+s with k−1/2 z̃ j (0 ≤ j ≤ N1 − 1, 1 ≤ s ≤ k), and derivatives ∂x jk+s

with k−1/2∂z̃ j , coordinates xN1k+i with wi , i = 1, . . . , N2 and derivatives ∂xN1k+i with
∂wi and to replace with zero all the derivatives normal to the space Π (cf. [Fei12]). This
produces the operator

ResΠ

N∑

i=1

(xi yi )
2 = k−1

N1∑

i=1

(z̃i∂z̃i )
2 +

N2∑

j=1

(w j∂w j )
2

−
N1∑

i1<i2

z̃i1 + z̃i2

z̃i1 − z̃i2
(z̃i1∂z̃i1

− z̃i2∂z̃i2
) − k−1

N2∑

j1< j2

w j1 + w j2

w j1 − w j2
(w j1∂w j1

− w j2∂w j2
)

−
N1∑

i=1

N2∑

j=1

k−1/2 z̃i + w j

k−1/2 z̃i − w j
(k−1 z̃i∂z̃i − w j∂w j ).
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Formula (70) follows by changing variables z̃ = k1/2z. Formula (71) is easy to see in a
similar way. �

Define the algebra ΛN1,N2 ⊂ C[z, w] as the algebra generated by the deformed
Newton sums (cf. [SV04])

pr = k
N1∑

i=1

zr
i +

N2∑

i=1

wr
i , r ≥ 0.

Let I SN be the SN -invariant part of the ideal I , it consists of SN -invariant polynomials
p(x) which vanish on Π .

Lemma 3. We have an isomorphism of algebras ΛN1,N2
∼= ΛN /I SN .

Proof. Consider the map ϕ : ΛN → ΛN1,N2 given by the natural restriction ϕ(p) =
p|Π , p ∈ ΛN . It is clear that Im ϕ = ΛN1,N2 and Ker ϕ = I SN . �

We have the following version of the Lassalle–Nekrasov correspondence for the
deformed CM operators, (which also can be extracted from [DH12]).

Theorem 6. The following diagram is commutative for any p ∈ ΛN :

ΛN1,N2 ΛN1,N2

ΛN1,N2 ΛN1,N2 ,

χN1,N2

Lp,N1,N2 LH
p,N1,N2χN1,N2

with χN1,N2( f ) = e− 1
2 L N1,N2 f , f ∈ ΛN1,N2 , and Lp,N1,N2 = ResΠ p(π1, . . . , πN ),

LH
p,N1,N2

= Ad
e
− 1
2 L N1,N2

Lp,N1,N2 .

Furthermore, the following equalities hold:

L∑
xi yi ,N1,N2 = EN1,N2 , L∑

(xi yi )
2,N1,N2

= LN1,N2 , (72)

and

LH∑
xi yi ,N1,N2

= −L N1,N2 + EN1,N2 . (73)

Proof. Let us recall commutative diagram (51). This diagram is equivalent to the follow-
ing commutative diagram where Cherednik algebra elements act via Dunkl operators:

ΛN ΛN

ΛN ΛN

χ

p(π) pH(π)
χ

with χ( f ) = e− 1
2

∑
y2i ( f ), f ∈ ΛN , and the operator pH(π) = Ad

e− 1
2

∑
y2i

p(π).

By considering actions in the quotient space ΛN1,N2 (see Lemma 3) and applying the
operation ResΠ and formula (69) the first statement follows.

Formulas (72) follow by Lemma 2. In order to establish (73) let us observe that
pH(π) = ResΠ(xi yi − ∑

y2i ). Then formula (73) follows from (69). �
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We also have a quasi-invariant version of Theorem 6. Let us introduce the follow-
ing algebra ΛN1,N2(k) ⊂ C[z1, . . . , zN1 , w1, . . . , wN2 ] of generalised quasi-invariants
following [ERF16]. A polynomial q ∈ ΛN1,N2(k) if the following three conditions are
satisfied:

1. σ(q) = q for any σ ∈ SN2 which acts by permuting w-variables,
2. for any fixed w, the polynomial q is k-quasi-invariant as a polynomial in variables

z1, . . . , zN1 ,
3. ∂zi q = k∂w j q if zi = w j for any 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

Note that we have an inclusion of algebrasΛN1,N2 ⊂ ΛN1,N2(k). We also have the prop-
erty that the action of the differential operator L N1,N2 preserves the spaceΛN1,N2(k), and,
furthermore, ΛN1,N2(k) is a module over the spherical subalgebra eH1/ke [ERF16]. In
this module the elements p(π1, . . . , πN ), p ∈ ΛN act as differential operatorsLp,N1,N2 ,
in particular, these operators preserve the spaceΛN1,N2(k). This leads us to the following
extension of Theorem 6.

Theorem 7. The following diagram is commutative for any p ∈ ΛN :

ΛN1,N2(k) ΛN1,N2(k)

ΛN1,N2(k) ΛN1,N2(k).

χN1,N2

Lp,N1,N2 LH
p,N1,N2

χN1,N2

Indeed, as we explained all the maps from the spaceΛN1,N2(k) to itself are well-defined.
Since a differential operator acting on functions in variables z, w is fully determined by
its action on ΛN1,N2 the statement follows from Theorem 6.

Operators Lp,N1,N2 in Theorems 6, 7 were obtained as restrictions ResΠ of the
elements Ad

e− 1
2

∑
y2i

p(π) of the rational Cherednik algebra. In terms of automorphisms

of the rational Cherednik algebras considered in Sect. 6 we haveLH
p,N1,N2

= ResΠa−1,1

(p(π)), where a−1,1 is now an automorphism of the algebra H1/k defined in (52).
Let us now consider a more general automorphism γ of the algebra H1/k given by

formula (58). Define the algebra of differential operators DR,γ

N1,N2
= ResΠ Rγ , where

Rγ = γ (T ), and T is the commutative subalgebra in the algebra H1/k generated by
elements πr , r ∈ Z≥0, given by formula (56).

We have the following generalisation of Proposition 14 to the deformed case.

Theorem 8. The algebra DR,γ

N1,N2
is a commutative algebra of differenial operators with

rational coefficients which contains N1 + N2 algebraically independent elements. The
lowest order differential operator in the algebra DR,γ

N1,N2
has the form

KN1,N2,γ = ResΠ γ (

N∑

i=1

xi yi ) = ResΠ

N∑

i=1

(xi yi + yiPγ (yi ))

= EN1,N2 + L N1,N2,γ , (74)

where

L N1,N2,γ = ResΠ

N∑

i=1

yiPγ (yi )

is the order l + 1 quantum integral of the rational generalised CM Hamiltonian (68).
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Indeed, algebraic independence of (the highest order terms of) the operators

ResΠγ (π s) = ResΠ

N∑

i=1

(xi yi + yiPγ (yi ))
s

with s = 1, . . . , N1 + N2 follows from [SV04, Proposition 4]. The rest of the proof is
immediate from Lemma 2 and other previous considerations.

In the case Pγ (z) = −z the operator (74) is equal to the operator −L N1,N2 +
EN1,N2 = LH∑

xi yi ,N1,N2
considered above. Its integrability was established indepen-

dently in [Fei12] for integer k and in [DH12] for general k ∈ C. Furthermore, in the
latter paper so-called super Hermite polynomials were introduced and shown to be joint
eigenfunctions of LH∑

xi yi ,N1,N2
and its higher order integrals.

9. Concluding Remarks

We have defined a new class ofA-Hermite polynomials related to special configurations
A of hyperplanes with multiplicities, and we showed that these polynomials are the
eigenvectors of the corresponding generalised CM operator (35). Of particular interest
is the case of multivariable m-Hermite polynomials. A natural question is whether these
polynomials are joint eigenvectors of the corresponding commuting quantum integrals.
The answer is in general negative already for the symmetric m-Hermite polynomials.

The reason is that if the multiplicity m is non-zero then the bilinear forms on the
space Qm become indefinite and the invariant subspaces of the algebra of integrals in
general are not one-dimensional and contain multivariable m-Hermite polynomials as
generalised eigenvectors.

One can see this already in the simplest two-particle case,when the second integral has
Jordan blocks. Indeed, let us consider the trigonometric side of the Lassalle–Nekrasov
correspondence instead. Then this integral corresponds to the second order Hamiltonian
(42). Let us fix m = 1. Then for any l ∈ N we have a 2 × 2 Jordan block given by

H2(xl
1xl

2) = 2l2xl
1xl

2, H2(xl−1
1 xl−1

2 (x21 + x22 )) = 2l2xl−1
1 xl−1

2 (x21 + x22 ) − 4xl
1xl

2.

The corresponding spectral decomposition of the space of quasi-invariantsQm seems
to be very interesting.

Another interesting direction is to extend the considerations to the difference versions
of the Calogero–Moser systems, see [Rui87] and [vDie95]. We hope to come back to
some of these questions elsewhere.
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